dwc2_hcd.h revision 1.9 1 1.9 skrll /* $NetBSD: dwc2_hcd.h,v 1.9 2014/09/03 10:00:08 skrll Exp $ */
2 1.1 skrll
3 1.1 skrll /*
4 1.1 skrll * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 1.1 skrll *
6 1.1 skrll * Copyright (C) 2004-2013 Synopsys, Inc.
7 1.1 skrll *
8 1.1 skrll * Redistribution and use in source and binary forms, with or without
9 1.1 skrll * modification, are permitted provided that the following conditions
10 1.1 skrll * are met:
11 1.1 skrll * 1. Redistributions of source code must retain the above copyright
12 1.1 skrll * notice, this list of conditions, and the following disclaimer,
13 1.1 skrll * without modification.
14 1.1 skrll * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 skrll * notice, this list of conditions and the following disclaimer in the
16 1.1 skrll * documentation and/or other materials provided with the distribution.
17 1.1 skrll * 3. The names of the above-listed copyright holders may not be used
18 1.1 skrll * to endorse or promote products derived from this software without
19 1.1 skrll * specific prior written permission.
20 1.1 skrll *
21 1.1 skrll * ALTERNATIVELY, this software may be distributed under the terms of the
22 1.1 skrll * GNU General Public License ("GPL") as published by the Free Software
23 1.1 skrll * Foundation; either version 2 of the License, or (at your option) any
24 1.1 skrll * later version.
25 1.1 skrll *
26 1.1 skrll * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 1.1 skrll * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 1.1 skrll * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 1.1 skrll * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 1.1 skrll * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 1.1 skrll * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 1.1 skrll * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 1.1 skrll * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 1.1 skrll * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 1.1 skrll * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 1.1 skrll */
38 1.1 skrll #ifndef __DWC2_HCD_H__
39 1.1 skrll #define __DWC2_HCD_H__
40 1.1 skrll
41 1.1 skrll /*
42 1.1 skrll * This file contains the structures, constants, and interfaces for the
43 1.1 skrll * Host Contoller Driver (HCD)
44 1.1 skrll *
45 1.1 skrll * The Host Controller Driver (HCD) is responsible for translating requests
46 1.1 skrll * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 1.1 skrll * It isolates the USBD from the specifics of the controller by providing an
48 1.1 skrll * API to the USBD.
49 1.1 skrll */
50 1.1 skrll
51 1.1 skrll struct dwc2_qh;
52 1.1 skrll
53 1.1 skrll /**
54 1.1 skrll * struct dwc2_host_chan - Software host channel descriptor
55 1.1 skrll *
56 1.1 skrll * @hc_num: Host channel number, used for register address lookup
57 1.1 skrll * @dev_addr: Address of the device
58 1.1 skrll * @ep_num: Endpoint of the device
59 1.1 skrll * @ep_is_in: Endpoint direction
60 1.1 skrll * @speed: Device speed. One of the following values:
61 1.1 skrll * - USB_SPEED_LOW
62 1.1 skrll * - USB_SPEED_FULL
63 1.1 skrll * - USB_SPEED_HIGH
64 1.1 skrll * @ep_type: Endpoint type. One of the following values:
65 1.1 skrll * - USB_ENDPOINT_XFER_CONTROL: 0
66 1.1 skrll * - USB_ENDPOINT_XFER_ISOC: 1
67 1.1 skrll * - USB_ENDPOINT_XFER_BULK: 2
68 1.1 skrll * - USB_ENDPOINT_XFER_INTR: 3
69 1.1 skrll * @max_packet: Max packet size in bytes
70 1.1 skrll * @data_pid_start: PID for initial transaction.
71 1.1 skrll * 0: DATA0
72 1.1 skrll * 1: DATA2
73 1.1 skrll * 2: DATA1
74 1.1 skrll * 3: MDATA (non-Control EP),
75 1.1 skrll * SETUP (Control EP)
76 1.1 skrll * @multi_count: Number of additional periodic transactions per
77 1.1 skrll * (micro)frame
78 1.1 skrll * @xfer_buf: Pointer to current transfer buffer position
79 1.1 skrll * @xfer_dma: DMA address of xfer_buf
80 1.1 skrll * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 1.1 skrll * DWORD aligned
82 1.1 skrll * @xfer_len: Total number of bytes to transfer
83 1.1 skrll * @xfer_count: Number of bytes transferred so far
84 1.1 skrll * @start_pkt_count: Packet count at start of transfer
85 1.1 skrll * @xfer_started: True if the transfer has been started
86 1.1 skrll * @ping: True if a PING request should be issued on this channel
87 1.1 skrll * @error_state: True if the error count for this transaction is non-zero
88 1.1 skrll * @halt_on_queue: True if this channel should be halted the next time a
89 1.1 skrll * request is queued for the channel. This is necessary in
90 1.1 skrll * slave mode if no request queue space is available when
91 1.1 skrll * an attempt is made to halt the channel.
92 1.1 skrll * @halt_pending: True if the host channel has been halted, but the core
93 1.1 skrll * is not finished flushing queued requests
94 1.1 skrll * @do_split: Enable split for the channel
95 1.1 skrll * @complete_split: Enable complete split
96 1.1 skrll * @hub_addr: Address of high speed hub for the split
97 1.1 skrll * @hub_port: Port of the low/full speed device for the split
98 1.1 skrll * @xact_pos: Split transaction position. One of the following values:
99 1.1 skrll * - DWC2_HCSPLT_XACTPOS_MID
100 1.1 skrll * - DWC2_HCSPLT_XACTPOS_BEGIN
101 1.1 skrll * - DWC2_HCSPLT_XACTPOS_END
102 1.1 skrll * - DWC2_HCSPLT_XACTPOS_ALL
103 1.1 skrll * @requests: Number of requests issued for this channel since it was
104 1.1 skrll * assigned to the current transfer (not counting PINGs)
105 1.1 skrll * @schinfo: Scheduling micro-frame bitmap
106 1.1 skrll * @ntd: Number of transfer descriptors for the transfer
107 1.1 skrll * @halt_status: Reason for halting the host channel
108 1.1 skrll * @hcint Contents of the HCINT register when the interrupt came
109 1.1 skrll * @qh: QH for the transfer being processed by this channel
110 1.1 skrll * @hc_list_entry: For linking to list of host channels
111 1.1 skrll * @desc_list_addr: Current QH's descriptor list DMA address
112 1.1 skrll *
113 1.1 skrll * This structure represents the state of a single host channel when acting in
114 1.1 skrll * host mode. It contains the data items needed to transfer packets to an
115 1.1 skrll * endpoint via a host channel.
116 1.1 skrll */
117 1.1 skrll struct dwc2_host_chan {
118 1.1 skrll u8 hc_num;
119 1.1 skrll
120 1.1 skrll unsigned dev_addr:7;
121 1.1 skrll unsigned ep_num:4;
122 1.1 skrll unsigned ep_is_in:1;
123 1.1 skrll unsigned speed:4;
124 1.1 skrll unsigned ep_type:2;
125 1.1 skrll unsigned max_packet:11;
126 1.1 skrll unsigned data_pid_start:2;
127 1.3 skrll #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
128 1.3 skrll #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
129 1.3 skrll #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
130 1.3 skrll #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
131 1.3 skrll #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
132 1.1 skrll
133 1.1 skrll unsigned multi_count:2;
134 1.1 skrll
135 1.2 skrll usb_dma_t *xfer_usbdma;
136 1.1 skrll u8 *xfer_buf;
137 1.1 skrll dma_addr_t xfer_dma;
138 1.1 skrll dma_addr_t align_buf;
139 1.1 skrll u32 xfer_len;
140 1.1 skrll u32 xfer_count;
141 1.1 skrll u16 start_pkt_count;
142 1.1 skrll u8 xfer_started;
143 1.1 skrll u8 do_ping;
144 1.1 skrll u8 error_state;
145 1.1 skrll u8 halt_on_queue;
146 1.1 skrll u8 halt_pending;
147 1.1 skrll u8 do_split;
148 1.1 skrll u8 complete_split;
149 1.1 skrll u8 hub_addr;
150 1.1 skrll u8 hub_port;
151 1.1 skrll u8 xact_pos;
152 1.3 skrll #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
153 1.3 skrll #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
154 1.3 skrll #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 1.3 skrll #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
156 1.1 skrll
157 1.1 skrll u8 requests;
158 1.1 skrll u8 schinfo;
159 1.1 skrll u16 ntd;
160 1.1 skrll enum dwc2_halt_status halt_status;
161 1.1 skrll u32 hcint;
162 1.1 skrll struct dwc2_qh *qh;
163 1.1 skrll struct list_head hc_list_entry;
164 1.1 skrll dma_addr_t desc_list_addr;
165 1.1 skrll };
166 1.1 skrll
167 1.1 skrll struct dwc2_hcd_pipe_info {
168 1.1 skrll u8 dev_addr;
169 1.1 skrll u8 ep_num;
170 1.1 skrll u8 pipe_type;
171 1.1 skrll u8 pipe_dir;
172 1.1 skrll u16 mps;
173 1.1 skrll };
174 1.1 skrll
175 1.1 skrll struct dwc2_hcd_iso_packet_desc {
176 1.1 skrll u32 offset;
177 1.1 skrll u32 length;
178 1.1 skrll u32 actual_length;
179 1.1 skrll u32 status;
180 1.1 skrll };
181 1.1 skrll
182 1.1 skrll struct dwc2_qtd;
183 1.1 skrll
184 1.1 skrll struct dwc2_hcd_urb {
185 1.2 skrll void *priv; /* the xfer handle */
186 1.1 skrll struct dwc2_qtd *qtd;
187 1.2 skrll usb_dma_t *usbdma;
188 1.2 skrll u8 *buf;
189 1.1 skrll dma_addr_t dma;
190 1.2 skrll usb_dma_t *setup_usbdma;
191 1.1 skrll void *setup_packet;
192 1.1 skrll dma_addr_t setup_dma;
193 1.1 skrll u32 length;
194 1.1 skrll u32 actual_length;
195 1.1 skrll u32 status;
196 1.1 skrll u32 error_count;
197 1.1 skrll u32 packet_count;
198 1.1 skrll u32 flags;
199 1.1 skrll u16 interval;
200 1.1 skrll struct dwc2_hcd_pipe_info pipe_info;
201 1.1 skrll struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 1.1 skrll };
203 1.1 skrll
204 1.1 skrll /* Phases for control transfers */
205 1.1 skrll enum dwc2_control_phase {
206 1.1 skrll DWC2_CONTROL_SETUP,
207 1.1 skrll DWC2_CONTROL_DATA,
208 1.1 skrll DWC2_CONTROL_STATUS,
209 1.1 skrll };
210 1.1 skrll
211 1.1 skrll /* Transaction types */
212 1.1 skrll enum dwc2_transaction_type {
213 1.1 skrll DWC2_TRANSACTION_NONE,
214 1.1 skrll DWC2_TRANSACTION_PERIODIC,
215 1.1 skrll DWC2_TRANSACTION_NON_PERIODIC,
216 1.1 skrll DWC2_TRANSACTION_ALL,
217 1.1 skrll };
218 1.1 skrll
219 1.1 skrll /**
220 1.1 skrll * struct dwc2_qh - Software queue head structure
221 1.1 skrll *
222 1.1 skrll * @ep_type: Endpoint type. One of the following values:
223 1.1 skrll * - USB_ENDPOINT_XFER_CONTROL
224 1.1 skrll * - USB_ENDPOINT_XFER_BULK
225 1.1 skrll * - USB_ENDPOINT_XFER_INT
226 1.1 skrll * - USB_ENDPOINT_XFER_ISOC
227 1.1 skrll * @ep_is_in: Endpoint direction
228 1.1 skrll * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
229 1.1 skrll * @dev_speed: Device speed. One of the following values:
230 1.1 skrll * - USB_SPEED_LOW
231 1.1 skrll * - USB_SPEED_FULL
232 1.1 skrll * - USB_SPEED_HIGH
233 1.1 skrll * @data_toggle: Determines the PID of the next data packet for
234 1.1 skrll * non-controltransfers. Ignored for control transfers.
235 1.1 skrll * One of the following values:
236 1.1 skrll * - DWC2_HC_PID_DATA0
237 1.1 skrll * - DWC2_HC_PID_DATA1
238 1.1 skrll * @ping_state: Ping state
239 1.1 skrll * @do_split: Full/low speed endpoint on high-speed hub requires split
240 1.1 skrll * @td_first: Index of first activated isochronous transfer descriptor
241 1.1 skrll * @td_last: Index of last activated isochronous transfer descriptor
242 1.1 skrll * @usecs: Bandwidth in microseconds per (micro)frame
243 1.1 skrll * @interval: Interval between transfers in (micro)frames
244 1.1 skrll * @sched_frame: (Micro)frame to initialize a periodic transfer.
245 1.1 skrll * The transfer executes in the following (micro)frame.
246 1.9 skrll * @nak_frame: Internal variable used by the NAK holdoff code
247 1.1 skrll * @frame_usecs: Internal variable used by the microframe scheduler
248 1.1 skrll * @start_split_frame: (Micro)frame at which last start split was initialized
249 1.1 skrll * @ntd: Actual number of transfer descriptors in a list
250 1.1 skrll * @dw_align_buf: Used instead of original buffer if its physical address
251 1.1 skrll * is not dword-aligned
252 1.1 skrll * @dw_align_buf_dma: DMA address for align_buf
253 1.1 skrll * @qtd_list: List of QTDs for this QH
254 1.1 skrll * @channel: Host channel currently processing transfers for this QH
255 1.1 skrll * @qh_list_entry: Entry for QH in either the periodic or non-periodic
256 1.1 skrll * schedule
257 1.1 skrll * @desc_list: List of transfer descriptors
258 1.1 skrll * @desc_list_dma: Physical address of desc_list
259 1.1 skrll * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
260 1.1 skrll * descriptor and indicates original XferSize value for the
261 1.1 skrll * descriptor
262 1.1 skrll * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
263 1.1 skrll *
264 1.1 skrll * A Queue Head (QH) holds the static characteristics of an endpoint and
265 1.1 skrll * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
266 1.1 skrll * be entered in either the non-periodic or periodic schedule.
267 1.1 skrll */
268 1.1 skrll struct dwc2_qh {
269 1.1 skrll u8 ep_type;
270 1.1 skrll u8 ep_is_in;
271 1.1 skrll u16 maxp;
272 1.1 skrll u8 dev_speed;
273 1.1 skrll u8 data_toggle;
274 1.1 skrll u8 ping_state;
275 1.1 skrll u8 do_split;
276 1.1 skrll u8 td_first;
277 1.1 skrll u8 td_last;
278 1.1 skrll u16 usecs;
279 1.1 skrll u16 interval;
280 1.1 skrll u16 sched_frame;
281 1.9 skrll u16 nak_frame;
282 1.1 skrll u16 frame_usecs[8];
283 1.1 skrll u16 start_split_frame;
284 1.1 skrll u16 ntd;
285 1.2 skrll usb_dma_t dw_align_buf_usbdma;
286 1.1 skrll u8 *dw_align_buf;
287 1.1 skrll dma_addr_t dw_align_buf_dma;
288 1.1 skrll struct list_head qtd_list;
289 1.1 skrll struct dwc2_host_chan *channel;
290 1.1 skrll struct list_head qh_list_entry;
291 1.2 skrll usb_dma_t desc_list_usbdma;
292 1.1 skrll struct dwc2_hcd_dma_desc *desc_list;
293 1.1 skrll dma_addr_t desc_list_dma;
294 1.1 skrll u32 *n_bytes;
295 1.1 skrll unsigned tt_buffer_dirty:1;
296 1.1 skrll };
297 1.1 skrll
298 1.1 skrll /**
299 1.1 skrll * struct dwc2_qtd - Software queue transfer descriptor (QTD)
300 1.1 skrll *
301 1.1 skrll * @control_phase: Current phase for control transfers (Setup, Data, or
302 1.1 skrll * Status)
303 1.1 skrll * @in_process: Indicates if this QTD is currently processed by HW
304 1.1 skrll * @data_toggle: Determines the PID of the next data packet for the
305 1.1 skrll * data phase of control transfers. Ignored for other
306 1.1 skrll * transfer types. One of the following values:
307 1.1 skrll * - DWC2_HC_PID_DATA0
308 1.1 skrll * - DWC2_HC_PID_DATA1
309 1.1 skrll * @complete_split: Keeps track of the current split type for FS/LS
310 1.1 skrll * endpoints on a HS Hub
311 1.1 skrll * @isoc_split_pos: Position of the ISOC split in full/low speed
312 1.1 skrll * @isoc_frame_index: Index of the next frame descriptor for an isochronous
313 1.1 skrll * transfer. A frame descriptor describes the buffer
314 1.1 skrll * position and length of the data to be transferred in the
315 1.1 skrll * next scheduled (micro)frame of an isochronous transfer.
316 1.1 skrll * It also holds status for that transaction. The frame
317 1.1 skrll * index starts at 0.
318 1.1 skrll * @isoc_split_offset: Position of the ISOC split in the buffer for the
319 1.1 skrll * current frame
320 1.1 skrll * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
321 1.1 skrll * @error_count: Holds the number of bus errors that have occurred for
322 1.1 skrll * a transaction within this transfer
323 1.1 skrll * @n_desc: Number of DMA descriptors for this QTD
324 1.1 skrll * @isoc_frame_index_last: Last activated frame (packet) index, used in
325 1.1 skrll * descriptor DMA mode only
326 1.1 skrll * @urb: URB for this transfer
327 1.1 skrll * @qh: Queue head for this QTD
328 1.1 skrll * @qtd_list_entry: For linking to the QH's list of QTDs
329 1.1 skrll *
330 1.1 skrll * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
331 1.1 skrll * interrupt, or isochronous transfer. A single QTD is created for each URB
332 1.1 skrll * (of one of these types) submitted to the HCD. The transfer associated with
333 1.1 skrll * a QTD may require one or multiple transactions.
334 1.1 skrll *
335 1.1 skrll * A QTD is linked to a Queue Head, which is entered in either the
336 1.1 skrll * non-periodic or periodic schedule for execution. When a QTD is chosen for
337 1.1 skrll * execution, some or all of its transactions may be executed. After
338 1.1 skrll * execution, the state of the QTD is updated. The QTD may be retired if all
339 1.1 skrll * its transactions are complete or if an error occurred. Otherwise, it
340 1.1 skrll * remains in the schedule so more transactions can be executed later.
341 1.1 skrll */
342 1.1 skrll struct dwc2_qtd {
343 1.1 skrll enum dwc2_control_phase control_phase;
344 1.1 skrll u8 in_process;
345 1.1 skrll u8 data_toggle;
346 1.1 skrll u8 complete_split;
347 1.1 skrll u8 isoc_split_pos;
348 1.1 skrll u16 isoc_frame_index;
349 1.1 skrll u16 isoc_split_offset;
350 1.1 skrll u32 ssplit_out_xfer_count;
351 1.1 skrll u8 error_count;
352 1.1 skrll u8 n_desc;
353 1.1 skrll u16 isoc_frame_index_last;
354 1.1 skrll struct dwc2_hcd_urb *urb;
355 1.1 skrll struct dwc2_qh *qh;
356 1.1 skrll struct list_head qtd_list_entry;
357 1.1 skrll };
358 1.1 skrll
359 1.1 skrll #ifdef DEBUG
360 1.1 skrll struct hc_xfer_info {
361 1.1 skrll struct dwc2_hsotg *hsotg;
362 1.1 skrll struct dwc2_host_chan *chan;
363 1.1 skrll };
364 1.1 skrll #endif
365 1.1 skrll
366 1.1 skrll /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
367 1.1 skrll static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
368 1.1 skrll {
369 1.1 skrll return (struct usb_hcd *)hsotg->priv;
370 1.1 skrll }
371 1.1 skrll
372 1.1 skrll /*
373 1.1 skrll * Inline used to disable one channel interrupt. Channel interrupts are
374 1.1 skrll * disabled when the channel is halted or released by the interrupt handler.
375 1.1 skrll * There is no need to handle further interrupts of that type until the
376 1.1 skrll * channel is re-assigned. In fact, subsequent handling may cause crashes
377 1.1 skrll * because the channel structures are cleaned up when the channel is released.
378 1.1 skrll */
379 1.1 skrll static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
380 1.1 skrll {
381 1.2 skrll u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
382 1.1 skrll
383 1.1 skrll mask &= ~intr;
384 1.2 skrll DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
385 1.1 skrll }
386 1.1 skrll
387 1.1 skrll /*
388 1.1 skrll * Returns the mode of operation, host or device
389 1.1 skrll */
390 1.1 skrll static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
391 1.1 skrll {
392 1.2 skrll return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
393 1.1 skrll }
394 1.2 skrll
395 1.1 skrll static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
396 1.1 skrll {
397 1.2 skrll return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
398 1.1 skrll }
399 1.1 skrll
400 1.1 skrll /*
401 1.1 skrll * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
402 1.1 skrll * are read as 1, they won't clear when written back.
403 1.1 skrll */
404 1.1 skrll static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
405 1.1 skrll {
406 1.2 skrll u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
407 1.1 skrll
408 1.1 skrll hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
409 1.1 skrll return hprt0;
410 1.1 skrll }
411 1.1 skrll
412 1.1 skrll static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
413 1.1 skrll {
414 1.1 skrll return pipe->ep_num;
415 1.1 skrll }
416 1.1 skrll
417 1.1 skrll static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
418 1.1 skrll {
419 1.1 skrll return pipe->pipe_type;
420 1.1 skrll }
421 1.1 skrll
422 1.1 skrll static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
423 1.1 skrll {
424 1.1 skrll return pipe->mps;
425 1.1 skrll }
426 1.1 skrll
427 1.1 skrll static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
428 1.1 skrll {
429 1.1 skrll return pipe->dev_addr;
430 1.1 skrll }
431 1.1 skrll
432 1.1 skrll static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
433 1.1 skrll {
434 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
435 1.1 skrll }
436 1.1 skrll
437 1.1 skrll static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
438 1.1 skrll {
439 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
440 1.1 skrll }
441 1.1 skrll
442 1.1 skrll static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
443 1.1 skrll {
444 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
445 1.1 skrll }
446 1.1 skrll
447 1.1 skrll static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
448 1.1 skrll {
449 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
450 1.1 skrll }
451 1.1 skrll
452 1.1 skrll static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
453 1.1 skrll {
454 1.1 skrll return pipe->pipe_dir == USB_DIR_IN;
455 1.1 skrll }
456 1.1 skrll
457 1.1 skrll static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
458 1.1 skrll {
459 1.1 skrll return !dwc2_hcd_is_pipe_in(pipe);
460 1.1 skrll }
461 1.1 skrll
462 1.2 skrll extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg,
463 1.1 skrll const struct dwc2_core_params *params);
464 1.1 skrll extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
465 1.8 skrll extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
466 1.8 skrll const struct dwc2_core_params *params);
467 1.1 skrll extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
468 1.3 skrll extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
469 1.1 skrll
470 1.1 skrll /* Transaction Execution Functions */
471 1.1 skrll extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
472 1.1 skrll struct dwc2_hsotg *hsotg);
473 1.1 skrll extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
474 1.1 skrll enum dwc2_transaction_type tr_type);
475 1.1 skrll
476 1.1 skrll /* Schedule Queue Functions */
477 1.1 skrll /* Implemented in hcd_queue.c */
478 1.1 skrll extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
479 1.1 skrll extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
480 1.1 skrll extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
481 1.1 skrll extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
482 1.1 skrll extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
483 1.1 skrll int sched_csplit);
484 1.1 skrll
485 1.1 skrll extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
486 1.1 skrll extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
487 1.2 skrll struct dwc2_qh **qh, int mem_flags);
488 1.1 skrll
489 1.2 skrll /* Removes and frees a QTD */
490 1.2 skrll extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
491 1.2 skrll struct dwc2_qtd *qtd,
492 1.2 skrll struct dwc2_qh *qh);
493 1.1 skrll
494 1.1 skrll /* Descriptor DMA support functions */
495 1.1 skrll extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
496 1.1 skrll struct dwc2_qh *qh);
497 1.1 skrll extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
498 1.1 skrll struct dwc2_host_chan *chan, int chnum,
499 1.1 skrll enum dwc2_halt_status halt_status);
500 1.1 skrll
501 1.1 skrll extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
502 1.1 skrll gfp_t mem_flags);
503 1.1 skrll extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
504 1.1 skrll
505 1.1 skrll /* Check if QH is non-periodic */
506 1.1 skrll #define dwc2_qh_is_non_per(_qh_ptr_) \
507 1.1 skrll ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
508 1.1 skrll (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
509 1.1 skrll
510 1.1 skrll #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
511 1.1 skrll static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
512 1.1 skrll static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
513 1.1 skrll static inline bool dbg_perio(void) { return true; }
514 1.1 skrll #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
515 1.1 skrll static inline bool dbg_hc(struct dwc2_host_chan *hc)
516 1.1 skrll {
517 1.1 skrll return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
518 1.1 skrll hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
519 1.1 skrll }
520 1.1 skrll
521 1.1 skrll static inline bool dbg_qh(struct dwc2_qh *qh)
522 1.1 skrll {
523 1.1 skrll return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
524 1.1 skrll qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
525 1.1 skrll }
526 1.1 skrll
527 1.1 skrll
528 1.1 skrll static inline bool dbg_perio(void) { return false; }
529 1.1 skrll #endif
530 1.1 skrll
531 1.1 skrll /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532 1.1 skrll #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533 1.1 skrll
534 1.1 skrll /* Packet size for any kind of endpoint descriptor */
535 1.1 skrll #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536 1.1 skrll
537 1.1 skrll /*
538 1.1 skrll * Returns true if frame1 is less than or equal to frame2. The comparison is
539 1.1 skrll * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540 1.1 skrll * frame number when the max frame number is reached.
541 1.1 skrll */
542 1.1 skrll static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543 1.1 skrll {
544 1.1 skrll return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545 1.1 skrll }
546 1.1 skrll
547 1.1 skrll /*
548 1.1 skrll * Returns true if frame1 is greater than frame2. The comparison is done
549 1.1 skrll * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550 1.1 skrll * number when the max frame number is reached.
551 1.1 skrll */
552 1.1 skrll static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553 1.1 skrll {
554 1.1 skrll return (frame1 != frame2) &&
555 1.1 skrll ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556 1.1 skrll }
557 1.1 skrll
558 1.1 skrll /*
559 1.1 skrll * Increments frame by the amount specified by inc. The addition is done
560 1.1 skrll * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561 1.1 skrll */
562 1.1 skrll static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563 1.1 skrll {
564 1.1 skrll return (frame + inc) & HFNUM_MAX_FRNUM;
565 1.1 skrll }
566 1.1 skrll
567 1.1 skrll static inline u16 dwc2_full_frame_num(u16 frame)
568 1.1 skrll {
569 1.1 skrll return (frame & HFNUM_MAX_FRNUM) >> 3;
570 1.1 skrll }
571 1.1 skrll
572 1.1 skrll static inline u16 dwc2_micro_frame_num(u16 frame)
573 1.1 skrll {
574 1.1 skrll return frame & 0x7;
575 1.1 skrll }
576 1.1 skrll
577 1.1 skrll /*
578 1.1 skrll * Returns the Core Interrupt Status register contents, ANDed with the Core
579 1.1 skrll * Interrupt Mask register contents
580 1.1 skrll */
581 1.1 skrll static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582 1.1 skrll {
583 1.2 skrll return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
584 1.1 skrll }
585 1.1 skrll
586 1.1 skrll static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
587 1.1 skrll {
588 1.1 skrll return dwc2_urb->status;
589 1.1 skrll }
590 1.1 skrll
591 1.1 skrll static inline u32 dwc2_hcd_urb_get_actual_length(
592 1.1 skrll struct dwc2_hcd_urb *dwc2_urb)
593 1.1 skrll {
594 1.1 skrll return dwc2_urb->actual_length;
595 1.1 skrll }
596 1.1 skrll
597 1.1 skrll static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
598 1.1 skrll {
599 1.1 skrll return dwc2_urb->error_count;
600 1.1 skrll }
601 1.1 skrll
602 1.1 skrll static inline void dwc2_hcd_urb_set_iso_desc_params(
603 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
604 1.1 skrll u32 length)
605 1.1 skrll {
606 1.1 skrll dwc2_urb->iso_descs[desc_num].offset = offset;
607 1.1 skrll dwc2_urb->iso_descs[desc_num].length = length;
608 1.1 skrll }
609 1.1 skrll
610 1.1 skrll static inline u32 dwc2_hcd_urb_get_iso_desc_status(
611 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num)
612 1.1 skrll {
613 1.1 skrll return dwc2_urb->iso_descs[desc_num].status;
614 1.1 skrll }
615 1.1 skrll
616 1.1 skrll static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
617 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num)
618 1.1 skrll {
619 1.1 skrll return dwc2_urb->iso_descs[desc_num].actual_length;
620 1.1 skrll }
621 1.1 skrll
622 1.1 skrll static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
623 1.2 skrll usbd_xfer_handle xfer)
624 1.1 skrll {
625 1.2 skrll struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
626 1.2 skrll struct dwc2_qh *qh = dpipe->priv;
627 1.1 skrll
628 1.1 skrll if (qh && !list_empty(&qh->qh_list_entry))
629 1.1 skrll return 1;
630 1.1 skrll
631 1.1 skrll return 0;
632 1.1 skrll }
633 1.1 skrll
634 1.5 skrll static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
635 1.5 skrll struct dwc2_pipe *dpipe)
636 1.5 skrll {
637 1.5 skrll struct dwc2_qh *qh = dpipe->priv;
638 1.5 skrll
639 1.5 skrll if (!qh) {
640 1.5 skrll WARN_ON(1);
641 1.5 skrll return 0;
642 1.5 skrll }
643 1.5 skrll
644 1.5 skrll return qh->usecs;
645 1.5 skrll }
646 1.1 skrll
647 1.1 skrll extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
648 1.1 skrll struct dwc2_host_chan *chan, int chnum,
649 1.1 skrll struct dwc2_qtd *qtd);
650 1.1 skrll
651 1.1 skrll /* HCD Core API */
652 1.1 skrll
653 1.1 skrll /**
654 1.1 skrll * dwc2_handle_hcd_intr() - Called on every hardware interrupt
655 1.1 skrll *
656 1.1 skrll * @hsotg: The DWC2 HCD
657 1.1 skrll *
658 1.1 skrll * Returns IRQ_HANDLED if interrupt is handled
659 1.1 skrll * Return IRQ_NONE if interrupt is not handled
660 1.1 skrll */
661 1.1 skrll extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
662 1.1 skrll
663 1.1 skrll /**
664 1.1 skrll * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
665 1.1 skrll *
666 1.1 skrll * @hsotg: The DWC2 HCD
667 1.1 skrll */
668 1.1 skrll extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
669 1.1 skrll
670 1.1 skrll extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
671 1.1 skrll extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
672 1.1 skrll
673 1.1 skrll /**
674 1.1 skrll * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
675 1.1 skrll * and 0 otherwise
676 1.1 skrll *
677 1.1 skrll * @hsotg: The DWC2 HCD
678 1.1 skrll */
679 1.1 skrll extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
680 1.1 skrll
681 1.1 skrll /**
682 1.1 skrll * dwc2_hcd_get_frame_number() - Returns current frame number
683 1.1 skrll *
684 1.1 skrll * @hsotg: The DWC2 HCD
685 1.1 skrll */
686 1.1 skrll extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
687 1.1 skrll
688 1.1 skrll /**
689 1.1 skrll * dwc2_hcd_dump_state() - Dumps hsotg state
690 1.1 skrll *
691 1.1 skrll * @hsotg: The DWC2 HCD
692 1.1 skrll *
693 1.1 skrll * NOTE: This function will be removed once the peripheral controller code
694 1.1 skrll * is integrated and the driver is stable
695 1.1 skrll */
696 1.1 skrll extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
697 1.1 skrll
698 1.1 skrll /**
699 1.1 skrll * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
700 1.1 skrll *
701 1.1 skrll * @hsotg: The DWC2 HCD
702 1.1 skrll *
703 1.1 skrll * This can be used to determine average interrupt latency. Frame remaining is
704 1.1 skrll * also shown for start transfer and two additional sample points.
705 1.1 skrll *
706 1.1 skrll * NOTE: This function will be removed once the peripheral controller code
707 1.1 skrll * is integrated and the driver is stable
708 1.1 skrll */
709 1.1 skrll extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
710 1.1 skrll
711 1.1 skrll /* URB interface */
712 1.1 skrll
713 1.1 skrll /* Transfer flags */
714 1.1 skrll #define URB_GIVEBACK_ASAP 0x1
715 1.1 skrll #define URB_SEND_ZERO_PACKET 0x2
716 1.1 skrll
717 1.1 skrll /* Host driver callbacks */
718 1.1 skrll
719 1.1 skrll extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
720 1.1 skrll extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
721 1.1 skrll extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
722 1.1 skrll int *hub_addr, int *hub_port);
723 1.1 skrll extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
724 1.1 skrll extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
725 1.1 skrll int status);
726 1.1 skrll
727 1.1 skrll #ifdef DEBUG
728 1.1 skrll /*
729 1.1 skrll * Macro to sample the remaining PHY clocks left in the current frame. This
730 1.1 skrll * may be used during debugging to determine the average time it takes to
731 1.1 skrll * execute sections of code. There are two possible sample points, "a" and
732 1.1 skrll * "b", so the _letter_ argument must be one of these values.
733 1.1 skrll *
734 1.1 skrll * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
735 1.1 skrll * example, "cat /sys/devices/lm0/hcd_frrem".
736 1.1 skrll */
737 1.1 skrll #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
738 1.1 skrll do { \
739 1.1 skrll struct hfnum_data _hfnum_; \
740 1.1 skrll struct dwc2_qtd *_qtd_; \
741 1.1 skrll \
742 1.1 skrll _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
743 1.1 skrll qtd_list_entry); \
744 1.1 skrll if (usb_pipeint(_qtd_->urb->pipe) && \
745 1.1 skrll (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
746 1.2 skrll _hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM); \
747 1.1 skrll switch (_hfnum_.b.frnum & 0x7) { \
748 1.1 skrll case 7: \
749 1.1 skrll (_hcd_)->hfnum_7_samples_##_letter_++; \
750 1.1 skrll (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
751 1.1 skrll _hfnum_.b.frrem; \
752 1.1 skrll break; \
753 1.1 skrll case 0: \
754 1.1 skrll (_hcd_)->hfnum_0_samples_##_letter_++; \
755 1.1 skrll (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
756 1.1 skrll _hfnum_.b.frrem; \
757 1.1 skrll break; \
758 1.1 skrll default: \
759 1.1 skrll (_hcd_)->hfnum_other_samples_##_letter_++; \
760 1.1 skrll (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
761 1.1 skrll _hfnum_.b.frrem; \
762 1.1 skrll break; \
763 1.1 skrll } \
764 1.1 skrll } \
765 1.1 skrll } while (0)
766 1.1 skrll #else
767 1.1 skrll #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
768 1.1 skrll #endif
769 1.1 skrll
770 1.2 skrll
771 1.2 skrll void dwc2_wakeup_detected(void *);
772 1.2 skrll
773 1.2 skrll int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
774 1.2 skrll void dwc2_hcd_reinit(struct dwc2_hsotg *);
775 1.2 skrll int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
776 1.2 skrll struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
777 1.2 skrll int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *, struct dwc2_hcd_urb *, void **,
778 1.2 skrll gfp_t);
779 1.2 skrll void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
780 1.2 skrll u8 ,u8, u8, u8, u16);
781 1.2 skrll
782 1.2 skrll void dwc2_conn_id_status_change(struct work *);
783 1.2 skrll void dwc2_hcd_start_func(struct work *);
784 1.2 skrll void dwc2_hcd_reset_func(struct work *);
785 1.2 skrll
786 1.2 skrll struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
787 1.2 skrll void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
788 1.2 skrll
789 1.2 skrll int _dwc2_hcd_start(struct dwc2_hsotg *);
790 1.2 skrll
791 1.4 skrll int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
792 1.4 skrll
793 1.1 skrll #endif /* __DWC2_HCD_H__ */
794