dwc2_hcd.h revision 1.1 1 /* $NetBSD: dwc2_hcd.h,v 1.1 2013/09/05 07:53:12 skrll Exp $ */
2
3 /*
4 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 *
6 * Copyright (C) 2004-2013 Synopsys, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The names of the above-listed copyright holders may not be used
18 * to endorse or promote products derived from this software without
19 * specific prior written permission.
20 *
21 * ALTERNATIVELY, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") as published by the Free Software
23 * Foundation; either version 2 of the License, or (at your option) any
24 * later version.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40
41 /*
42 * This file contains the structures, constants, and interfaces for the
43 * Host Contoller Driver (HCD)
44 *
45 * The Host Controller Driver (HCD) is responsible for translating requests
46 * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 * It isolates the USBD from the specifics of the controller by providing an
48 * API to the USBD.
49 */
50
51 struct dwc2_qh;
52
53 /**
54 * struct dwc2_host_chan - Software host channel descriptor
55 *
56 * @hc_num: Host channel number, used for register address lookup
57 * @dev_addr: Address of the device
58 * @ep_num: Endpoint of the device
59 * @ep_is_in: Endpoint direction
60 * @speed: Device speed. One of the following values:
61 * - USB_SPEED_LOW
62 * - USB_SPEED_FULL
63 * - USB_SPEED_HIGH
64 * @ep_type: Endpoint type. One of the following values:
65 * - USB_ENDPOINT_XFER_CONTROL: 0
66 * - USB_ENDPOINT_XFER_ISOC: 1
67 * - USB_ENDPOINT_XFER_BULK: 2
68 * - USB_ENDPOINT_XFER_INTR: 3
69 * @max_packet: Max packet size in bytes
70 * @data_pid_start: PID for initial transaction.
71 * 0: DATA0
72 * 1: DATA2
73 * 2: DATA1
74 * 3: MDATA (non-Control EP),
75 * SETUP (Control EP)
76 * @multi_count: Number of additional periodic transactions per
77 * (micro)frame
78 * @xfer_buf: Pointer to current transfer buffer position
79 * @xfer_dma: DMA address of xfer_buf
80 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 * DWORD aligned
82 * @xfer_len: Total number of bytes to transfer
83 * @xfer_count: Number of bytes transferred so far
84 * @start_pkt_count: Packet count at start of transfer
85 * @xfer_started: True if the transfer has been started
86 * @ping: True if a PING request should be issued on this channel
87 * @error_state: True if the error count for this transaction is non-zero
88 * @halt_on_queue: True if this channel should be halted the next time a
89 * request is queued for the channel. This is necessary in
90 * slave mode if no request queue space is available when
91 * an attempt is made to halt the channel.
92 * @halt_pending: True if the host channel has been halted, but the core
93 * is not finished flushing queued requests
94 * @do_split: Enable split for the channel
95 * @complete_split: Enable complete split
96 * @hub_addr: Address of high speed hub for the split
97 * @hub_port: Port of the low/full speed device for the split
98 * @xact_pos: Split transaction position. One of the following values:
99 * - DWC2_HCSPLT_XACTPOS_MID
100 * - DWC2_HCSPLT_XACTPOS_BEGIN
101 * - DWC2_HCSPLT_XACTPOS_END
102 * - DWC2_HCSPLT_XACTPOS_ALL
103 * @requests: Number of requests issued for this channel since it was
104 * assigned to the current transfer (not counting PINGs)
105 * @schinfo: Scheduling micro-frame bitmap
106 * @ntd: Number of transfer descriptors for the transfer
107 * @halt_status: Reason for halting the host channel
108 * @hcint Contents of the HCINT register when the interrupt came
109 * @qh: QH for the transfer being processed by this channel
110 * @hc_list_entry: For linking to list of host channels
111 * @desc_list_addr: Current QH's descriptor list DMA address
112 *
113 * This structure represents the state of a single host channel when acting in
114 * host mode. It contains the data items needed to transfer packets to an
115 * endpoint via a host channel.
116 */
117 struct dwc2_host_chan {
118 u8 hc_num;
119
120 unsigned dev_addr:7;
121 unsigned ep_num:4;
122 unsigned ep_is_in:1;
123 unsigned speed:4;
124 unsigned ep_type:2;
125 unsigned max_packet:11;
126 unsigned data_pid_start:2;
127 #define DWC2_HC_PID_DATA0 (TSIZ_SC_MC_PID_DATA0 >> TSIZ_SC_MC_PID_SHIFT)
128 #define DWC2_HC_PID_DATA2 (TSIZ_SC_MC_PID_DATA2 >> TSIZ_SC_MC_PID_SHIFT)
129 #define DWC2_HC_PID_DATA1 (TSIZ_SC_MC_PID_DATA1 >> TSIZ_SC_MC_PID_SHIFT)
130 #define DWC2_HC_PID_MDATA (TSIZ_SC_MC_PID_MDATA >> TSIZ_SC_MC_PID_SHIFT)
131 #define DWC2_HC_PID_SETUP (TSIZ_SC_MC_PID_SETUP >> TSIZ_SC_MC_PID_SHIFT)
132
133 unsigned multi_count:2;
134
135 u8 *xfer_buf;
136 dma_addr_t xfer_dma;
137 dma_addr_t align_buf;
138 u32 xfer_len;
139 u32 xfer_count;
140 u16 start_pkt_count;
141 u8 xfer_started;
142 u8 do_ping;
143 u8 error_state;
144 u8 halt_on_queue;
145 u8 halt_pending;
146 u8 do_split;
147 u8 complete_split;
148 u8 hub_addr;
149 u8 hub_port;
150 u8 xact_pos;
151 #define DWC2_HCSPLT_XACTPOS_MID (HCSPLT_XACTPOS_MID >> HCSPLT_XACTPOS_SHIFT)
152 #define DWC2_HCSPLT_XACTPOS_END (HCSPLT_XACTPOS_END >> HCSPLT_XACTPOS_SHIFT)
153 #define DWC2_HCSPLT_XACTPOS_BEGIN (HCSPLT_XACTPOS_BEGIN >> HCSPLT_XACTPOS_SHIFT)
154 #define DWC2_HCSPLT_XACTPOS_ALL (HCSPLT_XACTPOS_ALL >> HCSPLT_XACTPOS_SHIFT)
155
156 u8 requests;
157 u8 schinfo;
158 u16 ntd;
159 enum dwc2_halt_status halt_status;
160 u32 hcint;
161 struct dwc2_qh *qh;
162 struct list_head hc_list_entry;
163 dma_addr_t desc_list_addr;
164 };
165
166 struct dwc2_hcd_pipe_info {
167 u8 dev_addr;
168 u8 ep_num;
169 u8 pipe_type;
170 u8 pipe_dir;
171 u16 mps;
172 };
173
174 struct dwc2_hcd_iso_packet_desc {
175 u32 offset;
176 u32 length;
177 u32 actual_length;
178 u32 status;
179 };
180
181 struct dwc2_qtd;
182
183 struct dwc2_hcd_urb {
184 void *priv;
185 struct dwc2_qtd *qtd;
186 void *buf;
187 dma_addr_t dma;
188 void *setup_packet;
189 dma_addr_t setup_dma;
190 u32 length;
191 u32 actual_length;
192 u32 status;
193 u32 error_count;
194 u32 packet_count;
195 u32 flags;
196 u16 interval;
197 struct dwc2_hcd_pipe_info pipe_info;
198 struct dwc2_hcd_iso_packet_desc iso_descs[0];
199 };
200
201 /* Phases for control transfers */
202 enum dwc2_control_phase {
203 DWC2_CONTROL_SETUP,
204 DWC2_CONTROL_DATA,
205 DWC2_CONTROL_STATUS,
206 };
207
208 /* Transaction types */
209 enum dwc2_transaction_type {
210 DWC2_TRANSACTION_NONE,
211 DWC2_TRANSACTION_PERIODIC,
212 DWC2_TRANSACTION_NON_PERIODIC,
213 DWC2_TRANSACTION_ALL,
214 };
215
216 /**
217 * struct dwc2_qh - Software queue head structure
218 *
219 * @ep_type: Endpoint type. One of the following values:
220 * - USB_ENDPOINT_XFER_CONTROL
221 * - USB_ENDPOINT_XFER_BULK
222 * - USB_ENDPOINT_XFER_INT
223 * - USB_ENDPOINT_XFER_ISOC
224 * @ep_is_in: Endpoint direction
225 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
226 * @dev_speed: Device speed. One of the following values:
227 * - USB_SPEED_LOW
228 * - USB_SPEED_FULL
229 * - USB_SPEED_HIGH
230 * @data_toggle: Determines the PID of the next data packet for
231 * non-controltransfers. Ignored for control transfers.
232 * One of the following values:
233 * - DWC2_HC_PID_DATA0
234 * - DWC2_HC_PID_DATA1
235 * @ping_state: Ping state
236 * @do_split: Full/low speed endpoint on high-speed hub requires split
237 * @td_first: Index of first activated isochronous transfer descriptor
238 * @td_last: Index of last activated isochronous transfer descriptor
239 * @usecs: Bandwidth in microseconds per (micro)frame
240 * @interval: Interval between transfers in (micro)frames
241 * @sched_frame: (Micro)frame to initialize a periodic transfer.
242 * The transfer executes in the following (micro)frame.
243 * @nak_frame: Internal variable used by the NAK holdoff code
244 * @frame_usecs: Internal variable used by the microframe scheduler
245 * @start_split_frame: (Micro)frame at which last start split was initialized
246 * @ntd: Actual number of transfer descriptors in a list
247 * @dw_align_buf: Used instead of original buffer if its physical address
248 * is not dword-aligned
249 * @dw_align_buf_dma: DMA address for align_buf
250 * @qtd_list: List of QTDs for this QH
251 * @channel: Host channel currently processing transfers for this QH
252 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
253 * schedule
254 * @desc_list: List of transfer descriptors
255 * @desc_list_dma: Physical address of desc_list
256 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
257 * descriptor and indicates original XferSize value for the
258 * descriptor
259 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
260 *
261 * A Queue Head (QH) holds the static characteristics of an endpoint and
262 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
263 * be entered in either the non-periodic or periodic schedule.
264 */
265 struct dwc2_qh {
266 u8 ep_type;
267 u8 ep_is_in;
268 u16 maxp;
269 u8 dev_speed;
270 u8 data_toggle;
271 u8 ping_state;
272 u8 do_split;
273 u8 td_first;
274 u8 td_last;
275 u16 usecs;
276 u16 interval;
277 u16 sched_frame;
278 u16 nak_frame;
279 u16 frame_usecs[8];
280 u16 start_split_frame;
281 u16 ntd;
282 u8 *dw_align_buf;
283 dma_addr_t dw_align_buf_dma;
284 struct list_head qtd_list;
285 struct dwc2_host_chan *channel;
286 struct list_head qh_list_entry;
287 struct dwc2_hcd_dma_desc *desc_list;
288 dma_addr_t desc_list_dma;
289 u32 *n_bytes;
290 unsigned tt_buffer_dirty:1;
291 };
292
293 /**
294 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
295 *
296 * @control_phase: Current phase for control transfers (Setup, Data, or
297 * Status)
298 * @in_process: Indicates if this QTD is currently processed by HW
299 * @data_toggle: Determines the PID of the next data packet for the
300 * data phase of control transfers. Ignored for other
301 * transfer types. One of the following values:
302 * - DWC2_HC_PID_DATA0
303 * - DWC2_HC_PID_DATA1
304 * @complete_split: Keeps track of the current split type for FS/LS
305 * endpoints on a HS Hub
306 * @isoc_split_pos: Position of the ISOC split in full/low speed
307 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
308 * transfer. A frame descriptor describes the buffer
309 * position and length of the data to be transferred in the
310 * next scheduled (micro)frame of an isochronous transfer.
311 * It also holds status for that transaction. The frame
312 * index starts at 0.
313 * @isoc_split_offset: Position of the ISOC split in the buffer for the
314 * current frame
315 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
316 * @error_count: Holds the number of bus errors that have occurred for
317 * a transaction within this transfer
318 * @n_desc: Number of DMA descriptors for this QTD
319 * @isoc_frame_index_last: Last activated frame (packet) index, used in
320 * descriptor DMA mode only
321 * @urb: URB for this transfer
322 * @qh: Queue head for this QTD
323 * @qtd_list_entry: For linking to the QH's list of QTDs
324 *
325 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
326 * interrupt, or isochronous transfer. A single QTD is created for each URB
327 * (of one of these types) submitted to the HCD. The transfer associated with
328 * a QTD may require one or multiple transactions.
329 *
330 * A QTD is linked to a Queue Head, which is entered in either the
331 * non-periodic or periodic schedule for execution. When a QTD is chosen for
332 * execution, some or all of its transactions may be executed. After
333 * execution, the state of the QTD is updated. The QTD may be retired if all
334 * its transactions are complete or if an error occurred. Otherwise, it
335 * remains in the schedule so more transactions can be executed later.
336 */
337 struct dwc2_qtd {
338 enum dwc2_control_phase control_phase;
339 u8 in_process;
340 u8 data_toggle;
341 u8 complete_split;
342 u8 isoc_split_pos;
343 u16 isoc_frame_index;
344 u16 isoc_split_offset;
345 u32 ssplit_out_xfer_count;
346 u8 error_count;
347 u8 n_desc;
348 u16 isoc_frame_index_last;
349 struct dwc2_hcd_urb *urb;
350 struct dwc2_qh *qh;
351 struct list_head qtd_list_entry;
352 };
353
354 #ifdef DEBUG
355 struct hc_xfer_info {
356 struct dwc2_hsotg *hsotg;
357 struct dwc2_host_chan *chan;
358 };
359 #endif
360
361 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
362 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
363 {
364 return (struct usb_hcd *)hsotg->priv;
365 }
366
367 /*
368 * Inline used to disable one channel interrupt. Channel interrupts are
369 * disabled when the channel is halted or released by the interrupt handler.
370 * There is no need to handle further interrupts of that type until the
371 * channel is re-assigned. In fact, subsequent handling may cause crashes
372 * because the channel structures are cleaned up when the channel is released.
373 */
374 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
375 {
376 u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
377
378 mask &= ~intr;
379 writel(mask, hsotg->regs + HCINTMSK(chnum));
380 }
381
382 /*
383 * Returns the mode of operation, host or device
384 */
385 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
386 {
387 return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
388 }
389 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
390 {
391 return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
392 }
393
394 /*
395 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
396 * are read as 1, they won't clear when written back.
397 */
398 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
399 {
400 u32 hprt0 = readl(hsotg->regs + HPRT0);
401
402 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
403 return hprt0;
404 }
405
406 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
407 {
408 return pipe->ep_num;
409 }
410
411 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
412 {
413 return pipe->pipe_type;
414 }
415
416 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
417 {
418 return pipe->mps;
419 }
420
421 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
422 {
423 return pipe->dev_addr;
424 }
425
426 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
427 {
428 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
429 }
430
431 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
432 {
433 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
434 }
435
436 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
437 {
438 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
439 }
440
441 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
442 {
443 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
444 }
445
446 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
447 {
448 return pipe->pipe_dir == USB_DIR_IN;
449 }
450
451 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
452 {
453 return !dwc2_hcd_is_pipe_in(pipe);
454 }
455
456 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
457 const struct dwc2_core_params *params);
458 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
459 extern int dwc2_set_parameters(struct dwc2_hsotg *hsotg,
460 const struct dwc2_core_params *params);
461 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
462
463 /* Transaction Execution Functions */
464 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
465 struct dwc2_hsotg *hsotg);
466 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
467 enum dwc2_transaction_type tr_type);
468
469 /* Schedule Queue Functions */
470 /* Implemented in hcd_queue.c */
471 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
472 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
473 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
474 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
475 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
476 int sched_csplit);
477
478 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
479 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
480 struct dwc2_qh **qh, gfp_t mem_flags);
481
482 /* Unlinks and frees a QTD */
483 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
484 struct dwc2_qtd *qtd,
485 struct dwc2_qh *qh)
486 {
487 list_del(&qtd->qtd_list_entry);
488 kfree(qtd);
489 }
490
491 /* Descriptor DMA support functions */
492 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
493 struct dwc2_qh *qh);
494 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
495 struct dwc2_host_chan *chan, int chnum,
496 enum dwc2_halt_status halt_status);
497
498 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
499 gfp_t mem_flags);
500 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
501
502 /* Check if QH is non-periodic */
503 #define dwc2_qh_is_non_per(_qh_ptr_) \
504 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
505 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
506
507 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
508 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
509 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
510 static inline bool dbg_urb(struct urb *urb) { return true; }
511 static inline bool dbg_perio(void) { return true; }
512 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
513 static inline bool dbg_hc(struct dwc2_host_chan *hc)
514 {
515 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
516 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
517 }
518
519 static inline bool dbg_qh(struct dwc2_qh *qh)
520 {
521 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
522 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
523 }
524
525 static inline bool dbg_urb(struct urb *urb)
526 {
527 return usb_pipetype(urb->pipe) == PIPE_BULK ||
528 usb_pipetype(urb->pipe) == PIPE_CONTROL;
529 }
530
531 static inline bool dbg_perio(void) { return false; }
532 #endif
533
534 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
535 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
536
537 /* Packet size for any kind of endpoint descriptor */
538 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
539
540 /*
541 * Returns true if frame1 is less than or equal to frame2. The comparison is
542 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
543 * frame number when the max frame number is reached.
544 */
545 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
546 {
547 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
548 }
549
550 /*
551 * Returns true if frame1 is greater than frame2. The comparison is done
552 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
553 * number when the max frame number is reached.
554 */
555 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
556 {
557 return (frame1 != frame2) &&
558 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
559 }
560
561 /*
562 * Increments frame by the amount specified by inc. The addition is done
563 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
564 */
565 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
566 {
567 return (frame + inc) & HFNUM_MAX_FRNUM;
568 }
569
570 static inline u16 dwc2_full_frame_num(u16 frame)
571 {
572 return (frame & HFNUM_MAX_FRNUM) >> 3;
573 }
574
575 static inline u16 dwc2_micro_frame_num(u16 frame)
576 {
577 return frame & 0x7;
578 }
579
580 /*
581 * Returns the Core Interrupt Status register contents, ANDed with the Core
582 * Interrupt Mask register contents
583 */
584 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
585 {
586 return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
587 }
588
589 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
590 {
591 return dwc2_urb->status;
592 }
593
594 static inline u32 dwc2_hcd_urb_get_actual_length(
595 struct dwc2_hcd_urb *dwc2_urb)
596 {
597 return dwc2_urb->actual_length;
598 }
599
600 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
601 {
602 return dwc2_urb->error_count;
603 }
604
605 static inline void dwc2_hcd_urb_set_iso_desc_params(
606 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
607 u32 length)
608 {
609 dwc2_urb->iso_descs[desc_num].offset = offset;
610 dwc2_urb->iso_descs[desc_num].length = length;
611 }
612
613 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
614 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
615 {
616 return dwc2_urb->iso_descs[desc_num].status;
617 }
618
619 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
620 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
621 {
622 return dwc2_urb->iso_descs[desc_num].actual_length;
623 }
624
625 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
626 struct usb_host_endpoint *ep)
627 {
628 struct dwc2_qh *qh = ep->hcpriv;
629
630 if (qh && !list_empty(&qh->qh_list_entry))
631 return 1;
632
633 return 0;
634 }
635
636 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
637 struct usb_host_endpoint *ep)
638 {
639 struct dwc2_qh *qh = ep->hcpriv;
640
641 if (!qh) {
642 WARN_ON(1);
643 return 0;
644 }
645
646 return qh->usecs;
647 }
648
649 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
650 struct dwc2_host_chan *chan, int chnum,
651 struct dwc2_qtd *qtd);
652
653 /* HCD Core API */
654
655 /**
656 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
657 *
658 * @hsotg: The DWC2 HCD
659 *
660 * Returns IRQ_HANDLED if interrupt is handled
661 * Return IRQ_NONE if interrupt is not handled
662 */
663 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
664
665 /**
666 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
667 *
668 * @hsotg: The DWC2 HCD
669 */
670 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
671
672 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
673 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
674
675 /**
676 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
677 * and 0 otherwise
678 *
679 * @hsotg: The DWC2 HCD
680 */
681 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
682
683 /**
684 * dwc2_hcd_get_frame_number() - Returns current frame number
685 *
686 * @hsotg: The DWC2 HCD
687 */
688 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
689
690 /**
691 * dwc2_hcd_dump_state() - Dumps hsotg state
692 *
693 * @hsotg: The DWC2 HCD
694 *
695 * NOTE: This function will be removed once the peripheral controller code
696 * is integrated and the driver is stable
697 */
698 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
699
700 /**
701 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
702 *
703 * @hsotg: The DWC2 HCD
704 *
705 * This can be used to determine average interrupt latency. Frame remaining is
706 * also shown for start transfer and two additional sample points.
707 *
708 * NOTE: This function will be removed once the peripheral controller code
709 * is integrated and the driver is stable
710 */
711 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
712
713 /* URB interface */
714
715 /* Transfer flags */
716 #define URB_GIVEBACK_ASAP 0x1
717 #define URB_SEND_ZERO_PACKET 0x2
718
719 /* Host driver callbacks */
720
721 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
722 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
723 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
724 int *hub_addr, int *hub_port);
725 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
726 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
727 int status);
728
729 #ifdef DEBUG
730 /*
731 * Macro to sample the remaining PHY clocks left in the current frame. This
732 * may be used during debugging to determine the average time it takes to
733 * execute sections of code. There are two possible sample points, "a" and
734 * "b", so the _letter_ argument must be one of these values.
735 *
736 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
737 * example, "cat /sys/devices/lm0/hcd_frrem".
738 */
739 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
740 do { \
741 struct hfnum_data _hfnum_; \
742 struct dwc2_qtd *_qtd_; \
743 \
744 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
745 qtd_list_entry); \
746 if (usb_pipeint(_qtd_->urb->pipe) && \
747 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
748 _hfnum_.d32 = readl((_hcd_)->regs + HFNUM); \
749 switch (_hfnum_.b.frnum & 0x7) { \
750 case 7: \
751 (_hcd_)->hfnum_7_samples_##_letter_++; \
752 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
753 _hfnum_.b.frrem; \
754 break; \
755 case 0: \
756 (_hcd_)->hfnum_0_samples_##_letter_++; \
757 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
758 _hfnum_.b.frrem; \
759 break; \
760 default: \
761 (_hcd_)->hfnum_other_samples_##_letter_++; \
762 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
763 _hfnum_.b.frrem; \
764 break; \
765 } \
766 } \
767 } while (0)
768 #else
769 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
770 #endif
771
772 #endif /* __DWC2_HCD_H__ */
773