Home | History | Annotate | Line # | Download | only in dist
dwc2_hcd.h revision 1.1
      1 /*	$NetBSD: dwc2_hcd.h,v 1.1 2013/09/05 07:53:12 skrll Exp $	*/
      2 
      3 /*
      4  * hcd.h - DesignWare HS OTG Controller host-mode declarations
      5  *
      6  * Copyright (C) 2004-2013 Synopsys, Inc.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions, and the following disclaimer,
     13  *    without modification.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The names of the above-listed copyright holders may not be used
     18  *    to endorse or promote products derived from this software without
     19  *    specific prior written permission.
     20  *
     21  * ALTERNATIVELY, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") as published by the Free Software
     23  * Foundation; either version 2 of the License, or (at your option) any
     24  * later version.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 #ifndef __DWC2_HCD_H__
     39 #define __DWC2_HCD_H__
     40 
     41 /*
     42  * This file contains the structures, constants, and interfaces for the
     43  * Host Contoller Driver (HCD)
     44  *
     45  * The Host Controller Driver (HCD) is responsible for translating requests
     46  * from the USB Driver into the appropriate actions on the DWC_otg controller.
     47  * It isolates the USBD from the specifics of the controller by providing an
     48  * API to the USBD.
     49  */
     50 
     51 struct dwc2_qh;
     52 
     53 /**
     54  * struct dwc2_host_chan - Software host channel descriptor
     55  *
     56  * @hc_num:             Host channel number, used for register address lookup
     57  * @dev_addr:           Address of the device
     58  * @ep_num:             Endpoint of the device
     59  * @ep_is_in:           Endpoint direction
     60  * @speed:              Device speed. One of the following values:
     61  *                       - USB_SPEED_LOW
     62  *                       - USB_SPEED_FULL
     63  *                       - USB_SPEED_HIGH
     64  * @ep_type:            Endpoint type. One of the following values:
     65  *                       - USB_ENDPOINT_XFER_CONTROL: 0
     66  *                       - USB_ENDPOINT_XFER_ISOC:    1
     67  *                       - USB_ENDPOINT_XFER_BULK:    2
     68  *                       - USB_ENDPOINT_XFER_INTR:    3
     69  * @max_packet:         Max packet size in bytes
     70  * @data_pid_start:     PID for initial transaction.
     71  *                       0: DATA0
     72  *                       1: DATA2
     73  *                       2: DATA1
     74  *                       3: MDATA (non-Control EP),
     75  *                          SETUP (Control EP)
     76  * @multi_count:        Number of additional periodic transactions per
     77  *                      (micro)frame
     78  * @xfer_buf:           Pointer to current transfer buffer position
     79  * @xfer_dma:           DMA address of xfer_buf
     80  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
     81  *                      DWORD aligned
     82  * @xfer_len:           Total number of bytes to transfer
     83  * @xfer_count:         Number of bytes transferred so far
     84  * @start_pkt_count:    Packet count at start of transfer
     85  * @xfer_started:       True if the transfer has been started
     86  * @ping:               True if a PING request should be issued on this channel
     87  * @error_state:        True if the error count for this transaction is non-zero
     88  * @halt_on_queue:      True if this channel should be halted the next time a
     89  *                      request is queued for the channel. This is necessary in
     90  *                      slave mode if no request queue space is available when
     91  *                      an attempt is made to halt the channel.
     92  * @halt_pending:       True if the host channel has been halted, but the core
     93  *                      is not finished flushing queued requests
     94  * @do_split:           Enable split for the channel
     95  * @complete_split:     Enable complete split
     96  * @hub_addr:           Address of high speed hub for the split
     97  * @hub_port:           Port of the low/full speed device for the split
     98  * @xact_pos:           Split transaction position. One of the following values:
     99  *                       - DWC2_HCSPLT_XACTPOS_MID
    100  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
    101  *                       - DWC2_HCSPLT_XACTPOS_END
    102  *                       - DWC2_HCSPLT_XACTPOS_ALL
    103  * @requests:           Number of requests issued for this channel since it was
    104  *                      assigned to the current transfer (not counting PINGs)
    105  * @schinfo:            Scheduling micro-frame bitmap
    106  * @ntd:                Number of transfer descriptors for the transfer
    107  * @halt_status:        Reason for halting the host channel
    108  * @hcint               Contents of the HCINT register when the interrupt came
    109  * @qh:                 QH for the transfer being processed by this channel
    110  * @hc_list_entry:      For linking to list of host channels
    111  * @desc_list_addr:     Current QH's descriptor list DMA address
    112  *
    113  * This structure represents the state of a single host channel when acting in
    114  * host mode. It contains the data items needed to transfer packets to an
    115  * endpoint via a host channel.
    116  */
    117 struct dwc2_host_chan {
    118 	u8 hc_num;
    119 
    120 	unsigned dev_addr:7;
    121 	unsigned ep_num:4;
    122 	unsigned ep_is_in:1;
    123 	unsigned speed:4;
    124 	unsigned ep_type:2;
    125 	unsigned max_packet:11;
    126 	unsigned data_pid_start:2;
    127 #define DWC2_HC_PID_DATA0	(TSIZ_SC_MC_PID_DATA0 >> TSIZ_SC_MC_PID_SHIFT)
    128 #define DWC2_HC_PID_DATA2	(TSIZ_SC_MC_PID_DATA2 >> TSIZ_SC_MC_PID_SHIFT)
    129 #define DWC2_HC_PID_DATA1	(TSIZ_SC_MC_PID_DATA1 >> TSIZ_SC_MC_PID_SHIFT)
    130 #define DWC2_HC_PID_MDATA	(TSIZ_SC_MC_PID_MDATA >> TSIZ_SC_MC_PID_SHIFT)
    131 #define DWC2_HC_PID_SETUP	(TSIZ_SC_MC_PID_SETUP >> TSIZ_SC_MC_PID_SHIFT)
    132 
    133 	unsigned multi_count:2;
    134 
    135 	u8 *xfer_buf;
    136 	dma_addr_t xfer_dma;
    137 	dma_addr_t align_buf;
    138 	u32 xfer_len;
    139 	u32 xfer_count;
    140 	u16 start_pkt_count;
    141 	u8 xfer_started;
    142 	u8 do_ping;
    143 	u8 error_state;
    144 	u8 halt_on_queue;
    145 	u8 halt_pending;
    146 	u8 do_split;
    147 	u8 complete_split;
    148 	u8 hub_addr;
    149 	u8 hub_port;
    150 	u8 xact_pos;
    151 #define DWC2_HCSPLT_XACTPOS_MID	(HCSPLT_XACTPOS_MID >> HCSPLT_XACTPOS_SHIFT)
    152 #define DWC2_HCSPLT_XACTPOS_END	(HCSPLT_XACTPOS_END >> HCSPLT_XACTPOS_SHIFT)
    153 #define DWC2_HCSPLT_XACTPOS_BEGIN (HCSPLT_XACTPOS_BEGIN >> HCSPLT_XACTPOS_SHIFT)
    154 #define DWC2_HCSPLT_XACTPOS_ALL	(HCSPLT_XACTPOS_ALL >> HCSPLT_XACTPOS_SHIFT)
    155 
    156 	u8 requests;
    157 	u8 schinfo;
    158 	u16 ntd;
    159 	enum dwc2_halt_status halt_status;
    160 	u32 hcint;
    161 	struct dwc2_qh *qh;
    162 	struct list_head hc_list_entry;
    163 	dma_addr_t desc_list_addr;
    164 };
    165 
    166 struct dwc2_hcd_pipe_info {
    167 	u8 dev_addr;
    168 	u8 ep_num;
    169 	u8 pipe_type;
    170 	u8 pipe_dir;
    171 	u16 mps;
    172 };
    173 
    174 struct dwc2_hcd_iso_packet_desc {
    175 	u32 offset;
    176 	u32 length;
    177 	u32 actual_length;
    178 	u32 status;
    179 };
    180 
    181 struct dwc2_qtd;
    182 
    183 struct dwc2_hcd_urb {
    184 	void *priv;
    185 	struct dwc2_qtd *qtd;
    186 	void *buf;
    187 	dma_addr_t dma;
    188 	void *setup_packet;
    189 	dma_addr_t setup_dma;
    190 	u32 length;
    191 	u32 actual_length;
    192 	u32 status;
    193 	u32 error_count;
    194 	u32 packet_count;
    195 	u32 flags;
    196 	u16 interval;
    197 	struct dwc2_hcd_pipe_info pipe_info;
    198 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
    199 };
    200 
    201 /* Phases for control transfers */
    202 enum dwc2_control_phase {
    203 	DWC2_CONTROL_SETUP,
    204 	DWC2_CONTROL_DATA,
    205 	DWC2_CONTROL_STATUS,
    206 };
    207 
    208 /* Transaction types */
    209 enum dwc2_transaction_type {
    210 	DWC2_TRANSACTION_NONE,
    211 	DWC2_TRANSACTION_PERIODIC,
    212 	DWC2_TRANSACTION_NON_PERIODIC,
    213 	DWC2_TRANSACTION_ALL,
    214 };
    215 
    216 /**
    217  * struct dwc2_qh - Software queue head structure
    218  *
    219  * @ep_type:            Endpoint type. One of the following values:
    220  *                       - USB_ENDPOINT_XFER_CONTROL
    221  *                       - USB_ENDPOINT_XFER_BULK
    222  *                       - USB_ENDPOINT_XFER_INT
    223  *                       - USB_ENDPOINT_XFER_ISOC
    224  * @ep_is_in:           Endpoint direction
    225  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
    226  * @dev_speed:          Device speed. One of the following values:
    227  *                       - USB_SPEED_LOW
    228  *                       - USB_SPEED_FULL
    229  *                       - USB_SPEED_HIGH
    230  * @data_toggle:        Determines the PID of the next data packet for
    231  *                      non-controltransfers. Ignored for control transfers.
    232  *                      One of the following values:
    233  *                       - DWC2_HC_PID_DATA0
    234  *                       - DWC2_HC_PID_DATA1
    235  * @ping_state:         Ping state
    236  * @do_split:           Full/low speed endpoint on high-speed hub requires split
    237  * @td_first:           Index of first activated isochronous transfer descriptor
    238  * @td_last:            Index of last activated isochronous transfer descriptor
    239  * @usecs:              Bandwidth in microseconds per (micro)frame
    240  * @interval:           Interval between transfers in (micro)frames
    241  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
    242  *                      The transfer executes in the following (micro)frame.
    243  * @nak_frame:          Internal variable used by the NAK holdoff code
    244  * @frame_usecs:        Internal variable used by the microframe scheduler
    245  * @start_split_frame:  (Micro)frame at which last start split was initialized
    246  * @ntd:                Actual number of transfer descriptors in a list
    247  * @dw_align_buf:       Used instead of original buffer if its physical address
    248  *                      is not dword-aligned
    249  * @dw_align_buf_dma:   DMA address for align_buf
    250  * @qtd_list:           List of QTDs for this QH
    251  * @channel:            Host channel currently processing transfers for this QH
    252  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
    253  *                      schedule
    254  * @desc_list:          List of transfer descriptors
    255  * @desc_list_dma:      Physical address of desc_list
    256  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
    257  *                      descriptor and indicates original XferSize value for the
    258  *                      descriptor
    259  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
    260  *
    261  * A Queue Head (QH) holds the static characteristics of an endpoint and
    262  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
    263  * be entered in either the non-periodic or periodic schedule.
    264  */
    265 struct dwc2_qh {
    266 	u8 ep_type;
    267 	u8 ep_is_in;
    268 	u16 maxp;
    269 	u8 dev_speed;
    270 	u8 data_toggle;
    271 	u8 ping_state;
    272 	u8 do_split;
    273 	u8 td_first;
    274 	u8 td_last;
    275 	u16 usecs;
    276 	u16 interval;
    277 	u16 sched_frame;
    278 	u16 nak_frame;
    279 	u16 frame_usecs[8];
    280 	u16 start_split_frame;
    281 	u16 ntd;
    282 	u8 *dw_align_buf;
    283 	dma_addr_t dw_align_buf_dma;
    284 	struct list_head qtd_list;
    285 	struct dwc2_host_chan *channel;
    286 	struct list_head qh_list_entry;
    287 	struct dwc2_hcd_dma_desc *desc_list;
    288 	dma_addr_t desc_list_dma;
    289 	u32 *n_bytes;
    290 	unsigned tt_buffer_dirty:1;
    291 };
    292 
    293 /**
    294  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
    295  *
    296  * @control_phase:      Current phase for control transfers (Setup, Data, or
    297  *                      Status)
    298  * @in_process:         Indicates if this QTD is currently processed by HW
    299  * @data_toggle:        Determines the PID of the next data packet for the
    300  *                      data phase of control transfers. Ignored for other
    301  *                      transfer types. One of the following values:
    302  *                       - DWC2_HC_PID_DATA0
    303  *                       - DWC2_HC_PID_DATA1
    304  * @complete_split:     Keeps track of the current split type for FS/LS
    305  *                      endpoints on a HS Hub
    306  * @isoc_split_pos:     Position of the ISOC split in full/low speed
    307  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
    308  *                      transfer. A frame descriptor describes the buffer
    309  *                      position and length of the data to be transferred in the
    310  *                      next scheduled (micro)frame of an isochronous transfer.
    311  *                      It also holds status for that transaction. The frame
    312  *                      index starts at 0.
    313  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
    314  *                      current frame
    315  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
    316  * @error_count:        Holds the number of bus errors that have occurred for
    317  *                      a transaction within this transfer
    318  * @n_desc:             Number of DMA descriptors for this QTD
    319  * @isoc_frame_index_last: Last activated frame (packet) index, used in
    320  *                      descriptor DMA mode only
    321  * @urb:                URB for this transfer
    322  * @qh:                 Queue head for this QTD
    323  * @qtd_list_entry:     For linking to the QH's list of QTDs
    324  *
    325  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
    326  * interrupt, or isochronous transfer. A single QTD is created for each URB
    327  * (of one of these types) submitted to the HCD. The transfer associated with
    328  * a QTD may require one or multiple transactions.
    329  *
    330  * A QTD is linked to a Queue Head, which is entered in either the
    331  * non-periodic or periodic schedule for execution. When a QTD is chosen for
    332  * execution, some or all of its transactions may be executed. After
    333  * execution, the state of the QTD is updated. The QTD may be retired if all
    334  * its transactions are complete or if an error occurred. Otherwise, it
    335  * remains in the schedule so more transactions can be executed later.
    336  */
    337 struct dwc2_qtd {
    338 	enum dwc2_control_phase control_phase;
    339 	u8 in_process;
    340 	u8 data_toggle;
    341 	u8 complete_split;
    342 	u8 isoc_split_pos;
    343 	u16 isoc_frame_index;
    344 	u16 isoc_split_offset;
    345 	u32 ssplit_out_xfer_count;
    346 	u8 error_count;
    347 	u8 n_desc;
    348 	u16 isoc_frame_index_last;
    349 	struct dwc2_hcd_urb *urb;
    350 	struct dwc2_qh *qh;
    351 	struct list_head qtd_list_entry;
    352 };
    353 
    354 #ifdef DEBUG
    355 struct hc_xfer_info {
    356 	struct dwc2_hsotg *hsotg;
    357 	struct dwc2_host_chan *chan;
    358 };
    359 #endif
    360 
    361 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
    362 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
    363 {
    364 	return (struct usb_hcd *)hsotg->priv;
    365 }
    366 
    367 /*
    368  * Inline used to disable one channel interrupt. Channel interrupts are
    369  * disabled when the channel is halted or released by the interrupt handler.
    370  * There is no need to handle further interrupts of that type until the
    371  * channel is re-assigned. In fact, subsequent handling may cause crashes
    372  * because the channel structures are cleaned up when the channel is released.
    373  */
    374 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
    375 {
    376 	u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
    377 
    378 	mask &= ~intr;
    379 	writel(mask, hsotg->regs + HCINTMSK(chnum));
    380 }
    381 
    382 /*
    383  * Returns the mode of operation, host or device
    384  */
    385 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
    386 {
    387 	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
    388 }
    389 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
    390 {
    391 	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
    392 }
    393 
    394 /*
    395  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
    396  * are read as 1, they won't clear when written back.
    397  */
    398 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
    399 {
    400 	u32 hprt0 = readl(hsotg->regs + HPRT0);
    401 
    402 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
    403 	return hprt0;
    404 }
    405 
    406 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
    407 {
    408 	return pipe->ep_num;
    409 }
    410 
    411 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
    412 {
    413 	return pipe->pipe_type;
    414 }
    415 
    416 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
    417 {
    418 	return pipe->mps;
    419 }
    420 
    421 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
    422 {
    423 	return pipe->dev_addr;
    424 }
    425 
    426 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
    427 {
    428 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
    429 }
    430 
    431 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
    432 {
    433 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
    434 }
    435 
    436 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
    437 {
    438 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
    439 }
    440 
    441 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
    442 {
    443 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
    444 }
    445 
    446 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
    447 {
    448 	return pipe->pipe_dir == USB_DIR_IN;
    449 }
    450 
    451 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
    452 {
    453 	return !dwc2_hcd_is_pipe_in(pipe);
    454 }
    455 
    456 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
    457 			 const struct dwc2_core_params *params);
    458 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
    459 extern int dwc2_set_parameters(struct dwc2_hsotg *hsotg,
    460 			       const struct dwc2_core_params *params);
    461 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
    462 
    463 /* Transaction Execution Functions */
    464 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
    465 						struct dwc2_hsotg *hsotg);
    466 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
    467 					enum dwc2_transaction_type tr_type);
    468 
    469 /* Schedule Queue Functions */
    470 /* Implemented in hcd_queue.c */
    471 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
    472 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    473 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    474 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    475 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    476 				   int sched_csplit);
    477 
    478 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
    479 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    480 			    struct dwc2_qh **qh, gfp_t mem_flags);
    481 
    482 /* Unlinks and frees a QTD */
    483 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
    484 						struct dwc2_qtd *qtd,
    485 						struct dwc2_qh *qh)
    486 {
    487 	list_del(&qtd->qtd_list_entry);
    488 	kfree(qtd);
    489 }
    490 
    491 /* Descriptor DMA support functions */
    492 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
    493 				     struct dwc2_qh *qh);
    494 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
    495 					struct dwc2_host_chan *chan, int chnum,
    496 					enum dwc2_halt_status halt_status);
    497 
    498 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    499 				 gfp_t mem_flags);
    500 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    501 
    502 /* Check if QH is non-periodic */
    503 #define dwc2_qh_is_non_per(_qh_ptr_) \
    504 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
    505 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
    506 
    507 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
    508 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
    509 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
    510 static inline bool dbg_urb(struct urb *urb) { return true; }
    511 static inline bool dbg_perio(void) { return true; }
    512 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
    513 static inline bool dbg_hc(struct dwc2_host_chan *hc)
    514 {
    515 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
    516 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
    517 }
    518 
    519 static inline bool dbg_qh(struct dwc2_qh *qh)
    520 {
    521 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
    522 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
    523 }
    524 
    525 static inline bool dbg_urb(struct urb *urb)
    526 {
    527 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
    528 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
    529 }
    530 
    531 static inline bool dbg_perio(void) { return false; }
    532 #endif
    533 
    534 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
    535 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
    536 
    537 /* Packet size for any kind of endpoint descriptor */
    538 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
    539 
    540 /*
    541  * Returns true if frame1 is less than or equal to frame2. The comparison is
    542  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
    543  * frame number when the max frame number is reached.
    544  */
    545 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
    546 {
    547 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
    548 }
    549 
    550 /*
    551  * Returns true if frame1 is greater than frame2. The comparison is done
    552  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
    553  * number when the max frame number is reached.
    554  */
    555 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
    556 {
    557 	return (frame1 != frame2) &&
    558 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
    559 }
    560 
    561 /*
    562  * Increments frame by the amount specified by inc. The addition is done
    563  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
    564  */
    565 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
    566 {
    567 	return (frame + inc) & HFNUM_MAX_FRNUM;
    568 }
    569 
    570 static inline u16 dwc2_full_frame_num(u16 frame)
    571 {
    572 	return (frame & HFNUM_MAX_FRNUM) >> 3;
    573 }
    574 
    575 static inline u16 dwc2_micro_frame_num(u16 frame)
    576 {
    577 	return frame & 0x7;
    578 }
    579 
    580 /*
    581  * Returns the Core Interrupt Status register contents, ANDed with the Core
    582  * Interrupt Mask register contents
    583  */
    584 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
    585 {
    586 	return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
    587 }
    588 
    589 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
    590 {
    591 	return dwc2_urb->status;
    592 }
    593 
    594 static inline u32 dwc2_hcd_urb_get_actual_length(
    595 		struct dwc2_hcd_urb *dwc2_urb)
    596 {
    597 	return dwc2_urb->actual_length;
    598 }
    599 
    600 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
    601 {
    602 	return dwc2_urb->error_count;
    603 }
    604 
    605 static inline void dwc2_hcd_urb_set_iso_desc_params(
    606 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
    607 		u32 length)
    608 {
    609 	dwc2_urb->iso_descs[desc_num].offset = offset;
    610 	dwc2_urb->iso_descs[desc_num].length = length;
    611 }
    612 
    613 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
    614 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    615 {
    616 	return dwc2_urb->iso_descs[desc_num].status;
    617 }
    618 
    619 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
    620 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    621 {
    622 	return dwc2_urb->iso_descs[desc_num].actual_length;
    623 }
    624 
    625 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
    626 						  struct usb_host_endpoint *ep)
    627 {
    628 	struct dwc2_qh *qh = ep->hcpriv;
    629 
    630 	if (qh && !list_empty(&qh->qh_list_entry))
    631 		return 1;
    632 
    633 	return 0;
    634 }
    635 
    636 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
    637 					    struct usb_host_endpoint *ep)
    638 {
    639 	struct dwc2_qh *qh = ep->hcpriv;
    640 
    641 	if (!qh) {
    642 		WARN_ON(1);
    643 		return 0;
    644 	}
    645 
    646 	return qh->usecs;
    647 }
    648 
    649 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
    650 				      struct dwc2_host_chan *chan, int chnum,
    651 				      struct dwc2_qtd *qtd);
    652 
    653 /* HCD Core API */
    654 
    655 /**
    656  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
    657  *
    658  * @hsotg: The DWC2 HCD
    659  *
    660  * Returns IRQ_HANDLED if interrupt is handled
    661  * Return IRQ_NONE if interrupt is not handled
    662  */
    663 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
    664 
    665 /**
    666  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
    667  *
    668  * @hsotg: The DWC2 HCD
    669  */
    670 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
    671 
    672 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
    673 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
    674 
    675 /**
    676  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
    677  * and 0 otherwise
    678  *
    679  * @hsotg: The DWC2 HCD
    680  */
    681 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
    682 
    683 /**
    684  * dwc2_hcd_get_frame_number() - Returns current frame number
    685  *
    686  * @hsotg: The DWC2 HCD
    687  */
    688 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
    689 
    690 /**
    691  * dwc2_hcd_dump_state() - Dumps hsotg state
    692  *
    693  * @hsotg: The DWC2 HCD
    694  *
    695  * NOTE: This function will be removed once the peripheral controller code
    696  * is integrated and the driver is stable
    697  */
    698 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
    699 
    700 /**
    701  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
    702  *
    703  * @hsotg: The DWC2 HCD
    704  *
    705  * This can be used to determine average interrupt latency. Frame remaining is
    706  * also shown for start transfer and two additional sample points.
    707  *
    708  * NOTE: This function will be removed once the peripheral controller code
    709  * is integrated and the driver is stable
    710  */
    711 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
    712 
    713 /* URB interface */
    714 
    715 /* Transfer flags */
    716 #define URB_GIVEBACK_ASAP	0x1
    717 #define URB_SEND_ZERO_PACKET	0x2
    718 
    719 /* Host driver callbacks */
    720 
    721 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
    722 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
    723 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
    724 			       int *hub_addr, int *hub_port);
    725 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
    726 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    727 			       int status);
    728 
    729 #ifdef DEBUG
    730 /*
    731  * Macro to sample the remaining PHY clocks left in the current frame. This
    732  * may be used during debugging to determine the average time it takes to
    733  * execute sections of code. There are two possible sample points, "a" and
    734  * "b", so the _letter_ argument must be one of these values.
    735  *
    736  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
    737  * example, "cat /sys/devices/lm0/hcd_frrem".
    738  */
    739 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
    740 do {									\
    741 	struct hfnum_data _hfnum_;					\
    742 	struct dwc2_qtd *_qtd_;						\
    743 									\
    744 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
    745 			   qtd_list_entry);				\
    746 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
    747 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
    748 		_hfnum_.d32 = readl((_hcd_)->regs + HFNUM);		\
    749 		switch (_hfnum_.b.frnum & 0x7) {			\
    750 		case 7:							\
    751 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
    752 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
    753 				_hfnum_.b.frrem;			\
    754 			break;						\
    755 		case 0:							\
    756 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
    757 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
    758 				_hfnum_.b.frrem;			\
    759 			break;						\
    760 		default:						\
    761 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
    762 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
    763 				_hfnum_.b.frrem;			\
    764 			break;						\
    765 		}							\
    766 	}								\
    767 } while (0)
    768 #else
    769 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
    770 #endif
    771 
    772 #endif /* __DWC2_HCD_H__ */
    773