Home | History | Annotate | Line # | Download | only in dist
dwc2_hcd.h revision 1.1.1.3
      1 /*	$NetBSD: dwc2_hcd.h,v 1.1.1.3 2013/10/05 06:47:08 skrll Exp $	*/
      2 
      3 /*
      4  * hcd.h - DesignWare HS OTG Controller host-mode declarations
      5  *
      6  * Copyright (C) 2004-2013 Synopsys, Inc.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions, and the following disclaimer,
     13  *    without modification.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The names of the above-listed copyright holders may not be used
     18  *    to endorse or promote products derived from this software without
     19  *    specific prior written permission.
     20  *
     21  * ALTERNATIVELY, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") as published by the Free Software
     23  * Foundation; either version 2 of the License, or (at your option) any
     24  * later version.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 #ifndef __DWC2_HCD_H__
     39 #define __DWC2_HCD_H__
     40 
     41 /*
     42  * This file contains the structures, constants, and interfaces for the
     43  * Host Contoller Driver (HCD)
     44  *
     45  * The Host Controller Driver (HCD) is responsible for translating requests
     46  * from the USB Driver into the appropriate actions on the DWC_otg controller.
     47  * It isolates the USBD from the specifics of the controller by providing an
     48  * API to the USBD.
     49  */
     50 
     51 struct dwc2_qh;
     52 
     53 /**
     54  * struct dwc2_host_chan - Software host channel descriptor
     55  *
     56  * @hc_num:             Host channel number, used for register address lookup
     57  * @dev_addr:           Address of the device
     58  * @ep_num:             Endpoint of the device
     59  * @ep_is_in:           Endpoint direction
     60  * @speed:              Device speed. One of the following values:
     61  *                       - USB_SPEED_LOW
     62  *                       - USB_SPEED_FULL
     63  *                       - USB_SPEED_HIGH
     64  * @ep_type:            Endpoint type. One of the following values:
     65  *                       - USB_ENDPOINT_XFER_CONTROL: 0
     66  *                       - USB_ENDPOINT_XFER_ISOC:    1
     67  *                       - USB_ENDPOINT_XFER_BULK:    2
     68  *                       - USB_ENDPOINT_XFER_INTR:    3
     69  * @max_packet:         Max packet size in bytes
     70  * @data_pid_start:     PID for initial transaction.
     71  *                       0: DATA0
     72  *                       1: DATA2
     73  *                       2: DATA1
     74  *                       3: MDATA (non-Control EP),
     75  *                          SETUP (Control EP)
     76  * @multi_count:        Number of additional periodic transactions per
     77  *                      (micro)frame
     78  * @xfer_buf:           Pointer to current transfer buffer position
     79  * @xfer_dma:           DMA address of xfer_buf
     80  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
     81  *                      DWORD aligned
     82  * @xfer_len:           Total number of bytes to transfer
     83  * @xfer_count:         Number of bytes transferred so far
     84  * @start_pkt_count:    Packet count at start of transfer
     85  * @xfer_started:       True if the transfer has been started
     86  * @ping:               True if a PING request should be issued on this channel
     87  * @error_state:        True if the error count for this transaction is non-zero
     88  * @halt_on_queue:      True if this channel should be halted the next time a
     89  *                      request is queued for the channel. This is necessary in
     90  *                      slave mode if no request queue space is available when
     91  *                      an attempt is made to halt the channel.
     92  * @halt_pending:       True if the host channel has been halted, but the core
     93  *                      is not finished flushing queued requests
     94  * @do_split:           Enable split for the channel
     95  * @complete_split:     Enable complete split
     96  * @hub_addr:           Address of high speed hub for the split
     97  * @hub_port:           Port of the low/full speed device for the split
     98  * @xact_pos:           Split transaction position. One of the following values:
     99  *                       - DWC2_HCSPLT_XACTPOS_MID
    100  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
    101  *                       - DWC2_HCSPLT_XACTPOS_END
    102  *                       - DWC2_HCSPLT_XACTPOS_ALL
    103  * @requests:           Number of requests issued for this channel since it was
    104  *                      assigned to the current transfer (not counting PINGs)
    105  * @schinfo:            Scheduling micro-frame bitmap
    106  * @ntd:                Number of transfer descriptors for the transfer
    107  * @halt_status:        Reason for halting the host channel
    108  * @hcint               Contents of the HCINT register when the interrupt came
    109  * @qh:                 QH for the transfer being processed by this channel
    110  * @hc_list_entry:      For linking to list of host channels
    111  * @desc_list_addr:     Current QH's descriptor list DMA address
    112  *
    113  * This structure represents the state of a single host channel when acting in
    114  * host mode. It contains the data items needed to transfer packets to an
    115  * endpoint via a host channel.
    116  */
    117 struct dwc2_host_chan {
    118 	u8 hc_num;
    119 
    120 	unsigned dev_addr:7;
    121 	unsigned ep_num:4;
    122 	unsigned ep_is_in:1;
    123 	unsigned speed:4;
    124 	unsigned ep_type:2;
    125 	unsigned max_packet:11;
    126 	unsigned data_pid_start:2;
    127 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
    128 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
    129 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
    130 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
    131 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
    132 
    133 	unsigned multi_count:2;
    134 
    135 	u8 *xfer_buf;
    136 	dma_addr_t xfer_dma;
    137 	dma_addr_t align_buf;
    138 	u32 xfer_len;
    139 	u32 xfer_count;
    140 	u16 start_pkt_count;
    141 	u8 xfer_started;
    142 	u8 do_ping;
    143 	u8 error_state;
    144 	u8 halt_on_queue;
    145 	u8 halt_pending;
    146 	u8 do_split;
    147 	u8 complete_split;
    148 	u8 hub_addr;
    149 	u8 hub_port;
    150 	u8 xact_pos;
    151 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
    152 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
    153 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
    154 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
    155 
    156 	u8 requests;
    157 	u8 schinfo;
    158 	u16 ntd;
    159 	enum dwc2_halt_status halt_status;
    160 	u32 hcint;
    161 	struct dwc2_qh *qh;
    162 	struct list_head hc_list_entry;
    163 	dma_addr_t desc_list_addr;
    164 };
    165 
    166 struct dwc2_hcd_pipe_info {
    167 	u8 dev_addr;
    168 	u8 ep_num;
    169 	u8 pipe_type;
    170 	u8 pipe_dir;
    171 	u16 mps;
    172 };
    173 
    174 struct dwc2_hcd_iso_packet_desc {
    175 	u32 offset;
    176 	u32 length;
    177 	u32 actual_length;
    178 	u32 status;
    179 };
    180 
    181 struct dwc2_qtd;
    182 
    183 struct dwc2_hcd_urb {
    184 	void *priv;
    185 	struct dwc2_qtd *qtd;
    186 	void *buf;
    187 	dma_addr_t dma;
    188 	void *setup_packet;
    189 	dma_addr_t setup_dma;
    190 	u32 length;
    191 	u32 actual_length;
    192 	u32 status;
    193 	u32 error_count;
    194 	u32 packet_count;
    195 	u32 flags;
    196 	u16 interval;
    197 	struct dwc2_hcd_pipe_info pipe_info;
    198 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
    199 };
    200 
    201 /* Phases for control transfers */
    202 enum dwc2_control_phase {
    203 	DWC2_CONTROL_SETUP,
    204 	DWC2_CONTROL_DATA,
    205 	DWC2_CONTROL_STATUS,
    206 };
    207 
    208 /* Transaction types */
    209 enum dwc2_transaction_type {
    210 	DWC2_TRANSACTION_NONE,
    211 	DWC2_TRANSACTION_PERIODIC,
    212 	DWC2_TRANSACTION_NON_PERIODIC,
    213 	DWC2_TRANSACTION_ALL,
    214 };
    215 
    216 /**
    217  * struct dwc2_qh - Software queue head structure
    218  *
    219  * @ep_type:            Endpoint type. One of the following values:
    220  *                       - USB_ENDPOINT_XFER_CONTROL
    221  *                       - USB_ENDPOINT_XFER_BULK
    222  *                       - USB_ENDPOINT_XFER_INT
    223  *                       - USB_ENDPOINT_XFER_ISOC
    224  * @ep_is_in:           Endpoint direction
    225  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
    226  * @dev_speed:          Device speed. One of the following values:
    227  *                       - USB_SPEED_LOW
    228  *                       - USB_SPEED_FULL
    229  *                       - USB_SPEED_HIGH
    230  * @data_toggle:        Determines the PID of the next data packet for
    231  *                      non-controltransfers. Ignored for control transfers.
    232  *                      One of the following values:
    233  *                       - DWC2_HC_PID_DATA0
    234  *                       - DWC2_HC_PID_DATA1
    235  * @ping_state:         Ping state
    236  * @do_split:           Full/low speed endpoint on high-speed hub requires split
    237  * @td_first:           Index of first activated isochronous transfer descriptor
    238  * @td_last:            Index of last activated isochronous transfer descriptor
    239  * @usecs:              Bandwidth in microseconds per (micro)frame
    240  * @interval:           Interval between transfers in (micro)frames
    241  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
    242  *                      The transfer executes in the following (micro)frame.
    243  * @frame_usecs:        Internal variable used by the microframe scheduler
    244  * @start_split_frame:  (Micro)frame at which last start split was initialized
    245  * @ntd:                Actual number of transfer descriptors in a list
    246  * @dw_align_buf:       Used instead of original buffer if its physical address
    247  *                      is not dword-aligned
    248  * @dw_align_buf_dma:   DMA address for align_buf
    249  * @qtd_list:           List of QTDs for this QH
    250  * @channel:            Host channel currently processing transfers for this QH
    251  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
    252  *                      schedule
    253  * @desc_list:          List of transfer descriptors
    254  * @desc_list_dma:      Physical address of desc_list
    255  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
    256  *                      descriptor and indicates original XferSize value for the
    257  *                      descriptor
    258  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
    259  *
    260  * A Queue Head (QH) holds the static characteristics of an endpoint and
    261  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
    262  * be entered in either the non-periodic or periodic schedule.
    263  */
    264 struct dwc2_qh {
    265 	u8 ep_type;
    266 	u8 ep_is_in;
    267 	u16 maxp;
    268 	u8 dev_speed;
    269 	u8 data_toggle;
    270 	u8 ping_state;
    271 	u8 do_split;
    272 	u8 td_first;
    273 	u8 td_last;
    274 	u16 usecs;
    275 	u16 interval;
    276 	u16 sched_frame;
    277 	u16 frame_usecs[8];
    278 	u16 start_split_frame;
    279 	u16 ntd;
    280 	u8 *dw_align_buf;
    281 	dma_addr_t dw_align_buf_dma;
    282 	struct list_head qtd_list;
    283 	struct dwc2_host_chan *channel;
    284 	struct list_head qh_list_entry;
    285 	struct dwc2_hcd_dma_desc *desc_list;
    286 	dma_addr_t desc_list_dma;
    287 	u32 *n_bytes;
    288 	unsigned tt_buffer_dirty:1;
    289 };
    290 
    291 /**
    292  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
    293  *
    294  * @control_phase:      Current phase for control transfers (Setup, Data, or
    295  *                      Status)
    296  * @in_process:         Indicates if this QTD is currently processed by HW
    297  * @data_toggle:        Determines the PID of the next data packet for the
    298  *                      data phase of control transfers. Ignored for other
    299  *                      transfer types. One of the following values:
    300  *                       - DWC2_HC_PID_DATA0
    301  *                       - DWC2_HC_PID_DATA1
    302  * @complete_split:     Keeps track of the current split type for FS/LS
    303  *                      endpoints on a HS Hub
    304  * @isoc_split_pos:     Position of the ISOC split in full/low speed
    305  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
    306  *                      transfer. A frame descriptor describes the buffer
    307  *                      position and length of the data to be transferred in the
    308  *                      next scheduled (micro)frame of an isochronous transfer.
    309  *                      It also holds status for that transaction. The frame
    310  *                      index starts at 0.
    311  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
    312  *                      current frame
    313  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
    314  * @error_count:        Holds the number of bus errors that have occurred for
    315  *                      a transaction within this transfer
    316  * @n_desc:             Number of DMA descriptors for this QTD
    317  * @isoc_frame_index_last: Last activated frame (packet) index, used in
    318  *                      descriptor DMA mode only
    319  * @urb:                URB for this transfer
    320  * @qh:                 Queue head for this QTD
    321  * @qtd_list_entry:     For linking to the QH's list of QTDs
    322  *
    323  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
    324  * interrupt, or isochronous transfer. A single QTD is created for each URB
    325  * (of one of these types) submitted to the HCD. The transfer associated with
    326  * a QTD may require one or multiple transactions.
    327  *
    328  * A QTD is linked to a Queue Head, which is entered in either the
    329  * non-periodic or periodic schedule for execution. When a QTD is chosen for
    330  * execution, some or all of its transactions may be executed. After
    331  * execution, the state of the QTD is updated. The QTD may be retired if all
    332  * its transactions are complete or if an error occurred. Otherwise, it
    333  * remains in the schedule so more transactions can be executed later.
    334  */
    335 struct dwc2_qtd {
    336 	enum dwc2_control_phase control_phase;
    337 	u8 in_process;
    338 	u8 data_toggle;
    339 	u8 complete_split;
    340 	u8 isoc_split_pos;
    341 	u16 isoc_frame_index;
    342 	u16 isoc_split_offset;
    343 	u32 ssplit_out_xfer_count;
    344 	u8 error_count;
    345 	u8 n_desc;
    346 	u16 isoc_frame_index_last;
    347 	struct dwc2_hcd_urb *urb;
    348 	struct dwc2_qh *qh;
    349 	struct list_head qtd_list_entry;
    350 };
    351 
    352 #ifdef DEBUG
    353 struct hc_xfer_info {
    354 	struct dwc2_hsotg *hsotg;
    355 	struct dwc2_host_chan *chan;
    356 };
    357 #endif
    358 
    359 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
    360 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
    361 {
    362 	return (struct usb_hcd *)hsotg->priv;
    363 }
    364 
    365 /*
    366  * Inline used to disable one channel interrupt. Channel interrupts are
    367  * disabled when the channel is halted or released by the interrupt handler.
    368  * There is no need to handle further interrupts of that type until the
    369  * channel is re-assigned. In fact, subsequent handling may cause crashes
    370  * because the channel structures are cleaned up when the channel is released.
    371  */
    372 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
    373 {
    374 	u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
    375 
    376 	mask &= ~intr;
    377 	writel(mask, hsotg->regs + HCINTMSK(chnum));
    378 }
    379 
    380 /*
    381  * Returns the mode of operation, host or device
    382  */
    383 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
    384 {
    385 	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
    386 }
    387 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
    388 {
    389 	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
    390 }
    391 
    392 /*
    393  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
    394  * are read as 1, they won't clear when written back.
    395  */
    396 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
    397 {
    398 	u32 hprt0 = readl(hsotg->regs + HPRT0);
    399 
    400 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
    401 	return hprt0;
    402 }
    403 
    404 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
    405 {
    406 	return pipe->ep_num;
    407 }
    408 
    409 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
    410 {
    411 	return pipe->pipe_type;
    412 }
    413 
    414 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
    415 {
    416 	return pipe->mps;
    417 }
    418 
    419 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
    420 {
    421 	return pipe->dev_addr;
    422 }
    423 
    424 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
    425 {
    426 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
    427 }
    428 
    429 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
    430 {
    431 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
    432 }
    433 
    434 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
    435 {
    436 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
    437 }
    438 
    439 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
    440 {
    441 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
    442 }
    443 
    444 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
    445 {
    446 	return pipe->pipe_dir == USB_DIR_IN;
    447 }
    448 
    449 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
    450 {
    451 	return !dwc2_hcd_is_pipe_in(pipe);
    452 }
    453 
    454 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
    455 			 const struct dwc2_core_params *params);
    456 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
    457 extern int dwc2_set_parameters(struct dwc2_hsotg *hsotg,
    458 			       const struct dwc2_core_params *params);
    459 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
    460 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
    461 
    462 /* Transaction Execution Functions */
    463 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
    464 						struct dwc2_hsotg *hsotg);
    465 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
    466 					enum dwc2_transaction_type tr_type);
    467 
    468 /* Schedule Queue Functions */
    469 /* Implemented in hcd_queue.c */
    470 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
    471 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    472 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    473 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    474 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    475 				   int sched_csplit);
    476 
    477 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
    478 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    479 			    struct dwc2_qh **qh, gfp_t mem_flags);
    480 
    481 /* Unlinks and frees a QTD */
    482 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
    483 						struct dwc2_qtd *qtd,
    484 						struct dwc2_qh *qh)
    485 {
    486 	list_del(&qtd->qtd_list_entry);
    487 	kfree(qtd);
    488 }
    489 
    490 /* Descriptor DMA support functions */
    491 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
    492 				     struct dwc2_qh *qh);
    493 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
    494 					struct dwc2_host_chan *chan, int chnum,
    495 					enum dwc2_halt_status halt_status);
    496 
    497 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    498 				 gfp_t mem_flags);
    499 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    500 
    501 /* Check if QH is non-periodic */
    502 #define dwc2_qh_is_non_per(_qh_ptr_) \
    503 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
    504 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
    505 
    506 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
    507 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
    508 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
    509 static inline bool dbg_urb(struct urb *urb) { return true; }
    510 static inline bool dbg_perio(void) { return true; }
    511 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
    512 static inline bool dbg_hc(struct dwc2_host_chan *hc)
    513 {
    514 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
    515 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
    516 }
    517 
    518 static inline bool dbg_qh(struct dwc2_qh *qh)
    519 {
    520 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
    521 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
    522 }
    523 
    524 static inline bool dbg_urb(struct urb *urb)
    525 {
    526 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
    527 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
    528 }
    529 
    530 static inline bool dbg_perio(void) { return false; }
    531 #endif
    532 
    533 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
    534 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
    535 
    536 /* Packet size for any kind of endpoint descriptor */
    537 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
    538 
    539 /*
    540  * Returns true if frame1 is less than or equal to frame2. The comparison is
    541  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
    542  * frame number when the max frame number is reached.
    543  */
    544 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
    545 {
    546 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
    547 }
    548 
    549 /*
    550  * Returns true if frame1 is greater than frame2. The comparison is done
    551  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
    552  * number when the max frame number is reached.
    553  */
    554 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
    555 {
    556 	return (frame1 != frame2) &&
    557 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
    558 }
    559 
    560 /*
    561  * Increments frame by the amount specified by inc. The addition is done
    562  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
    563  */
    564 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
    565 {
    566 	return (frame + inc) & HFNUM_MAX_FRNUM;
    567 }
    568 
    569 static inline u16 dwc2_full_frame_num(u16 frame)
    570 {
    571 	return (frame & HFNUM_MAX_FRNUM) >> 3;
    572 }
    573 
    574 static inline u16 dwc2_micro_frame_num(u16 frame)
    575 {
    576 	return frame & 0x7;
    577 }
    578 
    579 /*
    580  * Returns the Core Interrupt Status register contents, ANDed with the Core
    581  * Interrupt Mask register contents
    582  */
    583 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
    584 {
    585 	return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
    586 }
    587 
    588 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
    589 {
    590 	return dwc2_urb->status;
    591 }
    592 
    593 static inline u32 dwc2_hcd_urb_get_actual_length(
    594 		struct dwc2_hcd_urb *dwc2_urb)
    595 {
    596 	return dwc2_urb->actual_length;
    597 }
    598 
    599 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
    600 {
    601 	return dwc2_urb->error_count;
    602 }
    603 
    604 static inline void dwc2_hcd_urb_set_iso_desc_params(
    605 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
    606 		u32 length)
    607 {
    608 	dwc2_urb->iso_descs[desc_num].offset = offset;
    609 	dwc2_urb->iso_descs[desc_num].length = length;
    610 }
    611 
    612 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
    613 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    614 {
    615 	return dwc2_urb->iso_descs[desc_num].status;
    616 }
    617 
    618 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
    619 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    620 {
    621 	return dwc2_urb->iso_descs[desc_num].actual_length;
    622 }
    623 
    624 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
    625 						  struct usb_host_endpoint *ep)
    626 {
    627 	struct dwc2_qh *qh = ep->hcpriv;
    628 
    629 	if (qh && !list_empty(&qh->qh_list_entry))
    630 		return 1;
    631 
    632 	return 0;
    633 }
    634 
    635 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
    636 					    struct usb_host_endpoint *ep)
    637 {
    638 	struct dwc2_qh *qh = ep->hcpriv;
    639 
    640 	if (!qh) {
    641 		WARN_ON(1);
    642 		return 0;
    643 	}
    644 
    645 	return qh->usecs;
    646 }
    647 
    648 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
    649 				      struct dwc2_host_chan *chan, int chnum,
    650 				      struct dwc2_qtd *qtd);
    651 
    652 /* HCD Core API */
    653 
    654 /**
    655  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
    656  *
    657  * @hsotg: The DWC2 HCD
    658  *
    659  * Returns IRQ_HANDLED if interrupt is handled
    660  * Return IRQ_NONE if interrupt is not handled
    661  */
    662 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
    663 
    664 /**
    665  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
    666  *
    667  * @hsotg: The DWC2 HCD
    668  */
    669 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
    670 
    671 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
    672 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
    673 
    674 /**
    675  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
    676  * and 0 otherwise
    677  *
    678  * @hsotg: The DWC2 HCD
    679  */
    680 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
    681 
    682 /**
    683  * dwc2_hcd_get_frame_number() - Returns current frame number
    684  *
    685  * @hsotg: The DWC2 HCD
    686  */
    687 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
    688 
    689 /**
    690  * dwc2_hcd_dump_state() - Dumps hsotg state
    691  *
    692  * @hsotg: The DWC2 HCD
    693  *
    694  * NOTE: This function will be removed once the peripheral controller code
    695  * is integrated and the driver is stable
    696  */
    697 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
    698 
    699 /**
    700  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
    701  *
    702  * @hsotg: The DWC2 HCD
    703  *
    704  * This can be used to determine average interrupt latency. Frame remaining is
    705  * also shown for start transfer and two additional sample points.
    706  *
    707  * NOTE: This function will be removed once the peripheral controller code
    708  * is integrated and the driver is stable
    709  */
    710 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
    711 
    712 /* URB interface */
    713 
    714 /* Transfer flags */
    715 #define URB_GIVEBACK_ASAP	0x1
    716 #define URB_SEND_ZERO_PACKET	0x2
    717 
    718 /* Host driver callbacks */
    719 
    720 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
    721 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
    722 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
    723 			       int *hub_addr, int *hub_port);
    724 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
    725 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    726 			       int status);
    727 
    728 #ifdef DEBUG
    729 /*
    730  * Macro to sample the remaining PHY clocks left in the current frame. This
    731  * may be used during debugging to determine the average time it takes to
    732  * execute sections of code. There are two possible sample points, "a" and
    733  * "b", so the _letter_ argument must be one of these values.
    734  *
    735  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
    736  * example, "cat /sys/devices/lm0/hcd_frrem".
    737  */
    738 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
    739 do {									\
    740 	struct hfnum_data _hfnum_;					\
    741 	struct dwc2_qtd *_qtd_;						\
    742 									\
    743 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
    744 			   qtd_list_entry);				\
    745 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
    746 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
    747 		_hfnum_.d32 = readl((_hcd_)->regs + HFNUM);		\
    748 		switch (_hfnum_.b.frnum & 0x7) {			\
    749 		case 7:							\
    750 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
    751 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
    752 				_hfnum_.b.frrem;			\
    753 			break;						\
    754 		case 0:							\
    755 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
    756 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
    757 				_hfnum_.b.frrem;			\
    758 			break;						\
    759 		default:						\
    760 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
    761 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
    762 				_hfnum_.b.frrem;			\
    763 			break;						\
    764 		}							\
    765 	}								\
    766 } while (0)
    767 #else
    768 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
    769 #endif
    770 
    771 #endif /* __DWC2_HCD_H__ */
    772