Home | History | Annotate | Line # | Download | only in dist
dwc2_hcd.h revision 1.1.1.6
      1 /*	$NetBSD: dwc2_hcd.h,v 1.1.1.6 2016/02/14 10:48:06 skrll Exp $	*/
      2 
      3 /*
      4  * hcd.h - DesignWare HS OTG Controller host-mode declarations
      5  *
      6  * Copyright (C) 2004-2013 Synopsys, Inc.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions, and the following disclaimer,
     13  *    without modification.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The names of the above-listed copyright holders may not be used
     18  *    to endorse or promote products derived from this software without
     19  *    specific prior written permission.
     20  *
     21  * ALTERNATIVELY, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") as published by the Free Software
     23  * Foundation; either version 2 of the License, or (at your option) any
     24  * later version.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 #ifndef __DWC2_HCD_H__
     39 #define __DWC2_HCD_H__
     40 
     41 /*
     42  * This file contains the structures, constants, and interfaces for the
     43  * Host Contoller Driver (HCD)
     44  *
     45  * The Host Controller Driver (HCD) is responsible for translating requests
     46  * from the USB Driver into the appropriate actions on the DWC_otg controller.
     47  * It isolates the USBD from the specifics of the controller by providing an
     48  * API to the USBD.
     49  */
     50 
     51 struct dwc2_qh;
     52 
     53 /**
     54  * struct dwc2_host_chan - Software host channel descriptor
     55  *
     56  * @hc_num:             Host channel number, used for register address lookup
     57  * @dev_addr:           Address of the device
     58  * @ep_num:             Endpoint of the device
     59  * @ep_is_in:           Endpoint direction
     60  * @speed:              Device speed. One of the following values:
     61  *                       - USB_SPEED_LOW
     62  *                       - USB_SPEED_FULL
     63  *                       - USB_SPEED_HIGH
     64  * @ep_type:            Endpoint type. One of the following values:
     65  *                       - USB_ENDPOINT_XFER_CONTROL: 0
     66  *                       - USB_ENDPOINT_XFER_ISOC:    1
     67  *                       - USB_ENDPOINT_XFER_BULK:    2
     68  *                       - USB_ENDPOINT_XFER_INTR:    3
     69  * @max_packet:         Max packet size in bytes
     70  * @data_pid_start:     PID for initial transaction.
     71  *                       0: DATA0
     72  *                       1: DATA2
     73  *                       2: DATA1
     74  *                       3: MDATA (non-Control EP),
     75  *                          SETUP (Control EP)
     76  * @multi_count:        Number of additional periodic transactions per
     77  *                      (micro)frame
     78  * @xfer_buf:           Pointer to current transfer buffer position
     79  * @xfer_dma:           DMA address of xfer_buf
     80  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
     81  *                      DWORD aligned
     82  * @xfer_len:           Total number of bytes to transfer
     83  * @xfer_count:         Number of bytes transferred so far
     84  * @start_pkt_count:    Packet count at start of transfer
     85  * @xfer_started:       True if the transfer has been started
     86  * @ping:               True if a PING request should be issued on this channel
     87  * @error_state:        True if the error count for this transaction is non-zero
     88  * @halt_on_queue:      True if this channel should be halted the next time a
     89  *                      request is queued for the channel. This is necessary in
     90  *                      slave mode if no request queue space is available when
     91  *                      an attempt is made to halt the channel.
     92  * @halt_pending:       True if the host channel has been halted, but the core
     93  *                      is not finished flushing queued requests
     94  * @do_split:           Enable split for the channel
     95  * @complete_split:     Enable complete split
     96  * @hub_addr:           Address of high speed hub for the split
     97  * @hub_port:           Port of the low/full speed device for the split
     98  * @xact_pos:           Split transaction position. One of the following values:
     99  *                       - DWC2_HCSPLT_XACTPOS_MID
    100  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
    101  *                       - DWC2_HCSPLT_XACTPOS_END
    102  *                       - DWC2_HCSPLT_XACTPOS_ALL
    103  * @requests:           Number of requests issued for this channel since it was
    104  *                      assigned to the current transfer (not counting PINGs)
    105  * @schinfo:            Scheduling micro-frame bitmap
    106  * @ntd:                Number of transfer descriptors for the transfer
    107  * @halt_status:        Reason for halting the host channel
    108  * @hcint               Contents of the HCINT register when the interrupt came
    109  * @qh:                 QH for the transfer being processed by this channel
    110  * @hc_list_entry:      For linking to list of host channels
    111  * @desc_list_addr:     Current QH's descriptor list DMA address
    112  * @desc_list_sz:       Current QH's descriptor list size
    113  *
    114  * This structure represents the state of a single host channel when acting in
    115  * host mode. It contains the data items needed to transfer packets to an
    116  * endpoint via a host channel.
    117  */
    118 struct dwc2_host_chan {
    119 	u8 hc_num;
    120 
    121 	unsigned dev_addr:7;
    122 	unsigned ep_num:4;
    123 	unsigned ep_is_in:1;
    124 	unsigned speed:4;
    125 	unsigned ep_type:2;
    126 	unsigned max_packet:11;
    127 	unsigned data_pid_start:2;
    128 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
    129 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
    130 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
    131 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
    132 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
    133 
    134 	unsigned multi_count:2;
    135 
    136 	u8 *xfer_buf;
    137 	dma_addr_t xfer_dma;
    138 	dma_addr_t align_buf;
    139 	u32 xfer_len;
    140 	u32 xfer_count;
    141 	u16 start_pkt_count;
    142 	u8 xfer_started;
    143 	u8 do_ping;
    144 	u8 error_state;
    145 	u8 halt_on_queue;
    146 	u8 halt_pending;
    147 	u8 do_split;
    148 	u8 complete_split;
    149 	u8 hub_addr;
    150 	u8 hub_port;
    151 	u8 xact_pos;
    152 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
    153 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
    154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
    155 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
    156 
    157 	u8 requests;
    158 	u8 schinfo;
    159 	u16 ntd;
    160 	enum dwc2_halt_status halt_status;
    161 	u32 hcint;
    162 	struct dwc2_qh *qh;
    163 	struct list_head hc_list_entry;
    164 	dma_addr_t desc_list_addr;
    165 	u32 desc_list_sz;
    166 };
    167 
    168 struct dwc2_hcd_pipe_info {
    169 	u8 dev_addr;
    170 	u8 ep_num;
    171 	u8 pipe_type;
    172 	u8 pipe_dir;
    173 	u16 mps;
    174 };
    175 
    176 struct dwc2_hcd_iso_packet_desc {
    177 	u32 offset;
    178 	u32 length;
    179 	u32 actual_length;
    180 	u32 status;
    181 };
    182 
    183 struct dwc2_qtd;
    184 
    185 struct dwc2_hcd_urb {
    186 	void *priv;
    187 	struct dwc2_qtd *qtd;
    188 	void *buf;
    189 	dma_addr_t dma;
    190 	void *setup_packet;
    191 	dma_addr_t setup_dma;
    192 	u32 length;
    193 	u32 actual_length;
    194 	u32 status;
    195 	u32 error_count;
    196 	u32 packet_count;
    197 	u32 flags;
    198 	u16 interval;
    199 	struct dwc2_hcd_pipe_info pipe_info;
    200 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
    201 };
    202 
    203 /* Phases for control transfers */
    204 enum dwc2_control_phase {
    205 	DWC2_CONTROL_SETUP,
    206 	DWC2_CONTROL_DATA,
    207 	DWC2_CONTROL_STATUS,
    208 };
    209 
    210 /* Transaction types */
    211 enum dwc2_transaction_type {
    212 	DWC2_TRANSACTION_NONE,
    213 	DWC2_TRANSACTION_PERIODIC,
    214 	DWC2_TRANSACTION_NON_PERIODIC,
    215 	DWC2_TRANSACTION_ALL,
    216 };
    217 
    218 /**
    219  * struct dwc2_qh - Software queue head structure
    220  *
    221  * @ep_type:            Endpoint type. One of the following values:
    222  *                       - USB_ENDPOINT_XFER_CONTROL
    223  *                       - USB_ENDPOINT_XFER_BULK
    224  *                       - USB_ENDPOINT_XFER_INT
    225  *                       - USB_ENDPOINT_XFER_ISOC
    226  * @ep_is_in:           Endpoint direction
    227  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
    228  * @dev_speed:          Device speed. One of the following values:
    229  *                       - USB_SPEED_LOW
    230  *                       - USB_SPEED_FULL
    231  *                       - USB_SPEED_HIGH
    232  * @data_toggle:        Determines the PID of the next data packet for
    233  *                      non-controltransfers. Ignored for control transfers.
    234  *                      One of the following values:
    235  *                       - DWC2_HC_PID_DATA0
    236  *                       - DWC2_HC_PID_DATA1
    237  * @ping_state:         Ping state
    238  * @do_split:           Full/low speed endpoint on high-speed hub requires split
    239  * @td_first:           Index of first activated isochronous transfer descriptor
    240  * @td_last:            Index of last activated isochronous transfer descriptor
    241  * @usecs:              Bandwidth in microseconds per (micro)frame
    242  * @interval:           Interval between transfers in (micro)frames
    243  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
    244  *                      The transfer executes in the following (micro)frame.
    245  * @frame_usecs:        Internal variable used by the microframe scheduler
    246  * @start_split_frame:  (Micro)frame at which last start split was initialized
    247  * @ntd:                Actual number of transfer descriptors in a list
    248  * @dw_align_buf:       Used instead of original buffer if its physical address
    249  *                      is not dword-aligned
    250  * @dw_align_buf_size:  Size of dw_align_buf
    251  * @dw_align_buf_dma:   DMA address for dw_align_buf
    252  * @qtd_list:           List of QTDs for this QH
    253  * @channel:            Host channel currently processing transfers for this QH
    254  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
    255  *                      schedule
    256  * @desc_list:          List of transfer descriptors
    257  * @desc_list_dma:      Physical address of desc_list
    258  * @desc_list_sz:       Size of descriptors list
    259  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
    260  *                      descriptor and indicates original XferSize value for the
    261  *                      descriptor
    262  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
    263  *
    264  * A Queue Head (QH) holds the static characteristics of an endpoint and
    265  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
    266  * be entered in either the non-periodic or periodic schedule.
    267  */
    268 struct dwc2_qh {
    269 	u8 ep_type;
    270 	u8 ep_is_in;
    271 	u16 maxp;
    272 	u8 dev_speed;
    273 	u8 data_toggle;
    274 	u8 ping_state;
    275 	u8 do_split;
    276 	u8 td_first;
    277 	u8 td_last;
    278 	u16 usecs;
    279 	u16 interval;
    280 	u16 sched_frame;
    281 	u16 frame_usecs[8];
    282 	u16 start_split_frame;
    283 	u16 ntd;
    284 	u8 *dw_align_buf;
    285 	int dw_align_buf_size;
    286 	dma_addr_t dw_align_buf_dma;
    287 	struct list_head qtd_list;
    288 	struct dwc2_host_chan *channel;
    289 	struct list_head qh_list_entry;
    290 	struct dwc2_hcd_dma_desc *desc_list;
    291 	dma_addr_t desc_list_dma;
    292 	u32 desc_list_sz;
    293 	u32 *n_bytes;
    294 	unsigned tt_buffer_dirty:1;
    295 };
    296 
    297 /**
    298  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
    299  *
    300  * @control_phase:      Current phase for control transfers (Setup, Data, or
    301  *                      Status)
    302  * @in_process:         Indicates if this QTD is currently processed by HW
    303  * @data_toggle:        Determines the PID of the next data packet for the
    304  *                      data phase of control transfers. Ignored for other
    305  *                      transfer types. One of the following values:
    306  *                       - DWC2_HC_PID_DATA0
    307  *                       - DWC2_HC_PID_DATA1
    308  * @complete_split:     Keeps track of the current split type for FS/LS
    309  *                      endpoints on a HS Hub
    310  * @isoc_split_pos:     Position of the ISOC split in full/low speed
    311  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
    312  *                      transfer. A frame descriptor describes the buffer
    313  *                      position and length of the data to be transferred in the
    314  *                      next scheduled (micro)frame of an isochronous transfer.
    315  *                      It also holds status for that transaction. The frame
    316  *                      index starts at 0.
    317  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
    318  *                      current frame
    319  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
    320  * @error_count:        Holds the number of bus errors that have occurred for
    321  *                      a transaction within this transfer
    322  * @n_desc:             Number of DMA descriptors for this QTD
    323  * @isoc_frame_index_last: Last activated frame (packet) index, used in
    324  *                      descriptor DMA mode only
    325  * @urb:                URB for this transfer
    326  * @qh:                 Queue head for this QTD
    327  * @qtd_list_entry:     For linking to the QH's list of QTDs
    328  *
    329  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
    330  * interrupt, or isochronous transfer. A single QTD is created for each URB
    331  * (of one of these types) submitted to the HCD. The transfer associated with
    332  * a QTD may require one or multiple transactions.
    333  *
    334  * A QTD is linked to a Queue Head, which is entered in either the
    335  * non-periodic or periodic schedule for execution. When a QTD is chosen for
    336  * execution, some or all of its transactions may be executed. After
    337  * execution, the state of the QTD is updated. The QTD may be retired if all
    338  * its transactions are complete or if an error occurred. Otherwise, it
    339  * remains in the schedule so more transactions can be executed later.
    340  */
    341 struct dwc2_qtd {
    342 	enum dwc2_control_phase control_phase;
    343 	u8 in_process;
    344 	u8 data_toggle;
    345 	u8 complete_split;
    346 	u8 isoc_split_pos;
    347 	u16 isoc_frame_index;
    348 	u16 isoc_split_offset;
    349 	u16 isoc_td_last;
    350 	u16 isoc_td_first;
    351 	u32 ssplit_out_xfer_count;
    352 	u8 error_count;
    353 	u8 n_desc;
    354 	u16 isoc_frame_index_last;
    355 	struct dwc2_hcd_urb *urb;
    356 	struct dwc2_qh *qh;
    357 	struct list_head qtd_list_entry;
    358 };
    359 
    360 #ifdef DEBUG
    361 struct hc_xfer_info {
    362 	struct dwc2_hsotg *hsotg;
    363 	struct dwc2_host_chan *chan;
    364 };
    365 #endif
    366 
    367 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
    368 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
    369 {
    370 	return (struct usb_hcd *)hsotg->priv;
    371 }
    372 
    373 /*
    374  * Inline used to disable one channel interrupt. Channel interrupts are
    375  * disabled when the channel is halted or released by the interrupt handler.
    376  * There is no need to handle further interrupts of that type until the
    377  * channel is re-assigned. In fact, subsequent handling may cause crashes
    378  * because the channel structures are cleaned up when the channel is released.
    379  */
    380 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
    381 {
    382 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
    383 
    384 	mask &= ~intr;
    385 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
    386 }
    387 
    388 /*
    389  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
    390  * are read as 1, they won't clear when written back.
    391  */
    392 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
    393 {
    394 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
    395 
    396 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
    397 	return hprt0;
    398 }
    399 
    400 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
    401 {
    402 	return pipe->ep_num;
    403 }
    404 
    405 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
    406 {
    407 	return pipe->pipe_type;
    408 }
    409 
    410 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
    411 {
    412 	return pipe->mps;
    413 }
    414 
    415 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
    416 {
    417 	return pipe->dev_addr;
    418 }
    419 
    420 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
    421 {
    422 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
    423 }
    424 
    425 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
    426 {
    427 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
    428 }
    429 
    430 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
    431 {
    432 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
    433 }
    434 
    435 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
    436 {
    437 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
    438 }
    439 
    440 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
    441 {
    442 	return pipe->pipe_dir == USB_DIR_IN;
    443 }
    444 
    445 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
    446 {
    447 	return !dwc2_hcd_is_pipe_in(pipe);
    448 }
    449 
    450 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
    451 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
    452 
    453 /* Transaction Execution Functions */
    454 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
    455 						struct dwc2_hsotg *hsotg);
    456 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
    457 					enum dwc2_transaction_type tr_type);
    458 
    459 /* Schedule Queue Functions */
    460 /* Implemented in hcd_queue.c */
    461 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
    462 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
    463 					  struct dwc2_hcd_urb *urb,
    464 					  gfp_t mem_flags);
    465 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    466 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    467 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    468 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    469 				   int sched_csplit);
    470 
    471 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
    472 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    473 			    struct dwc2_qh *qh);
    474 
    475 /* Unlinks and frees a QTD */
    476 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
    477 						struct dwc2_qtd *qtd,
    478 						struct dwc2_qh *qh)
    479 {
    480 	list_del(&qtd->qtd_list_entry);
    481 	kfree(qtd);
    482 }
    483 
    484 /* Descriptor DMA support functions */
    485 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
    486 				     struct dwc2_qh *qh);
    487 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
    488 					struct dwc2_host_chan *chan, int chnum,
    489 					enum dwc2_halt_status halt_status);
    490 
    491 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    492 				 gfp_t mem_flags);
    493 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    494 
    495 /* Check if QH is non-periodic */
    496 #define dwc2_qh_is_non_per(_qh_ptr_) \
    497 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
    498 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
    499 
    500 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
    501 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
    502 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
    503 static inline bool dbg_urb(struct urb *urb) { return true; }
    504 static inline bool dbg_perio(void) { return true; }
    505 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
    506 static inline bool dbg_hc(struct dwc2_host_chan *hc)
    507 {
    508 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
    509 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
    510 }
    511 
    512 static inline bool dbg_qh(struct dwc2_qh *qh)
    513 {
    514 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
    515 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
    516 }
    517 
    518 static inline bool dbg_urb(struct urb *urb)
    519 {
    520 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
    521 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
    522 }
    523 
    524 static inline bool dbg_perio(void) { return false; }
    525 #endif
    526 
    527 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
    528 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
    529 
    530 /* Packet size for any kind of endpoint descriptor */
    531 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
    532 
    533 /*
    534  * Returns true if frame1 index is greater than frame2 index. The comparison
    535  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
    536  * frame number when the max index frame number is reached.
    537  */
    538 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
    539 {
    540 	u16 diff = fr_idx1 - fr_idx2;
    541 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
    542 
    543 	return diff && !sign;
    544 }
    545 
    546 /*
    547  * Returns true if frame1 is less than or equal to frame2. The comparison is
    548  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
    549  * frame number when the max frame number is reached.
    550  */
    551 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
    552 {
    553 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
    554 }
    555 
    556 /*
    557  * Returns true if frame1 is greater than frame2. The comparison is done
    558  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
    559  * number when the max frame number is reached.
    560  */
    561 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
    562 {
    563 	return (frame1 != frame2) &&
    564 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
    565 }
    566 
    567 /*
    568  * Increments frame by the amount specified by inc. The addition is done
    569  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
    570  */
    571 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
    572 {
    573 	return (frame + inc) & HFNUM_MAX_FRNUM;
    574 }
    575 
    576 static inline u16 dwc2_full_frame_num(u16 frame)
    577 {
    578 	return (frame & HFNUM_MAX_FRNUM) >> 3;
    579 }
    580 
    581 static inline u16 dwc2_micro_frame_num(u16 frame)
    582 {
    583 	return frame & 0x7;
    584 }
    585 
    586 /*
    587  * Returns the Core Interrupt Status register contents, ANDed with the Core
    588  * Interrupt Mask register contents
    589  */
    590 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
    591 {
    592 	return dwc2_readl(hsotg->regs + GINTSTS) &
    593 	       dwc2_readl(hsotg->regs + GINTMSK);
    594 }
    595 
    596 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
    597 {
    598 	return dwc2_urb->status;
    599 }
    600 
    601 static inline u32 dwc2_hcd_urb_get_actual_length(
    602 		struct dwc2_hcd_urb *dwc2_urb)
    603 {
    604 	return dwc2_urb->actual_length;
    605 }
    606 
    607 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
    608 {
    609 	return dwc2_urb->error_count;
    610 }
    611 
    612 static inline void dwc2_hcd_urb_set_iso_desc_params(
    613 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
    614 		u32 length)
    615 {
    616 	dwc2_urb->iso_descs[desc_num].offset = offset;
    617 	dwc2_urb->iso_descs[desc_num].length = length;
    618 }
    619 
    620 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
    621 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    622 {
    623 	return dwc2_urb->iso_descs[desc_num].status;
    624 }
    625 
    626 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
    627 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    628 {
    629 	return dwc2_urb->iso_descs[desc_num].actual_length;
    630 }
    631 
    632 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
    633 						  struct usb_host_endpoint *ep)
    634 {
    635 	struct dwc2_qh *qh = ep->hcpriv;
    636 
    637 	if (qh && !list_empty(&qh->qh_list_entry))
    638 		return 1;
    639 
    640 	return 0;
    641 }
    642 
    643 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
    644 					    struct usb_host_endpoint *ep)
    645 {
    646 	struct dwc2_qh *qh = ep->hcpriv;
    647 
    648 	if (!qh) {
    649 		WARN_ON(1);
    650 		return 0;
    651 	}
    652 
    653 	return qh->usecs;
    654 }
    655 
    656 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
    657 				      struct dwc2_host_chan *chan, int chnum,
    658 				      struct dwc2_qtd *qtd);
    659 
    660 /* HCD Core API */
    661 
    662 /**
    663  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
    664  *
    665  * @hsotg: The DWC2 HCD
    666  *
    667  * Returns IRQ_HANDLED if interrupt is handled
    668  * Return IRQ_NONE if interrupt is not handled
    669  */
    670 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
    671 
    672 /**
    673  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
    674  *
    675  * @hsotg: The DWC2 HCD
    676  */
    677 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
    678 
    679 /**
    680  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
    681  * and 0 otherwise
    682  *
    683  * @hsotg: The DWC2 HCD
    684  */
    685 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
    686 
    687 /**
    688  * dwc2_hcd_dump_state() - Dumps hsotg state
    689  *
    690  * @hsotg: The DWC2 HCD
    691  *
    692  * NOTE: This function will be removed once the peripheral controller code
    693  * is integrated and the driver is stable
    694  */
    695 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
    696 
    697 /**
    698  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
    699  *
    700  * @hsotg: The DWC2 HCD
    701  *
    702  * This can be used to determine average interrupt latency. Frame remaining is
    703  * also shown for start transfer and two additional sample points.
    704  *
    705  * NOTE: This function will be removed once the peripheral controller code
    706  * is integrated and the driver is stable
    707  */
    708 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
    709 
    710 /* URB interface */
    711 
    712 /* Transfer flags */
    713 #define URB_GIVEBACK_ASAP	0x1
    714 #define URB_SEND_ZERO_PACKET	0x2
    715 
    716 /* Host driver callbacks */
    717 
    718 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
    719 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
    720 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
    721 			       int *hub_addr, int *hub_port);
    722 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
    723 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    724 			       int status);
    725 
    726 #ifdef DEBUG
    727 /*
    728  * Macro to sample the remaining PHY clocks left in the current frame. This
    729  * may be used during debugging to determine the average time it takes to
    730  * execute sections of code. There are two possible sample points, "a" and
    731  * "b", so the _letter_ argument must be one of these values.
    732  *
    733  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
    734  * example, "cat /sys/devices/lm0/hcd_frrem".
    735  */
    736 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
    737 do {									\
    738 	struct hfnum_data _hfnum_;					\
    739 	struct dwc2_qtd *_qtd_;						\
    740 									\
    741 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
    742 			   qtd_list_entry);				\
    743 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
    744 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
    745 		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
    746 		switch (_hfnum_.b.frnum & 0x7) {			\
    747 		case 7:							\
    748 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
    749 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
    750 				_hfnum_.b.frrem;			\
    751 			break;						\
    752 		case 0:							\
    753 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
    754 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
    755 				_hfnum_.b.frrem;			\
    756 			break;						\
    757 		default:						\
    758 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
    759 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
    760 				_hfnum_.b.frrem;			\
    761 			break;						\
    762 		}							\
    763 	}								\
    764 } while (0)
    765 #else
    766 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
    767 #endif
    768 
    769 #endif /* __DWC2_HCD_H__ */
    770