dwc2_hcd.h revision 1.1.1.6 1 /* $NetBSD: dwc2_hcd.h,v 1.1.1.6 2016/02/14 10:48:06 skrll Exp $ */
2
3 /*
4 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 *
6 * Copyright (C) 2004-2013 Synopsys, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The names of the above-listed copyright holders may not be used
18 * to endorse or promote products derived from this software without
19 * specific prior written permission.
20 *
21 * ALTERNATIVELY, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") as published by the Free Software
23 * Foundation; either version 2 of the License, or (at your option) any
24 * later version.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40
41 /*
42 * This file contains the structures, constants, and interfaces for the
43 * Host Contoller Driver (HCD)
44 *
45 * The Host Controller Driver (HCD) is responsible for translating requests
46 * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 * It isolates the USBD from the specifics of the controller by providing an
48 * API to the USBD.
49 */
50
51 struct dwc2_qh;
52
53 /**
54 * struct dwc2_host_chan - Software host channel descriptor
55 *
56 * @hc_num: Host channel number, used for register address lookup
57 * @dev_addr: Address of the device
58 * @ep_num: Endpoint of the device
59 * @ep_is_in: Endpoint direction
60 * @speed: Device speed. One of the following values:
61 * - USB_SPEED_LOW
62 * - USB_SPEED_FULL
63 * - USB_SPEED_HIGH
64 * @ep_type: Endpoint type. One of the following values:
65 * - USB_ENDPOINT_XFER_CONTROL: 0
66 * - USB_ENDPOINT_XFER_ISOC: 1
67 * - USB_ENDPOINT_XFER_BULK: 2
68 * - USB_ENDPOINT_XFER_INTR: 3
69 * @max_packet: Max packet size in bytes
70 * @data_pid_start: PID for initial transaction.
71 * 0: DATA0
72 * 1: DATA2
73 * 2: DATA1
74 * 3: MDATA (non-Control EP),
75 * SETUP (Control EP)
76 * @multi_count: Number of additional periodic transactions per
77 * (micro)frame
78 * @xfer_buf: Pointer to current transfer buffer position
79 * @xfer_dma: DMA address of xfer_buf
80 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 * DWORD aligned
82 * @xfer_len: Total number of bytes to transfer
83 * @xfer_count: Number of bytes transferred so far
84 * @start_pkt_count: Packet count at start of transfer
85 * @xfer_started: True if the transfer has been started
86 * @ping: True if a PING request should be issued on this channel
87 * @error_state: True if the error count for this transaction is non-zero
88 * @halt_on_queue: True if this channel should be halted the next time a
89 * request is queued for the channel. This is necessary in
90 * slave mode if no request queue space is available when
91 * an attempt is made to halt the channel.
92 * @halt_pending: True if the host channel has been halted, but the core
93 * is not finished flushing queued requests
94 * @do_split: Enable split for the channel
95 * @complete_split: Enable complete split
96 * @hub_addr: Address of high speed hub for the split
97 * @hub_port: Port of the low/full speed device for the split
98 * @xact_pos: Split transaction position. One of the following values:
99 * - DWC2_HCSPLT_XACTPOS_MID
100 * - DWC2_HCSPLT_XACTPOS_BEGIN
101 * - DWC2_HCSPLT_XACTPOS_END
102 * - DWC2_HCSPLT_XACTPOS_ALL
103 * @requests: Number of requests issued for this channel since it was
104 * assigned to the current transfer (not counting PINGs)
105 * @schinfo: Scheduling micro-frame bitmap
106 * @ntd: Number of transfer descriptors for the transfer
107 * @halt_status: Reason for halting the host channel
108 * @hcint Contents of the HCINT register when the interrupt came
109 * @qh: QH for the transfer being processed by this channel
110 * @hc_list_entry: For linking to list of host channels
111 * @desc_list_addr: Current QH's descriptor list DMA address
112 * @desc_list_sz: Current QH's descriptor list size
113 *
114 * This structure represents the state of a single host channel when acting in
115 * host mode. It contains the data items needed to transfer packets to an
116 * endpoint via a host channel.
117 */
118 struct dwc2_host_chan {
119 u8 hc_num;
120
121 unsigned dev_addr:7;
122 unsigned ep_num:4;
123 unsigned ep_is_in:1;
124 unsigned speed:4;
125 unsigned ep_type:2;
126 unsigned max_packet:11;
127 unsigned data_pid_start:2;
128 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
129 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
130 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
131 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
132 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
133
134 unsigned multi_count:2;
135
136 u8 *xfer_buf;
137 dma_addr_t xfer_dma;
138 dma_addr_t align_buf;
139 u32 xfer_len;
140 u32 xfer_count;
141 u16 start_pkt_count;
142 u8 xfer_started;
143 u8 do_ping;
144 u8 error_state;
145 u8 halt_on_queue;
146 u8 halt_pending;
147 u8 do_split;
148 u8 complete_split;
149 u8 hub_addr;
150 u8 hub_port;
151 u8 xact_pos;
152 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
153 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
156
157 u8 requests;
158 u8 schinfo;
159 u16 ntd;
160 enum dwc2_halt_status halt_status;
161 u32 hcint;
162 struct dwc2_qh *qh;
163 struct list_head hc_list_entry;
164 dma_addr_t desc_list_addr;
165 u32 desc_list_sz;
166 };
167
168 struct dwc2_hcd_pipe_info {
169 u8 dev_addr;
170 u8 ep_num;
171 u8 pipe_type;
172 u8 pipe_dir;
173 u16 mps;
174 };
175
176 struct dwc2_hcd_iso_packet_desc {
177 u32 offset;
178 u32 length;
179 u32 actual_length;
180 u32 status;
181 };
182
183 struct dwc2_qtd;
184
185 struct dwc2_hcd_urb {
186 void *priv;
187 struct dwc2_qtd *qtd;
188 void *buf;
189 dma_addr_t dma;
190 void *setup_packet;
191 dma_addr_t setup_dma;
192 u32 length;
193 u32 actual_length;
194 u32 status;
195 u32 error_count;
196 u32 packet_count;
197 u32 flags;
198 u16 interval;
199 struct dwc2_hcd_pipe_info pipe_info;
200 struct dwc2_hcd_iso_packet_desc iso_descs[0];
201 };
202
203 /* Phases for control transfers */
204 enum dwc2_control_phase {
205 DWC2_CONTROL_SETUP,
206 DWC2_CONTROL_DATA,
207 DWC2_CONTROL_STATUS,
208 };
209
210 /* Transaction types */
211 enum dwc2_transaction_type {
212 DWC2_TRANSACTION_NONE,
213 DWC2_TRANSACTION_PERIODIC,
214 DWC2_TRANSACTION_NON_PERIODIC,
215 DWC2_TRANSACTION_ALL,
216 };
217
218 /**
219 * struct dwc2_qh - Software queue head structure
220 *
221 * @ep_type: Endpoint type. One of the following values:
222 * - USB_ENDPOINT_XFER_CONTROL
223 * - USB_ENDPOINT_XFER_BULK
224 * - USB_ENDPOINT_XFER_INT
225 * - USB_ENDPOINT_XFER_ISOC
226 * @ep_is_in: Endpoint direction
227 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
228 * @dev_speed: Device speed. One of the following values:
229 * - USB_SPEED_LOW
230 * - USB_SPEED_FULL
231 * - USB_SPEED_HIGH
232 * @data_toggle: Determines the PID of the next data packet for
233 * non-controltransfers. Ignored for control transfers.
234 * One of the following values:
235 * - DWC2_HC_PID_DATA0
236 * - DWC2_HC_PID_DATA1
237 * @ping_state: Ping state
238 * @do_split: Full/low speed endpoint on high-speed hub requires split
239 * @td_first: Index of first activated isochronous transfer descriptor
240 * @td_last: Index of last activated isochronous transfer descriptor
241 * @usecs: Bandwidth in microseconds per (micro)frame
242 * @interval: Interval between transfers in (micro)frames
243 * @sched_frame: (Micro)frame to initialize a periodic transfer.
244 * The transfer executes in the following (micro)frame.
245 * @frame_usecs: Internal variable used by the microframe scheduler
246 * @start_split_frame: (Micro)frame at which last start split was initialized
247 * @ntd: Actual number of transfer descriptors in a list
248 * @dw_align_buf: Used instead of original buffer if its physical address
249 * is not dword-aligned
250 * @dw_align_buf_size: Size of dw_align_buf
251 * @dw_align_buf_dma: DMA address for dw_align_buf
252 * @qtd_list: List of QTDs for this QH
253 * @channel: Host channel currently processing transfers for this QH
254 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
255 * schedule
256 * @desc_list: List of transfer descriptors
257 * @desc_list_dma: Physical address of desc_list
258 * @desc_list_sz: Size of descriptors list
259 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
260 * descriptor and indicates original XferSize value for the
261 * descriptor
262 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
263 *
264 * A Queue Head (QH) holds the static characteristics of an endpoint and
265 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
266 * be entered in either the non-periodic or periodic schedule.
267 */
268 struct dwc2_qh {
269 u8 ep_type;
270 u8 ep_is_in;
271 u16 maxp;
272 u8 dev_speed;
273 u8 data_toggle;
274 u8 ping_state;
275 u8 do_split;
276 u8 td_first;
277 u8 td_last;
278 u16 usecs;
279 u16 interval;
280 u16 sched_frame;
281 u16 frame_usecs[8];
282 u16 start_split_frame;
283 u16 ntd;
284 u8 *dw_align_buf;
285 int dw_align_buf_size;
286 dma_addr_t dw_align_buf_dma;
287 struct list_head qtd_list;
288 struct dwc2_host_chan *channel;
289 struct list_head qh_list_entry;
290 struct dwc2_hcd_dma_desc *desc_list;
291 dma_addr_t desc_list_dma;
292 u32 desc_list_sz;
293 u32 *n_bytes;
294 unsigned tt_buffer_dirty:1;
295 };
296
297 /**
298 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
299 *
300 * @control_phase: Current phase for control transfers (Setup, Data, or
301 * Status)
302 * @in_process: Indicates if this QTD is currently processed by HW
303 * @data_toggle: Determines the PID of the next data packet for the
304 * data phase of control transfers. Ignored for other
305 * transfer types. One of the following values:
306 * - DWC2_HC_PID_DATA0
307 * - DWC2_HC_PID_DATA1
308 * @complete_split: Keeps track of the current split type for FS/LS
309 * endpoints on a HS Hub
310 * @isoc_split_pos: Position of the ISOC split in full/low speed
311 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
312 * transfer. A frame descriptor describes the buffer
313 * position and length of the data to be transferred in the
314 * next scheduled (micro)frame of an isochronous transfer.
315 * It also holds status for that transaction. The frame
316 * index starts at 0.
317 * @isoc_split_offset: Position of the ISOC split in the buffer for the
318 * current frame
319 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
320 * @error_count: Holds the number of bus errors that have occurred for
321 * a transaction within this transfer
322 * @n_desc: Number of DMA descriptors for this QTD
323 * @isoc_frame_index_last: Last activated frame (packet) index, used in
324 * descriptor DMA mode only
325 * @urb: URB for this transfer
326 * @qh: Queue head for this QTD
327 * @qtd_list_entry: For linking to the QH's list of QTDs
328 *
329 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
330 * interrupt, or isochronous transfer. A single QTD is created for each URB
331 * (of one of these types) submitted to the HCD. The transfer associated with
332 * a QTD may require one or multiple transactions.
333 *
334 * A QTD is linked to a Queue Head, which is entered in either the
335 * non-periodic or periodic schedule for execution. When a QTD is chosen for
336 * execution, some or all of its transactions may be executed. After
337 * execution, the state of the QTD is updated. The QTD may be retired if all
338 * its transactions are complete or if an error occurred. Otherwise, it
339 * remains in the schedule so more transactions can be executed later.
340 */
341 struct dwc2_qtd {
342 enum dwc2_control_phase control_phase;
343 u8 in_process;
344 u8 data_toggle;
345 u8 complete_split;
346 u8 isoc_split_pos;
347 u16 isoc_frame_index;
348 u16 isoc_split_offset;
349 u16 isoc_td_last;
350 u16 isoc_td_first;
351 u32 ssplit_out_xfer_count;
352 u8 error_count;
353 u8 n_desc;
354 u16 isoc_frame_index_last;
355 struct dwc2_hcd_urb *urb;
356 struct dwc2_qh *qh;
357 struct list_head qtd_list_entry;
358 };
359
360 #ifdef DEBUG
361 struct hc_xfer_info {
362 struct dwc2_hsotg *hsotg;
363 struct dwc2_host_chan *chan;
364 };
365 #endif
366
367 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
368 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
369 {
370 return (struct usb_hcd *)hsotg->priv;
371 }
372
373 /*
374 * Inline used to disable one channel interrupt. Channel interrupts are
375 * disabled when the channel is halted or released by the interrupt handler.
376 * There is no need to handle further interrupts of that type until the
377 * channel is re-assigned. In fact, subsequent handling may cause crashes
378 * because the channel structures are cleaned up when the channel is released.
379 */
380 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
381 {
382 u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
383
384 mask &= ~intr;
385 dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
386 }
387
388 /*
389 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
390 * are read as 1, they won't clear when written back.
391 */
392 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
393 {
394 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
395
396 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
397 return hprt0;
398 }
399
400 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
401 {
402 return pipe->ep_num;
403 }
404
405 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
406 {
407 return pipe->pipe_type;
408 }
409
410 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
411 {
412 return pipe->mps;
413 }
414
415 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
416 {
417 return pipe->dev_addr;
418 }
419
420 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
421 {
422 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
423 }
424
425 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
426 {
427 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
428 }
429
430 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
431 {
432 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
433 }
434
435 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
436 {
437 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
438 }
439
440 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
441 {
442 return pipe->pipe_dir == USB_DIR_IN;
443 }
444
445 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
446 {
447 return !dwc2_hcd_is_pipe_in(pipe);
448 }
449
450 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
451 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
452
453 /* Transaction Execution Functions */
454 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
455 struct dwc2_hsotg *hsotg);
456 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
457 enum dwc2_transaction_type tr_type);
458
459 /* Schedule Queue Functions */
460 /* Implemented in hcd_queue.c */
461 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
462 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
463 struct dwc2_hcd_urb *urb,
464 gfp_t mem_flags);
465 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
466 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
467 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
468 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
469 int sched_csplit);
470
471 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
472 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
473 struct dwc2_qh *qh);
474
475 /* Unlinks and frees a QTD */
476 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
477 struct dwc2_qtd *qtd,
478 struct dwc2_qh *qh)
479 {
480 list_del(&qtd->qtd_list_entry);
481 kfree(qtd);
482 }
483
484 /* Descriptor DMA support functions */
485 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
486 struct dwc2_qh *qh);
487 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
488 struct dwc2_host_chan *chan, int chnum,
489 enum dwc2_halt_status halt_status);
490
491 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
492 gfp_t mem_flags);
493 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
494
495 /* Check if QH is non-periodic */
496 #define dwc2_qh_is_non_per(_qh_ptr_) \
497 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
498 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
499
500 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
501 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
502 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
503 static inline bool dbg_urb(struct urb *urb) { return true; }
504 static inline bool dbg_perio(void) { return true; }
505 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
506 static inline bool dbg_hc(struct dwc2_host_chan *hc)
507 {
508 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
509 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
510 }
511
512 static inline bool dbg_qh(struct dwc2_qh *qh)
513 {
514 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
515 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
516 }
517
518 static inline bool dbg_urb(struct urb *urb)
519 {
520 return usb_pipetype(urb->pipe) == PIPE_BULK ||
521 usb_pipetype(urb->pipe) == PIPE_CONTROL;
522 }
523
524 static inline bool dbg_perio(void) { return false; }
525 #endif
526
527 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
528 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
529
530 /* Packet size for any kind of endpoint descriptor */
531 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
532
533 /*
534 * Returns true if frame1 index is greater than frame2 index. The comparison
535 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
536 * frame number when the max index frame number is reached.
537 */
538 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
539 {
540 u16 diff = fr_idx1 - fr_idx2;
541 u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
542
543 return diff && !sign;
544 }
545
546 /*
547 * Returns true if frame1 is less than or equal to frame2. The comparison is
548 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
549 * frame number when the max frame number is reached.
550 */
551 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
552 {
553 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
554 }
555
556 /*
557 * Returns true if frame1 is greater than frame2. The comparison is done
558 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
559 * number when the max frame number is reached.
560 */
561 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
562 {
563 return (frame1 != frame2) &&
564 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
565 }
566
567 /*
568 * Increments frame by the amount specified by inc. The addition is done
569 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
570 */
571 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
572 {
573 return (frame + inc) & HFNUM_MAX_FRNUM;
574 }
575
576 static inline u16 dwc2_full_frame_num(u16 frame)
577 {
578 return (frame & HFNUM_MAX_FRNUM) >> 3;
579 }
580
581 static inline u16 dwc2_micro_frame_num(u16 frame)
582 {
583 return frame & 0x7;
584 }
585
586 /*
587 * Returns the Core Interrupt Status register contents, ANDed with the Core
588 * Interrupt Mask register contents
589 */
590 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
591 {
592 return dwc2_readl(hsotg->regs + GINTSTS) &
593 dwc2_readl(hsotg->regs + GINTMSK);
594 }
595
596 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
597 {
598 return dwc2_urb->status;
599 }
600
601 static inline u32 dwc2_hcd_urb_get_actual_length(
602 struct dwc2_hcd_urb *dwc2_urb)
603 {
604 return dwc2_urb->actual_length;
605 }
606
607 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
608 {
609 return dwc2_urb->error_count;
610 }
611
612 static inline void dwc2_hcd_urb_set_iso_desc_params(
613 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
614 u32 length)
615 {
616 dwc2_urb->iso_descs[desc_num].offset = offset;
617 dwc2_urb->iso_descs[desc_num].length = length;
618 }
619
620 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
621 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
622 {
623 return dwc2_urb->iso_descs[desc_num].status;
624 }
625
626 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
627 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
628 {
629 return dwc2_urb->iso_descs[desc_num].actual_length;
630 }
631
632 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
633 struct usb_host_endpoint *ep)
634 {
635 struct dwc2_qh *qh = ep->hcpriv;
636
637 if (qh && !list_empty(&qh->qh_list_entry))
638 return 1;
639
640 return 0;
641 }
642
643 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
644 struct usb_host_endpoint *ep)
645 {
646 struct dwc2_qh *qh = ep->hcpriv;
647
648 if (!qh) {
649 WARN_ON(1);
650 return 0;
651 }
652
653 return qh->usecs;
654 }
655
656 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
657 struct dwc2_host_chan *chan, int chnum,
658 struct dwc2_qtd *qtd);
659
660 /* HCD Core API */
661
662 /**
663 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
664 *
665 * @hsotg: The DWC2 HCD
666 *
667 * Returns IRQ_HANDLED if interrupt is handled
668 * Return IRQ_NONE if interrupt is not handled
669 */
670 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
671
672 /**
673 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
674 *
675 * @hsotg: The DWC2 HCD
676 */
677 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
678
679 /**
680 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
681 * and 0 otherwise
682 *
683 * @hsotg: The DWC2 HCD
684 */
685 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
686
687 /**
688 * dwc2_hcd_dump_state() - Dumps hsotg state
689 *
690 * @hsotg: The DWC2 HCD
691 *
692 * NOTE: This function will be removed once the peripheral controller code
693 * is integrated and the driver is stable
694 */
695 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
696
697 /**
698 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
699 *
700 * @hsotg: The DWC2 HCD
701 *
702 * This can be used to determine average interrupt latency. Frame remaining is
703 * also shown for start transfer and two additional sample points.
704 *
705 * NOTE: This function will be removed once the peripheral controller code
706 * is integrated and the driver is stable
707 */
708 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
709
710 /* URB interface */
711
712 /* Transfer flags */
713 #define URB_GIVEBACK_ASAP 0x1
714 #define URB_SEND_ZERO_PACKET 0x2
715
716 /* Host driver callbacks */
717
718 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
719 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
720 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
721 int *hub_addr, int *hub_port);
722 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
723 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
724 int status);
725
726 #ifdef DEBUG
727 /*
728 * Macro to sample the remaining PHY clocks left in the current frame. This
729 * may be used during debugging to determine the average time it takes to
730 * execute sections of code. There are two possible sample points, "a" and
731 * "b", so the _letter_ argument must be one of these values.
732 *
733 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
734 * example, "cat /sys/devices/lm0/hcd_frrem".
735 */
736 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
737 do { \
738 struct hfnum_data _hfnum_; \
739 struct dwc2_qtd *_qtd_; \
740 \
741 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
742 qtd_list_entry); \
743 if (usb_pipeint(_qtd_->urb->pipe) && \
744 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
745 _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
746 switch (_hfnum_.b.frnum & 0x7) { \
747 case 7: \
748 (_hcd_)->hfnum_7_samples_##_letter_++; \
749 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
750 _hfnum_.b.frrem; \
751 break; \
752 case 0: \
753 (_hcd_)->hfnum_0_samples_##_letter_++; \
754 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
755 _hfnum_.b.frrem; \
756 break; \
757 default: \
758 (_hcd_)->hfnum_other_samples_##_letter_++; \
759 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
760 _hfnum_.b.frrem; \
761 break; \
762 } \
763 } \
764 } while (0)
765 #else
766 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
767 #endif
768
769 #endif /* __DWC2_HCD_H__ */
770