dwc2_hcd.h revision 1.10 1 /* $NetBSD: dwc2_hcd.h,v 1.10 2015/08/30 12:59:59 skrll Exp $ */
2
3 /*
4 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 *
6 * Copyright (C) 2004-2013 Synopsys, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The names of the above-listed copyright holders may not be used
18 * to endorse or promote products derived from this software without
19 * specific prior written permission.
20 *
21 * ALTERNATIVELY, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") as published by the Free Software
23 * Foundation; either version 2 of the License, or (at your option) any
24 * later version.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40
41 /*
42 * This file contains the structures, constants, and interfaces for the
43 * Host Contoller Driver (HCD)
44 *
45 * The Host Controller Driver (HCD) is responsible for translating requests
46 * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 * It isolates the USBD from the specifics of the controller by providing an
48 * API to the USBD.
49 */
50
51 struct dwc2_qh;
52
53 /**
54 * struct dwc2_host_chan - Software host channel descriptor
55 *
56 * @hc_num: Host channel number, used for register address lookup
57 * @dev_addr: Address of the device
58 * @ep_num: Endpoint of the device
59 * @ep_is_in: Endpoint direction
60 * @speed: Device speed. One of the following values:
61 * - USB_SPEED_LOW
62 * - USB_SPEED_FULL
63 * - USB_SPEED_HIGH
64 * @ep_type: Endpoint type. One of the following values:
65 * - USB_ENDPOINT_XFER_CONTROL: 0
66 * - USB_ENDPOINT_XFER_ISOC: 1
67 * - USB_ENDPOINT_XFER_BULK: 2
68 * - USB_ENDPOINT_XFER_INTR: 3
69 * @max_packet: Max packet size in bytes
70 * @data_pid_start: PID for initial transaction.
71 * 0: DATA0
72 * 1: DATA2
73 * 2: DATA1
74 * 3: MDATA (non-Control EP),
75 * SETUP (Control EP)
76 * @multi_count: Number of additional periodic transactions per
77 * (micro)frame
78 * @xfer_buf: Pointer to current transfer buffer position
79 * @xfer_dma: DMA address of xfer_buf
80 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 * DWORD aligned
82 * @xfer_len: Total number of bytes to transfer
83 * @xfer_count: Number of bytes transferred so far
84 * @start_pkt_count: Packet count at start of transfer
85 * @xfer_started: True if the transfer has been started
86 * @ping: True if a PING request should be issued on this channel
87 * @error_state: True if the error count for this transaction is non-zero
88 * @halt_on_queue: True if this channel should be halted the next time a
89 * request is queued for the channel. This is necessary in
90 * slave mode if no request queue space is available when
91 * an attempt is made to halt the channel.
92 * @halt_pending: True if the host channel has been halted, but the core
93 * is not finished flushing queued requests
94 * @do_split: Enable split for the channel
95 * @complete_split: Enable complete split
96 * @hub_addr: Address of high speed hub for the split
97 * @hub_port: Port of the low/full speed device for the split
98 * @xact_pos: Split transaction position. One of the following values:
99 * - DWC2_HCSPLT_XACTPOS_MID
100 * - DWC2_HCSPLT_XACTPOS_BEGIN
101 * - DWC2_HCSPLT_XACTPOS_END
102 * - DWC2_HCSPLT_XACTPOS_ALL
103 * @requests: Number of requests issued for this channel since it was
104 * assigned to the current transfer (not counting PINGs)
105 * @schinfo: Scheduling micro-frame bitmap
106 * @ntd: Number of transfer descriptors for the transfer
107 * @halt_status: Reason for halting the host channel
108 * @hcint Contents of the HCINT register when the interrupt came
109 * @qh: QH for the transfer being processed by this channel
110 * @hc_list_entry: For linking to list of host channels
111 * @desc_list_addr: Current QH's descriptor list DMA address
112 *
113 * This structure represents the state of a single host channel when acting in
114 * host mode. It contains the data items needed to transfer packets to an
115 * endpoint via a host channel.
116 */
117 struct dwc2_host_chan {
118 u8 hc_num;
119
120 unsigned dev_addr:7;
121 unsigned ep_num:4;
122 unsigned ep_is_in:1;
123 unsigned speed:4;
124 unsigned ep_type:2;
125 unsigned max_packet:11;
126 unsigned data_pid_start:2;
127 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
128 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
129 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
130 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
131 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
132
133 unsigned multi_count:2;
134
135 usb_dma_t *xfer_usbdma;
136 u8 *xfer_buf;
137 dma_addr_t xfer_dma;
138 dma_addr_t align_buf;
139 u32 xfer_len;
140 u32 xfer_count;
141 u16 start_pkt_count;
142 u8 xfer_started;
143 u8 do_ping;
144 u8 error_state;
145 u8 halt_on_queue;
146 u8 halt_pending;
147 u8 do_split;
148 u8 complete_split;
149 u8 hub_addr;
150 u8 hub_port;
151 u8 xact_pos;
152 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
153 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
156
157 u8 requests;
158 u8 schinfo;
159 u16 ntd;
160 enum dwc2_halt_status halt_status;
161 u32 hcint;
162 struct dwc2_qh *qh;
163 struct list_head hc_list_entry;
164 dma_addr_t desc_list_addr;
165 };
166
167 struct dwc2_hcd_pipe_info {
168 u8 dev_addr;
169 u8 ep_num;
170 u8 pipe_type;
171 u8 pipe_dir;
172 u16 mps;
173 };
174
175 struct dwc2_hcd_iso_packet_desc {
176 u32 offset;
177 u32 length;
178 u32 actual_length;
179 u32 status;
180 };
181
182 struct dwc2_qtd;
183
184 struct dwc2_hcd_urb {
185 void *priv; /* the xfer handle */
186 struct dwc2_qtd *qtd;
187 usb_dma_t *usbdma;
188 u8 *buf;
189 dma_addr_t dma;
190 usb_dma_t *setup_usbdma;
191 void *setup_packet;
192 dma_addr_t setup_dma;
193 u32 length;
194 u32 actual_length;
195 u32 status;
196 u32 error_count;
197 u32 packet_count;
198 u32 flags;
199 u16 interval;
200 struct dwc2_hcd_pipe_info pipe_info;
201 struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 };
203
204 /* Phases for control transfers */
205 enum dwc2_control_phase {
206 DWC2_CONTROL_SETUP,
207 DWC2_CONTROL_DATA,
208 DWC2_CONTROL_STATUS,
209 };
210
211 /* Transaction types */
212 enum dwc2_transaction_type {
213 DWC2_TRANSACTION_NONE,
214 DWC2_TRANSACTION_PERIODIC,
215 DWC2_TRANSACTION_NON_PERIODIC,
216 DWC2_TRANSACTION_ALL,
217 };
218
219 /**
220 * struct dwc2_qh - Software queue head structure
221 *
222 * @ep_type: Endpoint type. One of the following values:
223 * - USB_ENDPOINT_XFER_CONTROL
224 * - USB_ENDPOINT_XFER_BULK
225 * - USB_ENDPOINT_XFER_INT
226 * - USB_ENDPOINT_XFER_ISOC
227 * @ep_is_in: Endpoint direction
228 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
229 * @dev_speed: Device speed. One of the following values:
230 * - USB_SPEED_LOW
231 * - USB_SPEED_FULL
232 * - USB_SPEED_HIGH
233 * @data_toggle: Determines the PID of the next data packet for
234 * non-controltransfers. Ignored for control transfers.
235 * One of the following values:
236 * - DWC2_HC_PID_DATA0
237 * - DWC2_HC_PID_DATA1
238 * @ping_state: Ping state
239 * @do_split: Full/low speed endpoint on high-speed hub requires split
240 * @td_first: Index of first activated isochronous transfer descriptor
241 * @td_last: Index of last activated isochronous transfer descriptor
242 * @usecs: Bandwidth in microseconds per (micro)frame
243 * @interval: Interval between transfers in (micro)frames
244 * @sched_frame: (Micro)frame to initialize a periodic transfer.
245 * The transfer executes in the following (micro)frame.
246 * @nak_frame: Internal variable used by the NAK holdoff code
247 * @frame_usecs: Internal variable used by the microframe scheduler
248 * @start_split_frame: (Micro)frame at which last start split was initialized
249 * @ntd: Actual number of transfer descriptors in a list
250 * @dw_align_buf: Used instead of original buffer if its physical address
251 * is not dword-aligned
252 * @dw_align_buf_size: Size of dw_align_buf
253 * @dw_align_buf_dma: DMA address for dw_align_buf
254 * @qtd_list: List of QTDs for this QH
255 * @channel: Host channel currently processing transfers for this QH
256 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
257 * schedule
258 * @desc_list: List of transfer descriptors
259 * @desc_list_dma: Physical address of desc_list
260 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
261 * descriptor and indicates original XferSize value for the
262 * descriptor
263 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
264 *
265 * A Queue Head (QH) holds the static characteristics of an endpoint and
266 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
267 * be entered in either the non-periodic or periodic schedule.
268 */
269 struct dwc2_qh {
270 u8 ep_type;
271 u8 ep_is_in;
272 u16 maxp;
273 u8 dev_speed;
274 u8 data_toggle;
275 u8 ping_state;
276 u8 do_split;
277 u8 td_first;
278 u8 td_last;
279 u16 usecs;
280 u16 interval;
281 u16 sched_frame;
282 u16 nak_frame;
283 u16 frame_usecs[8];
284 u16 start_split_frame;
285 u16 ntd;
286 usb_dma_t dw_align_buf_usbdma;
287 u8 *dw_align_buf;
288 int dw_align_buf_size;
289 dma_addr_t dw_align_buf_dma;
290 struct list_head qtd_list;
291 struct dwc2_host_chan *channel;
292 struct list_head qh_list_entry;
293 usb_dma_t desc_list_usbdma;
294 struct dwc2_hcd_dma_desc *desc_list;
295 dma_addr_t desc_list_dma;
296 u32 *n_bytes;
297 unsigned tt_buffer_dirty:1;
298 };
299
300 /**
301 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
302 *
303 * @control_phase: Current phase for control transfers (Setup, Data, or
304 * Status)
305 * @in_process: Indicates if this QTD is currently processed by HW
306 * @data_toggle: Determines the PID of the next data packet for the
307 * data phase of control transfers. Ignored for other
308 * transfer types. One of the following values:
309 * - DWC2_HC_PID_DATA0
310 * - DWC2_HC_PID_DATA1
311 * @complete_split: Keeps track of the current split type for FS/LS
312 * endpoints on a HS Hub
313 * @isoc_split_pos: Position of the ISOC split in full/low speed
314 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
315 * transfer. A frame descriptor describes the buffer
316 * position and length of the data to be transferred in the
317 * next scheduled (micro)frame of an isochronous transfer.
318 * It also holds status for that transaction. The frame
319 * index starts at 0.
320 * @isoc_split_offset: Position of the ISOC split in the buffer for the
321 * current frame
322 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
323 * @error_count: Holds the number of bus errors that have occurred for
324 * a transaction within this transfer
325 * @n_desc: Number of DMA descriptors for this QTD
326 * @isoc_frame_index_last: Last activated frame (packet) index, used in
327 * descriptor DMA mode only
328 * @urb: URB for this transfer
329 * @qh: Queue head for this QTD
330 * @qtd_list_entry: For linking to the QH's list of QTDs
331 *
332 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
333 * interrupt, or isochronous transfer. A single QTD is created for each URB
334 * (of one of these types) submitted to the HCD. The transfer associated with
335 * a QTD may require one or multiple transactions.
336 *
337 * A QTD is linked to a Queue Head, which is entered in either the
338 * non-periodic or periodic schedule for execution. When a QTD is chosen for
339 * execution, some or all of its transactions may be executed. After
340 * execution, the state of the QTD is updated. The QTD may be retired if all
341 * its transactions are complete or if an error occurred. Otherwise, it
342 * remains in the schedule so more transactions can be executed later.
343 */
344 struct dwc2_qtd {
345 enum dwc2_control_phase control_phase;
346 u8 in_process;
347 u8 data_toggle;
348 u8 complete_split;
349 u8 isoc_split_pos;
350 u16 isoc_frame_index;
351 u16 isoc_split_offset;
352 u32 ssplit_out_xfer_count;
353 u8 error_count;
354 u8 n_desc;
355 u16 isoc_frame_index_last;
356 struct dwc2_hcd_urb *urb;
357 struct dwc2_qh *qh;
358 struct list_head qtd_list_entry;
359 };
360
361 #ifdef DEBUG
362 struct hc_xfer_info {
363 struct dwc2_hsotg *hsotg;
364 struct dwc2_host_chan *chan;
365 };
366 #endif
367
368 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
369 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
370 {
371 return (struct usb_hcd *)hsotg->priv;
372 }
373
374 /*
375 * Inline used to disable one channel interrupt. Channel interrupts are
376 * disabled when the channel is halted or released by the interrupt handler.
377 * There is no need to handle further interrupts of that type until the
378 * channel is re-assigned. In fact, subsequent handling may cause crashes
379 * because the channel structures are cleaned up when the channel is released.
380 */
381 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
382 {
383 u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
384
385 mask &= ~intr;
386 DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
387 }
388
389 /*
390 * Returns the mode of operation, host or device
391 */
392 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
393 {
394 return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
395 }
396
397 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
398 {
399 return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
400 }
401
402 /*
403 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
404 * are read as 1, they won't clear when written back.
405 */
406 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
407 {
408 u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
409
410 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
411 return hprt0;
412 }
413
414 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
415 {
416 return pipe->ep_num;
417 }
418
419 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
420 {
421 return pipe->pipe_type;
422 }
423
424 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
425 {
426 return pipe->mps;
427 }
428
429 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
430 {
431 return pipe->dev_addr;
432 }
433
434 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
435 {
436 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
437 }
438
439 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
440 {
441 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
442 }
443
444 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
445 {
446 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
447 }
448
449 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
450 {
451 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
452 }
453
454 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
455 {
456 return pipe->pipe_dir == USB_DIR_IN;
457 }
458
459 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
460 {
461 return !dwc2_hcd_is_pipe_in(pipe);
462 }
463
464 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
465 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
466
467 /* Transaction Execution Functions */
468 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
469 struct dwc2_hsotg *hsotg);
470 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
471 enum dwc2_transaction_type tr_type);
472
473 /* Schedule Queue Functions */
474 /* Implemented in hcd_queue.c */
475 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
476 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
477 struct dwc2_hcd_urb *urb,
478 gfp_t mem_flags);
479 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
480 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
481 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
482 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
483 int sched_csplit);
484
485 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
486 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
487 struct dwc2_qh *qh);
488
489 /* Removes and frees a QTD */
490 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
491 struct dwc2_qtd *qtd,
492 struct dwc2_qh *qh);
493
494 /* Descriptor DMA support functions */
495 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
496 struct dwc2_qh *qh);
497 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
498 struct dwc2_host_chan *chan, int chnum,
499 enum dwc2_halt_status halt_status);
500
501 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
502 gfp_t mem_flags);
503 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
504
505 /* Check if QH is non-periodic */
506 #define dwc2_qh_is_non_per(_qh_ptr_) \
507 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
508 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
509
510 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
511 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
512 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
513 static inline bool dbg_perio(void) { return true; }
514 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
515 static inline bool dbg_hc(struct dwc2_host_chan *hc)
516 {
517 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
518 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
519 }
520
521 static inline bool dbg_qh(struct dwc2_qh *qh)
522 {
523 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
524 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
525 }
526
527
528 static inline bool dbg_perio(void) { return false; }
529 #endif
530
531 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533
534 /* Packet size for any kind of endpoint descriptor */
535 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536
537 /*
538 * Returns true if frame1 is less than or equal to frame2. The comparison is
539 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540 * frame number when the max frame number is reached.
541 */
542 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543 {
544 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545 }
546
547 /*
548 * Returns true if frame1 is greater than frame2. The comparison is done
549 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550 * number when the max frame number is reached.
551 */
552 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553 {
554 return (frame1 != frame2) &&
555 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556 }
557
558 /*
559 * Increments frame by the amount specified by inc. The addition is done
560 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561 */
562 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563 {
564 return (frame + inc) & HFNUM_MAX_FRNUM;
565 }
566
567 static inline u16 dwc2_full_frame_num(u16 frame)
568 {
569 return (frame & HFNUM_MAX_FRNUM) >> 3;
570 }
571
572 static inline u16 dwc2_micro_frame_num(u16 frame)
573 {
574 return frame & 0x7;
575 }
576
577 /*
578 * Returns the Core Interrupt Status register contents, ANDed with the Core
579 * Interrupt Mask register contents
580 */
581 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582 {
583 return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
584 }
585
586 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
587 {
588 return dwc2_urb->status;
589 }
590
591 static inline u32 dwc2_hcd_urb_get_actual_length(
592 struct dwc2_hcd_urb *dwc2_urb)
593 {
594 return dwc2_urb->actual_length;
595 }
596
597 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
598 {
599 return dwc2_urb->error_count;
600 }
601
602 static inline void dwc2_hcd_urb_set_iso_desc_params(
603 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
604 u32 length)
605 {
606 dwc2_urb->iso_descs[desc_num].offset = offset;
607 dwc2_urb->iso_descs[desc_num].length = length;
608 }
609
610 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
611 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
612 {
613 return dwc2_urb->iso_descs[desc_num].status;
614 }
615
616 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
617 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
618 {
619 return dwc2_urb->iso_descs[desc_num].actual_length;
620 }
621
622 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
623 usbd_xfer_handle xfer)
624 {
625 struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
626 struct dwc2_qh *qh = dpipe->priv;
627
628 if (qh && !list_empty(&qh->qh_list_entry))
629 return 1;
630
631 return 0;
632 }
633
634 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
635 struct dwc2_pipe *dpipe)
636 {
637 struct dwc2_qh *qh = dpipe->priv;
638
639 if (!qh) {
640 WARN_ON(1);
641 return 0;
642 }
643
644 return qh->usecs;
645 }
646
647 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
648 struct dwc2_host_chan *chan, int chnum,
649 struct dwc2_qtd *qtd);
650
651 /* HCD Core API */
652
653 /**
654 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
655 *
656 * @hsotg: The DWC2 HCD
657 *
658 * Returns IRQ_HANDLED if interrupt is handled
659 * Return IRQ_NONE if interrupt is not handled
660 */
661 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
662
663 /**
664 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
665 *
666 * @hsotg: The DWC2 HCD
667 */
668 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
669
670 /**
671 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
672 * and 0 otherwise
673 *
674 * @hsotg: The DWC2 HCD
675 */
676 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
677
678 /**
679 * dwc2_hcd_dump_state() - Dumps hsotg state
680 *
681 * @hsotg: The DWC2 HCD
682 *
683 * NOTE: This function will be removed once the peripheral controller code
684 * is integrated and the driver is stable
685 */
686 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
687
688 /**
689 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
690 *
691 * @hsotg: The DWC2 HCD
692 *
693 * This can be used to determine average interrupt latency. Frame remaining is
694 * also shown for start transfer and two additional sample points.
695 *
696 * NOTE: This function will be removed once the peripheral controller code
697 * is integrated and the driver is stable
698 */
699 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
700
701 /* URB interface */
702
703 /* Transfer flags */
704 #define URB_GIVEBACK_ASAP 0x1
705 #define URB_SEND_ZERO_PACKET 0x2
706
707 /* Host driver callbacks */
708
709 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
710 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
711 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
712 int *hub_addr, int *hub_port);
713 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
714 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
715 int status);
716
717 #ifdef DEBUG
718 /*
719 * Macro to sample the remaining PHY clocks left in the current frame. This
720 * may be used during debugging to determine the average time it takes to
721 * execute sections of code. There are two possible sample points, "a" and
722 * "b", so the _letter_ argument must be one of these values.
723 *
724 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
725 * example, "cat /sys/devices/lm0/hcd_frrem".
726 */
727 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
728 do { \
729 struct hfnum_data _hfnum_; \
730 struct dwc2_qtd *_qtd_; \
731 \
732 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
733 qtd_list_entry); \
734 if (usb_pipeint(_qtd_->urb->pipe) && \
735 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
736 _hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM); \
737 switch (_hfnum_.b.frnum & 0x7) { \
738 case 7: \
739 (_hcd_)->hfnum_7_samples_##_letter_++; \
740 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
741 _hfnum_.b.frrem; \
742 break; \
743 case 0: \
744 (_hcd_)->hfnum_0_samples_##_letter_++; \
745 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
746 _hfnum_.b.frrem; \
747 break; \
748 default: \
749 (_hcd_)->hfnum_other_samples_##_letter_++; \
750 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
751 _hfnum_.b.frrem; \
752 break; \
753 } \
754 } \
755 } while (0)
756 #else
757 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
758 #endif
759
760
761 void dwc2_wakeup_detected(void *);
762
763 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
764 void dwc2_hcd_reinit(struct dwc2_hsotg *);
765 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
766 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
767 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
768 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
769 struct dwc2_qtd *qtd);
770 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
771 u8 ,u8, u8, u8, u16);
772
773 void dwc2_conn_id_status_change(struct work *);
774 void dwc2_hcd_start_func(struct work *);
775 void dwc2_hcd_reset_func(struct work *);
776
777 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
778 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
779
780 int _dwc2_hcd_start(struct dwc2_hsotg *);
781
782 int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
783
784 #endif /* __DWC2_HCD_H__ */
785