Home | History | Annotate | Line # | Download | only in dist
dwc2_hcd.h revision 1.10
      1 /*	$NetBSD: dwc2_hcd.h,v 1.10 2015/08/30 12:59:59 skrll Exp $	*/
      2 
      3 /*
      4  * hcd.h - DesignWare HS OTG Controller host-mode declarations
      5  *
      6  * Copyright (C) 2004-2013 Synopsys, Inc.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions, and the following disclaimer,
     13  *    without modification.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The names of the above-listed copyright holders may not be used
     18  *    to endorse or promote products derived from this software without
     19  *    specific prior written permission.
     20  *
     21  * ALTERNATIVELY, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") as published by the Free Software
     23  * Foundation; either version 2 of the License, or (at your option) any
     24  * later version.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 #ifndef __DWC2_HCD_H__
     39 #define __DWC2_HCD_H__
     40 
     41 /*
     42  * This file contains the structures, constants, and interfaces for the
     43  * Host Contoller Driver (HCD)
     44  *
     45  * The Host Controller Driver (HCD) is responsible for translating requests
     46  * from the USB Driver into the appropriate actions on the DWC_otg controller.
     47  * It isolates the USBD from the specifics of the controller by providing an
     48  * API to the USBD.
     49  */
     50 
     51 struct dwc2_qh;
     52 
     53 /**
     54  * struct dwc2_host_chan - Software host channel descriptor
     55  *
     56  * @hc_num:             Host channel number, used for register address lookup
     57  * @dev_addr:           Address of the device
     58  * @ep_num:             Endpoint of the device
     59  * @ep_is_in:           Endpoint direction
     60  * @speed:              Device speed. One of the following values:
     61  *                       - USB_SPEED_LOW
     62  *                       - USB_SPEED_FULL
     63  *                       - USB_SPEED_HIGH
     64  * @ep_type:            Endpoint type. One of the following values:
     65  *                       - USB_ENDPOINT_XFER_CONTROL: 0
     66  *                       - USB_ENDPOINT_XFER_ISOC:    1
     67  *                       - USB_ENDPOINT_XFER_BULK:    2
     68  *                       - USB_ENDPOINT_XFER_INTR:    3
     69  * @max_packet:         Max packet size in bytes
     70  * @data_pid_start:     PID for initial transaction.
     71  *                       0: DATA0
     72  *                       1: DATA2
     73  *                       2: DATA1
     74  *                       3: MDATA (non-Control EP),
     75  *                          SETUP (Control EP)
     76  * @multi_count:        Number of additional periodic transactions per
     77  *                      (micro)frame
     78  * @xfer_buf:           Pointer to current transfer buffer position
     79  * @xfer_dma:           DMA address of xfer_buf
     80  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
     81  *                      DWORD aligned
     82  * @xfer_len:           Total number of bytes to transfer
     83  * @xfer_count:         Number of bytes transferred so far
     84  * @start_pkt_count:    Packet count at start of transfer
     85  * @xfer_started:       True if the transfer has been started
     86  * @ping:               True if a PING request should be issued on this channel
     87  * @error_state:        True if the error count for this transaction is non-zero
     88  * @halt_on_queue:      True if this channel should be halted the next time a
     89  *                      request is queued for the channel. This is necessary in
     90  *                      slave mode if no request queue space is available when
     91  *                      an attempt is made to halt the channel.
     92  * @halt_pending:       True if the host channel has been halted, but the core
     93  *                      is not finished flushing queued requests
     94  * @do_split:           Enable split for the channel
     95  * @complete_split:     Enable complete split
     96  * @hub_addr:           Address of high speed hub for the split
     97  * @hub_port:           Port of the low/full speed device for the split
     98  * @xact_pos:           Split transaction position. One of the following values:
     99  *                       - DWC2_HCSPLT_XACTPOS_MID
    100  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
    101  *                       - DWC2_HCSPLT_XACTPOS_END
    102  *                       - DWC2_HCSPLT_XACTPOS_ALL
    103  * @requests:           Number of requests issued for this channel since it was
    104  *                      assigned to the current transfer (not counting PINGs)
    105  * @schinfo:            Scheduling micro-frame bitmap
    106  * @ntd:                Number of transfer descriptors for the transfer
    107  * @halt_status:        Reason for halting the host channel
    108  * @hcint               Contents of the HCINT register when the interrupt came
    109  * @qh:                 QH for the transfer being processed by this channel
    110  * @hc_list_entry:      For linking to list of host channels
    111  * @desc_list_addr:     Current QH's descriptor list DMA address
    112  *
    113  * This structure represents the state of a single host channel when acting in
    114  * host mode. It contains the data items needed to transfer packets to an
    115  * endpoint via a host channel.
    116  */
    117 struct dwc2_host_chan {
    118 	u8 hc_num;
    119 
    120 	unsigned dev_addr:7;
    121 	unsigned ep_num:4;
    122 	unsigned ep_is_in:1;
    123 	unsigned speed:4;
    124 	unsigned ep_type:2;
    125 	unsigned max_packet:11;
    126 	unsigned data_pid_start:2;
    127 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
    128 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
    129 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
    130 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
    131 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
    132 
    133 	unsigned multi_count:2;
    134 
    135 	usb_dma_t *xfer_usbdma;
    136 	u8 *xfer_buf;
    137 	dma_addr_t xfer_dma;
    138 	dma_addr_t align_buf;
    139 	u32 xfer_len;
    140 	u32 xfer_count;
    141 	u16 start_pkt_count;
    142 	u8 xfer_started;
    143 	u8 do_ping;
    144 	u8 error_state;
    145 	u8 halt_on_queue;
    146 	u8 halt_pending;
    147 	u8 do_split;
    148 	u8 complete_split;
    149 	u8 hub_addr;
    150 	u8 hub_port;
    151 	u8 xact_pos;
    152 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
    153 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
    154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
    155 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
    156 
    157 	u8 requests;
    158 	u8 schinfo;
    159 	u16 ntd;
    160 	enum dwc2_halt_status halt_status;
    161 	u32 hcint;
    162 	struct dwc2_qh *qh;
    163 	struct list_head hc_list_entry;
    164 	dma_addr_t desc_list_addr;
    165 };
    166 
    167 struct dwc2_hcd_pipe_info {
    168 	u8 dev_addr;
    169 	u8 ep_num;
    170 	u8 pipe_type;
    171 	u8 pipe_dir;
    172 	u16 mps;
    173 };
    174 
    175 struct dwc2_hcd_iso_packet_desc {
    176 	u32 offset;
    177 	u32 length;
    178 	u32 actual_length;
    179 	u32 status;
    180 };
    181 
    182 struct dwc2_qtd;
    183 
    184 struct dwc2_hcd_urb {
    185 	void *priv;		/* the xfer handle */
    186 	struct dwc2_qtd *qtd;
    187 	usb_dma_t *usbdma;
    188 	u8 *buf;
    189 	dma_addr_t dma;
    190 	usb_dma_t *setup_usbdma;
    191 	void *setup_packet;
    192 	dma_addr_t setup_dma;
    193 	u32 length;
    194 	u32 actual_length;
    195 	u32 status;
    196 	u32 error_count;
    197 	u32 packet_count;
    198 	u32 flags;
    199 	u16 interval;
    200 	struct dwc2_hcd_pipe_info pipe_info;
    201 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
    202 };
    203 
    204 /* Phases for control transfers */
    205 enum dwc2_control_phase {
    206 	DWC2_CONTROL_SETUP,
    207 	DWC2_CONTROL_DATA,
    208 	DWC2_CONTROL_STATUS,
    209 };
    210 
    211 /* Transaction types */
    212 enum dwc2_transaction_type {
    213 	DWC2_TRANSACTION_NONE,
    214 	DWC2_TRANSACTION_PERIODIC,
    215 	DWC2_TRANSACTION_NON_PERIODIC,
    216 	DWC2_TRANSACTION_ALL,
    217 };
    218 
    219 /**
    220  * struct dwc2_qh - Software queue head structure
    221  *
    222  * @ep_type:            Endpoint type. One of the following values:
    223  *                       - USB_ENDPOINT_XFER_CONTROL
    224  *                       - USB_ENDPOINT_XFER_BULK
    225  *                       - USB_ENDPOINT_XFER_INT
    226  *                       - USB_ENDPOINT_XFER_ISOC
    227  * @ep_is_in:           Endpoint direction
    228  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
    229  * @dev_speed:          Device speed. One of the following values:
    230  *                       - USB_SPEED_LOW
    231  *                       - USB_SPEED_FULL
    232  *                       - USB_SPEED_HIGH
    233  * @data_toggle:        Determines the PID of the next data packet for
    234  *                      non-controltransfers. Ignored for control transfers.
    235  *                      One of the following values:
    236  *                       - DWC2_HC_PID_DATA0
    237  *                       - DWC2_HC_PID_DATA1
    238  * @ping_state:         Ping state
    239  * @do_split:           Full/low speed endpoint on high-speed hub requires split
    240  * @td_first:           Index of first activated isochronous transfer descriptor
    241  * @td_last:            Index of last activated isochronous transfer descriptor
    242  * @usecs:              Bandwidth in microseconds per (micro)frame
    243  * @interval:           Interval between transfers in (micro)frames
    244  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
    245  *                      The transfer executes in the following (micro)frame.
    246  * @nak_frame:          Internal variable used by the NAK holdoff code
    247  * @frame_usecs:        Internal variable used by the microframe scheduler
    248  * @start_split_frame:  (Micro)frame at which last start split was initialized
    249  * @ntd:                Actual number of transfer descriptors in a list
    250  * @dw_align_buf:       Used instead of original buffer if its physical address
    251  *                      is not dword-aligned
    252  * @dw_align_buf_size:  Size of dw_align_buf
    253  * @dw_align_buf_dma:   DMA address for dw_align_buf
    254  * @qtd_list:           List of QTDs for this QH
    255  * @channel:            Host channel currently processing transfers for this QH
    256  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
    257  *                      schedule
    258  * @desc_list:          List of transfer descriptors
    259  * @desc_list_dma:      Physical address of desc_list
    260  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
    261  *                      descriptor and indicates original XferSize value for the
    262  *                      descriptor
    263  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
    264  *
    265  * A Queue Head (QH) holds the static characteristics of an endpoint and
    266  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
    267  * be entered in either the non-periodic or periodic schedule.
    268  */
    269 struct dwc2_qh {
    270 	u8 ep_type;
    271 	u8 ep_is_in;
    272 	u16 maxp;
    273 	u8 dev_speed;
    274 	u8 data_toggle;
    275 	u8 ping_state;
    276 	u8 do_split;
    277 	u8 td_first;
    278 	u8 td_last;
    279 	u16 usecs;
    280 	u16 interval;
    281 	u16 sched_frame;
    282 	u16 nak_frame;
    283 	u16 frame_usecs[8];
    284 	u16 start_split_frame;
    285 	u16 ntd;
    286 	usb_dma_t dw_align_buf_usbdma;
    287 	u8 *dw_align_buf;
    288 	int dw_align_buf_size;
    289 	dma_addr_t dw_align_buf_dma;
    290 	struct list_head qtd_list;
    291 	struct dwc2_host_chan *channel;
    292 	struct list_head qh_list_entry;
    293 	usb_dma_t desc_list_usbdma;
    294 	struct dwc2_hcd_dma_desc *desc_list;
    295 	dma_addr_t desc_list_dma;
    296 	u32 *n_bytes;
    297 	unsigned tt_buffer_dirty:1;
    298 };
    299 
    300 /**
    301  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
    302  *
    303  * @control_phase:      Current phase for control transfers (Setup, Data, or
    304  *                      Status)
    305  * @in_process:         Indicates if this QTD is currently processed by HW
    306  * @data_toggle:        Determines the PID of the next data packet for the
    307  *                      data phase of control transfers. Ignored for other
    308  *                      transfer types. One of the following values:
    309  *                       - DWC2_HC_PID_DATA0
    310  *                       - DWC2_HC_PID_DATA1
    311  * @complete_split:     Keeps track of the current split type for FS/LS
    312  *                      endpoints on a HS Hub
    313  * @isoc_split_pos:     Position of the ISOC split in full/low speed
    314  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
    315  *                      transfer. A frame descriptor describes the buffer
    316  *                      position and length of the data to be transferred in the
    317  *                      next scheduled (micro)frame of an isochronous transfer.
    318  *                      It also holds status for that transaction. The frame
    319  *                      index starts at 0.
    320  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
    321  *                      current frame
    322  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
    323  * @error_count:        Holds the number of bus errors that have occurred for
    324  *                      a transaction within this transfer
    325  * @n_desc:             Number of DMA descriptors for this QTD
    326  * @isoc_frame_index_last: Last activated frame (packet) index, used in
    327  *                      descriptor DMA mode only
    328  * @urb:                URB for this transfer
    329  * @qh:                 Queue head for this QTD
    330  * @qtd_list_entry:     For linking to the QH's list of QTDs
    331  *
    332  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
    333  * interrupt, or isochronous transfer. A single QTD is created for each URB
    334  * (of one of these types) submitted to the HCD. The transfer associated with
    335  * a QTD may require one or multiple transactions.
    336  *
    337  * A QTD is linked to a Queue Head, which is entered in either the
    338  * non-periodic or periodic schedule for execution. When a QTD is chosen for
    339  * execution, some or all of its transactions may be executed. After
    340  * execution, the state of the QTD is updated. The QTD may be retired if all
    341  * its transactions are complete or if an error occurred. Otherwise, it
    342  * remains in the schedule so more transactions can be executed later.
    343  */
    344 struct dwc2_qtd {
    345 	enum dwc2_control_phase control_phase;
    346 	u8 in_process;
    347 	u8 data_toggle;
    348 	u8 complete_split;
    349 	u8 isoc_split_pos;
    350 	u16 isoc_frame_index;
    351 	u16 isoc_split_offset;
    352 	u32 ssplit_out_xfer_count;
    353 	u8 error_count;
    354 	u8 n_desc;
    355 	u16 isoc_frame_index_last;
    356 	struct dwc2_hcd_urb *urb;
    357 	struct dwc2_qh *qh;
    358 	struct list_head qtd_list_entry;
    359 };
    360 
    361 #ifdef DEBUG
    362 struct hc_xfer_info {
    363 	struct dwc2_hsotg *hsotg;
    364 	struct dwc2_host_chan *chan;
    365 };
    366 #endif
    367 
    368 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
    369 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
    370 {
    371 	return (struct usb_hcd *)hsotg->priv;
    372 }
    373 
    374 /*
    375  * Inline used to disable one channel interrupt. Channel interrupts are
    376  * disabled when the channel is halted or released by the interrupt handler.
    377  * There is no need to handle further interrupts of that type until the
    378  * channel is re-assigned. In fact, subsequent handling may cause crashes
    379  * because the channel structures are cleaned up when the channel is released.
    380  */
    381 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
    382 {
    383 	u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
    384 
    385 	mask &= ~intr;
    386 	DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
    387 }
    388 
    389 /*
    390  * Returns the mode of operation, host or device
    391  */
    392 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
    393 {
    394 	return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
    395 }
    396 
    397 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
    398 {
    399 	return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
    400 }
    401 
    402 /*
    403  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
    404  * are read as 1, they won't clear when written back.
    405  */
    406 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
    407 {
    408 	u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
    409 
    410 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
    411 	return hprt0;
    412 }
    413 
    414 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
    415 {
    416 	return pipe->ep_num;
    417 }
    418 
    419 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
    420 {
    421 	return pipe->pipe_type;
    422 }
    423 
    424 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
    425 {
    426 	return pipe->mps;
    427 }
    428 
    429 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
    430 {
    431 	return pipe->dev_addr;
    432 }
    433 
    434 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
    435 {
    436 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
    437 }
    438 
    439 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
    440 {
    441 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
    442 }
    443 
    444 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
    445 {
    446 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
    447 }
    448 
    449 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
    450 {
    451 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
    452 }
    453 
    454 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
    455 {
    456 	return pipe->pipe_dir == USB_DIR_IN;
    457 }
    458 
    459 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
    460 {
    461 	return !dwc2_hcd_is_pipe_in(pipe);
    462 }
    463 
    464 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
    465 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
    466 
    467 /* Transaction Execution Functions */
    468 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
    469 						struct dwc2_hsotg *hsotg);
    470 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
    471 					enum dwc2_transaction_type tr_type);
    472 
    473 /* Schedule Queue Functions */
    474 /* Implemented in hcd_queue.c */
    475 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
    476 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
    477 					  struct dwc2_hcd_urb *urb,
    478 					  gfp_t mem_flags);
    479 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    480 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    481 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    482 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    483 				   int sched_csplit);
    484 
    485 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
    486 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    487 			    struct dwc2_qh *qh);
    488 
    489 /* Removes and frees a QTD */
    490 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
    491 					 struct dwc2_qtd *qtd,
    492 					 struct dwc2_qh *qh);
    493 
    494 /* Descriptor DMA support functions */
    495 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
    496 				     struct dwc2_qh *qh);
    497 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
    498 					struct dwc2_host_chan *chan, int chnum,
    499 					enum dwc2_halt_status halt_status);
    500 
    501 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    502 				 gfp_t mem_flags);
    503 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    504 
    505 /* Check if QH is non-periodic */
    506 #define dwc2_qh_is_non_per(_qh_ptr_) \
    507 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
    508 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
    509 
    510 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
    511 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
    512 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
    513 static inline bool dbg_perio(void) { return true; }
    514 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
    515 static inline bool dbg_hc(struct dwc2_host_chan *hc)
    516 {
    517 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
    518 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
    519 }
    520 
    521 static inline bool dbg_qh(struct dwc2_qh *qh)
    522 {
    523 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
    524 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
    525 }
    526 
    527 
    528 static inline bool dbg_perio(void) { return false; }
    529 #endif
    530 
    531 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
    532 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
    533 
    534 /* Packet size for any kind of endpoint descriptor */
    535 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
    536 
    537 /*
    538  * Returns true if frame1 is less than or equal to frame2. The comparison is
    539  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
    540  * frame number when the max frame number is reached.
    541  */
    542 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
    543 {
    544 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
    545 }
    546 
    547 /*
    548  * Returns true if frame1 is greater than frame2. The comparison is done
    549  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
    550  * number when the max frame number is reached.
    551  */
    552 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
    553 {
    554 	return (frame1 != frame2) &&
    555 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
    556 }
    557 
    558 /*
    559  * Increments frame by the amount specified by inc. The addition is done
    560  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
    561  */
    562 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
    563 {
    564 	return (frame + inc) & HFNUM_MAX_FRNUM;
    565 }
    566 
    567 static inline u16 dwc2_full_frame_num(u16 frame)
    568 {
    569 	return (frame & HFNUM_MAX_FRNUM) >> 3;
    570 }
    571 
    572 static inline u16 dwc2_micro_frame_num(u16 frame)
    573 {
    574 	return frame & 0x7;
    575 }
    576 
    577 /*
    578  * Returns the Core Interrupt Status register contents, ANDed with the Core
    579  * Interrupt Mask register contents
    580  */
    581 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
    582 {
    583 	return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
    584 }
    585 
    586 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
    587 {
    588 	return dwc2_urb->status;
    589 }
    590 
    591 static inline u32 dwc2_hcd_urb_get_actual_length(
    592 		struct dwc2_hcd_urb *dwc2_urb)
    593 {
    594 	return dwc2_urb->actual_length;
    595 }
    596 
    597 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
    598 {
    599 	return dwc2_urb->error_count;
    600 }
    601 
    602 static inline void dwc2_hcd_urb_set_iso_desc_params(
    603 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
    604 		u32 length)
    605 {
    606 	dwc2_urb->iso_descs[desc_num].offset = offset;
    607 	dwc2_urb->iso_descs[desc_num].length = length;
    608 }
    609 
    610 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
    611 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    612 {
    613 	return dwc2_urb->iso_descs[desc_num].status;
    614 }
    615 
    616 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
    617 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    618 {
    619 	return dwc2_urb->iso_descs[desc_num].actual_length;
    620 }
    621 
    622 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
    623 						  usbd_xfer_handle xfer)
    624 {
    625 	struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
    626 	struct dwc2_qh *qh = dpipe->priv;
    627 
    628 	if (qh && !list_empty(&qh->qh_list_entry))
    629 		return 1;
    630 
    631 	return 0;
    632 }
    633 
    634 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
    635 					    struct dwc2_pipe *dpipe)
    636 {
    637 	struct dwc2_qh *qh = dpipe->priv;
    638 
    639 	if (!qh) {
    640 		WARN_ON(1);
    641 		return 0;
    642 	}
    643 
    644 	return qh->usecs;
    645 }
    646 
    647 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
    648 				      struct dwc2_host_chan *chan, int chnum,
    649 				      struct dwc2_qtd *qtd);
    650 
    651 /* HCD Core API */
    652 
    653 /**
    654  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
    655  *
    656  * @hsotg: The DWC2 HCD
    657  *
    658  * Returns IRQ_HANDLED if interrupt is handled
    659  * Return IRQ_NONE if interrupt is not handled
    660  */
    661 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
    662 
    663 /**
    664  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
    665  *
    666  * @hsotg: The DWC2 HCD
    667  */
    668 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
    669 
    670 /**
    671  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
    672  * and 0 otherwise
    673  *
    674  * @hsotg: The DWC2 HCD
    675  */
    676 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
    677 
    678 /**
    679  * dwc2_hcd_dump_state() - Dumps hsotg state
    680  *
    681  * @hsotg: The DWC2 HCD
    682  *
    683  * NOTE: This function will be removed once the peripheral controller code
    684  * is integrated and the driver is stable
    685  */
    686 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
    687 
    688 /**
    689  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
    690  *
    691  * @hsotg: The DWC2 HCD
    692  *
    693  * This can be used to determine average interrupt latency. Frame remaining is
    694  * also shown for start transfer and two additional sample points.
    695  *
    696  * NOTE: This function will be removed once the peripheral controller code
    697  * is integrated and the driver is stable
    698  */
    699 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
    700 
    701 /* URB interface */
    702 
    703 /* Transfer flags */
    704 #define URB_GIVEBACK_ASAP	0x1
    705 #define URB_SEND_ZERO_PACKET	0x2
    706 
    707 /* Host driver callbacks */
    708 
    709 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
    710 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
    711 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
    712 			       int *hub_addr, int *hub_port);
    713 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
    714 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    715 			       int status);
    716 
    717 #ifdef DEBUG
    718 /*
    719  * Macro to sample the remaining PHY clocks left in the current frame. This
    720  * may be used during debugging to determine the average time it takes to
    721  * execute sections of code. There are two possible sample points, "a" and
    722  * "b", so the _letter_ argument must be one of these values.
    723  *
    724  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
    725  * example, "cat /sys/devices/lm0/hcd_frrem".
    726  */
    727 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
    728 do {									\
    729 	struct hfnum_data _hfnum_;					\
    730 	struct dwc2_qtd *_qtd_;						\
    731 									\
    732 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
    733 			   qtd_list_entry);				\
    734 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
    735 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
    736 		_hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM);		\
    737 		switch (_hfnum_.b.frnum & 0x7) {			\
    738 		case 7:							\
    739 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
    740 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
    741 				_hfnum_.b.frrem;			\
    742 			break;						\
    743 		case 0:							\
    744 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
    745 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
    746 				_hfnum_.b.frrem;			\
    747 			break;						\
    748 		default:						\
    749 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
    750 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
    751 				_hfnum_.b.frrem;			\
    752 			break;						\
    753 		}							\
    754 	}								\
    755 } while (0)
    756 #else
    757 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
    758 #endif
    759 
    760 
    761 void dwc2_wakeup_detected(void *);
    762 
    763 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
    764 void dwc2_hcd_reinit(struct dwc2_hsotg *);
    765 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
    766 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
    767 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
    768 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
    769 				struct dwc2_qtd *qtd);
    770 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
    771 			       u8 ,u8, u8, u8, u16);
    772 
    773 void dwc2_conn_id_status_change(struct work *);
    774 void dwc2_hcd_start_func(struct work *);
    775 void dwc2_hcd_reset_func(struct work *);
    776 
    777 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
    778 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
    779 
    780 int _dwc2_hcd_start(struct dwc2_hsotg *);
    781 
    782 int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
    783 
    784 #endif /* __DWC2_HCD_H__ */
    785