dwc2_hcd.h revision 1.14 1 /* $NetBSD: dwc2_hcd.h,v 1.14 2016/04/23 10:15:30 skrll Exp $ */
2
3 /*
4 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 *
6 * Copyright (C) 2004-2013 Synopsys, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The names of the above-listed copyright holders may not be used
18 * to endorse or promote products derived from this software without
19 * specific prior written permission.
20 *
21 * ALTERNATIVELY, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") as published by the Free Software
23 * Foundation; either version 2 of the License, or (at your option) any
24 * later version.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40
41 /*
42 * This file contains the structures, constants, and interfaces for the
43 * Host Contoller Driver (HCD)
44 *
45 * The Host Controller Driver (HCD) is responsible for translating requests
46 * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 * It isolates the USBD from the specifics of the controller by providing an
48 * API to the USBD.
49 */
50
51 struct dwc2_qh;
52
53 /**
54 * struct dwc2_host_chan - Software host channel descriptor
55 *
56 * @hc_num: Host channel number, used for register address lookup
57 * @dev_addr: Address of the device
58 * @ep_num: Endpoint of the device
59 * @ep_is_in: Endpoint direction
60 * @speed: Device speed. One of the following values:
61 * - USB_SPEED_LOW
62 * - USB_SPEED_FULL
63 * - USB_SPEED_HIGH
64 * @ep_type: Endpoint type. One of the following values:
65 * - USB_ENDPOINT_XFER_CONTROL: 0
66 * - USB_ENDPOINT_XFER_ISOC: 1
67 * - USB_ENDPOINT_XFER_BULK: 2
68 * - USB_ENDPOINT_XFER_INTR: 3
69 * @max_packet: Max packet size in bytes
70 * @data_pid_start: PID for initial transaction.
71 * 0: DATA0
72 * 1: DATA2
73 * 2: DATA1
74 * 3: MDATA (non-Control EP),
75 * SETUP (Control EP)
76 * @multi_count: Number of additional periodic transactions per
77 * (micro)frame
78 * @xfer_buf: Pointer to current transfer buffer position
79 * @xfer_dma: DMA address of xfer_buf
80 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 * DWORD aligned
82 * @xfer_len: Total number of bytes to transfer
83 * @xfer_count: Number of bytes transferred so far
84 * @start_pkt_count: Packet count at start of transfer
85 * @xfer_started: True if the transfer has been started
86 * @ping: True if a PING request should be issued on this channel
87 * @error_state: True if the error count for this transaction is non-zero
88 * @halt_on_queue: True if this channel should be halted the next time a
89 * request is queued for the channel. This is necessary in
90 * slave mode if no request queue space is available when
91 * an attempt is made to halt the channel.
92 * @halt_pending: True if the host channel has been halted, but the core
93 * is not finished flushing queued requests
94 * @do_split: Enable split for the channel
95 * @complete_split: Enable complete split
96 * @hub_addr: Address of high speed hub for the split
97 * @hub_port: Port of the low/full speed device for the split
98 * @xact_pos: Split transaction position. One of the following values:
99 * - DWC2_HCSPLT_XACTPOS_MID
100 * - DWC2_HCSPLT_XACTPOS_BEGIN
101 * - DWC2_HCSPLT_XACTPOS_END
102 * - DWC2_HCSPLT_XACTPOS_ALL
103 * @requests: Number of requests issued for this channel since it was
104 * assigned to the current transfer (not counting PINGs)
105 * @schinfo: Scheduling micro-frame bitmap
106 * @ntd: Number of transfer descriptors for the transfer
107 * @halt_status: Reason for halting the host channel
108 * @hcint Contents of the HCINT register when the interrupt came
109 * @qh: QH for the transfer being processed by this channel
110 * @hc_list_entry: For linking to list of host channels
111 * @desc_list_addr: Current QH's descriptor list DMA address
112 * @desc_list_sz: Current QH's descriptor list size
113 *
114 * This structure represents the state of a single host channel when acting in
115 * host mode. It contains the data items needed to transfer packets to an
116 * endpoint via a host channel.
117 */
118 struct dwc2_host_chan {
119 u8 hc_num;
120
121 unsigned dev_addr:7;
122 unsigned ep_num:4;
123 unsigned ep_is_in:1;
124 unsigned speed:4;
125 unsigned ep_type:2;
126 unsigned max_packet:11;
127 unsigned data_pid_start:2;
128 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
129 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
130 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
131 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
132 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
133
134 unsigned multi_count:2;
135
136 usb_dma_t *xfer_usbdma;
137 u8 *xfer_buf;
138 dma_addr_t xfer_dma;
139 dma_addr_t align_buf;
140 u32 xfer_len;
141 u32 xfer_count;
142 u16 start_pkt_count;
143 u8 xfer_started;
144 u8 do_ping;
145 u8 error_state;
146 u8 halt_on_queue;
147 u8 halt_pending;
148 u8 do_split;
149 u8 complete_split;
150 u8 hub_addr;
151 u8 hub_port;
152 u8 xact_pos;
153 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
154 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
155 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
156 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
157
158 u8 requests;
159 u8 schinfo;
160 u16 ntd;
161 enum dwc2_halt_status halt_status;
162 u32 hcint;
163 struct dwc2_qh *qh;
164 struct list_head hc_list_entry;
165 usb_dma_t desc_list_usbdma;
166 dma_addr_t desc_list_addr;
167 u32 desc_list_sz;
168 };
169
170 struct dwc2_hcd_pipe_info {
171 u8 dev_addr;
172 u8 ep_num;
173 u8 pipe_type;
174 u8 pipe_dir;
175 u16 mps;
176 };
177
178 struct dwc2_hcd_iso_packet_desc {
179 u32 offset;
180 u32 length;
181 u32 actual_length;
182 u32 status;
183 };
184
185 struct dwc2_qtd;
186
187 struct dwc2_hcd_urb {
188 void *priv; /* the xfer handle */
189 struct dwc2_qtd *qtd;
190 usb_dma_t *usbdma;
191 u8 *buf;
192 dma_addr_t dma;
193 usb_dma_t *setup_usbdma;
194 void *setup_packet;
195 dma_addr_t setup_dma;
196 u32 length;
197 u32 actual_length;
198 u32 status;
199 u32 error_count;
200 u32 packet_count;
201 u32 flags;
202 u16 interval;
203 struct dwc2_hcd_pipe_info pipe_info;
204 struct dwc2_hcd_iso_packet_desc iso_descs[0];
205 };
206
207 /* Phases for control transfers */
208 enum dwc2_control_phase {
209 DWC2_CONTROL_SETUP,
210 DWC2_CONTROL_DATA,
211 DWC2_CONTROL_STATUS,
212 };
213
214 /* Transaction types */
215 enum dwc2_transaction_type {
216 DWC2_TRANSACTION_NONE,
217 DWC2_TRANSACTION_PERIODIC,
218 DWC2_TRANSACTION_NON_PERIODIC,
219 DWC2_TRANSACTION_ALL,
220 };
221
222 /**
223 * struct dwc2_qh - Software queue head structure
224 *
225 * @ep_type: Endpoint type. One of the following values:
226 * - USB_ENDPOINT_XFER_CONTROL
227 * - USB_ENDPOINT_XFER_BULK
228 * - USB_ENDPOINT_XFER_INT
229 * - USB_ENDPOINT_XFER_ISOC
230 * @ep_is_in: Endpoint direction
231 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
232 * @dev_speed: Device speed. One of the following values:
233 * - USB_SPEED_LOW
234 * - USB_SPEED_FULL
235 * - USB_SPEED_HIGH
236 * @data_toggle: Determines the PID of the next data packet for
237 * non-controltransfers. Ignored for control transfers.
238 * One of the following values:
239 * - DWC2_HC_PID_DATA0
240 * - DWC2_HC_PID_DATA1
241 * @ping_state: Ping state
242 * @do_split: Full/low speed endpoint on high-speed hub requires split
243 * @td_first: Index of first activated isochronous transfer descriptor
244 * @td_last: Index of last activated isochronous transfer descriptor
245 * @usecs: Bandwidth in microseconds per (micro)frame
246 * @interval: Interval between transfers in (micro)frames
247 * @sched_frame: (Micro)frame to initialize a periodic transfer.
248 * The transfer executes in the following (micro)frame.
249 * @nak_frame: Internal variable used by the NAK holdoff code
250 * @frame_usecs: Internal variable used by the microframe scheduler
251 * @start_split_frame: (Micro)frame at which last start split was initialized
252 * @ntd: Actual number of transfer descriptors in a list
253 * @dw_align_buf: Used instead of original buffer if its physical address
254 * is not dword-aligned
255 * @dw_align_buf_size: Size of dw_align_buf
256 * @dw_align_buf_dma: DMA address for dw_align_buf
257 * @qtd_list: List of QTDs for this QH
258 * @channel: Host channel currently processing transfers for this QH
259 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
260 * schedule
261 * @desc_list: List of transfer descriptors
262 * @desc_list_dma: Physical address of desc_list
263 * @desc_list_sz: Size of descriptors list
264 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
265 * descriptor and indicates original XferSize value for the
266 * descriptor
267 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
268 *
269 * A Queue Head (QH) holds the static characteristics of an endpoint and
270 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
271 * be entered in either the non-periodic or periodic schedule.
272 */
273 struct dwc2_qh {
274 u8 ep_type;
275 u8 ep_is_in;
276 u16 maxp;
277 u8 dev_speed;
278 u8 data_toggle;
279 u8 ping_state;
280 u8 do_split;
281 u8 td_first;
282 u8 td_last;
283 u16 usecs;
284 u16 interval;
285 u16 sched_frame;
286 u16 nak_frame;
287 u16 frame_usecs[8];
288 u16 start_split_frame;
289 u16 ntd;
290 usb_dma_t dw_align_buf_usbdma;
291 u8 *dw_align_buf;
292 int dw_align_buf_size;
293 dma_addr_t dw_align_buf_dma;
294 struct list_head qtd_list;
295 struct dwc2_host_chan *channel;
296 struct list_head qh_list_entry;
297 usb_dma_t desc_list_usbdma;
298 struct dwc2_hcd_dma_desc *desc_list;
299 dma_addr_t desc_list_dma;
300 u32 desc_list_sz;
301 u32 *n_bytes;
302 unsigned tt_buffer_dirty:1;
303 };
304
305 /**
306 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
307 *
308 * @control_phase: Current phase for control transfers (Setup, Data, or
309 * Status)
310 * @in_process: Indicates if this QTD is currently processed by HW
311 * @data_toggle: Determines the PID of the next data packet for the
312 * data phase of control transfers. Ignored for other
313 * transfer types. One of the following values:
314 * - DWC2_HC_PID_DATA0
315 * - DWC2_HC_PID_DATA1
316 * @complete_split: Keeps track of the current split type for FS/LS
317 * endpoints on a HS Hub
318 * @isoc_split_pos: Position of the ISOC split in full/low speed
319 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
320 * transfer. A frame descriptor describes the buffer
321 * position and length of the data to be transferred in the
322 * next scheduled (micro)frame of an isochronous transfer.
323 * It also holds status for that transaction. The frame
324 * index starts at 0.
325 * @isoc_split_offset: Position of the ISOC split in the buffer for the
326 * current frame
327 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
328 * @error_count: Holds the number of bus errors that have occurred for
329 * a transaction within this transfer
330 * @n_desc: Number of DMA descriptors for this QTD
331 * @isoc_frame_index_last: Last activated frame (packet) index, used in
332 * descriptor DMA mode only
333 * @urb: URB for this transfer
334 * @qh: Queue head for this QTD
335 * @qtd_list_entry: For linking to the QH's list of QTDs
336 *
337 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
338 * interrupt, or isochronous transfer. A single QTD is created for each URB
339 * (of one of these types) submitted to the HCD. The transfer associated with
340 * a QTD may require one or multiple transactions.
341 *
342 * A QTD is linked to a Queue Head, which is entered in either the
343 * non-periodic or periodic schedule for execution. When a QTD is chosen for
344 * execution, some or all of its transactions may be executed. After
345 * execution, the state of the QTD is updated. The QTD may be retired if all
346 * its transactions are complete or if an error occurred. Otherwise, it
347 * remains in the schedule so more transactions can be executed later.
348 */
349 struct dwc2_qtd {
350 enum dwc2_control_phase control_phase;
351 u8 in_process;
352 u8 data_toggle;
353 u8 complete_split;
354 u8 isoc_split_pos;
355 u16 isoc_frame_index;
356 u16 isoc_split_offset;
357 u16 isoc_td_last;
358 u16 isoc_td_first;
359 u32 ssplit_out_xfer_count;
360 u8 error_count;
361 u8 n_desc;
362 u16 isoc_frame_index_last;
363 struct dwc2_hcd_urb *urb;
364 struct dwc2_qh *qh;
365 struct list_head qtd_list_entry;
366 };
367
368 #ifdef DEBUG
369 struct hc_xfer_info {
370 struct dwc2_hsotg *hsotg;
371 struct dwc2_host_chan *chan;
372 };
373 #endif
374
375 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
376 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
377 {
378 return (struct usb_hcd *)hsotg->priv;
379 }
380
381 /*
382 * Inline used to disable one channel interrupt. Channel interrupts are
383 * disabled when the channel is halted or released by the interrupt handler.
384 * There is no need to handle further interrupts of that type until the
385 * channel is re-assigned. In fact, subsequent handling may cause crashes
386 * because the channel structures are cleaned up when the channel is released.
387 */
388 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
389 {
390 u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
391
392 mask &= ~intr;
393 DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
394 }
395
396 /*
397 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
398 * are read as 1, they won't clear when written back.
399 */
400 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
401 {
402 u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
403
404 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
405 return hprt0;
406 }
407
408 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
409 {
410 return pipe->ep_num;
411 }
412
413 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
414 {
415 return pipe->pipe_type;
416 }
417
418 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
419 {
420 return pipe->mps;
421 }
422
423 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
424 {
425 return pipe->dev_addr;
426 }
427
428 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
429 {
430 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
431 }
432
433 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
434 {
435 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
436 }
437
438 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
439 {
440 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
441 }
442
443 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
444 {
445 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
446 }
447
448 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
449 {
450 return pipe->pipe_dir == USB_DIR_IN;
451 }
452
453 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
454 {
455 return !dwc2_hcd_is_pipe_in(pipe);
456 }
457
458 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
459 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
460
461 /* Transaction Execution Functions */
462 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
463 struct dwc2_hsotg *hsotg);
464 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
465 enum dwc2_transaction_type tr_type);
466
467 /* Schedule Queue Functions */
468 /* Implemented in hcd_queue.c */
469 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
470 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
471 struct dwc2_hcd_urb *urb,
472 gfp_t mem_flags);
473 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
474 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
475 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
476 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
477 int sched_csplit);
478
479 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
480 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
481 struct dwc2_qh *qh);
482
483 /* Removes and frees a QTD */
484 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
485 struct dwc2_qtd *qtd,
486 struct dwc2_qh *qh);
487
488 /* Descriptor DMA support functions */
489 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
490 struct dwc2_qh *qh);
491 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
492 struct dwc2_host_chan *chan, int chnum,
493 enum dwc2_halt_status halt_status);
494
495 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
496 gfp_t mem_flags);
497 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
498
499 /* Check if QH is non-periodic */
500 #define dwc2_qh_is_non_per(_qh_ptr_) \
501 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
502 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
503
504 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
505 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
506 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
507 static inline bool dbg_perio(void) { return true; }
508 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
509 static inline bool dbg_hc(struct dwc2_host_chan *hc)
510 {
511 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
512 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
513 }
514
515 static inline bool dbg_qh(struct dwc2_qh *qh)
516 {
517 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
518 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
519 }
520
521
522 static inline bool dbg_perio(void) { return false; }
523 #endif
524
525 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
526 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
527
528 /* Packet size for any kind of endpoint descriptor */
529 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
530
531 /*
532 * Returns true if frame1 index is greater than frame2 index. The comparison
533 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
534 * frame number when the max index frame number is reached.
535 */
536 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
537 {
538 u16 diff = fr_idx1 - fr_idx2;
539 u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
540
541 return diff && !sign;
542 }
543
544 /*
545 * Returns true if frame1 is less than or equal to frame2. The comparison is
546 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
547 * frame number when the max frame number is reached.
548 */
549 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
550 {
551 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
552 }
553
554 /*
555 * Returns true if frame1 is greater than frame2. The comparison is done
556 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
557 * number when the max frame number is reached.
558 */
559 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
560 {
561 return (frame1 != frame2) &&
562 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
563 }
564
565 /*
566 * Increments frame by the amount specified by inc. The addition is done
567 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
568 */
569 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
570 {
571 return (frame + inc) & HFNUM_MAX_FRNUM;
572 }
573
574 static inline u16 dwc2_full_frame_num(u16 frame)
575 {
576 return (frame & HFNUM_MAX_FRNUM) >> 3;
577 }
578
579 static inline u16 dwc2_micro_frame_num(u16 frame)
580 {
581 return frame & 0x7;
582 }
583
584 /*
585 * Returns the Core Interrupt Status register contents, ANDed with the Core
586 * Interrupt Mask register contents
587 */
588 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
589 {
590 return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
591 }
592
593 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
594 {
595 return dwc2_urb->status;
596 }
597
598 static inline u32 dwc2_hcd_urb_get_actual_length(
599 struct dwc2_hcd_urb *dwc2_urb)
600 {
601 return dwc2_urb->actual_length;
602 }
603
604 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
605 {
606 return dwc2_urb->error_count;
607 }
608
609 static inline void dwc2_hcd_urb_set_iso_desc_params(
610 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
611 u32 length)
612 {
613 dwc2_urb->iso_descs[desc_num].offset = offset;
614 dwc2_urb->iso_descs[desc_num].length = length;
615 }
616
617 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
618 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
619 {
620 return dwc2_urb->iso_descs[desc_num].status;
621 }
622
623 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
624 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
625 {
626 return dwc2_urb->iso_descs[desc_num].actual_length;
627 }
628
629 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
630 struct usbd_xfer *xfer)
631 {
632 struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
633 struct dwc2_qh *qh = dpipe->priv;
634
635 if (qh && !list_empty(&qh->qh_list_entry))
636 return 1;
637
638 return 0;
639 }
640
641 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
642 struct dwc2_pipe *dpipe)
643 {
644 struct dwc2_qh *qh = dpipe->priv;
645
646 if (!qh) {
647 WARN_ON(1);
648 return 0;
649 }
650
651 return qh->usecs;
652 }
653
654 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
655 struct dwc2_host_chan *chan, int chnum,
656 struct dwc2_qtd *qtd);
657
658 /* HCD Core API */
659
660 /**
661 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
662 *
663 * @hsotg: The DWC2 HCD
664 *
665 * Returns IRQ_HANDLED if interrupt is handled
666 * Return IRQ_NONE if interrupt is not handled
667 */
668 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
669
670 /**
671 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
672 *
673 * @hsotg: The DWC2 HCD
674 */
675 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
676
677 /**
678 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
679 * and 0 otherwise
680 *
681 * @hsotg: The DWC2 HCD
682 */
683 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
684
685 /**
686 * dwc2_hcd_dump_state() - Dumps hsotg state
687 *
688 * @hsotg: The DWC2 HCD
689 *
690 * NOTE: This function will be removed once the peripheral controller code
691 * is integrated and the driver is stable
692 */
693 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
694
695 /**
696 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
697 *
698 * @hsotg: The DWC2 HCD
699 *
700 * This can be used to determine average interrupt latency. Frame remaining is
701 * also shown for start transfer and two additional sample points.
702 *
703 * NOTE: This function will be removed once the peripheral controller code
704 * is integrated and the driver is stable
705 */
706 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
707
708 /* URB interface */
709
710 /* Transfer flags */
711 #define URB_GIVEBACK_ASAP 0x1
712 #define URB_SEND_ZERO_PACKET 0x2
713
714 /* Host driver callbacks */
715
716 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
717 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
718 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
719 int *hub_addr, int *hub_port);
720 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
721 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
722 int status);
723
724 #ifdef DEBUG
725 /*
726 * Macro to sample the remaining PHY clocks left in the current frame. This
727 * may be used during debugging to determine the average time it takes to
728 * execute sections of code. There are two possible sample points, "a" and
729 * "b", so the _letter_ argument must be one of these values.
730 *
731 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
732 * example, "cat /sys/devices/lm0/hcd_frrem".
733 */
734 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
735 do { \
736 struct hfnum_data _hfnum_; \
737 struct dwc2_qtd *_qtd_; \
738 \
739 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
740 qtd_list_entry); \
741 if (usb_pipeint(_qtd_->urb->pipe) && \
742 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
743 _hfnum_.d32 = DWC2_READ_4((_hcd_), HFNUM); \
744 switch (_hfnum_.b.frnum & 0x7) { \
745 case 7: \
746 (_hcd_)->hfnum_7_samples_##_letter_++; \
747 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
748 _hfnum_.b.frrem; \
749 break; \
750 case 0: \
751 (_hcd_)->hfnum_0_samples_##_letter_++; \
752 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
753 _hfnum_.b.frrem; \
754 break; \
755 default: \
756 (_hcd_)->hfnum_other_samples_##_letter_++; \
757 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
758 _hfnum_.b.frrem; \
759 break; \
760 } \
761 } \
762 } while (0)
763 #else
764 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
765 #endif
766
767
768 void dwc2_wakeup_detected(void *);
769
770 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
771 void dwc2_hcd_reinit(struct dwc2_hsotg *);
772 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
773 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
774 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
775 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
776 struct dwc2_qtd *qtd);
777 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
778 u8 ,u8, u8, u8, u16);
779
780 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
781 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
782
783 int _dwc2_hcd_start(struct dwc2_hsotg *);
784
785 int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
786
787 #endif /* __DWC2_HCD_H__ */
788