dwc2_hcd.h revision 1.2 1 /* $NetBSD: dwc2_hcd.h,v 1.2 2013/09/05 20:25:27 skrll Exp $ */
2
3 /*
4 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 *
6 * Copyright (C) 2004-2013 Synopsys, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The names of the above-listed copyright holders may not be used
18 * to endorse or promote products derived from this software without
19 * specific prior written permission.
20 *
21 * ALTERNATIVELY, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") as published by the Free Software
23 * Foundation; either version 2 of the License, or (at your option) any
24 * later version.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40
41 /*
42 * This file contains the structures, constants, and interfaces for the
43 * Host Contoller Driver (HCD)
44 *
45 * The Host Controller Driver (HCD) is responsible for translating requests
46 * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 * It isolates the USBD from the specifics of the controller by providing an
48 * API to the USBD.
49 */
50
51 struct dwc2_qh;
52
53 /**
54 * struct dwc2_host_chan - Software host channel descriptor
55 *
56 * @hc_num: Host channel number, used for register address lookup
57 * @dev_addr: Address of the device
58 * @ep_num: Endpoint of the device
59 * @ep_is_in: Endpoint direction
60 * @speed: Device speed. One of the following values:
61 * - USB_SPEED_LOW
62 * - USB_SPEED_FULL
63 * - USB_SPEED_HIGH
64 * @ep_type: Endpoint type. One of the following values:
65 * - USB_ENDPOINT_XFER_CONTROL: 0
66 * - USB_ENDPOINT_XFER_ISOC: 1
67 * - USB_ENDPOINT_XFER_BULK: 2
68 * - USB_ENDPOINT_XFER_INTR: 3
69 * @max_packet: Max packet size in bytes
70 * @data_pid_start: PID for initial transaction.
71 * 0: DATA0
72 * 1: DATA2
73 * 2: DATA1
74 * 3: MDATA (non-Control EP),
75 * SETUP (Control EP)
76 * @multi_count: Number of additional periodic transactions per
77 * (micro)frame
78 * @xfer_buf: Pointer to current transfer buffer position
79 * @xfer_dma: DMA address of xfer_buf
80 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 * DWORD aligned
82 * @xfer_len: Total number of bytes to transfer
83 * @xfer_count: Number of bytes transferred so far
84 * @start_pkt_count: Packet count at start of transfer
85 * @xfer_started: True if the transfer has been started
86 * @ping: True if a PING request should be issued on this channel
87 * @error_state: True if the error count for this transaction is non-zero
88 * @halt_on_queue: True if this channel should be halted the next time a
89 * request is queued for the channel. This is necessary in
90 * slave mode if no request queue space is available when
91 * an attempt is made to halt the channel.
92 * @halt_pending: True if the host channel has been halted, but the core
93 * is not finished flushing queued requests
94 * @do_split: Enable split for the channel
95 * @complete_split: Enable complete split
96 * @hub_addr: Address of high speed hub for the split
97 * @hub_port: Port of the low/full speed device for the split
98 * @xact_pos: Split transaction position. One of the following values:
99 * - DWC2_HCSPLT_XACTPOS_MID
100 * - DWC2_HCSPLT_XACTPOS_BEGIN
101 * - DWC2_HCSPLT_XACTPOS_END
102 * - DWC2_HCSPLT_XACTPOS_ALL
103 * @requests: Number of requests issued for this channel since it was
104 * assigned to the current transfer (not counting PINGs)
105 * @schinfo: Scheduling micro-frame bitmap
106 * @ntd: Number of transfer descriptors for the transfer
107 * @halt_status: Reason for halting the host channel
108 * @hcint Contents of the HCINT register when the interrupt came
109 * @qh: QH for the transfer being processed by this channel
110 * @hc_list_entry: For linking to list of host channels
111 * @desc_list_addr: Current QH's descriptor list DMA address
112 *
113 * This structure represents the state of a single host channel when acting in
114 * host mode. It contains the data items needed to transfer packets to an
115 * endpoint via a host channel.
116 */
117 struct dwc2_host_chan {
118 u8 hc_num;
119
120 unsigned dev_addr:7;
121 unsigned ep_num:4;
122 unsigned ep_is_in:1;
123 unsigned speed:4;
124 unsigned ep_type:2;
125 unsigned max_packet:11;
126 unsigned data_pid_start:2;
127 #define DWC2_HC_PID_DATA0 (TSIZ_SC_MC_PID_DATA0 >> TSIZ_SC_MC_PID_SHIFT)
128 #define DWC2_HC_PID_DATA2 (TSIZ_SC_MC_PID_DATA2 >> TSIZ_SC_MC_PID_SHIFT)
129 #define DWC2_HC_PID_DATA1 (TSIZ_SC_MC_PID_DATA1 >> TSIZ_SC_MC_PID_SHIFT)
130 #define DWC2_HC_PID_MDATA (TSIZ_SC_MC_PID_MDATA >> TSIZ_SC_MC_PID_SHIFT)
131 #define DWC2_HC_PID_SETUP (TSIZ_SC_MC_PID_SETUP >> TSIZ_SC_MC_PID_SHIFT)
132
133 unsigned multi_count:2;
134
135 usb_dma_t *xfer_usbdma;
136 u8 *xfer_buf;
137 dma_addr_t xfer_dma;
138 dma_addr_t align_buf;
139 u32 xfer_len;
140 u32 xfer_count;
141 u16 start_pkt_count;
142 u8 xfer_started;
143 u8 do_ping;
144 u8 error_state;
145 u8 halt_on_queue;
146 u8 halt_pending;
147 u8 do_split;
148 u8 complete_split;
149 u8 hub_addr;
150 u8 hub_port;
151 u8 xact_pos;
152 #define DWC2_HCSPLT_XACTPOS_MID (HCSPLT_XACTPOS_MID >> HCSPLT_XACTPOS_SHIFT)
153 #define DWC2_HCSPLT_XACTPOS_END (HCSPLT_XACTPOS_END >> HCSPLT_XACTPOS_SHIFT)
154 #define DWC2_HCSPLT_XACTPOS_BEGIN (HCSPLT_XACTPOS_BEGIN >> HCSPLT_XACTPOS_SHIFT)
155 #define DWC2_HCSPLT_XACTPOS_ALL (HCSPLT_XACTPOS_ALL >> HCSPLT_XACTPOS_SHIFT)
156
157 u8 requests;
158 u8 schinfo;
159 u16 ntd;
160 enum dwc2_halt_status halt_status;
161 u32 hcint;
162 struct dwc2_qh *qh;
163 struct list_head hc_list_entry;
164 dma_addr_t desc_list_addr;
165 };
166
167 struct dwc2_hcd_pipe_info {
168 u8 dev_addr;
169 u8 ep_num;
170 u8 pipe_type;
171 u8 pipe_dir;
172 u16 mps;
173 };
174
175 struct dwc2_hcd_iso_packet_desc {
176 u32 offset;
177 u32 length;
178 u32 actual_length;
179 u32 status;
180 };
181
182 struct dwc2_qtd;
183
184 struct dwc2_hcd_urb {
185 void *priv; /* the xfer handle */
186 struct dwc2_qtd *qtd;
187 usb_dma_t *usbdma;
188 u8 *buf;
189 dma_addr_t dma;
190 usb_dma_t *setup_usbdma;
191 void *setup_packet;
192 dma_addr_t setup_dma;
193 u32 length;
194 u32 actual_length;
195 u32 status;
196 u32 error_count;
197 u32 packet_count;
198 u32 flags;
199 u16 interval;
200 struct dwc2_hcd_pipe_info pipe_info;
201 struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 };
203
204 /* Phases for control transfers */
205 enum dwc2_control_phase {
206 DWC2_CONTROL_SETUP,
207 DWC2_CONTROL_DATA,
208 DWC2_CONTROL_STATUS,
209 };
210
211 /* Transaction types */
212 enum dwc2_transaction_type {
213 DWC2_TRANSACTION_NONE,
214 DWC2_TRANSACTION_PERIODIC,
215 DWC2_TRANSACTION_NON_PERIODIC,
216 DWC2_TRANSACTION_ALL,
217 };
218
219 /**
220 * struct dwc2_qh - Software queue head structure
221 *
222 * @ep_type: Endpoint type. One of the following values:
223 * - USB_ENDPOINT_XFER_CONTROL
224 * - USB_ENDPOINT_XFER_BULK
225 * - USB_ENDPOINT_XFER_INT
226 * - USB_ENDPOINT_XFER_ISOC
227 * @ep_is_in: Endpoint direction
228 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
229 * @dev_speed: Device speed. One of the following values:
230 * - USB_SPEED_LOW
231 * - USB_SPEED_FULL
232 * - USB_SPEED_HIGH
233 * @data_toggle: Determines the PID of the next data packet for
234 * non-controltransfers. Ignored for control transfers.
235 * One of the following values:
236 * - DWC2_HC_PID_DATA0
237 * - DWC2_HC_PID_DATA1
238 * @ping_state: Ping state
239 * @do_split: Full/low speed endpoint on high-speed hub requires split
240 * @td_first: Index of first activated isochronous transfer descriptor
241 * @td_last: Index of last activated isochronous transfer descriptor
242 * @usecs: Bandwidth in microseconds per (micro)frame
243 * @interval: Interval between transfers in (micro)frames
244 * @sched_frame: (Micro)frame to initialize a periodic transfer.
245 * The transfer executes in the following (micro)frame.
246 * @nak_frame: Internal variable used by the NAK holdoff code
247 * @frame_usecs: Internal variable used by the microframe scheduler
248 * @start_split_frame: (Micro)frame at which last start split was initialized
249 * @ntd: Actual number of transfer descriptors in a list
250 * @dw_align_buf: Used instead of original buffer if its physical address
251 * is not dword-aligned
252 * @dw_align_buf_dma: DMA address for align_buf
253 * @qtd_list: List of QTDs for this QH
254 * @channel: Host channel currently processing transfers for this QH
255 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
256 * schedule
257 * @desc_list: List of transfer descriptors
258 * @desc_list_dma: Physical address of desc_list
259 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
260 * descriptor and indicates original XferSize value for the
261 * descriptor
262 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
263 *
264 * A Queue Head (QH) holds the static characteristics of an endpoint and
265 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
266 * be entered in either the non-periodic or periodic schedule.
267 */
268 struct dwc2_qh {
269 u8 ep_type;
270 u8 ep_is_in;
271 u16 maxp;
272 u8 dev_speed;
273 u8 data_toggle;
274 u8 ping_state;
275 u8 do_split;
276 u8 td_first;
277 u8 td_last;
278 u16 usecs;
279 u16 interval;
280 u16 sched_frame;
281 u16 nak_frame;
282 u16 frame_usecs[8];
283 u16 start_split_frame;
284 u16 ntd;
285 usb_dma_t dw_align_buf_usbdma;
286 u8 *dw_align_buf;
287 dma_addr_t dw_align_buf_dma;
288 struct list_head qtd_list;
289 struct dwc2_host_chan *channel;
290 struct list_head qh_list_entry;
291 usb_dma_t desc_list_usbdma;
292 struct dwc2_hcd_dma_desc *desc_list;
293 dma_addr_t desc_list_dma;
294 u32 *n_bytes;
295 unsigned tt_buffer_dirty:1;
296 };
297
298 /**
299 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
300 *
301 * @control_phase: Current phase for control transfers (Setup, Data, or
302 * Status)
303 * @in_process: Indicates if this QTD is currently processed by HW
304 * @data_toggle: Determines the PID of the next data packet for the
305 * data phase of control transfers. Ignored for other
306 * transfer types. One of the following values:
307 * - DWC2_HC_PID_DATA0
308 * - DWC2_HC_PID_DATA1
309 * @complete_split: Keeps track of the current split type for FS/LS
310 * endpoints on a HS Hub
311 * @isoc_split_pos: Position of the ISOC split in full/low speed
312 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
313 * transfer. A frame descriptor describes the buffer
314 * position and length of the data to be transferred in the
315 * next scheduled (micro)frame of an isochronous transfer.
316 * It also holds status for that transaction. The frame
317 * index starts at 0.
318 * @isoc_split_offset: Position of the ISOC split in the buffer for the
319 * current frame
320 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
321 * @error_count: Holds the number of bus errors that have occurred for
322 * a transaction within this transfer
323 * @n_desc: Number of DMA descriptors for this QTD
324 * @isoc_frame_index_last: Last activated frame (packet) index, used in
325 * descriptor DMA mode only
326 * @urb: URB for this transfer
327 * @qh: Queue head for this QTD
328 * @qtd_list_entry: For linking to the QH's list of QTDs
329 *
330 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
331 * interrupt, or isochronous transfer. A single QTD is created for each URB
332 * (of one of these types) submitted to the HCD. The transfer associated with
333 * a QTD may require one or multiple transactions.
334 *
335 * A QTD is linked to a Queue Head, which is entered in either the
336 * non-periodic or periodic schedule for execution. When a QTD is chosen for
337 * execution, some or all of its transactions may be executed. After
338 * execution, the state of the QTD is updated. The QTD may be retired if all
339 * its transactions are complete or if an error occurred. Otherwise, it
340 * remains in the schedule so more transactions can be executed later.
341 */
342 struct dwc2_qtd {
343 enum dwc2_control_phase control_phase;
344 u8 in_process;
345 u8 data_toggle;
346 u8 complete_split;
347 u8 isoc_split_pos;
348 u16 isoc_frame_index;
349 u16 isoc_split_offset;
350 u32 ssplit_out_xfer_count;
351 u8 error_count;
352 u8 n_desc;
353 u16 isoc_frame_index_last;
354 struct dwc2_hcd_urb *urb;
355 struct dwc2_qh *qh;
356 struct list_head qtd_list_entry;
357 };
358
359 #ifdef DEBUG
360 struct hc_xfer_info {
361 struct dwc2_hsotg *hsotg;
362 struct dwc2_host_chan *chan;
363 };
364 #endif
365
366 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
367 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
368 {
369 return (struct usb_hcd *)hsotg->priv;
370 }
371
372 /*
373 * Inline used to disable one channel interrupt. Channel interrupts are
374 * disabled when the channel is halted or released by the interrupt handler.
375 * There is no need to handle further interrupts of that type until the
376 * channel is re-assigned. In fact, subsequent handling may cause crashes
377 * because the channel structures are cleaned up when the channel is released.
378 */
379 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
380 {
381 u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
382
383 mask &= ~intr;
384 DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
385 }
386
387 /*
388 * Returns the mode of operation, host or device
389 */
390 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
391 {
392 return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
393 }
394
395 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
396 {
397 return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
398 }
399
400 /*
401 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
402 * are read as 1, they won't clear when written back.
403 */
404 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
405 {
406 u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
407
408 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
409 return hprt0;
410 }
411
412 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
413 {
414 return pipe->ep_num;
415 }
416
417 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
418 {
419 return pipe->pipe_type;
420 }
421
422 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
423 {
424 return pipe->mps;
425 }
426
427 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
428 {
429 return pipe->dev_addr;
430 }
431
432 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
433 {
434 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
435 }
436
437 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
438 {
439 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
440 }
441
442 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
443 {
444 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
445 }
446
447 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
448 {
449 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
450 }
451
452 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
453 {
454 return pipe->pipe_dir == USB_DIR_IN;
455 }
456
457 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
458 {
459 return !dwc2_hcd_is_pipe_in(pipe);
460 }
461
462 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg,
463 const struct dwc2_core_params *params);
464 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
465 extern int dwc2_set_parameters(struct dwc2_hsotg *hsotg,
466 const struct dwc2_core_params *params);
467 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
468
469 /* Transaction Execution Functions */
470 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
471 struct dwc2_hsotg *hsotg);
472 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
473 enum dwc2_transaction_type tr_type);
474
475 /* Schedule Queue Functions */
476 /* Implemented in hcd_queue.c */
477 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
478 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
479 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
480 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
481 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
482 int sched_csplit);
483
484 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
485 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
486 struct dwc2_qh **qh, int mem_flags);
487
488 /* Removes and frees a QTD */
489 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
490 struct dwc2_qtd *qtd,
491 struct dwc2_qh *qh);
492
493 /* Descriptor DMA support functions */
494 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
495 struct dwc2_qh *qh);
496 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
497 struct dwc2_host_chan *chan, int chnum,
498 enum dwc2_halt_status halt_status);
499
500 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
501 gfp_t mem_flags);
502 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
503
504 /* Check if QH is non-periodic */
505 #define dwc2_qh_is_non_per(_qh_ptr_) \
506 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
507 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
508
509 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
510 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
511 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
512 static inline bool dbg_urb(struct urb *urb) { return true; }
513 static inline bool dbg_perio(void) { return true; }
514 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
515 static inline bool dbg_hc(struct dwc2_host_chan *hc)
516 {
517 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
518 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
519 }
520
521 static inline bool dbg_qh(struct dwc2_qh *qh)
522 {
523 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
524 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
525 }
526
527
528 static inline bool dbg_perio(void) { return false; }
529 #endif
530
531 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533
534 /* Packet size for any kind of endpoint descriptor */
535 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536
537 /*
538 * Returns true if frame1 is less than or equal to frame2. The comparison is
539 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540 * frame number when the max frame number is reached.
541 */
542 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543 {
544 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545 }
546
547 /*
548 * Returns true if frame1 is greater than frame2. The comparison is done
549 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550 * number when the max frame number is reached.
551 */
552 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553 {
554 return (frame1 != frame2) &&
555 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556 }
557
558 /*
559 * Increments frame by the amount specified by inc. The addition is done
560 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561 */
562 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563 {
564 return (frame + inc) & HFNUM_MAX_FRNUM;
565 }
566
567 static inline u16 dwc2_full_frame_num(u16 frame)
568 {
569 return (frame & HFNUM_MAX_FRNUM) >> 3;
570 }
571
572 static inline u16 dwc2_micro_frame_num(u16 frame)
573 {
574 return frame & 0x7;
575 }
576
577 /*
578 * Returns the Core Interrupt Status register contents, ANDed with the Core
579 * Interrupt Mask register contents
580 */
581 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582 {
583 return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
584 }
585
586 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
587 {
588 return dwc2_urb->status;
589 }
590
591 static inline u32 dwc2_hcd_urb_get_actual_length(
592 struct dwc2_hcd_urb *dwc2_urb)
593 {
594 return dwc2_urb->actual_length;
595 }
596
597 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
598 {
599 return dwc2_urb->error_count;
600 }
601
602 static inline void dwc2_hcd_urb_set_iso_desc_params(
603 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
604 u32 length)
605 {
606 dwc2_urb->iso_descs[desc_num].offset = offset;
607 dwc2_urb->iso_descs[desc_num].length = length;
608 }
609
610 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
611 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
612 {
613 return dwc2_urb->iso_descs[desc_num].status;
614 }
615
616 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
617 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
618 {
619 return dwc2_urb->iso_descs[desc_num].actual_length;
620 }
621
622 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
623 usbd_xfer_handle xfer)
624 {
625 struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
626 struct dwc2_qh *qh = dpipe->priv;
627
628 if (qh && !list_empty(&qh->qh_list_entry))
629 return 1;
630
631 return 0;
632 }
633
634
635 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
636 struct dwc2_host_chan *chan, int chnum,
637 struct dwc2_qtd *qtd);
638
639 /* HCD Core API */
640
641 /**
642 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
643 *
644 * @hsotg: The DWC2 HCD
645 *
646 * Returns IRQ_HANDLED if interrupt is handled
647 * Return IRQ_NONE if interrupt is not handled
648 */
649 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
650
651 /**
652 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
653 *
654 * @hsotg: The DWC2 HCD
655 */
656 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
657
658 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
659 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
660
661 /**
662 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
663 * and 0 otherwise
664 *
665 * @hsotg: The DWC2 HCD
666 */
667 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
668
669 /**
670 * dwc2_hcd_get_frame_number() - Returns current frame number
671 *
672 * @hsotg: The DWC2 HCD
673 */
674 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
675
676 /**
677 * dwc2_hcd_dump_state() - Dumps hsotg state
678 *
679 * @hsotg: The DWC2 HCD
680 *
681 * NOTE: This function will be removed once the peripheral controller code
682 * is integrated and the driver is stable
683 */
684 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
685
686 /**
687 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
688 *
689 * @hsotg: The DWC2 HCD
690 *
691 * This can be used to determine average interrupt latency. Frame remaining is
692 * also shown for start transfer and two additional sample points.
693 *
694 * NOTE: This function will be removed once the peripheral controller code
695 * is integrated and the driver is stable
696 */
697 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
698
699 /* URB interface */
700
701 /* Transfer flags */
702 #define URB_GIVEBACK_ASAP 0x1
703 #define URB_SEND_ZERO_PACKET 0x2
704
705 /* Host driver callbacks */
706
707 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
708 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
709 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
710 int *hub_addr, int *hub_port);
711 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
712 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
713 int status);
714
715 #ifdef DEBUG
716 /*
717 * Macro to sample the remaining PHY clocks left in the current frame. This
718 * may be used during debugging to determine the average time it takes to
719 * execute sections of code. There are two possible sample points, "a" and
720 * "b", so the _letter_ argument must be one of these values.
721 *
722 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
723 * example, "cat /sys/devices/lm0/hcd_frrem".
724 */
725 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
726 do { \
727 struct hfnum_data _hfnum_; \
728 struct dwc2_qtd *_qtd_; \
729 \
730 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
731 qtd_list_entry); \
732 if (usb_pipeint(_qtd_->urb->pipe) && \
733 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
734 _hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM); \
735 switch (_hfnum_.b.frnum & 0x7) { \
736 case 7: \
737 (_hcd_)->hfnum_7_samples_##_letter_++; \
738 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
739 _hfnum_.b.frrem; \
740 break; \
741 case 0: \
742 (_hcd_)->hfnum_0_samples_##_letter_++; \
743 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
744 _hfnum_.b.frrem; \
745 break; \
746 default: \
747 (_hcd_)->hfnum_other_samples_##_letter_++; \
748 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
749 _hfnum_.b.frrem; \
750 break; \
751 } \
752 } \
753 } while (0)
754 #else
755 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
756 #endif
757
758
759 void dwc2_wakeup_detected(void *);
760
761 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
762 void dwc2_hcd_reinit(struct dwc2_hsotg *);
763 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
764 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
765 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *, struct dwc2_hcd_urb *, void **,
766 gfp_t);
767 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
768 u8 ,u8, u8, u8, u16);
769
770 void dwc2_conn_id_status_change(struct work *);
771 void dwc2_hcd_start_func(struct work *);
772 void dwc2_hcd_reset_func(struct work *);
773
774 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
775 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
776
777 int _dwc2_hcd_start(struct dwc2_hsotg *);
778
779 #endif /* __DWC2_HCD_H__ */
780