dwc2_hcd.h revision 1.4 1 /* $NetBSD: dwc2_hcd.h,v 1.4 2013/09/27 21:56:05 skrll Exp $ */
2
3 /*
4 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 *
6 * Copyright (C) 2004-2013 Synopsys, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The names of the above-listed copyright holders may not be used
18 * to endorse or promote products derived from this software without
19 * specific prior written permission.
20 *
21 * ALTERNATIVELY, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") as published by the Free Software
23 * Foundation; either version 2 of the License, or (at your option) any
24 * later version.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40
41 /*
42 * This file contains the structures, constants, and interfaces for the
43 * Host Contoller Driver (HCD)
44 *
45 * The Host Controller Driver (HCD) is responsible for translating requests
46 * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 * It isolates the USBD from the specifics of the controller by providing an
48 * API to the USBD.
49 */
50
51 struct dwc2_qh;
52
53 /**
54 * struct dwc2_host_chan - Software host channel descriptor
55 *
56 * @hc_num: Host channel number, used for register address lookup
57 * @dev_addr: Address of the device
58 * @ep_num: Endpoint of the device
59 * @ep_is_in: Endpoint direction
60 * @speed: Device speed. One of the following values:
61 * - USB_SPEED_LOW
62 * - USB_SPEED_FULL
63 * - USB_SPEED_HIGH
64 * @ep_type: Endpoint type. One of the following values:
65 * - USB_ENDPOINT_XFER_CONTROL: 0
66 * - USB_ENDPOINT_XFER_ISOC: 1
67 * - USB_ENDPOINT_XFER_BULK: 2
68 * - USB_ENDPOINT_XFER_INTR: 3
69 * @max_packet: Max packet size in bytes
70 * @data_pid_start: PID for initial transaction.
71 * 0: DATA0
72 * 1: DATA2
73 * 2: DATA1
74 * 3: MDATA (non-Control EP),
75 * SETUP (Control EP)
76 * @multi_count: Number of additional periodic transactions per
77 * (micro)frame
78 * @xfer_buf: Pointer to current transfer buffer position
79 * @xfer_dma: DMA address of xfer_buf
80 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 * DWORD aligned
82 * @xfer_len: Total number of bytes to transfer
83 * @xfer_count: Number of bytes transferred so far
84 * @start_pkt_count: Packet count at start of transfer
85 * @xfer_started: True if the transfer has been started
86 * @ping: True if a PING request should be issued on this channel
87 * @error_state: True if the error count for this transaction is non-zero
88 * @halt_on_queue: True if this channel should be halted the next time a
89 * request is queued for the channel. This is necessary in
90 * slave mode if no request queue space is available when
91 * an attempt is made to halt the channel.
92 * @halt_pending: True if the host channel has been halted, but the core
93 * is not finished flushing queued requests
94 * @do_split: Enable split for the channel
95 * @complete_split: Enable complete split
96 * @hub_addr: Address of high speed hub for the split
97 * @hub_port: Port of the low/full speed device for the split
98 * @xact_pos: Split transaction position. One of the following values:
99 * - DWC2_HCSPLT_XACTPOS_MID
100 * - DWC2_HCSPLT_XACTPOS_BEGIN
101 * - DWC2_HCSPLT_XACTPOS_END
102 * - DWC2_HCSPLT_XACTPOS_ALL
103 * @requests: Number of requests issued for this channel since it was
104 * assigned to the current transfer (not counting PINGs)
105 * @schinfo: Scheduling micro-frame bitmap
106 * @ntd: Number of transfer descriptors for the transfer
107 * @halt_status: Reason for halting the host channel
108 * @hcint Contents of the HCINT register when the interrupt came
109 * @qh: QH for the transfer being processed by this channel
110 * @hc_list_entry: For linking to list of host channels
111 * @desc_list_addr: Current QH's descriptor list DMA address
112 *
113 * This structure represents the state of a single host channel when acting in
114 * host mode. It contains the data items needed to transfer packets to an
115 * endpoint via a host channel.
116 */
117 struct dwc2_host_chan {
118 u8 hc_num;
119
120 unsigned dev_addr:7;
121 unsigned ep_num:4;
122 unsigned ep_is_in:1;
123 unsigned speed:4;
124 unsigned ep_type:2;
125 unsigned max_packet:11;
126 unsigned data_pid_start:2;
127 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
128 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
129 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
130 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
131 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
132
133 unsigned multi_count:2;
134
135 usb_dma_t *xfer_usbdma;
136 u8 *xfer_buf;
137 dma_addr_t xfer_dma;
138 dma_addr_t align_buf;
139 u32 xfer_len;
140 u32 xfer_count;
141 u16 start_pkt_count;
142 u8 xfer_started;
143 u8 do_ping;
144 u8 error_state;
145 u8 halt_on_queue;
146 u8 halt_pending;
147 u8 do_split;
148 u8 complete_split;
149 u8 hub_addr;
150 u8 hub_port;
151 u8 xact_pos;
152 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
153 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
156
157 u8 requests;
158 u8 schinfo;
159 u16 ntd;
160 enum dwc2_halt_status halt_status;
161 u32 hcint;
162 struct dwc2_qh *qh;
163 struct list_head hc_list_entry;
164 dma_addr_t desc_list_addr;
165 };
166
167 struct dwc2_hcd_pipe_info {
168 u8 dev_addr;
169 u8 ep_num;
170 u8 pipe_type;
171 u8 pipe_dir;
172 u16 mps;
173 };
174
175 struct dwc2_hcd_iso_packet_desc {
176 u32 offset;
177 u32 length;
178 u32 actual_length;
179 u32 status;
180 };
181
182 struct dwc2_qtd;
183
184 struct dwc2_hcd_urb {
185 void *priv; /* the xfer handle */
186 struct dwc2_qtd *qtd;
187 usb_dma_t *usbdma;
188 u8 *buf;
189 dma_addr_t dma;
190 usb_dma_t *setup_usbdma;
191 void *setup_packet;
192 dma_addr_t setup_dma;
193 u32 length;
194 u32 actual_length;
195 u32 status;
196 u32 error_count;
197 u32 packet_count;
198 u32 flags;
199 u16 interval;
200 struct dwc2_hcd_pipe_info pipe_info;
201 struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 };
203
204 /* Phases for control transfers */
205 enum dwc2_control_phase {
206 DWC2_CONTROL_SETUP,
207 DWC2_CONTROL_DATA,
208 DWC2_CONTROL_STATUS,
209 };
210
211 /* Transaction types */
212 enum dwc2_transaction_type {
213 DWC2_TRANSACTION_NONE,
214 DWC2_TRANSACTION_PERIODIC,
215 DWC2_TRANSACTION_NON_PERIODIC,
216 DWC2_TRANSACTION_ALL,
217 };
218
219 /**
220 * struct dwc2_qh - Software queue head structure
221 *
222 * @ep_type: Endpoint type. One of the following values:
223 * - USB_ENDPOINT_XFER_CONTROL
224 * - USB_ENDPOINT_XFER_BULK
225 * - USB_ENDPOINT_XFER_INT
226 * - USB_ENDPOINT_XFER_ISOC
227 * @ep_is_in: Endpoint direction
228 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
229 * @dev_speed: Device speed. One of the following values:
230 * - USB_SPEED_LOW
231 * - USB_SPEED_FULL
232 * - USB_SPEED_HIGH
233 * @data_toggle: Determines the PID of the next data packet for
234 * non-controltransfers. Ignored for control transfers.
235 * One of the following values:
236 * - DWC2_HC_PID_DATA0
237 * - DWC2_HC_PID_DATA1
238 * @ping_state: Ping state
239 * @do_split: Full/low speed endpoint on high-speed hub requires split
240 * @td_first: Index of first activated isochronous transfer descriptor
241 * @td_last: Index of last activated isochronous transfer descriptor
242 * @usecs: Bandwidth in microseconds per (micro)frame
243 * @interval: Interval between transfers in (micro)frames
244 * @sched_frame: (Micro)frame to initialize a periodic transfer.
245 * The transfer executes in the following (micro)frame.
246 * @frame_usecs: Internal variable used by the microframe scheduler
247 * @start_split_frame: (Micro)frame at which last start split was initialized
248 * @ntd: Actual number of transfer descriptors in a list
249 * @dw_align_buf: Used instead of original buffer if its physical address
250 * is not dword-aligned
251 * @dw_align_buf_dma: DMA address for align_buf
252 * @qtd_list: List of QTDs for this QH
253 * @channel: Host channel currently processing transfers for this QH
254 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
255 * schedule
256 * @desc_list: List of transfer descriptors
257 * @desc_list_dma: Physical address of desc_list
258 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
259 * descriptor and indicates original XferSize value for the
260 * descriptor
261 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
262 *
263 * A Queue Head (QH) holds the static characteristics of an endpoint and
264 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
265 * be entered in either the non-periodic or periodic schedule.
266 */
267 struct dwc2_qh {
268 u8 ep_type;
269 u8 ep_is_in;
270 u16 maxp;
271 u8 dev_speed;
272 u8 data_toggle;
273 u8 ping_state;
274 u8 do_split;
275 u8 td_first;
276 u8 td_last;
277 u16 usecs;
278 u16 interval;
279 u16 sched_frame;
280 u16 frame_usecs[8];
281 u16 start_split_frame;
282 u16 ntd;
283 usb_dma_t dw_align_buf_usbdma;
284 u8 *dw_align_buf;
285 dma_addr_t dw_align_buf_dma;
286 struct list_head qtd_list;
287 struct dwc2_host_chan *channel;
288 struct list_head qh_list_entry;
289 usb_dma_t desc_list_usbdma;
290 struct dwc2_hcd_dma_desc *desc_list;
291 dma_addr_t desc_list_dma;
292 u32 *n_bytes;
293 unsigned tt_buffer_dirty:1;
294 };
295
296 /**
297 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
298 *
299 * @control_phase: Current phase for control transfers (Setup, Data, or
300 * Status)
301 * @in_process: Indicates if this QTD is currently processed by HW
302 * @data_toggle: Determines the PID of the next data packet for the
303 * data phase of control transfers. Ignored for other
304 * transfer types. One of the following values:
305 * - DWC2_HC_PID_DATA0
306 * - DWC2_HC_PID_DATA1
307 * @complete_split: Keeps track of the current split type for FS/LS
308 * endpoints on a HS Hub
309 * @isoc_split_pos: Position of the ISOC split in full/low speed
310 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
311 * transfer. A frame descriptor describes the buffer
312 * position and length of the data to be transferred in the
313 * next scheduled (micro)frame of an isochronous transfer.
314 * It also holds status for that transaction. The frame
315 * index starts at 0.
316 * @isoc_split_offset: Position of the ISOC split in the buffer for the
317 * current frame
318 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
319 * @error_count: Holds the number of bus errors that have occurred for
320 * a transaction within this transfer
321 * @n_desc: Number of DMA descriptors for this QTD
322 * @isoc_frame_index_last: Last activated frame (packet) index, used in
323 * descriptor DMA mode only
324 * @urb: URB for this transfer
325 * @qh: Queue head for this QTD
326 * @qtd_list_entry: For linking to the QH's list of QTDs
327 *
328 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
329 * interrupt, or isochronous transfer. A single QTD is created for each URB
330 * (of one of these types) submitted to the HCD. The transfer associated with
331 * a QTD may require one or multiple transactions.
332 *
333 * A QTD is linked to a Queue Head, which is entered in either the
334 * non-periodic or periodic schedule for execution. When a QTD is chosen for
335 * execution, some or all of its transactions may be executed. After
336 * execution, the state of the QTD is updated. The QTD may be retired if all
337 * its transactions are complete or if an error occurred. Otherwise, it
338 * remains in the schedule so more transactions can be executed later.
339 */
340 struct dwc2_qtd {
341 enum dwc2_control_phase control_phase;
342 u8 in_process;
343 u8 data_toggle;
344 u8 complete_split;
345 u8 isoc_split_pos;
346 u16 isoc_frame_index;
347 u16 isoc_split_offset;
348 u32 ssplit_out_xfer_count;
349 u8 error_count;
350 u8 n_desc;
351 u16 isoc_frame_index_last;
352 struct dwc2_hcd_urb *urb;
353 struct dwc2_qh *qh;
354 struct list_head qtd_list_entry;
355 };
356
357 #ifdef DEBUG
358 struct hc_xfer_info {
359 struct dwc2_hsotg *hsotg;
360 struct dwc2_host_chan *chan;
361 };
362 #endif
363
364 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
365 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
366 {
367 return (struct usb_hcd *)hsotg->priv;
368 }
369
370 /*
371 * Inline used to disable one channel interrupt. Channel interrupts are
372 * disabled when the channel is halted or released by the interrupt handler.
373 * There is no need to handle further interrupts of that type until the
374 * channel is re-assigned. In fact, subsequent handling may cause crashes
375 * because the channel structures are cleaned up when the channel is released.
376 */
377 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
378 {
379 u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
380
381 mask &= ~intr;
382 DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
383 }
384
385 /*
386 * Returns the mode of operation, host or device
387 */
388 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
389 {
390 return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
391 }
392
393 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
394 {
395 return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
396 }
397
398 /*
399 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
400 * are read as 1, they won't clear when written back.
401 */
402 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
403 {
404 u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
405
406 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
407 return hprt0;
408 }
409
410 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
411 {
412 return pipe->ep_num;
413 }
414
415 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
416 {
417 return pipe->pipe_type;
418 }
419
420 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
421 {
422 return pipe->mps;
423 }
424
425 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
426 {
427 return pipe->dev_addr;
428 }
429
430 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
431 {
432 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
433 }
434
435 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
436 {
437 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
438 }
439
440 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
441 {
442 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
443 }
444
445 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
446 {
447 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
448 }
449
450 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
451 {
452 return pipe->pipe_dir == USB_DIR_IN;
453 }
454
455 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
456 {
457 return !dwc2_hcd_is_pipe_in(pipe);
458 }
459
460 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg,
461 const struct dwc2_core_params *params);
462 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
463 extern int dwc2_set_parameters(struct dwc2_hsotg *hsotg,
464 const struct dwc2_core_params *params);
465 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
466 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
467
468 /* Transaction Execution Functions */
469 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
470 struct dwc2_hsotg *hsotg);
471 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
472 enum dwc2_transaction_type tr_type);
473
474 /* Schedule Queue Functions */
475 /* Implemented in hcd_queue.c */
476 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
477 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
478 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
479 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
480 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
481 int sched_csplit);
482
483 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
484 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
485 struct dwc2_qh **qh, int mem_flags);
486
487 /* Removes and frees a QTD */
488 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
489 struct dwc2_qtd *qtd,
490 struct dwc2_qh *qh);
491
492 /* Descriptor DMA support functions */
493 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
494 struct dwc2_qh *qh);
495 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
496 struct dwc2_host_chan *chan, int chnum,
497 enum dwc2_halt_status halt_status);
498
499 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
500 gfp_t mem_flags);
501 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
502
503 /* Check if QH is non-periodic */
504 #define dwc2_qh_is_non_per(_qh_ptr_) \
505 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
506 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
507
508 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
509 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
510 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
511 static inline bool dbg_urb(struct urb *urb) { return true; }
512 static inline bool dbg_perio(void) { return true; }
513 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
514 static inline bool dbg_hc(struct dwc2_host_chan *hc)
515 {
516 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
517 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
518 }
519
520 static inline bool dbg_qh(struct dwc2_qh *qh)
521 {
522 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
523 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
524 }
525
526
527 static inline bool dbg_perio(void) { return false; }
528 #endif
529
530 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
531 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
532
533 /* Packet size for any kind of endpoint descriptor */
534 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
535
536 /*
537 * Returns true if frame1 is less than or equal to frame2. The comparison is
538 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
539 * frame number when the max frame number is reached.
540 */
541 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
542 {
543 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
544 }
545
546 /*
547 * Returns true if frame1 is greater than frame2. The comparison is done
548 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
549 * number when the max frame number is reached.
550 */
551 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
552 {
553 return (frame1 != frame2) &&
554 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
555 }
556
557 /*
558 * Increments frame by the amount specified by inc. The addition is done
559 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
560 */
561 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
562 {
563 return (frame + inc) & HFNUM_MAX_FRNUM;
564 }
565
566 static inline u16 dwc2_full_frame_num(u16 frame)
567 {
568 return (frame & HFNUM_MAX_FRNUM) >> 3;
569 }
570
571 static inline u16 dwc2_micro_frame_num(u16 frame)
572 {
573 return frame & 0x7;
574 }
575
576 /*
577 * Returns the Core Interrupt Status register contents, ANDed with the Core
578 * Interrupt Mask register contents
579 */
580 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
581 {
582 return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
583 }
584
585 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
586 {
587 return dwc2_urb->status;
588 }
589
590 static inline u32 dwc2_hcd_urb_get_actual_length(
591 struct dwc2_hcd_urb *dwc2_urb)
592 {
593 return dwc2_urb->actual_length;
594 }
595
596 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
597 {
598 return dwc2_urb->error_count;
599 }
600
601 static inline void dwc2_hcd_urb_set_iso_desc_params(
602 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
603 u32 length)
604 {
605 dwc2_urb->iso_descs[desc_num].offset = offset;
606 dwc2_urb->iso_descs[desc_num].length = length;
607 }
608
609 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
610 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
611 {
612 return dwc2_urb->iso_descs[desc_num].status;
613 }
614
615 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
616 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
617 {
618 return dwc2_urb->iso_descs[desc_num].actual_length;
619 }
620
621 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
622 usbd_xfer_handle xfer)
623 {
624 struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
625 struct dwc2_qh *qh = dpipe->priv;
626
627 if (qh && !list_empty(&qh->qh_list_entry))
628 return 1;
629
630 return 0;
631 }
632
633
634 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
635 struct dwc2_host_chan *chan, int chnum,
636 struct dwc2_qtd *qtd);
637
638 /* HCD Core API */
639
640 /**
641 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
642 *
643 * @hsotg: The DWC2 HCD
644 *
645 * Returns IRQ_HANDLED if interrupt is handled
646 * Return IRQ_NONE if interrupt is not handled
647 */
648 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
649
650 /**
651 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
652 *
653 * @hsotg: The DWC2 HCD
654 */
655 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
656
657 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
658 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
659
660 /**
661 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
662 * and 0 otherwise
663 *
664 * @hsotg: The DWC2 HCD
665 */
666 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
667
668 /**
669 * dwc2_hcd_get_frame_number() - Returns current frame number
670 *
671 * @hsotg: The DWC2 HCD
672 */
673 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
674
675 /**
676 * dwc2_hcd_dump_state() - Dumps hsotg state
677 *
678 * @hsotg: The DWC2 HCD
679 *
680 * NOTE: This function will be removed once the peripheral controller code
681 * is integrated and the driver is stable
682 */
683 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
684
685 /**
686 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
687 *
688 * @hsotg: The DWC2 HCD
689 *
690 * This can be used to determine average interrupt latency. Frame remaining is
691 * also shown for start transfer and two additional sample points.
692 *
693 * NOTE: This function will be removed once the peripheral controller code
694 * is integrated and the driver is stable
695 */
696 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
697
698 /* URB interface */
699
700 /* Transfer flags */
701 #define URB_GIVEBACK_ASAP 0x1
702 #define URB_SEND_ZERO_PACKET 0x2
703
704 /* Host driver callbacks */
705
706 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
707 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
708 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
709 int *hub_addr, int *hub_port);
710 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
711 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
712 int status);
713
714 #ifdef DEBUG
715 /*
716 * Macro to sample the remaining PHY clocks left in the current frame. This
717 * may be used during debugging to determine the average time it takes to
718 * execute sections of code. There are two possible sample points, "a" and
719 * "b", so the _letter_ argument must be one of these values.
720 *
721 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
722 * example, "cat /sys/devices/lm0/hcd_frrem".
723 */
724 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
725 do { \
726 struct hfnum_data _hfnum_; \
727 struct dwc2_qtd *_qtd_; \
728 \
729 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
730 qtd_list_entry); \
731 if (usb_pipeint(_qtd_->urb->pipe) && \
732 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
733 _hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM); \
734 switch (_hfnum_.b.frnum & 0x7) { \
735 case 7: \
736 (_hcd_)->hfnum_7_samples_##_letter_++; \
737 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
738 _hfnum_.b.frrem; \
739 break; \
740 case 0: \
741 (_hcd_)->hfnum_0_samples_##_letter_++; \
742 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
743 _hfnum_.b.frrem; \
744 break; \
745 default: \
746 (_hcd_)->hfnum_other_samples_##_letter_++; \
747 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
748 _hfnum_.b.frrem; \
749 break; \
750 } \
751 } \
752 } while (0)
753 #else
754 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
755 #endif
756
757
758 void dwc2_wakeup_detected(void *);
759
760 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
761 void dwc2_hcd_reinit(struct dwc2_hsotg *);
762 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
763 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
764 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *, struct dwc2_hcd_urb *, void **,
765 gfp_t);
766 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
767 u8 ,u8, u8, u8, u16);
768
769 void dwc2_conn_id_status_change(struct work *);
770 void dwc2_hcd_start_func(struct work *);
771 void dwc2_hcd_reset_func(struct work *);
772
773 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
774 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
775
776 int _dwc2_hcd_start(struct dwc2_hsotg *);
777
778 int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
779
780 #endif /* __DWC2_HCD_H__ */
781