1 1.37 msaitoh /* $NetBSD: fil.c,v 1.37 2023/06/24 05:16:15 msaitoh Exp $ */ 2 1.1 christos 3 1.1 christos /* 4 1.1 christos * Copyright (C) 2012 by Darren Reed. 5 1.1 christos * 6 1.1 christos * See the IPFILTER.LICENCE file for details on licencing. 7 1.1 christos * 8 1.3 darrenr * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $ 9 1.1 christos * 10 1.1 christos */ 11 1.1 christos #if defined(KERNEL) || defined(_KERNEL) 12 1.1 christos # undef KERNEL 13 1.1 christos # undef _KERNEL 14 1.1 christos # define KERNEL 1 15 1.1 christos # define _KERNEL 1 16 1.1 christos #endif 17 1.1 christos #include <sys/errno.h> 18 1.1 christos #include <sys/types.h> 19 1.1 christos #include <sys/param.h> 20 1.1 christos #include <sys/time.h> 21 1.1 christos #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 22 1.1 christos (__FreeBSD_version >= 220000) 23 1.1 christos # if (__FreeBSD_version >= 400000) 24 1.1 christos # if !defined(IPFILTER_LKM) 25 1.1 christos # include "opt_inet6.h" 26 1.1 christos # endif 27 1.1 christos # if (__FreeBSD_version == 400019) 28 1.1 christos # define CSUM_DELAY_DATA 29 1.1 christos # endif 30 1.1 christos # endif 31 1.1 christos # include <sys/filio.h> 32 1.1 christos #else 33 1.1 christos # include <sys/ioctl.h> 34 1.1 christos #endif 35 1.1 christos #if (defined(__SVR4) || defined(__svr4__)) && defined(sun) 36 1.1 christos # include <sys/filio.h> 37 1.1 christos #endif 38 1.1 christos #if !defined(_AIX51) 39 1.1 christos # include <sys/fcntl.h> 40 1.1 christos #endif 41 1.1 christos #if defined(_KERNEL) 42 1.1 christos # include <sys/systm.h> 43 1.1 christos # include <sys/file.h> 44 1.1 christos #else 45 1.1 christos # include <stdio.h> 46 1.1 christos # include <string.h> 47 1.1 christos # include <stdlib.h> 48 1.1 christos # include <stddef.h> 49 1.1 christos # include <sys/file.h> 50 1.1 christos # define _KERNEL 51 1.1 christos # ifdef __OpenBSD__ 52 1.1 christos struct file; 53 1.1 christos # endif 54 1.1 christos # include <sys/uio.h> 55 1.1 christos # undef _KERNEL 56 1.1 christos #endif 57 1.1 christos #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 58 1.1 christos !defined(linux) 59 1.1 christos # include <sys/mbuf.h> 60 1.1 christos #else 61 1.1 christos # if !defined(linux) 62 1.1 christos # include <sys/byteorder.h> 63 1.1 christos # endif 64 1.1 christos # if (SOLARIS2 < 5) && defined(sun) 65 1.1 christos # include <sys/dditypes.h> 66 1.1 christos # endif 67 1.1 christos #endif 68 1.1 christos #ifdef __hpux 69 1.1 christos # define _NET_ROUTE_INCLUDED 70 1.1 christos #endif 71 1.1 christos #if !defined(linux) 72 1.1 christos # include <sys/protosw.h> 73 1.1 christos #endif 74 1.1 christos #include <sys/socket.h> 75 1.1 christos #include <net/if.h> 76 1.1 christos #ifdef sun 77 1.1 christos # include <net/af.h> 78 1.1 christos #endif 79 1.1 christos #include <netinet/in.h> 80 1.1 christos #include <netinet/in_systm.h> 81 1.1 christos #include <netinet/ip.h> 82 1.1 christos #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 83 1.1 christos # include <sys/hashing.h> 84 1.1 christos # include <netinet/in_var.h> 85 1.1 christos #endif 86 1.1 christos #include <netinet/tcp.h> 87 1.1 christos #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 88 1.1 christos # include <netinet/udp.h> 89 1.1 christos # include <netinet/ip_icmp.h> 90 1.1 christos #endif 91 1.1 christos #ifdef __hpux 92 1.1 christos # undef _NET_ROUTE_INCLUDED 93 1.1 christos #endif 94 1.1 christos #ifdef __osf__ 95 1.1 christos # undef _RADIX_H_ 96 1.1 christos #endif 97 1.1 christos #include "netinet/ip_compat.h" 98 1.1 christos #ifdef USE_INET6 99 1.1 christos # include <netinet/icmp6.h> 100 1.1 christos # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux) 101 1.1 christos # include <netinet6/in6_var.h> 102 1.1 christos # endif 103 1.1 christos #endif 104 1.1 christos #include "netinet/ip_fil.h" 105 1.1 christos #include "netinet/ip_nat.h" 106 1.1 christos #include "netinet/ip_frag.h" 107 1.1 christos #include "netinet/ip_state.h" 108 1.1 christos #include "netinet/ip_proxy.h" 109 1.1 christos #include "netinet/ip_auth.h" 110 1.1 christos #ifdef IPFILTER_SCAN 111 1.1 christos # include "netinet/ip_scan.h" 112 1.1 christos #endif 113 1.1 christos #include "netinet/ip_sync.h" 114 1.1 christos #include "netinet/ip_lookup.h" 115 1.1 christos #include "netinet/ip_pool.h" 116 1.1 christos #include "netinet/ip_htable.h" 117 1.1 christos #ifdef IPFILTER_COMPILED 118 1.1 christos # include "netinet/ip_rules.h" 119 1.1 christos #endif 120 1.1 christos #if defined(IPFILTER_BPF) && defined(_KERNEL) 121 1.1 christos # include <net/bpf.h> 122 1.1 christos #endif 123 1.1 christos #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 124 1.1 christos # include <sys/malloc.h> 125 1.1 christos #endif 126 1.1 christos #include "netinet/ipl.h" 127 1.1 christos 128 1.1 christos #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000) 129 1.1 christos # include <sys/callout.h> 130 1.1 christos extern struct callout ipf_slowtimer_ch; 131 1.1 christos #endif 132 1.1 christos #if defined(__OpenBSD__) 133 1.1 christos # include <sys/timeout.h> 134 1.1 christos extern struct timeout ipf_slowtimer_ch; 135 1.1 christos #endif 136 1.24 maxv #if defined(__NetBSD__) 137 1.24 maxv #include <netinet/in_offload.h> 138 1.24 maxv #endif 139 1.1 christos /* END OF INCLUDES */ 140 1.1 christos 141 1.1 christos #if !defined(lint) 142 1.2 christos #if defined(__NetBSD__) 143 1.2 christos #include <sys/cdefs.h> 144 1.37 msaitoh __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.37 2023/06/24 05:16:15 msaitoh Exp $"); 145 1.2 christos #else 146 1.1 christos static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 147 1.3 darrenr static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $"; 148 1.2 christos #endif 149 1.1 christos #endif 150 1.1 christos 151 1.1 christos #ifndef _KERNEL 152 1.1 christos # include "ipf.h" 153 1.1 christos # include "ipt.h" 154 1.1 christos extern int opts; 155 1.1 christos extern int blockreason; 156 1.1 christos #endif /* _KERNEL */ 157 1.1 christos 158 1.31 bouyer #define FASTROUTE_RECURSION 159 1.31 bouyer 160 1.1 christos #define LBUMP(x) softc->x++ 161 1.1 christos #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0) 162 1.1 christos 163 1.2 christos static INLINE int ipf_check_ipf(fr_info_t *, frentry_t *, int); 164 1.2 christos static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int); 165 1.2 christos static u_32_t ipf_checkripso(u_char *); 166 1.2 christos static u_32_t ipf_decaps(fr_info_t *, u_32_t, int); 167 1.2 christos #ifdef IPFILTER_LOG 168 1.2 christos static frentry_t *ipf_dolog(fr_info_t *, u_32_t *); 169 1.2 christos #endif 170 1.3 darrenr static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **); 171 1.3 darrenr static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int); 172 1.2 christos static ipfunc_t ipf_findfunc(ipfunc_t); 173 1.2 christos static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *, 174 1.2 christos i6addr_t *, i6addr_t *); 175 1.2 christos static frentry_t *ipf_firewall(fr_info_t *, u_32_t *); 176 1.2 christos static int ipf_fr_matcharray(fr_info_t *, int *); 177 1.2 christos static int ipf_frruleiter(ipf_main_softc_t *, void *, int, void *); 178 1.2 christos static void ipf_funcfini(ipf_main_softc_t *, frentry_t *);; 179 1.2 christos static int ipf_funcinit(ipf_main_softc_t *, frentry_t *); 180 1.2 christos static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *, 181 1.2 christos ipfgeniter_t *); 182 1.2 christos static void ipf_getstat(ipf_main_softc_t *, 183 1.2 christos struct friostat *, int); 184 1.3 darrenr static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *); 185 1.3 darrenr static void ipf_group_free(frgroup_t *); 186 1.2 christos static int ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *); 187 1.2 christos static int ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *); 188 1.3 darrenr static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int, 189 1.3 darrenr frentry_t *, int); 190 1.2 christos static int ipf_portcheck(frpcmp_t *, u_32_t); 191 1.2 christos static INLINE int ipf_pr_ah(fr_info_t *); 192 1.2 christos static INLINE void ipf_pr_esp(fr_info_t *); 193 1.2 christos static INLINE void ipf_pr_gre(fr_info_t *); 194 1.2 christos static INLINE void ipf_pr_udp(fr_info_t *); 195 1.2 christos static INLINE void ipf_pr_tcp(fr_info_t *); 196 1.2 christos static INLINE void ipf_pr_icmp(fr_info_t *); 197 1.2 christos static INLINE void ipf_pr_ipv4hdr(fr_info_t *); 198 1.2 christos static INLINE void ipf_pr_short(fr_info_t *, int); 199 1.2 christos static INLINE int ipf_pr_tcpcommon(fr_info_t *); 200 1.2 christos static INLINE int ipf_pr_udpcommon(fr_info_t *); 201 1.2 christos static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f, 202 1.2 christos int, int); 203 1.2 christos static void ipf_rule_expire_insert(ipf_main_softc_t *, 204 1.2 christos frentry_t *, int); 205 1.2 christos static int ipf_synclist(ipf_main_softc_t *, frentry_t *, void *); 206 1.3 darrenr static void ipf_token_flush(ipf_main_softc_t *); 207 1.3 darrenr static void ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *); 208 1.2 christos static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *, const char *); 209 1.2 christos static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *, 210 1.2 christos void **); 211 1.2 christos static int ipf_updateipid(fr_info_t *); 212 1.2 christos static int ipf_settimeout(struct ipf_main_softc_s *, 213 1.2 christos struct ipftuneable *, ipftuneval_t *); 214 1.1 christos 215 1.1 christos 216 1.1 christos /* 217 1.1 christos * bit values for identifying presence of individual IP options 218 1.1 christos * All of these tables should be ordered by increasing key value on the left 219 1.1 christos * hand side to allow for binary searching of the array and include a trailer 220 1.1 christos * with a 0 for the bitmask for linear searches to easily find the end with. 221 1.1 christos */ 222 1.1 christos static const struct optlist ipopts[20] = { 223 1.1 christos { IPOPT_NOP, 0x000001 }, 224 1.1 christos { IPOPT_RR, 0x000002 }, 225 1.1 christos { IPOPT_ZSU, 0x000004 }, 226 1.1 christos { IPOPT_MTUP, 0x000008 }, 227 1.1 christos { IPOPT_MTUR, 0x000010 }, 228 1.1 christos { IPOPT_ENCODE, 0x000020 }, 229 1.1 christos { IPOPT_TS, 0x000040 }, 230 1.1 christos { IPOPT_TR, 0x000080 }, 231 1.1 christos { IPOPT_SECURITY, 0x000100 }, 232 1.1 christos { IPOPT_LSRR, 0x000200 }, 233 1.1 christos { IPOPT_E_SEC, 0x000400 }, 234 1.1 christos { IPOPT_CIPSO, 0x000800 }, 235 1.1 christos { IPOPT_SATID, 0x001000 }, 236 1.1 christos { IPOPT_SSRR, 0x002000 }, 237 1.1 christos { IPOPT_ADDEXT, 0x004000 }, 238 1.1 christos { IPOPT_VISA, 0x008000 }, 239 1.1 christos { IPOPT_IMITD, 0x010000 }, 240 1.1 christos { IPOPT_EIP, 0x020000 }, 241 1.1 christos { IPOPT_FINN, 0x040000 }, 242 1.1 christos { 0, 0x000000 } 243 1.1 christos }; 244 1.1 christos 245 1.1 christos #ifdef USE_INET6 246 1.19 christos static const struct optlist ip6exthdr[] = { 247 1.1 christos { IPPROTO_HOPOPTS, 0x000001 }, 248 1.1 christos { IPPROTO_IPV6, 0x000002 }, 249 1.1 christos { IPPROTO_ROUTING, 0x000004 }, 250 1.1 christos { IPPROTO_FRAGMENT, 0x000008 }, 251 1.1 christos { IPPROTO_ESP, 0x000010 }, 252 1.1 christos { IPPROTO_AH, 0x000020 }, 253 1.1 christos { IPPROTO_NONE, 0x000040 }, 254 1.1 christos { IPPROTO_DSTOPTS, 0x000080 }, 255 1.1 christos { IPPROTO_MOBILITY, 0x000100 }, 256 1.1 christos { 0, 0 } 257 1.1 christos }; 258 1.1 christos #endif 259 1.1 christos 260 1.1 christos /* 261 1.1 christos * bit values for identifying presence of individual IP security options 262 1.1 christos */ 263 1.1 christos static const struct optlist secopt[8] = { 264 1.1 christos { IPSO_CLASS_RES4, 0x01 }, 265 1.1 christos { IPSO_CLASS_TOPS, 0x02 }, 266 1.1 christos { IPSO_CLASS_SECR, 0x04 }, 267 1.1 christos { IPSO_CLASS_RES3, 0x08 }, 268 1.1 christos { IPSO_CLASS_CONF, 0x10 }, 269 1.1 christos { IPSO_CLASS_UNCL, 0x20 }, 270 1.1 christos { IPSO_CLASS_RES2, 0x40 }, 271 1.1 christos { IPSO_CLASS_RES1, 0x80 } 272 1.1 christos }; 273 1.1 christos 274 1.1 christos char ipfilter_version[] = IPL_VERSION; 275 1.1 christos 276 1.1 christos int ipf_features = 0 277 1.1 christos #ifdef IPFILTER_LKM 278 1.1 christos | IPF_FEAT_LKM 279 1.1 christos #endif 280 1.1 christos #ifdef IPFILTER_LOG 281 1.1 christos | IPF_FEAT_LOG 282 1.1 christos #endif 283 1.1 christos | IPF_FEAT_LOOKUP 284 1.1 christos #ifdef IPFILTER_BPF 285 1.1 christos | IPF_FEAT_BPF 286 1.1 christos #endif 287 1.1 christos #ifdef IPFILTER_COMPILED 288 1.1 christos | IPF_FEAT_COMPILED 289 1.1 christos #endif 290 1.1 christos #ifdef IPFILTER_CKSUM 291 1.1 christos | IPF_FEAT_CKSUM 292 1.1 christos #endif 293 1.1 christos | IPF_FEAT_SYNC 294 1.1 christos #ifdef IPFILTER_SCAN 295 1.1 christos | IPF_FEAT_SCAN 296 1.1 christos #endif 297 1.1 christos #ifdef USE_INET6 298 1.1 christos | IPF_FEAT_IPV6 299 1.1 christos #endif 300 1.1 christos ; 301 1.1 christos 302 1.1 christos 303 1.1 christos /* 304 1.1 christos * Table of functions available for use with call rules. 305 1.1 christos */ 306 1.1 christos static ipfunc_resolve_t ipf_availfuncs[] = { 307 1.1 christos { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini }, 308 1.1 christos { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini }, 309 1.2 christos { "", NULL, NULL, NULL } 310 1.1 christos }; 311 1.1 christos 312 1.23 maxv static const ipftuneable_t ipf_main_tuneables[] = { 313 1.1 christos { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) }, 314 1.1 christos "ipf_flags", 0, 0xffffffff, 315 1.1 christos stsizeof(ipf_main_softc_t, ipf_flags), 316 1.1 christos 0, NULL, NULL }, 317 1.1 christos { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) }, 318 1.1 christos "active", 0, 0, 319 1.1 christos stsizeof(ipf_main_softc_t, ipf_active), 320 1.1 christos IPFT_RDONLY, NULL, NULL }, 321 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) }, 322 1.1 christos "control_forwarding", 0, 1, 323 1.1 christos stsizeof(ipf_main_softc_t, ipf_control_forwarding), 324 1.1 christos 0, NULL, NULL }, 325 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) }, 326 1.1 christos "update_ipid", 0, 1, 327 1.1 christos stsizeof(ipf_main_softc_t, ipf_update_ipid), 328 1.1 christos 0, NULL, NULL }, 329 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) }, 330 1.1 christos "chksrc", 0, 1, 331 1.1 christos stsizeof(ipf_main_softc_t, ipf_chksrc), 332 1.1 christos 0, NULL, NULL }, 333 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) }, 334 1.1 christos "min_ttl", 0, 1, 335 1.1 christos stsizeof(ipf_main_softc_t, ipf_minttl), 336 1.1 christos 0, NULL, NULL }, 337 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) }, 338 1.1 christos "icmp_minfragmtu", 0, 1, 339 1.1 christos stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu), 340 1.1 christos 0, NULL, NULL }, 341 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_pass) }, 342 1.1 christos "default_pass", 0, 0xffffffff, 343 1.1 christos stsizeof(ipf_main_softc_t, ipf_pass), 344 1.1 christos 0, NULL, NULL }, 345 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) }, 346 1.1 christos "tcp_idle_timeout", 1, 0x7fffffff, 347 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcpidletimeout), 348 1.1 christos 0, NULL, ipf_settimeout }, 349 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) }, 350 1.1 christos "tcp_close_wait", 1, 0x7fffffff, 351 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcpclosewait), 352 1.1 christos 0, NULL, ipf_settimeout }, 353 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) }, 354 1.1 christos "tcp_last_ack", 1, 0x7fffffff, 355 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcplastack), 356 1.1 christos 0, NULL, ipf_settimeout }, 357 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) }, 358 1.1 christos "tcp_timeout", 1, 0x7fffffff, 359 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcptimeout), 360 1.1 christos 0, NULL, ipf_settimeout }, 361 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) }, 362 1.1 christos "tcp_syn_sent", 1, 0x7fffffff, 363 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcpsynsent), 364 1.1 christos 0, NULL, ipf_settimeout }, 365 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) }, 366 1.1 christos "tcp_syn_received", 1, 0x7fffffff, 367 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcpsynrecv), 368 1.1 christos 0, NULL, ipf_settimeout }, 369 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) }, 370 1.1 christos "tcp_closed", 1, 0x7fffffff, 371 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcpclosed), 372 1.1 christos 0, NULL, ipf_settimeout }, 373 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) }, 374 1.1 christos "tcp_half_closed", 1, 0x7fffffff, 375 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcphalfclosed), 376 1.1 christos 0, NULL, ipf_settimeout }, 377 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) }, 378 1.1 christos "tcp_time_wait", 1, 0x7fffffff, 379 1.1 christos stsizeof(ipf_main_softc_t, ipf_tcptimewait), 380 1.1 christos 0, NULL, ipf_settimeout }, 381 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) }, 382 1.1 christos "udp_timeout", 1, 0x7fffffff, 383 1.1 christos stsizeof(ipf_main_softc_t, ipf_udptimeout), 384 1.1 christos 0, NULL, ipf_settimeout }, 385 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) }, 386 1.1 christos "udp_ack_timeout", 1, 0x7fffffff, 387 1.1 christos stsizeof(ipf_main_softc_t, ipf_udpacktimeout), 388 1.1 christos 0, NULL, ipf_settimeout }, 389 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) }, 390 1.1 christos "icmp_timeout", 1, 0x7fffffff, 391 1.1 christos stsizeof(ipf_main_softc_t, ipf_icmptimeout), 392 1.1 christos 0, NULL, ipf_settimeout }, 393 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) }, 394 1.1 christos "icmp_ack_timeout", 1, 0x7fffffff, 395 1.1 christos stsizeof(ipf_main_softc_t, ipf_icmpacktimeout), 396 1.1 christos 0, NULL, ipf_settimeout }, 397 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) }, 398 1.1 christos "ip_timeout", 1, 0x7fffffff, 399 1.1 christos stsizeof(ipf_main_softc_t, ipf_iptimeout), 400 1.1 christos 0, NULL, ipf_settimeout }, 401 1.1 christos #if defined(INSTANCES) && defined(_KERNEL) 402 1.1 christos { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) }, 403 1.1 christos "intercept_loopback", 0, 1, 404 1.1 christos stsizeof(ipf_main_softc_t, ipf_get_loopback), 405 1.1 christos 0, NULL, ipf_set_loopback }, 406 1.1 christos #endif 407 1.1 christos { { 0 }, 408 1.1 christos NULL, 0, 0, 409 1.1 christos 0, 410 1.1 christos 0, NULL, NULL } 411 1.1 christos }; 412 1.1 christos 413 1.1 christos 414 1.1 christos /* 415 1.1 christos * The next section of code is a a collection of small routines that set 416 1.1 christos * fields in the fr_info_t structure passed based on properties of the 417 1.1 christos * current packet. There are different routines for the same protocol 418 1.1 christos * for each of IPv4 and IPv6. Adding a new protocol, for which there 419 1.1 christos * will "special" inspection for setup, is now more easily done by adding 420 1.1 christos * a new routine and expanding the ipf_pr_ipinit*() function rather than by 421 1.1 christos * adding more code to a growing switch statement. 422 1.1 christos */ 423 1.1 christos #ifdef USE_INET6 424 1.2 christos static INLINE int ipf_pr_ah6(fr_info_t *); 425 1.2 christos static INLINE void ipf_pr_esp6(fr_info_t *); 426 1.2 christos static INLINE void ipf_pr_gre6(fr_info_t *); 427 1.2 christos static INLINE void ipf_pr_udp6(fr_info_t *); 428 1.2 christos static INLINE void ipf_pr_tcp6(fr_info_t *); 429 1.2 christos static INLINE void ipf_pr_icmp6(fr_info_t *); 430 1.2 christos static INLINE void ipf_pr_ipv6hdr(fr_info_t *); 431 1.2 christos static INLINE void ipf_pr_short6(fr_info_t *, int); 432 1.2 christos static INLINE int ipf_pr_hopopts6(fr_info_t *); 433 1.2 christos static INLINE int ipf_pr_mobility6(fr_info_t *); 434 1.2 christos static INLINE int ipf_pr_routing6(fr_info_t *); 435 1.2 christos static INLINE int ipf_pr_dstopts6(fr_info_t *); 436 1.2 christos static INLINE int ipf_pr_fragment6(fr_info_t *); 437 1.2 christos static INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int); 438 1.1 christos 439 1.1 christos 440 1.1 christos /* ------------------------------------------------------------------------ */ 441 1.1 christos /* Function: ipf_pr_short6 */ 442 1.1 christos /* Returns: void */ 443 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 444 1.1 christos /* xmin(I) - minimum header size */ 445 1.1 christos /* */ 446 1.1 christos /* IPv6 Only */ 447 1.1 christos /* This is function enforces the 'is a packet too short to be legit' rule */ 448 1.1 christos /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 449 1.1 christos /* for ipf_pr_short() for more details. */ 450 1.1 christos /* ------------------------------------------------------------------------ */ 451 1.1 christos static INLINE void 452 1.2 christos ipf_pr_short6(fr_info_t *fin, int xmin) 453 1.1 christos { 454 1.1 christos 455 1.1 christos if (fin->fin_dlen < xmin) 456 1.1 christos fin->fin_flx |= FI_SHORT; 457 1.1 christos } 458 1.1 christos 459 1.1 christos 460 1.1 christos /* ------------------------------------------------------------------------ */ 461 1.1 christos /* Function: ipf_pr_ipv6hdr */ 462 1.1 christos /* Returns: void */ 463 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 464 1.1 christos /* */ 465 1.1 christos /* IPv6 Only */ 466 1.1 christos /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 467 1.1 christos /* per-protocol analyzer if it exists. In validating the packet, a protocol*/ 468 1.1 christos /* analyzer may pullup or free the packet itself so we need to be vigiliant */ 469 1.1 christos /* of that possibility arising. */ 470 1.1 christos /* ------------------------------------------------------------------------ */ 471 1.1 christos static INLINE void 472 1.2 christos ipf_pr_ipv6hdr(fr_info_t *fin) 473 1.1 christos { 474 1.1 christos ip6_t *ip6 = (ip6_t *)fin->fin_ip; 475 1.1 christos int p, go = 1, i, hdrcount; 476 1.1 christos fr_ip_t *fi = &fin->fin_fi; 477 1.1 christos 478 1.1 christos fin->fin_off = 0; 479 1.1 christos 480 1.1 christos fi->fi_tos = 0; 481 1.1 christos fi->fi_optmsk = 0; 482 1.1 christos fi->fi_secmsk = 0; 483 1.1 christos fi->fi_auth = 0; 484 1.1 christos 485 1.1 christos p = ip6->ip6_nxt; 486 1.1 christos fin->fin_crc = p; 487 1.1 christos fi->fi_ttl = ip6->ip6_hlim; 488 1.1 christos fi->fi_src.in6 = ip6->ip6_src; 489 1.1 christos fin->fin_crc += fi->fi_src.i6[0]; 490 1.1 christos fin->fin_crc += fi->fi_src.i6[1]; 491 1.1 christos fin->fin_crc += fi->fi_src.i6[2]; 492 1.1 christos fin->fin_crc += fi->fi_src.i6[3]; 493 1.1 christos fi->fi_dst.in6 = ip6->ip6_dst; 494 1.1 christos fin->fin_crc += fi->fi_dst.i6[0]; 495 1.1 christos fin->fin_crc += fi->fi_dst.i6[1]; 496 1.1 christos fin->fin_crc += fi->fi_dst.i6[2]; 497 1.1 christos fin->fin_crc += fi->fi_dst.i6[3]; 498 1.1 christos fin->fin_id = 0; 499 1.1 christos if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6)) 500 1.1 christos fin->fin_flx |= FI_MULTICAST|FI_MBCAST; 501 1.1 christos 502 1.1 christos hdrcount = 0; 503 1.1 christos while (go && !(fin->fin_flx & FI_SHORT)) { 504 1.1 christos switch (p) 505 1.1 christos { 506 1.1 christos case IPPROTO_UDP : 507 1.1 christos ipf_pr_udp6(fin); 508 1.1 christos go = 0; 509 1.1 christos break; 510 1.1 christos 511 1.1 christos case IPPROTO_TCP : 512 1.1 christos ipf_pr_tcp6(fin); 513 1.1 christos go = 0; 514 1.1 christos break; 515 1.1 christos 516 1.1 christos case IPPROTO_ICMPV6 : 517 1.1 christos ipf_pr_icmp6(fin); 518 1.1 christos go = 0; 519 1.1 christos break; 520 1.1 christos 521 1.1 christos case IPPROTO_GRE : 522 1.1 christos ipf_pr_gre6(fin); 523 1.1 christos go = 0; 524 1.1 christos break; 525 1.1 christos 526 1.1 christos case IPPROTO_HOPOPTS : 527 1.1 christos p = ipf_pr_hopopts6(fin); 528 1.1 christos break; 529 1.1 christos 530 1.1 christos case IPPROTO_MOBILITY : 531 1.1 christos p = ipf_pr_mobility6(fin); 532 1.1 christos break; 533 1.1 christos 534 1.1 christos case IPPROTO_DSTOPTS : 535 1.1 christos p = ipf_pr_dstopts6(fin); 536 1.1 christos break; 537 1.1 christos 538 1.1 christos case IPPROTO_ROUTING : 539 1.1 christos p = ipf_pr_routing6(fin); 540 1.1 christos break; 541 1.1 christos 542 1.1 christos case IPPROTO_AH : 543 1.1 christos p = ipf_pr_ah6(fin); 544 1.1 christos break; 545 1.1 christos 546 1.1 christos case IPPROTO_ESP : 547 1.1 christos ipf_pr_esp6(fin); 548 1.1 christos go = 0; 549 1.1 christos break; 550 1.1 christos 551 1.1 christos case IPPROTO_IPV6 : 552 1.1 christos for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 553 1.1 christos if (ip6exthdr[i].ol_val == p) { 554 1.1 christos fin->fin_flx |= ip6exthdr[i].ol_bit; 555 1.1 christos break; 556 1.1 christos } 557 1.1 christos go = 0; 558 1.1 christos break; 559 1.1 christos 560 1.1 christos case IPPROTO_NONE : 561 1.1 christos go = 0; 562 1.1 christos break; 563 1.1 christos 564 1.1 christos case IPPROTO_FRAGMENT : 565 1.1 christos p = ipf_pr_fragment6(fin); 566 1.1 christos /* 567 1.1 christos * Given that the only fragments we want to let through 568 1.1 christos * (where fin_off != 0) are those where the non-first 569 1.1 christos * fragments only have data, we can safely stop looking 570 1.1 christos * at headers if this is a non-leading fragment. 571 1.1 christos */ 572 1.1 christos if (fin->fin_off != 0) 573 1.1 christos go = 0; 574 1.1 christos break; 575 1.1 christos 576 1.1 christos default : 577 1.1 christos go = 0; 578 1.1 christos break; 579 1.1 christos } 580 1.1 christos hdrcount++; 581 1.1 christos 582 1.1 christos /* 583 1.1 christos * It is important to note that at this point, for the 584 1.1 christos * extension headers (go != 0), the entire header may not have 585 1.1 christos * been pulled up when the code gets to this point. This is 586 1.1 christos * only done for "go != 0" because the other header handlers 587 1.1 christos * will all pullup their complete header. The other indicator 588 1.1 christos * of an incomplete packet is that this was just an extension 589 1.1 christos * header. 590 1.1 christos */ 591 1.1 christos if ((go != 0) && (p != IPPROTO_NONE) && 592 1.1 christos (ipf_pr_pullup(fin, 0) == -1)) { 593 1.1 christos p = IPPROTO_NONE; 594 1.1 christos break; 595 1.1 christos } 596 1.1 christos } 597 1.1 christos 598 1.1 christos /* 599 1.1 christos * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup 600 1.1 christos * and destroy whatever packet was here. The caller of this function 601 1.1 christos * expects us to return if there is a problem with ipf_pullup. 602 1.1 christos */ 603 1.1 christos if (fin->fin_m == NULL) { 604 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 605 1.1 christos 606 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad); 607 1.1 christos return; 608 1.1 christos } 609 1.1 christos 610 1.1 christos fi->fi_p = p; 611 1.1 christos 612 1.1 christos /* 613 1.1 christos * IPv6 fragment case 1 - see comment for ipf_pr_fragment6(). 614 1.34 msaitoh * "go != 0" implies the above loop hasn't arrived at a layer 4 header. 615 1.1 christos */ 616 1.1 christos if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) { 617 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 618 1.1 christos 619 1.1 christos fin->fin_flx |= FI_BAD; 620 1.19 christos DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go); 621 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag); 622 1.1 christos LBUMP(ipf_stats[fin->fin_out].fr_v6_bad); 623 1.1 christos } 624 1.1 christos } 625 1.1 christos 626 1.1 christos 627 1.1 christos /* ------------------------------------------------------------------------ */ 628 1.1 christos /* Function: ipf_pr_ipv6exthdr */ 629 1.1 christos /* Returns: struct ip6_ext * - pointer to the start of the next header */ 630 1.1 christos /* or NULL if there is a prolblem. */ 631 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 632 1.1 christos /* multiple(I) - flag indicating yes/no if multiple occurances */ 633 1.1 christos /* of this extension header are allowed. */ 634 1.1 christos /* proto(I) - protocol number for this extension header */ 635 1.1 christos /* */ 636 1.1 christos /* IPv6 Only */ 637 1.1 christos /* This function embodies a number of common checks that all IPv6 extension */ 638 1.1 christos /* headers must be subjected to. For example, making sure the packet is */ 639 1.1 christos /* big enough for it to be in, checking if it is repeated and setting a */ 640 1.1 christos /* flag to indicate its presence. */ 641 1.1 christos /* ------------------------------------------------------------------------ */ 642 1.1 christos static INLINE struct ip6_ext * 643 1.2 christos ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto) 644 1.1 christos { 645 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 646 1.1 christos struct ip6_ext *hdr; 647 1.1 christos u_short shift; 648 1.1 christos int i; 649 1.1 christos 650 1.1 christos fin->fin_flx |= FI_V6EXTHDR; 651 1.1 christos 652 1.1 christos /* 8 is default length of extension hdr */ 653 1.1 christos if ((fin->fin_dlen - 8) < 0) { 654 1.1 christos fin->fin_flx |= FI_SHORT; 655 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short); 656 1.1 christos return NULL; 657 1.1 christos } 658 1.1 christos 659 1.1 christos if (ipf_pr_pullup(fin, 8) == -1) { 660 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup); 661 1.1 christos return NULL; 662 1.1 christos } 663 1.1 christos 664 1.1 christos hdr = fin->fin_dp; 665 1.1 christos switch (proto) 666 1.1 christos { 667 1.1 christos case IPPROTO_FRAGMENT : 668 1.1 christos shift = 8; 669 1.1 christos break; 670 1.1 christos default : 671 1.1 christos shift = 8 + (hdr->ip6e_len << 3); 672 1.1 christos break; 673 1.1 christos } 674 1.1 christos 675 1.1 christos if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 676 1.1 christos fin->fin_flx |= FI_BAD; 677 1.19 christos DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen); 678 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen); 679 1.1 christos return NULL; 680 1.1 christos } 681 1.1 christos 682 1.1 christos fin->fin_dp = (char *)fin->fin_dp + shift; 683 1.1 christos fin->fin_dlen -= shift; 684 1.1 christos 685 1.1 christos /* 686 1.1 christos * If we have seen a fragment header, do not set any flags to indicate 687 1.1 christos * the presence of this extension header as it has no impact on the 688 1.1 christos * end result until after it has been defragmented. 689 1.1 christos */ 690 1.1 christos if (fin->fin_flx & FI_FRAG) 691 1.1 christos return hdr; 692 1.1 christos 693 1.1 christos for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 694 1.1 christos if (ip6exthdr[i].ol_val == proto) { 695 1.1 christos /* 696 1.1 christos * Most IPv6 extension headers are only allowed once. 697 1.1 christos */ 698 1.1 christos if ((multiple == 0) && 699 1.19 christos ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) { 700 1.1 christos fin->fin_flx |= FI_BAD; 701 1.19 christos DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit)); 702 1.19 christos } else 703 1.1 christos fin->fin_optmsk |= ip6exthdr[i].ol_bit; 704 1.1 christos break; 705 1.1 christos } 706 1.1 christos 707 1.1 christos return hdr; 708 1.1 christos } 709 1.1 christos 710 1.1 christos 711 1.1 christos /* ------------------------------------------------------------------------ */ 712 1.1 christos /* Function: ipf_pr_hopopts6 */ 713 1.1 christos /* Returns: int - value of the next header or IPPROTO_NONE if error */ 714 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 715 1.1 christos /* */ 716 1.1 christos /* IPv6 Only */ 717 1.1 christos /* This is function checks pending hop by hop options extension header */ 718 1.1 christos /* ------------------------------------------------------------------------ */ 719 1.1 christos static INLINE int 720 1.2 christos ipf_pr_hopopts6(fr_info_t *fin) 721 1.1 christos { 722 1.1 christos struct ip6_ext *hdr; 723 1.1 christos 724 1.1 christos hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 725 1.1 christos if (hdr == NULL) 726 1.1 christos return IPPROTO_NONE; 727 1.1 christos return hdr->ip6e_nxt; 728 1.1 christos } 729 1.1 christos 730 1.1 christos 731 1.1 christos /* ------------------------------------------------------------------------ */ 732 1.1 christos /* Function: ipf_pr_mobility6 */ 733 1.1 christos /* Returns: int - value of the next header or IPPROTO_NONE if error */ 734 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 735 1.1 christos /* */ 736 1.1 christos /* IPv6 Only */ 737 1.1 christos /* This is function checks the IPv6 mobility extension header */ 738 1.1 christos /* ------------------------------------------------------------------------ */ 739 1.1 christos static INLINE int 740 1.2 christos ipf_pr_mobility6(fr_info_t *fin) 741 1.1 christos { 742 1.1 christos struct ip6_ext *hdr; 743 1.1 christos 744 1.1 christos hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY); 745 1.1 christos if (hdr == NULL) 746 1.1 christos return IPPROTO_NONE; 747 1.1 christos return hdr->ip6e_nxt; 748 1.1 christos } 749 1.1 christos 750 1.1 christos 751 1.1 christos /* ------------------------------------------------------------------------ */ 752 1.1 christos /* Function: ipf_pr_routing6 */ 753 1.1 christos /* Returns: int - value of the next header or IPPROTO_NONE if error */ 754 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 755 1.1 christos /* */ 756 1.1 christos /* IPv6 Only */ 757 1.1 christos /* This is function checks pending routing extension header */ 758 1.1 christos /* ------------------------------------------------------------------------ */ 759 1.1 christos static INLINE int 760 1.2 christos ipf_pr_routing6(fr_info_t *fin) 761 1.1 christos { 762 1.1 christos struct ip6_routing *hdr; 763 1.1 christos 764 1.1 christos hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING); 765 1.1 christos if (hdr == NULL) 766 1.1 christos return IPPROTO_NONE; 767 1.1 christos 768 1.1 christos switch (hdr->ip6r_type) 769 1.1 christos { 770 1.1 christos case 0 : 771 1.1 christos /* 772 1.1 christos * Nasty extension header length? 773 1.1 christos */ 774 1.1 christos if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) || 775 1.1 christos (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) { 776 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 777 1.1 christos 778 1.1 christos fin->fin_flx |= FI_BAD; 779 1.19 christos DT1(ipf_fi_bad_routing6, fr_info_t *, fin); 780 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad); 781 1.1 christos return IPPROTO_NONE; 782 1.1 christos } 783 1.1 christos break; 784 1.1 christos 785 1.1 christos default : 786 1.1 christos break; 787 1.1 christos } 788 1.1 christos 789 1.1 christos return hdr->ip6r_nxt; 790 1.1 christos } 791 1.1 christos 792 1.1 christos 793 1.1 christos /* ------------------------------------------------------------------------ */ 794 1.1 christos /* Function: ipf_pr_fragment6 */ 795 1.1 christos /* Returns: int - value of the next header or IPPROTO_NONE if error */ 796 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 797 1.1 christos /* */ 798 1.1 christos /* IPv6 Only */ 799 1.1 christos /* Examine the IPv6 fragment header and extract fragment offset information.*/ 800 1.1 christos /* */ 801 1.1 christos /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */ 802 1.1 christos /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */ 803 1.1 christos /* packets with a fragment header can fit into. They are as follows: */ 804 1.1 christos /* */ 805 1.1 christos /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */ 806 1.1 christos /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */ 807 1.1 christos /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */ 808 1.1 christos /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */ 809 1.1 christos /* 5. [IPV6][0-n EH][FH][data] */ 810 1.1 christos /* */ 811 1.1 christos /* IPV6 = IPv6 header, FH = Fragment Header, */ 812 1.1 christos /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */ 813 1.1 christos /* */ 814 1.1 christos /* Packets that match 1, 2, 3 will be dropped as the only reasonable */ 815 1.1 christos /* scenario in which they happen is in extreme circumstances that are most */ 816 1.1 christos /* likely to be an indication of an attack rather than normal traffic. */ 817 1.1 christos /* A type 3 packet may be sent by an attacked after a type 4 packet. There */ 818 1.1 christos /* are two rules that can be used to guard against type 3 packets: L4 */ 819 1.1 christos /* headers must always be in a packet that has the offset field set to 0 */ 820 1.1 christos /* and no packet is allowed to overlay that where offset = 0. */ 821 1.1 christos /* ------------------------------------------------------------------------ */ 822 1.1 christos static INLINE int 823 1.2 christos ipf_pr_fragment6(fr_info_t *fin) 824 1.1 christos { 825 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 826 1.1 christos struct ip6_frag *frag; 827 1.1 christos 828 1.1 christos fin->fin_flx |= FI_FRAG; 829 1.1 christos 830 1.1 christos frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT); 831 1.1 christos if (frag == NULL) { 832 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad); 833 1.1 christos return IPPROTO_NONE; 834 1.1 christos } 835 1.1 christos 836 1.1 christos if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) { 837 1.1 christos /* 838 1.1 christos * Any fragment that isn't the last fragment must have its 839 1.1 christos * length as a multiple of 8. 840 1.1 christos */ 841 1.19 christos if ((fin->fin_plen & 7) != 0) { 842 1.1 christos fin->fin_flx |= FI_BAD; 843 1.19 christos DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7)); 844 1.19 christos } 845 1.1 christos } 846 1.1 christos 847 1.1 christos fin->fin_fraghdr = frag; 848 1.1 christos fin->fin_id = frag->ip6f_ident; 849 1.1 christos fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK); 850 1.1 christos if (fin->fin_off != 0) 851 1.1 christos fin->fin_flx |= FI_FRAGBODY; 852 1.1 christos 853 1.1 christos /* 854 1.1 christos * Jumbograms aren't handled, so the max. length is 64k 855 1.1 christos */ 856 1.19 christos if ((fin->fin_off << 3) + fin->fin_dlen > 65535) { 857 1.1 christos fin->fin_flx |= FI_BAD; 858 1.19 christos DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen)); 859 1.19 christos } 860 1.1 christos 861 1.1 christos /* 862 1.1 christos * We don't know where the transport layer header (or whatever is next 863 1.1 christos * is), as it could be behind destination options (amongst others) so 864 1.1 christos * return the fragment header as the type of packet this is. Note that 865 1.1 christos * this effectively disables the fragment cache for > 1 protocol at a 866 1.1 christos * time. 867 1.1 christos */ 868 1.1 christos return frag->ip6f_nxt; 869 1.1 christos } 870 1.1 christos 871 1.1 christos 872 1.1 christos /* ------------------------------------------------------------------------ */ 873 1.1 christos /* Function: ipf_pr_dstopts6 */ 874 1.1 christos /* Returns: int - value of the next header or IPPROTO_NONE if error */ 875 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 876 1.1 christos /* */ 877 1.1 christos /* IPv6 Only */ 878 1.1 christos /* This is function checks pending destination options extension header */ 879 1.1 christos /* ------------------------------------------------------------------------ */ 880 1.1 christos static INLINE int 881 1.2 christos ipf_pr_dstopts6(fr_info_t *fin) 882 1.1 christos { 883 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 884 1.1 christos struct ip6_ext *hdr; 885 1.1 christos 886 1.1 christos hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS); 887 1.1 christos if (hdr == NULL) { 888 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad); 889 1.1 christos return IPPROTO_NONE; 890 1.1 christos } 891 1.1 christos return hdr->ip6e_nxt; 892 1.1 christos } 893 1.1 christos 894 1.1 christos 895 1.1 christos /* ------------------------------------------------------------------------ */ 896 1.1 christos /* Function: ipf_pr_icmp6 */ 897 1.1 christos /* Returns: void */ 898 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 899 1.1 christos /* */ 900 1.1 christos /* IPv6 Only */ 901 1.1 christos /* This routine is mainly concerned with determining the minimum valid size */ 902 1.1 christos /* for an ICMPv6 packet. */ 903 1.1 christos /* ------------------------------------------------------------------------ */ 904 1.1 christos static INLINE void 905 1.2 christos ipf_pr_icmp6(fr_info_t *fin) 906 1.1 christos { 907 1.1 christos int minicmpsz = sizeof(struct icmp6_hdr); 908 1.1 christos struct icmp6_hdr *icmp6; 909 1.1 christos 910 1.1 christos if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) { 911 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 912 1.1 christos 913 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup); 914 1.1 christos return; 915 1.1 christos } 916 1.1 christos 917 1.1 christos if (fin->fin_dlen > 1) { 918 1.1 christos ip6_t *ip6; 919 1.1 christos 920 1.1 christos icmp6 = fin->fin_dp; 921 1.1 christos 922 1.1 christos fin->fin_data[0] = *(u_short *)icmp6; 923 1.1 christos 924 1.1 christos if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) 925 1.1 christos fin->fin_flx |= FI_ICMPQUERY; 926 1.1 christos 927 1.1 christos switch (icmp6->icmp6_type) 928 1.1 christos { 929 1.1 christos case ICMP6_ECHO_REPLY : 930 1.1 christos case ICMP6_ECHO_REQUEST : 931 1.1 christos if (fin->fin_dlen >= 6) 932 1.1 christos fin->fin_data[1] = icmp6->icmp6_id; 933 1.1 christos minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 934 1.1 christos break; 935 1.1 christos 936 1.1 christos case ICMP6_DST_UNREACH : 937 1.1 christos case ICMP6_PACKET_TOO_BIG : 938 1.1 christos case ICMP6_TIME_EXCEEDED : 939 1.1 christos case ICMP6_PARAM_PROB : 940 1.1 christos fin->fin_flx |= FI_ICMPERR; 941 1.1 christos minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 942 1.1 christos if (fin->fin_plen < ICMP6ERR_IPICMPHLEN) 943 1.1 christos break; 944 1.1 christos 945 1.1 christos if (M_LEN(fin->fin_m) < fin->fin_plen) { 946 1.1 christos if (ipf_coalesce(fin) != 1) 947 1.1 christos return; 948 1.1 christos } 949 1.1 christos 950 1.1 christos if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1) 951 1.1 christos return; 952 1.1 christos 953 1.1 christos /* 954 1.1 christos * If the destination of this packet doesn't match the 955 1.1 christos * source of the original packet then this packet is 956 1.1 christos * not correct. 957 1.1 christos */ 958 1.1 christos icmp6 = fin->fin_dp; 959 1.1 christos ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN); 960 1.1 christos if (IP6_NEQ(&fin->fin_fi.fi_dst, 961 1.19 christos &ip6->ip6_src)) { 962 1.1 christos fin->fin_flx |= FI_BAD; 963 1.19 christos DT1(ipf_fi_bad_icmp6, fr_info_t *, fin); 964 1.19 christos } 965 1.1 christos break; 966 1.1 christos default : 967 1.1 christos break; 968 1.1 christos } 969 1.1 christos } 970 1.1 christos 971 1.1 christos ipf_pr_short6(fin, minicmpsz); 972 1.3 darrenr if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) { 973 1.3 darrenr u_char p = fin->fin_p; 974 1.3 darrenr 975 1.3 darrenr fin->fin_p = IPPROTO_ICMPV6; 976 1.3 darrenr ipf_checkv6sum(fin); 977 1.3 darrenr fin->fin_p = p; 978 1.3 darrenr } 979 1.1 christos } 980 1.1 christos 981 1.1 christos 982 1.1 christos /* ------------------------------------------------------------------------ */ 983 1.1 christos /* Function: ipf_pr_udp6 */ 984 1.1 christos /* Returns: void */ 985 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 986 1.1 christos /* */ 987 1.1 christos /* IPv6 Only */ 988 1.1 christos /* Analyse the packet for IPv6/UDP properties. */ 989 1.1 christos /* Is not expected to be called for fragmented packets. */ 990 1.1 christos /* ------------------------------------------------------------------------ */ 991 1.1 christos static INLINE void 992 1.2 christos ipf_pr_udp6(fr_info_t *fin) 993 1.1 christos { 994 1.1 christos 995 1.1 christos if (ipf_pr_udpcommon(fin) == 0) { 996 1.1 christos u_char p = fin->fin_p; 997 1.1 christos 998 1.1 christos fin->fin_p = IPPROTO_UDP; 999 1.1 christos ipf_checkv6sum(fin); 1000 1.1 christos fin->fin_p = p; 1001 1.1 christos } 1002 1.1 christos } 1003 1.1 christos 1004 1.1 christos 1005 1.1 christos /* ------------------------------------------------------------------------ */ 1006 1.1 christos /* Function: ipf_pr_tcp6 */ 1007 1.1 christos /* Returns: void */ 1008 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1009 1.1 christos /* */ 1010 1.1 christos /* IPv6 Only */ 1011 1.1 christos /* Analyse the packet for IPv6/TCP properties. */ 1012 1.1 christos /* Is not expected to be called for fragmented packets. */ 1013 1.1 christos /* ------------------------------------------------------------------------ */ 1014 1.1 christos static INLINE void 1015 1.2 christos ipf_pr_tcp6(fr_info_t *fin) 1016 1.1 christos { 1017 1.1 christos 1018 1.1 christos if (ipf_pr_tcpcommon(fin) == 0) { 1019 1.1 christos u_char p = fin->fin_p; 1020 1.1 christos 1021 1.3 darrenr fin->fin_p = IPPROTO_TCP; 1022 1.1 christos ipf_checkv6sum(fin); 1023 1.1 christos fin->fin_p = p; 1024 1.1 christos } 1025 1.1 christos } 1026 1.1 christos 1027 1.1 christos 1028 1.1 christos /* ------------------------------------------------------------------------ */ 1029 1.1 christos /* Function: ipf_pr_esp6 */ 1030 1.1 christos /* Returns: void */ 1031 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1032 1.1 christos /* */ 1033 1.1 christos /* IPv6 Only */ 1034 1.1 christos /* Analyse the packet for ESP properties. */ 1035 1.1 christos /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1036 1.1 christos /* even though the newer ESP packets must also have a sequence number that */ 1037 1.1 christos /* is 32bits as well, it is not possible(?) to determine the version from a */ 1038 1.1 christos /* simple packet header. */ 1039 1.1 christos /* ------------------------------------------------------------------------ */ 1040 1.1 christos static INLINE void 1041 1.2 christos ipf_pr_esp6(fr_info_t *fin) 1042 1.1 christos { 1043 1.1 christos 1044 1.1 christos if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) { 1045 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1046 1.1 christos 1047 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup); 1048 1.1 christos return; 1049 1.1 christos } 1050 1.1 christos } 1051 1.1 christos 1052 1.1 christos 1053 1.1 christos /* ------------------------------------------------------------------------ */ 1054 1.1 christos /* Function: ipf_pr_ah6 */ 1055 1.1 christos /* Returns: int - value of the next header or IPPROTO_NONE if error */ 1056 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1057 1.1 christos /* */ 1058 1.1 christos /* IPv6 Only */ 1059 1.1 christos /* Analyse the packet for AH properties. */ 1060 1.1 christos /* The minimum length is taken to be the combination of all fields in the */ 1061 1.1 christos /* header being present and no authentication data (null algorithm used.) */ 1062 1.1 christos /* ------------------------------------------------------------------------ */ 1063 1.1 christos static INLINE int 1064 1.2 christos ipf_pr_ah6(fr_info_t *fin) 1065 1.1 christos { 1066 1.1 christos authhdr_t *ah; 1067 1.1 christos 1068 1.1 christos fin->fin_flx |= FI_AH; 1069 1.1 christos 1070 1.1 christos ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 1071 1.1 christos if (ah == NULL) { 1072 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1073 1.1 christos 1074 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad); 1075 1.1 christos return IPPROTO_NONE; 1076 1.1 christos } 1077 1.1 christos 1078 1.1 christos ipf_pr_short6(fin, sizeof(*ah)); 1079 1.1 christos 1080 1.1 christos /* 1081 1.1 christos * No need for another pullup, ipf_pr_ipv6exthdr() will pullup 1082 1.1 christos * enough data to satisfy ah_next (the very first one.) 1083 1.1 christos */ 1084 1.1 christos return ah->ah_next; 1085 1.1 christos } 1086 1.1 christos 1087 1.1 christos 1088 1.1 christos /* ------------------------------------------------------------------------ */ 1089 1.1 christos /* Function: ipf_pr_gre6 */ 1090 1.1 christos /* Returns: void */ 1091 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1092 1.1 christos /* */ 1093 1.1 christos /* Analyse the packet for GRE properties. */ 1094 1.1 christos /* ------------------------------------------------------------------------ */ 1095 1.1 christos static INLINE void 1096 1.2 christos ipf_pr_gre6(fr_info_t *fin) 1097 1.1 christos { 1098 1.1 christos grehdr_t *gre; 1099 1.1 christos 1100 1.1 christos if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { 1101 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1102 1.1 christos 1103 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup); 1104 1.1 christos return; 1105 1.1 christos } 1106 1.1 christos 1107 1.1 christos gre = fin->fin_dp; 1108 1.1 christos if (GRE_REV(gre->gr_flags) == 1) 1109 1.1 christos fin->fin_data[0] = gre->gr_call; 1110 1.1 christos } 1111 1.1 christos #endif /* USE_INET6 */ 1112 1.1 christos 1113 1.1 christos 1114 1.1 christos /* ------------------------------------------------------------------------ */ 1115 1.1 christos /* Function: ipf_pr_pullup */ 1116 1.1 christos /* Returns: int - 0 == pullup succeeded, -1 == failure */ 1117 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1118 1.1 christos /* plen(I) - length (excluding L3 header) to pullup */ 1119 1.1 christos /* */ 1120 1.1 christos /* Short inline function to cut down on code duplication to perform a call */ 1121 1.1 christos /* to ipf_pullup to ensure there is the required amount of data, */ 1122 1.1 christos /* consecutively in the packet buffer. */ 1123 1.1 christos /* */ 1124 1.1 christos /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */ 1125 1.1 christos /* points to the first byte after the complete layer 3 header, which will */ 1126 1.1 christos /* include all of the known extension headers for IPv6 or options for IPv4. */ 1127 1.1 christos /* */ 1128 1.1 christos /* Since fr_pullup() expects the total length of bytes to be pulled up, it */ 1129 1.1 christos /* is necessary to add those we can already assume to be pulled up (fin_dp */ 1130 1.1 christos /* - fin_ip) to what is passed through. */ 1131 1.1 christos /* ------------------------------------------------------------------------ */ 1132 1.1 christos int 1133 1.2 christos ipf_pr_pullup(fr_info_t *fin, int plen) 1134 1.1 christos { 1135 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1136 1.1 christos 1137 1.1 christos if (fin->fin_m != NULL) { 1138 1.1 christos if (fin->fin_dp != NULL) 1139 1.1 christos plen += (char *)fin->fin_dp - 1140 1.1 christos ((char *)fin->fin_ip + fin->fin_hlen); 1141 1.1 christos plen += fin->fin_hlen; 1142 1.3 darrenr if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) { 1143 1.1 christos #if defined(_KERNEL) 1144 1.1 christos if (ipf_pullup(fin->fin_m, fin, plen) == NULL) { 1145 1.36 christos DT1(ipf_pullup_fail, fr_info_t *, fin); 1146 1.1 christos LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); 1147 1.36 christos fin->fin_reason = FRB_PULLUP; 1148 1.36 christos fin->fin_flx |= FI_BAD; 1149 1.1 christos return -1; 1150 1.1 christos } 1151 1.1 christos LBUMP(ipf_stats[fin->fin_out].fr_pull[0]); 1152 1.1 christos #else 1153 1.1 christos LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); 1154 1.1 christos /* 1155 1.1 christos * Fake ipf_pullup failing 1156 1.1 christos */ 1157 1.1 christos fin->fin_reason = FRB_PULLUP; 1158 1.1 christos *fin->fin_mp = NULL; 1159 1.1 christos fin->fin_m = NULL; 1160 1.1 christos fin->fin_ip = NULL; 1161 1.36 christos fin->fin_flx |= FI_BAD; 1162 1.1 christos return -1; 1163 1.1 christos #endif 1164 1.1 christos } 1165 1.1 christos } 1166 1.1 christos return 0; 1167 1.1 christos } 1168 1.1 christos 1169 1.1 christos 1170 1.1 christos /* ------------------------------------------------------------------------ */ 1171 1.1 christos /* Function: ipf_pr_short */ 1172 1.1 christos /* Returns: void */ 1173 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1174 1.1 christos /* xmin(I) - minimum header size */ 1175 1.1 christos /* */ 1176 1.1 christos /* Check if a packet is "short" as defined by xmin. The rule we are */ 1177 1.1 christos /* applying here is that the packet must not be fragmented within the layer */ 1178 1.1 christos /* 4 header. That is, it must not be a fragment that has its offset set to */ 1179 1.1 christos /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 1180 1.1 christos /* entire layer 4 header must be present (min). */ 1181 1.1 christos /* ------------------------------------------------------------------------ */ 1182 1.1 christos static INLINE void 1183 1.2 christos ipf_pr_short(fr_info_t *fin, int xmin) 1184 1.1 christos { 1185 1.1 christos 1186 1.1 christos if (fin->fin_off == 0) { 1187 1.1 christos if (fin->fin_dlen < xmin) 1188 1.1 christos fin->fin_flx |= FI_SHORT; 1189 1.1 christos } else if (fin->fin_off < xmin) { 1190 1.1 christos fin->fin_flx |= FI_SHORT; 1191 1.1 christos } 1192 1.1 christos } 1193 1.1 christos 1194 1.1 christos 1195 1.1 christos /* ------------------------------------------------------------------------ */ 1196 1.1 christos /* Function: ipf_pr_icmp */ 1197 1.1 christos /* Returns: void */ 1198 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1199 1.1 christos /* */ 1200 1.1 christos /* IPv4 Only */ 1201 1.1 christos /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 1202 1.1 christos /* except extrememly bad packets, both type and code will be present. */ 1203 1.1 christos /* The expected minimum size of an ICMP packet is very much dependent on */ 1204 1.1 christos /* the type of it. */ 1205 1.1 christos /* */ 1206 1.1 christos /* XXX - other ICMP sanity checks? */ 1207 1.1 christos /* ------------------------------------------------------------------------ */ 1208 1.1 christos static INLINE void 1209 1.2 christos ipf_pr_icmp(fr_info_t *fin) 1210 1.1 christos { 1211 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1212 1.1 christos int minicmpsz = sizeof(struct icmp); 1213 1.1 christos icmphdr_t *icmp; 1214 1.1 christos ip_t *oip; 1215 1.1 christos 1216 1.1 christos ipf_pr_short(fin, ICMPERR_ICMPHLEN); 1217 1.1 christos 1218 1.1 christos if (fin->fin_off != 0) { 1219 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag); 1220 1.1 christos return; 1221 1.1 christos } 1222 1.1 christos 1223 1.1 christos if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) { 1224 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup); 1225 1.1 christos return; 1226 1.1 christos } 1227 1.1 christos 1228 1.1 christos icmp = fin->fin_dp; 1229 1.1 christos 1230 1.1 christos fin->fin_data[0] = *(u_short *)icmp; 1231 1.1 christos fin->fin_data[1] = icmp->icmp_id; 1232 1.1 christos 1233 1.1 christos switch (icmp->icmp_type) 1234 1.1 christos { 1235 1.1 christos case ICMP_ECHOREPLY : 1236 1.1 christos case ICMP_ECHO : 1237 1.1 christos /* Router discovery messaes - RFC 1256 */ 1238 1.1 christos case ICMP_ROUTERADVERT : 1239 1.1 christos case ICMP_ROUTERSOLICIT : 1240 1.1 christos fin->fin_flx |= FI_ICMPQUERY; 1241 1.1 christos minicmpsz = ICMP_MINLEN; 1242 1.1 christos break; 1243 1.1 christos /* 1244 1.1 christos * type(1) + code(1) + cksum(2) + id(2) seq(2) + 1245 1.1 christos * 3 * timestamp(3 * 4) 1246 1.1 christos */ 1247 1.1 christos case ICMP_TSTAMP : 1248 1.1 christos case ICMP_TSTAMPREPLY : 1249 1.1 christos fin->fin_flx |= FI_ICMPQUERY; 1250 1.1 christos minicmpsz = 20; 1251 1.1 christos break; 1252 1.1 christos /* 1253 1.1 christos * type(1) + code(1) + cksum(2) + id(2) seq(2) + 1254 1.1 christos * mask(4) 1255 1.1 christos */ 1256 1.1 christos case ICMP_IREQ : 1257 1.1 christos case ICMP_IREQREPLY : 1258 1.1 christos case ICMP_MASKREQ : 1259 1.1 christos case ICMP_MASKREPLY : 1260 1.1 christos fin->fin_flx |= FI_ICMPQUERY; 1261 1.1 christos minicmpsz = 12; 1262 1.1 christos break; 1263 1.1 christos /* 1264 1.1 christos * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 1265 1.1 christos */ 1266 1.1 christos case ICMP_UNREACH : 1267 1.1 christos #ifdef icmp_nextmtu 1268 1.1 christos if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 1269 1.19 christos if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) { 1270 1.1 christos fin->fin_flx |= FI_BAD; 1271 1.19 christos DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu); 1272 1.19 christos } 1273 1.1 christos } 1274 1.1 christos #endif 1275 1.25 mrg /* FALLTHROUGH */ 1276 1.1 christos case ICMP_SOURCEQUENCH : 1277 1.1 christos case ICMP_REDIRECT : 1278 1.1 christos case ICMP_TIMXCEED : 1279 1.1 christos case ICMP_PARAMPROB : 1280 1.1 christos fin->fin_flx |= FI_ICMPERR; 1281 1.1 christos if (ipf_coalesce(fin) != 1) { 1282 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce); 1283 1.1 christos return; 1284 1.1 christos } 1285 1.1 christos 1286 1.1 christos /* 1287 1.1 christos * ICMP error packets should not be generated for IP 1288 1.1 christos * packets that are a fragment that isn't the first 1289 1.1 christos * fragment. 1290 1.1 christos */ 1291 1.1 christos oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1292 1.19 christos if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) { 1293 1.1 christos fin->fin_flx |= FI_BAD; 1294 1.19 christos DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK)); 1295 1.19 christos } 1296 1.1 christos 1297 1.1 christos /* 1298 1.1 christos * If the destination of this packet doesn't match the 1299 1.1 christos * source of the original packet then this packet is 1300 1.1 christos * not correct. 1301 1.1 christos */ 1302 1.19 christos if (oip->ip_src.s_addr != fin->fin_daddr) { 1303 1.1 christos fin->fin_flx |= FI_BAD; 1304 1.19 christos DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin); 1305 1.19 christos } 1306 1.1 christos break; 1307 1.1 christos default : 1308 1.1 christos break; 1309 1.1 christos } 1310 1.1 christos 1311 1.1 christos ipf_pr_short(fin, minicmpsz); 1312 1.1 christos 1313 1.1 christos ipf_checkv4sum(fin); 1314 1.1 christos } 1315 1.1 christos 1316 1.1 christos 1317 1.1 christos /* ------------------------------------------------------------------------ */ 1318 1.1 christos /* Function: ipf_pr_tcpcommon */ 1319 1.1 christos /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */ 1320 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1321 1.1 christos /* */ 1322 1.1 christos /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1323 1.1 christos /* and make some checks with how they interact with other fields. */ 1324 1.1 christos /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1325 1.1 christos /* valid and mark the packet as bad if not. */ 1326 1.1 christos /* ------------------------------------------------------------------------ */ 1327 1.1 christos static INLINE int 1328 1.2 christos ipf_pr_tcpcommon(fr_info_t *fin) 1329 1.1 christos { 1330 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1331 1.1 christos int flags, tlen; 1332 1.1 christos tcphdr_t *tcp; 1333 1.1 christos 1334 1.1 christos fin->fin_flx |= FI_TCPUDP; 1335 1.1 christos if (fin->fin_off != 0) { 1336 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag); 1337 1.1 christos return 0; 1338 1.1 christos } 1339 1.1 christos 1340 1.1 christos if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) { 1341 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); 1342 1.1 christos return -1; 1343 1.1 christos } 1344 1.1 christos 1345 1.1 christos tcp = fin->fin_dp; 1346 1.1 christos if (fin->fin_dlen > 3) { 1347 1.1 christos fin->fin_sport = ntohs(tcp->th_sport); 1348 1.1 christos fin->fin_dport = ntohs(tcp->th_dport); 1349 1.1 christos } 1350 1.1 christos 1351 1.1 christos if ((fin->fin_flx & FI_SHORT) != 0) { 1352 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short); 1353 1.1 christos return 1; 1354 1.1 christos } 1355 1.1 christos 1356 1.1 christos /* 1357 1.1 christos * Use of the TCP data offset *must* result in a value that is at 1358 1.1 christos * least the same size as the TCP header. 1359 1.1 christos */ 1360 1.1 christos tlen = TCP_OFF(tcp) << 2; 1361 1.1 christos if (tlen < sizeof(tcphdr_t)) { 1362 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small); 1363 1.1 christos fin->fin_flx |= FI_BAD; 1364 1.19 christos DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t)); 1365 1.1 christos return 1; 1366 1.1 christos } 1367 1.1 christos 1368 1.1 christos flags = tcp->th_flags; 1369 1.1 christos fin->fin_tcpf = tcp->th_flags; 1370 1.1 christos 1371 1.1 christos /* 1372 1.1 christos * If the urgent flag is set, then the urgent pointer must 1373 1.1 christos * also be set and vice versa. Good TCP packets do not have 1374 1.1 christos * just one of these set. 1375 1.1 christos */ 1376 1.1 christos if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1377 1.1 christos fin->fin_flx |= FI_BAD; 1378 1.19 christos DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp); 1379 1.1 christos #if 0 1380 1.1 christos } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1381 1.1 christos /* 1382 1.1 christos * Ignore this case (#if 0) as it shows up in "real" 1383 1.1 christos * traffic with bogus values in the urgent pointer field. 1384 1.1 christos */ 1385 1.1 christos fin->fin_flx |= FI_BAD; 1386 1.19 christos DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp); 1387 1.1 christos #endif 1388 1.1 christos } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1389 1.1 christos ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1390 1.1 christos /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1391 1.1 christos fin->fin_flx |= FI_BAD; 1392 1.19 christos DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin); 1393 1.1 christos #if 1 1394 1.1 christos } else if (((flags & TH_SYN) != 0) && 1395 1.1 christos ((flags & (TH_URG|TH_PUSH)) != 0)) { 1396 1.1 christos /* 1397 1.1 christos * SYN with URG and PUSH set is not for normal TCP but it is 1398 1.1 christos * possible(?) with T/TCP...but who uses T/TCP? 1399 1.1 christos */ 1400 1.1 christos fin->fin_flx |= FI_BAD; 1401 1.19 christos DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin); 1402 1.1 christos #endif 1403 1.1 christos } else if (!(flags & TH_ACK)) { 1404 1.1 christos /* 1405 1.1 christos * If the ack bit isn't set, then either the SYN or 1406 1.1 christos * RST bit must be set. If the SYN bit is set, then 1407 1.1 christos * we expect the ACK field to be 0. If the ACK is 1408 1.1 christos * not set and if URG, PSH or FIN are set, consdier 1409 1.1 christos * that to indicate a bad TCP packet. 1410 1.1 christos */ 1411 1.1 christos if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1412 1.1 christos /* 1413 1.1 christos * Cisco PIX sets the ACK field to a random value. 1414 1.1 christos * In light of this, do not set FI_BAD until a patch 1415 1.1 christos * is available from Cisco to ensure that 1416 1.1 christos * interoperability between existing systems is 1417 1.1 christos * achieved. 1418 1.1 christos */ 1419 1.1 christos /*fin->fin_flx |= FI_BAD*/; 1420 1.19 christos /*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/ 1421 1.1 christos } else if (!(flags & (TH_RST|TH_SYN))) { 1422 1.1 christos fin->fin_flx |= FI_BAD; 1423 1.19 christos DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin); 1424 1.1 christos } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1425 1.1 christos fin->fin_flx |= FI_BAD; 1426 1.19 christos DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin); 1427 1.1 christos } 1428 1.1 christos } 1429 1.1 christos if (fin->fin_flx & FI_BAD) { 1430 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags); 1431 1.1 christos return 1; 1432 1.1 christos } 1433 1.1 christos 1434 1.1 christos /* 1435 1.1 christos * At this point, it's not exactly clear what is to be gained by 1436 1.1 christos * marking up which TCP options are and are not present. The one we 1437 1.1 christos * are most interested in is the TCP window scale. This is only in 1438 1.1 christos * a SYN packet [RFC1323] so we don't need this here...? 1439 1.1 christos * Now if we were to analyse the header for passive fingerprinting, 1440 1.1 christos * then that might add some weight to adding this... 1441 1.1 christos */ 1442 1.1 christos if (tlen == sizeof(tcphdr_t)) { 1443 1.1 christos return 0; 1444 1.1 christos } 1445 1.1 christos 1446 1.1 christos if (ipf_pr_pullup(fin, tlen) == -1) { 1447 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); 1448 1.1 christos return -1; 1449 1.1 christos } 1450 1.1 christos 1451 1.1 christos #if 0 1452 1.1 christos tcp = fin->fin_dp; 1453 1.1 christos ip = fin->fin_ip; 1454 1.1 christos s = (u_char *)(tcp + 1); 1455 1.1 christos off = IP_HL(ip) << 2; 1456 1.1 christos # ifdef _KERNEL 1457 1.1 christos if (fin->fin_mp != NULL) { 1458 1.1 christos mb_t *m = *fin->fin_mp; 1459 1.1 christos 1460 1.1 christos if (off + tlen > M_LEN(m)) 1461 1.1 christos return; 1462 1.1 christos } 1463 1.1 christos # endif 1464 1.1 christos for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1465 1.1 christos opt = *s; 1466 1.1 christos if (opt == '\0') 1467 1.1 christos break; 1468 1.1 christos else if (opt == TCPOPT_NOP) 1469 1.1 christos ol = 1; 1470 1.1 christos else { 1471 1.1 christos if (tlen < 2) 1472 1.1 christos break; 1473 1.1 christos ol = (int)*(s + 1); 1474 1.1 christos if (ol < 2 || ol > tlen) 1475 1.1 christos break; 1476 1.1 christos } 1477 1.1 christos 1478 1.1 christos for (i = 9, mv = 4; mv >= 0; ) { 1479 1.1 christos op = ipopts + i; 1480 1.1 christos if (opt == (u_char)op->ol_val) { 1481 1.1 christos optmsk |= op->ol_bit; 1482 1.1 christos break; 1483 1.1 christos } 1484 1.1 christos } 1485 1.1 christos tlen -= ol; 1486 1.1 christos s += ol; 1487 1.1 christos } 1488 1.1 christos #endif /* 0 */ 1489 1.1 christos 1490 1.1 christos return 0; 1491 1.1 christos } 1492 1.1 christos 1493 1.1 christos 1494 1.1 christos 1495 1.1 christos /* ------------------------------------------------------------------------ */ 1496 1.1 christos /* Function: ipf_pr_udpcommon */ 1497 1.1 christos /* Returns: int - 0 = header ok, 1 = bad packet */ 1498 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1499 1.1 christos /* */ 1500 1.1 christos /* Extract the UDP source and destination ports, if present. If compiled */ 1501 1.1 christos /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1502 1.1 christos /* ------------------------------------------------------------------------ */ 1503 1.1 christos static INLINE int 1504 1.2 christos ipf_pr_udpcommon(fr_info_t *fin) 1505 1.1 christos { 1506 1.1 christos udphdr_t *udp; 1507 1.1 christos 1508 1.1 christos fin->fin_flx |= FI_TCPUDP; 1509 1.1 christos 1510 1.1 christos if (!fin->fin_off && (fin->fin_dlen > 3)) { 1511 1.1 christos if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) { 1512 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1513 1.1 christos 1514 1.1 christos fin->fin_flx |= FI_SHORT; 1515 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup); 1516 1.1 christos return 1; 1517 1.1 christos } 1518 1.1 christos 1519 1.1 christos udp = fin->fin_dp; 1520 1.1 christos 1521 1.1 christos fin->fin_sport = ntohs(udp->uh_sport); 1522 1.1 christos fin->fin_dport = ntohs(udp->uh_dport); 1523 1.1 christos } 1524 1.1 christos 1525 1.1 christos return 0; 1526 1.1 christos } 1527 1.1 christos 1528 1.1 christos 1529 1.1 christos /* ------------------------------------------------------------------------ */ 1530 1.1 christos /* Function: ipf_pr_tcp */ 1531 1.1 christos /* Returns: void */ 1532 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1533 1.1 christos /* */ 1534 1.1 christos /* IPv4 Only */ 1535 1.1 christos /* Analyse the packet for IPv4/TCP properties. */ 1536 1.1 christos /* ------------------------------------------------------------------------ */ 1537 1.1 christos static INLINE void 1538 1.2 christos ipf_pr_tcp(fr_info_t *fin) 1539 1.1 christos { 1540 1.1 christos 1541 1.1 christos ipf_pr_short(fin, sizeof(tcphdr_t)); 1542 1.1 christos 1543 1.1 christos if (ipf_pr_tcpcommon(fin) == 0) 1544 1.1 christos ipf_checkv4sum(fin); 1545 1.1 christos } 1546 1.1 christos 1547 1.1 christos 1548 1.1 christos /* ------------------------------------------------------------------------ */ 1549 1.1 christos /* Function: ipf_pr_udp */ 1550 1.1 christos /* Returns: void */ 1551 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1552 1.1 christos /* */ 1553 1.1 christos /* IPv4 Only */ 1554 1.1 christos /* Analyse the packet for IPv4/UDP properties. */ 1555 1.1 christos /* ------------------------------------------------------------------------ */ 1556 1.1 christos static INLINE void 1557 1.2 christos ipf_pr_udp(fr_info_t *fin) 1558 1.1 christos { 1559 1.1 christos 1560 1.1 christos ipf_pr_short(fin, sizeof(udphdr_t)); 1561 1.1 christos 1562 1.1 christos if (ipf_pr_udpcommon(fin) == 0) 1563 1.1 christos ipf_checkv4sum(fin); 1564 1.1 christos } 1565 1.1 christos 1566 1.1 christos 1567 1.1 christos /* ------------------------------------------------------------------------ */ 1568 1.1 christos /* Function: ipf_pr_esp */ 1569 1.1 christos /* Returns: void */ 1570 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1571 1.1 christos /* */ 1572 1.1 christos /* Analyse the packet for ESP properties. */ 1573 1.1 christos /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1574 1.1 christos /* even though the newer ESP packets must also have a sequence number that */ 1575 1.1 christos /* is 32bits as well, it is not possible(?) to determine the version from a */ 1576 1.1 christos /* simple packet header. */ 1577 1.1 christos /* ------------------------------------------------------------------------ */ 1578 1.1 christos static INLINE void 1579 1.2 christos ipf_pr_esp(fr_info_t *fin) 1580 1.1 christos { 1581 1.1 christos 1582 1.1 christos if (fin->fin_off == 0) { 1583 1.1 christos ipf_pr_short(fin, 8); 1584 1.1 christos if (ipf_pr_pullup(fin, 8) == -1) { 1585 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1586 1.1 christos 1587 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup); 1588 1.1 christos } 1589 1.1 christos } 1590 1.1 christos } 1591 1.1 christos 1592 1.1 christos 1593 1.1 christos /* ------------------------------------------------------------------------ */ 1594 1.1 christos /* Function: ipf_pr_ah */ 1595 1.1 christos /* Returns: int - value of the next header or IPPROTO_NONE if error */ 1596 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1597 1.1 christos /* */ 1598 1.1 christos /* Analyse the packet for AH properties. */ 1599 1.1 christos /* The minimum length is taken to be the combination of all fields in the */ 1600 1.1 christos /* header being present and no authentication data (null algorithm used.) */ 1601 1.1 christos /* ------------------------------------------------------------------------ */ 1602 1.1 christos static INLINE int 1603 1.2 christos ipf_pr_ah(fr_info_t *fin) 1604 1.1 christos { 1605 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1606 1.1 christos authhdr_t *ah; 1607 1.1 christos int len; 1608 1.1 christos 1609 1.1 christos fin->fin_flx |= FI_AH; 1610 1.1 christos ipf_pr_short(fin, sizeof(*ah)); 1611 1.1 christos 1612 1.1 christos if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) { 1613 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad); 1614 1.1 christos return IPPROTO_NONE; 1615 1.1 christos } 1616 1.1 christos 1617 1.1 christos if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) { 1618 1.1 christos DT(fr_v4_ah_pullup_1); 1619 1.1 christos LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); 1620 1.1 christos return IPPROTO_NONE; 1621 1.1 christos } 1622 1.1 christos 1623 1.1 christos ah = (authhdr_t *)fin->fin_dp; 1624 1.1 christos 1625 1.1 christos len = (ah->ah_plen + 2) << 2; 1626 1.1 christos ipf_pr_short(fin, len); 1627 1.1 christos if (ipf_pr_pullup(fin, len) == -1) { 1628 1.1 christos DT(fr_v4_ah_pullup_2); 1629 1.1 christos LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); 1630 1.1 christos return IPPROTO_NONE; 1631 1.1 christos } 1632 1.1 christos 1633 1.1 christos /* 1634 1.1 christos * Adjust fin_dp and fin_dlen for skipping over the authentication 1635 1.1 christos * header. 1636 1.1 christos */ 1637 1.1 christos fin->fin_dp = (char *)fin->fin_dp + len; 1638 1.1 christos fin->fin_dlen -= len; 1639 1.1 christos return ah->ah_next; 1640 1.1 christos } 1641 1.1 christos 1642 1.1 christos 1643 1.1 christos /* ------------------------------------------------------------------------ */ 1644 1.1 christos /* Function: ipf_pr_gre */ 1645 1.1 christos /* Returns: void */ 1646 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1647 1.1 christos /* */ 1648 1.1 christos /* Analyse the packet for GRE properties. */ 1649 1.1 christos /* ------------------------------------------------------------------------ */ 1650 1.1 christos static INLINE void 1651 1.2 christos ipf_pr_gre(fr_info_t *fin) 1652 1.1 christos { 1653 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1654 1.1 christos grehdr_t *gre; 1655 1.1 christos 1656 1.1 christos ipf_pr_short(fin, sizeof(grehdr_t)); 1657 1.1 christos 1658 1.1 christos if (fin->fin_off != 0) { 1659 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag); 1660 1.1 christos return; 1661 1.1 christos } 1662 1.1 christos 1663 1.1 christos if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { 1664 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup); 1665 1.1 christos return; 1666 1.1 christos } 1667 1.1 christos 1668 1.1 christos gre = fin->fin_dp; 1669 1.1 christos if (GRE_REV(gre->gr_flags) == 1) 1670 1.1 christos fin->fin_data[0] = gre->gr_call; 1671 1.1 christos } 1672 1.1 christos 1673 1.1 christos 1674 1.1 christos /* ------------------------------------------------------------------------ */ 1675 1.1 christos /* Function: ipf_pr_ipv4hdr */ 1676 1.1 christos /* Returns: void */ 1677 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 1678 1.1 christos /* */ 1679 1.1 christos /* IPv4 Only */ 1680 1.1 christos /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1681 1.1 christos /* Check all options present and flag their presence if any exist. */ 1682 1.1 christos /* ------------------------------------------------------------------------ */ 1683 1.1 christos static INLINE void 1684 1.2 christos ipf_pr_ipv4hdr(fr_info_t *fin) 1685 1.1 christos { 1686 1.1 christos u_short optmsk = 0, secmsk = 0, auth = 0; 1687 1.1 christos int hlen, ol, mv, p, i; 1688 1.1 christos const struct optlist *op; 1689 1.1 christos u_char *s, opt; 1690 1.1 christos u_short off; 1691 1.1 christos fr_ip_t *fi; 1692 1.1 christos ip_t *ip; 1693 1.1 christos 1694 1.1 christos fi = &fin->fin_fi; 1695 1.1 christos hlen = fin->fin_hlen; 1696 1.1 christos 1697 1.1 christos ip = fin->fin_ip; 1698 1.1 christos p = ip->ip_p; 1699 1.1 christos fi->fi_p = p; 1700 1.1 christos fin->fin_crc = p; 1701 1.1 christos fi->fi_tos = ip->ip_tos; 1702 1.32 christos fin->fin_id = ntohs(ip->ip_id); 1703 1.1 christos off = ntohs(ip->ip_off); 1704 1.1 christos 1705 1.1 christos /* Get both TTL and protocol */ 1706 1.1 christos fi->fi_p = ip->ip_p; 1707 1.1 christos fi->fi_ttl = ip->ip_ttl; 1708 1.1 christos 1709 1.1 christos /* Zero out bits not used in IPv6 address */ 1710 1.1 christos fi->fi_src.i6[1] = 0; 1711 1.1 christos fi->fi_src.i6[2] = 0; 1712 1.1 christos fi->fi_src.i6[3] = 0; 1713 1.1 christos fi->fi_dst.i6[1] = 0; 1714 1.1 christos fi->fi_dst.i6[2] = 0; 1715 1.1 christos fi->fi_dst.i6[3] = 0; 1716 1.1 christos 1717 1.1 christos fi->fi_saddr = ip->ip_src.s_addr; 1718 1.1 christos fin->fin_crc += fi->fi_saddr; 1719 1.1 christos fi->fi_daddr = ip->ip_dst.s_addr; 1720 1.1 christos fin->fin_crc += fi->fi_daddr; 1721 1.21 christos if (IN_CLASSD(fi->fi_daddr)) 1722 1.1 christos fin->fin_flx |= FI_MULTICAST|FI_MBCAST; 1723 1.1 christos 1724 1.1 christos /* 1725 1.1 christos * set packet attribute flags based on the offset and 1726 1.1 christos * calculate the byte offset that it represents. 1727 1.1 christos */ 1728 1.1 christos off &= IP_MF|IP_OFFMASK; 1729 1.1 christos if (off != 0) { 1730 1.33 christos int morefrag = off & IP_MF; 1731 1.29 christos fi->fi_flx |= FI_FRAG; 1732 1.29 christos off &= IP_OFFMASK; 1733 1.29 christos if (off != 0) { 1734 1.29 christos if (off == 1 && p == IPPROTO_TCP) { 1735 1.29 christos fin->fin_flx |= FI_SHORT; /* RFC 3128 */ 1736 1.29 christos DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin); 1737 1.29 christos } 1738 1.1 christos 1739 1.29 christos fin->fin_flx |= FI_FRAGBODY; 1740 1.29 christos off <<= 3; 1741 1.29 christos if ((off + fin->fin_dlen > 65535) || 1742 1.29 christos (fin->fin_dlen == 0) || 1743 1.29 christos ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) { 1744 1.29 christos /* 1745 1.29 christos * The length of the packet, starting at its 1746 1.29 christos * offset cannot exceed 65535 (0xffff) as the 1747 1.29 christos * length of an IP packet is only 16 bits. 1748 1.29 christos * 1749 1.29 christos * Any fragment that isn't the last fragment 1750 1.29 christos * must have a length greater than 0 and it 1751 1.29 christos * must be an even multiple of 8. 1752 1.29 christos */ 1753 1.29 christos fi->fi_flx |= FI_BAD; 1754 1.29 christos DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin); 1755 1.29 christos } 1756 1.1 christos } 1757 1.1 christos } 1758 1.1 christos fin->fin_off = off; 1759 1.1 christos 1760 1.1 christos /* 1761 1.1 christos * Call per-protocol setup and checking 1762 1.1 christos */ 1763 1.1 christos if (p == IPPROTO_AH) { 1764 1.1 christos /* 1765 1.1 christos * Treat AH differently because we expect there to be another 1766 1.1 christos * layer 4 header after it. 1767 1.1 christos */ 1768 1.1 christos p = ipf_pr_ah(fin); 1769 1.1 christos } 1770 1.1 christos 1771 1.1 christos switch (p) 1772 1.1 christos { 1773 1.1 christos case IPPROTO_UDP : 1774 1.1 christos ipf_pr_udp(fin); 1775 1.1 christos break; 1776 1.1 christos case IPPROTO_TCP : 1777 1.1 christos ipf_pr_tcp(fin); 1778 1.1 christos break; 1779 1.1 christos case IPPROTO_ICMP : 1780 1.1 christos ipf_pr_icmp(fin); 1781 1.1 christos break; 1782 1.1 christos case IPPROTO_ESP : 1783 1.1 christos ipf_pr_esp(fin); 1784 1.1 christos break; 1785 1.1 christos case IPPROTO_GRE : 1786 1.1 christos ipf_pr_gre(fin); 1787 1.1 christos break; 1788 1.1 christos } 1789 1.1 christos 1790 1.1 christos ip = fin->fin_ip; 1791 1.1 christos if (ip == NULL) 1792 1.1 christos return; 1793 1.1 christos 1794 1.1 christos /* 1795 1.1 christos * If it is a standard IP header (no options), set the flag fields 1796 1.1 christos * which relate to options to 0. 1797 1.1 christos */ 1798 1.1 christos if (hlen == sizeof(*ip)) { 1799 1.1 christos fi->fi_optmsk = 0; 1800 1.1 christos fi->fi_secmsk = 0; 1801 1.1 christos fi->fi_auth = 0; 1802 1.1 christos return; 1803 1.1 christos } 1804 1.1 christos 1805 1.1 christos /* 1806 1.1 christos * So the IP header has some IP options attached. Walk the entire 1807 1.1 christos * list of options present with this packet and set flags to indicate 1808 1.1 christos * which ones are here and which ones are not. For the somewhat out 1809 1.1 christos * of date and obscure security classification options, set a flag to 1810 1.1 christos * represent which classification is present. 1811 1.1 christos */ 1812 1.1 christos fi->fi_flx |= FI_OPTIONS; 1813 1.1 christos 1814 1.1 christos for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1815 1.1 christos opt = *s; 1816 1.1 christos if (opt == '\0') 1817 1.1 christos break; 1818 1.1 christos else if (opt == IPOPT_NOP) 1819 1.1 christos ol = 1; 1820 1.1 christos else { 1821 1.1 christos if (hlen < 2) 1822 1.1 christos break; 1823 1.1 christos ol = (int)*(s + 1); 1824 1.1 christos if (ol < 2 || ol > hlen) 1825 1.1 christos break; 1826 1.1 christos } 1827 1.1 christos for (i = 9, mv = 4; mv >= 0; ) { 1828 1.1 christos op = ipopts + i; 1829 1.1 christos 1830 1.1 christos if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1831 1.1 christos u_32_t doi; 1832 1.1 christos 1833 1.1 christos switch (opt) 1834 1.1 christos { 1835 1.1 christos case IPOPT_SECURITY : 1836 1.1 christos if (optmsk & op->ol_bit) { 1837 1.1 christos fin->fin_flx |= FI_BAD; 1838 1.19 christos DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit)); 1839 1.1 christos } else { 1840 1.1 christos doi = ipf_checkripso(s); 1841 1.1 christos secmsk = doi >> 16; 1842 1.1 christos auth = doi & 0xffff; 1843 1.1 christos } 1844 1.1 christos break; 1845 1.1 christos 1846 1.1 christos case IPOPT_CIPSO : 1847 1.1 christos 1848 1.1 christos if (optmsk & op->ol_bit) { 1849 1.1 christos fin->fin_flx |= FI_BAD; 1850 1.19 christos DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit)); 1851 1.1 christos } else { 1852 1.1 christos doi = ipf_checkcipso(fin, 1853 1.1 christos s, ol); 1854 1.1 christos secmsk = doi >> 16; 1855 1.1 christos auth = doi & 0xffff; 1856 1.1 christos } 1857 1.1 christos break; 1858 1.1 christos } 1859 1.1 christos optmsk |= op->ol_bit; 1860 1.1 christos } 1861 1.1 christos 1862 1.1 christos if (opt < op->ol_val) 1863 1.1 christos i -= mv; 1864 1.1 christos else 1865 1.1 christos i += mv; 1866 1.1 christos mv--; 1867 1.1 christos } 1868 1.1 christos hlen -= ol; 1869 1.1 christos s += ol; 1870 1.1 christos } 1871 1.1 christos 1872 1.1 christos /* 1873 1.1 christos * 1874 1.1 christos */ 1875 1.1 christos if (auth && !(auth & 0x0100)) 1876 1.1 christos auth &= 0xff00; 1877 1.1 christos fi->fi_optmsk = optmsk; 1878 1.1 christos fi->fi_secmsk = secmsk; 1879 1.1 christos fi->fi_auth = auth; 1880 1.1 christos } 1881 1.1 christos 1882 1.1 christos 1883 1.1 christos /* ------------------------------------------------------------------------ */ 1884 1.1 christos /* Function: ipf_checkripso */ 1885 1.1 christos /* Returns: void */ 1886 1.1 christos /* Parameters: s(I) - pointer to start of RIPSO option */ 1887 1.1 christos /* */ 1888 1.1 christos /* ------------------------------------------------------------------------ */ 1889 1.1 christos static u_32_t 1890 1.2 christos ipf_checkripso(u_char *s) 1891 1.1 christos { 1892 1.1 christos const struct optlist *sp; 1893 1.1 christos u_short secmsk = 0, auth = 0; 1894 1.1 christos u_char sec; 1895 1.1 christos int j, m; 1896 1.1 christos 1897 1.1 christos sec = *(s + 2); /* classification */ 1898 1.1 christos for (j = 3, m = 2; m >= 0; ) { 1899 1.1 christos sp = secopt + j; 1900 1.1 christos if (sec == sp->ol_val) { 1901 1.1 christos secmsk |= sp->ol_bit; 1902 1.1 christos auth = *(s + 3); 1903 1.1 christos auth *= 256; 1904 1.1 christos auth += *(s + 4); 1905 1.1 christos break; 1906 1.1 christos } 1907 1.1 christos if (sec < sp->ol_val) 1908 1.1 christos j -= m; 1909 1.1 christos else 1910 1.1 christos j += m; 1911 1.1 christos m--; 1912 1.1 christos } 1913 1.1 christos 1914 1.1 christos return (secmsk << 16) | auth; 1915 1.1 christos } 1916 1.1 christos 1917 1.1 christos 1918 1.1 christos /* ------------------------------------------------------------------------ */ 1919 1.1 christos /* Function: ipf_checkcipso */ 1920 1.1 christos /* Returns: u_32_t - 0 = failure, else the doi from the header */ 1921 1.1 christos /* Parameters: fin(IO) - pointer to packet information */ 1922 1.1 christos /* s(I) - pointer to start of CIPSO option */ 1923 1.1 christos /* ol(I) - length of CIPSO option field */ 1924 1.1 christos /* */ 1925 1.1 christos /* This function returns the domain of integrity (DOI) field from the CIPSO */ 1926 1.1 christos /* header and returns that whilst also storing the highest sensitivity */ 1927 1.1 christos /* value found in the fr_info_t structure. */ 1928 1.1 christos /* */ 1929 1.1 christos /* No attempt is made to extract the category bitmaps as these are defined */ 1930 1.1 christos /* by the user (rather than the protocol) and can be rather numerous on the */ 1931 1.1 christos /* end nodes. */ 1932 1.1 christos /* ------------------------------------------------------------------------ */ 1933 1.1 christos static u_32_t 1934 1.2 christos ipf_checkcipso(fr_info_t *fin, u_char *s, int ol) 1935 1.1 christos { 1936 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 1937 1.1 christos fr_ip_t *fi; 1938 1.1 christos u_32_t doi; 1939 1.1 christos u_char *t, tag, tlen, sensitivity; 1940 1.1 christos int len; 1941 1.1 christos 1942 1.1 christos if (ol < 6 || ol > 40) { 1943 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad); 1944 1.1 christos fin->fin_flx |= FI_BAD; 1945 1.19 christos DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol); 1946 1.1 christos return 0; 1947 1.1 christos } 1948 1.1 christos 1949 1.1 christos fi = &fin->fin_fi; 1950 1.1 christos fi->fi_sensitivity = 0; 1951 1.1 christos /* 1952 1.1 christos * The DOI field MUST be there. 1953 1.1 christos */ 1954 1.1 christos bcopy(s + 2, &doi, sizeof(doi)); 1955 1.1 christos 1956 1.1 christos t = (u_char *)s + 6; 1957 1.1 christos for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) { 1958 1.1 christos tag = *t; 1959 1.1 christos tlen = *(t + 1); 1960 1.1 christos if (tlen > len || tlen < 4 || tlen > 34) { 1961 1.1 christos LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen); 1962 1.1 christos fin->fin_flx |= FI_BAD; 1963 1.19 christos DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen); 1964 1.1 christos return 0; 1965 1.1 christos } 1966 1.1 christos 1967 1.1 christos sensitivity = 0; 1968 1.1 christos /* 1969 1.1 christos * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet 1970 1.1 christos * draft (16 July 1992) that has expired. 1971 1.1 christos */ 1972 1.1 christos if (tag == 0) { 1973 1.1 christos fin->fin_flx |= FI_BAD; 1974 1.19 christos DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag); 1975 1.1 christos continue; 1976 1.1 christos } else if (tag == 1) { 1977 1.1 christos if (*(t + 2) != 0) { 1978 1.1 christos fin->fin_flx |= FI_BAD; 1979 1.19 christos DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2)); 1980 1.1 christos continue; 1981 1.1 christos } 1982 1.1 christos sensitivity = *(t + 3); 1983 1.1 christos /* Category bitmap for categories 0-239 */ 1984 1.1 christos 1985 1.1 christos } else if (tag == 4) { 1986 1.1 christos if (*(t + 2) != 0) { 1987 1.1 christos fin->fin_flx |= FI_BAD; 1988 1.19 christos DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2)); 1989 1.1 christos continue; 1990 1.1 christos } 1991 1.1 christos sensitivity = *(t + 3); 1992 1.1 christos /* Enumerated categories, 16bits each, upto 15 */ 1993 1.1 christos 1994 1.1 christos } else if (tag == 5) { 1995 1.1 christos if (*(t + 2) != 0) { 1996 1.1 christos fin->fin_flx |= FI_BAD; 1997 1.19 christos DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2)); 1998 1.1 christos continue; 1999 1.1 christos } 2000 1.1 christos sensitivity = *(t + 3); 2001 1.1 christos /* Range of categories (2*16bits), up to 7 pairs */ 2002 1.1 christos 2003 1.1 christos } else if (tag > 127) { 2004 1.1 christos /* Custom defined DOI */ 2005 1.1 christos ; 2006 1.1 christos } else { 2007 1.19 christos DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag); 2008 1.1 christos fin->fin_flx |= FI_BAD; 2009 1.1 christos continue; 2010 1.1 christos } 2011 1.1 christos 2012 1.1 christos if (sensitivity > fi->fi_sensitivity) 2013 1.1 christos fi->fi_sensitivity = sensitivity; 2014 1.1 christos } 2015 1.1 christos 2016 1.1 christos return doi; 2017 1.1 christos } 2018 1.1 christos 2019 1.1 christos 2020 1.1 christos /* ------------------------------------------------------------------------ */ 2021 1.1 christos /* Function: ipf_makefrip */ 2022 1.1 christos /* Returns: int - 0 == packet ok, -1 == packet freed */ 2023 1.1 christos /* Parameters: hlen(I) - length of IP packet header */ 2024 1.1 christos /* ip(I) - pointer to the IP header */ 2025 1.1 christos /* fin(IO) - pointer to packet information */ 2026 1.1 christos /* */ 2027 1.1 christos /* Compact the IP header into a structure which contains just the info. */ 2028 1.1 christos /* which is useful for comparing IP headers with and store this information */ 2029 1.1 christos /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 2030 1.1 christos /* this function will be called with either an IPv4 or IPv6 packet. */ 2031 1.1 christos /* ------------------------------------------------------------------------ */ 2032 1.1 christos int 2033 1.2 christos ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin) 2034 1.1 christos { 2035 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 2036 1.1 christos int v; 2037 1.1 christos 2038 1.1 christos fin->fin_depth = 0; 2039 1.1 christos fin->fin_hlen = (u_short)hlen; 2040 1.1 christos fin->fin_ip = ip; 2041 1.1 christos fin->fin_rule = 0xffffffff; 2042 1.1 christos fin->fin_group[0] = -1; 2043 1.1 christos fin->fin_group[1] = '\0'; 2044 1.1 christos fin->fin_dp = (char *)ip + hlen; 2045 1.1 christos 2046 1.1 christos v = fin->fin_v; 2047 1.1 christos if (v == 4) { 2048 1.1 christos fin->fin_plen = ntohs(ip->ip_len); 2049 1.1 christos fin->fin_dlen = fin->fin_plen - hlen; 2050 1.1 christos ipf_pr_ipv4hdr(fin); 2051 1.1 christos #ifdef USE_INET6 2052 1.1 christos } else if (v == 6) { 2053 1.1 christos fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen); 2054 1.1 christos fin->fin_dlen = fin->fin_plen; 2055 1.1 christos fin->fin_plen += hlen; 2056 1.1 christos 2057 1.1 christos ipf_pr_ipv6hdr(fin); 2058 1.1 christos #endif 2059 1.1 christos } 2060 1.1 christos if (fin->fin_ip == NULL) { 2061 1.1 christos LBUMP(ipf_stats[fin->fin_out].fr_ip_freed); 2062 1.1 christos return -1; 2063 1.1 christos } 2064 1.1 christos return 0; 2065 1.1 christos } 2066 1.1 christos 2067 1.1 christos 2068 1.1 christos /* ------------------------------------------------------------------------ */ 2069 1.1 christos /* Function: ipf_portcheck */ 2070 1.1 christos /* Returns: int - 1 == port matched, 0 == port match failed */ 2071 1.1 christos /* Parameters: frp(I) - pointer to port check `expression' */ 2072 1.1 christos /* pop(I) - port number to evaluate */ 2073 1.1 christos /* */ 2074 1.1 christos /* Perform a comparison of a port number against some other(s), using a */ 2075 1.1 christos /* structure with compare information stored in it. */ 2076 1.1 christos /* ------------------------------------------------------------------------ */ 2077 1.1 christos static INLINE int 2078 1.2 christos ipf_portcheck(frpcmp_t *frp, u_32_t pop) 2079 1.1 christos { 2080 1.1 christos int err = 1; 2081 1.1 christos u_32_t po; 2082 1.1 christos 2083 1.1 christos po = frp->frp_port; 2084 1.1 christos 2085 1.1 christos /* 2086 1.1 christos * Do opposite test to that required and continue if that succeeds. 2087 1.1 christos */ 2088 1.1 christos switch (frp->frp_cmp) 2089 1.1 christos { 2090 1.1 christos case FR_EQUAL : 2091 1.1 christos if (pop != po) /* EQUAL */ 2092 1.1 christos err = 0; 2093 1.1 christos break; 2094 1.1 christos case FR_NEQUAL : 2095 1.1 christos if (pop == po) /* NOTEQUAL */ 2096 1.1 christos err = 0; 2097 1.1 christos break; 2098 1.1 christos case FR_LESST : 2099 1.1 christos if (pop >= po) /* LESSTHAN */ 2100 1.1 christos err = 0; 2101 1.1 christos break; 2102 1.1 christos case FR_GREATERT : 2103 1.1 christos if (pop <= po) /* GREATERTHAN */ 2104 1.1 christos err = 0; 2105 1.1 christos break; 2106 1.1 christos case FR_LESSTE : 2107 1.1 christos if (pop > po) /* LT or EQ */ 2108 1.1 christos err = 0; 2109 1.1 christos break; 2110 1.1 christos case FR_GREATERTE : 2111 1.1 christos if (pop < po) /* GT or EQ */ 2112 1.1 christos err = 0; 2113 1.1 christos break; 2114 1.1 christos case FR_OUTRANGE : 2115 1.1 christos if (pop >= po && pop <= frp->frp_top) /* Out of range */ 2116 1.1 christos err = 0; 2117 1.1 christos break; 2118 1.1 christos case FR_INRANGE : 2119 1.1 christos if (pop <= po || pop >= frp->frp_top) /* In range */ 2120 1.1 christos err = 0; 2121 1.1 christos break; 2122 1.1 christos case FR_INCRANGE : 2123 1.1 christos if (pop < po || pop > frp->frp_top) /* Inclusive range */ 2124 1.1 christos err = 0; 2125 1.1 christos break; 2126 1.1 christos default : 2127 1.1 christos break; 2128 1.1 christos } 2129 1.1 christos return err; 2130 1.1 christos } 2131 1.1 christos 2132 1.1 christos 2133 1.1 christos /* ------------------------------------------------------------------------ */ 2134 1.1 christos /* Function: ipf_tcpudpchk */ 2135 1.1 christos /* Returns: int - 1 == protocol matched, 0 == check failed */ 2136 1.1 christos /* Parameters: fda(I) - pointer to packet information */ 2137 1.1 christos /* ft(I) - pointer to structure with comparison data */ 2138 1.1 christos /* */ 2139 1.1 christos /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 2140 1.1 christos /* structure containing information that we want to match against. */ 2141 1.1 christos /* ------------------------------------------------------------------------ */ 2142 1.1 christos int 2143 1.2 christos ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft) 2144 1.1 christos { 2145 1.1 christos int err = 1; 2146 1.1 christos 2147 1.1 christos /* 2148 1.1 christos * Both ports should *always* be in the first fragment. 2149 1.1 christos * So far, I cannot find any cases where they can not be. 2150 1.1 christos * 2151 1.1 christos * compare destination ports 2152 1.1 christos */ 2153 1.1 christos if (ft->ftu_dcmp) 2154 1.1 christos err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]); 2155 1.1 christos 2156 1.1 christos /* 2157 1.1 christos * compare source ports 2158 1.1 christos */ 2159 1.1 christos if (err && ft->ftu_scmp) 2160 1.1 christos err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]); 2161 1.1 christos 2162 1.1 christos /* 2163 1.1 christos * If we don't have all the TCP/UDP header, then how can we 2164 1.1 christos * expect to do any sort of match on it ? If we were looking for 2165 1.1 christos * TCP flags, then NO match. If not, then match (which should 2166 1.1 christos * satisfy the "short" class too). 2167 1.1 christos */ 2168 1.1 christos if (err && (fi->fi_p == IPPROTO_TCP)) { 2169 1.1 christos if (fi->fi_flx & FI_SHORT) 2170 1.1 christos return !(ft->ftu_tcpf | ft->ftu_tcpfm); 2171 1.1 christos /* 2172 1.1 christos * Match the flags ? If not, abort this match. 2173 1.1 christos */ 2174 1.1 christos if (ft->ftu_tcpfm && 2175 1.1 christos ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) { 2176 1.1 christos FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf, 2177 1.1 christos ft->ftu_tcpfm, ft->ftu_tcpf)); 2178 1.1 christos err = 0; 2179 1.1 christos } 2180 1.1 christos } 2181 1.1 christos return err; 2182 1.1 christos } 2183 1.1 christos 2184 1.1 christos 2185 1.1 christos /* ------------------------------------------------------------------------ */ 2186 1.1 christos /* Function: ipf_check_ipf */ 2187 1.1 christos /* Returns: int - 0 == match, else no match */ 2188 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 2189 1.1 christos /* fr(I) - pointer to filter rule */ 2190 1.1 christos /* portcmp(I) - flag indicating whether to attempt matching on */ 2191 1.1 christos /* TCP/UDP port data. */ 2192 1.1 christos /* */ 2193 1.1 christos /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 2194 1.1 christos /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 2195 1.1 christos /* this function. */ 2196 1.1 christos /* ------------------------------------------------------------------------ */ 2197 1.1 christos static INLINE int 2198 1.2 christos ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp) 2199 1.1 christos { 2200 1.1 christos u_32_t *ld, *lm, *lip; 2201 1.1 christos fripf_t *fri; 2202 1.1 christos fr_ip_t *fi; 2203 1.1 christos int i; 2204 1.1 christos 2205 1.1 christos fi = &fin->fin_fi; 2206 1.1 christos fri = fr->fr_ipf; 2207 1.1 christos lip = (u_32_t *)fi; 2208 1.1 christos lm = (u_32_t *)&fri->fri_mip; 2209 1.1 christos ld = (u_32_t *)&fri->fri_ip; 2210 1.1 christos 2211 1.1 christos /* 2212 1.1 christos * first 32 bits to check coversion: 2213 1.1 christos * IP version, TOS, TTL, protocol 2214 1.1 christos */ 2215 1.1 christos i = ((*lip & *lm) != *ld); 2216 1.1 christos FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 2217 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2218 1.1 christos if (i) 2219 1.1 christos return 1; 2220 1.1 christos 2221 1.1 christos /* 2222 1.1 christos * Next 32 bits is a constructed bitmask indicating which IP options 2223 1.1 christos * are present (if any) in this packet. 2224 1.1 christos */ 2225 1.1 christos lip++, lm++, ld++; 2226 1.1 christos i = ((*lip & *lm) != *ld); 2227 1.1 christos FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 2228 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2229 1.1 christos if (i != 0) 2230 1.1 christos return 1; 2231 1.1 christos 2232 1.1 christos lip++, lm++, ld++; 2233 1.1 christos /* 2234 1.1 christos * Unrolled loops (4 each, for 32 bits) for address checks. 2235 1.1 christos */ 2236 1.1 christos /* 2237 1.1 christos * Check the source address. 2238 1.1 christos */ 2239 1.1 christos if (fr->fr_satype == FRI_LOOKUP) { 2240 1.1 christos i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr, 2241 1.1 christos fi->fi_v, lip, fin->fin_plen); 2242 1.1 christos if (i == -1) 2243 1.1 christos return 1; 2244 1.1 christos lip += 3; 2245 1.1 christos lm += 3; 2246 1.1 christos ld += 3; 2247 1.1 christos } else { 2248 1.1 christos i = ((*lip & *lm) != *ld); 2249 1.1 christos FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 2250 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2251 1.1 christos if (fi->fi_v == 6) { 2252 1.1 christos lip++, lm++, ld++; 2253 1.1 christos i |= ((*lip & *lm) != *ld); 2254 1.1 christos FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 2255 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2256 1.1 christos lip++, lm++, ld++; 2257 1.1 christos i |= ((*lip & *lm) != *ld); 2258 1.1 christos FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 2259 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2260 1.1 christos lip++, lm++, ld++; 2261 1.1 christos i |= ((*lip & *lm) != *ld); 2262 1.1 christos FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 2263 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2264 1.1 christos } else { 2265 1.1 christos lip += 3; 2266 1.1 christos lm += 3; 2267 1.1 christos ld += 3; 2268 1.1 christos } 2269 1.1 christos } 2270 1.1 christos i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 2271 1.1 christos if (i != 0) 2272 1.1 christos return 1; 2273 1.1 christos 2274 1.1 christos /* 2275 1.1 christos * Check the destination address. 2276 1.1 christos */ 2277 1.1 christos lip++, lm++, ld++; 2278 1.1 christos if (fr->fr_datype == FRI_LOOKUP) { 2279 1.1 christos i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr, 2280 1.1 christos fi->fi_v, lip, fin->fin_plen); 2281 1.1 christos if (i == -1) 2282 1.1 christos return 1; 2283 1.1 christos lip += 3; 2284 1.1 christos lm += 3; 2285 1.1 christos ld += 3; 2286 1.1 christos } else { 2287 1.1 christos i = ((*lip & *lm) != *ld); 2288 1.1 christos FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 2289 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2290 1.1 christos if (fi->fi_v == 6) { 2291 1.1 christos lip++, lm++, ld++; 2292 1.1 christos i |= ((*lip & *lm) != *ld); 2293 1.1 christos FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 2294 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2295 1.1 christos lip++, lm++, ld++; 2296 1.1 christos i |= ((*lip & *lm) != *ld); 2297 1.1 christos FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 2298 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2299 1.1 christos lip++, lm++, ld++; 2300 1.1 christos i |= ((*lip & *lm) != *ld); 2301 1.1 christos FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 2302 1.1 christos ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2303 1.1 christos } else { 2304 1.1 christos lip += 3; 2305 1.1 christos lm += 3; 2306 1.1 christos ld += 3; 2307 1.1 christos } 2308 1.1 christos } 2309 1.1 christos i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 2310 1.1 christos if (i != 0) 2311 1.1 christos return 1; 2312 1.1 christos /* 2313 1.1 christos * IP addresses matched. The next 32bits contains: 2314 1.1 christos * mast of old IP header security & authentication bits. 2315 1.1 christos */ 2316 1.1 christos lip++, lm++, ld++; 2317 1.1 christos i = (*ld - (*lip & *lm)); 2318 1.1 christos FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); 2319 1.1 christos 2320 1.1 christos /* 2321 1.1 christos * Next we have 32 bits of packet flags. 2322 1.1 christos */ 2323 1.1 christos lip++, lm++, ld++; 2324 1.1 christos i |= (*ld - (*lip & *lm)); 2325 1.1 christos FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); 2326 1.1 christos 2327 1.1 christos if (i == 0) { 2328 1.1 christos /* 2329 1.1 christos * If a fragment, then only the first has what we're 2330 1.1 christos * looking for here... 2331 1.1 christos */ 2332 1.1 christos if (portcmp) { 2333 1.1 christos if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc)) 2334 1.1 christos i = 1; 2335 1.1 christos } else { 2336 1.1 christos if (fr->fr_dcmp || fr->fr_scmp || 2337 1.1 christos fr->fr_tcpf || fr->fr_tcpfm) 2338 1.1 christos i = 1; 2339 1.1 christos if (fr->fr_icmpm || fr->fr_icmp) { 2340 1.1 christos if (((fi->fi_p != IPPROTO_ICMP) && 2341 1.1 christos (fi->fi_p != IPPROTO_ICMPV6)) || 2342 1.1 christos fin->fin_off || (fin->fin_dlen < 2)) 2343 1.1 christos i = 1; 2344 1.1 christos else if ((fin->fin_data[0] & fr->fr_icmpm) != 2345 1.1 christos fr->fr_icmp) { 2346 1.1 christos FR_DEBUG(("i. %#x & %#x != %#x\n", 2347 1.1 christos fin->fin_data[0], 2348 1.1 christos fr->fr_icmpm, fr->fr_icmp)); 2349 1.1 christos i = 1; 2350 1.1 christos } 2351 1.1 christos } 2352 1.1 christos } 2353 1.1 christos } 2354 1.1 christos return i; 2355 1.1 christos } 2356 1.1 christos 2357 1.1 christos 2358 1.1 christos /* ------------------------------------------------------------------------ */ 2359 1.1 christos /* Function: ipf_scanlist */ 2360 1.1 christos /* Returns: int - result flags of scanning filter list */ 2361 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 2362 1.1 christos /* pass(I) - default result to return for filtering */ 2363 1.1 christos /* */ 2364 1.1 christos /* Check the input/output list of rules for a match to the current packet. */ 2365 1.1 christos /* If a match is found, the value of fr_flags from the rule becomes the */ 2366 1.1 christos /* return value and fin->fin_fr points to the matched rule. */ 2367 1.1 christos /* */ 2368 1.35 msaitoh /* This function may be called recursively upto 16 times (limit inbuilt.) */ 2369 1.1 christos /* When unwinding, it should finish up with fin_depth as 0. */ 2370 1.1 christos /* */ 2371 1.1 christos /* Could be per interface, but this gets real nasty when you don't have, */ 2372 1.1 christos /* or can't easily change, the kernel source code to . */ 2373 1.1 christos /* ------------------------------------------------------------------------ */ 2374 1.1 christos int 2375 1.2 christos ipf_scanlist(fr_info_t *fin, u_32_t pass) 2376 1.1 christos { 2377 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 2378 1.1 christos int rulen, portcmp, off, skip; 2379 1.1 christos struct frentry *fr, *fnext; 2380 1.1 christos u_32_t passt, passo; 2381 1.1 christos 2382 1.1 christos /* 2383 1.1 christos * Do not allow nesting deeper than 16 levels. 2384 1.1 christos */ 2385 1.1 christos if (fin->fin_depth >= 16) 2386 1.1 christos return pass; 2387 1.1 christos 2388 1.1 christos fr = fin->fin_fr; 2389 1.1 christos 2390 1.1 christos /* 2391 1.1 christos * If there are no rules in this list, return now. 2392 1.1 christos */ 2393 1.1 christos if (fr == NULL) 2394 1.1 christos return pass; 2395 1.1 christos 2396 1.1 christos skip = 0; 2397 1.1 christos portcmp = 0; 2398 1.1 christos fin->fin_depth++; 2399 1.1 christos fin->fin_fr = NULL; 2400 1.1 christos off = fin->fin_off; 2401 1.1 christos 2402 1.1 christos if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 2403 1.1 christos portcmp = 1; 2404 1.1 christos 2405 1.1 christos for (rulen = 0; fr; fr = fnext, rulen++) { 2406 1.1 christos fnext = fr->fr_next; 2407 1.1 christos if (skip != 0) { 2408 1.1 christos FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags)); 2409 1.1 christos skip--; 2410 1.1 christos continue; 2411 1.1 christos } 2412 1.1 christos 2413 1.1 christos /* 2414 1.1 christos * In all checks below, a null (zero) value in the 2415 1.1 christos * filter struture is taken to mean a wildcard. 2416 1.1 christos * 2417 1.1 christos * check that we are working for the right interface 2418 1.1 christos */ 2419 1.1 christos #ifdef _KERNEL 2420 1.1 christos if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 2421 1.1 christos continue; 2422 1.1 christos #else 2423 1.1 christos if (opts & (OPT_VERBOSE|OPT_DEBUG)) 2424 1.1 christos printf("\n"); 2425 1.1 christos FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 2426 1.1 christos FR_ISPASS(pass) ? 'p' : 2427 1.1 christos FR_ISACCOUNT(pass) ? 'A' : 2428 1.1 christos FR_ISAUTH(pass) ? 'a' : 2429 1.1 christos (pass & FR_NOMATCH) ? 'n' :'b')); 2430 1.1 christos if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 2431 1.1 christos continue; 2432 1.1 christos FR_VERBOSE((":i")); 2433 1.1 christos #endif 2434 1.1 christos 2435 1.1 christos switch (fr->fr_type) 2436 1.1 christos { 2437 1.1 christos case FR_T_IPF : 2438 1.1 christos case FR_T_IPF_BUILTIN : 2439 1.1 christos if (ipf_check_ipf(fin, fr, portcmp)) 2440 1.1 christos continue; 2441 1.1 christos break; 2442 1.1 christos #if defined(IPFILTER_BPF) 2443 1.1 christos case FR_T_BPFOPC : 2444 1.1 christos case FR_T_BPFOPC_BUILTIN : 2445 1.1 christos { 2446 1.1 christos u_char *mc; 2447 1.1 christos int wlen; 2448 1.1 christos 2449 1.1 christos if (*fin->fin_mp == NULL) 2450 1.1 christos continue; 2451 1.1 christos if (fin->fin_family != fr->fr_family) 2452 1.1 christos continue; 2453 1.1 christos mc = (u_char *)fin->fin_m; 2454 1.1 christos wlen = fin->fin_dlen + fin->fin_hlen; 2455 1.1 christos if (!bpf_filter(fr->fr_data, mc, wlen, 0)) 2456 1.1 christos continue; 2457 1.1 christos break; 2458 1.1 christos } 2459 1.1 christos #endif 2460 1.1 christos case FR_T_CALLFUNC_BUILTIN : 2461 1.1 christos { 2462 1.1 christos frentry_t *f; 2463 1.1 christos 2464 1.1 christos f = (*fr->fr_func)(fin, &pass); 2465 1.1 christos if (f != NULL) 2466 1.1 christos fr = f; 2467 1.1 christos else 2468 1.1 christos continue; 2469 1.1 christos break; 2470 1.1 christos } 2471 1.1 christos 2472 1.1 christos case FR_T_IPFEXPR : 2473 1.1 christos case FR_T_IPFEXPR_BUILTIN : 2474 1.1 christos if (fin->fin_family != fr->fr_family) 2475 1.1 christos continue; 2476 1.1 christos if (ipf_fr_matcharray(fin, fr->fr_data) == 0) 2477 1.1 christos continue; 2478 1.1 christos break; 2479 1.1 christos 2480 1.1 christos default : 2481 1.1 christos break; 2482 1.1 christos } 2483 1.1 christos 2484 1.1 christos if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 2485 1.1 christos if (fin->fin_nattag == NULL) 2486 1.1 christos continue; 2487 1.1 christos if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 2488 1.1 christos continue; 2489 1.1 christos } 2490 1.1 christos FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen)); 2491 1.1 christos 2492 1.1 christos passt = fr->fr_flags; 2493 1.1 christos 2494 1.1 christos /* 2495 1.1 christos * If the rule is a "call now" rule, then call the function 2496 1.1 christos * in the rule, if it exists and use the results from that. 2497 1.1 christos * If the function pointer is bad, just make like we ignore 2498 1.1 christos * it, except for increasing the hit counter. 2499 1.1 christos */ 2500 1.1 christos if ((passt & FR_CALLNOW) != 0) { 2501 1.1 christos frentry_t *frs; 2502 1.1 christos 2503 1.1 christos ATOMIC_INC64(fr->fr_hits); 2504 1.1 christos if ((fr->fr_func == NULL) || 2505 1.1 christos (fr->fr_func == (ipfunc_t)-1)) 2506 1.1 christos continue; 2507 1.1 christos 2508 1.1 christos frs = fin->fin_fr; 2509 1.1 christos fin->fin_fr = fr; 2510 1.1 christos fr = (*fr->fr_func)(fin, &passt); 2511 1.1 christos if (fr == NULL) { 2512 1.1 christos fin->fin_fr = frs; 2513 1.1 christos continue; 2514 1.1 christos } 2515 1.1 christos passt = fr->fr_flags; 2516 1.1 christos } 2517 1.1 christos fin->fin_fr = fr; 2518 1.1 christos 2519 1.1 christos #ifdef IPFILTER_LOG 2520 1.1 christos /* 2521 1.1 christos * Just log this packet... 2522 1.1 christos */ 2523 1.1 christos if ((passt & FR_LOGMASK) == FR_LOG) { 2524 1.1 christos if (ipf_log_pkt(fin, passt) == -1) { 2525 1.1 christos if (passt & FR_LOGORBLOCK) { 2526 1.1 christos DT(frb_logfail); 2527 1.1 christos passt &= ~FR_CMDMASK; 2528 1.1 christos passt |= FR_BLOCK|FR_QUICK; 2529 1.1 christos fin->fin_reason = FRB_LOGFAIL; 2530 1.1 christos } 2531 1.1 christos } 2532 1.1 christos } 2533 1.1 christos #endif /* IPFILTER_LOG */ 2534 1.1 christos 2535 1.1 christos MUTEX_ENTER(&fr->fr_lock); 2536 1.1 christos fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2537 1.1 christos fr->fr_hits++; 2538 1.1 christos MUTEX_EXIT(&fr->fr_lock); 2539 1.1 christos fin->fin_rule = rulen; 2540 1.1 christos 2541 1.1 christos passo = pass; 2542 1.1 christos if (FR_ISSKIP(passt)) { 2543 1.1 christos skip = fr->fr_arg; 2544 1.1 christos continue; 2545 1.3 darrenr } else if (((passt & FR_LOGMASK) != FR_LOG) && 2546 1.3 darrenr ((passt & FR_LOGMASK) != FR_DECAPSULATE)) { 2547 1.1 christos pass = passt; 2548 1.1 christos } 2549 1.1 christos 2550 1.1 christos if (passt & (FR_RETICMP|FR_FAKEICMP)) 2551 1.1 christos fin->fin_icode = fr->fr_icode; 2552 1.1 christos 2553 1.1 christos if (fr->fr_group != -1) { 2554 1.1 christos (void) strncpy(fin->fin_group, 2555 1.1 christos FR_NAME(fr, fr_group), 2556 1.1 christos strlen(FR_NAME(fr, fr_group))); 2557 1.1 christos } else { 2558 1.1 christos fin->fin_group[0] = '\0'; 2559 1.1 christos } 2560 1.1 christos 2561 1.3 darrenr FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt)); 2562 1.1 christos 2563 1.3 darrenr if (fr->fr_grphead != NULL) { 2564 1.3 darrenr fin->fin_fr = fr->fr_grphead->fg_start; 2565 1.1 christos FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead))); 2566 1.1 christos 2567 1.3 darrenr if (FR_ISDECAPS(passt)) 2568 1.1 christos passt = ipf_decaps(fin, pass, fr->fr_icode); 2569 1.1 christos else 2570 1.1 christos passt = ipf_scanlist(fin, pass); 2571 1.1 christos 2572 1.1 christos if (fin->fin_fr == NULL) { 2573 1.1 christos fin->fin_rule = rulen; 2574 1.1 christos if (fr->fr_group != -1) 2575 1.1 christos (void) strncpy(fin->fin_group, 2576 1.1 christos fr->fr_names + 2577 1.1 christos fr->fr_group, 2578 1.1 christos strlen(fr->fr_names + 2579 1.1 christos fr->fr_group)); 2580 1.1 christos fin->fin_fr = fr; 2581 1.1 christos passt = pass; 2582 1.1 christos } 2583 1.1 christos pass = passt; 2584 1.1 christos } 2585 1.1 christos 2586 1.1 christos if (pass & FR_QUICK) { 2587 1.1 christos /* 2588 1.1 christos * Finally, if we've asked to track state for this 2589 1.1 christos * packet, set it up. Add state for "quick" rules 2590 1.1 christos * here so that if the action fails we can consider 2591 1.1 christos * the rule to "not match" and keep on processing 2592 1.1 christos * filter rules. 2593 1.1 christos */ 2594 1.1 christos if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) && 2595 1.1 christos !(fin->fin_flx & FI_STATE)) { 2596 1.1 christos int out = fin->fin_out; 2597 1.1 christos 2598 1.1 christos fin->fin_fr = fr; 2599 1.1 christos if (ipf_state_add(softc, fin, NULL, 0) == 0) { 2600 1.1 christos LBUMPD(ipf_stats[out], fr_ads); 2601 1.1 christos } else { 2602 1.1 christos LBUMPD(ipf_stats[out], fr_bads); 2603 1.1 christos pass = passo; 2604 1.1 christos continue; 2605 1.1 christos } 2606 1.1 christos } 2607 1.1 christos break; 2608 1.1 christos } 2609 1.1 christos } 2610 1.1 christos fin->fin_depth--; 2611 1.1 christos return pass; 2612 1.1 christos } 2613 1.1 christos 2614 1.1 christos 2615 1.1 christos /* ------------------------------------------------------------------------ */ 2616 1.1 christos /* Function: ipf_acctpkt */ 2617 1.1 christos /* Returns: frentry_t* - always returns NULL */ 2618 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 2619 1.1 christos /* passp(IO) - pointer to current/new filter decision (unused) */ 2620 1.1 christos /* */ 2621 1.1 christos /* Checks a packet against accounting rules, if there are any for the given */ 2622 1.1 christos /* IP protocol version. */ 2623 1.1 christos /* */ 2624 1.1 christos /* N.B.: this function returns NULL to match the prototype used by other */ 2625 1.1 christos /* functions called from the IPFilter "mainline" in ipf_check(). */ 2626 1.1 christos /* ------------------------------------------------------------------------ */ 2627 1.1 christos frentry_t * 2628 1.2 christos ipf_acctpkt(fr_info_t *fin, u_32_t *passp) 2629 1.1 christos { 2630 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 2631 1.1 christos char group[FR_GROUPLEN]; 2632 1.1 christos frentry_t *fr, *frsave; 2633 1.1 christos u_32_t pass, rulen; 2634 1.1 christos 2635 1.1 christos passp = passp; 2636 1.1 christos fr = softc->ipf_acct[fin->fin_out][softc->ipf_active]; 2637 1.1 christos 2638 1.1 christos if (fr != NULL) { 2639 1.1 christos frsave = fin->fin_fr; 2640 1.1 christos bcopy(fin->fin_group, group, FR_GROUPLEN); 2641 1.1 christos rulen = fin->fin_rule; 2642 1.1 christos fin->fin_fr = fr; 2643 1.1 christos pass = ipf_scanlist(fin, FR_NOMATCH); 2644 1.1 christos if (FR_ISACCOUNT(pass)) { 2645 1.1 christos LBUMPD(ipf_stats[0], fr_acct); 2646 1.1 christos } 2647 1.1 christos fin->fin_fr = frsave; 2648 1.1 christos bcopy(group, fin->fin_group, FR_GROUPLEN); 2649 1.1 christos fin->fin_rule = rulen; 2650 1.1 christos } 2651 1.1 christos return NULL; 2652 1.1 christos } 2653 1.1 christos 2654 1.1 christos 2655 1.1 christos /* ------------------------------------------------------------------------ */ 2656 1.1 christos /* Function: ipf_firewall */ 2657 1.1 christos /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2658 1.1 christos /* were found, returns NULL. */ 2659 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 2660 1.1 christos /* passp(IO) - pointer to current/new filter decision (unused) */ 2661 1.1 christos /* */ 2662 1.1 christos /* Applies an appropriate set of firewall rules to the packet, to see if */ 2663 1.1 christos /* there are any matches. The first check is to see if a match can be seen */ 2664 1.1 christos /* in the cache. If not, then search an appropriate list of rules. Once a */ 2665 1.1 christos /* matching rule is found, take any appropriate actions as defined by the */ 2666 1.1 christos /* rule - except logging. */ 2667 1.1 christos /* ------------------------------------------------------------------------ */ 2668 1.1 christos static frentry_t * 2669 1.2 christos ipf_firewall(fr_info_t *fin, u_32_t *passp) 2670 1.1 christos { 2671 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 2672 1.1 christos frentry_t *fr; 2673 1.1 christos u_32_t pass; 2674 1.1 christos int out; 2675 1.1 christos 2676 1.1 christos out = fin->fin_out; 2677 1.1 christos pass = *passp; 2678 1.1 christos 2679 1.1 christos /* 2680 1.1 christos * This rule cache will only affect packets that are not being 2681 1.1 christos * statefully filtered. 2682 1.1 christos */ 2683 1.1 christos fin->fin_fr = softc->ipf_rules[out][softc->ipf_active]; 2684 1.1 christos if (fin->fin_fr != NULL) 2685 1.1 christos pass = ipf_scanlist(fin, softc->ipf_pass); 2686 1.1 christos 2687 1.1 christos if ((pass & FR_NOMATCH)) { 2688 1.1 christos LBUMPD(ipf_stats[out], fr_nom); 2689 1.1 christos } 2690 1.1 christos fr = fin->fin_fr; 2691 1.1 christos 2692 1.1 christos /* 2693 1.1 christos * Apply packets per second rate-limiting to a rule as required. 2694 1.1 christos */ 2695 1.1 christos if ((fr != NULL) && (fr->fr_pps != 0) && 2696 1.1 christos !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2697 1.1 christos DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr); 2698 1.1 christos pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST); 2699 1.1 christos pass |= FR_BLOCK; 2700 1.1 christos LBUMPD(ipf_stats[out], fr_ppshit); 2701 1.1 christos fin->fin_reason = FRB_PPSRATE; 2702 1.1 christos } 2703 1.1 christos 2704 1.1 christos /* 2705 1.1 christos * If we fail to add a packet to the authorization queue, then we 2706 1.1 christos * drop the packet later. However, if it was added then pretend 2707 1.1 christos * we've dropped it already. 2708 1.1 christos */ 2709 1.1 christos if (FR_ISAUTH(pass)) { 2710 1.1 christos if (ipf_auth_new(fin->fin_m, fin) != 0) { 2711 1.1 christos DT1(frb_authnew, fr_info_t *, fin); 2712 1.1 christos fin->fin_m = *fin->fin_mp = NULL; 2713 1.1 christos fin->fin_reason = FRB_AUTHNEW; 2714 1.1 christos fin->fin_error = 0; 2715 1.1 christos } else { 2716 1.1 christos IPFERROR(1); 2717 1.1 christos fin->fin_error = ENOSPC; 2718 1.1 christos } 2719 1.1 christos } 2720 1.1 christos 2721 1.1 christos if ((fr != NULL) && (fr->fr_func != NULL) && 2722 1.1 christos (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2723 1.1 christos (void) (*fr->fr_func)(fin, &pass); 2724 1.1 christos 2725 1.1 christos /* 2726 1.1 christos * If a rule is a pre-auth rule, check again in the list of rules 2727 1.1 christos * loaded for authenticated use. It does not particulary matter 2728 1.1 christos * if this search fails because a "preauth" result, from a rule, 2729 1.1 christos * is treated as "not a pass", hence the packet is blocked. 2730 1.1 christos */ 2731 1.1 christos if (FR_ISPREAUTH(pass)) { 2732 1.1 christos pass = ipf_auth_pre_scanlist(softc, fin, pass); 2733 1.1 christos } 2734 1.1 christos 2735 1.1 christos /* 2736 1.1 christos * If the rule has "keep frag" and the packet is actually a fragment, 2737 1.1 christos * then create a fragment state entry. 2738 1.1 christos */ 2739 1.20 christos if (pass & FR_KEEPFRAG) { 2740 1.1 christos if (fin->fin_flx & FI_FRAG) { 2741 1.1 christos if (ipf_frag_new(softc, fin, pass) == -1) { 2742 1.1 christos LBUMP(ipf_stats[out].fr_bnfr); 2743 1.1 christos } else { 2744 1.1 christos LBUMP(ipf_stats[out].fr_nfr); 2745 1.1 christos } 2746 1.1 christos } else { 2747 1.1 christos LBUMP(ipf_stats[out].fr_cfr); 2748 1.1 christos } 2749 1.1 christos } 2750 1.1 christos 2751 1.1 christos fr = fin->fin_fr; 2752 1.1 christos *passp = pass; 2753 1.1 christos 2754 1.1 christos return fr; 2755 1.1 christos } 2756 1.1 christos 2757 1.1 christos 2758 1.1 christos /* ------------------------------------------------------------------------ */ 2759 1.1 christos /* Function: ipf_check */ 2760 1.1 christos /* Returns: int - 0 == packet allowed through, */ 2761 1.1 christos /* User space: */ 2762 1.1 christos /* -1 == packet blocked */ 2763 1.1 christos /* 1 == packet not matched */ 2764 1.1 christos /* -2 == requires authentication */ 2765 1.1 christos /* Kernel: */ 2766 1.1 christos /* > 0 == filter error # for packet */ 2767 1.1 christos /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2768 1.1 christos /* hlen(I) - length of header */ 2769 1.1 christos /* ifp(I) - pointer to interface this packet is on */ 2770 1.1 christos /* out(I) - 0 == packet going in, 1 == packet going out */ 2771 1.1 christos /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2772 1.1 christos /* IP packet. */ 2773 1.1 christos /* Solaris & HP-UX ONLY : */ 2774 1.1 christos /* qpi(I) - pointer to STREAMS queue information for this */ 2775 1.1 christos /* interface & direction. */ 2776 1.1 christos /* */ 2777 1.1 christos /* ipf_check() is the master function for all IPFilter packet processing. */ 2778 1.1 christos /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2779 1.1 christos /* authorisation (or pre-authorisation), presence of related state info., */ 2780 1.1 christos /* generating log entries, IP packet accounting, routing of packets as */ 2781 1.1 christos /* directed by firewall rules and of course whether or not to allow the */ 2782 1.1 christos /* packet to be further processed by the kernel. */ 2783 1.1 christos /* */ 2784 1.1 christos /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2785 1.1 christos /* freed. Packets passed may be returned with the pointer pointed to by */ 2786 1.1 christos /* by "mp" changed to a new buffer. */ 2787 1.1 christos /* ------------------------------------------------------------------------ */ 2788 1.1 christos int 2789 1.2 christos ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out, 2790 1.1 christos #if defined(_KERNEL) && defined(MENTAT) 2791 1.2 christos void *qif, 2792 1.1 christos #endif 2793 1.2 christos mb_t **mp) 2794 1.1 christos { 2795 1.1 christos /* 2796 1.1 christos * The above really sucks, but short of writing a diff 2797 1.1 christos */ 2798 1.1 christos ipf_main_softc_t *softc = ctx; 2799 1.1 christos fr_info_t frinfo; 2800 1.1 christos fr_info_t *fin = &frinfo; 2801 1.1 christos u_32_t pass = softc->ipf_pass; 2802 1.1 christos frentry_t *fr = NULL; 2803 1.1 christos int v = IP_V(ip); 2804 1.1 christos mb_t *mc = NULL; 2805 1.1 christos mb_t *m; 2806 1.1 christos /* 2807 1.1 christos * The first part of ipf_check() deals with making sure that what goes 2808 1.1 christos * into the filtering engine makes some sense. Information about the 2809 1.1 christos * the packet is distilled, collected into a fr_info_t structure and 2810 1.1 christos * the an attempt to ensure the buffer the packet is in is big enough 2811 1.1 christos * to hold all the required packet headers. 2812 1.1 christos */ 2813 1.1 christos #ifdef _KERNEL 2814 1.1 christos # ifdef MENTAT 2815 1.1 christos qpktinfo_t *qpi = qif; 2816 1.1 christos 2817 1.1 christos # ifdef __sparc 2818 1.1 christos if ((u_int)ip & 0x3) 2819 1.1 christos return 2; 2820 1.1 christos # endif 2821 1.1 christos # else 2822 1.1 christos SPL_INT(s); 2823 1.1 christos # endif 2824 1.1 christos 2825 1.1 christos if (softc->ipf_running <= 0) { 2826 1.1 christos return 0; 2827 1.1 christos } 2828 1.1 christos 2829 1.1 christos bzero((char *)fin, sizeof(*fin)); 2830 1.1 christos 2831 1.1 christos # ifdef MENTAT 2832 1.3 darrenr if (qpi->qpi_flags & QF_BROADCAST) 2833 1.3 darrenr fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2834 1.3 darrenr if (qpi->qpi_flags & QF_MULTICAST) 2835 1.3 darrenr fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2836 1.1 christos m = qpi->qpi_m; 2837 1.1 christos fin->fin_qfm = m; 2838 1.1 christos fin->fin_qpi = qpi; 2839 1.1 christos # else /* MENTAT */ 2840 1.1 christos 2841 1.1 christos m = *mp; 2842 1.1 christos 2843 1.1 christos # if defined(M_MCAST) 2844 1.1 christos if ((m->m_flags & M_MCAST) != 0) 2845 1.1 christos fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2846 1.1 christos # endif 2847 1.1 christos # if defined(M_MLOOP) 2848 1.1 christos if ((m->m_flags & M_MLOOP) != 0) 2849 1.1 christos fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2850 1.1 christos # endif 2851 1.1 christos # if defined(M_BCAST) 2852 1.1 christos if ((m->m_flags & M_BCAST) != 0) 2853 1.1 christos fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2854 1.1 christos # endif 2855 1.1 christos # ifdef M_CANFASTFWD 2856 1.1 christos /* 2857 1.1 christos * XXX For now, IP Filter and fast-forwarding of cached flows 2858 1.1 christos * XXX are mutually exclusive. Eventually, IP Filter should 2859 1.1 christos * XXX get a "can-fast-forward" filter rule. 2860 1.1 christos */ 2861 1.1 christos m->m_flags &= ~M_CANFASTFWD; 2862 1.1 christos # endif /* M_CANFASTFWD */ 2863 1.1 christos # if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \ 2864 1.1 christos (__FreeBSD_version < 501108)) 2865 1.1 christos /* 2866 1.1 christos * disable delayed checksums. 2867 1.1 christos */ 2868 1.1 christos if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2869 1.24 maxv in_undefer_cksum_tcpudp(m); 2870 1.1 christos m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2871 1.1 christos } 2872 1.1 christos # endif /* CSUM_DELAY_DATA */ 2873 1.1 christos # endif /* MENTAT */ 2874 1.1 christos #else 2875 1.1 christos bzero((char *)fin, sizeof(*fin)); 2876 1.1 christos m = *mp; 2877 1.1 christos # if defined(M_MCAST) 2878 1.1 christos if ((m->m_flags & M_MCAST) != 0) 2879 1.1 christos fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2880 1.1 christos # endif 2881 1.1 christos # if defined(M_MLOOP) 2882 1.1 christos if ((m->m_flags & M_MLOOP) != 0) 2883 1.1 christos fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2884 1.1 christos # endif 2885 1.1 christos # if defined(M_BCAST) 2886 1.1 christos if ((m->m_flags & M_BCAST) != 0) 2887 1.1 christos fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2888 1.1 christos # endif 2889 1.1 christos #endif /* _KERNEL */ 2890 1.1 christos 2891 1.1 christos fin->fin_v = v; 2892 1.1 christos fin->fin_m = m; 2893 1.1 christos fin->fin_ip = ip; 2894 1.1 christos fin->fin_mp = mp; 2895 1.1 christos fin->fin_out = out; 2896 1.1 christos fin->fin_ifp = ifp; 2897 1.1 christos fin->fin_error = ENETUNREACH; 2898 1.1 christos fin->fin_hlen = (u_short)hlen; 2899 1.1 christos fin->fin_dp = (char *)ip + hlen; 2900 1.1 christos fin->fin_main_soft = softc; 2901 1.1 christos 2902 1.1 christos fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2903 1.1 christos 2904 1.1 christos SPL_NET(s); 2905 1.1 christos 2906 1.1 christos #ifdef USE_INET6 2907 1.1 christos if (v == 6) { 2908 1.1 christos LBUMP(ipf_stats[out].fr_ipv6); 2909 1.1 christos /* 2910 1.1 christos * Jumbo grams are quite likely too big for internal buffer 2911 1.1 christos * structures to handle comfortably, for now, so just drop 2912 1.1 christos * them. 2913 1.1 christos */ 2914 1.1 christos if (((ip6_t *)ip)->ip6_plen == 0) { 2915 1.1 christos DT1(frb_jumbo, ip6_t *, (ip6_t *)ip); 2916 1.1 christos pass = FR_BLOCK|FR_NOMATCH; 2917 1.1 christos fin->fin_reason = FRB_JUMBO; 2918 1.1 christos goto finished; 2919 1.1 christos } 2920 1.1 christos fin->fin_family = AF_INET6; 2921 1.1 christos } else 2922 1.1 christos #endif 2923 1.1 christos { 2924 1.1 christos fin->fin_family = AF_INET; 2925 1.1 christos } 2926 1.1 christos 2927 1.1 christos if (ipf_makefrip(hlen, ip, fin) == -1) { 2928 1.1 christos DT1(frb_makefrip, fr_info_t *, fin); 2929 1.1 christos pass = FR_BLOCK|FR_NOMATCH; 2930 1.1 christos fin->fin_reason = FRB_MAKEFRIP; 2931 1.1 christos goto finished; 2932 1.1 christos } 2933 1.1 christos 2934 1.1 christos /* 2935 1.1 christos * For at least IPv6 packets, if a m_pullup() fails then this pointer 2936 1.1 christos * becomes NULL and so we have no packet to free. 2937 1.1 christos */ 2938 1.1 christos if (*fin->fin_mp == NULL) 2939 1.1 christos goto finished; 2940 1.1 christos 2941 1.1 christos if (!out) { 2942 1.1 christos if (v == 4) { 2943 1.1 christos if (softc->ipf_chksrc && !ipf_verifysrc(fin)) { 2944 1.1 christos LBUMPD(ipf_stats[0], fr_v4_badsrc); 2945 1.1 christos fin->fin_flx |= FI_BADSRC; 2946 1.1 christos } 2947 1.1 christos if (fin->fin_ip->ip_ttl < softc->ipf_minttl) { 2948 1.1 christos LBUMPD(ipf_stats[0], fr_v4_badttl); 2949 1.1 christos fin->fin_flx |= FI_LOWTTL; 2950 1.1 christos } 2951 1.1 christos } 2952 1.1 christos #ifdef USE_INET6 2953 1.1 christos else if (v == 6) { 2954 1.1 christos if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) { 2955 1.1 christos LBUMPD(ipf_stats[0], fr_v6_badttl); 2956 1.1 christos fin->fin_flx |= FI_LOWTTL; 2957 1.1 christos } 2958 1.1 christos } 2959 1.1 christos #endif 2960 1.1 christos } 2961 1.1 christos 2962 1.1 christos if (fin->fin_flx & FI_SHORT) { 2963 1.1 christos LBUMPD(ipf_stats[out], fr_short); 2964 1.1 christos } 2965 1.1 christos 2966 1.1 christos READ_ENTER(&softc->ipf_mutex); 2967 1.1 christos 2968 1.1 christos if (!out) { 2969 1.1 christos switch (fin->fin_v) 2970 1.1 christos { 2971 1.1 christos case 4 : 2972 1.1 christos if (ipf_nat_checkin(fin, &pass) == -1) { 2973 1.1 christos goto filterdone; 2974 1.1 christos } 2975 1.1 christos break; 2976 1.1 christos #ifdef USE_INET6 2977 1.1 christos case 6 : 2978 1.1 christos if (ipf_nat6_checkin(fin, &pass) == -1) { 2979 1.1 christos goto filterdone; 2980 1.1 christos } 2981 1.1 christos break; 2982 1.1 christos #endif 2983 1.1 christos default : 2984 1.1 christos break; 2985 1.1 christos } 2986 1.1 christos } 2987 1.1 christos /* 2988 1.1 christos * Check auth now. 2989 1.1 christos * If a packet is found in the auth table, then skip checking 2990 1.1 christos * the access lists for permission but we do need to consider 2991 1.1 christos * the result as if it were from the ACL's. In addition, being 2992 1.1 christos * found in the auth table means it has been seen before, so do 2993 1.1 christos * not pass it through accounting (again), lest it be counted twice. 2994 1.1 christos */ 2995 1.1 christos fr = ipf_auth_check(fin, &pass); 2996 1.1 christos if (!out && (fr == NULL)) 2997 1.1 christos (void) ipf_acctpkt(fin, NULL); 2998 1.1 christos 2999 1.1 christos if (fr == NULL) { 3000 1.1 christos if ((fin->fin_flx & FI_FRAG) != 0) 3001 1.1 christos fr = ipf_frag_known(fin, &pass); 3002 1.1 christos 3003 1.1 christos if (fr == NULL) 3004 1.1 christos fr = ipf_state_check(fin, &pass); 3005 1.1 christos } 3006 1.1 christos 3007 1.1 christos if ((pass & FR_NOMATCH) || (fr == NULL)) 3008 1.1 christos fr = ipf_firewall(fin, &pass); 3009 1.1 christos 3010 1.1 christos /* 3011 1.1 christos * If we've asked to track state for this packet, set it up. 3012 1.1 christos * Here rather than ipf_firewall because ipf_checkauth may decide 3013 1.1 christos * to return a packet for "keep state" 3014 1.1 christos */ 3015 1.1 christos if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) && 3016 1.1 christos !(fin->fin_flx & FI_STATE)) { 3017 1.1 christos if (ipf_state_add(softc, fin, NULL, 0) == 0) { 3018 1.1 christos LBUMP(ipf_stats[out].fr_ads); 3019 1.1 christos } else { 3020 1.1 christos LBUMP(ipf_stats[out].fr_bads); 3021 1.1 christos if (FR_ISPASS(pass)) { 3022 1.1 christos DT(frb_stateadd); 3023 1.1 christos pass &= ~FR_CMDMASK; 3024 1.1 christos pass |= FR_BLOCK; 3025 1.1 christos fin->fin_reason = FRB_STATEADD; 3026 1.1 christos } 3027 1.1 christos } 3028 1.1 christos } 3029 1.1 christos 3030 1.1 christos fin->fin_fr = fr; 3031 1.1 christos if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) { 3032 1.1 christos fin->fin_dif = &fr->fr_dif; 3033 1.1 christos fin->fin_tif = &fr->fr_tifs[fin->fin_rev]; 3034 1.1 christos } 3035 1.1 christos 3036 1.1 christos /* 3037 1.1 christos * Only count/translate packets which will be passed on, out the 3038 1.1 christos * interface. 3039 1.1 christos */ 3040 1.1 christos if (out && FR_ISPASS(pass)) { 3041 1.1 christos (void) ipf_acctpkt(fin, NULL); 3042 1.1 christos 3043 1.1 christos switch (fin->fin_v) 3044 1.1 christos { 3045 1.1 christos case 4 : 3046 1.1 christos if (ipf_nat_checkout(fin, &pass) == -1) { 3047 1.1 christos ; 3048 1.1 christos } else if ((softc->ipf_update_ipid != 0) && (v == 4)) { 3049 1.1 christos if (ipf_updateipid(fin) == -1) { 3050 1.1 christos DT(frb_updateipid); 3051 1.1 christos LBUMP(ipf_stats[1].fr_ipud); 3052 1.1 christos pass &= ~FR_CMDMASK; 3053 1.1 christos pass |= FR_BLOCK; 3054 1.1 christos fin->fin_reason = FRB_UPDATEIPID; 3055 1.1 christos } else { 3056 1.1 christos LBUMP(ipf_stats[0].fr_ipud); 3057 1.1 christos } 3058 1.1 christos } 3059 1.1 christos break; 3060 1.1 christos #ifdef USE_INET6 3061 1.1 christos case 6 : 3062 1.1 christos (void) ipf_nat6_checkout(fin, &pass); 3063 1.1 christos break; 3064 1.1 christos #endif 3065 1.1 christos default : 3066 1.1 christos break; 3067 1.1 christos } 3068 1.1 christos } 3069 1.1 christos 3070 1.1 christos filterdone: 3071 1.1 christos #ifdef IPFILTER_LOG 3072 1.1 christos if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 3073 1.1 christos (void) ipf_dolog(fin, &pass); 3074 1.1 christos } 3075 1.1 christos #endif 3076 1.1 christos 3077 1.1 christos /* 3078 1.1 christos * The FI_STATE flag is cleared here so that calling ipf_state_check 3079 1.1 christos * will work when called from inside of fr_fastroute. Although 3080 1.1 christos * there is a similar flag, FI_NATED, for NAT, it does have the same 3081 1.1 christos * impact on code execution. 3082 1.1 christos */ 3083 1.1 christos fin->fin_flx &= ~FI_STATE; 3084 1.1 christos 3085 1.1 christos #if defined(FASTROUTE_RECURSION) 3086 1.1 christos /* 3087 1.1 christos * Up the reference on fr_lock and exit ipf_mutex. The generation of 3088 1.1 christos * a packet below can sometimes cause a recursive call into IPFilter. 3089 1.1 christos * On those platforms where that does happen, we need to hang onto 3090 1.1 christos * the filter rule just in case someone decides to remove or flush it 3091 1.1 christos * in the meantime. 3092 1.1 christos */ 3093 1.1 christos if (fr != NULL) { 3094 1.1 christos MUTEX_ENTER(&fr->fr_lock); 3095 1.1 christos fr->fr_ref++; 3096 1.1 christos MUTEX_EXIT(&fr->fr_lock); 3097 1.1 christos } 3098 1.18 christos 3099 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 3100 1.1 christos #endif 3101 1.1 christos 3102 1.1 christos if ((pass & FR_RETMASK) != 0) { 3103 1.1 christos /* 3104 1.1 christos * Should we return an ICMP packet to indicate error 3105 1.1 christos * status passing through the packet filter ? 3106 1.1 christos * WARNING: ICMP error packets AND TCP RST packets should 3107 1.1 christos * ONLY be sent in repsonse to incoming packets. Sending 3108 1.1 christos * them in response to outbound packets can result in a 3109 1.1 christos * panic on some operating systems. 3110 1.1 christos */ 3111 1.1 christos if (!out) { 3112 1.1 christos if (pass & FR_RETICMP) { 3113 1.1 christos int dst; 3114 1.1 christos 3115 1.1 christos if ((pass & FR_RETMASK) == FR_FAKEICMP) 3116 1.1 christos dst = 1; 3117 1.1 christos else 3118 1.1 christos dst = 0; 3119 1.1 christos (void) ipf_send_icmp_err(ICMP_UNREACH, fin, 3120 1.1 christos dst); 3121 1.1 christos LBUMP(ipf_stats[0].fr_ret); 3122 1.1 christos } else if (((pass & FR_RETMASK) == FR_RETRST) && 3123 1.1 christos !(fin->fin_flx & FI_SHORT)) { 3124 1.1 christos if (((fin->fin_flx & FI_OOW) != 0) || 3125 1.1 christos (ipf_send_reset(fin) == 0)) { 3126 1.1 christos LBUMP(ipf_stats[1].fr_ret); 3127 1.1 christos } 3128 1.1 christos } 3129 1.1 christos 3130 1.1 christos /* 3131 1.1 christos * When using return-* with auth rules, the auth code 3132 1.1 christos * takes over disposing of this packet. 3133 1.1 christos */ 3134 1.1 christos if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) { 3135 1.1 christos DT1(frb_authcapture, fr_info_t *, fin); 3136 1.1 christos fin->fin_m = *fin->fin_mp = NULL; 3137 1.1 christos fin->fin_reason = FRB_AUTHCAPTURE; 3138 1.1 christos m = NULL; 3139 1.1 christos } 3140 1.1 christos } else { 3141 1.1 christos if (pass & FR_RETRST) { 3142 1.1 christos fin->fin_error = ECONNRESET; 3143 1.1 christos } 3144 1.1 christos } 3145 1.1 christos } 3146 1.1 christos 3147 1.1 christos /* 3148 1.1 christos * After the above so that ICMP unreachables and TCP RSTs get 3149 1.1 christos * created properly. 3150 1.1 christos */ 3151 1.1 christos if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) 3152 1.1 christos ipf_nat_uncreate(fin); 3153 1.1 christos 3154 1.1 christos /* 3155 1.1 christos * If we didn't drop off the bottom of the list of rules (and thus 3156 1.1 christos * the 'current' rule fr is not NULL), then we may have some extra 3157 1.1 christos * instructions about what to do with a packet. 3158 1.1 christos * Once we're finished return to our caller, freeing the packet if 3159 1.1 christos * we are dropping it. 3160 1.1 christos */ 3161 1.1 christos if (fr != NULL) { 3162 1.1 christos frdest_t *fdp; 3163 1.1 christos 3164 1.1 christos /* 3165 1.1 christos * Generate a duplicated packet first because ipf_fastroute 3166 1.1 christos * can lead to fin_m being free'd... not good. 3167 1.1 christos */ 3168 1.1 christos fdp = fin->fin_dif; 3169 1.1 christos if ((fdp != NULL) && (fdp->fd_ptr != NULL) && 3170 1.13 christos (fdp->fd_ptr != (void *)-1) && (fin->fin_m != NULL)) { 3171 1.1 christos mc = M_COPY(fin->fin_m); 3172 1.1 christos if (mc != NULL) 3173 1.1 christos ipf_fastroute(mc, &mc, fin, fdp); 3174 1.1 christos } 3175 1.1 christos 3176 1.1 christos fdp = fin->fin_tif; 3177 1.1 christos if (!out && (pass & FR_FASTROUTE)) { 3178 1.1 christos /* 3179 1.1 christos * For fastroute rule, no destination interface defined 3180 1.1 christos * so pass NULL as the frdest_t parameter 3181 1.1 christos */ 3182 1.1 christos (void) ipf_fastroute(fin->fin_m, mp, fin, NULL); 3183 1.1 christos m = *mp = NULL; 3184 1.1 christos } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) && 3185 1.1 christos (fdp->fd_ptr != (struct ifnet *)-1)) { 3186 1.1 christos /* this is for to rules: */ 3187 1.1 christos ipf_fastroute(fin->fin_m, mp, fin, fdp); 3188 1.1 christos m = *mp = NULL; 3189 1.1 christos } 3190 1.1 christos 3191 1.1 christos #if defined(FASTROUTE_RECURSION) 3192 1.1 christos (void) ipf_derefrule(softc, &fr); 3193 1.1 christos #endif 3194 1.1 christos } 3195 1.1 christos #if !defined(FASTROUTE_RECURSION) 3196 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 3197 1.1 christos #endif 3198 1.1 christos 3199 1.1 christos finished: 3200 1.1 christos if (!FR_ISPASS(pass)) { 3201 1.1 christos LBUMP(ipf_stats[out].fr_block); 3202 1.1 christos if (*mp != NULL) { 3203 1.2 christos #ifdef _KERNEL 3204 1.1 christos FREE_MB_T(*mp); 3205 1.2 christos #endif 3206 1.1 christos m = *mp = NULL; 3207 1.1 christos } 3208 1.1 christos } else { 3209 1.1 christos LBUMP(ipf_stats[out].fr_pass); 3210 1.1 christos #if defined(_KERNEL) && defined(__sgi) 3211 1.1 christos if ((fin->fin_hbuf != NULL) && 3212 1.1 christos (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 3213 1.1 christos COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf); 3214 1.1 christos } 3215 1.1 christos #endif 3216 1.1 christos } 3217 1.1 christos 3218 1.1 christos SPL_X(s); 3219 1.1 christos 3220 1.36 christos if (fin->fin_m == NULL && fin->fin_flx & FI_BAD && 3221 1.36 christos fin->fin_reason == FRB_PULLUP) { 3222 1.36 christos /* m_pullup() has freed the mbuf */ 3223 1.36 christos LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]); 3224 1.36 christos return (-1); 3225 1.36 christos } 3226 1.36 christos 3227 1.1 christos #ifdef _KERNEL 3228 1.3 darrenr if (FR_ISPASS(pass)) 3229 1.3 darrenr return 0; 3230 1.3 darrenr LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]); 3231 1.3 darrenr return fin->fin_error; 3232 1.1 christos #else /* _KERNEL */ 3233 1.1 christos if (*mp != NULL) 3234 1.1 christos (*mp)->mb_ifp = fin->fin_ifp; 3235 1.1 christos blockreason = fin->fin_reason; 3236 1.1 christos FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 3237 1.1 christos /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/ 3238 1.1 christos if ((pass & FR_NOMATCH) != 0) 3239 1.1 christos return 1; 3240 1.1 christos 3241 1.1 christos if ((pass & FR_RETMASK) != 0) 3242 1.1 christos switch (pass & FR_RETMASK) 3243 1.1 christos { 3244 1.1 christos case FR_RETRST : 3245 1.1 christos return 3; 3246 1.1 christos case FR_RETICMP : 3247 1.1 christos return 4; 3248 1.1 christos case FR_FAKEICMP : 3249 1.1 christos return 5; 3250 1.1 christos } 3251 1.1 christos 3252 1.1 christos switch (pass & FR_CMDMASK) 3253 1.1 christos { 3254 1.1 christos case FR_PASS : 3255 1.1 christos return 0; 3256 1.1 christos case FR_BLOCK : 3257 1.1 christos return -1; 3258 1.1 christos case FR_AUTH : 3259 1.1 christos return -2; 3260 1.1 christos case FR_ACCOUNT : 3261 1.1 christos return -3; 3262 1.1 christos case FR_PREAUTH : 3263 1.1 christos return -4; 3264 1.1 christos } 3265 1.1 christos return 2; 3266 1.1 christos #endif /* _KERNEL */ 3267 1.1 christos } 3268 1.1 christos 3269 1.1 christos 3270 1.1 christos #ifdef IPFILTER_LOG 3271 1.1 christos /* ------------------------------------------------------------------------ */ 3272 1.1 christos /* Function: ipf_dolog */ 3273 1.1 christos /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 3274 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 3275 1.1 christos /* passp(IO) - pointer to current/new filter decision (unused) */ 3276 1.1 christos /* */ 3277 1.1 christos /* Checks flags set to see how a packet should be logged, if it is to be */ 3278 1.1 christos /* logged. Adjust statistics based on its success or not. */ 3279 1.1 christos /* ------------------------------------------------------------------------ */ 3280 1.1 christos frentry_t * 3281 1.2 christos ipf_dolog(fr_info_t *fin, u_32_t *passp) 3282 1.1 christos { 3283 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 3284 1.1 christos u_32_t pass; 3285 1.1 christos int out; 3286 1.1 christos 3287 1.1 christos out = fin->fin_out; 3288 1.1 christos pass = *passp; 3289 1.1 christos 3290 1.1 christos if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 3291 1.1 christos pass |= FF_LOGNOMATCH; 3292 1.1 christos LBUMPD(ipf_stats[out], fr_npkl); 3293 1.1 christos goto logit; 3294 1.1 christos 3295 1.1 christos } else if (((pass & FR_LOGMASK) == FR_LOGP) || 3296 1.1 christos (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) { 3297 1.1 christos if ((pass & FR_LOGMASK) != FR_LOGP) 3298 1.1 christos pass |= FF_LOGPASS; 3299 1.1 christos LBUMPD(ipf_stats[out], fr_ppkl); 3300 1.1 christos goto logit; 3301 1.1 christos 3302 1.1 christos } else if (((pass & FR_LOGMASK) == FR_LOGB) || 3303 1.1 christos (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) { 3304 1.1 christos if ((pass & FR_LOGMASK) != FR_LOGB) 3305 1.1 christos pass |= FF_LOGBLOCK; 3306 1.1 christos LBUMPD(ipf_stats[out], fr_bpkl); 3307 1.1 christos 3308 1.1 christos logit: 3309 1.1 christos if (ipf_log_pkt(fin, pass) == -1) { 3310 1.1 christos /* 3311 1.1 christos * If the "or-block" option has been used then 3312 1.1 christos * block the packet if we failed to log it. 3313 1.1 christos */ 3314 1.1 christos if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) { 3315 1.1 christos DT1(frb_logfail2, u_int, pass); 3316 1.1 christos pass &= ~FR_CMDMASK; 3317 1.1 christos pass |= FR_BLOCK; 3318 1.1 christos fin->fin_reason = FRB_LOGFAIL2; 3319 1.1 christos } 3320 1.1 christos } 3321 1.1 christos *passp = pass; 3322 1.1 christos } 3323 1.1 christos 3324 1.1 christos return fin->fin_fr; 3325 1.1 christos } 3326 1.1 christos #endif /* IPFILTER_LOG */ 3327 1.1 christos 3328 1.1 christos 3329 1.1 christos /* ------------------------------------------------------------------------ */ 3330 1.1 christos /* Function: ipf_cksum */ 3331 1.1 christos /* Returns: u_short - IP header checksum */ 3332 1.1 christos /* Parameters: addr(I) - pointer to start of buffer to checksum */ 3333 1.1 christos /* len(I) - length of buffer in bytes */ 3334 1.1 christos /* */ 3335 1.1 christos /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 3336 1.1 christos /* */ 3337 1.1 christos /* N.B.: addr should be 16bit aligned. */ 3338 1.1 christos /* ------------------------------------------------------------------------ */ 3339 1.1 christos u_short 3340 1.2 christos ipf_cksum(u_short *addr, int len) 3341 1.1 christos { 3342 1.1 christos u_32_t sum = 0; 3343 1.1 christos 3344 1.1 christos for (sum = 0; len > 1; len -= 2) 3345 1.1 christos sum += *addr++; 3346 1.1 christos 3347 1.1 christos /* mop up an odd byte, if necessary */ 3348 1.1 christos if (len == 1) 3349 1.1 christos sum += *(u_char *)addr; 3350 1.1 christos 3351 1.1 christos /* 3352 1.1 christos * add back carry outs from top 16 bits to low 16 bits 3353 1.1 christos */ 3354 1.1 christos sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 3355 1.1 christos sum += (sum >> 16); /* add carry */ 3356 1.1 christos return (u_short)(~sum); 3357 1.1 christos } 3358 1.1 christos 3359 1.1 christos 3360 1.1 christos /* ------------------------------------------------------------------------ */ 3361 1.1 christos /* Function: fr_cksum */ 3362 1.1 christos /* Returns: u_short - layer 4 checksum */ 3363 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 3364 1.1 christos /* ip(I) - pointer to IP header */ 3365 1.1 christos /* l4proto(I) - protocol to caclulate checksum for */ 3366 1.1 christos /* l4hdr(I) - pointer to layer 4 header */ 3367 1.1 christos /* */ 3368 1.1 christos /* Calculates the TCP checksum for the packet held in "m", using the data */ 3369 1.1 christos /* in the IP header "ip" to seed it. */ 3370 1.1 christos /* */ 3371 1.1 christos /* NB: This function assumes we've pullup'd enough for all of the IP header */ 3372 1.1 christos /* and the TCP header. We also assume that data blocks aren't allocated in */ 3373 1.1 christos /* odd sizes. */ 3374 1.1 christos /* */ 3375 1.1 christos /* Expects ip_len and ip_off to be in network byte order when called. */ 3376 1.1 christos /* ------------------------------------------------------------------------ */ 3377 1.1 christos u_short 3378 1.2 christos fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr) 3379 1.1 christos { 3380 1.1 christos u_short *sp, slen, sumsave, *csump; 3381 1.1 christos u_int sum, sum2; 3382 1.1 christos int hlen; 3383 1.1 christos int off; 3384 1.1 christos #ifdef USE_INET6 3385 1.1 christos ip6_t *ip6; 3386 1.1 christos #endif 3387 1.1 christos 3388 1.1 christos csump = NULL; 3389 1.1 christos sumsave = 0; 3390 1.1 christos sp = NULL; 3391 1.1 christos slen = 0; 3392 1.1 christos hlen = 0; 3393 1.1 christos sum = 0; 3394 1.1 christos 3395 1.1 christos sum = htons((u_short)l4proto); 3396 1.1 christos /* 3397 1.1 christos * Add up IP Header portion 3398 1.1 christos */ 3399 1.1 christos #ifdef USE_INET6 3400 1.1 christos if (IP_V(ip) == 4) { 3401 1.1 christos #endif 3402 1.1 christos hlen = IP_HL(ip) << 2; 3403 1.1 christos off = hlen; 3404 1.1 christos sp = (u_short *)&ip->ip_src; 3405 1.1 christos sum += *sp++; /* ip_src */ 3406 1.1 christos sum += *sp++; 3407 1.1 christos sum += *sp++; /* ip_dst */ 3408 1.1 christos sum += *sp++; 3409 1.1 christos #ifdef USE_INET6 3410 1.1 christos } else if (IP_V(ip) == 6) { 3411 1.1 christos ip6 = (ip6_t *)ip; 3412 1.1 christos hlen = sizeof(*ip6); 3413 1.1 christos off = ((char *)fin->fin_dp - (char *)fin->fin_ip); 3414 1.1 christos sp = (u_short *)&ip6->ip6_src; 3415 1.1 christos sum += *sp++; /* ip6_src */ 3416 1.1 christos sum += *sp++; 3417 1.1 christos sum += *sp++; 3418 1.1 christos sum += *sp++; 3419 1.1 christos sum += *sp++; 3420 1.1 christos sum += *sp++; 3421 1.1 christos sum += *sp++; 3422 1.1 christos sum += *sp++; 3423 1.3 darrenr /* This needs to be routing header aware. */ 3424 1.1 christos sum += *sp++; /* ip6_dst */ 3425 1.1 christos sum += *sp++; 3426 1.1 christos sum += *sp++; 3427 1.1 christos sum += *sp++; 3428 1.1 christos sum += *sp++; 3429 1.1 christos sum += *sp++; 3430 1.1 christos sum += *sp++; 3431 1.1 christos sum += *sp++; 3432 1.1 christos } else { 3433 1.1 christos return 0xffff; 3434 1.1 christos } 3435 1.1 christos #endif 3436 1.1 christos slen = fin->fin_plen - off; 3437 1.1 christos sum += htons(slen); 3438 1.1 christos 3439 1.1 christos switch (l4proto) 3440 1.1 christos { 3441 1.1 christos case IPPROTO_UDP : 3442 1.1 christos csump = &((udphdr_t *)l4hdr)->uh_sum; 3443 1.1 christos break; 3444 1.1 christos 3445 1.1 christos case IPPROTO_TCP : 3446 1.1 christos csump = &((tcphdr_t *)l4hdr)->th_sum; 3447 1.1 christos break; 3448 1.1 christos case IPPROTO_ICMP : 3449 1.1 christos csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 3450 1.1 christos sum = 0; /* Pseudo-checksum is not included */ 3451 1.1 christos break; 3452 1.3 darrenr #ifdef USE_INET6 3453 1.3 darrenr case IPPROTO_ICMPV6 : 3454 1.3 darrenr csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum; 3455 1.3 darrenr break; 3456 1.3 darrenr #endif 3457 1.1 christos default : 3458 1.1 christos break; 3459 1.1 christos } 3460 1.1 christos 3461 1.1 christos if (csump != NULL) { 3462 1.1 christos sumsave = *csump; 3463 1.1 christos *csump = 0; 3464 1.1 christos } 3465 1.1 christos 3466 1.1 christos sum2 = ipf_pcksum(fin, off, sum); 3467 1.1 christos if (csump != NULL) 3468 1.1 christos *csump = sumsave; 3469 1.1 christos return sum2; 3470 1.1 christos } 3471 1.1 christos 3472 1.1 christos 3473 1.1 christos /* ------------------------------------------------------------------------ */ 3474 1.1 christos /* Function: ipf_findgroup */ 3475 1.1 christos /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3476 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 3477 1.3 darrenr /* group(I) - group name to search for */ 3478 1.1 christos /* unit(I) - device to which this group belongs */ 3479 1.1 christos /* set(I) - which set of rules (inactive/inactive) this is */ 3480 1.1 christos /* fgpp(O) - pointer to place to store pointer to the pointer */ 3481 1.1 christos /* to where to add the next (last) group or where */ 3482 1.1 christos /* to delete group from. */ 3483 1.1 christos /* */ 3484 1.1 christos /* Search amongst the defined groups for a particular group number. */ 3485 1.1 christos /* ------------------------------------------------------------------------ */ 3486 1.1 christos frgroup_t * 3487 1.2 christos ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set, 3488 1.2 christos frgroup_t ***fgpp) 3489 1.1 christos { 3490 1.1 christos frgroup_t *fg, **fgp; 3491 1.1 christos 3492 1.1 christos /* 3493 1.1 christos * Which list of groups to search in is dependent on which list of 3494 1.1 christos * rules are being operated on. 3495 1.1 christos */ 3496 1.1 christos fgp = &softc->ipf_groups[unit][set]; 3497 1.1 christos 3498 1.1 christos while ((fg = *fgp) != NULL) { 3499 1.1 christos if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3500 1.1 christos break; 3501 1.1 christos else 3502 1.1 christos fgp = &fg->fg_next; 3503 1.1 christos } 3504 1.1 christos if (fgpp != NULL) 3505 1.1 christos *fgpp = fgp; 3506 1.1 christos return fg; 3507 1.1 christos } 3508 1.1 christos 3509 1.1 christos 3510 1.1 christos /* ------------------------------------------------------------------------ */ 3511 1.1 christos /* Function: ipf_group_add */ 3512 1.1 christos /* Returns: frgroup_t * - NULL == did not create group, */ 3513 1.1 christos /* != NULL == pointer to the group */ 3514 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 3515 1.3 darrenr /* num(I) - group number to add */ 3516 1.1 christos /* head(I) - rule pointer that is using this as the head */ 3517 1.1 christos /* flags(I) - rule flags which describe the type of rule it is */ 3518 1.1 christos /* unit(I) - device to which this group will belong to */ 3519 1.1 christos /* set(I) - which set of rules (inactive/inactive) this is */ 3520 1.1 christos /* Write Locks: ipf_mutex */ 3521 1.1 christos /* */ 3522 1.1 christos /* Add a new group head, or if it already exists, increase the reference */ 3523 1.1 christos /* count to it. */ 3524 1.1 christos /* ------------------------------------------------------------------------ */ 3525 1.1 christos frgroup_t * 3526 1.2 christos ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags, 3527 1.2 christos minor_t unit, int set) 3528 1.1 christos { 3529 1.1 christos frgroup_t *fg, **fgp; 3530 1.1 christos u_32_t gflags; 3531 1.1 christos 3532 1.1 christos if (group == NULL) 3533 1.1 christos return NULL; 3534 1.1 christos 3535 1.1 christos if (unit == IPL_LOGIPF && *group == '\0') 3536 1.1 christos return NULL; 3537 1.1 christos 3538 1.1 christos fgp = NULL; 3539 1.1 christos gflags = flags & FR_INOUT; 3540 1.1 christos 3541 1.1 christos fg = ipf_findgroup(softc, group, unit, set, &fgp); 3542 1.1 christos if (fg != NULL) { 3543 1.3 darrenr if (fg->fg_head == NULL && head != NULL) 3544 1.3 darrenr fg->fg_head = head; 3545 1.1 christos if (fg->fg_flags == 0) 3546 1.1 christos fg->fg_flags = gflags; 3547 1.1 christos else if (gflags != fg->fg_flags) 3548 1.1 christos return NULL; 3549 1.1 christos fg->fg_ref++; 3550 1.1 christos return fg; 3551 1.1 christos } 3552 1.1 christos 3553 1.1 christos KMALLOC(fg, frgroup_t *); 3554 1.1 christos if (fg != NULL) { 3555 1.1 christos fg->fg_head = head; 3556 1.1 christos fg->fg_start = NULL; 3557 1.1 christos fg->fg_next = *fgp; 3558 1.1 christos bcopy(group, fg->fg_name, strlen(group) + 1); 3559 1.1 christos fg->fg_flags = gflags; 3560 1.1 christos fg->fg_ref = 1; 3561 1.3 darrenr fg->fg_set = &softc->ipf_groups[unit][set]; 3562 1.1 christos *fgp = fg; 3563 1.1 christos } 3564 1.1 christos return fg; 3565 1.1 christos } 3566 1.1 christos 3567 1.1 christos 3568 1.1 christos /* ------------------------------------------------------------------------ */ 3569 1.1 christos /* Function: ipf_group_del */ 3570 1.1 christos /* Returns: int - number of rules deleted */ 3571 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 3572 1.3 darrenr /* group(I) - group name to delete */ 3573 1.3 darrenr /* fr(I) - filter rule from which group is referenced */ 3574 1.1 christos /* Write Locks: ipf_mutex */ 3575 1.1 christos /* */ 3576 1.3 darrenr /* This function is called whenever a reference to a group is to be dropped */ 3577 1.3 darrenr /* and thus its reference count needs to be lowered and the group free'd if */ 3578 1.3 darrenr /* the reference count reaches zero. Passing in fr is really for the sole */ 3579 1.3 darrenr /* purpose of knowing when the head rule is being deleted. */ 3580 1.1 christos /* ------------------------------------------------------------------------ */ 3581 1.3 darrenr void 3582 1.3 darrenr ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr) 3583 1.1 christos { 3584 1.1 christos 3585 1.3 darrenr if (group->fg_head == fr) 3586 1.3 darrenr group->fg_head = NULL; 3587 1.3 darrenr 3588 1.3 darrenr group->fg_ref--; 3589 1.3 darrenr if ((group->fg_ref == 0) && (group->fg_start == NULL)) 3590 1.3 darrenr ipf_group_free(group); 3591 1.3 darrenr } 3592 1.1 christos 3593 1.1 christos 3594 1.3 darrenr /* ------------------------------------------------------------------------ */ 3595 1.3 darrenr /* Function: ipf_group_free */ 3596 1.3 darrenr /* Returns: Nil */ 3597 1.3 darrenr /* Parameters: group(I) - pointer to filter rule group */ 3598 1.3 darrenr /* */ 3599 1.3 darrenr /* Remove the group from the list of groups and free it. */ 3600 1.3 darrenr /* ------------------------------------------------------------------------ */ 3601 1.3 darrenr static void 3602 1.3 darrenr ipf_group_free(frgroup_t *group) 3603 1.3 darrenr { 3604 1.3 darrenr frgroup_t **gp; 3605 1.3 darrenr 3606 1.3 darrenr for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) { 3607 1.3 darrenr if (*gp == group) { 3608 1.3 darrenr *gp = group->fg_next; 3609 1.3 darrenr break; 3610 1.3 darrenr } 3611 1.1 christos } 3612 1.3 darrenr KFREE(group); 3613 1.3 darrenr } 3614 1.3 darrenr 3615 1.3 darrenr 3616 1.3 darrenr /* ------------------------------------------------------------------------ */ 3617 1.3 darrenr /* Function: ipf_group_flush */ 3618 1.3 darrenr /* Returns: int - number of rules flush from group */ 3619 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 3620 1.3 darrenr /* Parameters: group(I) - pointer to filter rule group */ 3621 1.3 darrenr /* */ 3622 1.3 darrenr /* Remove all of the rules that currently are listed under the given group. */ 3623 1.3 darrenr /* ------------------------------------------------------------------------ */ 3624 1.3 darrenr static int 3625 1.3 darrenr ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group) 3626 1.3 darrenr { 3627 1.3 darrenr int gone = 0; 3628 1.3 darrenr 3629 1.3 darrenr (void) ipf_flushlist(softc, &gone, &group->fg_start); 3630 1.1 christos 3631 1.1 christos return gone; 3632 1.1 christos } 3633 1.1 christos 3634 1.1 christos 3635 1.1 christos /* ------------------------------------------------------------------------ */ 3636 1.1 christos /* Function: ipf_getrulen */ 3637 1.1 christos /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3638 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 3639 1.1 christos /* Parameters: unit(I) - device for which to count the rule's number */ 3640 1.1 christos /* flags(I) - which set of rules to find the rule in */ 3641 1.1 christos /* group(I) - group name */ 3642 1.1 christos /* n(I) - rule number to find */ 3643 1.1 christos /* */ 3644 1.1 christos /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3645 1.1 christos /* group # g doesn't exist or there are less than n rules in the group. */ 3646 1.1 christos /* ------------------------------------------------------------------------ */ 3647 1.1 christos frentry_t * 3648 1.2 christos ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n) 3649 1.1 christos { 3650 1.1 christos frentry_t *fr; 3651 1.1 christos frgroup_t *fg; 3652 1.1 christos 3653 1.1 christos fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL); 3654 1.1 christos if (fg == NULL) 3655 1.1 christos return NULL; 3656 1.1 christos for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--) 3657 1.1 christos ; 3658 1.1 christos if (n != 0) 3659 1.1 christos return NULL; 3660 1.1 christos return fr; 3661 1.1 christos } 3662 1.1 christos 3663 1.1 christos 3664 1.1 christos /* ------------------------------------------------------------------------ */ 3665 1.1 christos /* Function: ipf_flushlist */ 3666 1.1 christos /* Returns: int - >= 0 - number of flushed rules */ 3667 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 3668 1.1 christos /* nfreedp(O) - pointer to int where flush count is stored */ 3669 1.1 christos /* listp(I) - pointer to list to flush pointer */ 3670 1.1 christos /* Write Locks: ipf_mutex */ 3671 1.1 christos /* */ 3672 1.1 christos /* Recursively flush rules from the list, descending groups as they are */ 3673 1.1 christos /* encountered. if a rule is the head of a group and it has lost all its */ 3674 1.1 christos /* group members, then also delete the group reference. nfreedp is needed */ 3675 1.1 christos /* to store the accumulating count of rules removed, whereas the returned */ 3676 1.1 christos /* value is just the number removed from the current list. The latter is */ 3677 1.1 christos /* needed to correctly adjust reference counts on rules that define groups. */ 3678 1.1 christos /* */ 3679 1.1 christos /* NOTE: Rules not loaded from user space cannot be flushed. */ 3680 1.1 christos /* ------------------------------------------------------------------------ */ 3681 1.1 christos static int 3682 1.3 darrenr ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp) 3683 1.1 christos { 3684 1.1 christos int freed = 0; 3685 1.1 christos frentry_t *fp; 3686 1.1 christos 3687 1.1 christos while ((fp = *listp) != NULL) { 3688 1.1 christos if ((fp->fr_type & FR_T_BUILTIN) || 3689 1.1 christos !(fp->fr_flags & FR_COPIED)) { 3690 1.1 christos listp = &fp->fr_next; 3691 1.1 christos continue; 3692 1.1 christos } 3693 1.1 christos *listp = fp->fr_next; 3694 1.1 christos if (fp->fr_next != NULL) 3695 1.1 christos fp->fr_next->fr_pnext = fp->fr_pnext; 3696 1.1 christos fp->fr_pnext = NULL; 3697 1.1 christos 3698 1.3 darrenr if (fp->fr_grphead != NULL) { 3699 1.3 darrenr freed += ipf_group_flush(softc, fp->fr_grphead); 3700 1.1 christos fp->fr_names[fp->fr_grhead] = '\0'; 3701 1.1 christos } 3702 1.1 christos 3703 1.3 darrenr if (fp->fr_icmpgrp != NULL) { 3704 1.3 darrenr freed += ipf_group_flush(softc, fp->fr_icmpgrp); 3705 1.1 christos fp->fr_names[fp->fr_icmphead] = '\0'; 3706 1.1 christos } 3707 1.1 christos 3708 1.1 christos if (fp->fr_srctrack.ht_max_nodes) 3709 1.1 christos ipf_rb_ht_flush(&fp->fr_srctrack); 3710 1.1 christos 3711 1.1 christos fp->fr_next = NULL; 3712 1.1 christos 3713 1.1 christos ASSERT(fp->fr_ref > 0); 3714 1.1 christos if (ipf_derefrule(softc, &fp) == 0) 3715 1.1 christos freed++; 3716 1.1 christos } 3717 1.1 christos *nfreedp += freed; 3718 1.1 christos return freed; 3719 1.1 christos } 3720 1.1 christos 3721 1.1 christos 3722 1.1 christos /* ------------------------------------------------------------------------ */ 3723 1.1 christos /* Function: ipf_flush */ 3724 1.1 christos /* Returns: int - >= 0 - number of flushed rules */ 3725 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 3726 1.3 darrenr /* unit(I) - device for which to flush rules */ 3727 1.1 christos /* flags(I) - which set of rules to flush */ 3728 1.1 christos /* */ 3729 1.1 christos /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3730 1.1 christos /* and IPv6) as defined by the value of flags. */ 3731 1.1 christos /* ------------------------------------------------------------------------ */ 3732 1.1 christos int 3733 1.2 christos ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags) 3734 1.1 christos { 3735 1.1 christos int flushed = 0, set; 3736 1.1 christos 3737 1.1 christos WRITE_ENTER(&softc->ipf_mutex); 3738 1.1 christos 3739 1.1 christos set = softc->ipf_active; 3740 1.1 christos if ((flags & FR_INACTIVE) == FR_INACTIVE) 3741 1.1 christos set = 1 - set; 3742 1.1 christos 3743 1.1 christos if (flags & FR_OUTQUE) { 3744 1.3 darrenr ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]); 3745 1.3 darrenr ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]); 3746 1.1 christos } 3747 1.1 christos if (flags & FR_INQUE) { 3748 1.3 darrenr ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]); 3749 1.3 darrenr ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]); 3750 1.1 christos } 3751 1.1 christos 3752 1.3 darrenr flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set], 3753 1.1 christos flags & (FR_INQUE|FR_OUTQUE)); 3754 1.1 christos 3755 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 3756 1.1 christos 3757 1.1 christos if (unit == IPL_LOGIPF) { 3758 1.1 christos int tmp; 3759 1.1 christos 3760 1.1 christos tmp = ipf_flush(softc, IPL_LOGCOUNT, flags); 3761 1.1 christos if (tmp >= 0) 3762 1.1 christos flushed += tmp; 3763 1.1 christos } 3764 1.1 christos return flushed; 3765 1.1 christos } 3766 1.1 christos 3767 1.1 christos 3768 1.1 christos /* ------------------------------------------------------------------------ */ 3769 1.1 christos /* Function: ipf_flush_groups */ 3770 1.1 christos /* Returns: int - >= 0 - number of flushed rules */ 3771 1.3 darrenr /* Parameters: softc(I) - soft context pointerto work with */ 3772 1.3 darrenr /* grhead(I) - pointer to the start of the group list to flush */ 3773 1.3 darrenr /* flags(I) - which set of rules to flush */ 3774 1.3 darrenr /* */ 3775 1.3 darrenr /* Walk through all of the groups under the given group head and remove all */ 3776 1.3 darrenr /* of those that match the flags passed in. The for loop here is bit more */ 3777 1.3 darrenr /* complicated than usual because the removal of a rule with ipf_derefrule */ 3778 1.3 darrenr /* may end up removing not only the structure pointed to by "fg" but also */ 3779 1.3 darrenr /* what is fg_next and fg_next after that. So if a filter rule is actually */ 3780 1.3 darrenr /* removed from the group then it is necessary to start again. */ 3781 1.1 christos /* ------------------------------------------------------------------------ */ 3782 1.1 christos static int 3783 1.3 darrenr ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags) 3784 1.1 christos { 3785 1.3 darrenr frentry_t *fr, **frp; 3786 1.1 christos frgroup_t *fg, **fgp; 3787 1.1 christos int flushed = 0; 3788 1.3 darrenr int removed = 0; 3789 1.1 christos 3790 1.3 darrenr for (fgp = grhead; (fg = *fgp) != NULL; ) { 3791 1.3 darrenr while ((fg != NULL) && ((fg->fg_flags & flags) == 0)) 3792 1.3 darrenr fg = fg->fg_next; 3793 1.3 darrenr if (fg == NULL) 3794 1.3 darrenr break; 3795 1.3 darrenr removed = 0; 3796 1.1 christos frp = &fg->fg_start; 3797 1.3 darrenr while ((removed == 0) && ((fr = *frp) != NULL)) { 3798 1.1 christos if ((fr->fr_flags & flags) == 0) { 3799 1.1 christos frp = &fr->fr_next; 3800 1.3 darrenr } else { 3801 1.3 darrenr if (fr->fr_next != NULL) 3802 1.3 darrenr fr->fr_next->fr_pnext = fr->fr_pnext; 3803 1.3 darrenr *frp = fr->fr_next; 3804 1.3 darrenr fr->fr_pnext = NULL; 3805 1.3 darrenr fr->fr_next = NULL; 3806 1.3 darrenr (void) ipf_derefrule(softc, &fr); 3807 1.3 darrenr flushed++; 3808 1.3 darrenr removed++; 3809 1.1 christos } 3810 1.1 christos } 3811 1.3 darrenr if (removed == 0) 3812 1.3 darrenr fgp = &fg->fg_next; 3813 1.1 christos } 3814 1.1 christos return flushed; 3815 1.1 christos } 3816 1.1 christos 3817 1.1 christos 3818 1.1 christos /* ------------------------------------------------------------------------ */ 3819 1.1 christos /* Function: memstr */ 3820 1.1 christos /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3821 1.1 christos /* Parameters: src(I) - pointer to byte sequence to match */ 3822 1.1 christos /* dst(I) - pointer to byte sequence to search */ 3823 1.1 christos /* slen(I) - match length */ 3824 1.1 christos /* dlen(I) - length available to search in */ 3825 1.1 christos /* */ 3826 1.1 christos /* Search dst for a sequence of bytes matching those at src and extend for */ 3827 1.1 christos /* slen bytes. */ 3828 1.1 christos /* ------------------------------------------------------------------------ */ 3829 1.1 christos char * 3830 1.2 christos memstr(const char *src, char *dst, size_t slen, size_t dlen) 3831 1.1 christos { 3832 1.1 christos char *s = NULL; 3833 1.1 christos 3834 1.1 christos while (dlen >= slen) { 3835 1.2 christos if (memcmp(src, dst, slen) == 0) { 3836 1.1 christos s = dst; 3837 1.1 christos break; 3838 1.1 christos } 3839 1.1 christos dst++; 3840 1.1 christos dlen--; 3841 1.1 christos } 3842 1.1 christos return s; 3843 1.1 christos } 3844 1.15 christos 3845 1.15 christos 3846 1.1 christos /* ------------------------------------------------------------------------ */ 3847 1.1 christos /* Function: ipf_fixskip */ 3848 1.1 christos /* Returns: Nil */ 3849 1.1 christos /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3850 1.1 christos /* rp(I) - rule added/removed with skip in it. */ 3851 1.1 christos /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3852 1.1 christos /* depending on whether a rule was just added */ 3853 1.1 christos /* or removed. */ 3854 1.1 christos /* */ 3855 1.1 christos /* Adjust all the rules in a list which would have skip'd past the position */ 3856 1.1 christos /* where we are inserting to skip to the right place given the change. */ 3857 1.1 christos /* ------------------------------------------------------------------------ */ 3858 1.1 christos void 3859 1.2 christos ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove) 3860 1.1 christos { 3861 1.1 christos int rules, rn; 3862 1.1 christos frentry_t *fp; 3863 1.1 christos 3864 1.1 christos rules = 0; 3865 1.1 christos for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3866 1.1 christos rules++; 3867 1.1 christos 3868 1.1 christos if (!fp) 3869 1.1 christos return; 3870 1.1 christos 3871 1.1 christos for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3872 1.1 christos if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3873 1.1 christos fp->fr_arg += addremove; 3874 1.1 christos } 3875 1.1 christos 3876 1.1 christos 3877 1.1 christos #ifdef _KERNEL 3878 1.1 christos /* ------------------------------------------------------------------------ */ 3879 1.1 christos /* Function: count4bits */ 3880 1.1 christos /* Returns: int - >= 0 - number of consecutive bits in input */ 3881 1.1 christos /* Parameters: ip(I) - 32bit IP address */ 3882 1.1 christos /* */ 3883 1.1 christos /* IPv4 ONLY */ 3884 1.1 christos /* count consecutive 1's in bit mask. If the mask generated by counting */ 3885 1.1 christos /* consecutive 1's is different to that passed, return -1, else return # */ 3886 1.1 christos /* of bits. */ 3887 1.1 christos /* ------------------------------------------------------------------------ */ 3888 1.1 christos int 3889 1.2 christos count4bits(u_32_t ip) 3890 1.1 christos { 3891 1.1 christos u_32_t ipn; 3892 1.1 christos int cnt = 0, i, j; 3893 1.1 christos 3894 1.1 christos ip = ipn = ntohl(ip); 3895 1.1 christos for (i = 32; i; i--, ipn *= 2) 3896 1.1 christos if (ipn & 0x80000000) 3897 1.1 christos cnt++; 3898 1.1 christos else 3899 1.1 christos break; 3900 1.1 christos ipn = 0; 3901 1.1 christos for (i = 32, j = cnt; i; i--, j--) { 3902 1.1 christos ipn *= 2; 3903 1.1 christos if (j > 0) 3904 1.1 christos ipn++; 3905 1.1 christos } 3906 1.1 christos if (ipn == ip) 3907 1.1 christos return cnt; 3908 1.1 christos return -1; 3909 1.1 christos } 3910 1.1 christos 3911 1.1 christos 3912 1.1 christos /* ------------------------------------------------------------------------ */ 3913 1.1 christos /* Function: count6bits */ 3914 1.1 christos /* Returns: int - >= 0 - number of consecutive bits in input */ 3915 1.1 christos /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3916 1.1 christos /* */ 3917 1.1 christos /* IPv6 ONLY */ 3918 1.1 christos /* count consecutive 1's in bit mask. */ 3919 1.1 christos /* ------------------------------------------------------------------------ */ 3920 1.1 christos # ifdef USE_INET6 3921 1.1 christos int 3922 1.2 christos count6bits(u_32_t *msk) 3923 1.1 christos { 3924 1.1 christos int i = 0, k; 3925 1.1 christos u_32_t j; 3926 1.1 christos 3927 1.1 christos for (k = 3; k >= 0; k--) 3928 1.1 christos if (msk[k] == 0xffffffff) 3929 1.1 christos i += 32; 3930 1.1 christos else { 3931 1.1 christos for (j = msk[k]; j; j <<= 1) 3932 1.1 christos if (j & 0x80000000) 3933 1.1 christos i++; 3934 1.1 christos } 3935 1.1 christos return i; 3936 1.1 christos } 3937 1.1 christos # endif 3938 1.1 christos #endif /* _KERNEL */ 3939 1.1 christos 3940 1.1 christos 3941 1.1 christos /* ------------------------------------------------------------------------ */ 3942 1.1 christos /* Function: ipf_synclist */ 3943 1.1 christos /* Returns: int - 0 = no failures, else indication of first failure */ 3944 1.1 christos /* Parameters: fr(I) - start of filter list to sync interface names for */ 3945 1.1 christos /* ifp(I) - interface pointer for limiting sync lookups */ 3946 1.1 christos /* Write Locks: ipf_mutex */ 3947 1.1 christos /* */ 3948 1.1 christos /* Walk through a list of filter rules and resolve any interface names into */ 3949 1.1 christos /* pointers. Where dynamic addresses are used, also update the IP address */ 3950 1.1 christos /* used in the rule. The interface pointer is used to limit the lookups to */ 3951 1.1 christos /* a specific set of matching names if it is non-NULL. */ 3952 1.1 christos /* Errors can occur when resolving the destination name of to/dup-to fields */ 3953 1.1 christos /* when the name points to a pool and that pool doest not exist. If this */ 3954 1.1 christos /* does happen then it is necessary to check if there are any lookup refs */ 3955 1.1 christos /* that need to be dropped before returning with an error. */ 3956 1.1 christos /* ------------------------------------------------------------------------ */ 3957 1.1 christos static int 3958 1.2 christos ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp) 3959 1.1 christos { 3960 1.1 christos frentry_t *frt, *start = fr; 3961 1.1 christos frdest_t *fdp; 3962 1.1 christos char *name; 3963 1.1 christos int error; 3964 1.1 christos void *ifa; 3965 1.1 christos int v, i; 3966 1.1 christos 3967 1.1 christos error = 0; 3968 1.1 christos 3969 1.1 christos for (; fr; fr = fr->fr_next) { 3970 1.1 christos if (fr->fr_family == AF_INET) 3971 1.1 christos v = 4; 3972 1.1 christos else if (fr->fr_family == AF_INET6) 3973 1.1 christos v = 6; 3974 1.1 christos else 3975 1.1 christos v = 0; 3976 1.1 christos 3977 1.1 christos /* 3978 1.1 christos * Lookup all the interface names that are part of the rule. 3979 1.1 christos */ 3980 1.1 christos for (i = 0; i < 4; i++) { 3981 1.1 christos if ((ifp != NULL) && (fr->fr_ifas[i] != ifp)) 3982 1.1 christos continue; 3983 1.1 christos if (fr->fr_ifnames[i] == -1) 3984 1.1 christos continue; 3985 1.1 christos name = FR_NAME(fr, fr_ifnames[i]); 3986 1.1 christos fr->fr_ifas[i] = ipf_resolvenic(softc, name, v); 3987 1.1 christos } 3988 1.1 christos 3989 1.1 christos if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { 3990 1.1 christos if (fr->fr_satype != FRI_NORMAL && 3991 1.1 christos fr->fr_satype != FRI_LOOKUP) { 3992 1.1 christos ifa = ipf_resolvenic(softc, fr->fr_names + 3993 1.1 christos fr->fr_sifpidx, v); 3994 1.1 christos ipf_ifpaddr(softc, v, fr->fr_satype, ifa, 3995 1.1 christos &fr->fr_src6, &fr->fr_smsk6); 3996 1.1 christos } 3997 1.1 christos if (fr->fr_datype != FRI_NORMAL && 3998 1.1 christos fr->fr_datype != FRI_LOOKUP) { 3999 1.1 christos ifa = ipf_resolvenic(softc, fr->fr_names + 4000 1.1 christos fr->fr_sifpidx, v); 4001 1.1 christos ipf_ifpaddr(softc, v, fr->fr_datype, ifa, 4002 1.1 christos &fr->fr_dst6, &fr->fr_dmsk6); 4003 1.1 christos } 4004 1.1 christos } 4005 1.1 christos 4006 1.1 christos fdp = &fr->fr_tifs[0]; 4007 1.1 christos if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 4008 1.1 christos error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 4009 1.1 christos if (error != 0) 4010 1.1 christos goto unwind; 4011 1.1 christos } 4012 1.1 christos 4013 1.1 christos fdp = &fr->fr_tifs[1]; 4014 1.1 christos if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 4015 1.1 christos error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 4016 1.1 christos if (error != 0) 4017 1.1 christos goto unwind; 4018 1.1 christos } 4019 1.1 christos 4020 1.1 christos fdp = &fr->fr_dif; 4021 1.1 christos if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 4022 1.1 christos error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 4023 1.1 christos if (error != 0) 4024 1.1 christos goto unwind; 4025 1.1 christos } 4026 1.1 christos 4027 1.1 christos if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 4028 1.1 christos (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) { 4029 1.1 christos fr->fr_srcptr = ipf_lookup_res_num(softc, 4030 1.1 christos fr->fr_srctype, 4031 1.1 christos IPL_LOGIPF, 4032 1.1 christos fr->fr_srcnum, 4033 1.1 christos &fr->fr_srcfunc); 4034 1.1 christos } 4035 1.1 christos if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 4036 1.1 christos (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) { 4037 1.1 christos fr->fr_dstptr = ipf_lookup_res_num(softc, 4038 1.1 christos fr->fr_dsttype, 4039 1.1 christos IPL_LOGIPF, 4040 1.1 christos fr->fr_dstnum, 4041 1.1 christos &fr->fr_dstfunc); 4042 1.1 christos } 4043 1.1 christos } 4044 1.1 christos return 0; 4045 1.1 christos 4046 1.1 christos unwind: 4047 1.1 christos for (frt = start; frt != fr; fr = fr->fr_next) { 4048 1.1 christos if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 4049 1.1 christos (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL)) 4050 1.1 christos ipf_lookup_deref(softc, frt->fr_srctype, 4051 1.1 christos frt->fr_srcptr); 4052 1.1 christos if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 4053 1.1 christos (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL)) 4054 1.1 christos ipf_lookup_deref(softc, frt->fr_dsttype, 4055 1.1 christos frt->fr_dstptr); 4056 1.1 christos } 4057 1.1 christos return error; 4058 1.1 christos } 4059 1.1 christos 4060 1.1 christos 4061 1.1 christos /* ------------------------------------------------------------------------ */ 4062 1.1 christos /* Function: ipf_sync */ 4063 1.1 christos /* Returns: void */ 4064 1.1 christos /* Parameters: Nil */ 4065 1.1 christos /* */ 4066 1.1 christos /* ipf_sync() is called when we suspect that the interface list or */ 4067 1.1 christos /* information about interfaces (like IP#) has changed. Go through all */ 4068 1.1 christos /* filter rules, NAT entries and the state table and check if anything */ 4069 1.1 christos /* needs to be changed/updated. */ 4070 1.1 christos /* ------------------------------------------------------------------------ */ 4071 1.1 christos int 4072 1.2 christos ipf_sync(ipf_main_softc_t *softc, void *ifp) 4073 1.1 christos { 4074 1.1 christos int i; 4075 1.1 christos 4076 1.1 christos # if !SOLARIS 4077 1.1 christos ipf_nat_sync(softc, ifp); 4078 1.1 christos ipf_state_sync(softc, ifp); 4079 1.1 christos ipf_lookup_sync(softc, ifp); 4080 1.1 christos # endif 4081 1.1 christos 4082 1.1 christos WRITE_ENTER(&softc->ipf_mutex); 4083 1.1 christos (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp); 4084 1.1 christos (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp); 4085 1.1 christos (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp); 4086 1.1 christos (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp); 4087 1.1 christos 4088 1.1 christos for (i = 0; i < IPL_LOGSIZE; i++) { 4089 1.1 christos frgroup_t *g; 4090 1.1 christos 4091 1.1 christos for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next) 4092 1.1 christos (void) ipf_synclist(softc, g->fg_start, ifp); 4093 1.1 christos for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next) 4094 1.1 christos (void) ipf_synclist(softc, g->fg_start, ifp); 4095 1.1 christos } 4096 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 4097 1.1 christos 4098 1.1 christos return 0; 4099 1.1 christos } 4100 1.1 christos 4101 1.1 christos 4102 1.1 christos /* 4103 1.1 christos * In the functions below, bcopy() is called because the pointer being 4104 1.1 christos * copied _from_ in this instance is a pointer to a char buf (which could 4105 1.1 christos * end up being unaligned) and on the kernel's local stack. 4106 1.1 christos */ 4107 1.1 christos /* ------------------------------------------------------------------------ */ 4108 1.1 christos /* Function: copyinptr */ 4109 1.1 christos /* Returns: int - 0 = success, else failure */ 4110 1.1 christos /* Parameters: src(I) - pointer to the source address */ 4111 1.1 christos /* dst(I) - destination address */ 4112 1.1 christos /* size(I) - number of bytes to copy */ 4113 1.1 christos /* */ 4114 1.1 christos /* Copy a block of data in from user space, given a pointer to the pointer */ 4115 1.1 christos /* to start copying from (src) and a pointer to where to store it (dst). */ 4116 1.1 christos /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 4117 1.1 christos /* ------------------------------------------------------------------------ */ 4118 1.1 christos int 4119 1.2 christos copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size) 4120 1.1 christos { 4121 1.2 christos void *ca; 4122 1.1 christos int error; 4123 1.1 christos 4124 1.1 christos # if SOLARIS 4125 1.1 christos error = COPYIN(src, &ca, sizeof(ca)); 4126 1.1 christos if (error != 0) 4127 1.1 christos return error; 4128 1.1 christos # else 4129 1.2 christos bcopy(src, (void *)&ca, sizeof(ca)); 4130 1.1 christos # endif 4131 1.1 christos error = COPYIN(ca, dst, size); 4132 1.1 christos if (error != 0) { 4133 1.1 christos IPFERROR(3); 4134 1.1 christos error = EFAULT; 4135 1.1 christos } 4136 1.1 christos return error; 4137 1.1 christos } 4138 1.1 christos 4139 1.1 christos 4140 1.1 christos /* ------------------------------------------------------------------------ */ 4141 1.1 christos /* Function: copyoutptr */ 4142 1.1 christos /* Returns: int - 0 = success, else failure */ 4143 1.1 christos /* Parameters: src(I) - pointer to the source address */ 4144 1.1 christos /* dst(I) - destination address */ 4145 1.1 christos /* size(I) - number of bytes to copy */ 4146 1.1 christos /* */ 4147 1.1 christos /* Copy a block of data out to user space, given a pointer to the pointer */ 4148 1.1 christos /* to start copying from (src) and a pointer to where to store it (dst). */ 4149 1.1 christos /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 4150 1.1 christos /* ------------------------------------------------------------------------ */ 4151 1.1 christos int 4152 1.2 christos copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size) 4153 1.1 christos { 4154 1.2 christos void *ca; 4155 1.1 christos int error; 4156 1.1 christos 4157 1.2 christos bcopy(dst, &ca, sizeof(ca)); 4158 1.1 christos error = COPYOUT(src, ca, size); 4159 1.1 christos if (error != 0) { 4160 1.1 christos IPFERROR(4); 4161 1.1 christos error = EFAULT; 4162 1.1 christos } 4163 1.1 christos return error; 4164 1.1 christos } 4165 1.1 christos #ifdef _KERNEL 4166 1.1 christos #endif 4167 1.1 christos 4168 1.1 christos 4169 1.1 christos /* ------------------------------------------------------------------------ */ 4170 1.1 christos /* Function: ipf_lock */ 4171 1.1 christos /* Returns: int - 0 = success, else error */ 4172 1.1 christos /* Parameters: data(I) - pointer to lock value to set */ 4173 1.1 christos /* lockp(O) - pointer to location to store old lock value */ 4174 1.1 christos /* */ 4175 1.1 christos /* Get the new value for the lock integer, set it and return the old value */ 4176 1.1 christos /* in *lockp. */ 4177 1.1 christos /* ------------------------------------------------------------------------ */ 4178 1.1 christos int 4179 1.2 christos ipf_lock(void *data, int *lockp) 4180 1.1 christos { 4181 1.1 christos int arg, err; 4182 1.1 christos 4183 1.1 christos err = BCOPYIN(data, &arg, sizeof(arg)); 4184 1.1 christos if (err != 0) 4185 1.1 christos return EFAULT; 4186 1.1 christos err = BCOPYOUT(lockp, data, sizeof(*lockp)); 4187 1.1 christos if (err != 0) 4188 1.1 christos return EFAULT; 4189 1.1 christos *lockp = arg; 4190 1.1 christos return 0; 4191 1.1 christos } 4192 1.1 christos 4193 1.1 christos 4194 1.1 christos /* ------------------------------------------------------------------------ */ 4195 1.1 christos /* Function: ipf_getstat */ 4196 1.1 christos /* Returns: Nil */ 4197 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 4198 1.1 christos /* fiop(I) - pointer to ipfilter stats structure */ 4199 1.1 christos /* rev(I) - version claim by program doing ioctl */ 4200 1.1 christos /* */ 4201 1.1 christos /* Stores a copy of current pointers, counters, etc, in the friostat */ 4202 1.1 christos /* structure. */ 4203 1.1 christos /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */ 4204 1.1 christos /* program is looking for. This ensure that validation of the version it */ 4205 1.1 christos /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */ 4206 1.1 christos /* allow older binaries to work but kernels without it will not. */ 4207 1.1 christos /* ------------------------------------------------------------------------ */ 4208 1.1 christos /*ARGSUSED*/ 4209 1.1 christos static void 4210 1.2 christos ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev) 4211 1.1 christos { 4212 1.1 christos int i; 4213 1.1 christos 4214 1.1 christos bcopy((char *)softc->ipf_stats, (char *)fiop->f_st, 4215 1.1 christos sizeof(ipf_statistics_t) * 2); 4216 1.1 christos fiop->f_locks[IPL_LOGSTATE] = -1; 4217 1.1 christos fiop->f_locks[IPL_LOGNAT] = -1; 4218 1.1 christos fiop->f_locks[IPL_LOGIPF] = -1; 4219 1.1 christos fiop->f_locks[IPL_LOGAUTH] = -1; 4220 1.1 christos 4221 1.1 christos fiop->f_ipf[0][0] = softc->ipf_rules[0][0]; 4222 1.1 christos fiop->f_acct[0][0] = softc->ipf_acct[0][0]; 4223 1.1 christos fiop->f_ipf[0][1] = softc->ipf_rules[0][1]; 4224 1.1 christos fiop->f_acct[0][1] = softc->ipf_acct[0][1]; 4225 1.1 christos fiop->f_ipf[1][0] = softc->ipf_rules[1][0]; 4226 1.1 christos fiop->f_acct[1][0] = softc->ipf_acct[1][0]; 4227 1.1 christos fiop->f_ipf[1][1] = softc->ipf_rules[1][1]; 4228 1.1 christos fiop->f_acct[1][1] = softc->ipf_acct[1][1]; 4229 1.1 christos 4230 1.1 christos fiop->f_ticks = softc->ipf_ticks; 4231 1.1 christos fiop->f_active = softc->ipf_active; 4232 1.1 christos fiop->f_froute[0] = softc->ipf_frouteok[0]; 4233 1.1 christos fiop->f_froute[1] = softc->ipf_frouteok[1]; 4234 1.1 christos fiop->f_rb_no_mem = softc->ipf_rb_no_mem; 4235 1.1 christos fiop->f_rb_node_max = softc->ipf_rb_node_max; 4236 1.1 christos 4237 1.1 christos fiop->f_running = softc->ipf_running; 4238 1.1 christos for (i = 0; i < IPL_LOGSIZE; i++) { 4239 1.1 christos fiop->f_groups[i][0] = softc->ipf_groups[i][0]; 4240 1.1 christos fiop->f_groups[i][1] = softc->ipf_groups[i][1]; 4241 1.1 christos } 4242 1.1 christos #ifdef IPFILTER_LOG 4243 1.1 christos fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF); 4244 1.1 christos fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF); 4245 1.1 christos fiop->f_logging = 1; 4246 1.1 christos #else 4247 1.1 christos fiop->f_log_ok = 0; 4248 1.1 christos fiop->f_log_fail = 0; 4249 1.1 christos fiop->f_logging = 0; 4250 1.1 christos #endif 4251 1.1 christos fiop->f_defpass = softc->ipf_pass; 4252 1.1 christos fiop->f_features = ipf_features; 4253 1.1 christos 4254 1.1 christos #ifdef IPFILTER_COMPAT 4255 1.14 christos snprintf(fiop->f_version, sizeof(fiop->f_version), 4256 1.14 christos "IP Filter: v%d.%d.%d", (rev / 1000000) % 100, 4257 1.14 christos (rev / 10000) % 100, (rev / 100) % 100); 4258 1.1 christos #else 4259 1.1 christos rev = rev; 4260 1.1 christos (void) strncpy(fiop->f_version, ipfilter_version, 4261 1.1 christos sizeof(fiop->f_version)); 4262 1.14 christos fiop->f_version[sizeof(fiop->f_version) - 1] = '\0'; 4263 1.1 christos #endif 4264 1.1 christos } 4265 1.1 christos 4266 1.1 christos 4267 1.1 christos #ifdef USE_INET6 4268 1.1 christos int icmptoicmp6types[ICMP_MAXTYPE+1] = { 4269 1.1 christos ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 4270 1.1 christos -1, /* 1: UNUSED */ 4271 1.1 christos -1, /* 2: UNUSED */ 4272 1.1 christos ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 4273 1.1 christos -1, /* 4: ICMP_SOURCEQUENCH */ 4274 1.1 christos ND_REDIRECT, /* 5: ICMP_REDIRECT */ 4275 1.1 christos -1, /* 6: UNUSED */ 4276 1.1 christos -1, /* 7: UNUSED */ 4277 1.1 christos ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 4278 1.1 christos -1, /* 9: UNUSED */ 4279 1.1 christos -1, /* 10: UNUSED */ 4280 1.1 christos ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 4281 1.1 christos ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 4282 1.1 christos -1, /* 13: ICMP_TSTAMP */ 4283 1.1 christos -1, /* 14: ICMP_TSTAMPREPLY */ 4284 1.1 christos -1, /* 15: ICMP_IREQ */ 4285 1.1 christos -1, /* 16: ICMP_IREQREPLY */ 4286 1.1 christos -1, /* 17: ICMP_MASKREQ */ 4287 1.1 christos -1, /* 18: ICMP_MASKREPLY */ 4288 1.1 christos }; 4289 1.1 christos 4290 1.1 christos 4291 1.1 christos int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 4292 1.1 christos ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 4293 1.1 christos ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 4294 1.1 christos -1, /* 2: ICMP_UNREACH_PROTOCOL */ 4295 1.1 christos ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 4296 1.1 christos -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 4297 1.1 christos ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 4298 1.1 christos ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 4299 1.1 christos ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 4300 1.1 christos -1, /* 8: ICMP_UNREACH_ISOLATED */ 4301 1.1 christos ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 4302 1.1 christos ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 4303 1.1 christos -1, /* 11: ICMP_UNREACH_TOSNET */ 4304 1.1 christos -1, /* 12: ICMP_UNREACH_TOSHOST */ 4305 1.1 christos ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 4306 1.1 christos }; 4307 1.1 christos int icmpreplytype6[ICMP6_MAXTYPE + 1]; 4308 1.1 christos #endif 4309 1.1 christos 4310 1.1 christos int icmpreplytype4[ICMP_MAXTYPE + 1]; 4311 1.1 christos 4312 1.1 christos 4313 1.1 christos /* ------------------------------------------------------------------------ */ 4314 1.1 christos /* Function: ipf_matchicmpqueryreply */ 4315 1.1 christos /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 4316 1.1 christos /* Parameters: v(I) - IP protocol version (4 or 6) */ 4317 1.1 christos /* ic(I) - ICMP information */ 4318 1.1 christos /* icmp(I) - ICMP packet header */ 4319 1.1 christos /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 4320 1.1 christos /* */ 4321 1.1 christos /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 4322 1.1 christos /* reply to one as described by what's in ic. If it is a match, return 1, */ 4323 1.1 christos /* else return 0 for no match. */ 4324 1.1 christos /* ------------------------------------------------------------------------ */ 4325 1.1 christos int 4326 1.2 christos ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev) 4327 1.1 christos { 4328 1.1 christos int ictype; 4329 1.1 christos 4330 1.1 christos ictype = ic->ici_type; 4331 1.1 christos 4332 1.1 christos if (v == 4) { 4333 1.1 christos /* 4334 1.1 christos * If we matched its type on the way in, then when going out 4335 1.1 christos * it will still be the same type. 4336 1.1 christos */ 4337 1.1 christos if ((!rev && (icmp->icmp_type == ictype)) || 4338 1.1 christos (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4339 1.1 christos if (icmp->icmp_type != ICMP_ECHOREPLY) 4340 1.1 christos return 1; 4341 1.1 christos if (icmp->icmp_id == ic->ici_id) 4342 1.1 christos return 1; 4343 1.1 christos } 4344 1.1 christos } 4345 1.1 christos #ifdef USE_INET6 4346 1.1 christos else if (v == 6) { 4347 1.1 christos if ((!rev && (icmp->icmp_type == ictype)) || 4348 1.1 christos (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4349 1.1 christos if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4350 1.1 christos return 1; 4351 1.1 christos if (icmp->icmp_id == ic->ici_id) 4352 1.1 christos return 1; 4353 1.1 christos } 4354 1.1 christos } 4355 1.1 christos #endif 4356 1.1 christos return 0; 4357 1.1 christos } 4358 1.1 christos 4359 1.19 christos /* ------------------------------------------------------------------------ */ 4360 1.19 christos /* Function: ipf_rule_compare */ 4361 1.19 christos /* Parameters: fr1(I) - first rule structure to compare */ 4362 1.19 christos /* fr2(I) - second rule structure to compare */ 4363 1.19 christos /* Returns: int - 0 == rules are the same, else mismatch */ 4364 1.19 christos /* */ 4365 1.19 christos /* Compare two rules and return 0 if they match or a number indicating */ 4366 1.19 christos /* which of the individual checks failed. */ 4367 1.19 christos /* ------------------------------------------------------------------------ */ 4368 1.19 christos static int 4369 1.19 christos ipf_rule_compare(frentry_t *fr1, frentry_t *fr2) 4370 1.19 christos { 4371 1.19 christos if (fr1->fr_cksum != fr2->fr_cksum) 4372 1.19 christos return 1; 4373 1.19 christos if (fr1->fr_size != fr2->fr_size) 4374 1.19 christos return 2; 4375 1.19 christos if (fr1->fr_dsize != fr2->fr_dsize) 4376 1.19 christos return 3; 4377 1.19 christos if (memcmp(&fr1->fr_func, &fr2->fr_func, 4378 1.19 christos fr1->fr_size - offsetof(struct frentry, fr_func)) != 0) 4379 1.19 christos return 4; 4380 1.19 christos if (fr1->fr_data && !fr2->fr_data) 4381 1.19 christos return 5; 4382 1.19 christos if (!fr1->fr_data && fr2->fr_data) 4383 1.19 christos return 6; 4384 1.19 christos if (fr1->fr_data) { 4385 1.19 christos if (memcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize)) 4386 1.19 christos return 7; 4387 1.19 christos } 4388 1.19 christos return 0; 4389 1.19 christos } 4390 1.19 christos 4391 1.1 christos 4392 1.1 christos /* ------------------------------------------------------------------------ */ 4393 1.1 christos /* Function: frrequest */ 4394 1.1 christos /* Returns: int - 0 == success, > 0 == errno value */ 4395 1.1 christos /* Parameters: unit(I) - device for which this is for */ 4396 1.1 christos /* req(I) - ioctl command (SIOC*) */ 4397 1.1 christos /* data(I) - pointr to ioctl data */ 4398 1.1 christos /* set(I) - 1 or 0 (filter set) */ 4399 1.1 christos /* makecopy(I) - flag indicating whether data points to a rule */ 4400 1.1 christos /* in kernel space & hence doesn't need copying. */ 4401 1.1 christos /* */ 4402 1.1 christos /* This function handles all the requests which operate on the list of */ 4403 1.1 christos /* filter rules. This includes adding, deleting, insertion. It is also */ 4404 1.1 christos /* responsible for creating groups when a "head" rule is loaded. Interface */ 4405 1.1 christos /* names are resolved here and other sanity checks are made on the content */ 4406 1.1 christos /* of the rule structure being loaded. If a rule has user defined timeouts */ 4407 1.1 christos /* then make sure they are created and initialised before exiting. */ 4408 1.1 christos /* ------------------------------------------------------------------------ */ 4409 1.1 christos int 4410 1.2 christos frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data, 4411 1.2 christos int set, int makecopy) 4412 1.1 christos { 4413 1.1 christos int error = 0, in, family, addrem, need_free = 0; 4414 1.1 christos frentry_t frd, *fp, *f, **fprev, **ftail; 4415 1.11 martin void *ptr, *uptr; 4416 1.1 christos u_int *p, *pp; 4417 1.1 christos frgroup_t *fg; 4418 1.1 christos char *group; 4419 1.1 christos 4420 1.1 christos ptr = NULL; 4421 1.1 christos fg = NULL; 4422 1.1 christos fp = &frd; 4423 1.1 christos if (makecopy != 0) { 4424 1.1 christos bzero(fp, sizeof(frd)); 4425 1.1 christos error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY); 4426 1.1 christos if (error) { 4427 1.1 christos return error; 4428 1.1 christos } 4429 1.1 christos if ((fp->fr_type & FR_T_BUILTIN) != 0) { 4430 1.1 christos IPFERROR(6); 4431 1.1 christos return EINVAL; 4432 1.1 christos } 4433 1.1 christos KMALLOCS(f, frentry_t *, fp->fr_size); 4434 1.1 christos if (f == NULL) { 4435 1.1 christos IPFERROR(131); 4436 1.1 christos return ENOMEM; 4437 1.1 christos } 4438 1.1 christos bzero(f, fp->fr_size); 4439 1.1 christos error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY, 4440 1.1 christos fp->fr_size); 4441 1.1 christos if (error) { 4442 1.1 christos KFREES(f, fp->fr_size); 4443 1.1 christos return error; 4444 1.1 christos } 4445 1.1 christos 4446 1.1 christos fp = f; 4447 1.1 christos f = NULL; 4448 1.15 christos fp->fr_next = NULL; 4449 1.1 christos fp->fr_dnext = NULL; 4450 1.15 christos fp->fr_pnext = NULL; 4451 1.15 christos fp->fr_pdnext = NULL; 4452 1.15 christos fp->fr_grp = NULL; 4453 1.15 christos fp->fr_grphead = NULL; 4454 1.15 christos fp->fr_icmpgrp = NULL; 4455 1.15 christos fp->fr_isc = (void *)-1; 4456 1.15 christos fp->fr_ptr = NULL; 4457 1.1 christos fp->fr_ref = 0; 4458 1.1 christos fp->fr_flags |= FR_COPIED; 4459 1.1 christos } else { 4460 1.1 christos fp = (frentry_t *)data; 4461 1.1 christos if ((fp->fr_type & FR_T_BUILTIN) == 0) { 4462 1.1 christos IPFERROR(7); 4463 1.1 christos return EINVAL; 4464 1.1 christos } 4465 1.1 christos fp->fr_flags &= ~FR_COPIED; 4466 1.1 christos } 4467 1.1 christos 4468 1.1 christos if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4469 1.1 christos ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) { 4470 1.1 christos IPFERROR(8); 4471 1.1 christos error = EINVAL; 4472 1.1 christos goto donenolock; 4473 1.1 christos } 4474 1.1 christos 4475 1.1 christos family = fp->fr_family; 4476 1.1 christos uptr = fp->fr_data; 4477 1.1 christos 4478 1.1 christos if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR || 4479 1.1 christos req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR) 4480 1.1 christos addrem = 0; 4481 1.1 christos else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) 4482 1.1 christos addrem = 1; 4483 1.1 christos else if (req == (ioctlcmd_t)SIOCZRLST) 4484 1.1 christos addrem = 2; 4485 1.1 christos else { 4486 1.1 christos IPFERROR(9); 4487 1.1 christos error = EINVAL; 4488 1.1 christos goto donenolock; 4489 1.1 christos } 4490 1.1 christos 4491 1.1 christos /* 4492 1.1 christos * Only filter rules for IPv4 or IPv6 are accepted. 4493 1.1 christos */ 4494 1.1 christos if (family == AF_INET) { 4495 1.1 christos /*EMPTY*/; 4496 1.1 christos #ifdef USE_INET6 4497 1.1 christos } else if (family == AF_INET6) { 4498 1.1 christos /*EMPTY*/; 4499 1.1 christos #endif 4500 1.1 christos } else if (family != 0) { 4501 1.1 christos IPFERROR(10); 4502 1.1 christos error = EINVAL; 4503 1.1 christos goto donenolock; 4504 1.1 christos } 4505 1.1 christos 4506 1.1 christos /* 4507 1.1 christos * If the rule is being loaded from user space, i.e. we had to copy it 4508 1.1 christos * into kernel space, then do not trust the function pointer in the 4509 1.1 christos * rule. 4510 1.1 christos */ 4511 1.1 christos if ((makecopy == 1) && (fp->fr_func != NULL)) { 4512 1.1 christos if (ipf_findfunc(fp->fr_func) == NULL) { 4513 1.1 christos IPFERROR(11); 4514 1.1 christos error = ESRCH; 4515 1.1 christos goto donenolock; 4516 1.1 christos } 4517 1.1 christos 4518 1.1 christos if (addrem == 0) { 4519 1.1 christos error = ipf_funcinit(softc, fp); 4520 1.1 christos if (error != 0) 4521 1.1 christos goto donenolock; 4522 1.1 christos } 4523 1.1 christos } 4524 1.1 christos if ((fp->fr_flags & FR_CALLNOW) && 4525 1.3 darrenr ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { 4526 1.1 christos IPFERROR(142); 4527 1.1 christos error = ESRCH; 4528 1.1 christos goto donenolock; 4529 1.1 christos } 4530 1.1 christos if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) && 4531 1.3 darrenr ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { 4532 1.1 christos IPFERROR(143); 4533 1.1 christos error = ESRCH; 4534 1.1 christos goto donenolock; 4535 1.1 christos } 4536 1.1 christos 4537 1.1 christos ptr = NULL; 4538 1.1 christos 4539 1.1 christos if (FR_ISACCOUNT(fp->fr_flags)) 4540 1.1 christos unit = IPL_LOGCOUNT; 4541 1.1 christos 4542 1.1 christos /* 4543 1.1 christos * Check that each group name in the rule has a start index that 4544 1.1 christos * is valid. 4545 1.1 christos */ 4546 1.1 christos if (fp->fr_icmphead != -1) { 4547 1.1 christos if ((fp->fr_icmphead < 0) || 4548 1.1 christos (fp->fr_icmphead >= fp->fr_namelen)) { 4549 1.1 christos IPFERROR(136); 4550 1.1 christos error = EINVAL; 4551 1.1 christos goto donenolock; 4552 1.1 christos } 4553 1.1 christos if (!strcmp(FR_NAME(fp, fr_icmphead), "0")) 4554 1.1 christos fp->fr_names[fp->fr_icmphead] = '\0'; 4555 1.1 christos } 4556 1.1 christos 4557 1.1 christos if (fp->fr_grhead != -1) { 4558 1.1 christos if ((fp->fr_grhead < 0) || 4559 1.1 christos (fp->fr_grhead >= fp->fr_namelen)) { 4560 1.1 christos IPFERROR(137); 4561 1.1 christos error = EINVAL; 4562 1.1 christos goto donenolock; 4563 1.1 christos } 4564 1.1 christos if (!strcmp(FR_NAME(fp, fr_grhead), "0")) 4565 1.1 christos fp->fr_names[fp->fr_grhead] = '\0'; 4566 1.1 christos } 4567 1.1 christos 4568 1.1 christos if (fp->fr_group != -1) { 4569 1.1 christos if ((fp->fr_group < 0) || 4570 1.1 christos (fp->fr_group >= fp->fr_namelen)) { 4571 1.1 christos IPFERROR(138); 4572 1.1 christos error = EINVAL; 4573 1.1 christos goto donenolock; 4574 1.1 christos } 4575 1.1 christos if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) { 4576 1.1 christos /* 4577 1.1 christos * Allow loading rules that are in groups to cause 4578 1.1 christos * them to be created if they don't already exit. 4579 1.1 christos */ 4580 1.1 christos group = FR_NAME(fp, fr_group); 4581 1.3 darrenr if (addrem == 0) { 4582 1.3 darrenr fg = ipf_group_add(softc, group, NULL, 4583 1.3 darrenr fp->fr_flags, unit, set); 4584 1.16 khorben if (fg == NULL) { 4585 1.16 khorben IPFERROR(152); 4586 1.16 khorben error = ESRCH; 4587 1.16 khorben goto donenolock; 4588 1.16 khorben } 4589 1.3 darrenr fp->fr_grp = fg; 4590 1.3 darrenr } else { 4591 1.3 darrenr fg = ipf_findgroup(softc, group, unit, 4592 1.3 darrenr set, NULL); 4593 1.1 christos if (fg == NULL) { 4594 1.1 christos IPFERROR(12); 4595 1.1 christos error = ESRCH; 4596 1.1 christos goto donenolock; 4597 1.1 christos } 4598 1.1 christos } 4599 1.3 darrenr 4600 1.3 darrenr if (fg->fg_flags == 0) { 4601 1.1 christos fg->fg_flags = fp->fr_flags & FR_INOUT; 4602 1.3 darrenr } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) { 4603 1.1 christos IPFERROR(13); 4604 1.1 christos error = ESRCH; 4605 1.1 christos goto donenolock; 4606 1.1 christos } 4607 1.1 christos } 4608 1.1 christos } else { 4609 1.1 christos /* 4610 1.1 christos * If a rule is going to be part of a group then it does 4611 1.1 christos * not matter whether it is an in or out rule, but if it 4612 1.1 christos * isn't in a group, then it does... 4613 1.1 christos */ 4614 1.1 christos if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) { 4615 1.1 christos IPFERROR(14); 4616 1.1 christos error = EINVAL; 4617 1.1 christos goto donenolock; 4618 1.1 christos } 4619 1.1 christos } 4620 1.1 christos in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4621 1.1 christos 4622 1.1 christos /* 4623 1.1 christos * Work out which rule list this change is being applied to. 4624 1.1 christos */ 4625 1.1 christos ftail = NULL; 4626 1.1 christos fprev = NULL; 4627 1.2 christos if (unit == IPL_LOGAUTH) { 4628 1.2 christos if ((fp->fr_tifs[0].fd_ptr != NULL) || 4629 1.1 christos (fp->fr_tifs[1].fd_ptr != NULL) || 4630 1.2 christos (fp->fr_dif.fd_ptr != NULL) || 4631 1.1 christos (fp->fr_flags & FR_FASTROUTE)) { 4632 1.2 christos IPFERROR(145); 4633 1.1 christos error = EINVAL; 4634 1.1 christos goto donenolock; 4635 1.1 christos } 4636 1.2 christos fprev = ipf_auth_rulehead(softc); 4637 1.1 christos } else { 4638 1.1 christos if (FR_ISACCOUNT(fp->fr_flags)) 4639 1.1 christos fprev = &softc->ipf_acct[in][set]; 4640 1.1 christos else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4641 1.1 christos fprev = &softc->ipf_rules[in][set]; 4642 1.1 christos } 4643 1.1 christos if (fprev == NULL) { 4644 1.1 christos IPFERROR(15); 4645 1.1 christos error = ESRCH; 4646 1.1 christos goto donenolock; 4647 1.1 christos } 4648 1.1 christos 4649 1.1 christos if (fg != NULL) 4650 1.1 christos fprev = &fg->fg_start; 4651 1.1 christos 4652 1.1 christos /* 4653 1.1 christos * Copy in extra data for the rule. 4654 1.1 christos */ 4655 1.1 christos if (fp->fr_dsize != 0) { 4656 1.1 christos if (makecopy != 0) { 4657 1.1 christos KMALLOCS(ptr, void *, fp->fr_dsize); 4658 1.1 christos if (ptr == NULL) { 4659 1.1 christos IPFERROR(16); 4660 1.1 christos error = ENOMEM; 4661 1.1 christos goto donenolock; 4662 1.1 christos } 4663 1.1 christos 4664 1.1 christos /* 4665 1.1 christos * The bcopy case is for when the data is appended 4666 1.1 christos * to the rule by ipf_in_compat(). 4667 1.1 christos */ 4668 1.1 christos if (uptr >= (void *)fp && 4669 1.1 christos uptr < (void *)((char *)fp + fp->fr_size)) { 4670 1.1 christos bcopy(uptr, ptr, fp->fr_dsize); 4671 1.1 christos error = 0; 4672 1.1 christos } else { 4673 1.1 christos error = COPYIN(uptr, ptr, fp->fr_dsize); 4674 1.1 christos if (error != 0) { 4675 1.1 christos IPFERROR(17); 4676 1.1 christos error = EFAULT; 4677 1.1 christos goto donenolock; 4678 1.1 christos } 4679 1.1 christos } 4680 1.1 christos } else { 4681 1.1 christos ptr = uptr; 4682 1.1 christos } 4683 1.1 christos fp->fr_data = ptr; 4684 1.1 christos } else { 4685 1.1 christos fp->fr_data = NULL; 4686 1.1 christos } 4687 1.1 christos 4688 1.1 christos /* 4689 1.1 christos * Perform per-rule type sanity checks of their members. 4690 1.1 christos * All code after this needs to be aware that allocated memory 4691 1.1 christos * may need to be free'd before exiting. 4692 1.1 christos */ 4693 1.1 christos switch (fp->fr_type & ~FR_T_BUILTIN) 4694 1.1 christos { 4695 1.1 christos #if defined(IPFILTER_BPF) 4696 1.1 christos case FR_T_BPFOPC : 4697 1.1 christos if (fp->fr_dsize == 0) { 4698 1.1 christos IPFERROR(19); 4699 1.1 christos error = EINVAL; 4700 1.1 christos break; 4701 1.1 christos } 4702 1.1 christos if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4703 1.1 christos IPFERROR(20); 4704 1.1 christos error = EINVAL; 4705 1.1 christos break; 4706 1.1 christos } 4707 1.1 christos break; 4708 1.1 christos #endif 4709 1.1 christos case FR_T_IPF : 4710 1.1 christos /* 4711 1.1 christos * Preparation for error case at the bottom of this function. 4712 1.1 christos */ 4713 1.1 christos if (fp->fr_datype == FRI_LOOKUP) 4714 1.1 christos fp->fr_dstptr = NULL; 4715 1.1 christos if (fp->fr_satype == FRI_LOOKUP) 4716 1.1 christos fp->fr_srcptr = NULL; 4717 1.1 christos 4718 1.1 christos if (fp->fr_dsize != sizeof(fripf_t)) { 4719 1.1 christos IPFERROR(21); 4720 1.1 christos error = EINVAL; 4721 1.1 christos break; 4722 1.1 christos } 4723 1.1 christos 4724 1.1 christos /* 4725 1.1 christos * Allowing a rule with both "keep state" and "with oow" is 4726 1.1 christos * pointless because adding a state entry to the table will 4727 1.1 christos * fail with the out of window (oow) flag set. 4728 1.1 christos */ 4729 1.1 christos if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) { 4730 1.1 christos IPFERROR(22); 4731 1.1 christos error = EINVAL; 4732 1.1 christos break; 4733 1.1 christos } 4734 1.1 christos 4735 1.1 christos switch (fp->fr_satype) 4736 1.1 christos { 4737 1.1 christos case FRI_BROADCAST : 4738 1.1 christos case FRI_DYNAMIC : 4739 1.1 christos case FRI_NETWORK : 4740 1.1 christos case FRI_NETMASKED : 4741 1.1 christos case FRI_PEERADDR : 4742 1.1 christos if (fp->fr_sifpidx < 0) { 4743 1.1 christos IPFERROR(23); 4744 1.1 christos error = EINVAL; 4745 1.1 christos } 4746 1.1 christos break; 4747 1.1 christos case FRI_LOOKUP : 4748 1.1 christos fp->fr_srcptr = ipf_findlookup(softc, unit, fp, 4749 1.1 christos &fp->fr_src6, 4750 1.1 christos &fp->fr_smsk6); 4751 1.1 christos if (fp->fr_srcfunc == NULL) { 4752 1.1 christos IPFERROR(132); 4753 1.1 christos error = ESRCH; 4754 1.1 christos break; 4755 1.1 christos } 4756 1.1 christos break; 4757 1.1 christos case FRI_NORMAL : 4758 1.1 christos break; 4759 1.1 christos default : 4760 1.1 christos IPFERROR(133); 4761 1.1 christos error = EINVAL; 4762 1.1 christos break; 4763 1.1 christos } 4764 1.1 christos if (error != 0) 4765 1.1 christos break; 4766 1.1 christos 4767 1.1 christos switch (fp->fr_datype) 4768 1.1 christos { 4769 1.1 christos case FRI_BROADCAST : 4770 1.1 christos case FRI_DYNAMIC : 4771 1.1 christos case FRI_NETWORK : 4772 1.1 christos case FRI_NETMASKED : 4773 1.1 christos case FRI_PEERADDR : 4774 1.1 christos if (fp->fr_difpidx < 0) { 4775 1.1 christos IPFERROR(24); 4776 1.1 christos error = EINVAL; 4777 1.1 christos } 4778 1.1 christos break; 4779 1.1 christos case FRI_LOOKUP : 4780 1.1 christos fp->fr_dstptr = ipf_findlookup(softc, unit, fp, 4781 1.1 christos &fp->fr_dst6, 4782 1.1 christos &fp->fr_dmsk6); 4783 1.1 christos if (fp->fr_dstfunc == NULL) { 4784 1.1 christos IPFERROR(134); 4785 1.1 christos error = ESRCH; 4786 1.1 christos } 4787 1.1 christos break; 4788 1.1 christos case FRI_NORMAL : 4789 1.1 christos break; 4790 1.1 christos default : 4791 1.1 christos IPFERROR(135); 4792 1.1 christos error = EINVAL; 4793 1.1 christos } 4794 1.1 christos break; 4795 1.1 christos 4796 1.1 christos case FR_T_NONE : 4797 1.1 christos case FR_T_CALLFUNC : 4798 1.1 christos case FR_T_COMPIPF : 4799 1.1 christos break; 4800 1.1 christos 4801 1.1 christos case FR_T_IPFEXPR : 4802 1.1 christos if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) { 4803 1.1 christos IPFERROR(25); 4804 1.1 christos error = EINVAL; 4805 1.1 christos } 4806 1.1 christos break; 4807 1.1 christos 4808 1.1 christos default : 4809 1.1 christos IPFERROR(26); 4810 1.1 christos error = EINVAL; 4811 1.1 christos break; 4812 1.1 christos } 4813 1.1 christos if (error != 0) 4814 1.1 christos goto donenolock; 4815 1.1 christos 4816 1.1 christos if (fp->fr_tif.fd_name != -1) { 4817 1.1 christos if ((fp->fr_tif.fd_name < 0) || 4818 1.1 christos (fp->fr_tif.fd_name >= fp->fr_namelen)) { 4819 1.1 christos IPFERROR(139); 4820 1.1 christos error = EINVAL; 4821 1.1 christos goto donenolock; 4822 1.1 christos } 4823 1.1 christos } 4824 1.1 christos 4825 1.1 christos if (fp->fr_dif.fd_name != -1) { 4826 1.1 christos if ((fp->fr_dif.fd_name < 0) || 4827 1.1 christos (fp->fr_dif.fd_name >= fp->fr_namelen)) { 4828 1.1 christos IPFERROR(140); 4829 1.1 christos error = EINVAL; 4830 1.1 christos goto donenolock; 4831 1.1 christos } 4832 1.1 christos } 4833 1.1 christos 4834 1.1 christos if (fp->fr_rif.fd_name != -1) { 4835 1.1 christos if ((fp->fr_rif.fd_name < 0) || 4836 1.1 christos (fp->fr_rif.fd_name >= fp->fr_namelen)) { 4837 1.1 christos IPFERROR(141); 4838 1.1 christos error = EINVAL; 4839 1.1 christos goto donenolock; 4840 1.1 christos } 4841 1.1 christos } 4842 1.1 christos 4843 1.1 christos /* 4844 1.1 christos * Lookup all the interface names that are part of the rule. 4845 1.1 christos */ 4846 1.1 christos error = ipf_synclist(softc, fp, NULL); 4847 1.1 christos if (error != 0) 4848 1.1 christos goto donenolock; 4849 1.1 christos fp->fr_statecnt = 0; 4850 1.1 christos if (fp->fr_srctrack.ht_max_nodes != 0) 4851 1.1 christos ipf_rb_ht_init(&fp->fr_srctrack); 4852 1.1 christos 4853 1.1 christos /* 4854 1.1 christos * Look for an existing matching filter rule, but don't include the 4855 1.1 christos * next or interface pointer in the comparison (fr_next, fr_ifa). 4856 1.1 christos * This elminates rules which are indentical being loaded. Checksum 4857 1.1 christos * the constant part of the filter rule to make comparisons quicker 4858 1.1 christos * (this meaning no pointers are included). 4859 1.1 christos */ 4860 1.1 christos for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4861 1.1 christos p < pp; p++) 4862 1.1 christos fp->fr_cksum += *p; 4863 1.2 christos pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize); 4864 1.1 christos for (p = (u_int *)fp->fr_data; p < pp; p++) 4865 1.1 christos fp->fr_cksum += *p; 4866 1.1 christos 4867 1.1 christos WRITE_ENTER(&softc->ipf_mutex); 4868 1.1 christos 4869 1.1 christos /* 4870 1.1 christos * Now that the filter rule lists are locked, we can walk the 4871 1.1 christos * chain of them without fear. 4872 1.1 christos */ 4873 1.1 christos ftail = fprev; 4874 1.1 christos for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4875 1.1 christos if (fp->fr_collect <= f->fr_collect) { 4876 1.1 christos ftail = fprev; 4877 1.1 christos f = NULL; 4878 1.1 christos break; 4879 1.1 christos } 4880 1.1 christos fprev = ftail; 4881 1.1 christos } 4882 1.1 christos 4883 1.1 christos for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4884 1.3 darrenr DT2(rule_cmp, frentry_t *, fp, frentry_t *, f); 4885 1.19 christos if (ipf_rule_compare(fp, f) == 0) 4886 1.1 christos break; 4887 1.1 christos } 4888 1.1 christos 4889 1.1 christos /* 4890 1.1 christos * If zero'ing statistics, copy current to caller and zero. 4891 1.1 christos */ 4892 1.1 christos if (addrem == 2) { 4893 1.1 christos if (f == NULL) { 4894 1.1 christos IPFERROR(27); 4895 1.1 christos error = ESRCH; 4896 1.1 christos } else { 4897 1.1 christos /* 4898 1.1 christos * Copy and reduce lock because of impending copyout. 4899 1.1 christos * Well we should, but if we do then the atomicity of 4900 1.1 christos * this call and the correctness of fr_hits and 4901 1.1 christos * fr_bytes cannot be guaranteed. As it is, this code 4902 1.1 christos * only resets them to 0 if they are successfully 4903 1.1 christos * copied out into user space. 4904 1.1 christos */ 4905 1.1 christos bcopy((char *)f, (char *)fp, f->fr_size); 4906 1.1 christos /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */ 4907 1.1 christos 4908 1.1 christos /* 4909 1.1 christos * When we copy this rule back out, set the data 4910 1.1 christos * pointer to be what it was in user space. 4911 1.1 christos */ 4912 1.1 christos fp->fr_data = uptr; 4913 1.1 christos error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY); 4914 1.1 christos 4915 1.1 christos if (error == 0) { 4916 1.22 mrg if ((f->fr_dsize != 0) && (uptr != NULL)) { 4917 1.1 christos error = COPYOUT(f->fr_data, uptr, 4918 1.1 christos f->fr_dsize); 4919 1.1 christos if (error != 0) { 4920 1.1 christos IPFERROR(28); 4921 1.1 christos error = EFAULT; 4922 1.1 christos } 4923 1.22 mrg } 4924 1.1 christos if (error == 0) { 4925 1.1 christos f->fr_hits = 0; 4926 1.1 christos f->fr_bytes = 0; 4927 1.1 christos } 4928 1.1 christos } 4929 1.1 christos } 4930 1.1 christos 4931 1.1 christos if (makecopy != 0) { 4932 1.1 christos if (ptr != NULL) { 4933 1.1 christos KFREES(ptr, fp->fr_dsize); 4934 1.1 christos } 4935 1.1 christos KFREES(fp, fp->fr_size); 4936 1.1 christos } 4937 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 4938 1.1 christos return error; 4939 1.1 christos } 4940 1.1 christos 4941 1.1 christos if (!f) { 4942 1.1 christos /* 4943 1.1 christos * At the end of this, ftail must point to the place where the 4944 1.1 christos * new rule is to be saved/inserted/added. 4945 1.1 christos * For SIOCAD*FR, this should be the last rule in the group of 4946 1.1 christos * rules that have equal fr_collect fields. 4947 1.1 christos * For SIOCIN*FR, ... 4948 1.1 christos */ 4949 1.1 christos if (req == (ioctlcmd_t)SIOCADAFR || 4950 1.1 christos req == (ioctlcmd_t)SIOCADIFR) { 4951 1.1 christos 4952 1.1 christos for (ftail = fprev; (f = *ftail) != NULL; ) { 4953 1.1 christos if (f->fr_collect > fp->fr_collect) 4954 1.1 christos break; 4955 1.1 christos ftail = &f->fr_next; 4956 1.15 christos fprev = ftail; 4957 1.1 christos } 4958 1.15 christos ftail = fprev; 4959 1.1 christos f = NULL; 4960 1.1 christos ptr = NULL; 4961 1.1 christos } else if (req == (ioctlcmd_t)SIOCINAFR || 4962 1.1 christos req == (ioctlcmd_t)SIOCINIFR) { 4963 1.1 christos while ((f = *fprev) != NULL) { 4964 1.1 christos if (f->fr_collect >= fp->fr_collect) 4965 1.1 christos break; 4966 1.1 christos fprev = &f->fr_next; 4967 1.1 christos } 4968 1.1 christos ftail = fprev; 4969 1.1 christos if (fp->fr_hits != 0) { 4970 1.1 christos while (fp->fr_hits && (f = *ftail)) { 4971 1.1 christos if (f->fr_collect != fp->fr_collect) 4972 1.1 christos break; 4973 1.1 christos fprev = ftail; 4974 1.1 christos ftail = &f->fr_next; 4975 1.1 christos fp->fr_hits--; 4976 1.1 christos } 4977 1.1 christos } 4978 1.1 christos f = NULL; 4979 1.1 christos ptr = NULL; 4980 1.1 christos } 4981 1.1 christos } 4982 1.1 christos 4983 1.1 christos /* 4984 1.1 christos * Request to remove a rule. 4985 1.1 christos */ 4986 1.1 christos if (addrem == 1) { 4987 1.1 christos if (!f) { 4988 1.1 christos IPFERROR(29); 4989 1.1 christos error = ESRCH; 4990 1.1 christos } else { 4991 1.1 christos /* 4992 1.1 christos * Do not allow activity from user space to interfere 4993 1.1 christos * with rules not loaded that way. 4994 1.1 christos */ 4995 1.1 christos if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4996 1.1 christos IPFERROR(30); 4997 1.1 christos error = EPERM; 4998 1.1 christos goto done; 4999 1.1 christos } 5000 1.1 christos 5001 1.1 christos /* 5002 1.1 christos * Return EBUSY if the rule is being reference by 5003 1.1 christos * something else (eg state information.) 5004 1.1 christos */ 5005 1.1 christos if (f->fr_ref > 1) { 5006 1.1 christos IPFERROR(31); 5007 1.1 christos error = EBUSY; 5008 1.1 christos goto done; 5009 1.1 christos } 5010 1.1 christos #ifdef IPFILTER_SCAN 5011 1.1 christos if (f->fr_isctag != -1 && 5012 1.1 christos (f->fr_isc != (struct ipscan *)-1)) 5013 1.1 christos ipf_scan_detachfr(f); 5014 1.1 christos #endif 5015 1.1 christos 5016 1.1 christos if (unit == IPL_LOGAUTH) { 5017 1.1 christos error = ipf_auth_precmd(softc, req, f, ftail); 5018 1.1 christos goto done; 5019 1.1 christos } 5020 1.1 christos 5021 1.1 christos ipf_rule_delete(softc, f, unit, set); 5022 1.1 christos 5023 1.1 christos need_free = makecopy; 5024 1.1 christos } 5025 1.1 christos } else { 5026 1.1 christos /* 5027 1.1 christos * Not removing, so we must be adding/inserting a rule. 5028 1.1 christos */ 5029 1.1 christos if (f != NULL) { 5030 1.1 christos IPFERROR(32); 5031 1.1 christos error = EEXIST; 5032 1.1 christos goto done; 5033 1.1 christos } 5034 1.1 christos if (unit == IPL_LOGAUTH) { 5035 1.1 christos error = ipf_auth_precmd(softc, req, fp, ftail); 5036 1.1 christos goto done; 5037 1.1 christos } 5038 1.1 christos 5039 1.1 christos MUTEX_NUKE(&fp->fr_lock); 5040 1.1 christos MUTEX_INIT(&fp->fr_lock, "filter rule lock"); 5041 1.1 christos if (fp->fr_die != 0) 5042 1.1 christos ipf_rule_expire_insert(softc, fp, set); 5043 1.1 christos 5044 1.1 christos fp->fr_hits = 0; 5045 1.1 christos if (makecopy != 0) 5046 1.1 christos fp->fr_ref = 1; 5047 1.1 christos fp->fr_pnext = ftail; 5048 1.1 christos fp->fr_next = *ftail; 5049 1.15 christos if (fp->fr_next != NULL) 5050 1.15 christos fp->fr_next->fr_pnext = &fp->fr_next; 5051 1.1 christos *ftail = fp; 5052 1.1 christos if (addrem == 0) 5053 1.1 christos ipf_fixskip(ftail, fp, 1); 5054 1.1 christos 5055 1.1 christos fp->fr_icmpgrp = NULL; 5056 1.1 christos if (fp->fr_icmphead != -1) { 5057 1.1 christos group = FR_NAME(fp, fr_icmphead); 5058 1.1 christos fg = ipf_group_add(softc, group, fp, 0, unit, set); 5059 1.3 darrenr fp->fr_icmpgrp = fg; 5060 1.1 christos } 5061 1.1 christos 5062 1.3 darrenr fp->fr_grphead = NULL; 5063 1.1 christos if (fp->fr_grhead != -1) { 5064 1.1 christos group = FR_NAME(fp, fr_grhead); 5065 1.1 christos fg = ipf_group_add(softc, group, fp, fp->fr_flags, 5066 1.1 christos unit, set); 5067 1.3 darrenr fp->fr_grphead = fg; 5068 1.1 christos } 5069 1.1 christos } 5070 1.1 christos done: 5071 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 5072 1.1 christos donenolock: 5073 1.1 christos if (need_free || (error != 0)) { 5074 1.1 christos if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { 5075 1.1 christos if ((fp->fr_satype == FRI_LOOKUP) && 5076 1.1 christos (fp->fr_srcptr != NULL)) 5077 1.1 christos ipf_lookup_deref(softc, fp->fr_srctype, 5078 1.1 christos fp->fr_srcptr); 5079 1.1 christos if ((fp->fr_datype == FRI_LOOKUP) && 5080 1.1 christos (fp->fr_dstptr != NULL)) 5081 1.1 christos ipf_lookup_deref(softc, fp->fr_dsttype, 5082 1.1 christos fp->fr_dstptr); 5083 1.1 christos } 5084 1.3 darrenr if (fp->fr_grp != NULL) { 5085 1.3 darrenr WRITE_ENTER(&softc->ipf_mutex); 5086 1.3 darrenr ipf_group_del(softc, fp->fr_grp, fp); 5087 1.3 darrenr RWLOCK_EXIT(&softc->ipf_mutex); 5088 1.3 darrenr } 5089 1.1 christos if ((ptr != NULL) && (makecopy != 0)) { 5090 1.1 christos KFREES(ptr, fp->fr_dsize); 5091 1.1 christos } 5092 1.1 christos KFREES(fp, fp->fr_size); 5093 1.1 christos } 5094 1.1 christos return (error); 5095 1.1 christos } 5096 1.1 christos 5097 1.1 christos 5098 1.1 christos /* ------------------------------------------------------------------------ */ 5099 1.1 christos /* Function: ipf_rule_delete */ 5100 1.1 christos /* Returns: Nil */ 5101 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 5102 1.1 christos /* f(I) - pointer to the rule being deleted */ 5103 1.1 christos /* ftail(I) - pointer to the pointer to f */ 5104 1.1 christos /* unit(I) - device for which this is for */ 5105 1.1 christos /* set(I) - 1 or 0 (filter set) */ 5106 1.1 christos /* */ 5107 1.1 christos /* This function attempts to do what it can to delete a filter rule: remove */ 5108 1.1 christos /* it from any linked lists and remove any groups it is responsible for. */ 5109 1.1 christos /* But in the end, removing a rule can only drop the reference count - we */ 5110 1.1 christos /* must use that as the guide for whether or not it can be freed. */ 5111 1.1 christos /* ------------------------------------------------------------------------ */ 5112 1.1 christos static void 5113 1.2 christos ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set) 5114 1.1 christos { 5115 1.1 christos 5116 1.1 christos /* 5117 1.1 christos * If fr_pdnext is set, then the rule is on the expire list, so 5118 1.1 christos * remove it from there. 5119 1.1 christos */ 5120 1.1 christos if (f->fr_pdnext != NULL) { 5121 1.1 christos *f->fr_pdnext = f->fr_dnext; 5122 1.1 christos if (f->fr_dnext != NULL) 5123 1.1 christos f->fr_dnext->fr_pdnext = f->fr_pdnext; 5124 1.1 christos f->fr_pdnext = NULL; 5125 1.1 christos f->fr_dnext = NULL; 5126 1.1 christos } 5127 1.1 christos 5128 1.1 christos ipf_fixskip(f->fr_pnext, f, -1); 5129 1.1 christos if (f->fr_pnext != NULL) 5130 1.1 christos *f->fr_pnext = f->fr_next; 5131 1.1 christos if (f->fr_next != NULL) 5132 1.1 christos f->fr_next->fr_pnext = f->fr_pnext; 5133 1.1 christos f->fr_pnext = NULL; 5134 1.1 christos f->fr_next = NULL; 5135 1.1 christos 5136 1.1 christos (void) ipf_derefrule(softc, &f); 5137 1.1 christos } 5138 1.1 christos 5139 1.1 christos /* ------------------------------------------------------------------------ */ 5140 1.1 christos /* Function: ipf_rule_expire_insert */ 5141 1.1 christos /* Returns: Nil */ 5142 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 5143 1.1 christos /* f(I) - pointer to rule to be added to expire list */ 5144 1.1 christos /* set(I) - 1 or 0 (filter set) */ 5145 1.1 christos /* */ 5146 1.1 christos /* If the new rule has a given expiration time, insert it into the list of */ 5147 1.1 christos /* expiring rules with the ones to be removed first added to the front of */ 5148 1.1 christos /* the list. The insertion is O(n) but it is kept sorted for quick scans at */ 5149 1.1 christos /* expiration interval checks. */ 5150 1.1 christos /* ------------------------------------------------------------------------ */ 5151 1.1 christos static void 5152 1.2 christos ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set) 5153 1.1 christos { 5154 1.1 christos frentry_t *fr; 5155 1.1 christos 5156 1.1 christos /* 5157 1.1 christos */ 5158 1.1 christos 5159 1.1 christos f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die); 5160 1.1 christos for (fr = softc->ipf_rule_explist[set]; fr != NULL; 5161 1.1 christos fr = fr->fr_dnext) { 5162 1.1 christos if (f->fr_die < fr->fr_die) 5163 1.1 christos break; 5164 1.1 christos if (fr->fr_dnext == NULL) { 5165 1.1 christos /* 5166 1.1 christos * We've got to the last rule and everything 5167 1.1 christos * wanted to be expired before this new node, 5168 1.1 christos * so we have to tack it on the end... 5169 1.1 christos */ 5170 1.1 christos fr->fr_dnext = f; 5171 1.1 christos f->fr_pdnext = &fr->fr_dnext; 5172 1.1 christos fr = NULL; 5173 1.1 christos break; 5174 1.1 christos } 5175 1.1 christos } 5176 1.1 christos 5177 1.1 christos if (softc->ipf_rule_explist[set] == NULL) { 5178 1.1 christos softc->ipf_rule_explist[set] = f; 5179 1.1 christos f->fr_pdnext = &softc->ipf_rule_explist[set]; 5180 1.1 christos } else if (fr != NULL) { 5181 1.1 christos f->fr_dnext = fr; 5182 1.1 christos f->fr_pdnext = fr->fr_pdnext; 5183 1.1 christos fr->fr_pdnext = &f->fr_dnext; 5184 1.1 christos } 5185 1.1 christos } 5186 1.1 christos 5187 1.1 christos 5188 1.1 christos /* ------------------------------------------------------------------------ */ 5189 1.1 christos /* Function: ipf_findlookup */ 5190 1.1 christos /* Returns: NULL = failure, else success */ 5191 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 5192 1.1 christos /* unit(I) - ipf device we want to find match for */ 5193 1.1 christos /* fp(I) - rule for which lookup is for */ 5194 1.1 christos /* addrp(I) - pointer to lookup information in address struct */ 5195 1.1 christos /* maskp(O) - pointer to lookup information for storage */ 5196 1.1 christos /* */ 5197 1.1 christos /* When using pools and hash tables to store addresses for matching in */ 5198 1.1 christos /* rules, it is necessary to resolve both the object referred to by the */ 5199 1.1 christos /* name or address (and return that pointer) and also provide the means by */ 5200 1.1 christos /* which to determine if an address belongs to that object to make the */ 5201 1.1 christos /* packet matching quicker. */ 5202 1.1 christos /* ------------------------------------------------------------------------ */ 5203 1.1 christos static void * 5204 1.2 christos ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr, 5205 1.2 christos i6addr_t *addrp, i6addr_t *maskp) 5206 1.1 christos { 5207 1.1 christos void *ptr = NULL; 5208 1.1 christos 5209 1.1 christos switch (addrp->iplookupsubtype) 5210 1.1 christos { 5211 1.1 christos case 0 : 5212 1.1 christos ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype, 5213 1.1 christos addrp->iplookupnum, 5214 1.1 christos &maskp->iplookupfunc); 5215 1.1 christos break; 5216 1.1 christos case 1 : 5217 1.1 christos if (addrp->iplookupname < 0) 5218 1.1 christos break; 5219 1.1 christos if (addrp->iplookupname >= fr->fr_namelen) 5220 1.1 christos break; 5221 1.1 christos ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype, 5222 1.1 christos fr->fr_names + addrp->iplookupname, 5223 1.1 christos &maskp->iplookupfunc); 5224 1.1 christos break; 5225 1.1 christos default : 5226 1.1 christos break; 5227 1.1 christos } 5228 1.1 christos 5229 1.1 christos return ptr; 5230 1.1 christos } 5231 1.1 christos 5232 1.1 christos 5233 1.1 christos /* ------------------------------------------------------------------------ */ 5234 1.1 christos /* Function: ipf_funcinit */ 5235 1.1 christos /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 5236 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 5237 1.1 christos /* fr(I) - pointer to filter rule */ 5238 1.1 christos /* */ 5239 1.1 christos /* If a rule is a call rule, then check if the function it points to needs */ 5240 1.1 christos /* an init function to be called now the rule has been loaded. */ 5241 1.1 christos /* ------------------------------------------------------------------------ */ 5242 1.1 christos static int 5243 1.2 christos ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr) 5244 1.1 christos { 5245 1.1 christos ipfunc_resolve_t *ft; 5246 1.1 christos int err; 5247 1.1 christos 5248 1.1 christos IPFERROR(34); 5249 1.1 christos err = ESRCH; 5250 1.1 christos 5251 1.1 christos for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5252 1.1 christos if (ft->ipfu_addr == fr->fr_func) { 5253 1.1 christos err = 0; 5254 1.1 christos if (ft->ipfu_init != NULL) 5255 1.1 christos err = (*ft->ipfu_init)(softc, fr); 5256 1.1 christos break; 5257 1.1 christos } 5258 1.1 christos return err; 5259 1.1 christos } 5260 1.1 christos 5261 1.1 christos 5262 1.1 christos /* ------------------------------------------------------------------------ */ 5263 1.1 christos /* Function: ipf_funcfini */ 5264 1.1 christos /* Returns: Nil */ 5265 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 5266 1.1 christos /* fr(I) - pointer to filter rule */ 5267 1.1 christos /* */ 5268 1.1 christos /* For a given filter rule, call the matching "fini" function if the rule */ 5269 1.1 christos /* is using a known function that would have resulted in the "init" being */ 5270 1.1 christos /* called for ealier. */ 5271 1.1 christos /* ------------------------------------------------------------------------ */ 5272 1.1 christos static void 5273 1.2 christos ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr) 5274 1.1 christos { 5275 1.1 christos ipfunc_resolve_t *ft; 5276 1.1 christos 5277 1.1 christos for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5278 1.1 christos if (ft->ipfu_addr == fr->fr_func) { 5279 1.1 christos if (ft->ipfu_fini != NULL) 5280 1.1 christos (void) (*ft->ipfu_fini)(softc, fr); 5281 1.1 christos break; 5282 1.1 christos } 5283 1.1 christos } 5284 1.1 christos 5285 1.1 christos 5286 1.1 christos /* ------------------------------------------------------------------------ */ 5287 1.1 christos /* Function: ipf_findfunc */ 5288 1.1 christos /* Returns: ipfunc_t - pointer to function if found, else NULL */ 5289 1.1 christos /* Parameters: funcptr(I) - function pointer to lookup */ 5290 1.1 christos /* */ 5291 1.1 christos /* Look for a function in the table of known functions. */ 5292 1.1 christos /* ------------------------------------------------------------------------ */ 5293 1.1 christos static ipfunc_t 5294 1.2 christos ipf_findfunc(ipfunc_t funcptr) 5295 1.1 christos { 5296 1.1 christos ipfunc_resolve_t *ft; 5297 1.1 christos 5298 1.1 christos for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5299 1.1 christos if (ft->ipfu_addr == funcptr) 5300 1.1 christos return funcptr; 5301 1.1 christos return NULL; 5302 1.1 christos } 5303 1.1 christos 5304 1.1 christos 5305 1.1 christos /* ------------------------------------------------------------------------ */ 5306 1.1 christos /* Function: ipf_resolvefunc */ 5307 1.1 christos /* Returns: int - 0 == success, else error */ 5308 1.1 christos /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 5309 1.1 christos /* */ 5310 1.1 christos /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 5311 1.1 christos /* This will either be the function name (if the pointer is set) or the */ 5312 1.1 christos /* function pointer if the name is set. When found, fill in the other one */ 5313 1.1 christos /* so that the entire, complete, structure can be copied back to user space.*/ 5314 1.1 christos /* ------------------------------------------------------------------------ */ 5315 1.1 christos int 5316 1.2 christos ipf_resolvefunc(ipf_main_softc_t *softc, void *data) 5317 1.1 christos { 5318 1.1 christos ipfunc_resolve_t res, *ft; 5319 1.1 christos int error; 5320 1.1 christos 5321 1.1 christos error = BCOPYIN(data, &res, sizeof(res)); 5322 1.1 christos if (error != 0) { 5323 1.1 christos IPFERROR(123); 5324 1.1 christos return EFAULT; 5325 1.1 christos } 5326 1.1 christos 5327 1.1 christos if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 5328 1.1 christos for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5329 1.1 christos if (strncmp(res.ipfu_name, ft->ipfu_name, 5330 1.1 christos sizeof(res.ipfu_name)) == 0) { 5331 1.1 christos res.ipfu_addr = ft->ipfu_addr; 5332 1.1 christos res.ipfu_init = ft->ipfu_init; 5333 1.1 christos if (COPYOUT(&res, data, sizeof(res)) != 0) { 5334 1.1 christos IPFERROR(35); 5335 1.1 christos return EFAULT; 5336 1.1 christos } 5337 1.1 christos return 0; 5338 1.1 christos } 5339 1.1 christos } 5340 1.1 christos if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 5341 1.1 christos for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5342 1.1 christos if (ft->ipfu_addr == res.ipfu_addr) { 5343 1.1 christos (void) strncpy(res.ipfu_name, ft->ipfu_name, 5344 1.1 christos sizeof(res.ipfu_name)); 5345 1.1 christos res.ipfu_init = ft->ipfu_init; 5346 1.1 christos if (COPYOUT(&res, data, sizeof(res)) != 0) { 5347 1.1 christos IPFERROR(36); 5348 1.1 christos return EFAULT; 5349 1.1 christos } 5350 1.1 christos return 0; 5351 1.1 christos } 5352 1.1 christos } 5353 1.1 christos IPFERROR(37); 5354 1.1 christos return ESRCH; 5355 1.1 christos } 5356 1.1 christos 5357 1.1 christos 5358 1.1 christos #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \ 5359 1.1 christos !defined(__FreeBSD__)) || \ 5360 1.1 christos FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \ 5361 1.1 christos OPENBSD_LT_REV(200006) 5362 1.1 christos /* 5363 1.1 christos * From: NetBSD 5364 1.1 christos * ppsratecheck(): packets (or events) per second limitation. 5365 1.1 christos */ 5366 1.1 christos int 5367 1.1 christos ppsratecheck(lasttime, curpps, maxpps) 5368 1.1 christos struct timeval *lasttime; 5369 1.1 christos int *curpps; 5370 1.1 christos int maxpps; /* maximum pps allowed */ 5371 1.1 christos { 5372 1.1 christos struct timeval tv, delta; 5373 1.1 christos int rv; 5374 1.1 christos 5375 1.1 christos GETKTIME(&tv); 5376 1.1 christos 5377 1.1 christos delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 5378 1.1 christos delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 5379 1.1 christos if (delta.tv_usec < 0) { 5380 1.1 christos delta.tv_sec--; 5381 1.1 christos delta.tv_usec += 1000000; 5382 1.1 christos } 5383 1.1 christos 5384 1.1 christos /* 5385 1.1 christos * check for 0,0 is so that the message will be seen at least once. 5386 1.1 christos * if more than one second have passed since the last update of 5387 1.1 christos * lasttime, reset the counter. 5388 1.1 christos * 5389 1.1 christos * we do increment *curpps even in *curpps < maxpps case, as some may 5390 1.1 christos * try to use *curpps for stat purposes as well. 5391 1.1 christos */ 5392 1.1 christos if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 5393 1.1 christos delta.tv_sec >= 1) { 5394 1.1 christos *lasttime = tv; 5395 1.1 christos *curpps = 0; 5396 1.1 christos rv = 1; 5397 1.1 christos } else if (maxpps < 0) 5398 1.1 christos rv = 1; 5399 1.1 christos else if (*curpps < maxpps) 5400 1.1 christos rv = 1; 5401 1.1 christos else 5402 1.1 christos rv = 0; 5403 1.1 christos *curpps = *curpps + 1; 5404 1.1 christos 5405 1.1 christos return (rv); 5406 1.1 christos } 5407 1.1 christos #endif 5408 1.1 christos 5409 1.1 christos 5410 1.1 christos /* ------------------------------------------------------------------------ */ 5411 1.1 christos /* Function: ipf_derefrule */ 5412 1.1 christos /* Returns: int - 0 == rule freed up, else rule not freed */ 5413 1.1 christos /* Parameters: fr(I) - pointer to filter rule */ 5414 1.1 christos /* */ 5415 1.1 christos /* Decrement the reference counter to a rule by one. If it reaches zero, */ 5416 1.1 christos /* free it and any associated storage space being used by it. */ 5417 1.1 christos /* ------------------------------------------------------------------------ */ 5418 1.1 christos int 5419 1.2 christos ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp) 5420 1.1 christos { 5421 1.1 christos frentry_t *fr; 5422 1.1 christos frdest_t *fdp; 5423 1.1 christos 5424 1.1 christos fr = *frp; 5425 1.1 christos *frp = NULL; 5426 1.1 christos 5427 1.1 christos MUTEX_ENTER(&fr->fr_lock); 5428 1.1 christos fr->fr_ref--; 5429 1.1 christos if (fr->fr_ref == 0) { 5430 1.1 christos MUTEX_EXIT(&fr->fr_lock); 5431 1.1 christos MUTEX_DESTROY(&fr->fr_lock); 5432 1.1 christos 5433 1.1 christos ipf_funcfini(softc, fr); 5434 1.1 christos 5435 1.1 christos fdp = &fr->fr_tif; 5436 1.1 christos if (fdp->fd_type == FRD_DSTLIST) 5437 1.1 christos ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5438 1.1 christos 5439 1.1 christos fdp = &fr->fr_rif; 5440 1.1 christos if (fdp->fd_type == FRD_DSTLIST) 5441 1.1 christos ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5442 1.1 christos 5443 1.1 christos fdp = &fr->fr_dif; 5444 1.1 christos if (fdp->fd_type == FRD_DSTLIST) 5445 1.1 christos ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5446 1.1 christos 5447 1.1 christos if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && 5448 1.1 christos fr->fr_satype == FRI_LOOKUP) 5449 1.1 christos ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr); 5450 1.1 christos if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && 5451 1.1 christos fr->fr_datype == FRI_LOOKUP) 5452 1.1 christos ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr); 5453 1.1 christos 5454 1.3 darrenr if (fr->fr_grp != NULL) 5455 1.3 darrenr ipf_group_del(softc, fr->fr_grp, fr); 5456 1.3 darrenr 5457 1.3 darrenr if (fr->fr_grphead != NULL) 5458 1.3 darrenr ipf_group_del(softc, fr->fr_grphead, fr); 5459 1.3 darrenr 5460 1.3 darrenr if (fr->fr_icmpgrp != NULL) 5461 1.3 darrenr ipf_group_del(softc, fr->fr_icmpgrp, fr); 5462 1.3 darrenr 5463 1.1 christos if ((fr->fr_flags & FR_COPIED) != 0) { 5464 1.1 christos if (fr->fr_dsize) { 5465 1.1 christos KFREES(fr->fr_data, fr->fr_dsize); 5466 1.1 christos } 5467 1.1 christos KFREES(fr, fr->fr_size); 5468 1.1 christos return 0; 5469 1.1 christos } 5470 1.1 christos return 1; 5471 1.1 christos } else { 5472 1.1 christos MUTEX_EXIT(&fr->fr_lock); 5473 1.1 christos } 5474 1.1 christos return -1; 5475 1.1 christos } 5476 1.1 christos 5477 1.1 christos 5478 1.1 christos /* ------------------------------------------------------------------------ */ 5479 1.1 christos /* Function: ipf_grpmapinit */ 5480 1.1 christos /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 5481 1.1 christos /* Parameters: fr(I) - pointer to rule to find hash table for */ 5482 1.1 christos /* */ 5483 1.1 christos /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 5484 1.1 christos /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */ 5485 1.1 christos /* ------------------------------------------------------------------------ */ 5486 1.1 christos static int 5487 1.2 christos ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr) 5488 1.1 christos { 5489 1.1 christos char name[FR_GROUPLEN]; 5490 1.1 christos iphtable_t *iph; 5491 1.1 christos 5492 1.14 christos (void) snprintf(name, sizeof(name), "%d", fr->fr_arg); 5493 1.1 christos iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name); 5494 1.1 christos if (iph == NULL) { 5495 1.1 christos IPFERROR(38); 5496 1.1 christos return ESRCH; 5497 1.1 christos } 5498 1.1 christos if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) { 5499 1.1 christos IPFERROR(39); 5500 1.1 christos return ESRCH; 5501 1.1 christos } 5502 1.1 christos iph->iph_ref++; 5503 1.1 christos fr->fr_ptr = iph; 5504 1.1 christos return 0; 5505 1.1 christos } 5506 1.1 christos 5507 1.1 christos 5508 1.1 christos /* ------------------------------------------------------------------------ */ 5509 1.1 christos /* Function: ipf_grpmapfini */ 5510 1.1 christos /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 5511 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 5512 1.1 christos /* fr(I) - pointer to rule to release hash table for */ 5513 1.1 christos /* */ 5514 1.1 christos /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */ 5515 1.1 christos /* be called to undo what ipf_grpmapinit caused to be done. */ 5516 1.1 christos /* ------------------------------------------------------------------------ */ 5517 1.1 christos static int 5518 1.2 christos ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr) 5519 1.1 christos { 5520 1.1 christos iphtable_t *iph; 5521 1.1 christos iph = fr->fr_ptr; 5522 1.1 christos if (iph != NULL) 5523 1.1 christos ipf_lookup_deref(softc, IPLT_HASH, iph); 5524 1.1 christos return 0; 5525 1.1 christos } 5526 1.1 christos 5527 1.1 christos 5528 1.1 christos /* ------------------------------------------------------------------------ */ 5529 1.1 christos /* Function: ipf_srcgrpmap */ 5530 1.1 christos /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5531 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 5532 1.1 christos /* passp(IO) - pointer to current/new filter decision (unused) */ 5533 1.1 christos /* */ 5534 1.1 christos /* Look for a rule group head in a hash table, using the source address as */ 5535 1.1 christos /* the key, and descend into that group and continue matching rules against */ 5536 1.1 christos /* the packet. */ 5537 1.1 christos /* ------------------------------------------------------------------------ */ 5538 1.1 christos frentry_t * 5539 1.2 christos ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp) 5540 1.1 christos { 5541 1.1 christos frgroup_t *fg; 5542 1.1 christos void *rval; 5543 1.1 christos 5544 1.1 christos rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, 5545 1.1 christos &fin->fin_src); 5546 1.1 christos if (rval == NULL) 5547 1.1 christos return NULL; 5548 1.1 christos 5549 1.1 christos fg = rval; 5550 1.1 christos fin->fin_fr = fg->fg_start; 5551 1.1 christos (void) ipf_scanlist(fin, *passp); 5552 1.1 christos return fin->fin_fr; 5553 1.1 christos } 5554 1.1 christos 5555 1.1 christos 5556 1.1 christos /* ------------------------------------------------------------------------ */ 5557 1.1 christos /* Function: ipf_dstgrpmap */ 5558 1.1 christos /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5559 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 5560 1.1 christos /* passp(IO) - pointer to current/new filter decision (unused) */ 5561 1.1 christos /* */ 5562 1.1 christos /* Look for a rule group head in a hash table, using the destination */ 5563 1.1 christos /* address as the key, and descend into that group and continue matching */ 5564 1.1 christos /* rules against the packet. */ 5565 1.1 christos /* ------------------------------------------------------------------------ */ 5566 1.1 christos frentry_t * 5567 1.2 christos ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp) 5568 1.1 christos { 5569 1.1 christos frgroup_t *fg; 5570 1.1 christos void *rval; 5571 1.1 christos 5572 1.1 christos rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, 5573 1.1 christos &fin->fin_dst); 5574 1.1 christos if (rval == NULL) 5575 1.1 christos return NULL; 5576 1.1 christos 5577 1.1 christos fg = rval; 5578 1.1 christos fin->fin_fr = fg->fg_start; 5579 1.1 christos (void) ipf_scanlist(fin, *passp); 5580 1.1 christos return fin->fin_fr; 5581 1.1 christos } 5582 1.1 christos 5583 1.1 christos /* 5584 1.1 christos * Queue functions 5585 1.1 christos * =============== 5586 1.1 christos * These functions manage objects on queues for efficient timeouts. There 5587 1.1 christos * are a number of system defined queues as well as user defined timeouts. 5588 1.1 christos * It is expected that a lock is held in the domain in which the queue 5589 1.1 christos * belongs (i.e. either state or NAT) when calling any of these functions 5590 1.1 christos * that prevents ipf_freetimeoutqueue() from being called at the same time 5591 1.1 christos * as any other. 5592 1.1 christos */ 5593 1.1 christos 5594 1.1 christos 5595 1.1 christos /* ------------------------------------------------------------------------ */ 5596 1.1 christos /* Function: ipf_addtimeoutqueue */ 5597 1.1 christos /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 5598 1.1 christos /* timeout queue with given interval. */ 5599 1.1 christos /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 5600 1.1 christos /* of interface queues. */ 5601 1.1 christos /* seconds(I) - timeout value in seconds for this queue. */ 5602 1.1 christos /* */ 5603 1.1 christos /* This routine first looks for a timeout queue that matches the interval */ 5604 1.1 christos /* being requested. If it finds one, increments the reference counter and */ 5605 1.1 christos /* returns a pointer to it. If none are found, it allocates a new one and */ 5606 1.1 christos /* inserts it at the top of the list. */ 5607 1.1 christos /* */ 5608 1.1 christos /* Locking. */ 5609 1.1 christos /* It is assumed that the caller of this function has an appropriate lock */ 5610 1.1 christos /* held (exclusively) in the domain that encompases 'parent'. */ 5611 1.1 christos /* ------------------------------------------------------------------------ */ 5612 1.1 christos ipftq_t * 5613 1.2 christos ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds) 5614 1.1 christos { 5615 1.1 christos ipftq_t *ifq; 5616 1.1 christos u_int period; 5617 1.1 christos 5618 1.1 christos period = seconds * IPF_HZ_DIVIDE; 5619 1.1 christos 5620 1.1 christos MUTEX_ENTER(&softc->ipf_timeoutlock); 5621 1.1 christos for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 5622 1.1 christos if (ifq->ifq_ttl == period) { 5623 1.1 christos /* 5624 1.1 christos * Reset the delete flag, if set, so the structure 5625 1.1 christos * gets reused rather than freed and reallocated. 5626 1.1 christos */ 5627 1.1 christos MUTEX_ENTER(&ifq->ifq_lock); 5628 1.1 christos ifq->ifq_flags &= ~IFQF_DELETE; 5629 1.1 christos ifq->ifq_ref++; 5630 1.1 christos MUTEX_EXIT(&ifq->ifq_lock); 5631 1.1 christos MUTEX_EXIT(&softc->ipf_timeoutlock); 5632 1.1 christos 5633 1.1 christos return ifq; 5634 1.1 christos } 5635 1.1 christos } 5636 1.1 christos 5637 1.1 christos KMALLOC(ifq, ipftq_t *); 5638 1.1 christos if (ifq != NULL) { 5639 1.1 christos MUTEX_NUKE(&ifq->ifq_lock); 5640 1.1 christos IPFTQ_INIT(ifq, period, "ipftq mutex"); 5641 1.1 christos ifq->ifq_next = *parent; 5642 1.1 christos ifq->ifq_pnext = parent; 5643 1.1 christos ifq->ifq_flags = IFQF_USER; 5644 1.1 christos ifq->ifq_ref++; 5645 1.1 christos *parent = ifq; 5646 1.1 christos softc->ipf_userifqs++; 5647 1.1 christos } 5648 1.1 christos MUTEX_EXIT(&softc->ipf_timeoutlock); 5649 1.1 christos return ifq; 5650 1.1 christos } 5651 1.1 christos 5652 1.1 christos 5653 1.1 christos /* ------------------------------------------------------------------------ */ 5654 1.1 christos /* Function: ipf_deletetimeoutqueue */ 5655 1.1 christos /* Returns: int - new reference count value of the timeout queue */ 5656 1.1 christos /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5657 1.1 christos /* Locks: ifq->ifq_lock */ 5658 1.1 christos /* */ 5659 1.1 christos /* This routine must be called when we're discarding a pointer to a timeout */ 5660 1.1 christos /* queue object, taking care of the reference counter. */ 5661 1.1 christos /* */ 5662 1.1 christos /* Now that this just sets a DELETE flag, it requires the expire code to */ 5663 1.1 christos /* check the list of user defined timeout queues and call the free function */ 5664 1.1 christos /* below (currently commented out) to stop memory leaking. It is done this */ 5665 1.1 christos /* way because the locking may not be sufficient to safely do a free when */ 5666 1.1 christos /* this function is called. */ 5667 1.1 christos /* ------------------------------------------------------------------------ */ 5668 1.1 christos int 5669 1.2 christos ipf_deletetimeoutqueue(ipftq_t *ifq) 5670 1.1 christos { 5671 1.1 christos 5672 1.1 christos ifq->ifq_ref--; 5673 1.1 christos if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 5674 1.1 christos ifq->ifq_flags |= IFQF_DELETE; 5675 1.1 christos } 5676 1.1 christos 5677 1.1 christos return ifq->ifq_ref; 5678 1.1 christos } 5679 1.1 christos 5680 1.1 christos 5681 1.1 christos /* ------------------------------------------------------------------------ */ 5682 1.1 christos /* Function: ipf_freetimeoutqueue */ 5683 1.1 christos /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5684 1.1 christos /* Returns: Nil */ 5685 1.1 christos /* */ 5686 1.1 christos /* Locking: */ 5687 1.1 christos /* It is assumed that the caller of this function has an appropriate lock */ 5688 1.1 christos /* held (exclusively) in the domain that encompases the callers "domain". */ 5689 1.1 christos /* The ifq_lock for this structure should not be held. */ 5690 1.1 christos /* */ 5691 1.1 christos /* Remove a user defined timeout queue from the list of queues it is in and */ 5692 1.1 christos /* tidy up after this is done. */ 5693 1.1 christos /* ------------------------------------------------------------------------ */ 5694 1.1 christos void 5695 1.2 christos ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq) 5696 1.1 christos { 5697 1.1 christos 5698 1.1 christos if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 5699 1.1 christos ((ifq->ifq_flags & IFQF_USER) == 0)) { 5700 1.1 christos printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 5701 1.1 christos (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 5702 1.1 christos ifq->ifq_ref); 5703 1.1 christos return; 5704 1.1 christos } 5705 1.1 christos 5706 1.1 christos /* 5707 1.1 christos * Remove from its position in the list. 5708 1.1 christos */ 5709 1.1 christos *ifq->ifq_pnext = ifq->ifq_next; 5710 1.1 christos if (ifq->ifq_next != NULL) 5711 1.1 christos ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 5712 1.1 christos ifq->ifq_next = NULL; 5713 1.1 christos ifq->ifq_pnext = NULL; 5714 1.1 christos 5715 1.1 christos MUTEX_DESTROY(&ifq->ifq_lock); 5716 1.1 christos ATOMIC_DEC(softc->ipf_userifqs); 5717 1.1 christos KFREE(ifq); 5718 1.1 christos } 5719 1.1 christos 5720 1.1 christos 5721 1.1 christos /* ------------------------------------------------------------------------ */ 5722 1.1 christos /* Function: ipf_deletequeueentry */ 5723 1.1 christos /* Returns: Nil */ 5724 1.1 christos /* Parameters: tqe(I) - timeout queue entry to delete */ 5725 1.1 christos /* */ 5726 1.1 christos /* Remove a tail queue entry from its queue and make it an orphan. */ 5727 1.1 christos /* ipf_deletetimeoutqueue is called to make sure the reference count on the */ 5728 1.1 christos /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */ 5729 1.1 christos /* the correct lock(s) may not be held that would make it safe to do so. */ 5730 1.1 christos /* ------------------------------------------------------------------------ */ 5731 1.1 christos void 5732 1.2 christos ipf_deletequeueentry(ipftqent_t *tqe) 5733 1.1 christos { 5734 1.1 christos ipftq_t *ifq; 5735 1.1 christos 5736 1.1 christos ifq = tqe->tqe_ifq; 5737 1.1 christos 5738 1.1 christos MUTEX_ENTER(&ifq->ifq_lock); 5739 1.1 christos 5740 1.1 christos if (tqe->tqe_pnext != NULL) { 5741 1.1 christos *tqe->tqe_pnext = tqe->tqe_next; 5742 1.1 christos if (tqe->tqe_next != NULL) 5743 1.1 christos tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5744 1.1 christos else /* we must be the tail anyway */ 5745 1.1 christos ifq->ifq_tail = tqe->tqe_pnext; 5746 1.1 christos 5747 1.1 christos tqe->tqe_pnext = NULL; 5748 1.1 christos tqe->tqe_ifq = NULL; 5749 1.1 christos } 5750 1.1 christos 5751 1.1 christos (void) ipf_deletetimeoutqueue(ifq); 5752 1.1 christos ASSERT(ifq->ifq_ref > 0); 5753 1.1 christos 5754 1.1 christos MUTEX_EXIT(&ifq->ifq_lock); 5755 1.1 christos } 5756 1.1 christos 5757 1.1 christos 5758 1.1 christos /* ------------------------------------------------------------------------ */ 5759 1.1 christos /* Function: ipf_queuefront */ 5760 1.1 christos /* Returns: Nil */ 5761 1.1 christos /* Parameters: tqe(I) - pointer to timeout queue entry */ 5762 1.1 christos /* */ 5763 1.1 christos /* Move a queue entry to the front of the queue, if it isn't already there. */ 5764 1.1 christos /* ------------------------------------------------------------------------ */ 5765 1.1 christos void 5766 1.2 christos ipf_queuefront(ipftqent_t *tqe) 5767 1.1 christos { 5768 1.1 christos ipftq_t *ifq; 5769 1.1 christos 5770 1.1 christos ifq = tqe->tqe_ifq; 5771 1.1 christos if (ifq == NULL) 5772 1.1 christos return; 5773 1.1 christos 5774 1.1 christos MUTEX_ENTER(&ifq->ifq_lock); 5775 1.1 christos if (ifq->ifq_head != tqe) { 5776 1.1 christos *tqe->tqe_pnext = tqe->tqe_next; 5777 1.1 christos if (tqe->tqe_next) 5778 1.1 christos tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5779 1.1 christos else 5780 1.1 christos ifq->ifq_tail = tqe->tqe_pnext; 5781 1.1 christos 5782 1.1 christos tqe->tqe_next = ifq->ifq_head; 5783 1.1 christos ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5784 1.1 christos ifq->ifq_head = tqe; 5785 1.1 christos tqe->tqe_pnext = &ifq->ifq_head; 5786 1.1 christos } 5787 1.1 christos MUTEX_EXIT(&ifq->ifq_lock); 5788 1.1 christos } 5789 1.1 christos 5790 1.1 christos 5791 1.1 christos /* ------------------------------------------------------------------------ */ 5792 1.1 christos /* Function: ipf_queueback */ 5793 1.1 christos /* Returns: Nil */ 5794 1.1 christos /* Parameters: ticks(I) - ipf tick time to use with this call */ 5795 1.1 christos /* tqe(I) - pointer to timeout queue entry */ 5796 1.1 christos /* */ 5797 1.1 christos /* Move a queue entry to the back of the queue, if it isn't already there. */ 5798 1.1 christos /* We use use ticks to calculate the expiration and mark for when we last */ 5799 1.1 christos /* touched the structure. */ 5800 1.1 christos /* ------------------------------------------------------------------------ */ 5801 1.1 christos void 5802 1.2 christos ipf_queueback(u_long ticks, ipftqent_t *tqe) 5803 1.1 christos { 5804 1.1 christos ipftq_t *ifq; 5805 1.1 christos 5806 1.1 christos ifq = tqe->tqe_ifq; 5807 1.1 christos if (ifq == NULL) 5808 1.1 christos return; 5809 1.1 christos tqe->tqe_die = ticks + ifq->ifq_ttl; 5810 1.1 christos tqe->tqe_touched = ticks; 5811 1.1 christos 5812 1.1 christos MUTEX_ENTER(&ifq->ifq_lock); 5813 1.1 christos if (tqe->tqe_next != NULL) { /* at the end already ? */ 5814 1.1 christos /* 5815 1.1 christos * Remove from list 5816 1.1 christos */ 5817 1.1 christos *tqe->tqe_pnext = tqe->tqe_next; 5818 1.1 christos tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5819 1.1 christos 5820 1.1 christos /* 5821 1.1 christos * Make it the last entry. 5822 1.1 christos */ 5823 1.1 christos tqe->tqe_next = NULL; 5824 1.1 christos tqe->tqe_pnext = ifq->ifq_tail; 5825 1.1 christos *ifq->ifq_tail = tqe; 5826 1.1 christos ifq->ifq_tail = &tqe->tqe_next; 5827 1.1 christos } 5828 1.1 christos MUTEX_EXIT(&ifq->ifq_lock); 5829 1.1 christos } 5830 1.1 christos 5831 1.1 christos 5832 1.1 christos /* ------------------------------------------------------------------------ */ 5833 1.1 christos /* Function: ipf_queueappend */ 5834 1.1 christos /* Returns: Nil */ 5835 1.1 christos /* Parameters: ticks(I) - ipf tick time to use with this call */ 5836 1.1 christos /* tqe(I) - pointer to timeout queue entry */ 5837 1.1 christos /* ifq(I) - pointer to timeout queue */ 5838 1.1 christos /* parent(I) - owing object pointer */ 5839 1.1 christos /* */ 5840 1.1 christos /* Add a new item to this queue and put it on the very end. */ 5841 1.1 christos /* We use use ticks to calculate the expiration and mark for when we last */ 5842 1.1 christos /* touched the structure. */ 5843 1.1 christos /* ------------------------------------------------------------------------ */ 5844 1.1 christos void 5845 1.2 christos ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent) 5846 1.1 christos { 5847 1.1 christos 5848 1.1 christos MUTEX_ENTER(&ifq->ifq_lock); 5849 1.1 christos tqe->tqe_parent = parent; 5850 1.1 christos tqe->tqe_pnext = ifq->ifq_tail; 5851 1.1 christos *ifq->ifq_tail = tqe; 5852 1.1 christos ifq->ifq_tail = &tqe->tqe_next; 5853 1.1 christos tqe->tqe_next = NULL; 5854 1.1 christos tqe->tqe_ifq = ifq; 5855 1.1 christos tqe->tqe_die = ticks + ifq->ifq_ttl; 5856 1.1 christos tqe->tqe_touched = ticks; 5857 1.1 christos ifq->ifq_ref++; 5858 1.1 christos MUTEX_EXIT(&ifq->ifq_lock); 5859 1.1 christos } 5860 1.1 christos 5861 1.1 christos 5862 1.1 christos /* ------------------------------------------------------------------------ */ 5863 1.1 christos /* Function: ipf_movequeue */ 5864 1.1 christos /* Returns: Nil */ 5865 1.1 christos /* Parameters: tq(I) - pointer to timeout queue information */ 5866 1.1 christos /* oifp(I) - old timeout queue entry was on */ 5867 1.1 christos /* nifp(I) - new timeout queue to put entry on */ 5868 1.1 christos /* */ 5869 1.1 christos /* Move a queue entry from one timeout queue to another timeout queue. */ 5870 1.1 christos /* If it notices that the current entry is already last and does not need */ 5871 1.1 christos /* to move queue, the return. */ 5872 1.1 christos /* ------------------------------------------------------------------------ */ 5873 1.1 christos void 5874 1.2 christos ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq) 5875 1.1 christos { 5876 1.1 christos 5877 1.1 christos /* 5878 1.1 christos * If the queue hasn't changed and we last touched this entry at the 5879 1.1 christos * same ipf time, then we're not going to achieve anything by either 5880 1.1 christos * changing the ttl or moving it on the queue. 5881 1.1 christos */ 5882 1.1 christos if (oifq == nifq && tqe->tqe_touched == ticks) 5883 1.1 christos return; 5884 1.1 christos 5885 1.1 christos /* 5886 1.1 christos * For any of this to be outside the lock, there is a risk that two 5887 1.1 christos * packets entering simultaneously, with one changing to a different 5888 1.1 christos * queue and one not, could end up with things in a bizarre state. 5889 1.1 christos */ 5890 1.1 christos MUTEX_ENTER(&oifq->ifq_lock); 5891 1.1 christos 5892 1.1 christos tqe->tqe_touched = ticks; 5893 1.1 christos tqe->tqe_die = ticks + nifq->ifq_ttl; 5894 1.1 christos /* 5895 1.1 christos * Is the operation here going to be a no-op ? 5896 1.1 christos */ 5897 1.1 christos if (oifq == nifq) { 5898 1.1 christos if ((tqe->tqe_next == NULL) || 5899 1.1 christos (tqe->tqe_next->tqe_die == tqe->tqe_die)) { 5900 1.1 christos MUTEX_EXIT(&oifq->ifq_lock); 5901 1.1 christos return; 5902 1.1 christos } 5903 1.1 christos } 5904 1.1 christos 5905 1.1 christos /* 5906 1.1 christos * Remove from the old queue 5907 1.1 christos */ 5908 1.1 christos *tqe->tqe_pnext = tqe->tqe_next; 5909 1.1 christos if (tqe->tqe_next) 5910 1.1 christos tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5911 1.1 christos else 5912 1.1 christos oifq->ifq_tail = tqe->tqe_pnext; 5913 1.1 christos tqe->tqe_next = NULL; 5914 1.1 christos 5915 1.1 christos /* 5916 1.1 christos * If we're moving from one queue to another, release the 5917 1.1 christos * lock on the old queue and get a lock on the new queue. 5918 1.1 christos * For user defined queues, if we're moving off it, call 5919 1.1 christos * delete in case it can now be freed. 5920 1.1 christos */ 5921 1.1 christos if (oifq != nifq) { 5922 1.1 christos tqe->tqe_ifq = NULL; 5923 1.1 christos 5924 1.1 christos (void) ipf_deletetimeoutqueue(oifq); 5925 1.1 christos 5926 1.1 christos MUTEX_EXIT(&oifq->ifq_lock); 5927 1.1 christos 5928 1.1 christos MUTEX_ENTER(&nifq->ifq_lock); 5929 1.1 christos 5930 1.1 christos tqe->tqe_ifq = nifq; 5931 1.1 christos nifq->ifq_ref++; 5932 1.1 christos } 5933 1.1 christos 5934 1.1 christos /* 5935 1.1 christos * Add to the bottom of the new queue 5936 1.1 christos */ 5937 1.1 christos tqe->tqe_pnext = nifq->ifq_tail; 5938 1.1 christos *nifq->ifq_tail = tqe; 5939 1.1 christos nifq->ifq_tail = &tqe->tqe_next; 5940 1.1 christos MUTEX_EXIT(&nifq->ifq_lock); 5941 1.1 christos } 5942 1.1 christos 5943 1.1 christos 5944 1.1 christos /* ------------------------------------------------------------------------ */ 5945 1.1 christos /* Function: ipf_updateipid */ 5946 1.37 msaitoh /* Returns: int - 0 == success, -1 == error (packet should be dropped) */ 5947 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 5948 1.1 christos /* */ 5949 1.1 christos /* When we are doing NAT, change the IP of every packet to represent a */ 5950 1.1 christos /* single sequence of packets coming from the host, hiding any host */ 5951 1.1 christos /* specific sequencing that might otherwise be revealed. If the packet is */ 5952 1.1 christos /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5953 1.1 christos /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5954 1.1 christos /* has no match in the cache, return an error. */ 5955 1.1 christos /* ------------------------------------------------------------------------ */ 5956 1.1 christos static int 5957 1.2 christos ipf_updateipid(fr_info_t *fin) 5958 1.1 christos { 5959 1.1 christos u_short id, ido, sums; 5960 1.1 christos u_32_t sumd, sum; 5961 1.1 christos ip_t *ip; 5962 1.1 christos 5963 1.1 christos if (fin->fin_off != 0) { 5964 1.1 christos sum = ipf_frag_ipidknown(fin); 5965 1.1 christos if (sum == 0xffffffff) 5966 1.1 christos return -1; 5967 1.1 christos sum &= 0xffff; 5968 1.1 christos id = (u_short)sum; 5969 1.1 christos } else { 5970 1.1 christos id = ipf_nextipid(fin); 5971 1.1 christos if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5972 1.1 christos (void) ipf_frag_ipidnew(fin, (u_32_t)id); 5973 1.1 christos } 5974 1.1 christos 5975 1.1 christos ip = fin->fin_ip; 5976 1.1 christos ido = ntohs(ip->ip_id); 5977 1.1 christos if (id == ido) 5978 1.1 christos return 0; 5979 1.1 christos ip->ip_id = htons(id); 5980 1.1 christos CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5981 1.1 christos sum = (~ntohs(ip->ip_sum)) & 0xffff; 5982 1.1 christos sum += sumd; 5983 1.1 christos sum = (sum >> 16) + (sum & 0xffff); 5984 1.1 christos sum = (sum >> 16) + (sum & 0xffff); 5985 1.1 christos sums = ~(u_short)sum; 5986 1.1 christos ip->ip_sum = htons(sums); 5987 1.1 christos return 0; 5988 1.1 christos } 5989 1.1 christos 5990 1.1 christos 5991 1.1 christos #ifdef NEED_FRGETIFNAME 5992 1.1 christos /* ------------------------------------------------------------------------ */ 5993 1.1 christos /* Function: ipf_getifname */ 5994 1.1 christos /* Returns: char * - pointer to interface name */ 5995 1.1 christos /* Parameters: ifp(I) - pointer to network interface */ 5996 1.1 christos /* buffer(O) - pointer to where to store interface name */ 5997 1.1 christos /* */ 5998 1.1 christos /* Constructs an interface name in the buffer passed. The buffer passed is */ 5999 1.1 christos /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 6000 1.1 christos /* as a NULL pointer then return a pointer to a static array. */ 6001 1.1 christos /* ------------------------------------------------------------------------ */ 6002 1.1 christos char * 6003 1.1 christos ipf_getifname(ifp, buffer) 6004 1.1 christos struct ifnet *ifp; 6005 1.1 christos char *buffer; 6006 1.1 christos { 6007 1.1 christos static char namebuf[LIFNAMSIZ]; 6008 1.1 christos # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 6009 1.1 christos defined(__sgi) || defined(linux) || defined(_AIX51) || \ 6010 1.1 christos (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 6011 1.1 christos int unit, space; 6012 1.1 christos char temp[20]; 6013 1.1 christos char *s; 6014 1.1 christos # endif 6015 1.1 christos 6016 1.1 christos if (buffer == NULL) 6017 1.1 christos buffer = namebuf; 6018 1.1 christos (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 6019 1.1 christos buffer[LIFNAMSIZ - 1] = '\0'; 6020 1.1 christos # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 6021 1.1 christos defined(__sgi) || defined(_AIX51) || \ 6022 1.1 christos (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 6023 1.1 christos for (s = buffer; *s; s++) 6024 1.1 christos ; 6025 1.1 christos unit = ifp->if_unit; 6026 1.1 christos space = LIFNAMSIZ - (s - buffer); 6027 1.1 christos if ((space > 0) && (unit >= 0)) { 6028 1.14 christos snprintf(temp, sizeof(temp), "%d", unit); 6029 1.1 christos (void) strncpy(s, temp, space); 6030 1.14 christos s[space - 1] = '\0'; 6031 1.1 christos } 6032 1.1 christos # endif 6033 1.1 christos return buffer; 6034 1.1 christos } 6035 1.1 christos #endif 6036 1.1 christos 6037 1.1 christos 6038 1.1 christos /* ------------------------------------------------------------------------ */ 6039 1.1 christos /* Function: ipf_ioctlswitch */ 6040 1.1 christos /* Returns: int - -1 continue processing, else ioctl return value */ 6041 1.1 christos /* Parameters: unit(I) - device unit opened */ 6042 1.1 christos /* data(I) - pointer to ioctl data */ 6043 1.1 christos /* cmd(I) - ioctl command */ 6044 1.1 christos /* mode(I) - mode value */ 6045 1.1 christos /* uid(I) - uid making the ioctl call */ 6046 1.1 christos /* ctx(I) - pointer to context data */ 6047 1.1 christos /* */ 6048 1.1 christos /* Based on the value of unit, call the appropriate ioctl handler or return */ 6049 1.1 christos /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 6050 1.1 christos /* for the device in order to execute the ioctl. A special case is made */ 6051 1.1 christos /* SIOCIPFINTERROR so that the same code isn't required in every handler. */ 6052 1.3 darrenr /* The context data pointer is passed through as this is used as the key */ 6053 1.3 darrenr /* for locating a matching token for continued access for walking lists, */ 6054 1.3 darrenr /* etc. */ 6055 1.1 christos /* ------------------------------------------------------------------------ */ 6056 1.1 christos int 6057 1.2 christos ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd, 6058 1.2 christos int mode, int uid, void *ctx) 6059 1.1 christos { 6060 1.1 christos int error = 0; 6061 1.1 christos 6062 1.1 christos switch (cmd) 6063 1.1 christos { 6064 1.1 christos case SIOCIPFINTERROR : 6065 1.1 christos error = BCOPYOUT(&softc->ipf_interror, data, 6066 1.1 christos sizeof(softc->ipf_interror)); 6067 1.1 christos if (error != 0) { 6068 1.1 christos IPFERROR(40); 6069 1.1 christos error = EFAULT; 6070 1.1 christos } 6071 1.1 christos return error; 6072 1.1 christos default : 6073 1.1 christos break; 6074 1.1 christos } 6075 1.1 christos 6076 1.1 christos switch (unit) 6077 1.1 christos { 6078 1.1 christos case IPL_LOGIPF : 6079 1.1 christos error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx); 6080 1.1 christos break; 6081 1.1 christos case IPL_LOGNAT : 6082 1.1 christos if (softc->ipf_running > 0) { 6083 1.1 christos error = ipf_nat_ioctl(softc, data, cmd, mode, 6084 1.1 christos uid, ctx); 6085 1.1 christos } else { 6086 1.1 christos IPFERROR(42); 6087 1.1 christos error = EIO; 6088 1.1 christos } 6089 1.1 christos break; 6090 1.1 christos case IPL_LOGSTATE : 6091 1.1 christos if (softc->ipf_running > 0) { 6092 1.1 christos error = ipf_state_ioctl(softc, data, cmd, mode, 6093 1.1 christos uid, ctx); 6094 1.1 christos } else { 6095 1.1 christos IPFERROR(43); 6096 1.1 christos error = EIO; 6097 1.1 christos } 6098 1.1 christos break; 6099 1.1 christos case IPL_LOGAUTH : 6100 1.1 christos if (softc->ipf_running > 0) { 6101 1.1 christos error = ipf_auth_ioctl(softc, data, cmd, mode, 6102 1.1 christos uid, ctx); 6103 1.1 christos } else { 6104 1.1 christos IPFERROR(44); 6105 1.1 christos error = EIO; 6106 1.1 christos } 6107 1.1 christos break; 6108 1.1 christos case IPL_LOGSYNC : 6109 1.1 christos if (softc->ipf_running > 0) { 6110 1.1 christos error = ipf_sync_ioctl(softc, data, cmd, mode, 6111 1.1 christos uid, ctx); 6112 1.1 christos } else { 6113 1.1 christos error = EIO; 6114 1.1 christos IPFERROR(45); 6115 1.1 christos } 6116 1.1 christos break; 6117 1.1 christos case IPL_LOGSCAN : 6118 1.1 christos #ifdef IPFILTER_SCAN 6119 1.1 christos if (softc->ipf_running > 0) 6120 1.1 christos error = ipf_scan_ioctl(softc, data, cmd, mode, 6121 1.1 christos uid, ctx); 6122 1.1 christos else 6123 1.1 christos #endif 6124 1.1 christos { 6125 1.1 christos error = EIO; 6126 1.1 christos IPFERROR(46); 6127 1.1 christos } 6128 1.1 christos break; 6129 1.1 christos case IPL_LOGLOOKUP : 6130 1.1 christos if (softc->ipf_running > 0) { 6131 1.1 christos error = ipf_lookup_ioctl(softc, data, cmd, mode, 6132 1.1 christos uid, ctx); 6133 1.1 christos } else { 6134 1.1 christos error = EIO; 6135 1.1 christos IPFERROR(47); 6136 1.1 christos } 6137 1.1 christos break; 6138 1.1 christos default : 6139 1.1 christos IPFERROR(48); 6140 1.1 christos error = EIO; 6141 1.1 christos break; 6142 1.1 christos } 6143 1.1 christos 6144 1.1 christos return error; 6145 1.1 christos } 6146 1.1 christos 6147 1.1 christos 6148 1.1 christos /* 6149 1.1 christos * This array defines the expected size of objects coming into the kernel 6150 1.1 christos * for the various recognised object types. The first column is flags (see 6151 1.1 christos * below), 2nd column is current size, 3rd column is the version number of 6152 1.1 christos * when the current size became current. 6153 1.1 christos * Flags: 6154 1.1 christos * 1 = minimum size, not absolute size 6155 1.1 christos */ 6156 1.1 christos static int ipf_objbytes[IPFOBJ_COUNT][3] = { 6157 1.3 darrenr { 1, sizeof(struct frentry), 5010000 }, /* 0 */ 6158 1.1 christos { 1, sizeof(struct friostat), 5010000 }, 6159 1.1 christos { 0, sizeof(struct fr_info), 5010000 }, 6160 1.1 christos { 0, sizeof(struct ipf_authstat), 4010100 }, 6161 1.1 christos { 0, sizeof(struct ipfrstat), 5010000 }, 6162 1.3 darrenr { 1, sizeof(struct ipnat), 5010000 }, /* 5 */ 6163 1.1 christos { 0, sizeof(struct natstat), 5010000 }, 6164 1.1 christos { 0, sizeof(struct ipstate_save), 5010000 }, 6165 1.1 christos { 1, sizeof(struct nat_save), 5010000 }, 6166 1.1 christos { 0, sizeof(struct natlookup), 5010000 }, 6167 1.3 darrenr { 1, sizeof(struct ipstate), 5010000 }, /* 10 */ 6168 1.1 christos { 0, sizeof(struct ips_stat), 5010000 }, 6169 1.1 christos { 0, sizeof(struct frauth), 5010000 }, 6170 1.1 christos { 0, sizeof(struct ipftune), 4010100 }, 6171 1.1 christos { 0, sizeof(struct nat), 5010000 }, 6172 1.3 darrenr { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */ 6173 1.1 christos { 0, sizeof(struct ipfgeniter), 4011400 }, 6174 1.1 christos { 0, sizeof(struct ipftable), 4011400 }, 6175 1.1 christos { 0, sizeof(struct ipflookupiter), 4011400 }, 6176 1.1 christos { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES }, 6177 1.3 darrenr { 1, 0, 0 }, /* IPFEXPR */ 6178 1.1 christos { 0, 0, 0 }, /* PROXYCTL */ 6179 1.1 christos { 0, sizeof (struct fripf), 5010000 } 6180 1.1 christos }; 6181 1.1 christos 6182 1.1 christos 6183 1.1 christos /* ------------------------------------------------------------------------ */ 6184 1.1 christos /* Function: ipf_inobj */ 6185 1.1 christos /* Returns: int - 0 = success, else failure */ 6186 1.1 christos /* Parameters: softc(I) - soft context pointerto work with */ 6187 1.1 christos /* data(I) - pointer to ioctl data */ 6188 1.1 christos /* objp(O) - where to store ipfobj structure */ 6189 1.1 christos /* ptr(I) - pointer to data to copy out */ 6190 1.1 christos /* type(I) - type of structure being moved */ 6191 1.1 christos /* */ 6192 1.1 christos /* Copy in the contents of what the ipfobj_t points to. In future, we */ 6193 1.1 christos /* add things to check for version numbers, sizes, etc, to make it backward */ 6194 1.1 christos /* compatible at the ABI for user land. */ 6195 1.1 christos /* If objp is not NULL then we assume that the caller wants to see what is */ 6196 1.1 christos /* in the ipfobj_t structure being copied in. As an example, this can tell */ 6197 1.1 christos /* the caller what version of ipfilter the ioctl program was written to. */ 6198 1.1 christos /* ------------------------------------------------------------------------ */ 6199 1.1 christos int 6200 1.2 christos ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr, 6201 1.2 christos int type) 6202 1.1 christos { 6203 1.1 christos ipfobj_t obj; 6204 1.1 christos int error; 6205 1.1 christos int size; 6206 1.1 christos 6207 1.1 christos if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6208 1.1 christos IPFERROR(49); 6209 1.1 christos return EINVAL; 6210 1.1 christos } 6211 1.1 christos 6212 1.1 christos if (objp == NULL) 6213 1.1 christos objp = &obj; 6214 1.1 christos error = BCOPYIN(data, objp, sizeof(*objp)); 6215 1.1 christos if (error != 0) { 6216 1.1 christos IPFERROR(124); 6217 1.1 christos return EFAULT; 6218 1.1 christos } 6219 1.1 christos 6220 1.1 christos if (objp->ipfo_type != type) { 6221 1.1 christos IPFERROR(50); 6222 1.1 christos return EINVAL; 6223 1.1 christos } 6224 1.1 christos 6225 1.1 christos if (objp->ipfo_rev >= ipf_objbytes[type][2]) { 6226 1.1 christos if ((ipf_objbytes[type][0] & 1) != 0) { 6227 1.1 christos if (objp->ipfo_size < ipf_objbytes[type][1]) { 6228 1.1 christos IPFERROR(51); 6229 1.1 christos return EINVAL; 6230 1.1 christos } 6231 1.1 christos size = ipf_objbytes[type][1]; 6232 1.1 christos } else if (objp->ipfo_size == ipf_objbytes[type][1]) { 6233 1.1 christos size = objp->ipfo_size; 6234 1.1 christos } else { 6235 1.1 christos IPFERROR(52); 6236 1.1 christos return EINVAL; 6237 1.1 christos } 6238 1.1 christos error = COPYIN(objp->ipfo_ptr, ptr, size); 6239 1.1 christos if (error != 0) { 6240 1.1 christos IPFERROR(55); 6241 1.1 christos error = EFAULT; 6242 1.1 christos } 6243 1.1 christos } else { 6244 1.1 christos #ifdef IPFILTER_COMPAT 6245 1.1 christos error = ipf_in_compat(softc, objp, ptr, 0); 6246 1.1 christos #else 6247 1.1 christos IPFERROR(54); 6248 1.1 christos error = EINVAL; 6249 1.1 christos #endif 6250 1.1 christos } 6251 1.1 christos return error; 6252 1.1 christos } 6253 1.1 christos 6254 1.1 christos 6255 1.1 christos /* ------------------------------------------------------------------------ */ 6256 1.1 christos /* Function: ipf_inobjsz */ 6257 1.1 christos /* Returns: int - 0 = success, else failure */ 6258 1.1 christos /* Parameters: softc(I) - soft context pointerto work with */ 6259 1.1 christos /* data(I) - pointer to ioctl data */ 6260 1.1 christos /* ptr(I) - pointer to store real data in */ 6261 1.1 christos /* type(I) - type of structure being moved */ 6262 1.1 christos /* sz(I) - size of data to copy */ 6263 1.1 christos /* */ 6264 1.1 christos /* As per ipf_inobj, except the size of the object to copy in is passed in */ 6265 1.1 christos /* but it must not be smaller than the size defined for the type and the */ 6266 1.1 christos /* type must allow for varied sized objects. The extra requirement here is */ 6267 1.1 christos /* that sz must match the size of the object being passed in - this is not */ 6268 1.1 christos /* not possible nor required in ipf_inobj(). */ 6269 1.1 christos /* ------------------------------------------------------------------------ */ 6270 1.1 christos int 6271 1.2 christos ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz) 6272 1.1 christos { 6273 1.1 christos ipfobj_t obj; 6274 1.1 christos int error; 6275 1.1 christos 6276 1.1 christos if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6277 1.1 christos IPFERROR(56); 6278 1.1 christos return EINVAL; 6279 1.1 christos } 6280 1.1 christos 6281 1.1 christos error = BCOPYIN(data, &obj, sizeof(obj)); 6282 1.1 christos if (error != 0) { 6283 1.1 christos IPFERROR(125); 6284 1.1 christos return EFAULT; 6285 1.1 christos } 6286 1.1 christos 6287 1.1 christos if (obj.ipfo_type != type) { 6288 1.1 christos IPFERROR(58); 6289 1.1 christos return EINVAL; 6290 1.1 christos } 6291 1.1 christos 6292 1.1 christos if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6293 1.1 christos if (((ipf_objbytes[type][0] & 1) == 0) || 6294 1.1 christos (sz < ipf_objbytes[type][1])) { 6295 1.1 christos IPFERROR(57); 6296 1.1 christos return EINVAL; 6297 1.1 christos } 6298 1.1 christos error = COPYIN(obj.ipfo_ptr, ptr, sz); 6299 1.1 christos if (error != 0) { 6300 1.1 christos IPFERROR(61); 6301 1.1 christos error = EFAULT; 6302 1.1 christos } 6303 1.1 christos } else { 6304 1.1 christos #ifdef IPFILTER_COMPAT 6305 1.1 christos error = ipf_in_compat(softc, &obj, ptr, sz); 6306 1.1 christos #else 6307 1.1 christos IPFERROR(60); 6308 1.1 christos error = EINVAL; 6309 1.1 christos #endif 6310 1.1 christos } 6311 1.1 christos return error; 6312 1.1 christos } 6313 1.1 christos 6314 1.1 christos 6315 1.1 christos /* ------------------------------------------------------------------------ */ 6316 1.1 christos /* Function: ipf_outobjsz */ 6317 1.1 christos /* Returns: int - 0 = success, else failure */ 6318 1.1 christos /* Parameters: data(I) - pointer to ioctl data */ 6319 1.1 christos /* ptr(I) - pointer to store real data in */ 6320 1.1 christos /* type(I) - type of structure being moved */ 6321 1.1 christos /* sz(I) - size of data to copy */ 6322 1.1 christos /* */ 6323 1.1 christos /* As per ipf_outobj, except the size of the object to copy out is passed in*/ 6324 1.1 christos /* but it must not be smaller than the size defined for the type and the */ 6325 1.1 christos /* type must allow for varied sized objects. The extra requirement here is */ 6326 1.1 christos /* that sz must match the size of the object being passed in - this is not */ 6327 1.1 christos /* not possible nor required in ipf_outobj(). */ 6328 1.1 christos /* ------------------------------------------------------------------------ */ 6329 1.1 christos int 6330 1.2 christos ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz) 6331 1.1 christos { 6332 1.1 christos ipfobj_t obj; 6333 1.1 christos int error; 6334 1.1 christos 6335 1.1 christos if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6336 1.1 christos IPFERROR(62); 6337 1.1 christos return EINVAL; 6338 1.1 christos } 6339 1.1 christos 6340 1.1 christos error = BCOPYIN(data, &obj, sizeof(obj)); 6341 1.1 christos if (error != 0) { 6342 1.1 christos IPFERROR(127); 6343 1.1 christos return EFAULT; 6344 1.1 christos } 6345 1.1 christos 6346 1.1 christos if (obj.ipfo_type != type) { 6347 1.1 christos IPFERROR(63); 6348 1.1 christos return EINVAL; 6349 1.1 christos } 6350 1.1 christos 6351 1.1 christos if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6352 1.1 christos if (((ipf_objbytes[type][0] & 1) == 0) || 6353 1.1 christos (sz < ipf_objbytes[type][1])) { 6354 1.1 christos IPFERROR(146); 6355 1.1 christos return EINVAL; 6356 1.1 christos } 6357 1.1 christos error = COPYOUT(ptr, obj.ipfo_ptr, sz); 6358 1.1 christos if (error != 0) { 6359 1.1 christos IPFERROR(66); 6360 1.1 christos error = EFAULT; 6361 1.1 christos } 6362 1.1 christos } else { 6363 1.1 christos #ifdef IPFILTER_COMPAT 6364 1.1 christos error = ipf_out_compat(softc, &obj, ptr); 6365 1.1 christos #else 6366 1.1 christos IPFERROR(65); 6367 1.1 christos error = EINVAL; 6368 1.1 christos #endif 6369 1.1 christos } 6370 1.1 christos return error; 6371 1.1 christos } 6372 1.1 christos 6373 1.1 christos 6374 1.1 christos /* ------------------------------------------------------------------------ */ 6375 1.1 christos /* Function: ipf_outobj */ 6376 1.1 christos /* Returns: int - 0 = success, else failure */ 6377 1.1 christos /* Parameters: data(I) - pointer to ioctl data */ 6378 1.1 christos /* ptr(I) - pointer to store real data in */ 6379 1.1 christos /* type(I) - type of structure being moved */ 6380 1.1 christos /* */ 6381 1.1 christos /* Copy out the contents of what ptr is to where ipfobj points to. In */ 6382 1.1 christos /* future, we add things to check for version numbers, sizes, etc, to make */ 6383 1.1 christos /* it backward compatible at the ABI for user land. */ 6384 1.1 christos /* ------------------------------------------------------------------------ */ 6385 1.1 christos int 6386 1.2 christos ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type) 6387 1.1 christos { 6388 1.1 christos ipfobj_t obj; 6389 1.1 christos int error; 6390 1.1 christos 6391 1.1 christos if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6392 1.1 christos IPFERROR(67); 6393 1.1 christos return EINVAL; 6394 1.1 christos } 6395 1.1 christos 6396 1.1 christos error = BCOPYIN(data, &obj, sizeof(obj)); 6397 1.1 christos if (error != 0) { 6398 1.1 christos IPFERROR(126); 6399 1.1 christos return EFAULT; 6400 1.1 christos } 6401 1.1 christos 6402 1.1 christos if (obj.ipfo_type != type) { 6403 1.1 christos IPFERROR(68); 6404 1.1 christos return EINVAL; 6405 1.1 christos } 6406 1.1 christos 6407 1.1 christos if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6408 1.1 christos if ((ipf_objbytes[type][0] & 1) != 0) { 6409 1.1 christos if (obj.ipfo_size < ipf_objbytes[type][1]) { 6410 1.1 christos IPFERROR(69); 6411 1.1 christos return EINVAL; 6412 1.1 christos } 6413 1.1 christos } else if (obj.ipfo_size != ipf_objbytes[type][1]) { 6414 1.1 christos IPFERROR(70); 6415 1.1 christos return EINVAL; 6416 1.1 christos } 6417 1.1 christos 6418 1.1 christos error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size); 6419 1.1 christos if (error != 0) { 6420 1.1 christos IPFERROR(73); 6421 1.1 christos error = EFAULT; 6422 1.1 christos } 6423 1.1 christos } else { 6424 1.1 christos #ifdef IPFILTER_COMPAT 6425 1.1 christos error = ipf_out_compat(softc, &obj, ptr); 6426 1.1 christos #else 6427 1.1 christos IPFERROR(72); 6428 1.1 christos error = EINVAL; 6429 1.1 christos #endif 6430 1.1 christos } 6431 1.1 christos return error; 6432 1.1 christos } 6433 1.1 christos 6434 1.1 christos 6435 1.1 christos /* ------------------------------------------------------------------------ */ 6436 1.1 christos /* Function: ipf_outobjk */ 6437 1.1 christos /* Returns: int - 0 = success, else failure */ 6438 1.1 christos /* Parameters: obj(I) - pointer to data description structure */ 6439 1.1 christos /* ptr(I) - pointer to kernel data to copy out */ 6440 1.1 christos /* */ 6441 1.1 christos /* In the above functions, the ipfobj_t structure is copied into the kernel,*/ 6442 1.1 christos /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */ 6443 1.1 christos /* already populated with information and now we just need to use it. */ 6444 1.1 christos /* There is no need for this function to have a "type" parameter as there */ 6445 1.1 christos /* is no point in validating information that comes from the kernel with */ 6446 1.1 christos /* itself. */ 6447 1.1 christos /* ------------------------------------------------------------------------ */ 6448 1.3 darrenr int 6449 1.3 darrenr ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr) 6450 1.1 christos { 6451 1.1 christos int type = obj->ipfo_type; 6452 1.1 christos int error; 6453 1.1 christos 6454 1.1 christos if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6455 1.1 christos IPFERROR(147); 6456 1.1 christos return EINVAL; 6457 1.1 christos } 6458 1.1 christos 6459 1.1 christos if (obj->ipfo_rev >= ipf_objbytes[type][2]) { 6460 1.1 christos if ((ipf_objbytes[type][0] & 1) != 0) { 6461 1.1 christos if (obj->ipfo_size < ipf_objbytes[type][1]) { 6462 1.1 christos IPFERROR(148); 6463 1.1 christos return EINVAL; 6464 1.1 christos } 6465 1.1 christos 6466 1.1 christos } else if (obj->ipfo_size != ipf_objbytes[type][1]) { 6467 1.1 christos IPFERROR(149); 6468 1.1 christos return EINVAL; 6469 1.1 christos } 6470 1.1 christos 6471 1.1 christos error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size); 6472 1.1 christos if (error != 0) { 6473 1.1 christos IPFERROR(150); 6474 1.1 christos error = EFAULT; 6475 1.1 christos } 6476 1.1 christos } else { 6477 1.1 christos #ifdef IPFILTER_COMPAT 6478 1.1 christos error = ipf_out_compat(softc, obj, ptr); 6479 1.1 christos #else 6480 1.1 christos IPFERROR(151); 6481 1.1 christos error = EINVAL; 6482 1.1 christos #endif 6483 1.1 christos } 6484 1.1 christos return error; 6485 1.1 christos } 6486 1.1 christos 6487 1.1 christos 6488 1.1 christos /* ------------------------------------------------------------------------ */ 6489 1.1 christos /* Function: ipf_checkl4sum */ 6490 1.1 christos /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 6491 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 6492 1.1 christos /* */ 6493 1.1 christos /* If possible, calculate the layer 4 checksum for the packet. If this is */ 6494 1.1 christos /* not possible, return without indicating a failure or success but in a */ 6495 1.3 darrenr /* way that is ditinguishable. This function should only be called by the */ 6496 1.3 darrenr /* ipf_checkv6sum() for each platform. */ 6497 1.1 christos /* ------------------------------------------------------------------------ */ 6498 1.1 christos int 6499 1.2 christos ipf_checkl4sum(fr_info_t *fin) 6500 1.1 christos { 6501 1.1 christos u_short sum, hdrsum, *csump; 6502 1.1 christos udphdr_t *udp; 6503 1.1 christos int dosum; 6504 1.1 christos 6505 1.1 christos /* 6506 1.1 christos * If the TCP packet isn't a fragment, isn't too short and otherwise 6507 1.1 christos * isn't already considered "bad", then validate the checksum. If 6508 1.1 christos * this check fails then considered the packet to be "bad". 6509 1.1 christos */ 6510 1.1 christos if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 6511 1.1 christos return 1; 6512 1.1 christos 6513 1.1 christos csump = NULL; 6514 1.1 christos hdrsum = 0; 6515 1.1 christos dosum = 0; 6516 1.1 christos sum = 0; 6517 1.1 christos 6518 1.3 darrenr switch (fin->fin_p) 6519 1.3 darrenr { 6520 1.3 darrenr case IPPROTO_TCP : 6521 1.3 darrenr csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 6522 1.3 darrenr dosum = 1; 6523 1.3 darrenr break; 6524 1.3 darrenr 6525 1.3 darrenr case IPPROTO_UDP : 6526 1.3 darrenr udp = fin->fin_dp; 6527 1.3 darrenr if (udp->uh_sum != 0) { 6528 1.3 darrenr csump = &udp->uh_sum; 6529 1.1 christos dosum = 1; 6530 1.3 darrenr } 6531 1.3 darrenr break; 6532 1.1 christos 6533 1.3 darrenr #ifdef USE_INET6 6534 1.3 darrenr case IPPROTO_ICMPV6 : 6535 1.3 darrenr csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum; 6536 1.3 darrenr dosum = 1; 6537 1.3 darrenr break; 6538 1.3 darrenr #endif 6539 1.1 christos 6540 1.3 darrenr case IPPROTO_ICMP : 6541 1.3 darrenr csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 6542 1.3 darrenr dosum = 1; 6543 1.3 darrenr break; 6544 1.1 christos 6545 1.3 darrenr default : 6546 1.3 darrenr return 1; 6547 1.3 darrenr /*NOTREACHED*/ 6548 1.3 darrenr } 6549 1.1 christos 6550 1.30 christos if (csump != NULL) { 6551 1.3 darrenr hdrsum = *csump; 6552 1.30 christos if (fin->fin_p == IPPROTO_UDP && hdrsum == 0xffff) 6553 1.30 christos hdrsum = 0x0000; 6554 1.30 christos } 6555 1.1 christos 6556 1.3 darrenr if (dosum) { 6557 1.3 darrenr sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp); 6558 1.1 christos } 6559 1.1 christos #if !defined(_KERNEL) 6560 1.1 christos if (sum == hdrsum) { 6561 1.1 christos FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 6562 1.1 christos } else { 6563 1.1 christos FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 6564 1.1 christos } 6565 1.1 christos #endif 6566 1.3 darrenr DT2(l4sums, u_short, hdrsum, u_short, sum); 6567 1.1 christos if (hdrsum == sum) { 6568 1.3 darrenr fin->fin_cksum = FI_CK_SUMOK; 6569 1.1 christos return 0; 6570 1.1 christos } 6571 1.3 darrenr fin->fin_cksum = FI_CK_BAD; 6572 1.1 christos return -1; 6573 1.1 christos } 6574 1.1 christos 6575 1.1 christos 6576 1.1 christos /* ------------------------------------------------------------------------ */ 6577 1.1 christos /* Function: ipf_ifpfillv4addr */ 6578 1.1 christos /* Returns: int - 0 = address update, -1 = address not updated */ 6579 1.1 christos /* Parameters: atype(I) - type of network address update to perform */ 6580 1.1 christos /* sin(I) - pointer to source of address information */ 6581 1.1 christos /* mask(I) - pointer to source of netmask information */ 6582 1.1 christos /* inp(I) - pointer to destination address store */ 6583 1.1 christos /* inpmask(I) - pointer to destination netmask store */ 6584 1.1 christos /* */ 6585 1.1 christos /* Given a type of network address update (atype) to perform, copy */ 6586 1.1 christos /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6587 1.1 christos /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6588 1.1 christos /* which case the operation fails. For all values of atype other than */ 6589 1.1 christos /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6590 1.1 christos /* value. */ 6591 1.1 christos /* ------------------------------------------------------------------------ */ 6592 1.1 christos int 6593 1.2 christos ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask, 6594 1.2 christos struct in_addr *inp, struct in_addr *inpmask) 6595 1.1 christos { 6596 1.1 christos if (inpmask != NULL && atype != FRI_NETMASKED) 6597 1.1 christos inpmask->s_addr = 0xffffffff; 6598 1.1 christos 6599 1.1 christos if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6600 1.1 christos if (atype == FRI_NETMASKED) { 6601 1.1 christos if (inpmask == NULL) 6602 1.1 christos return -1; 6603 1.1 christos inpmask->s_addr = mask->sin_addr.s_addr; 6604 1.1 christos } 6605 1.1 christos inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 6606 1.1 christos } else { 6607 1.1 christos inp->s_addr = sin->sin_addr.s_addr; 6608 1.1 christos } 6609 1.1 christos return 0; 6610 1.1 christos } 6611 1.1 christos 6612 1.1 christos 6613 1.1 christos #ifdef USE_INET6 6614 1.1 christos /* ------------------------------------------------------------------------ */ 6615 1.1 christos /* Function: ipf_ifpfillv6addr */ 6616 1.1 christos /* Returns: int - 0 = address update, -1 = address not updated */ 6617 1.1 christos /* Parameters: atype(I) - type of network address update to perform */ 6618 1.1 christos /* sin(I) - pointer to source of address information */ 6619 1.1 christos /* mask(I) - pointer to source of netmask information */ 6620 1.1 christos /* inp(I) - pointer to destination address store */ 6621 1.1 christos /* inpmask(I) - pointer to destination netmask store */ 6622 1.1 christos /* */ 6623 1.1 christos /* Given a type of network address update (atype) to perform, copy */ 6624 1.1 christos /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6625 1.1 christos /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6626 1.1 christos /* which case the operation fails. For all values of atype other than */ 6627 1.1 christos /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6628 1.1 christos /* value. */ 6629 1.1 christos /* ------------------------------------------------------------------------ */ 6630 1.1 christos int 6631 1.2 christos ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin, 6632 1.2 christos struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask) 6633 1.1 christos { 6634 1.1 christos i6addr_t *src, *and; 6635 1.1 christos 6636 1.1 christos src = (i6addr_t *)&sin->sin6_addr; 6637 1.1 christos and = (i6addr_t *)&mask->sin6_addr; 6638 1.1 christos 6639 1.1 christos if (inpmask != NULL && atype != FRI_NETMASKED) { 6640 1.1 christos inpmask->i6[0] = 0xffffffff; 6641 1.1 christos inpmask->i6[1] = 0xffffffff; 6642 1.1 christos inpmask->i6[2] = 0xffffffff; 6643 1.1 christos inpmask->i6[3] = 0xffffffff; 6644 1.1 christos } 6645 1.1 christos 6646 1.1 christos if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6647 1.1 christos if (atype == FRI_NETMASKED) { 6648 1.1 christos if (inpmask == NULL) 6649 1.1 christos return -1; 6650 1.1 christos inpmask->i6[0] = and->i6[0]; 6651 1.1 christos inpmask->i6[1] = and->i6[1]; 6652 1.1 christos inpmask->i6[2] = and->i6[2]; 6653 1.1 christos inpmask->i6[3] = and->i6[3]; 6654 1.1 christos } 6655 1.1 christos 6656 1.1 christos inp->i6[0] = src->i6[0] & and->i6[0]; 6657 1.1 christos inp->i6[1] = src->i6[1] & and->i6[1]; 6658 1.1 christos inp->i6[2] = src->i6[2] & and->i6[2]; 6659 1.1 christos inp->i6[3] = src->i6[3] & and->i6[3]; 6660 1.1 christos } else { 6661 1.1 christos inp->i6[0] = src->i6[0]; 6662 1.1 christos inp->i6[1] = src->i6[1]; 6663 1.1 christos inp->i6[2] = src->i6[2]; 6664 1.1 christos inp->i6[3] = src->i6[3]; 6665 1.1 christos } 6666 1.1 christos return 0; 6667 1.1 christos } 6668 1.1 christos #endif 6669 1.1 christos 6670 1.1 christos 6671 1.1 christos /* ------------------------------------------------------------------------ */ 6672 1.1 christos /* Function: ipf_matchtag */ 6673 1.1 christos /* Returns: 0 == mismatch, 1 == match. */ 6674 1.1 christos /* Parameters: tag1(I) - pointer to first tag to compare */ 6675 1.1 christos /* tag2(I) - pointer to second tag to compare */ 6676 1.1 christos /* */ 6677 1.1 christos /* Returns true (non-zero) or false(0) if the two tag structures can be */ 6678 1.1 christos /* considered to be a match or not match, respectively. The tag is 16 */ 6679 1.1 christos /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 6680 1.1 christos /* compare the ints instead, for speed. tag1 is the master of the */ 6681 1.1 christos /* comparison. This function should only be called with both tag1 and tag2 */ 6682 1.1 christos /* as non-NULL pointers. */ 6683 1.1 christos /* ------------------------------------------------------------------------ */ 6684 1.1 christos int 6685 1.2 christos ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2) 6686 1.1 christos { 6687 1.1 christos if (tag1 == tag2) 6688 1.1 christos return 1; 6689 1.1 christos 6690 1.1 christos if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 6691 1.1 christos return 1; 6692 1.1 christos 6693 1.1 christos if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 6694 1.1 christos (tag1->ipt_num[1] == tag2->ipt_num[1]) && 6695 1.1 christos (tag1->ipt_num[2] == tag2->ipt_num[2]) && 6696 1.1 christos (tag1->ipt_num[3] == tag2->ipt_num[3])) 6697 1.1 christos return 1; 6698 1.1 christos return 0; 6699 1.1 christos } 6700 1.1 christos 6701 1.1 christos 6702 1.1 christos /* ------------------------------------------------------------------------ */ 6703 1.1 christos /* Function: ipf_coalesce */ 6704 1.1 christos /* Returns: 1 == success, -1 == failure, 0 == no change */ 6705 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 6706 1.1 christos /* */ 6707 1.1 christos /* Attempt to get all of the packet data into a single, contiguous buffer. */ 6708 1.1 christos /* If this call returns a failure then the buffers have also been freed. */ 6709 1.1 christos /* ------------------------------------------------------------------------ */ 6710 1.1 christos int 6711 1.2 christos ipf_coalesce(fr_info_t *fin) 6712 1.1 christos { 6713 1.1 christos 6714 1.1 christos if ((fin->fin_flx & FI_COALESCE) != 0) 6715 1.1 christos return 1; 6716 1.1 christos 6717 1.1 christos /* 6718 1.1 christos * If the mbuf pointers indicate that there is no mbuf to work with, 6719 1.1 christos * return but do not indicate success or failure. 6720 1.1 christos */ 6721 1.1 christos if (fin->fin_m == NULL || fin->fin_mp == NULL) 6722 1.1 christos return 0; 6723 1.1 christos 6724 1.1 christos #if defined(_KERNEL) 6725 1.1 christos if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 6726 1.1 christos ipf_main_softc_t *softc = fin->fin_main_soft; 6727 1.1 christos 6728 1.1 christos DT1(frb_coalesce, fr_info_t *, fin); 6729 1.1 christos LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces); 6730 1.1 christos # ifdef MENTAT 6731 1.1 christos FREE_MB_T(*fin->fin_mp); 6732 1.1 christos # endif 6733 1.1 christos fin->fin_reason = FRB_COALESCE; 6734 1.1 christos *fin->fin_mp = NULL; 6735 1.1 christos fin->fin_m = NULL; 6736 1.1 christos return -1; 6737 1.1 christos } 6738 1.1 christos #else 6739 1.1 christos fin = fin; /* LINT */ 6740 1.1 christos #endif 6741 1.1 christos return 1; 6742 1.1 christos } 6743 1.1 christos 6744 1.1 christos 6745 1.1 christos /* 6746 1.1 christos * The following table lists all of the tunable variables that can be 6747 1.1 christos * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row 6748 1.1 christos * in the table below is as follows: 6749 1.1 christos * 6750 1.1 christos * pointer to value, name of value, minimum, maximum, size of the value's 6751 1.1 christos * container, value attribute flags 6752 1.1 christos * 6753 1.1 christos * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 6754 1.1 christos * means the value can only be written to when IPFilter is loaded but disabled. 6755 1.1 christos * The obvious implication is if neither of these are set then the value can be 6756 1.1 christos * changed at any time without harm. 6757 1.1 christos */ 6758 1.1 christos 6759 1.1 christos 6760 1.1 christos /* ------------------------------------------------------------------------ */ 6761 1.1 christos /* Function: ipf_tune_findbycookie */ 6762 1.1 christos /* Returns: NULL = search failed, else pointer to tune struct */ 6763 1.1 christos /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6764 1.1 christos /* next(O) - pointer to place to store the cookie for the */ 6765 1.1 christos /* "next" tuneable, if it is desired. */ 6766 1.1 christos /* */ 6767 1.1 christos /* This function is used to walk through all of the existing tunables with */ 6768 1.1 christos /* successive calls. It searches the known tunables for the one which has */ 6769 1.1 christos /* a matching value for "cookie" - ie its address. When returning a match, */ 6770 1.1 christos /* the next one to be found may be returned inside next. */ 6771 1.1 christos /* ------------------------------------------------------------------------ */ 6772 1.1 christos static ipftuneable_t * 6773 1.2 christos ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next) 6774 1.1 christos { 6775 1.1 christos ipftuneable_t *ta, **tap; 6776 1.1 christos 6777 1.1 christos for (ta = *ptop; ta->ipft_name != NULL; ta++) 6778 1.1 christos if (ta == cookie) { 6779 1.1 christos if (next != NULL) { 6780 1.1 christos /* 6781 1.1 christos * If the next entry in the array has a name 6782 1.1 christos * present, then return a pointer to it for 6783 1.1 christos * where to go next, else return a pointer to 6784 1.1 christos * the dynaminc list as a key to search there 6785 1.1 christos * next. This facilitates a weak linking of 6786 1.1 christos * the two "lists" together. 6787 1.1 christos */ 6788 1.1 christos if ((ta + 1)->ipft_name != NULL) 6789 1.1 christos *next = ta + 1; 6790 1.1 christos else 6791 1.1 christos *next = ptop; 6792 1.1 christos } 6793 1.1 christos return ta; 6794 1.1 christos } 6795 1.1 christos 6796 1.1 christos for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next) 6797 1.1 christos if (tap == cookie) { 6798 1.1 christos if (next != NULL) 6799 1.1 christos *next = &ta->ipft_next; 6800 1.1 christos return ta; 6801 1.1 christos } 6802 1.1 christos 6803 1.1 christos if (next != NULL) 6804 1.1 christos *next = NULL; 6805 1.1 christos return NULL; 6806 1.1 christos } 6807 1.1 christos 6808 1.1 christos 6809 1.1 christos /* ------------------------------------------------------------------------ */ 6810 1.1 christos /* Function: ipf_tune_findbyname */ 6811 1.1 christos /* Returns: NULL = search failed, else pointer to tune struct */ 6812 1.1 christos /* Parameters: name(I) - name of the tuneable entry to find. */ 6813 1.1 christos /* */ 6814 1.1 christos /* Search the static array of tuneables and the list of dynamic tuneables */ 6815 1.1 christos /* for an entry with a matching name. If we can find one, return a pointer */ 6816 1.1 christos /* to the matching structure. */ 6817 1.1 christos /* ------------------------------------------------------------------------ */ 6818 1.1 christos static ipftuneable_t * 6819 1.2 christos ipf_tune_findbyname(ipftuneable_t *top, const char *name) 6820 1.1 christos { 6821 1.1 christos ipftuneable_t *ta; 6822 1.1 christos 6823 1.1 christos for (ta = top; ta != NULL; ta = ta->ipft_next) 6824 1.1 christos if (!strcmp(ta->ipft_name, name)) { 6825 1.1 christos return ta; 6826 1.1 christos } 6827 1.1 christos 6828 1.1 christos return NULL; 6829 1.1 christos } 6830 1.1 christos 6831 1.1 christos 6832 1.1 christos /* ------------------------------------------------------------------------ */ 6833 1.1 christos /* Function: ipf_tune_add_array */ 6834 1.1 christos /* Returns: int - 0 == success, else failure */ 6835 1.1 christos /* Parameters: newtune - pointer to new tune array to add to tuneables */ 6836 1.1 christos /* */ 6837 1.1 christos /* Appends tune structures from the array passed in (newtune) to the end of */ 6838 1.1 christos /* the current list of "dynamic" tuneable parameters. */ 6839 1.1 christos /* If any entry to be added is already present (by name) then the operation */ 6840 1.1 christos /* is aborted - entries that have been added are removed before returning. */ 6841 1.1 christos /* An entry with no name (NULL) is used as the indication that the end of */ 6842 1.1 christos /* the array has been reached. */ 6843 1.1 christos /* ------------------------------------------------------------------------ */ 6844 1.1 christos int 6845 1.2 christos ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune) 6846 1.1 christos { 6847 1.1 christos ipftuneable_t *nt, *dt; 6848 1.1 christos int error = 0; 6849 1.1 christos 6850 1.1 christos for (nt = newtune; nt->ipft_name != NULL; nt++) { 6851 1.1 christos error = ipf_tune_add(softc, nt); 6852 1.1 christos if (error != 0) { 6853 1.1 christos for (dt = newtune; dt != nt; dt++) { 6854 1.1 christos (void) ipf_tune_del(softc, dt); 6855 1.1 christos } 6856 1.1 christos } 6857 1.1 christos } 6858 1.1 christos 6859 1.1 christos return error; 6860 1.1 christos } 6861 1.1 christos 6862 1.1 christos 6863 1.1 christos /* ------------------------------------------------------------------------ */ 6864 1.1 christos /* Function: ipf_tune_array_link */ 6865 1.1 christos /* Returns: 0 == success, -1 == failure */ 6866 1.1 christos /* Parameters: softc(I) - soft context pointerto work with */ 6867 1.1 christos /* array(I) - pointer to an array of tuneables */ 6868 1.1 christos /* */ 6869 1.1 christos /* Given an array of tunables (array), append them to the current list of */ 6870 1.1 christos /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */ 6871 1.1 christos /* the array for being appended to the list, initialise all of the next */ 6872 1.1 christos /* pointers so we don't need to walk parts of it with ++ and others with */ 6873 1.1 christos /* next. The array is expected to have an entry with a NULL name as the */ 6874 1.1 christos /* terminator. Trying to add an array with no non-NULL names will return as */ 6875 1.1 christos /* a failure. */ 6876 1.1 christos /* ------------------------------------------------------------------------ */ 6877 1.1 christos int 6878 1.2 christos ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array) 6879 1.1 christos { 6880 1.1 christos ipftuneable_t *t, **p; 6881 1.1 christos 6882 1.1 christos t = array; 6883 1.1 christos if (t->ipft_name == NULL) 6884 1.1 christos return -1; 6885 1.1 christos 6886 1.1 christos for (; t[1].ipft_name != NULL; t++) 6887 1.1 christos t[0].ipft_next = &t[1]; 6888 1.1 christos t->ipft_next = NULL; 6889 1.1 christos 6890 1.1 christos /* 6891 1.1 christos * Since a pointer to the last entry isn't kept, we need to find it 6892 1.1 christos * each time we want to add new variables to the list. 6893 1.1 christos */ 6894 1.1 christos for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) 6895 1.1 christos if (t->ipft_name == NULL) 6896 1.1 christos break; 6897 1.1 christos *p = array; 6898 1.1 christos 6899 1.1 christos return 0; 6900 1.1 christos } 6901 1.1 christos 6902 1.1 christos 6903 1.1 christos /* ------------------------------------------------------------------------ */ 6904 1.1 christos /* Function: ipf_tune_array_unlink */ 6905 1.1 christos /* Returns: 0 == success, -1 == failure */ 6906 1.1 christos /* Parameters: softc(I) - soft context pointerto work with */ 6907 1.1 christos /* array(I) - pointer to an array of tuneables */ 6908 1.1 christos /* */ 6909 1.1 christos /* ------------------------------------------------------------------------ */ 6910 1.1 christos int 6911 1.2 christos ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array) 6912 1.1 christos { 6913 1.1 christos ipftuneable_t *t, **p; 6914 1.1 christos 6915 1.1 christos for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) 6916 1.1 christos if (t == array) 6917 1.1 christos break; 6918 1.1 christos if (t == NULL) 6919 1.1 christos return -1; 6920 1.1 christos 6921 1.1 christos for (; t[1].ipft_name != NULL; t++) 6922 1.1 christos ; 6923 1.1 christos 6924 1.1 christos *p = t->ipft_next; 6925 1.1 christos 6926 1.1 christos return 0; 6927 1.1 christos } 6928 1.1 christos 6929 1.1 christos 6930 1.1 christos /* ------------------------------------------------------------------------ */ 6931 1.1 christos /* Function: ipf_tune_array_copy */ 6932 1.1 christos /* Returns: NULL = failure, else pointer to new array */ 6933 1.1 christos /* Parameters: base(I) - pointer to structure base */ 6934 1.1 christos /* size(I) - size of the array at template */ 6935 1.1 christos /* template(I) - original array to copy */ 6936 1.1 christos /* */ 6937 1.1 christos /* Allocate memory for a new set of tuneable values and copy everything */ 6938 1.1 christos /* from template into the new region of memory. The new region is full of */ 6939 1.1 christos /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */ 6940 1.1 christos /* */ 6941 1.1 christos /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */ 6942 1.1 christos /* In the array template, ipftp_offset is the offset (in bytes) of the */ 6943 1.1 christos /* location of the tuneable value inside the structure pointed to by base. */ 6944 1.1 christos /* As ipftp_offset is a union over the pointers to the tuneable values, if */ 6945 1.1 christos /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */ 6946 1.1 christos /* ipftp_void that points to the stored value. */ 6947 1.1 christos /* ------------------------------------------------------------------------ */ 6948 1.1 christos ipftuneable_t * 6949 1.23 maxv ipf_tune_array_copy(void *base, size_t size, const ipftuneable_t *template) 6950 1.1 christos { 6951 1.1 christos ipftuneable_t *copy; 6952 1.1 christos int i; 6953 1.1 christos 6954 1.1 christos 6955 1.1 christos KMALLOCS(copy, ipftuneable_t *, size); 6956 1.1 christos if (copy == NULL) { 6957 1.1 christos return NULL; 6958 1.1 christos } 6959 1.1 christos bcopy(template, copy, size); 6960 1.1 christos 6961 1.1 christos for (i = 0; copy[i].ipft_name; i++) { 6962 1.1 christos copy[i].ipft_una.ipftp_offset += (u_long)base; 6963 1.1 christos copy[i].ipft_next = copy + i + 1; 6964 1.1 christos } 6965 1.1 christos 6966 1.1 christos return copy; 6967 1.1 christos } 6968 1.1 christos 6969 1.1 christos 6970 1.1 christos /* ------------------------------------------------------------------------ */ 6971 1.1 christos /* Function: ipf_tune_add */ 6972 1.1 christos /* Returns: int - 0 == success, else failure */ 6973 1.1 christos /* Parameters: newtune - pointer to new tune entry to add to tuneables */ 6974 1.1 christos /* */ 6975 1.1 christos /* Appends tune structures from the array passed in (newtune) to the end of */ 6976 1.1 christos /* the current list of "dynamic" tuneable parameters. Once added, the */ 6977 1.1 christos /* owner of the object is not expected to ever change "ipft_next". */ 6978 1.1 christos /* ------------------------------------------------------------------------ */ 6979 1.1 christos int 6980 1.2 christos ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune) 6981 1.1 christos { 6982 1.1 christos ipftuneable_t *ta, **tap; 6983 1.1 christos 6984 1.1 christos ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name); 6985 1.1 christos if (ta != NULL) { 6986 1.1 christos IPFERROR(74); 6987 1.1 christos return EEXIST; 6988 1.1 christos } 6989 1.1 christos 6990 1.1 christos for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next) 6991 1.1 christos ; 6992 1.1 christos 6993 1.1 christos newtune->ipft_next = NULL; 6994 1.1 christos *tap = newtune; 6995 1.1 christos return 0; 6996 1.1 christos } 6997 1.1 christos 6998 1.1 christos 6999 1.1 christos /* ------------------------------------------------------------------------ */ 7000 1.1 christos /* Function: ipf_tune_del */ 7001 1.1 christos /* Returns: int - 0 == success, else failure */ 7002 1.1 christos /* Parameters: oldtune - pointer to tune entry to remove from the list of */ 7003 1.1 christos /* current dynamic tuneables */ 7004 1.1 christos /* */ 7005 1.1 christos /* Search for the tune structure, by pointer, in the list of those that are */ 7006 1.1 christos /* dynamically added at run time. If found, adjust the list so that this */ 7007 1.1 christos /* structure is no longer part of it. */ 7008 1.1 christos /* ------------------------------------------------------------------------ */ 7009 1.1 christos int 7010 1.2 christos ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune) 7011 1.1 christos { 7012 1.1 christos ipftuneable_t *ta, **tap; 7013 1.1 christos int error = 0; 7014 1.1 christos 7015 1.1 christos for (tap = &softc->ipf_tuners; (ta = *tap) != NULL; 7016 1.1 christos tap = &ta->ipft_next) { 7017 1.1 christos if (ta == oldtune) { 7018 1.1 christos *tap = oldtune->ipft_next; 7019 1.1 christos oldtune->ipft_next = NULL; 7020 1.1 christos break; 7021 1.1 christos } 7022 1.1 christos } 7023 1.1 christos 7024 1.1 christos if (ta == NULL) { 7025 1.1 christos error = ESRCH; 7026 1.1 christos IPFERROR(75); 7027 1.1 christos } 7028 1.1 christos return error; 7029 1.1 christos } 7030 1.1 christos 7031 1.1 christos 7032 1.1 christos /* ------------------------------------------------------------------------ */ 7033 1.1 christos /* Function: ipf_tune_del_array */ 7034 1.1 christos /* Returns: int - 0 == success, else failure */ 7035 1.1 christos /* Parameters: oldtune - pointer to tuneables array */ 7036 1.1 christos /* */ 7037 1.1 christos /* Remove each tuneable entry in the array from the list of "dynamic" */ 7038 1.1 christos /* tunables. If one entry should fail to be found, an error will be */ 7039 1.1 christos /* returned and no further ones removed. */ 7040 1.1 christos /* An entry with a NULL name is used as the indicator of the last entry in */ 7041 1.1 christos /* the array. */ 7042 1.1 christos /* ------------------------------------------------------------------------ */ 7043 1.1 christos int 7044 1.2 christos ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune) 7045 1.1 christos { 7046 1.1 christos ipftuneable_t *ot; 7047 1.1 christos int error = 0; 7048 1.1 christos 7049 1.1 christos for (ot = oldtune; ot->ipft_name != NULL; ot++) { 7050 1.1 christos error = ipf_tune_del(softc, ot); 7051 1.1 christos if (error != 0) 7052 1.1 christos break; 7053 1.1 christos } 7054 1.1 christos 7055 1.1 christos return error; 7056 1.1 christos 7057 1.1 christos } 7058 1.1 christos 7059 1.1 christos 7060 1.1 christos /* ------------------------------------------------------------------------ */ 7061 1.1 christos /* Function: ipf_tune */ 7062 1.1 christos /* Returns: int - 0 == success, else failure */ 7063 1.1 christos /* Parameters: cmd(I) - ioctl command number */ 7064 1.1 christos /* data(I) - pointer to ioctl data structure */ 7065 1.1 christos /* */ 7066 1.1 christos /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 7067 1.1 christos /* three ioctls provide the means to access and control global variables */ 7068 1.1 christos /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 7069 1.1 christos /* changed without rebooting, reloading or recompiling. The initialisation */ 7070 1.1 christos /* and 'destruction' routines of the various components of ipfilter are all */ 7071 1.1 christos /* each responsible for handling their own values being too big. */ 7072 1.1 christos /* ------------------------------------------------------------------------ */ 7073 1.1 christos int 7074 1.2 christos ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data) 7075 1.1 christos { 7076 1.1 christos ipftuneable_t *ta; 7077 1.1 christos ipftune_t tu; 7078 1.1 christos void *cookie; 7079 1.1 christos int error; 7080 1.1 christos 7081 1.1 christos error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE); 7082 1.1 christos if (error != 0) 7083 1.1 christos return error; 7084 1.1 christos 7085 1.1 christos tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 7086 1.1 christos cookie = tu.ipft_cookie; 7087 1.1 christos ta = NULL; 7088 1.1 christos 7089 1.1 christos switch (cmd) 7090 1.1 christos { 7091 1.1 christos case SIOCIPFGETNEXT : 7092 1.1 christos /* 7093 1.1 christos * If cookie is non-NULL, assume it to be a pointer to the last 7094 1.1 christos * entry we looked at, so find it (if possible) and return a 7095 1.1 christos * pointer to the next one after it. The last entry in the 7096 1.1 christos * the table is a NULL entry, so when we get to it, set cookie 7097 1.1 christos * to NULL and return that, indicating end of list, erstwhile 7098 1.1 christos * if we come in with cookie set to NULL, we are starting anew 7099 1.1 christos * at the front of the list. 7100 1.1 christos */ 7101 1.1 christos if (cookie != NULL) { 7102 1.1 christos ta = ipf_tune_findbycookie(&softc->ipf_tuners, 7103 1.1 christos cookie, &tu.ipft_cookie); 7104 1.1 christos } else { 7105 1.1 christos ta = softc->ipf_tuners; 7106 1.1 christos tu.ipft_cookie = ta + 1; 7107 1.1 christos } 7108 1.1 christos if (ta != NULL) { 7109 1.1 christos /* 7110 1.1 christos * Entry found, but does the data pointed to by that 7111 1.1 christos * row fit in what we can return? 7112 1.1 christos */ 7113 1.1 christos if (ta->ipft_sz > sizeof(tu.ipft_un)) { 7114 1.1 christos IPFERROR(76); 7115 1.1 christos return EINVAL; 7116 1.1 christos } 7117 1.1 christos 7118 1.1 christos tu.ipft_vlong = 0; 7119 1.1 christos if (ta->ipft_sz == sizeof(u_long)) 7120 1.1 christos tu.ipft_vlong = *ta->ipft_plong; 7121 1.1 christos else if (ta->ipft_sz == sizeof(u_int)) 7122 1.1 christos tu.ipft_vint = *ta->ipft_pint; 7123 1.1 christos else if (ta->ipft_sz == sizeof(u_short)) 7124 1.1 christos tu.ipft_vshort = *ta->ipft_pshort; 7125 1.1 christos else if (ta->ipft_sz == sizeof(u_char)) 7126 1.1 christos tu.ipft_vchar = *ta->ipft_pchar; 7127 1.1 christos 7128 1.1 christos tu.ipft_sz = ta->ipft_sz; 7129 1.1 christos tu.ipft_min = ta->ipft_min; 7130 1.1 christos tu.ipft_max = ta->ipft_max; 7131 1.1 christos tu.ipft_flags = ta->ipft_flags; 7132 1.1 christos bcopy(ta->ipft_name, tu.ipft_name, 7133 1.1 christos MIN(sizeof(tu.ipft_name), 7134 1.1 christos strlen(ta->ipft_name) + 1)); 7135 1.1 christos } 7136 1.1 christos error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7137 1.1 christos break; 7138 1.1 christos 7139 1.1 christos case SIOCIPFGET : 7140 1.1 christos case SIOCIPFSET : 7141 1.1 christos /* 7142 1.1 christos * Search by name or by cookie value for a particular entry 7143 1.1 christos * in the tuning paramter table. 7144 1.1 christos */ 7145 1.1 christos IPFERROR(77); 7146 1.1 christos error = ESRCH; 7147 1.1 christos if (cookie != NULL) { 7148 1.1 christos ta = ipf_tune_findbycookie(&softc->ipf_tuners, 7149 1.1 christos cookie, NULL); 7150 1.1 christos if (ta != NULL) 7151 1.1 christos error = 0; 7152 1.1 christos } else if (tu.ipft_name[0] != '\0') { 7153 1.1 christos ta = ipf_tune_findbyname(softc->ipf_tuners, 7154 1.1 christos tu.ipft_name); 7155 1.1 christos if (ta != NULL) 7156 1.1 christos error = 0; 7157 1.1 christos } 7158 1.1 christos if (error != 0) 7159 1.1 christos break; 7160 1.1 christos 7161 1.1 christos if (cmd == (ioctlcmd_t)SIOCIPFGET) { 7162 1.1 christos /* 7163 1.1 christos * Fetch the tuning parameters for a particular value 7164 1.1 christos */ 7165 1.1 christos tu.ipft_vlong = 0; 7166 1.1 christos if (ta->ipft_sz == sizeof(u_long)) 7167 1.1 christos tu.ipft_vlong = *ta->ipft_plong; 7168 1.1 christos else if (ta->ipft_sz == sizeof(u_int)) 7169 1.1 christos tu.ipft_vint = *ta->ipft_pint; 7170 1.1 christos else if (ta->ipft_sz == sizeof(u_short)) 7171 1.1 christos tu.ipft_vshort = *ta->ipft_pshort; 7172 1.1 christos else if (ta->ipft_sz == sizeof(u_char)) 7173 1.1 christos tu.ipft_vchar = *ta->ipft_pchar; 7174 1.1 christos tu.ipft_cookie = ta; 7175 1.1 christos tu.ipft_sz = ta->ipft_sz; 7176 1.1 christos tu.ipft_min = ta->ipft_min; 7177 1.1 christos tu.ipft_max = ta->ipft_max; 7178 1.1 christos tu.ipft_flags = ta->ipft_flags; 7179 1.1 christos error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7180 1.1 christos 7181 1.1 christos } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 7182 1.1 christos /* 7183 1.1 christos * Set an internal parameter. The hard part here is 7184 1.1 christos * getting the new value safely and correctly out of 7185 1.1 christos * the kernel (given we only know its size, not type.) 7186 1.1 christos */ 7187 1.1 christos u_long in; 7188 1.1 christos 7189 1.1 christos if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 7190 1.1 christos (softc->ipf_running > 0)) { 7191 1.1 christos IPFERROR(78); 7192 1.1 christos error = EBUSY; 7193 1.1 christos break; 7194 1.1 christos } 7195 1.1 christos 7196 1.1 christos in = tu.ipft_vlong; 7197 1.1 christos if (in < ta->ipft_min || in > ta->ipft_max) { 7198 1.1 christos IPFERROR(79); 7199 1.1 christos error = EINVAL; 7200 1.1 christos break; 7201 1.1 christos } 7202 1.1 christos 7203 1.1 christos if (ta->ipft_func != NULL) { 7204 1.1 christos SPL_INT(s); 7205 1.1 christos 7206 1.1 christos SPL_NET(s); 7207 1.1 christos error = (*ta->ipft_func)(softc, ta, 7208 1.1 christos &tu.ipft_un); 7209 1.1 christos SPL_X(s); 7210 1.1 christos 7211 1.1 christos } else if (ta->ipft_sz == sizeof(u_long)) { 7212 1.1 christos tu.ipft_vlong = *ta->ipft_plong; 7213 1.1 christos *ta->ipft_plong = in; 7214 1.1 christos 7215 1.1 christos } else if (ta->ipft_sz == sizeof(u_int)) { 7216 1.1 christos tu.ipft_vint = *ta->ipft_pint; 7217 1.1 christos *ta->ipft_pint = (u_int)(in & 0xffffffff); 7218 1.1 christos 7219 1.1 christos } else if (ta->ipft_sz == sizeof(u_short)) { 7220 1.1 christos tu.ipft_vshort = *ta->ipft_pshort; 7221 1.1 christos *ta->ipft_pshort = (u_short)(in & 0xffff); 7222 1.1 christos 7223 1.1 christos } else if (ta->ipft_sz == sizeof(u_char)) { 7224 1.1 christos tu.ipft_vchar = *ta->ipft_pchar; 7225 1.1 christos *ta->ipft_pchar = (u_char)(in & 0xff); 7226 1.1 christos } 7227 1.1 christos error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7228 1.1 christos } 7229 1.1 christos break; 7230 1.1 christos 7231 1.1 christos default : 7232 1.1 christos IPFERROR(80); 7233 1.1 christos error = EINVAL; 7234 1.1 christos break; 7235 1.1 christos } 7236 1.1 christos 7237 1.1 christos return error; 7238 1.1 christos } 7239 1.1 christos 7240 1.1 christos 7241 1.1 christos /* ------------------------------------------------------------------------ */ 7242 1.1 christos /* Function: ipf_zerostats */ 7243 1.1 christos /* Returns: int - 0 = success, else failure */ 7244 1.1 christos /* Parameters: data(O) - pointer to pointer for copying data back to */ 7245 1.1 christos /* */ 7246 1.1 christos /* Copies the current statistics out to userspace and then zero's the */ 7247 1.1 christos /* current ones in the kernel. The lock is only held across the bzero() as */ 7248 1.1 christos /* the copyout may result in paging (ie network activity.) */ 7249 1.1 christos /* ------------------------------------------------------------------------ */ 7250 1.1 christos int 7251 1.2 christos ipf_zerostats(ipf_main_softc_t *softc, void *data) 7252 1.1 christos { 7253 1.1 christos friostat_t fio; 7254 1.1 christos ipfobj_t obj; 7255 1.1 christos int error; 7256 1.1 christos 7257 1.1 christos error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT); 7258 1.1 christos if (error != 0) 7259 1.1 christos return error; 7260 1.1 christos ipf_getstat(softc, &fio, obj.ipfo_rev); 7261 1.1 christos error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT); 7262 1.1 christos if (error != 0) 7263 1.1 christos return error; 7264 1.1 christos 7265 1.1 christos WRITE_ENTER(&softc->ipf_mutex); 7266 1.1 christos bzero(&softc->ipf_stats, sizeof(softc->ipf_stats)); 7267 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 7268 1.1 christos 7269 1.1 christos return 0; 7270 1.1 christos } 7271 1.1 christos 7272 1.1 christos 7273 1.1 christos /* ------------------------------------------------------------------------ */ 7274 1.1 christos /* Function: ipf_resolvedest */ 7275 1.1 christos /* Returns: Nil */ 7276 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 7277 1.1 christos /* base(I) - where strings are stored */ 7278 1.1 christos /* fdp(IO) - pointer to destination information to resolve */ 7279 1.1 christos /* v(I) - IP protocol version to match */ 7280 1.1 christos /* */ 7281 1.1 christos /* Looks up an interface name in the frdest structure pointed to by fdp and */ 7282 1.1 christos /* if a matching name can be found for the particular IP protocol version */ 7283 1.1 christos /* then store the interface pointer in the frdest struct. If no match is */ 7284 1.1 christos /* found, then set the interface pointer to be -1 as NULL is considered to */ 7285 1.1 christos /* indicate there is no information at all in the structure. */ 7286 1.1 christos /* ------------------------------------------------------------------------ */ 7287 1.1 christos int 7288 1.2 christos ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v) 7289 1.1 christos { 7290 1.1 christos int errval = 0; 7291 1.1 christos void *ifp; 7292 1.1 christos 7293 1.1 christos ifp = NULL; 7294 1.1 christos 7295 1.1 christos if (fdp->fd_name != -1) { 7296 1.1 christos if (fdp->fd_type == FRD_DSTLIST) { 7297 1.1 christos ifp = ipf_lookup_res_name(softc, IPL_LOGIPF, 7298 1.1 christos IPLT_DSTLIST, 7299 1.1 christos base + fdp->fd_name, 7300 1.1 christos NULL); 7301 1.1 christos if (ifp == NULL) { 7302 1.1 christos IPFERROR(144); 7303 1.1 christos errval = ESRCH; 7304 1.1 christos } 7305 1.1 christos } else { 7306 1.1 christos ifp = GETIFP(base + fdp->fd_name, v); 7307 1.1 christos } 7308 1.1 christos } 7309 1.1 christos fdp->fd_ptr = ifp; 7310 1.1 christos 7311 1.1 christos return errval; 7312 1.1 christos } 7313 1.1 christos 7314 1.1 christos 7315 1.1 christos /* ------------------------------------------------------------------------ */ 7316 1.1 christos /* Function: ipf_resolvenic */ 7317 1.1 christos /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 7318 1.1 christos /* pointer to interface structure for NIC */ 7319 1.1 christos /* Parameters: softc(I)- pointer to soft context main structure */ 7320 1.1 christos /* name(I) - complete interface name */ 7321 1.1 christos /* v(I) - IP protocol version */ 7322 1.1 christos /* */ 7323 1.1 christos /* Look for a network interface structure that firstly has a matching name */ 7324 1.1 christos /* to that passed in and that is also being used for that IP protocol */ 7325 1.1 christos /* version (necessary on some platforms where there are separate listings */ 7326 1.1 christos /* for both IPv4 and IPv6 on the same physical NIC. */ 7327 1.2 christos /* */ 7328 1.1 christos /* ------------------------------------------------------------------------ */ 7329 1.1 christos void * 7330 1.2 christos ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v) 7331 1.1 christos { 7332 1.1 christos void *nic; 7333 1.1 christos 7334 1.3 darrenr softc = softc; /* gcc -Wextra */ 7335 1.1 christos if (name[0] == '\0') 7336 1.1 christos return NULL; 7337 1.1 christos 7338 1.1 christos if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 7339 1.1 christos return NULL; 7340 1.1 christos } 7341 1.1 christos 7342 1.1 christos nic = GETIFP(name, v); 7343 1.1 christos if (nic == NULL) 7344 1.1 christos nic = (void *)-1; 7345 1.1 christos return nic; 7346 1.1 christos } 7347 1.1 christos 7348 1.1 christos 7349 1.1 christos /* ------------------------------------------------------------------------ */ 7350 1.1 christos /* Function: ipf_token_expire */ 7351 1.1 christos /* Returns: None. */ 7352 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 7353 1.1 christos /* */ 7354 1.1 christos /* This function is run every ipf tick to see if there are any tokens that */ 7355 1.1 christos /* have been held for too long and need to be freed up. */ 7356 1.1 christos /* ------------------------------------------------------------------------ */ 7357 1.1 christos void 7358 1.2 christos ipf_token_expire(ipf_main_softc_t *softc) 7359 1.1 christos { 7360 1.1 christos ipftoken_t *it; 7361 1.1 christos 7362 1.1 christos WRITE_ENTER(&softc->ipf_tokens); 7363 1.1 christos while ((it = softc->ipf_token_head) != NULL) { 7364 1.1 christos if (it->ipt_die > softc->ipf_ticks) 7365 1.1 christos break; 7366 1.1 christos 7367 1.3 darrenr ipf_token_deref(softc, it); 7368 1.3 darrenr } 7369 1.3 darrenr RWLOCK_EXIT(&softc->ipf_tokens); 7370 1.3 darrenr } 7371 1.3 darrenr 7372 1.3 darrenr 7373 1.3 darrenr /* ------------------------------------------------------------------------ */ 7374 1.3 darrenr /* Function: ipf_token_flush */ 7375 1.3 darrenr /* Returns: None. */ 7376 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 7377 1.3 darrenr /* */ 7378 1.3 darrenr /* Loop through all of the existing tokens and call deref to see if they */ 7379 1.3 darrenr /* can be freed. Normally a function like this might just loop on */ 7380 1.3 darrenr /* ipf_token_head but there is a chance that a token might have a ref count */ 7381 1.3 darrenr /* of greater than one and in that case the the reference would drop twice */ 7382 1.3 darrenr /* by code that is only entitled to drop it once. */ 7383 1.3 darrenr /* ------------------------------------------------------------------------ */ 7384 1.3 darrenr static void 7385 1.4 darrenr ipf_token_flush(ipf_main_softc_t *softc) 7386 1.3 darrenr { 7387 1.3 darrenr ipftoken_t *it, *next; 7388 1.3 darrenr 7389 1.3 darrenr WRITE_ENTER(&softc->ipf_tokens); 7390 1.3 darrenr for (it = softc->ipf_token_head; it != NULL; it = next) { 7391 1.3 darrenr next = it->ipt_next; 7392 1.3 darrenr (void) ipf_token_deref(softc, it); 7393 1.1 christos } 7394 1.1 christos RWLOCK_EXIT(&softc->ipf_tokens); 7395 1.1 christos } 7396 1.1 christos 7397 1.1 christos 7398 1.1 christos /* ------------------------------------------------------------------------ */ 7399 1.3 darrenr /* Function: ipf_token_del */ 7400 1.1 christos /* Returns: int - 0 = success, else error */ 7401 1.3 darrenr /* Parameters: softc(I)- pointer to soft context main structure */ 7402 1.1 christos /* type(I) - the token type to match */ 7403 1.1 christos /* uid(I) - uid owning the token */ 7404 1.1 christos /* ptr(I) - context pointer for the token */ 7405 1.1 christos /* */ 7406 1.1 christos /* This function looks for a a token in the current list that matches up */ 7407 1.1 christos /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ 7408 1.3 darrenr /* call ipf_token_dewref() to remove it from the list. In the event that */ 7409 1.3 darrenr /* the token has a reference held elsewhere, setting ipt_complete to 2 */ 7410 1.3 darrenr /* enables debugging to distinguish between the two paths that ultimately */ 7411 1.3 darrenr /* lead to a token to be deleted. */ 7412 1.1 christos /* ------------------------------------------------------------------------ */ 7413 1.1 christos int 7414 1.2 christos ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr) 7415 1.1 christos { 7416 1.1 christos ipftoken_t *it; 7417 1.1 christos int error; 7418 1.1 christos 7419 1.1 christos IPFERROR(82); 7420 1.1 christos error = ESRCH; 7421 1.1 christos 7422 1.1 christos WRITE_ENTER(&softc->ipf_tokens); 7423 1.3 darrenr for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { 7424 1.1 christos if (ptr == it->ipt_ctx && type == it->ipt_type && 7425 1.1 christos uid == it->ipt_uid) { 7426 1.3 darrenr it->ipt_complete = 2; 7427 1.3 darrenr ipf_token_deref(softc, it); 7428 1.1 christos error = 0; 7429 1.1 christos break; 7430 1.3 darrenr } 7431 1.1 christos } 7432 1.1 christos RWLOCK_EXIT(&softc->ipf_tokens); 7433 1.1 christos 7434 1.1 christos return error; 7435 1.1 christos } 7436 1.1 christos 7437 1.1 christos 7438 1.1 christos /* ------------------------------------------------------------------------ */ 7439 1.1 christos /* Function: ipf_token_mark_complete */ 7440 1.1 christos /* Returns: None. */ 7441 1.1 christos /* Parameters: token(I) - pointer to token structure */ 7442 1.1 christos /* */ 7443 1.3 darrenr /* Mark a token as being ineligable for being found with ipf_token_find. */ 7444 1.1 christos /* ------------------------------------------------------------------------ */ 7445 1.1 christos void 7446 1.2 christos ipf_token_mark_complete(ipftoken_t *token) 7447 1.1 christos { 7448 1.3 darrenr if (token->ipt_complete == 0) 7449 1.3 darrenr token->ipt_complete = 1; 7450 1.1 christos } 7451 1.1 christos 7452 1.1 christos 7453 1.1 christos /* ------------------------------------------------------------------------ */ 7454 1.1 christos /* Function: ipf_token_find */ 7455 1.1 christos /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ 7456 1.1 christos /* Parameters: softc(I)- pointer to soft context main structure */ 7457 1.1 christos /* type(I) - the token type to match */ 7458 1.1 christos /* uid(I) - uid owning the token */ 7459 1.1 christos /* ptr(I) - context pointer for the token */ 7460 1.1 christos /* */ 7461 1.1 christos /* This function looks for a live token in the list of current tokens that */ 7462 1.1 christos /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ 7463 1.1 christos /* allocated. If one is found then it is moved to the top of the list of */ 7464 1.1 christos /* currently active tokens. */ 7465 1.1 christos /* ------------------------------------------------------------------------ */ 7466 1.1 christos ipftoken_t * 7467 1.2 christos ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr) 7468 1.1 christos { 7469 1.1 christos ipftoken_t *it, *new; 7470 1.1 christos 7471 1.1 christos KMALLOC(new, ipftoken_t *); 7472 1.3 darrenr if (new != NULL) 7473 1.3 darrenr bzero((char *)new, sizeof(*new)); 7474 1.1 christos 7475 1.1 christos WRITE_ENTER(&softc->ipf_tokens); 7476 1.1 christos for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { 7477 1.3 darrenr if ((ptr == it->ipt_ctx) && (type == it->ipt_type) && 7478 1.3 darrenr (uid == it->ipt_uid) && (it->ipt_complete < 2)) 7479 1.1 christos break; 7480 1.1 christos } 7481 1.1 christos 7482 1.1 christos if (it == NULL) { 7483 1.1 christos it = new; 7484 1.1 christos new = NULL; 7485 1.1 christos if (it == NULL) { 7486 1.1 christos RWLOCK_EXIT(&softc->ipf_tokens); 7487 1.1 christos return NULL; 7488 1.1 christos } 7489 1.1 christos it->ipt_ctx = ptr; 7490 1.1 christos it->ipt_uid = uid; 7491 1.1 christos it->ipt_type = type; 7492 1.3 darrenr it->ipt_ref = 1; 7493 1.1 christos } else { 7494 1.1 christos if (new != NULL) { 7495 1.1 christos KFREE(new); 7496 1.1 christos new = NULL; 7497 1.1 christos } 7498 1.1 christos 7499 1.3 darrenr if (it->ipt_complete > 0) 7500 1.3 darrenr it = NULL; 7501 1.3 darrenr else 7502 1.3 darrenr ipf_token_unlink(softc, it); 7503 1.1 christos } 7504 1.1 christos 7505 1.3 darrenr if (it != NULL) { 7506 1.1 christos it->ipt_pnext = softc->ipf_token_tail; 7507 1.1 christos *softc->ipf_token_tail = it; 7508 1.1 christos softc->ipf_token_tail = &it->ipt_next; 7509 1.1 christos it->ipt_next = NULL; 7510 1.3 darrenr it->ipt_ref++; 7511 1.1 christos 7512 1.1 christos it->ipt_die = softc->ipf_ticks + 20; 7513 1.1 christos } 7514 1.1 christos 7515 1.1 christos RWLOCK_EXIT(&softc->ipf_tokens); 7516 1.1 christos 7517 1.1 christos return it; 7518 1.1 christos } 7519 1.1 christos 7520 1.1 christos 7521 1.1 christos /* ------------------------------------------------------------------------ */ 7522 1.1 christos /* Function: ipf_token_unlink */ 7523 1.1 christos /* Returns: None. */ 7524 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 7525 1.1 christos /* token(I) - pointer to token structure */ 7526 1.1 christos /* Write Locks: ipf_tokens */ 7527 1.1 christos /* */ 7528 1.1 christos /* This function unlinks a token structure from the linked list of tokens */ 7529 1.1 christos /* that "own" it. The head pointer never needs to be explicitly adjusted */ 7530 1.1 christos /* but the tail does due to the linked list implementation. */ 7531 1.1 christos /* ------------------------------------------------------------------------ */ 7532 1.1 christos static void 7533 1.2 christos ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token) 7534 1.1 christos { 7535 1.1 christos 7536 1.1 christos if (softc->ipf_token_tail == &token->ipt_next) 7537 1.1 christos softc->ipf_token_tail = token->ipt_pnext; 7538 1.1 christos 7539 1.1 christos *token->ipt_pnext = token->ipt_next; 7540 1.1 christos if (token->ipt_next != NULL) 7541 1.1 christos token->ipt_next->ipt_pnext = token->ipt_pnext; 7542 1.3 darrenr token->ipt_next = NULL; 7543 1.3 darrenr token->ipt_pnext = NULL; 7544 1.1 christos } 7545 1.1 christos 7546 1.1 christos 7547 1.1 christos /* ------------------------------------------------------------------------ */ 7548 1.1 christos /* Function: ipf_token_deref */ 7549 1.3 darrenr /* Returns: int - 0 == token freed, else reference count */ 7550 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 7551 1.1 christos /* token(I) - pointer to token structure */ 7552 1.1 christos /* Write Locks: ipf_tokens */ 7553 1.1 christos /* */ 7554 1.1 christos /* Drop the reference count on the token structure and if it drops to zero, */ 7555 1.1 christos /* call the dereference function for the token type because it is then */ 7556 1.1 christos /* possible to free the token data structure. */ 7557 1.1 christos /* ------------------------------------------------------------------------ */ 7558 1.3 darrenr int 7559 1.2 christos ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token) 7560 1.1 christos { 7561 1.1 christos void *data, **datap; 7562 1.1 christos 7563 1.3 darrenr ASSERT(token->ipt_ref > 0); 7564 1.1 christos token->ipt_ref--; 7565 1.1 christos if (token->ipt_ref > 0) 7566 1.3 darrenr return token->ipt_ref; 7567 1.1 christos 7568 1.1 christos data = token->ipt_data; 7569 1.1 christos datap = &data; 7570 1.1 christos 7571 1.1 christos if ((data != NULL) && (data != (void *)-1)) { 7572 1.1 christos switch (token->ipt_type) 7573 1.1 christos { 7574 1.1 christos case IPFGENITER_IPF : 7575 1.1 christos (void) ipf_derefrule(softc, (frentry_t **)datap); 7576 1.1 christos break; 7577 1.1 christos case IPFGENITER_IPNAT : 7578 1.1 christos WRITE_ENTER(&softc->ipf_nat); 7579 1.3 darrenr ipf_nat_rule_deref(softc, (ipnat_t **)datap); 7580 1.1 christos RWLOCK_EXIT(&softc->ipf_nat); 7581 1.1 christos break; 7582 1.1 christos case IPFGENITER_NAT : 7583 1.1 christos ipf_nat_deref(softc, (nat_t **)datap); 7584 1.1 christos break; 7585 1.1 christos case IPFGENITER_STATE : 7586 1.1 christos ipf_state_deref(softc, (ipstate_t **)datap); 7587 1.1 christos break; 7588 1.1 christos case IPFGENITER_FRAG : 7589 1.1 christos ipf_frag_pkt_deref(softc, (ipfr_t **)datap); 7590 1.1 christos break; 7591 1.1 christos case IPFGENITER_NATFRAG : 7592 1.1 christos ipf_frag_nat_deref(softc, (ipfr_t **)datap); 7593 1.1 christos break; 7594 1.1 christos case IPFGENITER_HOSTMAP : 7595 1.1 christos WRITE_ENTER(&softc->ipf_nat); 7596 1.3 darrenr ipf_nat_hostmapdel(softc, (hostmap_t **)datap); 7597 1.1 christos RWLOCK_EXIT(&softc->ipf_nat); 7598 1.1 christos break; 7599 1.1 christos default : 7600 1.1 christos ipf_lookup_iterderef(softc, token->ipt_type, data); 7601 1.1 christos break; 7602 1.1 christos } 7603 1.1 christos } 7604 1.1 christos 7605 1.3 darrenr ipf_token_unlink(softc, token); 7606 1.1 christos KFREE(token); 7607 1.3 darrenr return 0; 7608 1.1 christos } 7609 1.1 christos 7610 1.1 christos 7611 1.1 christos /* ------------------------------------------------------------------------ */ 7612 1.3 darrenr /* Function: ipf_nextrule */ 7613 1.3 darrenr /* Returns: frentry_t * - NULL == no more rules, else pointer to next */ 7614 1.3 darrenr /* Parameters: softc(I) - pointer to soft context main structure */ 7615 1.3 darrenr /* fr(I) - pointer to filter rule */ 7616 1.3 darrenr /* out(I) - 1 == out rules, 0 == input rules */ 7617 1.1 christos /* */ 7618 1.3 darrenr /* Starting with "fr", find the next rule to visit. This includes visiting */ 7619 1.3 darrenr /* the list of rule groups if either fr is NULL (empty list) or it is the */ 7620 1.3 darrenr /* last rule in the list. When walking rule lists, it is either input or */ 7621 1.3 darrenr /* output rules that are returned, never both. */ 7622 1.1 christos /* ------------------------------------------------------------------------ */ 7623 1.3 darrenr static frentry_t * 7624 1.3 darrenr ipf_nextrule(ipf_main_softc_t *softc, int active, int unit, 7625 1.3 darrenr frentry_t *fr, int out) 7626 1.1 christos { 7627 1.3 darrenr frentry_t *next; 7628 1.3 darrenr frgroup_t *fg; 7629 1.3 darrenr 7630 1.3 darrenr if (fr != NULL && fr->fr_group != -1) { 7631 1.3 darrenr fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group, 7632 1.3 darrenr unit, active, NULL); 7633 1.3 darrenr if (fg != NULL) 7634 1.3 darrenr fg = fg->fg_next; 7635 1.3 darrenr } else { 7636 1.3 darrenr fg = softc->ipf_groups[unit][active]; 7637 1.3 darrenr } 7638 1.1 christos 7639 1.3 darrenr while (fg != NULL) { 7640 1.3 darrenr next = fg->fg_start; 7641 1.3 darrenr while (next != NULL) { 7642 1.3 darrenr if (out) { 7643 1.3 darrenr if (next->fr_flags & FR_OUTQUE) 7644 1.3 darrenr return next; 7645 1.3 darrenr } else if (next->fr_flags & FR_INQUE) { 7646 1.3 darrenr return next; 7647 1.3 darrenr } 7648 1.3 darrenr next = next->fr_next; 7649 1.3 darrenr } 7650 1.3 darrenr if (next == NULL) 7651 1.3 darrenr fg = fg->fg_next; 7652 1.3 darrenr } 7653 1.1 christos 7654 1.3 darrenr return NULL; 7655 1.1 christos } 7656 1.1 christos 7657 1.1 christos /* ------------------------------------------------------------------------ */ 7658 1.1 christos /* Function: ipf_getnextrule */ 7659 1.1 christos /* Returns: int - 0 = success, else error */ 7660 1.1 christos /* Parameters: softc(I)- pointer to soft context main structure */ 7661 1.1 christos /* t(I) - pointer to destination information to resolve */ 7662 1.1 christos /* ptr(I) - pointer to ipfobj_t to copyin from user space */ 7663 1.1 christos /* */ 7664 1.1 christos /* This function's first job is to bring in the ipfruleiter_t structure via */ 7665 1.1 christos /* the ipfobj_t structure to determine what should be the next rule to */ 7666 1.1 christos /* return. Once the ipfruleiter_t has been brought in, it then tries to */ 7667 1.1 christos /* find the 'next rule'. This may include searching rule group lists or */ 7668 1.1 christos /* just be as simple as looking at the 'next' field in the rule structure. */ 7669 1.1 christos /* When we have found the rule to return, increase its reference count and */ 7670 1.1 christos /* if we used an existing rule to get here, decrease its reference count. */ 7671 1.1 christos /* ------------------------------------------------------------------------ */ 7672 1.1 christos int 7673 1.2 christos ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr) 7674 1.1 christos { 7675 1.1 christos frentry_t *fr, *next, zero; 7676 1.1 christos ipfruleiter_t it; 7677 1.1 christos int error, out; 7678 1.1 christos frgroup_t *fg; 7679 1.1 christos ipfobj_t obj; 7680 1.3 darrenr int predict; 7681 1.1 christos char *dst; 7682 1.3 darrenr int unit; 7683 1.1 christos 7684 1.1 christos if (t == NULL || ptr == NULL) { 7685 1.1 christos IPFERROR(84); 7686 1.1 christos return EFAULT; 7687 1.1 christos } 7688 1.1 christos 7689 1.1 christos error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER); 7690 1.1 christos if (error != 0) 7691 1.1 christos return error; 7692 1.1 christos 7693 1.1 christos if ((it.iri_inout < 0) || (it.iri_inout > 3)) { 7694 1.1 christos IPFERROR(85); 7695 1.1 christos return EINVAL; 7696 1.1 christos } 7697 1.1 christos if ((it.iri_active != 0) && (it.iri_active != 1)) { 7698 1.1 christos IPFERROR(86); 7699 1.1 christos return EINVAL; 7700 1.1 christos } 7701 1.1 christos if (it.iri_nrules == 0) { 7702 1.1 christos IPFERROR(87); 7703 1.1 christos return ENOSPC; 7704 1.1 christos } 7705 1.1 christos if (it.iri_rule == NULL) { 7706 1.1 christos IPFERROR(88); 7707 1.1 christos return EFAULT; 7708 1.1 christos } 7709 1.1 christos 7710 1.1 christos fg = NULL; 7711 1.1 christos fr = t->ipt_data; 7712 1.3 darrenr if ((it.iri_inout & F_OUT) != 0) 7713 1.3 darrenr out = 1; 7714 1.3 darrenr else 7715 1.3 darrenr out = 0; 7716 1.3 darrenr if ((it.iri_inout & F_ACIN) != 0) 7717 1.3 darrenr unit = IPL_LOGCOUNT; 7718 1.3 darrenr else 7719 1.3 darrenr unit = IPL_LOGIPF; 7720 1.1 christos 7721 1.1 christos READ_ENTER(&softc->ipf_mutex); 7722 1.1 christos if (fr == NULL) { 7723 1.1 christos if (*it.iri_group == '\0') { 7724 1.3 darrenr if (unit == IPL_LOGCOUNT) { 7725 1.1 christos next = softc->ipf_acct[out][it.iri_active]; 7726 1.3 darrenr } else { 7727 1.1 christos next = softc->ipf_rules[out][it.iri_active]; 7728 1.3 darrenr } 7729 1.3 darrenr if (next == NULL) 7730 1.3 darrenr next = ipf_nextrule(softc, it.iri_active, 7731 1.3 darrenr unit, NULL, out); 7732 1.1 christos } else { 7733 1.3 darrenr fg = ipf_findgroup(softc, it.iri_group, unit, 7734 1.3 darrenr it.iri_active, NULL); 7735 1.1 christos if (fg != NULL) 7736 1.1 christos next = fg->fg_start; 7737 1.1 christos else 7738 1.1 christos next = NULL; 7739 1.1 christos } 7740 1.1 christos } else { 7741 1.1 christos next = fr->fr_next; 7742 1.3 darrenr if (next == NULL) 7743 1.3 darrenr next = ipf_nextrule(softc, it.iri_active, unit, 7744 1.3 darrenr fr, out); 7745 1.1 christos } 7746 1.1 christos 7747 1.3 darrenr if (next != NULL && next->fr_next != NULL) 7748 1.3 darrenr predict = 1; 7749 1.3 darrenr else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL) 7750 1.3 darrenr predict = 1; 7751 1.3 darrenr else 7752 1.3 darrenr predict = 0; 7753 1.3 darrenr 7754 1.3 darrenr if (fr != NULL) 7755 1.3 darrenr (void) ipf_derefrule(softc, &fr); 7756 1.3 darrenr 7757 1.1 christos obj.ipfo_type = IPFOBJ_FRENTRY; 7758 1.1 christos dst = (char *)it.iri_rule; 7759 1.1 christos 7760 1.1 christos if (next != NULL) { 7761 1.1 christos obj.ipfo_size = next->fr_size; 7762 1.1 christos MUTEX_ENTER(&next->fr_lock); 7763 1.1 christos next->fr_ref++; 7764 1.1 christos MUTEX_EXIT(&next->fr_lock); 7765 1.1 christos t->ipt_data = next; 7766 1.1 christos } else { 7767 1.1 christos obj.ipfo_size = sizeof(frentry_t); 7768 1.1 christos bzero(&zero, sizeof(zero)); 7769 1.1 christos next = &zero; 7770 1.1 christos t->ipt_data = NULL; 7771 1.1 christos } 7772 1.3 darrenr it.iri_rule = predict ? next : NULL; 7773 1.3 darrenr if (predict == 0) 7774 1.1 christos ipf_token_mark_complete(t); 7775 1.1 christos 7776 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 7777 1.1 christos 7778 1.1 christos obj.ipfo_ptr = dst; 7779 1.1 christos error = ipf_outobjk(softc, &obj, next); 7780 1.1 christos if (error == 0 && t->ipt_data != NULL) { 7781 1.1 christos dst += obj.ipfo_size; 7782 1.1 christos if (next->fr_data != NULL) { 7783 1.1 christos ipfobj_t dobj; 7784 1.1 christos 7785 1.3 darrenr if (next->fr_type == FR_T_IPFEXPR) 7786 1.3 darrenr dobj.ipfo_type = IPFOBJ_IPFEXPR; 7787 1.3 darrenr else 7788 1.3 darrenr dobj.ipfo_type = IPFOBJ_FRIPF; 7789 1.1 christos dobj.ipfo_size = next->fr_dsize; 7790 1.1 christos dobj.ipfo_rev = obj.ipfo_rev; 7791 1.1 christos dobj.ipfo_ptr = dst; 7792 1.1 christos error = ipf_outobjk(softc, &dobj, next->fr_data); 7793 1.1 christos } 7794 1.1 christos } 7795 1.1 christos 7796 1.1 christos if ((fr != NULL) && (next == &zero)) 7797 1.1 christos (void) ipf_derefrule(softc, &fr); 7798 1.1 christos 7799 1.1 christos return error; 7800 1.1 christos } 7801 1.1 christos 7802 1.1 christos 7803 1.1 christos /* ------------------------------------------------------------------------ */ 7804 1.1 christos /* Function: ipf_frruleiter */ 7805 1.1 christos /* Returns: int - 0 = success, else error */ 7806 1.1 christos /* Parameters: softc(I)- pointer to soft context main structure */ 7807 1.1 christos /* data(I) - the token type to match */ 7808 1.1 christos /* uid(I) - uid owning the token */ 7809 1.1 christos /* ptr(I) - context pointer for the token */ 7810 1.1 christos /* */ 7811 1.1 christos /* This function serves as a stepping stone between ipf_ipf_ioctl and */ 7812 1.1 christos /* ipf_getnextrule. It's role is to find the right token in the kernel for */ 7813 1.1 christos /* the process doing the ioctl and use that to ask for the next rule. */ 7814 1.1 christos /* ------------------------------------------------------------------------ */ 7815 1.1 christos static int 7816 1.2 christos ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx) 7817 1.1 christos { 7818 1.1 christos ipftoken_t *token; 7819 1.3 darrenr ipfruleiter_t it; 7820 1.3 darrenr ipfobj_t obj; 7821 1.1 christos int error; 7822 1.1 christos 7823 1.1 christos token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx); 7824 1.1 christos if (token != NULL) { 7825 1.1 christos error = ipf_getnextrule(softc, token, data); 7826 1.1 christos WRITE_ENTER(&softc->ipf_tokens); 7827 1.3 darrenr ipf_token_deref(softc, token); 7828 1.1 christos RWLOCK_EXIT(&softc->ipf_tokens); 7829 1.1 christos } else { 7830 1.3 darrenr error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER); 7831 1.3 darrenr if (error != 0) 7832 1.3 darrenr return error; 7833 1.3 darrenr it.iri_rule = NULL; 7834 1.3 darrenr error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER); 7835 1.1 christos } 7836 1.1 christos 7837 1.1 christos return error; 7838 1.1 christos } 7839 1.1 christos 7840 1.1 christos 7841 1.1 christos /* ------------------------------------------------------------------------ */ 7842 1.1 christos /* Function: ipf_geniter */ 7843 1.1 christos /* Returns: int - 0 = success, else error */ 7844 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 7845 1.1 christos /* token(I) - pointer to ipftoken_t structure */ 7846 1.1 christos /* itp(I) - pointer to iterator data */ 7847 1.1 christos /* */ 7848 1.1 christos /* Decide which iterator function to call using information passed through */ 7849 1.1 christos /* the ipfgeniter_t structure at itp. */ 7850 1.1 christos /* ------------------------------------------------------------------------ */ 7851 1.1 christos static int 7852 1.2 christos ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp) 7853 1.1 christos { 7854 1.1 christos int error; 7855 1.1 christos 7856 1.1 christos switch (itp->igi_type) 7857 1.1 christos { 7858 1.1 christos case IPFGENITER_FRAG : 7859 1.1 christos error = ipf_frag_pkt_next(softc, token, itp); 7860 1.1 christos break; 7861 1.1 christos default : 7862 1.1 christos IPFERROR(92); 7863 1.1 christos error = EINVAL; 7864 1.1 christos break; 7865 1.1 christos } 7866 1.1 christos 7867 1.1 christos return error; 7868 1.1 christos } 7869 1.1 christos 7870 1.1 christos 7871 1.1 christos /* ------------------------------------------------------------------------ */ 7872 1.1 christos /* Function: ipf_genericiter */ 7873 1.1 christos /* Returns: int - 0 = success, else error */ 7874 1.1 christos /* Parameters: softc(I)- pointer to soft context main structure */ 7875 1.1 christos /* data(I) - the token type to match */ 7876 1.1 christos /* uid(I) - uid owning the token */ 7877 1.1 christos /* ptr(I) - context pointer for the token */ 7878 1.1 christos /* */ 7879 1.1 christos /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */ 7880 1.1 christos /* ------------------------------------------------------------------------ */ 7881 1.1 christos int 7882 1.2 christos ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx) 7883 1.1 christos { 7884 1.1 christos ipftoken_t *token; 7885 1.1 christos ipfgeniter_t iter; 7886 1.1 christos int error; 7887 1.1 christos 7888 1.1 christos error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER); 7889 1.1 christos if (error != 0) 7890 1.1 christos return error; 7891 1.1 christos 7892 1.1 christos token = ipf_token_find(softc, iter.igi_type, uid, ctx); 7893 1.1 christos if (token != NULL) { 7894 1.1 christos token->ipt_subtype = iter.igi_type; 7895 1.1 christos error = ipf_geniter(softc, token, &iter); 7896 1.1 christos WRITE_ENTER(&softc->ipf_tokens); 7897 1.3 darrenr ipf_token_deref(softc, token); 7898 1.1 christos RWLOCK_EXIT(&softc->ipf_tokens); 7899 1.1 christos } else { 7900 1.1 christos IPFERROR(93); 7901 1.1 christos error = 0; 7902 1.1 christos } 7903 1.1 christos 7904 1.1 christos return error; 7905 1.1 christos } 7906 1.1 christos 7907 1.1 christos 7908 1.1 christos /* ------------------------------------------------------------------------ */ 7909 1.1 christos /* Function: ipf_ipf_ioctl */ 7910 1.1 christos /* Returns: int - 0 = success, else error */ 7911 1.1 christos /* Parameters: softc(I)- pointer to soft context main structure */ 7912 1.1 christos /* data(I) - the token type to match */ 7913 1.1 christos /* cmd(I) - the ioctl command number */ 7914 1.1 christos /* mode(I) - mode flags for the ioctl */ 7915 1.1 christos /* uid(I) - uid owning the token */ 7916 1.1 christos /* ptr(I) - context pointer for the token */ 7917 1.1 christos /* */ 7918 1.1 christos /* This function handles all of the ioctl command that are actually isssued */ 7919 1.1 christos /* to the /dev/ipl device. */ 7920 1.1 christos /* ------------------------------------------------------------------------ */ 7921 1.1 christos int 7922 1.2 christos ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode, 7923 1.2 christos int uid, void *ctx) 7924 1.1 christos { 7925 1.1 christos friostat_t fio; 7926 1.1 christos int error, tmp; 7927 1.1 christos ipfobj_t obj; 7928 1.1 christos SPL_INT(s); 7929 1.1 christos 7930 1.1 christos switch (cmd) 7931 1.1 christos { 7932 1.1 christos case SIOCFRENB : 7933 1.1 christos if (!(mode & FWRITE)) { 7934 1.1 christos IPFERROR(94); 7935 1.1 christos error = EPERM; 7936 1.1 christos } else { 7937 1.1 christos error = BCOPYIN(data, &tmp, sizeof(tmp)); 7938 1.1 christos if (error != 0) { 7939 1.1 christos IPFERROR(95); 7940 1.1 christos error = EFAULT; 7941 1.1 christos break; 7942 1.1 christos } 7943 1.1 christos 7944 1.1 christos WRITE_ENTER(&softc->ipf_global); 7945 1.1 christos if (tmp) { 7946 1.1 christos if (softc->ipf_running > 0) 7947 1.1 christos error = 0; 7948 1.1 christos else 7949 1.1 christos error = ipfattach(softc); 7950 1.1 christos if (error == 0) 7951 1.1 christos softc->ipf_running = 1; 7952 1.1 christos else 7953 1.1 christos (void) ipfdetach(softc); 7954 1.1 christos } else { 7955 1.1 christos if (softc->ipf_running == 1) 7956 1.1 christos error = ipfdetach(softc); 7957 1.1 christos else 7958 1.1 christos error = 0; 7959 1.1 christos if (error == 0) 7960 1.1 christos softc->ipf_running = -1; 7961 1.1 christos } 7962 1.1 christos RWLOCK_EXIT(&softc->ipf_global); 7963 1.1 christos } 7964 1.1 christos break; 7965 1.1 christos 7966 1.1 christos case SIOCIPFSET : 7967 1.1 christos if (!(mode & FWRITE)) { 7968 1.1 christos IPFERROR(96); 7969 1.1 christos error = EPERM; 7970 1.1 christos break; 7971 1.1 christos } 7972 1.1 christos /* FALLTHRU */ 7973 1.1 christos case SIOCIPFGETNEXT : 7974 1.1 christos case SIOCIPFGET : 7975 1.1 christos error = ipf_ipftune(softc, cmd, (void *)data); 7976 1.1 christos break; 7977 1.1 christos 7978 1.1 christos case SIOCSETFF : 7979 1.1 christos if (!(mode & FWRITE)) { 7980 1.1 christos IPFERROR(97); 7981 1.1 christos error = EPERM; 7982 1.1 christos } else { 7983 1.1 christos error = BCOPYIN(data, &softc->ipf_flags, 7984 1.1 christos sizeof(softc->ipf_flags)); 7985 1.1 christos if (error != 0) { 7986 1.1 christos IPFERROR(98); 7987 1.1 christos error = EFAULT; 7988 1.1 christos } 7989 1.1 christos } 7990 1.1 christos break; 7991 1.1 christos 7992 1.1 christos case SIOCGETFF : 7993 1.1 christos error = BCOPYOUT(&softc->ipf_flags, data, 7994 1.1 christos sizeof(softc->ipf_flags)); 7995 1.1 christos if (error != 0) { 7996 1.1 christos IPFERROR(99); 7997 1.1 christos error = EFAULT; 7998 1.1 christos } 7999 1.1 christos break; 8000 1.1 christos 8001 1.1 christos case SIOCFUNCL : 8002 1.1 christos error = ipf_resolvefunc(softc, (void *)data); 8003 1.1 christos break; 8004 1.1 christos 8005 1.1 christos case SIOCINAFR : 8006 1.1 christos case SIOCRMAFR : 8007 1.1 christos case SIOCADAFR : 8008 1.1 christos case SIOCZRLST : 8009 1.1 christos if (!(mode & FWRITE)) { 8010 1.1 christos IPFERROR(100); 8011 1.1 christos error = EPERM; 8012 1.1 christos } else { 8013 1.2 christos error = frrequest(softc, IPL_LOGIPF, cmd, data, 8014 1.1 christos softc->ipf_active, 1); 8015 1.1 christos } 8016 1.1 christos break; 8017 1.1 christos 8018 1.1 christos case SIOCINIFR : 8019 1.1 christos case SIOCRMIFR : 8020 1.1 christos case SIOCADIFR : 8021 1.1 christos if (!(mode & FWRITE)) { 8022 1.1 christos IPFERROR(101); 8023 1.1 christos error = EPERM; 8024 1.1 christos } else { 8025 1.2 christos error = frrequest(softc, IPL_LOGIPF, cmd, data, 8026 1.1 christos 1 - softc->ipf_active, 1); 8027 1.1 christos } 8028 1.1 christos break; 8029 1.1 christos 8030 1.1 christos case SIOCSWAPA : 8031 1.1 christos if (!(mode & FWRITE)) { 8032 1.1 christos IPFERROR(102); 8033 1.1 christos error = EPERM; 8034 1.1 christos } else { 8035 1.1 christos WRITE_ENTER(&softc->ipf_mutex); 8036 1.1 christos error = BCOPYOUT(&softc->ipf_active, data, 8037 1.1 christos sizeof(softc->ipf_active)); 8038 1.1 christos if (error != 0) { 8039 1.1 christos IPFERROR(103); 8040 1.1 christos error = EFAULT; 8041 1.1 christos } else { 8042 1.1 christos softc->ipf_active = 1 - softc->ipf_active; 8043 1.1 christos } 8044 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 8045 1.1 christos } 8046 1.1 christos break; 8047 1.1 christos 8048 1.1 christos case SIOCGETFS : 8049 1.1 christos error = ipf_inobj(softc, (void *)data, &obj, &fio, 8050 1.1 christos IPFOBJ_IPFSTAT); 8051 1.1 christos if (error != 0) 8052 1.1 christos break; 8053 1.1 christos ipf_getstat(softc, &fio, obj.ipfo_rev); 8054 1.1 christos error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT); 8055 1.1 christos break; 8056 1.1 christos 8057 1.1 christos case SIOCFRZST : 8058 1.1 christos if (!(mode & FWRITE)) { 8059 1.1 christos IPFERROR(104); 8060 1.1 christos error = EPERM; 8061 1.1 christos } else 8062 1.2 christos error = ipf_zerostats(softc, data); 8063 1.1 christos break; 8064 1.1 christos 8065 1.1 christos case SIOCIPFFL : 8066 1.1 christos if (!(mode & FWRITE)) { 8067 1.1 christos IPFERROR(105); 8068 1.1 christos error = EPERM; 8069 1.1 christos } else { 8070 1.1 christos error = BCOPYIN(data, &tmp, sizeof(tmp)); 8071 1.1 christos if (!error) { 8072 1.1 christos tmp = ipf_flush(softc, IPL_LOGIPF, tmp); 8073 1.1 christos error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8074 1.1 christos if (error != 0) { 8075 1.1 christos IPFERROR(106); 8076 1.1 christos error = EFAULT; 8077 1.1 christos } 8078 1.1 christos } else { 8079 1.1 christos IPFERROR(107); 8080 1.1 christos error = EFAULT; 8081 1.1 christos } 8082 1.1 christos } 8083 1.1 christos break; 8084 1.1 christos 8085 1.1 christos #ifdef USE_INET6 8086 1.1 christos case SIOCIPFL6 : 8087 1.1 christos if (!(mode & FWRITE)) { 8088 1.1 christos IPFERROR(108); 8089 1.1 christos error = EPERM; 8090 1.1 christos } else { 8091 1.1 christos error = BCOPYIN(data, &tmp, sizeof(tmp)); 8092 1.1 christos if (!error) { 8093 1.1 christos tmp = ipf_flush(softc, IPL_LOGIPF, tmp); 8094 1.1 christos error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8095 1.1 christos if (error != 0) { 8096 1.1 christos IPFERROR(109); 8097 1.1 christos error = EFAULT; 8098 1.1 christos } 8099 1.1 christos } else { 8100 1.1 christos IPFERROR(110); 8101 1.1 christos error = EFAULT; 8102 1.1 christos } 8103 1.1 christos } 8104 1.1 christos break; 8105 1.1 christos #endif 8106 1.1 christos 8107 1.1 christos case SIOCSTLCK : 8108 1.1 christos if (!(mode & FWRITE)) { 8109 1.1 christos IPFERROR(122); 8110 1.1 christos error = EPERM; 8111 1.1 christos } else { 8112 1.1 christos error = BCOPYIN(data, &tmp, sizeof(tmp)); 8113 1.1 christos if (error == 0) { 8114 1.1 christos ipf_state_setlock(softc->ipf_state_soft, tmp); 8115 1.1 christos ipf_nat_setlock(softc->ipf_nat_soft, tmp); 8116 1.1 christos ipf_frag_setlock(softc->ipf_frag_soft, tmp); 8117 1.1 christos ipf_auth_setlock(softc->ipf_auth_soft, tmp); 8118 1.1 christos } else { 8119 1.1 christos IPFERROR(111); 8120 1.1 christos error = EFAULT; 8121 1.1 christos } 8122 1.1 christos } 8123 1.1 christos break; 8124 1.1 christos 8125 1.1 christos #ifdef IPFILTER_LOG 8126 1.1 christos case SIOCIPFFB : 8127 1.1 christos if (!(mode & FWRITE)) { 8128 1.1 christos IPFERROR(112); 8129 1.1 christos error = EPERM; 8130 1.1 christos } else { 8131 1.1 christos tmp = ipf_log_clear(softc, IPL_LOGIPF); 8132 1.1 christos error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8133 1.1 christos if (error) { 8134 1.1 christos IPFERROR(113); 8135 1.1 christos error = EFAULT; 8136 1.1 christos } 8137 1.1 christos } 8138 1.1 christos break; 8139 1.1 christos #endif /* IPFILTER_LOG */ 8140 1.1 christos 8141 1.1 christos case SIOCFRSYN : 8142 1.1 christos if (!(mode & FWRITE)) { 8143 1.1 christos IPFERROR(114); 8144 1.1 christos error = EPERM; 8145 1.1 christos } else { 8146 1.1 christos WRITE_ENTER(&softc->ipf_global); 8147 1.1 christos #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES) 8148 1.1 christos error = ipfsync(); 8149 1.1 christos #else 8150 1.1 christos ipf_sync(softc, NULL); 8151 1.1 christos error = 0; 8152 1.1 christos #endif 8153 1.1 christos RWLOCK_EXIT(&softc->ipf_global); 8154 1.1 christos 8155 1.1 christos } 8156 1.1 christos break; 8157 1.1 christos 8158 1.1 christos case SIOCGFRST : 8159 1.1 christos error = ipf_outobj(softc, (void *)data, 8160 1.1 christos ipf_frag_stats(softc->ipf_frag_soft), 8161 1.1 christos IPFOBJ_FRAGSTAT); 8162 1.1 christos break; 8163 1.1 christos 8164 1.1 christos #ifdef IPFILTER_LOG 8165 1.1 christos case FIONREAD : 8166 1.1 christos tmp = ipf_log_bytesused(softc, IPL_LOGIPF); 8167 1.1 christos error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8168 1.1 christos break; 8169 1.1 christos #endif 8170 1.1 christos 8171 1.1 christos case SIOCIPFITER : 8172 1.1 christos SPL_SCHED(s); 8173 1.1 christos error = ipf_frruleiter(softc, data, uid, ctx); 8174 1.1 christos SPL_X(s); 8175 1.1 christos break; 8176 1.1 christos 8177 1.1 christos case SIOCGENITER : 8178 1.1 christos SPL_SCHED(s); 8179 1.1 christos error = ipf_genericiter(softc, data, uid, ctx); 8180 1.1 christos SPL_X(s); 8181 1.1 christos break; 8182 1.1 christos 8183 1.1 christos case SIOCIPFDELTOK : 8184 1.1 christos error = BCOPYIN(data, &tmp, sizeof(tmp)); 8185 1.1 christos if (error == 0) { 8186 1.1 christos SPL_SCHED(s); 8187 1.1 christos error = ipf_token_del(softc, tmp, uid, ctx); 8188 1.1 christos SPL_X(s); 8189 1.1 christos } 8190 1.1 christos break; 8191 1.1 christos 8192 1.1 christos default : 8193 1.1 christos IPFERROR(115); 8194 1.1 christos error = EINVAL; 8195 1.1 christos break; 8196 1.1 christos } 8197 1.1 christos 8198 1.1 christos return error; 8199 1.1 christos } 8200 1.1 christos 8201 1.1 christos 8202 1.1 christos /* ------------------------------------------------------------------------ */ 8203 1.1 christos /* Function: ipf_decaps */ 8204 1.1 christos /* Returns: int - -1 == decapsulation failed, else bit mask of */ 8205 1.1 christos /* flags indicating packet filtering decision. */ 8206 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 8207 1.1 christos /* pass(I) - IP protocol version to match */ 8208 1.1 christos /* l5proto(I) - layer 5 protocol to decode UDP data as. */ 8209 1.1 christos /* */ 8210 1.1 christos /* This function is called for packets that are wrapt up in other packets, */ 8211 1.1 christos /* for example, an IP packet that is the entire data segment for another IP */ 8212 1.1 christos /* packet. If the basic constraints for this are satisfied, change the */ 8213 1.1 christos /* buffer to point to the start of the inner packet and start processing */ 8214 1.1 christos /* rules belonging to the head group this rule specifies. */ 8215 1.1 christos /* ------------------------------------------------------------------------ */ 8216 1.1 christos u_32_t 8217 1.2 christos ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto) 8218 1.1 christos { 8219 1.1 christos fr_info_t fin2, *fino = NULL; 8220 1.1 christos int elen, hlen, nh; 8221 1.1 christos grehdr_t gre; 8222 1.1 christos ip_t *ip; 8223 1.1 christos mb_t *m; 8224 1.1 christos 8225 1.1 christos if ((fin->fin_flx & FI_COALESCE) == 0) 8226 1.1 christos if (ipf_coalesce(fin) == -1) 8227 1.1 christos goto cantdecaps; 8228 1.1 christos 8229 1.1 christos m = fin->fin_m; 8230 1.1 christos hlen = fin->fin_hlen; 8231 1.1 christos 8232 1.1 christos switch (fin->fin_p) 8233 1.1 christos { 8234 1.1 christos case IPPROTO_UDP : 8235 1.1 christos /* 8236 1.1 christos * In this case, the specific protocol being decapsulated 8237 1.1 christos * inside UDP frames comes from the rule. 8238 1.1 christos */ 8239 1.1 christos nh = fin->fin_fr->fr_icode; 8240 1.1 christos break; 8241 1.1 christos 8242 1.1 christos case IPPROTO_GRE : /* 47 */ 8243 1.1 christos bcopy(fin->fin_dp, (char *)&gre, sizeof(gre)); 8244 1.1 christos hlen += sizeof(grehdr_t); 8245 1.1 christos if (gre.gr_R|gre.gr_s) 8246 1.1 christos goto cantdecaps; 8247 1.1 christos if (gre.gr_C) 8248 1.1 christos hlen += 4; 8249 1.1 christos if (gre.gr_K) 8250 1.1 christos hlen += 4; 8251 1.1 christos if (gre.gr_S) 8252 1.1 christos hlen += 4; 8253 1.1 christos 8254 1.1 christos nh = IPPROTO_IP; 8255 1.1 christos 8256 1.1 christos /* 8257 1.1 christos * If the routing options flag is set, validate that it is 8258 1.1 christos * there and bounce over it. 8259 1.1 christos */ 8260 1.1 christos #if 0 8261 1.1 christos /* This is really heavy weight and lots of room for error, */ 8262 1.1 christos /* so for now, put it off and get the simple stuff right. */ 8263 1.1 christos if (gre.gr_R) { 8264 1.1 christos u_char off, len, *s; 8265 1.1 christos u_short af; 8266 1.1 christos int end; 8267 1.1 christos 8268 1.1 christos end = 0; 8269 1.1 christos s = fin->fin_dp; 8270 1.1 christos s += hlen; 8271 1.1 christos aplen = fin->fin_plen - hlen; 8272 1.1 christos while (aplen > 3) { 8273 1.1 christos af = (s[0] << 8) | s[1]; 8274 1.1 christos off = s[2]; 8275 1.1 christos len = s[3]; 8276 1.1 christos aplen -= 4; 8277 1.1 christos s += 4; 8278 1.1 christos if (af == 0 && len == 0) { 8279 1.1 christos end = 1; 8280 1.1 christos break; 8281 1.1 christos } 8282 1.1 christos if (aplen < len) 8283 1.1 christos break; 8284 1.1 christos s += len; 8285 1.1 christos aplen -= len; 8286 1.1 christos } 8287 1.1 christos if (end != 1) 8288 1.1 christos goto cantdecaps; 8289 1.1 christos hlen = s - (u_char *)fin->fin_dp; 8290 1.1 christos } 8291 1.1 christos #endif 8292 1.1 christos break; 8293 1.1 christos 8294 1.1 christos #ifdef IPPROTO_IPIP 8295 1.1 christos case IPPROTO_IPIP : /* 4 */ 8296 1.1 christos #endif 8297 1.1 christos nh = IPPROTO_IP; 8298 1.1 christos break; 8299 1.1 christos 8300 1.1 christos default : /* Includes ESP, AH is special for IPv4 */ 8301 1.1 christos goto cantdecaps; 8302 1.1 christos } 8303 1.1 christos 8304 1.1 christos switch (nh) 8305 1.1 christos { 8306 1.1 christos case IPPROTO_IP : 8307 1.1 christos case IPPROTO_IPV6 : 8308 1.1 christos break; 8309 1.1 christos default : 8310 1.1 christos goto cantdecaps; 8311 1.1 christos } 8312 1.1 christos 8313 1.1 christos bcopy((char *)fin, (char *)&fin2, sizeof(fin2)); 8314 1.1 christos fino = fin; 8315 1.1 christos fin = &fin2; 8316 1.1 christos elen = hlen; 8317 1.1 christos #if defined(MENTAT) && defined(_KERNEL) 8318 1.1 christos m->b_rptr += elen; 8319 1.1 christos #else 8320 1.1 christos m->m_data += elen; 8321 1.1 christos m->m_len -= elen; 8322 1.1 christos #endif 8323 1.1 christos fin->fin_plen -= elen; 8324 1.1 christos 8325 1.1 christos ip = (ip_t *)((char *)fin->fin_ip + elen); 8326 1.1 christos 8327 1.1 christos /* 8328 1.1 christos * Make sure we have at least enough data for the network layer 8329 1.1 christos * header. 8330 1.1 christos */ 8331 1.1 christos if (IP_V(ip) == 4) 8332 1.1 christos hlen = IP_HL(ip) << 2; 8333 1.1 christos #ifdef USE_INET6 8334 1.1 christos else if (IP_V(ip) == 6) 8335 1.1 christos hlen = sizeof(ip6_t); 8336 1.1 christos #endif 8337 1.1 christos else 8338 1.1 christos goto cantdecaps2; 8339 1.1 christos 8340 1.1 christos if (fin->fin_plen < hlen) 8341 1.1 christos goto cantdecaps2; 8342 1.1 christos 8343 1.1 christos fin->fin_dp = (char *)ip + hlen; 8344 1.1 christos 8345 1.1 christos if (IP_V(ip) == 4) { 8346 1.1 christos /* 8347 1.1 christos * Perform IPv4 header checksum validation. 8348 1.1 christos */ 8349 1.1 christos if (ipf_cksum((u_short *)ip, hlen)) 8350 1.1 christos goto cantdecaps2; 8351 1.1 christos } 8352 1.1 christos 8353 1.1 christos if (ipf_makefrip(hlen, ip, fin) == -1) { 8354 1.1 christos cantdecaps2: 8355 1.1 christos if (m != NULL) { 8356 1.1 christos #if defined(MENTAT) && defined(_KERNEL) 8357 1.1 christos m->b_rptr -= elen; 8358 1.1 christos #else 8359 1.1 christos m->m_data -= elen; 8360 1.1 christos m->m_len += elen; 8361 1.1 christos #endif 8362 1.1 christos } 8363 1.1 christos cantdecaps: 8364 1.1 christos DT1(frb_decapfrip, fr_info_t *, fin); 8365 1.1 christos pass &= ~FR_CMDMASK; 8366 1.1 christos pass |= FR_BLOCK|FR_QUICK; 8367 1.1 christos fin->fin_reason = FRB_DECAPFRIP; 8368 1.1 christos return -1; 8369 1.1 christos } 8370 1.1 christos 8371 1.1 christos pass = ipf_scanlist(fin, pass); 8372 1.1 christos 8373 1.1 christos /* 8374 1.1 christos * Copy the packet filter "result" fields out of the fr_info_t struct 8375 1.1 christos * that is local to the decapsulation processing and back into the 8376 1.1 christos * one we were called with. 8377 1.1 christos */ 8378 1.1 christos fino->fin_flx = fin->fin_flx; 8379 1.1 christos fino->fin_rev = fin->fin_rev; 8380 1.1 christos fino->fin_icode = fin->fin_icode; 8381 1.1 christos fino->fin_rule = fin->fin_rule; 8382 1.1 christos (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN); 8383 1.1 christos fino->fin_fr = fin->fin_fr; 8384 1.1 christos fino->fin_error = fin->fin_error; 8385 1.1 christos fino->fin_mp = fin->fin_mp; 8386 1.1 christos fino->fin_m = fin->fin_m; 8387 1.1 christos m = fin->fin_m; 8388 1.1 christos if (m != NULL) { 8389 1.1 christos #if defined(MENTAT) && defined(_KERNEL) 8390 1.1 christos m->b_rptr -= elen; 8391 1.1 christos #else 8392 1.1 christos m->m_data -= elen; 8393 1.1 christos m->m_len += elen; 8394 1.1 christos #endif 8395 1.1 christos } 8396 1.1 christos return pass; 8397 1.1 christos } 8398 1.1 christos 8399 1.1 christos 8400 1.1 christos /* ------------------------------------------------------------------------ */ 8401 1.1 christos /* Function: ipf_matcharray_load */ 8402 1.1 christos /* Returns: int - 0 = success, else error */ 8403 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 8404 1.1 christos /* data(I) - pointer to ioctl data */ 8405 1.1 christos /* objp(I) - ipfobj_t structure to load data into */ 8406 1.1 christos /* arrayptr(I) - pointer to location to store array pointer */ 8407 1.1 christos /* */ 8408 1.1 christos /* This function loads in a mathing array through the ipfobj_t struct that */ 8409 1.1 christos /* describes it. Sanity checking and array size limitations are enforced */ 8410 1.1 christos /* in this function to prevent userspace from trying to load in something */ 8411 1.1 christos /* that is insanely big. Once the size of the array is known, the memory */ 8412 1.1 christos /* required is malloc'd and returned through changing *arrayptr. The */ 8413 1.1 christos /* contents of the array are verified before returning. Only in the event */ 8414 1.1 christos /* of a successful call is the caller required to free up the malloc area. */ 8415 1.1 christos /* ------------------------------------------------------------------------ */ 8416 1.1 christos int 8417 1.2 christos ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, 8418 1.2 christos int **arrayptr) 8419 1.1 christos { 8420 1.1 christos int arraysize, *array, error; 8421 1.1 christos 8422 1.1 christos *arrayptr = NULL; 8423 1.1 christos 8424 1.1 christos error = BCOPYIN(data, objp, sizeof(*objp)); 8425 1.1 christos if (error != 0) { 8426 1.1 christos IPFERROR(116); 8427 1.1 christos return EFAULT; 8428 1.1 christos } 8429 1.1 christos 8430 1.1 christos if (objp->ipfo_type != IPFOBJ_IPFEXPR) { 8431 1.1 christos IPFERROR(117); 8432 1.1 christos return EINVAL; 8433 1.1 christos } 8434 1.1 christos 8435 1.1 christos if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) || 8436 1.1 christos (objp->ipfo_size > 1024)) { 8437 1.1 christos IPFERROR(118); 8438 1.1 christos return EINVAL; 8439 1.1 christos } 8440 1.1 christos 8441 1.1 christos arraysize = objp->ipfo_size * sizeof(*array); 8442 1.1 christos KMALLOCS(array, int *, arraysize); 8443 1.1 christos if (array == NULL) { 8444 1.1 christos IPFERROR(119); 8445 1.1 christos return ENOMEM; 8446 1.1 christos } 8447 1.1 christos 8448 1.1 christos error = COPYIN(objp->ipfo_ptr, array, arraysize); 8449 1.1 christos if (error != 0) { 8450 1.1 christos KFREES(array, arraysize); 8451 1.1 christos IPFERROR(120); 8452 1.1 christos return EFAULT; 8453 1.1 christos } 8454 1.1 christos 8455 1.1 christos if (ipf_matcharray_verify(array, arraysize) != 0) { 8456 1.1 christos KFREES(array, arraysize); 8457 1.1 christos IPFERROR(121); 8458 1.1 christos return EINVAL; 8459 1.1 christos } 8460 1.1 christos 8461 1.1 christos *arrayptr = array; 8462 1.1 christos return 0; 8463 1.1 christos } 8464 1.1 christos 8465 1.1 christos 8466 1.1 christos /* ------------------------------------------------------------------------ */ 8467 1.1 christos /* Function: ipf_matcharray_verify */ 8468 1.1 christos /* Returns: Nil */ 8469 1.1 christos /* Parameters: array(I) - pointer to matching array */ 8470 1.1 christos /* arraysize(I) - number of elements in the array */ 8471 1.1 christos /* */ 8472 1.1 christos /* Verify the contents of a matching array by stepping through each element */ 8473 1.1 christos /* in it. The actual commands in the array are not verified for */ 8474 1.1 christos /* correctness, only that all of the sizes are correctly within limits. */ 8475 1.1 christos /* ------------------------------------------------------------------------ */ 8476 1.1 christos int 8477 1.2 christos ipf_matcharray_verify(int *array, int arraysize) 8478 1.1 christos { 8479 1.3 darrenr int i, nelem, maxidx; 8480 1.3 darrenr ipfexp_t *e; 8481 1.1 christos 8482 1.1 christos nelem = arraysize / sizeof(*array); 8483 1.1 christos 8484 1.1 christos /* 8485 1.1 christos * Currently, it makes no sense to have an array less than 6 8486 1.1 christos * elements long - the initial size at the from, a single operation 8487 1.1 christos * (minimum 4 in length) and a trailer, for a total of 6. 8488 1.1 christos */ 8489 1.1 christos if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) { 8490 1.1 christos return -1; 8491 1.1 christos } 8492 1.1 christos 8493 1.1 christos /* 8494 1.1 christos * Verify the size of data pointed to by array with how long 8495 1.1 christos * the array claims to be itself. 8496 1.1 christos */ 8497 1.1 christos if (array[0] * sizeof(*array) != arraysize) { 8498 1.1 christos return -1; 8499 1.1 christos } 8500 1.1 christos 8501 1.1 christos maxidx = nelem - 1; 8502 1.1 christos /* 8503 1.1 christos * The last opcode in this array should be an IPF_EXP_END. 8504 1.1 christos */ 8505 1.1 christos if (array[maxidx] != IPF_EXP_END) { 8506 1.1 christos return -1; 8507 1.1 christos } 8508 1.1 christos 8509 1.1 christos for (i = 1; i < maxidx; ) { 8510 1.3 darrenr e = (ipfexp_t *)(array + i); 8511 1.1 christos 8512 1.1 christos /* 8513 1.1 christos * The length of the bits to check must be at least 1 8514 1.1 christos * (or else there is nothing to comapre with!) and it 8515 1.1 christos * cannot exceed the length of the data present. 8516 1.1 christos */ 8517 1.3 darrenr if ((e->ipfe_size < 1 ) || 8518 1.3 darrenr (e->ipfe_size + i > maxidx)) { 8519 1.1 christos return -1; 8520 1.1 christos } 8521 1.3 darrenr i += e->ipfe_size; 8522 1.1 christos } 8523 1.1 christos return 0; 8524 1.1 christos } 8525 1.1 christos 8526 1.1 christos 8527 1.1 christos /* ------------------------------------------------------------------------ */ 8528 1.1 christos /* Function: ipf_fr_matcharray */ 8529 1.1 christos /* Returns: int - 0 = match failed, else positive match */ 8530 1.1 christos /* Parameters: fin(I) - pointer to packet information */ 8531 1.1 christos /* array(I) - pointer to matching array */ 8532 1.1 christos /* */ 8533 1.1 christos /* This function is used to apply a matching array against a packet and */ 8534 1.1 christos /* return an indication of whether or not the packet successfully matches */ 8535 1.1 christos /* all of the commands in it. */ 8536 1.1 christos /* ------------------------------------------------------------------------ */ 8537 1.1 christos static int 8538 1.2 christos ipf_fr_matcharray(fr_info_t *fin, int *array) 8539 1.1 christos { 8540 1.3 darrenr int i, n, *x, rv, p; 8541 1.3 darrenr ipfexp_t *e; 8542 1.1 christos 8543 1.3 darrenr rv = 0; 8544 1.1 christos n = array[0]; 8545 1.1 christos x = array + 1; 8546 1.1 christos 8547 1.3 darrenr for (; n > 0; x += 3 + x[3], rv = 0) { 8548 1.3 darrenr e = (ipfexp_t *)x; 8549 1.3 darrenr if (e->ipfe_cmd == IPF_EXP_END) 8550 1.3 darrenr break; 8551 1.3 darrenr n -= e->ipfe_size; 8552 1.1 christos 8553 1.1 christos /* 8554 1.1 christos * The upper 16 bits currently store the protocol value. 8555 1.1 christos * This is currently used with TCP and UDP port compares and 8556 1.1 christos * allows "tcp.port = 80" without requiring an explicit 8557 1.1 christos " "ip.pr = tcp" first. 8558 1.1 christos */ 8559 1.3 darrenr p = e->ipfe_cmd >> 16; 8560 1.1 christos if ((p != 0) && (p != fin->fin_p)) 8561 1.1 christos break; 8562 1.1 christos 8563 1.3 darrenr switch (e->ipfe_cmd) 8564 1.1 christos { 8565 1.1 christos case IPF_EXP_IP_PR : 8566 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8567 1.3 darrenr rv |= (fin->fin_p == e->ipfe_arg0[i]); 8568 1.1 christos } 8569 1.1 christos break; 8570 1.1 christos 8571 1.1 christos case IPF_EXP_IP_SRCADDR : 8572 1.1 christos if (fin->fin_v != 4) 8573 1.1 christos break; 8574 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8575 1.3 darrenr rv |= ((fin->fin_saddr & 8576 1.3 darrenr e->ipfe_arg0[i * 2 + 1]) == 8577 1.3 darrenr e->ipfe_arg0[i * 2]); 8578 1.1 christos } 8579 1.1 christos break; 8580 1.1 christos 8581 1.1 christos case IPF_EXP_IP_DSTADDR : 8582 1.1 christos if (fin->fin_v != 4) 8583 1.1 christos break; 8584 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8585 1.3 darrenr rv |= ((fin->fin_daddr & 8586 1.3 darrenr e->ipfe_arg0[i * 2 + 1]) == 8587 1.3 darrenr e->ipfe_arg0[i * 2]); 8588 1.1 christos } 8589 1.1 christos break; 8590 1.1 christos 8591 1.1 christos case IPF_EXP_IP_ADDR : 8592 1.1 christos if (fin->fin_v != 4) 8593 1.1 christos break; 8594 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8595 1.3 darrenr rv |= ((fin->fin_saddr & 8596 1.3 darrenr e->ipfe_arg0[i * 2 + 1]) == 8597 1.3 darrenr e->ipfe_arg0[i * 2]) || 8598 1.3 darrenr ((fin->fin_daddr & 8599 1.3 darrenr e->ipfe_arg0[i * 2 + 1]) == 8600 1.3 darrenr e->ipfe_arg0[i * 2]); 8601 1.1 christos } 8602 1.1 christos break; 8603 1.1 christos 8604 1.1 christos #ifdef USE_INET6 8605 1.1 christos case IPF_EXP_IP6_SRCADDR : 8606 1.1 christos if (fin->fin_v != 6) 8607 1.1 christos break; 8608 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8609 1.3 darrenr rv |= IP6_MASKEQ(&fin->fin_src6, 8610 1.3 darrenr &e->ipfe_arg0[i * 8 + 4], 8611 1.3 darrenr &e->ipfe_arg0[i * 8]); 8612 1.1 christos } 8613 1.1 christos break; 8614 1.1 christos 8615 1.1 christos case IPF_EXP_IP6_DSTADDR : 8616 1.1 christos if (fin->fin_v != 6) 8617 1.1 christos break; 8618 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8619 1.3 darrenr rv |= IP6_MASKEQ(&fin->fin_dst6, 8620 1.3 darrenr &e->ipfe_arg0[i * 8 + 4], 8621 1.3 darrenr &e->ipfe_arg0[i * 8]); 8622 1.1 christos } 8623 1.1 christos break; 8624 1.1 christos 8625 1.1 christos case IPF_EXP_IP6_ADDR : 8626 1.1 christos if (fin->fin_v != 6) 8627 1.1 christos break; 8628 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8629 1.3 darrenr rv |= IP6_MASKEQ(&fin->fin_src6, 8630 1.3 darrenr &e->ipfe_arg0[i * 8 + 4], 8631 1.3 darrenr &e->ipfe_arg0[i * 8]) || 8632 1.3 darrenr IP6_MASKEQ(&fin->fin_dst6, 8633 1.3 darrenr &e->ipfe_arg0[i * 8 + 4], 8634 1.3 darrenr &e->ipfe_arg0[i * 8]); 8635 1.1 christos } 8636 1.1 christos break; 8637 1.1 christos #endif 8638 1.1 christos 8639 1.1 christos case IPF_EXP_UDP_PORT : 8640 1.1 christos case IPF_EXP_TCP_PORT : 8641 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8642 1.3 darrenr rv |= (fin->fin_sport == e->ipfe_arg0[i]) || 8643 1.3 darrenr (fin->fin_dport == e->ipfe_arg0[i]); 8644 1.1 christos } 8645 1.1 christos break; 8646 1.1 christos 8647 1.1 christos case IPF_EXP_UDP_SPORT : 8648 1.1 christos case IPF_EXP_TCP_SPORT : 8649 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8650 1.3 darrenr rv |= (fin->fin_sport == e->ipfe_arg0[i]); 8651 1.1 christos } 8652 1.1 christos break; 8653 1.1 christos 8654 1.1 christos case IPF_EXP_UDP_DPORT : 8655 1.1 christos case IPF_EXP_TCP_DPORT : 8656 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8657 1.3 darrenr rv |= (fin->fin_dport == e->ipfe_arg0[i]); 8658 1.1 christos } 8659 1.1 christos break; 8660 1.1 christos 8661 1.1 christos case IPF_EXP_TCP_FLAGS : 8662 1.3 darrenr for (i = 0; !rv && i < e->ipfe_narg; i++) { 8663 1.3 darrenr rv |= ((fin->fin_tcpf & 8664 1.3 darrenr e->ipfe_arg0[i * 2 + 1]) == 8665 1.3 darrenr e->ipfe_arg0[i * 2]); 8666 1.1 christos } 8667 1.1 christos break; 8668 1.1 christos } 8669 1.3 darrenr rv ^= e->ipfe_not; 8670 1.1 christos 8671 1.3 darrenr if (rv == 0) 8672 1.1 christos break; 8673 1.1 christos } 8674 1.1 christos 8675 1.3 darrenr return rv; 8676 1.1 christos } 8677 1.1 christos 8678 1.1 christos 8679 1.1 christos /* ------------------------------------------------------------------------ */ 8680 1.1 christos /* Function: ipf_queueflush */ 8681 1.1 christos /* Returns: int - number of entries flushed (0 = none) */ 8682 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 8683 1.1 christos /* deletefn(I) - function to call to delete entry */ 8684 1.1 christos /* ipfqs(I) - top of the list of ipf internal queues */ 8685 1.1 christos /* userqs(I) - top of the list of user defined timeouts */ 8686 1.1 christos /* */ 8687 1.1 christos /* This fucntion gets called when the state/NAT hash tables fill up and we */ 8688 1.1 christos /* need to try a bit harder to free up some space. The algorithm used here */ 8689 1.1 christos /* split into two parts but both halves have the same goal: to reduce the */ 8690 1.1 christos /* number of connections considered to be "active" to the low watermark. */ 8691 1.1 christos /* There are two steps in doing this: */ 8692 1.1 christos /* 1) Remove any TCP connections that are already considered to be "closed" */ 8693 1.1 christos /* but have not yet been removed from the state table. The two states */ 8694 1.1 christos /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */ 8695 1.1 christos /* candidates for this style of removal. If freeing up entries in */ 8696 1.1 christos /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */ 8697 1.1 christos /* we do not go on to step 2. */ 8698 1.1 christos /* */ 8699 1.1 christos /* 2) Look for the oldest entries on each timeout queue and free them if */ 8700 1.1 christos /* they are within the given window we are considering. Where the */ 8701 1.1 christos /* window starts and the steps taken to increase its size depend upon */ 8702 1.1 christos /* how long ipf has been running (ipf_ticks.) Anything modified in the */ 8703 1.1 christos /* last 30 seconds is not touched. */ 8704 1.1 christos /* touched */ 8705 1.1 christos /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */ 8706 1.1 christos /* | | | | | | */ 8707 1.1 christos /* future <--+----------+--------+-----------+-----+-----+-----------> past */ 8708 1.1 christos /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */ 8709 1.1 christos /* */ 8710 1.1 christos /* Points to note: */ 8711 1.1 christos /* - tqe_die is the time, in the future, when entries die. */ 8712 1.1 christos /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */ 8713 1.1 christos /* ticks. */ 8714 1.1 christos /* - tqe_touched is when the entry was last used by NAT/state */ 8715 1.1 christos /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */ 8716 1.1 christos /* ipf_ticks any given timeout queue and vice versa. */ 8717 1.1 christos /* - both tqe_die and tqe_touched increase over time */ 8718 1.1 christos /* - timeout queues are sorted with the highest value of tqe_die at the */ 8719 1.1 christos /* bottom and therefore the smallest values of each are at the top */ 8720 1.1 christos /* - the pointer passed in as ipfqs should point to an array of timeout */ 8721 1.1 christos /* queues representing each of the TCP states */ 8722 1.1 christos /* */ 8723 1.1 christos /* We start by setting up a maximum range to scan for things to move of */ 8724 1.1 christos /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */ 8725 1.1 christos /* found in that range, "interval" is adjusted (so long as it isn't 30) and */ 8726 1.1 christos /* we start again with a new value for "iend" and "istart". This is */ 8727 1.1 christos /* continued until we either finish the scan of 30 second intervals or the */ 8728 1.1 christos /* low water mark is reached. */ 8729 1.1 christos /* ------------------------------------------------------------------------ */ 8730 1.1 christos int 8731 1.2 christos ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn, 8732 1.2 christos ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low) 8733 1.1 christos { 8734 1.1 christos u_long interval, istart, iend; 8735 1.1 christos ipftq_t *ifq, *ifqnext; 8736 1.1 christos ipftqent_t *tqe, *tqn; 8737 1.1 christos int removed = 0; 8738 1.1 christos 8739 1.1 christos for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) { 8740 1.1 christos tqn = tqe->tqe_next; 8741 1.1 christos if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8742 1.1 christos removed++; 8743 1.1 christos } 8744 1.1 christos if ((*activep * 100 / size) > low) { 8745 1.1 christos for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head; 8746 1.1 christos ((tqe = tqn) != NULL); ) { 8747 1.1 christos tqn = tqe->tqe_next; 8748 1.1 christos if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8749 1.1 christos removed++; 8750 1.1 christos } 8751 1.1 christos } 8752 1.1 christos 8753 1.1 christos if ((*activep * 100 / size) <= low) { 8754 1.1 christos return removed; 8755 1.1 christos } 8756 1.1 christos 8757 1.1 christos /* 8758 1.1 christos * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is 8759 1.1 christos * used then the operations are upgraded to floating point 8760 1.1 christos * and kernels don't like floating point... 8761 1.1 christos */ 8762 1.1 christos if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) { 8763 1.1 christos istart = IPF_TTLVAL(86400 * 4); 8764 1.1 christos interval = IPF_TTLVAL(43200); 8765 1.1 christos } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) { 8766 1.1 christos istart = IPF_TTLVAL(43200); 8767 1.1 christos interval = IPF_TTLVAL(1800); 8768 1.1 christos } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) { 8769 1.1 christos istart = IPF_TTLVAL(1800); 8770 1.1 christos interval = IPF_TTLVAL(30); 8771 1.1 christos } else { 8772 1.1 christos return 0; 8773 1.1 christos } 8774 1.1 christos if (istart > softc->ipf_ticks) { 8775 1.1 christos if (softc->ipf_ticks - interval < interval) 8776 1.1 christos istart = interval; 8777 1.1 christos else 8778 1.1 christos istart = (softc->ipf_ticks / interval) * interval; 8779 1.1 christos } 8780 1.1 christos 8781 1.1 christos iend = softc->ipf_ticks - interval; 8782 1.1 christos 8783 1.1 christos while ((*activep * 100 / size) > low) { 8784 1.1 christos u_long try; 8785 1.1 christos 8786 1.1 christos try = softc->ipf_ticks - istart; 8787 1.1 christos 8788 1.1 christos for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) { 8789 1.1 christos for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { 8790 1.1 christos if (try < tqe->tqe_touched) 8791 1.1 christos break; 8792 1.1 christos tqn = tqe->tqe_next; 8793 1.1 christos if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8794 1.1 christos removed++; 8795 1.1 christos } 8796 1.1 christos } 8797 1.1 christos 8798 1.1 christos for (ifq = userqs; ifq != NULL; ifq = ifqnext) { 8799 1.1 christos ifqnext = ifq->ifq_next; 8800 1.1 christos 8801 1.1 christos for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { 8802 1.1 christos if (try < tqe->tqe_touched) 8803 1.1 christos break; 8804 1.1 christos tqn = tqe->tqe_next; 8805 1.1 christos if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8806 1.1 christos removed++; 8807 1.1 christos } 8808 1.1 christos } 8809 1.1 christos 8810 1.1 christos if (try >= iend) { 8811 1.1 christos if (interval == IPF_TTLVAL(43200)) { 8812 1.1 christos interval = IPF_TTLVAL(1800); 8813 1.1 christos } else if (interval == IPF_TTLVAL(1800)) { 8814 1.1 christos interval = IPF_TTLVAL(30); 8815 1.1 christos } else { 8816 1.1 christos break; 8817 1.1 christos } 8818 1.1 christos if (interval >= softc->ipf_ticks) 8819 1.1 christos break; 8820 1.1 christos 8821 1.1 christos iend = softc->ipf_ticks - interval; 8822 1.1 christos } 8823 1.1 christos istart -= interval; 8824 1.1 christos } 8825 1.1 christos 8826 1.1 christos return removed; 8827 1.1 christos } 8828 1.1 christos 8829 1.1 christos 8830 1.1 christos /* ------------------------------------------------------------------------ */ 8831 1.1 christos /* Function: ipf_deliverlocal */ 8832 1.1 christos /* Returns: int - 1 = local address, 0 = non-local address */ 8833 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 8834 1.1 christos /* ipversion(I) - IP protocol version (4 or 6) */ 8835 1.1 christos /* ifp(I) - network interface pointer */ 8836 1.1 christos /* ipaddr(I) - IPv4/6 destination address */ 8837 1.1 christos /* */ 8838 1.1 christos /* This fucntion is used to determine in the address "ipaddr" belongs to */ 8839 1.1 christos /* the network interface represented by ifp. */ 8840 1.1 christos /* ------------------------------------------------------------------------ */ 8841 1.1 christos int 8842 1.2 christos ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp, 8843 1.2 christos i6addr_t *ipaddr) 8844 1.1 christos { 8845 1.1 christos i6addr_t addr; 8846 1.1 christos int islocal = 0; 8847 1.1 christos 8848 1.1 christos if (ipversion == 4) { 8849 1.1 christos if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) { 8850 1.1 christos if (addr.in4.s_addr == ipaddr->in4.s_addr) 8851 1.1 christos islocal = 1; 8852 1.1 christos } 8853 1.1 christos 8854 1.1 christos #ifdef USE_INET6 8855 1.1 christos } else if (ipversion == 6) { 8856 1.1 christos if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) { 8857 1.1 christos if (IP6_EQ(&addr, ipaddr)) 8858 1.1 christos islocal = 1; 8859 1.1 christos } 8860 1.1 christos #endif 8861 1.1 christos } 8862 1.1 christos 8863 1.1 christos return islocal; 8864 1.1 christos } 8865 1.1 christos 8866 1.1 christos 8867 1.1 christos /* ------------------------------------------------------------------------ */ 8868 1.1 christos /* Function: ipf_settimeout */ 8869 1.1 christos /* Returns: int - 0 = success, -1 = failure */ 8870 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 8871 1.1 christos /* t(I) - pointer to tuneable array entry */ 8872 1.1 christos /* p(I) - pointer to values passed in to apply */ 8873 1.1 christos /* */ 8874 1.1 christos /* This function is called to set the timeout values for each distinct */ 8875 1.1 christos /* queue timeout that is available. When called, it calls into both the */ 8876 1.1 christos /* state and NAT code, telling them to update their timeout queues. */ 8877 1.1 christos /* ------------------------------------------------------------------------ */ 8878 1.1 christos static int 8879 1.2 christos ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t, 8880 1.2 christos ipftuneval_t *p) 8881 1.1 christos { 8882 1.1 christos 8883 1.1 christos /* 8884 1.1 christos * ipf_interror should be set by the functions called here, not 8885 1.1 christos * by this function - it's just a middle man. 8886 1.1 christos */ 8887 1.1 christos if (ipf_state_settimeout(softc, t, p) == -1) 8888 1.1 christos return -1; 8889 1.1 christos if (ipf_nat_settimeout(softc, t, p) == -1) 8890 1.1 christos return -1; 8891 1.1 christos return 0; 8892 1.1 christos } 8893 1.1 christos 8894 1.1 christos 8895 1.1 christos /* ------------------------------------------------------------------------ */ 8896 1.1 christos /* Function: ipf_apply_timeout */ 8897 1.1 christos /* Returns: int - 0 = success, -1 = failure */ 8898 1.1 christos /* Parameters: head(I) - pointer to tuneable array entry */ 8899 1.1 christos /* seconds(I) - pointer to values passed in to apply */ 8900 1.1 christos /* */ 8901 1.1 christos /* This function applies a timeout of "seconds" to the timeout queue that */ 8902 1.1 christos /* is pointed to by "head". All entries on this list have an expiration */ 8903 1.1 christos /* set to be the current tick value of ipf plus the ttl. Given that this */ 8904 1.1 christos /* function should only be called when the delta is non-zero, the task is */ 8905 1.1 christos /* to walk the entire list and apply the change. The sort order will not */ 8906 1.1 christos /* change. The only catch is that this is O(n) across the list, so if the */ 8907 1.1 christos /* queue has lots of entries (10s of thousands or 100s of thousands), it */ 8908 1.1 christos /* could take a relatively long time to work through them all. */ 8909 1.1 christos /* ------------------------------------------------------------------------ */ 8910 1.1 christos void 8911 1.2 christos ipf_apply_timeout(ipftq_t *head, u_int seconds) 8912 1.1 christos { 8913 1.1 christos u_int oldtimeout, newtimeout; 8914 1.1 christos ipftqent_t *tqe; 8915 1.1 christos int delta; 8916 1.1 christos 8917 1.1 christos MUTEX_ENTER(&head->ifq_lock); 8918 1.1 christos oldtimeout = head->ifq_ttl; 8919 1.1 christos newtimeout = IPF_TTLVAL(seconds); 8920 1.1 christos delta = oldtimeout - newtimeout; 8921 1.1 christos 8922 1.1 christos head->ifq_ttl = newtimeout; 8923 1.1 christos 8924 1.1 christos for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) { 8925 1.1 christos tqe->tqe_die += delta; 8926 1.1 christos } 8927 1.1 christos MUTEX_EXIT(&head->ifq_lock); 8928 1.1 christos } 8929 1.1 christos 8930 1.1 christos 8931 1.1 christos /* ------------------------------------------------------------------------ */ 8932 1.1 christos /* Function: ipf_settimeout_tcp */ 8933 1.1 christos /* Returns: int - 0 = successfully applied, -1 = failed */ 8934 1.1 christos /* Parameters: t(I) - pointer to tuneable to change */ 8935 1.1 christos /* p(I) - pointer to new timeout information */ 8936 1.1 christos /* tab(I) - pointer to table of TCP queues */ 8937 1.1 christos /* */ 8938 1.1 christos /* This function applies the new timeout (p) to the TCP tunable (t) and */ 8939 1.1 christos /* updates all of the entries on the relevant timeout queue by calling */ 8940 1.1 christos /* ipf_apply_timeout(). */ 8941 1.1 christos /* ------------------------------------------------------------------------ */ 8942 1.1 christos int 8943 1.2 christos ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab) 8944 1.1 christos { 8945 1.1 christos if (!strcmp(t->ipft_name, "tcp_idle_timeout") || 8946 1.1 christos !strcmp(t->ipft_name, "tcp_established")) { 8947 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int); 8948 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_close_wait")) { 8949 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int); 8950 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_last_ack")) { 8951 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int); 8952 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_timeout")) { 8953 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); 8954 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); 8955 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); 8956 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_listen")) { 8957 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); 8958 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_half_established")) { 8959 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); 8960 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_closing")) { 8961 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); 8962 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_syn_received")) { 8963 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int); 8964 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) { 8965 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int); 8966 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_closed")) { 8967 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); 8968 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_half_closed")) { 8969 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); 8970 1.1 christos } else if (!strcmp(t->ipft_name, "tcp_time_wait")) { 8971 1.1 christos ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int); 8972 1.1 christos } else { 8973 1.1 christos /* 8974 1.1 christos * ipf_interror isn't set here because it should be set 8975 1.1 christos * by whatever called this function. 8976 1.1 christos */ 8977 1.1 christos return -1; 8978 1.1 christos } 8979 1.1 christos return 0; 8980 1.1 christos } 8981 1.1 christos 8982 1.1 christos 8983 1.1 christos /* ------------------------------------------------------------------------ */ 8984 1.1 christos /* Function: ipf_main_soft_create */ 8985 1.1 christos /* Returns: NULL = failure, else success */ 8986 1.1 christos /* Parameters: arg(I) - pointer to soft context structure if already allocd */ 8987 1.1 christos /* */ 8988 1.1 christos /* Create the foundation soft context structure. In circumstances where it */ 8989 1.1 christos /* is not required to dynamically allocate the context, a pointer can be */ 8990 1.1 christos /* passed in (rather than NULL) to a structure to be initialised. */ 8991 1.1 christos /* The main thing of interest is that a number of locks are initialised */ 8992 1.1 christos /* here instead of in the where might be expected - in the relevant create */ 8993 1.1 christos /* function elsewhere. This is done because the current locking design has */ 8994 1.1 christos /* some areas where these locks are used outside of their module. */ 8995 1.1 christos /* Possibly the most important exercise that is done here is setting of all */ 8996 1.1 christos /* the timeout values, allowing them to be changed before init(). */ 8997 1.1 christos /* ------------------------------------------------------------------------ */ 8998 1.1 christos void * 8999 1.2 christos ipf_main_soft_create(void *arg) 9000 1.1 christos { 9001 1.1 christos ipf_main_softc_t *softc; 9002 1.1 christos 9003 1.1 christos if (arg == NULL) { 9004 1.1 christos KMALLOC(softc, ipf_main_softc_t *); 9005 1.1 christos if (softc == NULL) 9006 1.1 christos return NULL; 9007 1.1 christos } else { 9008 1.1 christos softc = arg; 9009 1.1 christos } 9010 1.1 christos 9011 1.1 christos bzero((char *)softc, sizeof(*softc)); 9012 1.1 christos 9013 1.1 christos /* 9014 1.1 christos * This serves as a flag as to whether or not the softc should be 9015 1.1 christos * free'd when _destroy is called. 9016 1.1 christos */ 9017 1.1 christos softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0; 9018 1.1 christos 9019 1.1 christos softc->ipf_tuners = ipf_tune_array_copy(softc, 9020 1.1 christos sizeof(ipf_main_tuneables), 9021 1.1 christos ipf_main_tuneables); 9022 1.1 christos if (softc->ipf_tuners == NULL) { 9023 1.3 darrenr ipf_main_soft_destroy(softc); 9024 1.1 christos return NULL; 9025 1.1 christos } 9026 1.1 christos 9027 1.1 christos MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex"); 9028 1.1 christos MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock"); 9029 1.1 christos RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex"); 9030 1.1 christos RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock"); 9031 1.1 christos RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock"); 9032 1.1 christos RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock"); 9033 1.1 christos RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock"); 9034 1.1 christos RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock"); 9035 1.1 christos RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock"); 9036 1.1 christos 9037 1.1 christos softc->ipf_token_head = NULL; 9038 1.1 christos softc->ipf_token_tail = &softc->ipf_token_head; 9039 1.1 christos 9040 1.1 christos softc->ipf_tcpidletimeout = FIVE_DAYS; 9041 1.1 christos softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL); 9042 1.1 christos softc->ipf_tcplastack = IPF_TTLVAL(30); 9043 1.1 christos softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL); 9044 1.1 christos softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL); 9045 1.1 christos softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL); 9046 1.1 christos softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL); 9047 1.1 christos softc->ipf_tcpclosed = IPF_TTLVAL(30); 9048 1.1 christos softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600); 9049 1.1 christos softc->ipf_udptimeout = IPF_TTLVAL(120); 9050 1.1 christos softc->ipf_udpacktimeout = IPF_TTLVAL(12); 9051 1.1 christos softc->ipf_icmptimeout = IPF_TTLVAL(60); 9052 1.1 christos softc->ipf_icmpacktimeout = IPF_TTLVAL(6); 9053 1.1 christos softc->ipf_iptimeout = IPF_TTLVAL(60); 9054 1.1 christos 9055 1.1 christos #if defined(IPFILTER_DEFAULT_BLOCK) 9056 1.1 christos softc->ipf_pass = FR_BLOCK|FR_NOMATCH; 9057 1.1 christos #else 9058 1.1 christos softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH; 9059 1.1 christos #endif 9060 1.1 christos softc->ipf_minttl = 4; 9061 1.1 christos softc->ipf_icmpminfragmtu = 68; 9062 1.1 christos softc->ipf_flags = IPF_LOGGING; 9063 1.1 christos 9064 1.1 christos return softc; 9065 1.1 christos } 9066 1.1 christos 9067 1.1 christos /* ------------------------------------------------------------------------ */ 9068 1.1 christos /* Function: ipf_main_soft_init */ 9069 1.1 christos /* Returns: 0 = success, -1 = failure */ 9070 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 9071 1.1 christos /* */ 9072 1.1 christos /* A null-op function that exists as a placeholder so that the flow in */ 9073 1.1 christos /* other functions is obvious. */ 9074 1.1 christos /* ------------------------------------------------------------------------ */ 9075 1.1 christos /*ARGSUSED*/ 9076 1.1 christos int 9077 1.2 christos ipf_main_soft_init(ipf_main_softc_t *softc) 9078 1.1 christos { 9079 1.1 christos return 0; 9080 1.1 christos } 9081 1.1 christos 9082 1.1 christos 9083 1.1 christos /* ------------------------------------------------------------------------ */ 9084 1.1 christos /* Function: ipf_main_soft_destroy */ 9085 1.1 christos /* Returns: void */ 9086 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 9087 1.1 christos /* */ 9088 1.1 christos /* Undo everything that we did in ipf_main_soft_create. */ 9089 1.1 christos /* */ 9090 1.1 christos /* The most important check that needs to be made here is whether or not */ 9091 1.1 christos /* the structure was allocated by ipf_main_soft_create() by checking what */ 9092 1.1 christos /* value is stored in ipf_dynamic_main. */ 9093 1.1 christos /* ------------------------------------------------------------------------ */ 9094 1.1 christos /*ARGSUSED*/ 9095 1.1 christos void 9096 1.3 darrenr ipf_main_soft_destroy(ipf_main_softc_t *softc) 9097 1.1 christos { 9098 1.1 christos 9099 1.1 christos RW_DESTROY(&softc->ipf_frag); 9100 1.1 christos RW_DESTROY(&softc->ipf_poolrw); 9101 1.1 christos RW_DESTROY(&softc->ipf_nat); 9102 1.1 christos RW_DESTROY(&softc->ipf_state); 9103 1.1 christos RW_DESTROY(&softc->ipf_tokens); 9104 1.1 christos RW_DESTROY(&softc->ipf_mutex); 9105 1.1 christos RW_DESTROY(&softc->ipf_global); 9106 1.1 christos MUTEX_DESTROY(&softc->ipf_timeoutlock); 9107 1.1 christos MUTEX_DESTROY(&softc->ipf_rw); 9108 1.1 christos 9109 1.1 christos if (softc->ipf_tuners != NULL) { 9110 1.1 christos KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables)); 9111 1.1 christos } 9112 1.1 christos if (softc->ipf_dynamic_softc == 1) { 9113 1.1 christos KFREE(softc); 9114 1.1 christos } 9115 1.1 christos } 9116 1.1 christos 9117 1.1 christos 9118 1.1 christos /* ------------------------------------------------------------------------ */ 9119 1.1 christos /* Function: ipf_main_soft_fini */ 9120 1.1 christos /* Returns: 0 = success, -1 = failure */ 9121 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 9122 1.1 christos /* */ 9123 1.1 christos /* Clean out the rules which have been added since _init was last called, */ 9124 1.1 christos /* the only dynamic part of the mainline. */ 9125 1.1 christos /* ------------------------------------------------------------------------ */ 9126 1.1 christos int 9127 1.2 christos ipf_main_soft_fini(ipf_main_softc_t *softc) 9128 1.1 christos { 9129 1.1 christos (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE); 9130 1.1 christos (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE); 9131 1.1 christos (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE); 9132 1.1 christos (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE); 9133 1.1 christos 9134 1.1 christos return 0; 9135 1.1 christos } 9136 1.1 christos 9137 1.1 christos 9138 1.1 christos /* ------------------------------------------------------------------------ */ 9139 1.1 christos /* Function: ipf_main_load */ 9140 1.1 christos /* Returns: 0 = success, -1 = failure */ 9141 1.1 christos /* Parameters: none */ 9142 1.1 christos /* */ 9143 1.1 christos /* Handle global initialisation that needs to be done for the base part of */ 9144 1.1 christos /* IPFilter. At present this just amounts to initialising some ICMP lookup */ 9145 1.1 christos /* arrays that get used by the state/NAT code. */ 9146 1.1 christos /* ------------------------------------------------------------------------ */ 9147 1.1 christos int 9148 1.2 christos ipf_main_load(void) 9149 1.1 christos { 9150 1.1 christos int i; 9151 1.1 christos 9152 1.1 christos /* fill icmp reply type table */ 9153 1.1 christos for (i = 0; i <= ICMP_MAXTYPE; i++) 9154 1.1 christos icmpreplytype4[i] = -1; 9155 1.1 christos icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY; 9156 1.1 christos icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY; 9157 1.1 christos icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY; 9158 1.1 christos icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY; 9159 1.1 christos 9160 1.1 christos #ifdef USE_INET6 9161 1.1 christos /* fill icmp reply type table */ 9162 1.1 christos for (i = 0; i <= ICMP6_MAXTYPE; i++) 9163 1.1 christos icmpreplytype6[i] = -1; 9164 1.1 christos icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY; 9165 1.1 christos icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT; 9166 1.1 christos icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY; 9167 1.1 christos icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT; 9168 1.1 christos icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT; 9169 1.1 christos #endif 9170 1.1 christos 9171 1.1 christos return 0; 9172 1.1 christos } 9173 1.1 christos 9174 1.1 christos 9175 1.1 christos /* ------------------------------------------------------------------------ */ 9176 1.1 christos /* Function: ipf_main_unload */ 9177 1.1 christos /* Returns: 0 = success, -1 = failure */ 9178 1.1 christos /* Parameters: none */ 9179 1.1 christos /* */ 9180 1.1 christos /* A null-op function that exists as a placeholder so that the flow in */ 9181 1.1 christos /* other functions is obvious. */ 9182 1.1 christos /* ------------------------------------------------------------------------ */ 9183 1.1 christos int 9184 1.2 christos ipf_main_unload(void) 9185 1.1 christos { 9186 1.1 christos return 0; 9187 1.1 christos } 9188 1.1 christos 9189 1.1 christos 9190 1.1 christos /* ------------------------------------------------------------------------ */ 9191 1.1 christos /* Function: ipf_load_all */ 9192 1.1 christos /* Returns: 0 = success, -1 = failure */ 9193 1.1 christos /* Parameters: none */ 9194 1.1 christos /* */ 9195 1.1 christos /* Work through all of the subsystems inside IPFilter and call the load */ 9196 1.1 christos /* function for each in an order that won't lead to a crash :) */ 9197 1.1 christos /* ------------------------------------------------------------------------ */ 9198 1.1 christos int 9199 1.2 christos ipf_load_all(void) 9200 1.1 christos { 9201 1.1 christos if (ipf_main_load() == -1) 9202 1.1 christos return -1; 9203 1.1 christos 9204 1.1 christos if (ipf_state_main_load() == -1) 9205 1.1 christos return -1; 9206 1.1 christos 9207 1.1 christos if (ipf_nat_main_load() == -1) 9208 1.1 christos return -1; 9209 1.1 christos 9210 1.1 christos if (ipf_frag_main_load() == -1) 9211 1.1 christos return -1; 9212 1.1 christos 9213 1.1 christos if (ipf_auth_main_load() == -1) 9214 1.1 christos return -1; 9215 1.1 christos 9216 1.1 christos if (ipf_proxy_main_load() == -1) 9217 1.1 christos return -1; 9218 1.1 christos 9219 1.1 christos return 0; 9220 1.1 christos } 9221 1.1 christos 9222 1.1 christos 9223 1.1 christos /* ------------------------------------------------------------------------ */ 9224 1.1 christos /* Function: ipf_unload_all */ 9225 1.1 christos /* Returns: 0 = success, -1 = failure */ 9226 1.1 christos /* Parameters: none */ 9227 1.1 christos /* */ 9228 1.1 christos /* Work through all of the subsystems inside IPFilter and call the unload */ 9229 1.1 christos /* function for each in an order that won't lead to a crash :) */ 9230 1.1 christos /* ------------------------------------------------------------------------ */ 9231 1.1 christos int 9232 1.2 christos ipf_unload_all(void) 9233 1.1 christos { 9234 1.1 christos if (ipf_proxy_main_unload() == -1) 9235 1.1 christos return -1; 9236 1.1 christos 9237 1.1 christos if (ipf_auth_main_unload() == -1) 9238 1.1 christos return -1; 9239 1.1 christos 9240 1.1 christos if (ipf_frag_main_unload() == -1) 9241 1.1 christos return -1; 9242 1.1 christos 9243 1.1 christos if (ipf_nat_main_unload() == -1) 9244 1.1 christos return -1; 9245 1.1 christos 9246 1.1 christos if (ipf_state_main_unload() == -1) 9247 1.1 christos return -1; 9248 1.1 christos 9249 1.1 christos if (ipf_main_unload() == -1) 9250 1.1 christos return -1; 9251 1.1 christos 9252 1.1 christos return 0; 9253 1.1 christos } 9254 1.1 christos 9255 1.1 christos 9256 1.1 christos /* ------------------------------------------------------------------------ */ 9257 1.1 christos /* Function: ipf_create_all */ 9258 1.1 christos /* Returns: NULL = failure, else success */ 9259 1.1 christos /* Parameters: arg(I) - pointer to soft context main structure */ 9260 1.1 christos /* */ 9261 1.1 christos /* Work through all of the subsystems inside IPFilter and call the create */ 9262 1.1 christos /* function for each in an order that won't lead to a crash :) */ 9263 1.1 christos /* ------------------------------------------------------------------------ */ 9264 1.1 christos ipf_main_softc_t * 9265 1.2 christos ipf_create_all(void *arg) 9266 1.1 christos { 9267 1.1 christos ipf_main_softc_t *softc; 9268 1.1 christos 9269 1.1 christos softc = ipf_main_soft_create(arg); 9270 1.1 christos if (softc == NULL) 9271 1.1 christos return NULL; 9272 1.1 christos 9273 1.2 christos #ifdef IPFILTER_LOG 9274 1.1 christos softc->ipf_log_soft = ipf_log_soft_create(softc); 9275 1.1 christos if (softc->ipf_log_soft == NULL) { 9276 1.1 christos ipf_destroy_all(softc); 9277 1.1 christos return NULL; 9278 1.1 christos } 9279 1.2 christos #endif 9280 1.1 christos 9281 1.1 christos softc->ipf_lookup_soft = ipf_lookup_soft_create(softc); 9282 1.1 christos if (softc->ipf_lookup_soft == NULL) { 9283 1.1 christos ipf_destroy_all(softc); 9284 1.1 christos return NULL; 9285 1.1 christos } 9286 1.1 christos 9287 1.1 christos softc->ipf_sync_soft = ipf_sync_soft_create(softc); 9288 1.1 christos if (softc->ipf_sync_soft == NULL) { 9289 1.1 christos ipf_destroy_all(softc); 9290 1.1 christos return NULL; 9291 1.1 christos } 9292 1.1 christos 9293 1.1 christos softc->ipf_state_soft = ipf_state_soft_create(softc); 9294 1.1 christos if (softc->ipf_state_soft == NULL) { 9295 1.1 christos ipf_destroy_all(softc); 9296 1.1 christos return NULL; 9297 1.1 christos } 9298 1.1 christos 9299 1.1 christos softc->ipf_nat_soft = ipf_nat_soft_create(softc); 9300 1.1 christos if (softc->ipf_nat_soft == NULL) { 9301 1.1 christos ipf_destroy_all(softc); 9302 1.1 christos return NULL; 9303 1.1 christos } 9304 1.1 christos 9305 1.1 christos softc->ipf_frag_soft = ipf_frag_soft_create(softc); 9306 1.1 christos if (softc->ipf_frag_soft == NULL) { 9307 1.1 christos ipf_destroy_all(softc); 9308 1.1 christos return NULL; 9309 1.1 christos } 9310 1.1 christos 9311 1.1 christos softc->ipf_auth_soft = ipf_auth_soft_create(softc); 9312 1.1 christos if (softc->ipf_auth_soft == NULL) { 9313 1.1 christos ipf_destroy_all(softc); 9314 1.1 christos return NULL; 9315 1.1 christos } 9316 1.1 christos 9317 1.1 christos softc->ipf_proxy_soft = ipf_proxy_soft_create(softc); 9318 1.1 christos if (softc->ipf_proxy_soft == NULL) { 9319 1.1 christos ipf_destroy_all(softc); 9320 1.1 christos return NULL; 9321 1.1 christos } 9322 1.1 christos 9323 1.1 christos return softc; 9324 1.1 christos } 9325 1.1 christos 9326 1.1 christos 9327 1.1 christos /* ------------------------------------------------------------------------ */ 9328 1.1 christos /* Function: ipf_destroy_all */ 9329 1.1 christos /* Returns: void */ 9330 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 9331 1.1 christos /* */ 9332 1.1 christos /* Work through all of the subsystems inside IPFilter and call the destroy */ 9333 1.1 christos /* function for each in an order that won't lead to a crash :) */ 9334 1.1 christos /* */ 9335 1.1 christos /* Every one of these functions is expected to succeed, so there is no */ 9336 1.1 christos /* checking of return values. */ 9337 1.1 christos /* ------------------------------------------------------------------------ */ 9338 1.1 christos void 9339 1.2 christos ipf_destroy_all(ipf_main_softc_t *softc) 9340 1.1 christos { 9341 1.1 christos 9342 1.1 christos if (softc->ipf_state_soft != NULL) { 9343 1.1 christos ipf_state_soft_destroy(softc, softc->ipf_state_soft); 9344 1.1 christos softc->ipf_state_soft = NULL; 9345 1.1 christos } 9346 1.1 christos 9347 1.1 christos if (softc->ipf_nat_soft != NULL) { 9348 1.1 christos ipf_nat_soft_destroy(softc, softc->ipf_nat_soft); 9349 1.1 christos softc->ipf_nat_soft = NULL; 9350 1.1 christos } 9351 1.1 christos 9352 1.1 christos if (softc->ipf_frag_soft != NULL) { 9353 1.1 christos ipf_frag_soft_destroy(softc, softc->ipf_frag_soft); 9354 1.1 christos softc->ipf_frag_soft = NULL; 9355 1.1 christos } 9356 1.1 christos 9357 1.1 christos if (softc->ipf_auth_soft != NULL) { 9358 1.1 christos ipf_auth_soft_destroy(softc, softc->ipf_auth_soft); 9359 1.1 christos softc->ipf_auth_soft = NULL; 9360 1.1 christos } 9361 1.1 christos 9362 1.1 christos if (softc->ipf_proxy_soft != NULL) { 9363 1.1 christos ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft); 9364 1.1 christos softc->ipf_proxy_soft = NULL; 9365 1.1 christos } 9366 1.1 christos 9367 1.1 christos if (softc->ipf_sync_soft != NULL) { 9368 1.1 christos ipf_sync_soft_destroy(softc, softc->ipf_sync_soft); 9369 1.1 christos softc->ipf_sync_soft = NULL; 9370 1.1 christos } 9371 1.1 christos 9372 1.1 christos if (softc->ipf_lookup_soft != NULL) { 9373 1.1 christos ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft); 9374 1.1 christos softc->ipf_lookup_soft = NULL; 9375 1.1 christos } 9376 1.1 christos 9377 1.2 christos #ifdef IPFILTER_LOG 9378 1.1 christos if (softc->ipf_log_soft != NULL) { 9379 1.1 christos ipf_log_soft_destroy(softc, softc->ipf_log_soft); 9380 1.1 christos softc->ipf_log_soft = NULL; 9381 1.1 christos } 9382 1.2 christos #endif 9383 1.1 christos 9384 1.3 darrenr ipf_main_soft_destroy(softc); 9385 1.1 christos } 9386 1.1 christos 9387 1.1 christos 9388 1.1 christos /* ------------------------------------------------------------------------ */ 9389 1.1 christos /* Function: ipf_init_all */ 9390 1.1 christos /* Returns: 0 = success, -1 = failure */ 9391 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 9392 1.1 christos /* */ 9393 1.1 christos /* Work through all of the subsystems inside IPFilter and call the init */ 9394 1.1 christos /* function for each in an order that won't lead to a crash :) */ 9395 1.1 christos /* ------------------------------------------------------------------------ */ 9396 1.1 christos int 9397 1.2 christos ipf_init_all(ipf_main_softc_t *softc) 9398 1.1 christos { 9399 1.1 christos 9400 1.1 christos if (ipf_main_soft_init(softc) == -1) 9401 1.1 christos return -1; 9402 1.1 christos 9403 1.2 christos #ifdef IPFILTER_LOG 9404 1.1 christos if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1) 9405 1.1 christos return -1; 9406 1.2 christos #endif 9407 1.1 christos 9408 1.1 christos if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1) 9409 1.1 christos return -1; 9410 1.1 christos 9411 1.1 christos if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1) 9412 1.1 christos return -1; 9413 1.1 christos 9414 1.1 christos if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1) 9415 1.1 christos return -1; 9416 1.1 christos 9417 1.1 christos if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1) 9418 1.1 christos return -1; 9419 1.1 christos 9420 1.1 christos if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1) 9421 1.1 christos return -1; 9422 1.1 christos 9423 1.1 christos if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1) 9424 1.1 christos return -1; 9425 1.1 christos 9426 1.1 christos if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1) 9427 1.1 christos return -1; 9428 1.1 christos 9429 1.1 christos return 0; 9430 1.1 christos } 9431 1.1 christos 9432 1.1 christos 9433 1.1 christos /* ------------------------------------------------------------------------ */ 9434 1.1 christos /* Function: ipf_fini_all */ 9435 1.1 christos /* Returns: 0 = success, -1 = failure */ 9436 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 9437 1.1 christos /* */ 9438 1.1 christos /* Work through all of the subsystems inside IPFilter and call the fini */ 9439 1.1 christos /* function for each in an order that won't lead to a crash :) */ 9440 1.1 christos /* ------------------------------------------------------------------------ */ 9441 1.1 christos int 9442 1.2 christos ipf_fini_all(ipf_main_softc_t *softc) 9443 1.1 christos { 9444 1.1 christos 9445 1.3 darrenr ipf_token_flush(softc); 9446 1.3 darrenr 9447 1.1 christos if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1) 9448 1.1 christos return -1; 9449 1.1 christos 9450 1.1 christos if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1) 9451 1.1 christos return -1; 9452 1.1 christos 9453 1.1 christos if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1) 9454 1.1 christos return -1; 9455 1.1 christos 9456 1.1 christos if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1) 9457 1.1 christos return -1; 9458 1.1 christos 9459 1.1 christos if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1) 9460 1.1 christos return -1; 9461 1.1 christos 9462 1.1 christos if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1) 9463 1.1 christos return -1; 9464 1.1 christos 9465 1.1 christos if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1) 9466 1.1 christos return -1; 9467 1.1 christos 9468 1.2 christos #ifdef IPFILTER_LOG 9469 1.1 christos if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1) 9470 1.1 christos return -1; 9471 1.2 christos #endif 9472 1.1 christos 9473 1.1 christos if (ipf_main_soft_fini(softc) == -1) 9474 1.1 christos return -1; 9475 1.1 christos 9476 1.1 christos return 0; 9477 1.1 christos } 9478 1.1 christos 9479 1.1 christos 9480 1.1 christos /* ------------------------------------------------------------------------ */ 9481 1.1 christos /* Function: ipf_rule_expire */ 9482 1.1 christos /* Returns: Nil */ 9483 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 9484 1.1 christos /* */ 9485 1.1 christos /* At present this function exists just to support temporary addition of */ 9486 1.1 christos /* firewall rules. Both inactive and active lists are scanned for items to */ 9487 1.1 christos /* purge, as by rights, the expiration is computed as soon as the rule is */ 9488 1.1 christos /* loaded in. */ 9489 1.1 christos /* ------------------------------------------------------------------------ */ 9490 1.1 christos void 9491 1.2 christos ipf_rule_expire(ipf_main_softc_t *softc) 9492 1.1 christos { 9493 1.1 christos frentry_t *fr; 9494 1.1 christos 9495 1.1 christos if ((softc->ipf_rule_explist[0] == NULL) && 9496 1.1 christos (softc->ipf_rule_explist[1] == NULL)) 9497 1.1 christos return; 9498 1.1 christos 9499 1.1 christos WRITE_ENTER(&softc->ipf_mutex); 9500 1.1 christos 9501 1.1 christos while ((fr = softc->ipf_rule_explist[0]) != NULL) { 9502 1.1 christos /* 9503 1.1 christos * Because the list is kept sorted on insertion, the fist 9504 1.1 christos * one that dies in the future means no more work to do. 9505 1.1 christos */ 9506 1.1 christos if (fr->fr_die > softc->ipf_ticks) 9507 1.1 christos break; 9508 1.1 christos ipf_rule_delete(softc, fr, IPL_LOGIPF, 0); 9509 1.1 christos } 9510 1.1 christos 9511 1.1 christos while ((fr = softc->ipf_rule_explist[1]) != NULL) { 9512 1.1 christos /* 9513 1.1 christos * Because the list is kept sorted on insertion, the fist 9514 1.1 christos * one that dies in the future means no more work to do. 9515 1.1 christos */ 9516 1.1 christos if (fr->fr_die > softc->ipf_ticks) 9517 1.1 christos break; 9518 1.1 christos ipf_rule_delete(softc, fr, IPL_LOGIPF, 1); 9519 1.1 christos } 9520 1.1 christos 9521 1.1 christos RWLOCK_EXIT(&softc->ipf_mutex); 9522 1.1 christos } 9523 1.1 christos 9524 1.1 christos 9525 1.7 christos static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *); 9526 1.2 christos static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int, 9527 1.2 christos i6addr_t *); 9528 1.1 christos 9529 1.3 darrenr RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp) 9530 1.1 christos 9531 1.1 christos 9532 1.1 christos /* ------------------------------------------------------------------------ */ 9533 1.1 christos /* Function: ipf_ht_node_cmp */ 9534 1.1 christos /* Returns: int - 0 == nodes are the same, .. */ 9535 1.1 christos /* Parameters: k1(I) - pointer to first key to compare */ 9536 1.1 christos /* k2(I) - pointer to second key to compare */ 9537 1.1 christos /* */ 9538 1.1 christos /* The "key" for the node is a combination of two fields: the address */ 9539 1.1 christos /* family and the address itself. */ 9540 1.1 christos /* */ 9541 1.1 christos /* Because we're not actually interpreting the address data, it isn't */ 9542 1.1 christos /* necessary to convert them to/from network/host byte order. The mask is */ 9543 1.1 christos /* just used to remove bits that aren't significant - it doesn't matter */ 9544 1.1 christos /* where they are, as long as they're always in the same place. */ 9545 1.1 christos /* */ 9546 1.1 christos /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */ 9547 1.1 christos /* this is where individual ones will differ the most - but not true for */ 9548 1.1 christos /* for /48's, etc. */ 9549 1.1 christos /* ------------------------------------------------------------------------ */ 9550 1.1 christos static int 9551 1.7 christos ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2) 9552 1.1 christos { 9553 1.1 christos int i; 9554 1.1 christos 9555 1.1 christos i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family); 9556 1.1 christos if (i != 0) 9557 1.1 christos return i; 9558 1.1 christos 9559 1.1 christos if (k1->hn_addr.adf_family == AF_INET) 9560 1.1 christos return (k2->hn_addr.adf_addr.in4.s_addr - 9561 1.1 christos k1->hn_addr.adf_addr.in4.s_addr); 9562 1.1 christos 9563 1.1 christos i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3]; 9564 1.1 christos if (i != 0) 9565 1.1 christos return i; 9566 1.1 christos i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2]; 9567 1.1 christos if (i != 0) 9568 1.1 christos return i; 9569 1.1 christos i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1]; 9570 1.1 christos if (i != 0) 9571 1.1 christos return i; 9572 1.1 christos i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0]; 9573 1.1 christos return i; 9574 1.1 christos } 9575 1.1 christos 9576 1.1 christos 9577 1.1 christos /* ------------------------------------------------------------------------ */ 9578 1.1 christos /* Function: ipf_ht_node_make_key */ 9579 1.1 christos /* Returns: Nil */ 9580 1.1 christos /* parameters: htp(I) - pointer to address tracking structure */ 9581 1.1 christos /* key(I) - where to store masked address for lookup */ 9582 1.1 christos /* family(I) - protocol family of address */ 9583 1.1 christos /* addr(I) - pointer to network address */ 9584 1.1 christos /* */ 9585 1.1 christos /* Using the "netmask" (number of bits) stored parent host tracking struct, */ 9586 1.1 christos /* copy the address passed in into the key structure whilst masking out the */ 9587 1.1 christos /* bits that we don't want. */ 9588 1.1 christos /* */ 9589 1.1 christos /* Because the parser will set ht_netmask to 128 if there is no protocol */ 9590 1.1 christos /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */ 9591 1.1 christos /* have to be wary of that and not allow 32-128 to happen. */ 9592 1.1 christos /* ------------------------------------------------------------------------ */ 9593 1.1 christos static void 9594 1.2 christos ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family, 9595 1.2 christos i6addr_t *addr) 9596 1.1 christos { 9597 1.1 christos key->hn_addr.adf_family = family; 9598 1.1 christos if (family == AF_INET) { 9599 1.1 christos u_32_t mask; 9600 1.1 christos int bits; 9601 1.1 christos 9602 1.1 christos key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4); 9603 1.1 christos bits = htp->ht_netmask; 9604 1.1 christos if (bits >= 32) { 9605 1.1 christos mask = 0xffffffff; 9606 1.1 christos } else { 9607 1.1 christos mask = htonl(0xffffffff << (32 - bits)); 9608 1.1 christos } 9609 1.1 christos key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask; 9610 1.2 christos #ifdef USE_INET6 9611 1.1 christos } else { 9612 1.1 christos int bits = htp->ht_netmask; 9613 1.1 christos 9614 1.1 christos key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6); 9615 1.1 christos if (bits > 96) { 9616 1.1 christos key->hn_addr.adf_addr.i6[3] = addr->i6[3] & 9617 1.1 christos htonl(0xffffffff << (128 - bits)); 9618 1.1 christos key->hn_addr.adf_addr.i6[2] = addr->i6[2]; 9619 1.1 christos key->hn_addr.adf_addr.i6[1] = addr->i6[2]; 9620 1.1 christos key->hn_addr.adf_addr.i6[0] = addr->i6[2]; 9621 1.1 christos } else if (bits > 64) { 9622 1.1 christos key->hn_addr.adf_addr.i6[3] = 0; 9623 1.1 christos key->hn_addr.adf_addr.i6[2] = addr->i6[2] & 9624 1.1 christos htonl(0xffffffff << (96 - bits)); 9625 1.1 christos key->hn_addr.adf_addr.i6[1] = addr->i6[1]; 9626 1.1 christos key->hn_addr.adf_addr.i6[0] = addr->i6[0]; 9627 1.1 christos } else if (bits > 32) { 9628 1.1 christos key->hn_addr.adf_addr.i6[3] = 0; 9629 1.1 christos key->hn_addr.adf_addr.i6[2] = 0; 9630 1.1 christos key->hn_addr.adf_addr.i6[1] = addr->i6[1] & 9631 1.1 christos htonl(0xffffffff << (64 - bits)); 9632 1.1 christos key->hn_addr.adf_addr.i6[0] = addr->i6[0]; 9633 1.1 christos } else { 9634 1.1 christos key->hn_addr.adf_addr.i6[3] = 0; 9635 1.1 christos key->hn_addr.adf_addr.i6[2] = 0; 9636 1.1 christos key->hn_addr.adf_addr.i6[1] = 0; 9637 1.1 christos key->hn_addr.adf_addr.i6[0] = addr->i6[0] & 9638 1.1 christos htonl(0xffffffff << (32 - bits)); 9639 1.1 christos } 9640 1.2 christos #endif 9641 1.1 christos } 9642 1.1 christos } 9643 1.1 christos 9644 1.1 christos 9645 1.1 christos /* ------------------------------------------------------------------------ */ 9646 1.1 christos /* Function: ipf_ht_node_add */ 9647 1.1 christos /* Returns: int - 0 == success, -1 == failure */ 9648 1.1 christos /* Parameters: softc(I) - pointer to soft context main structure */ 9649 1.1 christos /* htp(I) - pointer to address tracking structure */ 9650 1.1 christos /* family(I) - protocol family of address */ 9651 1.1 christos /* addr(I) - pointer to network address */ 9652 1.1 christos /* */ 9653 1.1 christos /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ 9654 1.1 christos /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */ 9655 1.1 christos /* */ 9656 1.1 christos /* After preparing the key with the address information to find, look in */ 9657 1.1 christos /* the red-black tree to see if the address is known. A successful call to */ 9658 1.1 christos /* this function can mean one of two things: a new node was added to the */ 9659 1.1 christos /* tree or a matching node exists and we're able to bump up its activity. */ 9660 1.1 christos /* ------------------------------------------------------------------------ */ 9661 1.1 christos int 9662 1.2 christos ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family, 9663 1.2 christos i6addr_t *addr) 9664 1.1 christos { 9665 1.1 christos host_node_t *h; 9666 1.1 christos host_node_t k; 9667 1.1 christos 9668 1.1 christos ipf_ht_node_make_key(htp, &k, family, addr); 9669 1.1 christos 9670 1.1 christos h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); 9671 1.1 christos if (h == NULL) { 9672 1.1 christos if (htp->ht_cur_nodes >= htp->ht_max_nodes) 9673 1.1 christos return -1; 9674 1.1 christos KMALLOC(h, host_node_t *); 9675 1.1 christos if (h == NULL) { 9676 1.1 christos DT(ipf_rb_no_mem); 9677 1.1 christos LBUMP(ipf_rb_no_mem); 9678 1.1 christos return -1; 9679 1.1 christos } 9680 1.1 christos 9681 1.1 christos /* 9682 1.1 christos * If there was a macro to initialise the RB node then that 9683 1.1 christos * would get used here, but there isn't... 9684 1.1 christos */ 9685 1.1 christos bzero((char *)h, sizeof(*h)); 9686 1.1 christos h->hn_addr = k.hn_addr; 9687 1.1 christos h->hn_addr.adf_family = k.hn_addr.adf_family; 9688 1.1 christos RBI_INSERT(ipf_rb, &htp->ht_root, h); 9689 1.1 christos htp->ht_cur_nodes++; 9690 1.1 christos } else { 9691 1.1 christos if ((htp->ht_max_per_node != 0) && 9692 1.1 christos (h->hn_active >= htp->ht_max_per_node)) { 9693 1.1 christos DT(ipf_rb_node_max); 9694 1.1 christos LBUMP(ipf_rb_node_max); 9695 1.1 christos return -1; 9696 1.1 christos } 9697 1.1 christos } 9698 1.1 christos 9699 1.1 christos h->hn_active++; 9700 1.1 christos 9701 1.1 christos return 0; 9702 1.1 christos } 9703 1.1 christos 9704 1.1 christos 9705 1.1 christos /* ------------------------------------------------------------------------ */ 9706 1.1 christos /* Function: ipf_ht_node_del */ 9707 1.1 christos /* Returns: int - 0 == success, -1 == failure */ 9708 1.1 christos /* parameters: htp(I) - pointer to address tracking structure */ 9709 1.1 christos /* family(I) - protocol family of address */ 9710 1.1 christos /* addr(I) - pointer to network address */ 9711 1.1 christos /* */ 9712 1.1 christos /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ 9713 1.1 christos /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */ 9714 1.1 christos /* */ 9715 1.7 christos /* Try and find the address passed in amongst the leaves on this tree to */ 9716 1.1 christos /* be friend. If found then drop the active account for that node drops by */ 9717 1.1 christos /* one. If that count reaches 0, it is time to free it all up. */ 9718 1.1 christos /* ------------------------------------------------------------------------ */ 9719 1.1 christos int 9720 1.2 christos ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr) 9721 1.1 christos { 9722 1.1 christos host_node_t *h; 9723 1.1 christos host_node_t k; 9724 1.1 christos 9725 1.1 christos ipf_ht_node_make_key(htp, &k, family, addr); 9726 1.1 christos 9727 1.1 christos h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); 9728 1.1 christos if (h == NULL) { 9729 1.1 christos return -1; 9730 1.1 christos } else { 9731 1.1 christos h->hn_active--; 9732 1.1 christos if (h->hn_active == 0) { 9733 1.1 christos (void) RBI_DELETE(ipf_rb, &htp->ht_root, h); 9734 1.1 christos htp->ht_cur_nodes--; 9735 1.1 christos KFREE(h); 9736 1.1 christos } 9737 1.1 christos } 9738 1.1 christos 9739 1.1 christos return 0; 9740 1.1 christos } 9741 1.1 christos 9742 1.1 christos 9743 1.1 christos /* ------------------------------------------------------------------------ */ 9744 1.1 christos /* Function: ipf_rb_ht_init */ 9745 1.1 christos /* Returns: Nil */ 9746 1.1 christos /* Parameters: head(I) - pointer to host tracking structure */ 9747 1.1 christos /* */ 9748 1.1 christos /* Initialise the host tracking structure to be ready for use above. */ 9749 1.1 christos /* ------------------------------------------------------------------------ */ 9750 1.1 christos void 9751 1.2 christos ipf_rb_ht_init(host_track_t *head) 9752 1.1 christos { 9753 1.8 christos memset(head, 0, sizeof(*head)); 9754 1.1 christos RBI_INIT(ipf_rb, &head->ht_root); 9755 1.1 christos } 9756 1.1 christos 9757 1.1 christos 9758 1.1 christos /* ------------------------------------------------------------------------ */ 9759 1.1 christos /* Function: ipf_rb_ht_freenode */ 9760 1.1 christos /* Returns: Nil */ 9761 1.1 christos /* Parameters: head(I) - pointer to host tracking structure */ 9762 1.1 christos /* arg(I) - additional argument from walk caller */ 9763 1.1 christos /* */ 9764 1.1 christos /* Free an actual host_node_t structure. */ 9765 1.1 christos /* ------------------------------------------------------------------------ */ 9766 1.1 christos void 9767 1.2 christos ipf_rb_ht_freenode(host_node_t *node, void *arg) 9768 1.1 christos { 9769 1.1 christos KFREE(node); 9770 1.1 christos } 9771 1.1 christos 9772 1.1 christos 9773 1.1 christos /* ------------------------------------------------------------------------ */ 9774 1.1 christos /* Function: ipf_rb_ht_flush */ 9775 1.1 christos /* Returns: Nil */ 9776 1.1 christos /* Parameters: head(I) - pointer to host tracking structure */ 9777 1.1 christos /* */ 9778 1.1 christos /* Remove all of the nodes in the tree tracking hosts by calling a walker */ 9779 1.1 christos /* and free'ing each one. */ 9780 1.1 christos /* ------------------------------------------------------------------------ */ 9781 1.1 christos void 9782 1.2 christos ipf_rb_ht_flush(host_track_t *head) 9783 1.1 christos { 9784 1.7 christos /* XXX - May use node members after freeing the node. */ 9785 1.1 christos RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL); 9786 1.1 christos } 9787 1.1 christos 9788 1.1 christos 9789 1.1 christos /* ------------------------------------------------------------------------ */ 9790 1.1 christos /* Function: ipf_slowtimer */ 9791 1.1 christos /* Returns: Nil */ 9792 1.1 christos /* Parameters: ptr(I) - pointer to main ipf soft context structure */ 9793 1.1 christos /* */ 9794 1.1 christos /* Slowly expire held state for fragments. Timeouts are set * in */ 9795 1.1 christos /* expectation of this being called twice per second. */ 9796 1.1 christos /* ------------------------------------------------------------------------ */ 9797 1.1 christos void 9798 1.2 christos ipf_slowtimer(ipf_main_softc_t *softc) 9799 1.1 christos { 9800 1.1 christos 9801 1.1 christos ipf_token_expire(softc); 9802 1.1 christos ipf_frag_expire(softc); 9803 1.1 christos ipf_state_expire(softc); 9804 1.1 christos ipf_nat_expire(softc); 9805 1.1 christos ipf_auth_expire(softc); 9806 1.1 christos ipf_lookup_expire(softc); 9807 1.1 christos ipf_rule_expire(softc); 9808 1.1 christos ipf_sync_expire(softc); 9809 1.1 christos softc->ipf_ticks++; 9810 1.1 christos # if defined(__OpenBSD__) 9811 1.1 christos timeout_add(&ipf_slowtimer_ch, hz/2); 9812 1.1 christos # endif 9813 1.1 christos } 9814 1.3 darrenr 9815 1.3 darrenr 9816 1.3 darrenr /* ------------------------------------------------------------------------ */ 9817 1.3 darrenr /* Function: ipf_inet_mask_add */ 9818 1.3 darrenr /* Returns: Nil */ 9819 1.3 darrenr /* Parameters: bits(I) - pointer to nat context information */ 9820 1.3 darrenr /* mtab(I) - pointer to mask hash table structure */ 9821 1.3 darrenr /* */ 9822 1.3 darrenr /* When called, bits represents the mask of a new NAT rule that has just */ 9823 1.3 darrenr /* been added. This function inserts a bitmask into the array of masks to */ 9824 1.3 darrenr /* search when searching for a matching NAT rule for a packet. */ 9825 1.3 darrenr /* Prevention of duplicate masks is achieved by checking the use count for */ 9826 1.3 darrenr /* a given netmask. */ 9827 1.3 darrenr /* ------------------------------------------------------------------------ */ 9828 1.3 darrenr void 9829 1.4 darrenr ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab) 9830 1.3 darrenr { 9831 1.3 darrenr u_32_t mask; 9832 1.3 darrenr int i, j; 9833 1.3 darrenr 9834 1.3 darrenr mtab->imt4_masks[bits]++; 9835 1.3 darrenr if (mtab->imt4_masks[bits] > 1) 9836 1.3 darrenr return; 9837 1.3 darrenr 9838 1.3 darrenr if (bits == 0) 9839 1.3 darrenr mask = 0; 9840 1.3 darrenr else 9841 1.3 darrenr mask = 0xffffffff << (32 - bits); 9842 1.3 darrenr 9843 1.3 darrenr for (i = 0; i < 33; i++) { 9844 1.3 darrenr if (ntohl(mtab->imt4_active[i]) < mask) { 9845 1.3 darrenr for (j = 32; j > i; j--) 9846 1.3 darrenr mtab->imt4_active[j] = mtab->imt4_active[j - 1]; 9847 1.3 darrenr mtab->imt4_active[i] = htonl(mask); 9848 1.3 darrenr break; 9849 1.3 darrenr } 9850 1.3 darrenr } 9851 1.3 darrenr mtab->imt4_max++; 9852 1.3 darrenr } 9853 1.3 darrenr 9854 1.3 darrenr 9855 1.3 darrenr /* ------------------------------------------------------------------------ */ 9856 1.3 darrenr /* Function: ipf_inet_mask_del */ 9857 1.3 darrenr /* Returns: Nil */ 9858 1.3 darrenr /* Parameters: bits(I) - number of bits set in the netmask */ 9859 1.3 darrenr /* mtab(I) - pointer to mask hash table structure */ 9860 1.3 darrenr /* */ 9861 1.3 darrenr /* Remove the 32bit bitmask represented by "bits" from the collection of */ 9862 1.3 darrenr /* netmasks stored inside of mtab. */ 9863 1.3 darrenr /* ------------------------------------------------------------------------ */ 9864 1.3 darrenr void 9865 1.5 darrenr ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab) 9866 1.3 darrenr { 9867 1.3 darrenr u_32_t mask; 9868 1.3 darrenr int i, j; 9869 1.3 darrenr 9870 1.3 darrenr mtab->imt4_masks[bits]--; 9871 1.3 darrenr if (mtab->imt4_masks[bits] > 0) 9872 1.3 darrenr return; 9873 1.3 darrenr 9874 1.3 darrenr mask = htonl(0xffffffff << (32 - bits)); 9875 1.3 darrenr for (i = 0; i < 33; i++) { 9876 1.3 darrenr if (mtab->imt4_active[i] == mask) { 9877 1.3 darrenr for (j = i + 1; j < 33; j++) 9878 1.3 darrenr mtab->imt4_active[j - 1] = mtab->imt4_active[j]; 9879 1.3 darrenr break; 9880 1.3 darrenr } 9881 1.3 darrenr } 9882 1.3 darrenr mtab->imt4_max--; 9883 1.3 darrenr ASSERT(mtab->imt4_max >= 0); 9884 1.3 darrenr } 9885 1.3 darrenr 9886 1.3 darrenr 9887 1.3 darrenr #ifdef USE_INET6 9888 1.3 darrenr /* ------------------------------------------------------------------------ */ 9889 1.3 darrenr /* Function: ipf_inet6_mask_add */ 9890 1.3 darrenr /* Returns: Nil */ 9891 1.3 darrenr /* Parameters: bits(I) - number of bits set in mask */ 9892 1.3 darrenr /* mask(I) - pointer to mask to add */ 9893 1.3 darrenr /* mtab(I) - pointer to mask hash table structure */ 9894 1.3 darrenr /* */ 9895 1.3 darrenr /* When called, bitcount represents the mask of a IPv6 NAT map rule that */ 9896 1.3 darrenr /* has just been added. This function inserts a bitmask into the array of */ 9897 1.3 darrenr /* masks to search when searching for a matching NAT rule for a packet. */ 9898 1.3 darrenr /* Prevention of duplicate masks is achieved by checking the use count for */ 9899 1.3 darrenr /* a given netmask. */ 9900 1.3 darrenr /* ------------------------------------------------------------------------ */ 9901 1.3 darrenr void 9902 1.4 darrenr ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab) 9903 1.3 darrenr { 9904 1.3 darrenr i6addr_t zero; 9905 1.3 darrenr int i, j; 9906 1.3 darrenr 9907 1.3 darrenr mtab->imt6_masks[bits]++; 9908 1.3 darrenr if (mtab->imt6_masks[bits] > 1) 9909 1.3 darrenr return; 9910 1.3 darrenr 9911 1.3 darrenr if (bits == 0) { 9912 1.3 darrenr mask = &zero; 9913 1.3 darrenr zero.i6[0] = 0; 9914 1.3 darrenr zero.i6[1] = 0; 9915 1.3 darrenr zero.i6[2] = 0; 9916 1.3 darrenr zero.i6[3] = 0; 9917 1.3 darrenr } 9918 1.3 darrenr 9919 1.3 darrenr for (i = 0; i < 129; i++) { 9920 1.3 darrenr if (IP6_LT(&mtab->imt6_active[i], mask)) { 9921 1.3 darrenr for (j = 128; j > i; j--) 9922 1.3 darrenr mtab->imt6_active[j] = mtab->imt6_active[j - 1]; 9923 1.3 darrenr mtab->imt6_active[i] = *mask; 9924 1.3 darrenr break; 9925 1.3 darrenr } 9926 1.3 darrenr } 9927 1.3 darrenr mtab->imt6_max++; 9928 1.3 darrenr } 9929 1.3 darrenr 9930 1.3 darrenr 9931 1.3 darrenr /* ------------------------------------------------------------------------ */ 9932 1.3 darrenr /* Function: ipf_inet6_mask_del */ 9933 1.3 darrenr /* Returns: Nil */ 9934 1.3 darrenr /* Parameters: bits(I) - number of bits set in mask */ 9935 1.3 darrenr /* mask(I) - pointer to mask to remove */ 9936 1.3 darrenr /* mtab(I) - pointer to mask hash table structure */ 9937 1.3 darrenr /* */ 9938 1.3 darrenr /* Remove the 128bit bitmask represented by "bits" from the collection of */ 9939 1.3 darrenr /* netmasks stored inside of mtab. */ 9940 1.3 darrenr /* ------------------------------------------------------------------------ */ 9941 1.3 darrenr void 9942 1.4 darrenr ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab) 9943 1.3 darrenr { 9944 1.3 darrenr i6addr_t zero; 9945 1.3 darrenr int i, j; 9946 1.3 darrenr 9947 1.3 darrenr mtab->imt6_masks[bits]--; 9948 1.3 darrenr if (mtab->imt6_masks[bits] > 0) 9949 1.3 darrenr return; 9950 1.3 darrenr 9951 1.3 darrenr if (bits == 0) 9952 1.3 darrenr mask = &zero; 9953 1.3 darrenr zero.i6[0] = 0; 9954 1.3 darrenr zero.i6[1] = 0; 9955 1.3 darrenr zero.i6[2] = 0; 9956 1.3 darrenr zero.i6[3] = 0; 9957 1.3 darrenr 9958 1.3 darrenr for (i = 0; i < 129; i++) { 9959 1.3 darrenr if (IP6_EQ(&mtab->imt6_active[i], mask)) { 9960 1.3 darrenr for (j = i + 1; j < 129; j++) { 9961 1.3 darrenr mtab->imt6_active[j - 1] = mtab->imt6_active[j]; 9962 1.3 darrenr if (IP6_EQ(&mtab->imt6_active[j - 1], &zero)) 9963 1.3 darrenr break; 9964 1.3 darrenr } 9965 1.3 darrenr break; 9966 1.3 darrenr } 9967 1.3 darrenr } 9968 1.3 darrenr mtab->imt6_max--; 9969 1.3 darrenr ASSERT(mtab->imt6_max >= 0); 9970 1.3 darrenr } 9971 1.3 darrenr #endif 9972