fil.c revision 1.11 1 /* $NetBSD: fil.c,v 1.11 2013/09/12 20:03:10 martin Exp $ */
2
3 /*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $
9 *
10 */
11 #if defined(KERNEL) || defined(_KERNEL)
12 # undef KERNEL
13 # undef _KERNEL
14 # define KERNEL 1
15 # define _KERNEL 1
16 #endif
17 #include <sys/errno.h>
18 #include <sys/types.h>
19 #include <sys/param.h>
20 #include <sys/time.h>
21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
22 (__FreeBSD_version >= 220000)
23 # if (__FreeBSD_version >= 400000)
24 # if !defined(IPFILTER_LKM)
25 # include "opt_inet6.h"
26 # endif
27 # if (__FreeBSD_version == 400019)
28 # define CSUM_DELAY_DATA
29 # endif
30 # endif
31 # include <sys/filio.h>
32 #else
33 # include <sys/ioctl.h>
34 #endif
35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
36 # include <sys/filio.h>
37 #endif
38 #if !defined(_AIX51)
39 # include <sys/fcntl.h>
40 #endif
41 #if defined(_KERNEL)
42 # include <sys/systm.h>
43 # include <sys/file.h>
44 #else
45 # include <stdio.h>
46 # include <string.h>
47 # include <stdlib.h>
48 # include <stddef.h>
49 # include <sys/file.h>
50 # define _KERNEL
51 # ifdef __OpenBSD__
52 struct file;
53 # endif
54 # include <sys/uio.h>
55 # undef _KERNEL
56 #endif
57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
58 !defined(linux)
59 # include <sys/mbuf.h>
60 #else
61 # if !defined(linux)
62 # include <sys/byteorder.h>
63 # endif
64 # if (SOLARIS2 < 5) && defined(sun)
65 # include <sys/dditypes.h>
66 # endif
67 #endif
68 #ifdef __hpux
69 # define _NET_ROUTE_INCLUDED
70 #endif
71 #if !defined(linux)
72 # include <sys/protosw.h>
73 #endif
74 #include <sys/socket.h>
75 #include <net/if.h>
76 #ifdef sun
77 # include <net/af.h>
78 #endif
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
83 # include <sys/hashing.h>
84 # include <netinet/in_var.h>
85 #endif
86 #include <netinet/tcp.h>
87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
88 # include <netinet/udp.h>
89 # include <netinet/ip_icmp.h>
90 #endif
91 #ifdef __hpux
92 # undef _NET_ROUTE_INCLUDED
93 #endif
94 #ifdef __osf__
95 # undef _RADIX_H_
96 #endif
97 #include "netinet/ip_compat.h"
98 #ifdef USE_INET6
99 # include <netinet/icmp6.h>
100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
101 # include <netinet6/in6_var.h>
102 # endif
103 #endif
104 #include "netinet/ip_fil.h"
105 #include "netinet/ip_nat.h"
106 #include "netinet/ip_frag.h"
107 #include "netinet/ip_state.h"
108 #include "netinet/ip_proxy.h"
109 #include "netinet/ip_auth.h"
110 #ifdef IPFILTER_SCAN
111 # include "netinet/ip_scan.h"
112 #endif
113 #include "netinet/ip_sync.h"
114 #include "netinet/ip_lookup.h"
115 #include "netinet/ip_pool.h"
116 #include "netinet/ip_htable.h"
117 #ifdef IPFILTER_COMPILED
118 # include "netinet/ip_rules.h"
119 #endif
120 #if defined(IPFILTER_BPF) && defined(_KERNEL)
121 # include <net/bpf.h>
122 #endif
123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
124 # include <sys/malloc.h>
125 #endif
126 #include "netinet/ipl.h"
127
128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
129 # include <sys/callout.h>
130 extern struct callout ipf_slowtimer_ch;
131 #endif
132 #if defined(__OpenBSD__)
133 # include <sys/timeout.h>
134 extern struct timeout ipf_slowtimer_ch;
135 #endif
136 /* END OF INCLUDES */
137
138 #if !defined(lint)
139 #if defined(__NetBSD__)
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.11 2013/09/12 20:03:10 martin Exp $");
142 #else
143 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed";
144 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $";
145 #endif
146 #endif
147
148 #ifndef _KERNEL
149 # include "ipf.h"
150 # include "ipt.h"
151 extern int opts;
152 extern int blockreason;
153 #endif /* _KERNEL */
154
155 #define LBUMP(x) softc->x++
156 #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0)
157
158 static INLINE int ipf_check_ipf(fr_info_t *, frentry_t *, int);
159 static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int);
160 static u_32_t ipf_checkripso(u_char *);
161 static u_32_t ipf_decaps(fr_info_t *, u_32_t, int);
162 #ifdef IPFILTER_LOG
163 static frentry_t *ipf_dolog(fr_info_t *, u_32_t *);
164 #endif
165 static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
166 static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int);
167 static ipfunc_t ipf_findfunc(ipfunc_t);
168 static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
169 i6addr_t *, i6addr_t *);
170 static frentry_t *ipf_firewall(fr_info_t *, u_32_t *);
171 static int ipf_fr_matcharray(fr_info_t *, int *);
172 static int ipf_frruleiter(ipf_main_softc_t *, void *, int, void *);
173 static void ipf_funcfini(ipf_main_softc_t *, frentry_t *);;
174 static int ipf_funcinit(ipf_main_softc_t *, frentry_t *);
175 static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
176 ipfgeniter_t *);
177 static void ipf_getstat(ipf_main_softc_t *,
178 struct friostat *, int);
179 static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
180 static void ipf_group_free(frgroup_t *);
181 static int ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *);
182 static int ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *);
183 static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int,
184 frentry_t *, int);
185 static int ipf_portcheck(frpcmp_t *, u_32_t);
186 static INLINE int ipf_pr_ah(fr_info_t *);
187 static INLINE void ipf_pr_esp(fr_info_t *);
188 static INLINE void ipf_pr_gre(fr_info_t *);
189 static INLINE void ipf_pr_udp(fr_info_t *);
190 static INLINE void ipf_pr_tcp(fr_info_t *);
191 static INLINE void ipf_pr_icmp(fr_info_t *);
192 static INLINE void ipf_pr_ipv4hdr(fr_info_t *);
193 static INLINE void ipf_pr_short(fr_info_t *, int);
194 static INLINE int ipf_pr_tcpcommon(fr_info_t *);
195 static INLINE int ipf_pr_udpcommon(fr_info_t *);
196 static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
197 int, int);
198 static void ipf_rule_expire_insert(ipf_main_softc_t *,
199 frentry_t *, int);
200 static int ipf_synclist(ipf_main_softc_t *, frentry_t *, void *);
201 static void ipf_token_flush(ipf_main_softc_t *);
202 static void ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *);
203 static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *, const char *);
204 static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *,
205 void **);
206 static int ipf_updateipid(fr_info_t *);
207 static int ipf_settimeout(struct ipf_main_softc_s *,
208 struct ipftuneable *, ipftuneval_t *);
209
210
211 /*
212 * bit values for identifying presence of individual IP options
213 * All of these tables should be ordered by increasing key value on the left
214 * hand side to allow for binary searching of the array and include a trailer
215 * with a 0 for the bitmask for linear searches to easily find the end with.
216 */
217 static const struct optlist ipopts[20] = {
218 { IPOPT_NOP, 0x000001 },
219 { IPOPT_RR, 0x000002 },
220 { IPOPT_ZSU, 0x000004 },
221 { IPOPT_MTUP, 0x000008 },
222 { IPOPT_MTUR, 0x000010 },
223 { IPOPT_ENCODE, 0x000020 },
224 { IPOPT_TS, 0x000040 },
225 { IPOPT_TR, 0x000080 },
226 { IPOPT_SECURITY, 0x000100 },
227 { IPOPT_LSRR, 0x000200 },
228 { IPOPT_E_SEC, 0x000400 },
229 { IPOPT_CIPSO, 0x000800 },
230 { IPOPT_SATID, 0x001000 },
231 { IPOPT_SSRR, 0x002000 },
232 { IPOPT_ADDEXT, 0x004000 },
233 { IPOPT_VISA, 0x008000 },
234 { IPOPT_IMITD, 0x010000 },
235 { IPOPT_EIP, 0x020000 },
236 { IPOPT_FINN, 0x040000 },
237 { 0, 0x000000 }
238 };
239
240 #ifdef USE_INET6
241 static struct optlist ip6exthdr[] = {
242 { IPPROTO_HOPOPTS, 0x000001 },
243 { IPPROTO_IPV6, 0x000002 },
244 { IPPROTO_ROUTING, 0x000004 },
245 { IPPROTO_FRAGMENT, 0x000008 },
246 { IPPROTO_ESP, 0x000010 },
247 { IPPROTO_AH, 0x000020 },
248 { IPPROTO_NONE, 0x000040 },
249 { IPPROTO_DSTOPTS, 0x000080 },
250 { IPPROTO_MOBILITY, 0x000100 },
251 { 0, 0 }
252 };
253 #endif
254
255 /*
256 * bit values for identifying presence of individual IP security options
257 */
258 static const struct optlist secopt[8] = {
259 { IPSO_CLASS_RES4, 0x01 },
260 { IPSO_CLASS_TOPS, 0x02 },
261 { IPSO_CLASS_SECR, 0x04 },
262 { IPSO_CLASS_RES3, 0x08 },
263 { IPSO_CLASS_CONF, 0x10 },
264 { IPSO_CLASS_UNCL, 0x20 },
265 { IPSO_CLASS_RES2, 0x40 },
266 { IPSO_CLASS_RES1, 0x80 }
267 };
268
269 char ipfilter_version[] = IPL_VERSION;
270
271 int ipf_features = 0
272 #ifdef IPFILTER_LKM
273 | IPF_FEAT_LKM
274 #endif
275 #ifdef IPFILTER_LOG
276 | IPF_FEAT_LOG
277 #endif
278 | IPF_FEAT_LOOKUP
279 #ifdef IPFILTER_BPF
280 | IPF_FEAT_BPF
281 #endif
282 #ifdef IPFILTER_COMPILED
283 | IPF_FEAT_COMPILED
284 #endif
285 #ifdef IPFILTER_CKSUM
286 | IPF_FEAT_CKSUM
287 #endif
288 | IPF_FEAT_SYNC
289 #ifdef IPFILTER_SCAN
290 | IPF_FEAT_SCAN
291 #endif
292 #ifdef USE_INET6
293 | IPF_FEAT_IPV6
294 #endif
295 ;
296
297
298 /*
299 * Table of functions available for use with call rules.
300 */
301 static ipfunc_resolve_t ipf_availfuncs[] = {
302 { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
303 { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
304 { "", NULL, NULL, NULL }
305 };
306
307 static ipftuneable_t ipf_main_tuneables[] = {
308 { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
309 "ipf_flags", 0, 0xffffffff,
310 stsizeof(ipf_main_softc_t, ipf_flags),
311 0, NULL, NULL },
312 { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
313 "active", 0, 0,
314 stsizeof(ipf_main_softc_t, ipf_active),
315 IPFT_RDONLY, NULL, NULL },
316 { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
317 "control_forwarding", 0, 1,
318 stsizeof(ipf_main_softc_t, ipf_control_forwarding),
319 0, NULL, NULL },
320 { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
321 "update_ipid", 0, 1,
322 stsizeof(ipf_main_softc_t, ipf_update_ipid),
323 0, NULL, NULL },
324 { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
325 "chksrc", 0, 1,
326 stsizeof(ipf_main_softc_t, ipf_chksrc),
327 0, NULL, NULL },
328 { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
329 "min_ttl", 0, 1,
330 stsizeof(ipf_main_softc_t, ipf_minttl),
331 0, NULL, NULL },
332 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
333 "icmp_minfragmtu", 0, 1,
334 stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
335 0, NULL, NULL },
336 { { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
337 "default_pass", 0, 0xffffffff,
338 stsizeof(ipf_main_softc_t, ipf_pass),
339 0, NULL, NULL },
340 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
341 "tcp_idle_timeout", 1, 0x7fffffff,
342 stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
343 0, NULL, ipf_settimeout },
344 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
345 "tcp_close_wait", 1, 0x7fffffff,
346 stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
347 0, NULL, ipf_settimeout },
348 { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
349 "tcp_last_ack", 1, 0x7fffffff,
350 stsizeof(ipf_main_softc_t, ipf_tcplastack),
351 0, NULL, ipf_settimeout },
352 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
353 "tcp_timeout", 1, 0x7fffffff,
354 stsizeof(ipf_main_softc_t, ipf_tcptimeout),
355 0, NULL, ipf_settimeout },
356 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
357 "tcp_syn_sent", 1, 0x7fffffff,
358 stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
359 0, NULL, ipf_settimeout },
360 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
361 "tcp_syn_received", 1, 0x7fffffff,
362 stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
363 0, NULL, ipf_settimeout },
364 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
365 "tcp_closed", 1, 0x7fffffff,
366 stsizeof(ipf_main_softc_t, ipf_tcpclosed),
367 0, NULL, ipf_settimeout },
368 { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
369 "tcp_half_closed", 1, 0x7fffffff,
370 stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
371 0, NULL, ipf_settimeout },
372 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
373 "tcp_time_wait", 1, 0x7fffffff,
374 stsizeof(ipf_main_softc_t, ipf_tcptimewait),
375 0, NULL, ipf_settimeout },
376 { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
377 "udp_timeout", 1, 0x7fffffff,
378 stsizeof(ipf_main_softc_t, ipf_udptimeout),
379 0, NULL, ipf_settimeout },
380 { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
381 "udp_ack_timeout", 1, 0x7fffffff,
382 stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
383 0, NULL, ipf_settimeout },
384 { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
385 "icmp_timeout", 1, 0x7fffffff,
386 stsizeof(ipf_main_softc_t, ipf_icmptimeout),
387 0, NULL, ipf_settimeout },
388 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
389 "icmp_ack_timeout", 1, 0x7fffffff,
390 stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
391 0, NULL, ipf_settimeout },
392 { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
393 "ip_timeout", 1, 0x7fffffff,
394 stsizeof(ipf_main_softc_t, ipf_iptimeout),
395 0, NULL, ipf_settimeout },
396 #if defined(INSTANCES) && defined(_KERNEL)
397 { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
398 "intercept_loopback", 0, 1,
399 stsizeof(ipf_main_softc_t, ipf_get_loopback),
400 0, NULL, ipf_set_loopback },
401 #endif
402 { { 0 },
403 NULL, 0, 0,
404 0,
405 0, NULL, NULL }
406 };
407
408
409 /*
410 * The next section of code is a a collection of small routines that set
411 * fields in the fr_info_t structure passed based on properties of the
412 * current packet. There are different routines for the same protocol
413 * for each of IPv4 and IPv6. Adding a new protocol, for which there
414 * will "special" inspection for setup, is now more easily done by adding
415 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
416 * adding more code to a growing switch statement.
417 */
418 #ifdef USE_INET6
419 static INLINE int ipf_pr_ah6(fr_info_t *);
420 static INLINE void ipf_pr_esp6(fr_info_t *);
421 static INLINE void ipf_pr_gre6(fr_info_t *);
422 static INLINE void ipf_pr_udp6(fr_info_t *);
423 static INLINE void ipf_pr_tcp6(fr_info_t *);
424 static INLINE void ipf_pr_icmp6(fr_info_t *);
425 static INLINE void ipf_pr_ipv6hdr(fr_info_t *);
426 static INLINE void ipf_pr_short6(fr_info_t *, int);
427 static INLINE int ipf_pr_hopopts6(fr_info_t *);
428 static INLINE int ipf_pr_mobility6(fr_info_t *);
429 static INLINE int ipf_pr_routing6(fr_info_t *);
430 static INLINE int ipf_pr_dstopts6(fr_info_t *);
431 static INLINE int ipf_pr_fragment6(fr_info_t *);
432 static INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
433
434
435 /* ------------------------------------------------------------------------ */
436 /* Function: ipf_pr_short6 */
437 /* Returns: void */
438 /* Parameters: fin(I) - pointer to packet information */
439 /* xmin(I) - minimum header size */
440 /* */
441 /* IPv6 Only */
442 /* This is function enforces the 'is a packet too short to be legit' rule */
443 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */
444 /* for ipf_pr_short() for more details. */
445 /* ------------------------------------------------------------------------ */
446 static INLINE void
447 ipf_pr_short6(fr_info_t *fin, int xmin)
448 {
449
450 if (fin->fin_dlen < xmin)
451 fin->fin_flx |= FI_SHORT;
452 }
453
454
455 /* ------------------------------------------------------------------------ */
456 /* Function: ipf_pr_ipv6hdr */
457 /* Returns: void */
458 /* Parameters: fin(I) - pointer to packet information */
459 /* */
460 /* IPv6 Only */
461 /* Copy values from the IPv6 header into the fr_info_t struct and call the */
462 /* per-protocol analyzer if it exists. In validating the packet, a protocol*/
463 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
464 /* of that possibility arising. */
465 /* ------------------------------------------------------------------------ */
466 static INLINE void
467 ipf_pr_ipv6hdr(fr_info_t *fin)
468 {
469 ip6_t *ip6 = (ip6_t *)fin->fin_ip;
470 int p, go = 1, i, hdrcount;
471 fr_ip_t *fi = &fin->fin_fi;
472
473 fin->fin_off = 0;
474
475 fi->fi_tos = 0;
476 fi->fi_optmsk = 0;
477 fi->fi_secmsk = 0;
478 fi->fi_auth = 0;
479
480 p = ip6->ip6_nxt;
481 fin->fin_crc = p;
482 fi->fi_ttl = ip6->ip6_hlim;
483 fi->fi_src.in6 = ip6->ip6_src;
484 fin->fin_crc += fi->fi_src.i6[0];
485 fin->fin_crc += fi->fi_src.i6[1];
486 fin->fin_crc += fi->fi_src.i6[2];
487 fin->fin_crc += fi->fi_src.i6[3];
488 fi->fi_dst.in6 = ip6->ip6_dst;
489 fin->fin_crc += fi->fi_dst.i6[0];
490 fin->fin_crc += fi->fi_dst.i6[1];
491 fin->fin_crc += fi->fi_dst.i6[2];
492 fin->fin_crc += fi->fi_dst.i6[3];
493 fin->fin_id = 0;
494 if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
495 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
496
497 hdrcount = 0;
498 while (go && !(fin->fin_flx & FI_SHORT)) {
499 switch (p)
500 {
501 case IPPROTO_UDP :
502 ipf_pr_udp6(fin);
503 go = 0;
504 break;
505
506 case IPPROTO_TCP :
507 ipf_pr_tcp6(fin);
508 go = 0;
509 break;
510
511 case IPPROTO_ICMPV6 :
512 ipf_pr_icmp6(fin);
513 go = 0;
514 break;
515
516 case IPPROTO_GRE :
517 ipf_pr_gre6(fin);
518 go = 0;
519 break;
520
521 case IPPROTO_HOPOPTS :
522 p = ipf_pr_hopopts6(fin);
523 break;
524
525 case IPPROTO_MOBILITY :
526 p = ipf_pr_mobility6(fin);
527 break;
528
529 case IPPROTO_DSTOPTS :
530 p = ipf_pr_dstopts6(fin);
531 break;
532
533 case IPPROTO_ROUTING :
534 p = ipf_pr_routing6(fin);
535 break;
536
537 case IPPROTO_AH :
538 p = ipf_pr_ah6(fin);
539 break;
540
541 case IPPROTO_ESP :
542 ipf_pr_esp6(fin);
543 go = 0;
544 break;
545
546 case IPPROTO_IPV6 :
547 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
548 if (ip6exthdr[i].ol_val == p) {
549 fin->fin_flx |= ip6exthdr[i].ol_bit;
550 break;
551 }
552 go = 0;
553 break;
554
555 case IPPROTO_NONE :
556 go = 0;
557 break;
558
559 case IPPROTO_FRAGMENT :
560 p = ipf_pr_fragment6(fin);
561 /*
562 * Given that the only fragments we want to let through
563 * (where fin_off != 0) are those where the non-first
564 * fragments only have data, we can safely stop looking
565 * at headers if this is a non-leading fragment.
566 */
567 if (fin->fin_off != 0)
568 go = 0;
569 break;
570
571 default :
572 go = 0;
573 break;
574 }
575 hdrcount++;
576
577 /*
578 * It is important to note that at this point, for the
579 * extension headers (go != 0), the entire header may not have
580 * been pulled up when the code gets to this point. This is
581 * only done for "go != 0" because the other header handlers
582 * will all pullup their complete header. The other indicator
583 * of an incomplete packet is that this was just an extension
584 * header.
585 */
586 if ((go != 0) && (p != IPPROTO_NONE) &&
587 (ipf_pr_pullup(fin, 0) == -1)) {
588 p = IPPROTO_NONE;
589 break;
590 }
591 }
592
593 /*
594 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
595 * and destroy whatever packet was here. The caller of this function
596 * expects us to return if there is a problem with ipf_pullup.
597 */
598 if (fin->fin_m == NULL) {
599 ipf_main_softc_t *softc = fin->fin_main_soft;
600
601 LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
602 return;
603 }
604
605 fi->fi_p = p;
606
607 /*
608 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
609 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
610 */
611 if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
612 ipf_main_softc_t *softc = fin->fin_main_soft;
613
614 fin->fin_flx |= FI_BAD;
615 LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
616 LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
617 }
618 }
619
620
621 /* ------------------------------------------------------------------------ */
622 /* Function: ipf_pr_ipv6exthdr */
623 /* Returns: struct ip6_ext * - pointer to the start of the next header */
624 /* or NULL if there is a prolblem. */
625 /* Parameters: fin(I) - pointer to packet information */
626 /* multiple(I) - flag indicating yes/no if multiple occurances */
627 /* of this extension header are allowed. */
628 /* proto(I) - protocol number for this extension header */
629 /* */
630 /* IPv6 Only */
631 /* This function embodies a number of common checks that all IPv6 extension */
632 /* headers must be subjected to. For example, making sure the packet is */
633 /* big enough for it to be in, checking if it is repeated and setting a */
634 /* flag to indicate its presence. */
635 /* ------------------------------------------------------------------------ */
636 static INLINE struct ip6_ext *
637 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
638 {
639 ipf_main_softc_t *softc = fin->fin_main_soft;
640 struct ip6_ext *hdr;
641 u_short shift;
642 int i;
643
644 fin->fin_flx |= FI_V6EXTHDR;
645
646 /* 8 is default length of extension hdr */
647 if ((fin->fin_dlen - 8) < 0) {
648 fin->fin_flx |= FI_SHORT;
649 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
650 return NULL;
651 }
652
653 if (ipf_pr_pullup(fin, 8) == -1) {
654 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
655 return NULL;
656 }
657
658 hdr = fin->fin_dp;
659 switch (proto)
660 {
661 case IPPROTO_FRAGMENT :
662 shift = 8;
663 break;
664 default :
665 shift = 8 + (hdr->ip6e_len << 3);
666 break;
667 }
668
669 if (shift > fin->fin_dlen) { /* Nasty extension header length? */
670 fin->fin_flx |= FI_BAD;
671 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
672 return NULL;
673 }
674
675 fin->fin_dp = (char *)fin->fin_dp + shift;
676 fin->fin_dlen -= shift;
677
678 /*
679 * If we have seen a fragment header, do not set any flags to indicate
680 * the presence of this extension header as it has no impact on the
681 * end result until after it has been defragmented.
682 */
683 if (fin->fin_flx & FI_FRAG)
684 return hdr;
685
686 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
687 if (ip6exthdr[i].ol_val == proto) {
688 /*
689 * Most IPv6 extension headers are only allowed once.
690 */
691 if ((multiple == 0) &&
692 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
693 fin->fin_flx |= FI_BAD;
694 else
695 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
696 break;
697 }
698
699 return hdr;
700 }
701
702
703 /* ------------------------------------------------------------------------ */
704 /* Function: ipf_pr_hopopts6 */
705 /* Returns: int - value of the next header or IPPROTO_NONE if error */
706 /* Parameters: fin(I) - pointer to packet information */
707 /* */
708 /* IPv6 Only */
709 /* This is function checks pending hop by hop options extension header */
710 /* ------------------------------------------------------------------------ */
711 static INLINE int
712 ipf_pr_hopopts6(fr_info_t *fin)
713 {
714 struct ip6_ext *hdr;
715
716 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
717 if (hdr == NULL)
718 return IPPROTO_NONE;
719 return hdr->ip6e_nxt;
720 }
721
722
723 /* ------------------------------------------------------------------------ */
724 /* Function: ipf_pr_mobility6 */
725 /* Returns: int - value of the next header or IPPROTO_NONE if error */
726 /* Parameters: fin(I) - pointer to packet information */
727 /* */
728 /* IPv6 Only */
729 /* This is function checks the IPv6 mobility extension header */
730 /* ------------------------------------------------------------------------ */
731 static INLINE int
732 ipf_pr_mobility6(fr_info_t *fin)
733 {
734 struct ip6_ext *hdr;
735
736 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
737 if (hdr == NULL)
738 return IPPROTO_NONE;
739 return hdr->ip6e_nxt;
740 }
741
742
743 /* ------------------------------------------------------------------------ */
744 /* Function: ipf_pr_routing6 */
745 /* Returns: int - value of the next header or IPPROTO_NONE if error */
746 /* Parameters: fin(I) - pointer to packet information */
747 /* */
748 /* IPv6 Only */
749 /* This is function checks pending routing extension header */
750 /* ------------------------------------------------------------------------ */
751 static INLINE int
752 ipf_pr_routing6(fr_info_t *fin)
753 {
754 struct ip6_routing *hdr;
755
756 hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
757 if (hdr == NULL)
758 return IPPROTO_NONE;
759
760 switch (hdr->ip6r_type)
761 {
762 case 0 :
763 /*
764 * Nasty extension header length?
765 */
766 if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
767 (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
768 ipf_main_softc_t *softc = fin->fin_main_soft;
769
770 fin->fin_flx |= FI_BAD;
771 LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
772 return IPPROTO_NONE;
773 }
774 break;
775
776 default :
777 break;
778 }
779
780 return hdr->ip6r_nxt;
781 }
782
783
784 /* ------------------------------------------------------------------------ */
785 /* Function: ipf_pr_fragment6 */
786 /* Returns: int - value of the next header or IPPROTO_NONE if error */
787 /* Parameters: fin(I) - pointer to packet information */
788 /* */
789 /* IPv6 Only */
790 /* Examine the IPv6 fragment header and extract fragment offset information.*/
791 /* */
792 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
793 /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */
794 /* packets with a fragment header can fit into. They are as follows: */
795 /* */
796 /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */
797 /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */
798 /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */
799 /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */
800 /* 5. [IPV6][0-n EH][FH][data] */
801 /* */
802 /* IPV6 = IPv6 header, FH = Fragment Header, */
803 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
804 /* */
805 /* Packets that match 1, 2, 3 will be dropped as the only reasonable */
806 /* scenario in which they happen is in extreme circumstances that are most */
807 /* likely to be an indication of an attack rather than normal traffic. */
808 /* A type 3 packet may be sent by an attacked after a type 4 packet. There */
809 /* are two rules that can be used to guard against type 3 packets: L4 */
810 /* headers must always be in a packet that has the offset field set to 0 */
811 /* and no packet is allowed to overlay that where offset = 0. */
812 /* ------------------------------------------------------------------------ */
813 static INLINE int
814 ipf_pr_fragment6(fr_info_t *fin)
815 {
816 ipf_main_softc_t *softc = fin->fin_main_soft;
817 struct ip6_frag *frag;
818
819 fin->fin_flx |= FI_FRAG;
820
821 frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
822 if (frag == NULL) {
823 LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
824 return IPPROTO_NONE;
825 }
826
827 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
828 /*
829 * Any fragment that isn't the last fragment must have its
830 * length as a multiple of 8.
831 */
832 if ((fin->fin_plen & 7) != 0)
833 fin->fin_flx |= FI_BAD;
834 }
835
836 fin->fin_fraghdr = frag;
837 fin->fin_id = frag->ip6f_ident;
838 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
839 if (fin->fin_off != 0)
840 fin->fin_flx |= FI_FRAGBODY;
841
842 /*
843 * Jumbograms aren't handled, so the max. length is 64k
844 */
845 if ((fin->fin_off << 3) + fin->fin_dlen > 65535)
846 fin->fin_flx |= FI_BAD;
847
848 /*
849 * We don't know where the transport layer header (or whatever is next
850 * is), as it could be behind destination options (amongst others) so
851 * return the fragment header as the type of packet this is. Note that
852 * this effectively disables the fragment cache for > 1 protocol at a
853 * time.
854 */
855 return frag->ip6f_nxt;
856 }
857
858
859 /* ------------------------------------------------------------------------ */
860 /* Function: ipf_pr_dstopts6 */
861 /* Returns: int - value of the next header or IPPROTO_NONE if error */
862 /* Parameters: fin(I) - pointer to packet information */
863 /* */
864 /* IPv6 Only */
865 /* This is function checks pending destination options extension header */
866 /* ------------------------------------------------------------------------ */
867 static INLINE int
868 ipf_pr_dstopts6(fr_info_t *fin)
869 {
870 ipf_main_softc_t *softc = fin->fin_main_soft;
871 struct ip6_ext *hdr;
872
873 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
874 if (hdr == NULL) {
875 LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
876 return IPPROTO_NONE;
877 }
878 return hdr->ip6e_nxt;
879 }
880
881
882 /* ------------------------------------------------------------------------ */
883 /* Function: ipf_pr_icmp6 */
884 /* Returns: void */
885 /* Parameters: fin(I) - pointer to packet information */
886 /* */
887 /* IPv6 Only */
888 /* This routine is mainly concerned with determining the minimum valid size */
889 /* for an ICMPv6 packet. */
890 /* ------------------------------------------------------------------------ */
891 static INLINE void
892 ipf_pr_icmp6(fr_info_t *fin)
893 {
894 int minicmpsz = sizeof(struct icmp6_hdr);
895 struct icmp6_hdr *icmp6;
896
897 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
898 ipf_main_softc_t *softc = fin->fin_main_soft;
899
900 LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
901 return;
902 }
903
904 if (fin->fin_dlen > 1) {
905 ip6_t *ip6;
906
907 icmp6 = fin->fin_dp;
908
909 fin->fin_data[0] = *(u_short *)icmp6;
910
911 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
912 fin->fin_flx |= FI_ICMPQUERY;
913
914 switch (icmp6->icmp6_type)
915 {
916 case ICMP6_ECHO_REPLY :
917 case ICMP6_ECHO_REQUEST :
918 if (fin->fin_dlen >= 6)
919 fin->fin_data[1] = icmp6->icmp6_id;
920 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
921 break;
922
923 case ICMP6_DST_UNREACH :
924 case ICMP6_PACKET_TOO_BIG :
925 case ICMP6_TIME_EXCEEDED :
926 case ICMP6_PARAM_PROB :
927 fin->fin_flx |= FI_ICMPERR;
928 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
929 if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
930 break;
931
932 if (M_LEN(fin->fin_m) < fin->fin_plen) {
933 if (ipf_coalesce(fin) != 1)
934 return;
935 }
936
937 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
938 return;
939
940 /*
941 * If the destination of this packet doesn't match the
942 * source of the original packet then this packet is
943 * not correct.
944 */
945 icmp6 = fin->fin_dp;
946 ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
947 if (IP6_NEQ(&fin->fin_fi.fi_dst,
948 &ip6->ip6_src))
949 fin->fin_flx |= FI_BAD;
950 break;
951 default :
952 break;
953 }
954 }
955
956 ipf_pr_short6(fin, minicmpsz);
957 if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
958 u_char p = fin->fin_p;
959
960 fin->fin_p = IPPROTO_ICMPV6;
961 ipf_checkv6sum(fin);
962 fin->fin_p = p;
963 }
964 }
965
966
967 /* ------------------------------------------------------------------------ */
968 /* Function: ipf_pr_udp6 */
969 /* Returns: void */
970 /* Parameters: fin(I) - pointer to packet information */
971 /* */
972 /* IPv6 Only */
973 /* Analyse the packet for IPv6/UDP properties. */
974 /* Is not expected to be called for fragmented packets. */
975 /* ------------------------------------------------------------------------ */
976 static INLINE void
977 ipf_pr_udp6(fr_info_t *fin)
978 {
979
980 if (ipf_pr_udpcommon(fin) == 0) {
981 u_char p = fin->fin_p;
982
983 fin->fin_p = IPPROTO_UDP;
984 ipf_checkv6sum(fin);
985 fin->fin_p = p;
986 }
987 }
988
989
990 /* ------------------------------------------------------------------------ */
991 /* Function: ipf_pr_tcp6 */
992 /* Returns: void */
993 /* Parameters: fin(I) - pointer to packet information */
994 /* */
995 /* IPv6 Only */
996 /* Analyse the packet for IPv6/TCP properties. */
997 /* Is not expected to be called for fragmented packets. */
998 /* ------------------------------------------------------------------------ */
999 static INLINE void
1000 ipf_pr_tcp6(fr_info_t *fin)
1001 {
1002
1003 if (ipf_pr_tcpcommon(fin) == 0) {
1004 u_char p = fin->fin_p;
1005
1006 fin->fin_p = IPPROTO_TCP;
1007 ipf_checkv6sum(fin);
1008 fin->fin_p = p;
1009 }
1010 }
1011
1012
1013 /* ------------------------------------------------------------------------ */
1014 /* Function: ipf_pr_esp6 */
1015 /* Returns: void */
1016 /* Parameters: fin(I) - pointer to packet information */
1017 /* */
1018 /* IPv6 Only */
1019 /* Analyse the packet for ESP properties. */
1020 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1021 /* even though the newer ESP packets must also have a sequence number that */
1022 /* is 32bits as well, it is not possible(?) to determine the version from a */
1023 /* simple packet header. */
1024 /* ------------------------------------------------------------------------ */
1025 static INLINE void
1026 ipf_pr_esp6(fr_info_t *fin)
1027 {
1028
1029 if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1030 ipf_main_softc_t *softc = fin->fin_main_soft;
1031
1032 LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1033 return;
1034 }
1035 }
1036
1037
1038 /* ------------------------------------------------------------------------ */
1039 /* Function: ipf_pr_ah6 */
1040 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1041 /* Parameters: fin(I) - pointer to packet information */
1042 /* */
1043 /* IPv6 Only */
1044 /* Analyse the packet for AH properties. */
1045 /* The minimum length is taken to be the combination of all fields in the */
1046 /* header being present and no authentication data (null algorithm used.) */
1047 /* ------------------------------------------------------------------------ */
1048 static INLINE int
1049 ipf_pr_ah6(fr_info_t *fin)
1050 {
1051 authhdr_t *ah;
1052
1053 fin->fin_flx |= FI_AH;
1054
1055 ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1056 if (ah == NULL) {
1057 ipf_main_softc_t *softc = fin->fin_main_soft;
1058
1059 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1060 return IPPROTO_NONE;
1061 }
1062
1063 ipf_pr_short6(fin, sizeof(*ah));
1064
1065 /*
1066 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1067 * enough data to satisfy ah_next (the very first one.)
1068 */
1069 return ah->ah_next;
1070 }
1071
1072
1073 /* ------------------------------------------------------------------------ */
1074 /* Function: ipf_pr_gre6 */
1075 /* Returns: void */
1076 /* Parameters: fin(I) - pointer to packet information */
1077 /* */
1078 /* Analyse the packet for GRE properties. */
1079 /* ------------------------------------------------------------------------ */
1080 static INLINE void
1081 ipf_pr_gre6(fr_info_t *fin)
1082 {
1083 grehdr_t *gre;
1084
1085 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1086 ipf_main_softc_t *softc = fin->fin_main_soft;
1087
1088 LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1089 return;
1090 }
1091
1092 gre = fin->fin_dp;
1093 if (GRE_REV(gre->gr_flags) == 1)
1094 fin->fin_data[0] = gre->gr_call;
1095 }
1096 #endif /* USE_INET6 */
1097
1098
1099 /* ------------------------------------------------------------------------ */
1100 /* Function: ipf_pr_pullup */
1101 /* Returns: int - 0 == pullup succeeded, -1 == failure */
1102 /* Parameters: fin(I) - pointer to packet information */
1103 /* plen(I) - length (excluding L3 header) to pullup */
1104 /* */
1105 /* Short inline function to cut down on code duplication to perform a call */
1106 /* to ipf_pullup to ensure there is the required amount of data, */
1107 /* consecutively in the packet buffer. */
1108 /* */
1109 /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */
1110 /* points to the first byte after the complete layer 3 header, which will */
1111 /* include all of the known extension headers for IPv6 or options for IPv4. */
1112 /* */
1113 /* Since fr_pullup() expects the total length of bytes to be pulled up, it */
1114 /* is necessary to add those we can already assume to be pulled up (fin_dp */
1115 /* - fin_ip) to what is passed through. */
1116 /* ------------------------------------------------------------------------ */
1117 int
1118 ipf_pr_pullup(fr_info_t *fin, int plen)
1119 {
1120 ipf_main_softc_t *softc = fin->fin_main_soft;
1121
1122 if (fin->fin_m != NULL) {
1123 if (fin->fin_dp != NULL)
1124 plen += (char *)fin->fin_dp -
1125 ((char *)fin->fin_ip + fin->fin_hlen);
1126 plen += fin->fin_hlen;
1127 if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1128 #if defined(_KERNEL)
1129 if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1130 DT(ipf_pullup_fail);
1131 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1132 return -1;
1133 }
1134 LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1135 #else
1136 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1137 /*
1138 * Fake ipf_pullup failing
1139 */
1140 fin->fin_reason = FRB_PULLUP;
1141 *fin->fin_mp = NULL;
1142 fin->fin_m = NULL;
1143 fin->fin_ip = NULL;
1144 return -1;
1145 #endif
1146 }
1147 }
1148 return 0;
1149 }
1150
1151
1152 /* ------------------------------------------------------------------------ */
1153 /* Function: ipf_pr_short */
1154 /* Returns: void */
1155 /* Parameters: fin(I) - pointer to packet information */
1156 /* xmin(I) - minimum header size */
1157 /* */
1158 /* Check if a packet is "short" as defined by xmin. The rule we are */
1159 /* applying here is that the packet must not be fragmented within the layer */
1160 /* 4 header. That is, it must not be a fragment that has its offset set to */
1161 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */
1162 /* entire layer 4 header must be present (min). */
1163 /* ------------------------------------------------------------------------ */
1164 static INLINE void
1165 ipf_pr_short(fr_info_t *fin, int xmin)
1166 {
1167
1168 if (fin->fin_off == 0) {
1169 if (fin->fin_dlen < xmin)
1170 fin->fin_flx |= FI_SHORT;
1171 } else if (fin->fin_off < xmin) {
1172 fin->fin_flx |= FI_SHORT;
1173 }
1174 }
1175
1176
1177 /* ------------------------------------------------------------------------ */
1178 /* Function: ipf_pr_icmp */
1179 /* Returns: void */
1180 /* Parameters: fin(I) - pointer to packet information */
1181 /* */
1182 /* IPv4 Only */
1183 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */
1184 /* except extrememly bad packets, both type and code will be present. */
1185 /* The expected minimum size of an ICMP packet is very much dependent on */
1186 /* the type of it. */
1187 /* */
1188 /* XXX - other ICMP sanity checks? */
1189 /* ------------------------------------------------------------------------ */
1190 static INLINE void
1191 ipf_pr_icmp(fr_info_t *fin)
1192 {
1193 ipf_main_softc_t *softc = fin->fin_main_soft;
1194 int minicmpsz = sizeof(struct icmp);
1195 icmphdr_t *icmp;
1196 ip_t *oip;
1197
1198 ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1199
1200 if (fin->fin_off != 0) {
1201 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1202 return;
1203 }
1204
1205 if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1206 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1207 return;
1208 }
1209
1210 icmp = fin->fin_dp;
1211
1212 fin->fin_data[0] = *(u_short *)icmp;
1213 fin->fin_data[1] = icmp->icmp_id;
1214
1215 switch (icmp->icmp_type)
1216 {
1217 case ICMP_ECHOREPLY :
1218 case ICMP_ECHO :
1219 /* Router discovery messaes - RFC 1256 */
1220 case ICMP_ROUTERADVERT :
1221 case ICMP_ROUTERSOLICIT :
1222 fin->fin_flx |= FI_ICMPQUERY;
1223 minicmpsz = ICMP_MINLEN;
1224 break;
1225 /*
1226 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1227 * 3 * timestamp(3 * 4)
1228 */
1229 case ICMP_TSTAMP :
1230 case ICMP_TSTAMPREPLY :
1231 fin->fin_flx |= FI_ICMPQUERY;
1232 minicmpsz = 20;
1233 break;
1234 /*
1235 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1236 * mask(4)
1237 */
1238 case ICMP_IREQ :
1239 case ICMP_IREQREPLY :
1240 case ICMP_MASKREQ :
1241 case ICMP_MASKREPLY :
1242 fin->fin_flx |= FI_ICMPQUERY;
1243 minicmpsz = 12;
1244 break;
1245 /*
1246 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1247 */
1248 case ICMP_UNREACH :
1249 #ifdef icmp_nextmtu
1250 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1251 if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu)
1252 fin->fin_flx |= FI_BAD;
1253 }
1254 #endif
1255 case ICMP_SOURCEQUENCH :
1256 case ICMP_REDIRECT :
1257 case ICMP_TIMXCEED :
1258 case ICMP_PARAMPROB :
1259 fin->fin_flx |= FI_ICMPERR;
1260 if (ipf_coalesce(fin) != 1) {
1261 LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1262 return;
1263 }
1264
1265 /*
1266 * ICMP error packets should not be generated for IP
1267 * packets that are a fragment that isn't the first
1268 * fragment.
1269 */
1270 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1271 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1272 fin->fin_flx |= FI_BAD;
1273
1274 /*
1275 * If the destination of this packet doesn't match the
1276 * source of the original packet then this packet is
1277 * not correct.
1278 */
1279 if (oip->ip_src.s_addr != fin->fin_daddr)
1280 fin->fin_flx |= FI_BAD;
1281 break;
1282 default :
1283 break;
1284 }
1285
1286 ipf_pr_short(fin, minicmpsz);
1287
1288 ipf_checkv4sum(fin);
1289 }
1290
1291
1292 /* ------------------------------------------------------------------------ */
1293 /* Function: ipf_pr_tcpcommon */
1294 /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */
1295 /* Parameters: fin(I) - pointer to packet information */
1296 /* */
1297 /* TCP header sanity checking. Look for bad combinations of TCP flags, */
1298 /* and make some checks with how they interact with other fields. */
1299 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */
1300 /* valid and mark the packet as bad if not. */
1301 /* ------------------------------------------------------------------------ */
1302 static INLINE int
1303 ipf_pr_tcpcommon(fr_info_t *fin)
1304 {
1305 ipf_main_softc_t *softc = fin->fin_main_soft;
1306 int flags, tlen;
1307 tcphdr_t *tcp;
1308
1309 fin->fin_flx |= FI_TCPUDP;
1310 if (fin->fin_off != 0) {
1311 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1312 return 0;
1313 }
1314
1315 if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1316 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1317 return -1;
1318 }
1319
1320 tcp = fin->fin_dp;
1321 if (fin->fin_dlen > 3) {
1322 fin->fin_sport = ntohs(tcp->th_sport);
1323 fin->fin_dport = ntohs(tcp->th_dport);
1324 }
1325
1326 if ((fin->fin_flx & FI_SHORT) != 0) {
1327 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1328 return 1;
1329 }
1330
1331 /*
1332 * Use of the TCP data offset *must* result in a value that is at
1333 * least the same size as the TCP header.
1334 */
1335 tlen = TCP_OFF(tcp) << 2;
1336 if (tlen < sizeof(tcphdr_t)) {
1337 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1338 fin->fin_flx |= FI_BAD;
1339 return 1;
1340 }
1341
1342 flags = tcp->th_flags;
1343 fin->fin_tcpf = tcp->th_flags;
1344
1345 /*
1346 * If the urgent flag is set, then the urgent pointer must
1347 * also be set and vice versa. Good TCP packets do not have
1348 * just one of these set.
1349 */
1350 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1351 fin->fin_flx |= FI_BAD;
1352 #if 0
1353 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1354 /*
1355 * Ignore this case (#if 0) as it shows up in "real"
1356 * traffic with bogus values in the urgent pointer field.
1357 */
1358 fin->fin_flx |= FI_BAD;
1359 #endif
1360 } else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1361 ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1362 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1363 fin->fin_flx |= FI_BAD;
1364 #if 1
1365 } else if (((flags & TH_SYN) != 0) &&
1366 ((flags & (TH_URG|TH_PUSH)) != 0)) {
1367 /*
1368 * SYN with URG and PUSH set is not for normal TCP but it is
1369 * possible(?) with T/TCP...but who uses T/TCP?
1370 */
1371 fin->fin_flx |= FI_BAD;
1372 #endif
1373 } else if (!(flags & TH_ACK)) {
1374 /*
1375 * If the ack bit isn't set, then either the SYN or
1376 * RST bit must be set. If the SYN bit is set, then
1377 * we expect the ACK field to be 0. If the ACK is
1378 * not set and if URG, PSH or FIN are set, consdier
1379 * that to indicate a bad TCP packet.
1380 */
1381 if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1382 /*
1383 * Cisco PIX sets the ACK field to a random value.
1384 * In light of this, do not set FI_BAD until a patch
1385 * is available from Cisco to ensure that
1386 * interoperability between existing systems is
1387 * achieved.
1388 */
1389 /*fin->fin_flx |= FI_BAD*/;
1390 } else if (!(flags & (TH_RST|TH_SYN))) {
1391 fin->fin_flx |= FI_BAD;
1392 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1393 fin->fin_flx |= FI_BAD;
1394 }
1395 }
1396 if (fin->fin_flx & FI_BAD) {
1397 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1398 return 1;
1399 }
1400
1401 /*
1402 * At this point, it's not exactly clear what is to be gained by
1403 * marking up which TCP options are and are not present. The one we
1404 * are most interested in is the TCP window scale. This is only in
1405 * a SYN packet [RFC1323] so we don't need this here...?
1406 * Now if we were to analyse the header for passive fingerprinting,
1407 * then that might add some weight to adding this...
1408 */
1409 if (tlen == sizeof(tcphdr_t)) {
1410 return 0;
1411 }
1412
1413 if (ipf_pr_pullup(fin, tlen) == -1) {
1414 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1415 return -1;
1416 }
1417
1418 #if 0
1419 tcp = fin->fin_dp;
1420 ip = fin->fin_ip;
1421 s = (u_char *)(tcp + 1);
1422 off = IP_HL(ip) << 2;
1423 # ifdef _KERNEL
1424 if (fin->fin_mp != NULL) {
1425 mb_t *m = *fin->fin_mp;
1426
1427 if (off + tlen > M_LEN(m))
1428 return;
1429 }
1430 # endif
1431 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1432 opt = *s;
1433 if (opt == '\0')
1434 break;
1435 else if (opt == TCPOPT_NOP)
1436 ol = 1;
1437 else {
1438 if (tlen < 2)
1439 break;
1440 ol = (int)*(s + 1);
1441 if (ol < 2 || ol > tlen)
1442 break;
1443 }
1444
1445 for (i = 9, mv = 4; mv >= 0; ) {
1446 op = ipopts + i;
1447 if (opt == (u_char)op->ol_val) {
1448 optmsk |= op->ol_bit;
1449 break;
1450 }
1451 }
1452 tlen -= ol;
1453 s += ol;
1454 }
1455 #endif /* 0 */
1456
1457 return 0;
1458 }
1459
1460
1461
1462 /* ------------------------------------------------------------------------ */
1463 /* Function: ipf_pr_udpcommon */
1464 /* Returns: int - 0 = header ok, 1 = bad packet */
1465 /* Parameters: fin(I) - pointer to packet information */
1466 /* */
1467 /* Extract the UDP source and destination ports, if present. If compiled */
1468 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */
1469 /* ------------------------------------------------------------------------ */
1470 static INLINE int
1471 ipf_pr_udpcommon(fr_info_t *fin)
1472 {
1473 udphdr_t *udp;
1474
1475 fin->fin_flx |= FI_TCPUDP;
1476
1477 if (!fin->fin_off && (fin->fin_dlen > 3)) {
1478 if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1479 ipf_main_softc_t *softc = fin->fin_main_soft;
1480
1481 fin->fin_flx |= FI_SHORT;
1482 LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1483 return 1;
1484 }
1485
1486 udp = fin->fin_dp;
1487
1488 fin->fin_sport = ntohs(udp->uh_sport);
1489 fin->fin_dport = ntohs(udp->uh_dport);
1490 }
1491
1492 return 0;
1493 }
1494
1495
1496 /* ------------------------------------------------------------------------ */
1497 /* Function: ipf_pr_tcp */
1498 /* Returns: void */
1499 /* Parameters: fin(I) - pointer to packet information */
1500 /* */
1501 /* IPv4 Only */
1502 /* Analyse the packet for IPv4/TCP properties. */
1503 /* ------------------------------------------------------------------------ */
1504 static INLINE void
1505 ipf_pr_tcp(fr_info_t *fin)
1506 {
1507
1508 ipf_pr_short(fin, sizeof(tcphdr_t));
1509
1510 if (ipf_pr_tcpcommon(fin) == 0)
1511 ipf_checkv4sum(fin);
1512 }
1513
1514
1515 /* ------------------------------------------------------------------------ */
1516 /* Function: ipf_pr_udp */
1517 /* Returns: void */
1518 /* Parameters: fin(I) - pointer to packet information */
1519 /* */
1520 /* IPv4 Only */
1521 /* Analyse the packet for IPv4/UDP properties. */
1522 /* ------------------------------------------------------------------------ */
1523 static INLINE void
1524 ipf_pr_udp(fr_info_t *fin)
1525 {
1526
1527 ipf_pr_short(fin, sizeof(udphdr_t));
1528
1529 if (ipf_pr_udpcommon(fin) == 0)
1530 ipf_checkv4sum(fin);
1531 }
1532
1533
1534 /* ------------------------------------------------------------------------ */
1535 /* Function: ipf_pr_esp */
1536 /* Returns: void */
1537 /* Parameters: fin(I) - pointer to packet information */
1538 /* */
1539 /* Analyse the packet for ESP properties. */
1540 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1541 /* even though the newer ESP packets must also have a sequence number that */
1542 /* is 32bits as well, it is not possible(?) to determine the version from a */
1543 /* simple packet header. */
1544 /* ------------------------------------------------------------------------ */
1545 static INLINE void
1546 ipf_pr_esp(fr_info_t *fin)
1547 {
1548
1549 if (fin->fin_off == 0) {
1550 ipf_pr_short(fin, 8);
1551 if (ipf_pr_pullup(fin, 8) == -1) {
1552 ipf_main_softc_t *softc = fin->fin_main_soft;
1553
1554 LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1555 }
1556 }
1557 }
1558
1559
1560 /* ------------------------------------------------------------------------ */
1561 /* Function: ipf_pr_ah */
1562 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1563 /* Parameters: fin(I) - pointer to packet information */
1564 /* */
1565 /* Analyse the packet for AH properties. */
1566 /* The minimum length is taken to be the combination of all fields in the */
1567 /* header being present and no authentication data (null algorithm used.) */
1568 /* ------------------------------------------------------------------------ */
1569 static INLINE int
1570 ipf_pr_ah(fr_info_t *fin)
1571 {
1572 ipf_main_softc_t *softc = fin->fin_main_soft;
1573 authhdr_t *ah;
1574 int len;
1575
1576 fin->fin_flx |= FI_AH;
1577 ipf_pr_short(fin, sizeof(*ah));
1578
1579 if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1580 LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1581 return IPPROTO_NONE;
1582 }
1583
1584 if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1585 DT(fr_v4_ah_pullup_1);
1586 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1587 return IPPROTO_NONE;
1588 }
1589
1590 ah = (authhdr_t *)fin->fin_dp;
1591
1592 len = (ah->ah_plen + 2) << 2;
1593 ipf_pr_short(fin, len);
1594 if (ipf_pr_pullup(fin, len) == -1) {
1595 DT(fr_v4_ah_pullup_2);
1596 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1597 return IPPROTO_NONE;
1598 }
1599
1600 /*
1601 * Adjust fin_dp and fin_dlen for skipping over the authentication
1602 * header.
1603 */
1604 fin->fin_dp = (char *)fin->fin_dp + len;
1605 fin->fin_dlen -= len;
1606 return ah->ah_next;
1607 }
1608
1609
1610 /* ------------------------------------------------------------------------ */
1611 /* Function: ipf_pr_gre */
1612 /* Returns: void */
1613 /* Parameters: fin(I) - pointer to packet information */
1614 /* */
1615 /* Analyse the packet for GRE properties. */
1616 /* ------------------------------------------------------------------------ */
1617 static INLINE void
1618 ipf_pr_gre(fr_info_t *fin)
1619 {
1620 ipf_main_softc_t *softc = fin->fin_main_soft;
1621 grehdr_t *gre;
1622
1623 ipf_pr_short(fin, sizeof(grehdr_t));
1624
1625 if (fin->fin_off != 0) {
1626 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1627 return;
1628 }
1629
1630 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1631 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1632 return;
1633 }
1634
1635 gre = fin->fin_dp;
1636 if (GRE_REV(gre->gr_flags) == 1)
1637 fin->fin_data[0] = gre->gr_call;
1638 }
1639
1640
1641 /* ------------------------------------------------------------------------ */
1642 /* Function: ipf_pr_ipv4hdr */
1643 /* Returns: void */
1644 /* Parameters: fin(I) - pointer to packet information */
1645 /* */
1646 /* IPv4 Only */
1647 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */
1648 /* Check all options present and flag their presence if any exist. */
1649 /* ------------------------------------------------------------------------ */
1650 static INLINE void
1651 ipf_pr_ipv4hdr(fr_info_t *fin)
1652 {
1653 u_short optmsk = 0, secmsk = 0, auth = 0;
1654 int hlen, ol, mv, p, i;
1655 const struct optlist *op;
1656 u_char *s, opt;
1657 u_short off;
1658 fr_ip_t *fi;
1659 ip_t *ip;
1660
1661 fi = &fin->fin_fi;
1662 hlen = fin->fin_hlen;
1663
1664 ip = fin->fin_ip;
1665 p = ip->ip_p;
1666 fi->fi_p = p;
1667 fin->fin_crc = p;
1668 fi->fi_tos = ip->ip_tos;
1669 fin->fin_id = ip->ip_id;
1670 off = ntohs(ip->ip_off);
1671
1672 /* Get both TTL and protocol */
1673 fi->fi_p = ip->ip_p;
1674 fi->fi_ttl = ip->ip_ttl;
1675
1676 /* Zero out bits not used in IPv6 address */
1677 fi->fi_src.i6[1] = 0;
1678 fi->fi_src.i6[2] = 0;
1679 fi->fi_src.i6[3] = 0;
1680 fi->fi_dst.i6[1] = 0;
1681 fi->fi_dst.i6[2] = 0;
1682 fi->fi_dst.i6[3] = 0;
1683
1684 fi->fi_saddr = ip->ip_src.s_addr;
1685 fin->fin_crc += fi->fi_saddr;
1686 fi->fi_daddr = ip->ip_dst.s_addr;
1687 fin->fin_crc += fi->fi_daddr;
1688 if (IN_CLASSD(fi->fi_daddr))
1689 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1690
1691 /*
1692 * set packet attribute flags based on the offset and
1693 * calculate the byte offset that it represents.
1694 */
1695 off &= IP_MF|IP_OFFMASK;
1696 if (off != 0) {
1697 int morefrag = off & IP_MF;
1698
1699 fi->fi_flx |= FI_FRAG;
1700 off &= IP_OFFMASK;
1701 if (off != 0) {
1702 fin->fin_flx |= FI_FRAGBODY;
1703 off <<= 3;
1704 if ((off + fin->fin_dlen > 65535) ||
1705 (fin->fin_dlen == 0) ||
1706 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1707 /*
1708 * The length of the packet, starting at its
1709 * offset cannot exceed 65535 (0xffff) as the
1710 * length of an IP packet is only 16 bits.
1711 *
1712 * Any fragment that isn't the last fragment
1713 * must have a length greater than 0 and it
1714 * must be an even multiple of 8.
1715 */
1716 fi->fi_flx |= FI_BAD;
1717 }
1718 }
1719 }
1720 fin->fin_off = off;
1721
1722 /*
1723 * Call per-protocol setup and checking
1724 */
1725 if (p == IPPROTO_AH) {
1726 /*
1727 * Treat AH differently because we expect there to be another
1728 * layer 4 header after it.
1729 */
1730 p = ipf_pr_ah(fin);
1731 }
1732
1733 switch (p)
1734 {
1735 case IPPROTO_UDP :
1736 ipf_pr_udp(fin);
1737 break;
1738 case IPPROTO_TCP :
1739 ipf_pr_tcp(fin);
1740 break;
1741 case IPPROTO_ICMP :
1742 ipf_pr_icmp(fin);
1743 break;
1744 case IPPROTO_ESP :
1745 ipf_pr_esp(fin);
1746 break;
1747 case IPPROTO_GRE :
1748 ipf_pr_gre(fin);
1749 break;
1750 }
1751
1752 ip = fin->fin_ip;
1753 if (ip == NULL)
1754 return;
1755
1756 /*
1757 * If it is a standard IP header (no options), set the flag fields
1758 * which relate to options to 0.
1759 */
1760 if (hlen == sizeof(*ip)) {
1761 fi->fi_optmsk = 0;
1762 fi->fi_secmsk = 0;
1763 fi->fi_auth = 0;
1764 return;
1765 }
1766
1767 /*
1768 * So the IP header has some IP options attached. Walk the entire
1769 * list of options present with this packet and set flags to indicate
1770 * which ones are here and which ones are not. For the somewhat out
1771 * of date and obscure security classification options, set a flag to
1772 * represent which classification is present.
1773 */
1774 fi->fi_flx |= FI_OPTIONS;
1775
1776 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1777 opt = *s;
1778 if (opt == '\0')
1779 break;
1780 else if (opt == IPOPT_NOP)
1781 ol = 1;
1782 else {
1783 if (hlen < 2)
1784 break;
1785 ol = (int)*(s + 1);
1786 if (ol < 2 || ol > hlen)
1787 break;
1788 }
1789 for (i = 9, mv = 4; mv >= 0; ) {
1790 op = ipopts + i;
1791
1792 if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1793 u_32_t doi;
1794
1795 switch (opt)
1796 {
1797 case IPOPT_SECURITY :
1798 if (optmsk & op->ol_bit) {
1799 fin->fin_flx |= FI_BAD;
1800 } else {
1801 doi = ipf_checkripso(s);
1802 secmsk = doi >> 16;
1803 auth = doi & 0xffff;
1804 }
1805 break;
1806
1807 case IPOPT_CIPSO :
1808
1809 if (optmsk & op->ol_bit) {
1810 fin->fin_flx |= FI_BAD;
1811 } else {
1812 doi = ipf_checkcipso(fin,
1813 s, ol);
1814 secmsk = doi >> 16;
1815 auth = doi & 0xffff;
1816 }
1817 break;
1818 }
1819 optmsk |= op->ol_bit;
1820 }
1821
1822 if (opt < op->ol_val)
1823 i -= mv;
1824 else
1825 i += mv;
1826 mv--;
1827 }
1828 hlen -= ol;
1829 s += ol;
1830 }
1831
1832 /*
1833 *
1834 */
1835 if (auth && !(auth & 0x0100))
1836 auth &= 0xff00;
1837 fi->fi_optmsk = optmsk;
1838 fi->fi_secmsk = secmsk;
1839 fi->fi_auth = auth;
1840 }
1841
1842
1843 /* ------------------------------------------------------------------------ */
1844 /* Function: ipf_checkripso */
1845 /* Returns: void */
1846 /* Parameters: s(I) - pointer to start of RIPSO option */
1847 /* */
1848 /* ------------------------------------------------------------------------ */
1849 static u_32_t
1850 ipf_checkripso(u_char *s)
1851 {
1852 const struct optlist *sp;
1853 u_short secmsk = 0, auth = 0;
1854 u_char sec;
1855 int j, m;
1856
1857 sec = *(s + 2); /* classification */
1858 for (j = 3, m = 2; m >= 0; ) {
1859 sp = secopt + j;
1860 if (sec == sp->ol_val) {
1861 secmsk |= sp->ol_bit;
1862 auth = *(s + 3);
1863 auth *= 256;
1864 auth += *(s + 4);
1865 break;
1866 }
1867 if (sec < sp->ol_val)
1868 j -= m;
1869 else
1870 j += m;
1871 m--;
1872 }
1873
1874 return (secmsk << 16) | auth;
1875 }
1876
1877
1878 /* ------------------------------------------------------------------------ */
1879 /* Function: ipf_checkcipso */
1880 /* Returns: u_32_t - 0 = failure, else the doi from the header */
1881 /* Parameters: fin(IO) - pointer to packet information */
1882 /* s(I) - pointer to start of CIPSO option */
1883 /* ol(I) - length of CIPSO option field */
1884 /* */
1885 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1886 /* header and returns that whilst also storing the highest sensitivity */
1887 /* value found in the fr_info_t structure. */
1888 /* */
1889 /* No attempt is made to extract the category bitmaps as these are defined */
1890 /* by the user (rather than the protocol) and can be rather numerous on the */
1891 /* end nodes. */
1892 /* ------------------------------------------------------------------------ */
1893 static u_32_t
1894 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1895 {
1896 ipf_main_softc_t *softc = fin->fin_main_soft;
1897 fr_ip_t *fi;
1898 u_32_t doi;
1899 u_char *t, tag, tlen, sensitivity;
1900 int len;
1901
1902 if (ol < 6 || ol > 40) {
1903 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1904 fin->fin_flx |= FI_BAD;
1905 return 0;
1906 }
1907
1908 fi = &fin->fin_fi;
1909 fi->fi_sensitivity = 0;
1910 /*
1911 * The DOI field MUST be there.
1912 */
1913 bcopy(s + 2, &doi, sizeof(doi));
1914
1915 t = (u_char *)s + 6;
1916 for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1917 tag = *t;
1918 tlen = *(t + 1);
1919 if (tlen > len || tlen < 4 || tlen > 34) {
1920 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1921 fin->fin_flx |= FI_BAD;
1922 return 0;
1923 }
1924
1925 sensitivity = 0;
1926 /*
1927 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1928 * draft (16 July 1992) that has expired.
1929 */
1930 if (tag == 0) {
1931 fin->fin_flx |= FI_BAD;
1932 continue;
1933 } else if (tag == 1) {
1934 if (*(t + 2) != 0) {
1935 fin->fin_flx |= FI_BAD;
1936 continue;
1937 }
1938 sensitivity = *(t + 3);
1939 /* Category bitmap for categories 0-239 */
1940
1941 } else if (tag == 4) {
1942 if (*(t + 2) != 0) {
1943 fin->fin_flx |= FI_BAD;
1944 continue;
1945 }
1946 sensitivity = *(t + 3);
1947 /* Enumerated categories, 16bits each, upto 15 */
1948
1949 } else if (tag == 5) {
1950 if (*(t + 2) != 0) {
1951 fin->fin_flx |= FI_BAD;
1952 continue;
1953 }
1954 sensitivity = *(t + 3);
1955 /* Range of categories (2*16bits), up to 7 pairs */
1956
1957 } else if (tag > 127) {
1958 /* Custom defined DOI */
1959 ;
1960 } else {
1961 fin->fin_flx |= FI_BAD;
1962 continue;
1963 }
1964
1965 if (sensitivity > fi->fi_sensitivity)
1966 fi->fi_sensitivity = sensitivity;
1967 }
1968
1969 return doi;
1970 }
1971
1972
1973 /* ------------------------------------------------------------------------ */
1974 /* Function: ipf_makefrip */
1975 /* Returns: int - 0 == packet ok, -1 == packet freed */
1976 /* Parameters: hlen(I) - length of IP packet header */
1977 /* ip(I) - pointer to the IP header */
1978 /* fin(IO) - pointer to packet information */
1979 /* */
1980 /* Compact the IP header into a structure which contains just the info. */
1981 /* which is useful for comparing IP headers with and store this information */
1982 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */
1983 /* this function will be called with either an IPv4 or IPv6 packet. */
1984 /* ------------------------------------------------------------------------ */
1985 int
1986 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
1987 {
1988 ipf_main_softc_t *softc = fin->fin_main_soft;
1989 int v;
1990
1991 fin->fin_depth = 0;
1992 fin->fin_hlen = (u_short)hlen;
1993 fin->fin_ip = ip;
1994 fin->fin_rule = 0xffffffff;
1995 fin->fin_group[0] = -1;
1996 fin->fin_group[1] = '\0';
1997 fin->fin_dp = (char *)ip + hlen;
1998
1999 v = fin->fin_v;
2000 if (v == 4) {
2001 fin->fin_plen = ntohs(ip->ip_len);
2002 fin->fin_dlen = fin->fin_plen - hlen;
2003 ipf_pr_ipv4hdr(fin);
2004 #ifdef USE_INET6
2005 } else if (v == 6) {
2006 fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2007 fin->fin_dlen = fin->fin_plen;
2008 fin->fin_plen += hlen;
2009
2010 ipf_pr_ipv6hdr(fin);
2011 #endif
2012 }
2013 if (fin->fin_ip == NULL) {
2014 LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2015 return -1;
2016 }
2017 return 0;
2018 }
2019
2020
2021 /* ------------------------------------------------------------------------ */
2022 /* Function: ipf_portcheck */
2023 /* Returns: int - 1 == port matched, 0 == port match failed */
2024 /* Parameters: frp(I) - pointer to port check `expression' */
2025 /* pop(I) - port number to evaluate */
2026 /* */
2027 /* Perform a comparison of a port number against some other(s), using a */
2028 /* structure with compare information stored in it. */
2029 /* ------------------------------------------------------------------------ */
2030 static INLINE int
2031 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2032 {
2033 int err = 1;
2034 u_32_t po;
2035
2036 po = frp->frp_port;
2037
2038 /*
2039 * Do opposite test to that required and continue if that succeeds.
2040 */
2041 switch (frp->frp_cmp)
2042 {
2043 case FR_EQUAL :
2044 if (pop != po) /* EQUAL */
2045 err = 0;
2046 break;
2047 case FR_NEQUAL :
2048 if (pop == po) /* NOTEQUAL */
2049 err = 0;
2050 break;
2051 case FR_LESST :
2052 if (pop >= po) /* LESSTHAN */
2053 err = 0;
2054 break;
2055 case FR_GREATERT :
2056 if (pop <= po) /* GREATERTHAN */
2057 err = 0;
2058 break;
2059 case FR_LESSTE :
2060 if (pop > po) /* LT or EQ */
2061 err = 0;
2062 break;
2063 case FR_GREATERTE :
2064 if (pop < po) /* GT or EQ */
2065 err = 0;
2066 break;
2067 case FR_OUTRANGE :
2068 if (pop >= po && pop <= frp->frp_top) /* Out of range */
2069 err = 0;
2070 break;
2071 case FR_INRANGE :
2072 if (pop <= po || pop >= frp->frp_top) /* In range */
2073 err = 0;
2074 break;
2075 case FR_INCRANGE :
2076 if (pop < po || pop > frp->frp_top) /* Inclusive range */
2077 err = 0;
2078 break;
2079 default :
2080 break;
2081 }
2082 return err;
2083 }
2084
2085
2086 /* ------------------------------------------------------------------------ */
2087 /* Function: ipf_tcpudpchk */
2088 /* Returns: int - 1 == protocol matched, 0 == check failed */
2089 /* Parameters: fda(I) - pointer to packet information */
2090 /* ft(I) - pointer to structure with comparison data */
2091 /* */
2092 /* Compares the current pcket (assuming it is TCP/UDP) information with a */
2093 /* structure containing information that we want to match against. */
2094 /* ------------------------------------------------------------------------ */
2095 int
2096 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2097 {
2098 int err = 1;
2099
2100 /*
2101 * Both ports should *always* be in the first fragment.
2102 * So far, I cannot find any cases where they can not be.
2103 *
2104 * compare destination ports
2105 */
2106 if (ft->ftu_dcmp)
2107 err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2108
2109 /*
2110 * compare source ports
2111 */
2112 if (err && ft->ftu_scmp)
2113 err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2114
2115 /*
2116 * If we don't have all the TCP/UDP header, then how can we
2117 * expect to do any sort of match on it ? If we were looking for
2118 * TCP flags, then NO match. If not, then match (which should
2119 * satisfy the "short" class too).
2120 */
2121 if (err && (fi->fi_p == IPPROTO_TCP)) {
2122 if (fi->fi_flx & FI_SHORT)
2123 return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2124 /*
2125 * Match the flags ? If not, abort this match.
2126 */
2127 if (ft->ftu_tcpfm &&
2128 ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2129 FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2130 ft->ftu_tcpfm, ft->ftu_tcpf));
2131 err = 0;
2132 }
2133 }
2134 return err;
2135 }
2136
2137
2138 /* ------------------------------------------------------------------------ */
2139 /* Function: ipf_check_ipf */
2140 /* Returns: int - 0 == match, else no match */
2141 /* Parameters: fin(I) - pointer to packet information */
2142 /* fr(I) - pointer to filter rule */
2143 /* portcmp(I) - flag indicating whether to attempt matching on */
2144 /* TCP/UDP port data. */
2145 /* */
2146 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */
2147 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2148 /* this function. */
2149 /* ------------------------------------------------------------------------ */
2150 static INLINE int
2151 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2152 {
2153 u_32_t *ld, *lm, *lip;
2154 fripf_t *fri;
2155 fr_ip_t *fi;
2156 int i;
2157
2158 fi = &fin->fin_fi;
2159 fri = fr->fr_ipf;
2160 lip = (u_32_t *)fi;
2161 lm = (u_32_t *)&fri->fri_mip;
2162 ld = (u_32_t *)&fri->fri_ip;
2163
2164 /*
2165 * first 32 bits to check coversion:
2166 * IP version, TOS, TTL, protocol
2167 */
2168 i = ((*lip & *lm) != *ld);
2169 FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2170 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2171 if (i)
2172 return 1;
2173
2174 /*
2175 * Next 32 bits is a constructed bitmask indicating which IP options
2176 * are present (if any) in this packet.
2177 */
2178 lip++, lm++, ld++;
2179 i = ((*lip & *lm) != *ld);
2180 FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2181 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2182 if (i != 0)
2183 return 1;
2184
2185 lip++, lm++, ld++;
2186 /*
2187 * Unrolled loops (4 each, for 32 bits) for address checks.
2188 */
2189 /*
2190 * Check the source address.
2191 */
2192 if (fr->fr_satype == FRI_LOOKUP) {
2193 i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2194 fi->fi_v, lip, fin->fin_plen);
2195 if (i == -1)
2196 return 1;
2197 lip += 3;
2198 lm += 3;
2199 ld += 3;
2200 } else {
2201 i = ((*lip & *lm) != *ld);
2202 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2203 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2204 if (fi->fi_v == 6) {
2205 lip++, lm++, ld++;
2206 i |= ((*lip & *lm) != *ld);
2207 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2208 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2209 lip++, lm++, ld++;
2210 i |= ((*lip & *lm) != *ld);
2211 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2212 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2213 lip++, lm++, ld++;
2214 i |= ((*lip & *lm) != *ld);
2215 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2216 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2217 } else {
2218 lip += 3;
2219 lm += 3;
2220 ld += 3;
2221 }
2222 }
2223 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2224 if (i != 0)
2225 return 1;
2226
2227 /*
2228 * Check the destination address.
2229 */
2230 lip++, lm++, ld++;
2231 if (fr->fr_datype == FRI_LOOKUP) {
2232 i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2233 fi->fi_v, lip, fin->fin_plen);
2234 if (i == -1)
2235 return 1;
2236 lip += 3;
2237 lm += 3;
2238 ld += 3;
2239 } else {
2240 i = ((*lip & *lm) != *ld);
2241 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2242 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2243 if (fi->fi_v == 6) {
2244 lip++, lm++, ld++;
2245 i |= ((*lip & *lm) != *ld);
2246 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2247 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2248 lip++, lm++, ld++;
2249 i |= ((*lip & *lm) != *ld);
2250 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2251 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2252 lip++, lm++, ld++;
2253 i |= ((*lip & *lm) != *ld);
2254 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2255 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2256 } else {
2257 lip += 3;
2258 lm += 3;
2259 ld += 3;
2260 }
2261 }
2262 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2263 if (i != 0)
2264 return 1;
2265 /*
2266 * IP addresses matched. The next 32bits contains:
2267 * mast of old IP header security & authentication bits.
2268 */
2269 lip++, lm++, ld++;
2270 i = (*ld - (*lip & *lm));
2271 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2272
2273 /*
2274 * Next we have 32 bits of packet flags.
2275 */
2276 lip++, lm++, ld++;
2277 i |= (*ld - (*lip & *lm));
2278 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2279
2280 if (i == 0) {
2281 /*
2282 * If a fragment, then only the first has what we're
2283 * looking for here...
2284 */
2285 if (portcmp) {
2286 if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2287 i = 1;
2288 } else {
2289 if (fr->fr_dcmp || fr->fr_scmp ||
2290 fr->fr_tcpf || fr->fr_tcpfm)
2291 i = 1;
2292 if (fr->fr_icmpm || fr->fr_icmp) {
2293 if (((fi->fi_p != IPPROTO_ICMP) &&
2294 (fi->fi_p != IPPROTO_ICMPV6)) ||
2295 fin->fin_off || (fin->fin_dlen < 2))
2296 i = 1;
2297 else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2298 fr->fr_icmp) {
2299 FR_DEBUG(("i. %#x & %#x != %#x\n",
2300 fin->fin_data[0],
2301 fr->fr_icmpm, fr->fr_icmp));
2302 i = 1;
2303 }
2304 }
2305 }
2306 }
2307 return i;
2308 }
2309
2310
2311 /* ------------------------------------------------------------------------ */
2312 /* Function: ipf_scanlist */
2313 /* Returns: int - result flags of scanning filter list */
2314 /* Parameters: fin(I) - pointer to packet information */
2315 /* pass(I) - default result to return for filtering */
2316 /* */
2317 /* Check the input/output list of rules for a match to the current packet. */
2318 /* If a match is found, the value of fr_flags from the rule becomes the */
2319 /* return value and fin->fin_fr points to the matched rule. */
2320 /* */
2321 /* This function may be called recusively upto 16 times (limit inbuilt.) */
2322 /* When unwinding, it should finish up with fin_depth as 0. */
2323 /* */
2324 /* Could be per interface, but this gets real nasty when you don't have, */
2325 /* or can't easily change, the kernel source code to . */
2326 /* ------------------------------------------------------------------------ */
2327 int
2328 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2329 {
2330 ipf_main_softc_t *softc = fin->fin_main_soft;
2331 int rulen, portcmp, off, skip;
2332 struct frentry *fr, *fnext;
2333 u_32_t passt, passo;
2334
2335 /*
2336 * Do not allow nesting deeper than 16 levels.
2337 */
2338 if (fin->fin_depth >= 16)
2339 return pass;
2340
2341 fr = fin->fin_fr;
2342
2343 /*
2344 * If there are no rules in this list, return now.
2345 */
2346 if (fr == NULL)
2347 return pass;
2348
2349 skip = 0;
2350 portcmp = 0;
2351 fin->fin_depth++;
2352 fin->fin_fr = NULL;
2353 off = fin->fin_off;
2354
2355 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2356 portcmp = 1;
2357
2358 for (rulen = 0; fr; fr = fnext, rulen++) {
2359 fnext = fr->fr_next;
2360 if (skip != 0) {
2361 FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2362 skip--;
2363 continue;
2364 }
2365
2366 /*
2367 * In all checks below, a null (zero) value in the
2368 * filter struture is taken to mean a wildcard.
2369 *
2370 * check that we are working for the right interface
2371 */
2372 #ifdef _KERNEL
2373 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2374 continue;
2375 #else
2376 if (opts & (OPT_VERBOSE|OPT_DEBUG))
2377 printf("\n");
2378 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2379 FR_ISPASS(pass) ? 'p' :
2380 FR_ISACCOUNT(pass) ? 'A' :
2381 FR_ISAUTH(pass) ? 'a' :
2382 (pass & FR_NOMATCH) ? 'n' :'b'));
2383 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2384 continue;
2385 FR_VERBOSE((":i"));
2386 #endif
2387
2388 switch (fr->fr_type)
2389 {
2390 case FR_T_IPF :
2391 case FR_T_IPF_BUILTIN :
2392 if (ipf_check_ipf(fin, fr, portcmp))
2393 continue;
2394 break;
2395 #if defined(IPFILTER_BPF)
2396 case FR_T_BPFOPC :
2397 case FR_T_BPFOPC_BUILTIN :
2398 {
2399 u_char *mc;
2400 int wlen;
2401
2402 if (*fin->fin_mp == NULL)
2403 continue;
2404 if (fin->fin_family != fr->fr_family)
2405 continue;
2406 mc = (u_char *)fin->fin_m;
2407 wlen = fin->fin_dlen + fin->fin_hlen;
2408 #if defined(__NetBSD__)
2409 if (!bpf_filter(bpf_def_ctx, NULL,
2410 fr->fr_data, mc, wlen, 0))
2411 continue;
2412 #else
2413 if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2414 continue;
2415 #endif
2416 break;
2417 }
2418 #endif
2419 case FR_T_CALLFUNC_BUILTIN :
2420 {
2421 frentry_t *f;
2422
2423 f = (*fr->fr_func)(fin, &pass);
2424 if (f != NULL)
2425 fr = f;
2426 else
2427 continue;
2428 break;
2429 }
2430
2431 case FR_T_IPFEXPR :
2432 case FR_T_IPFEXPR_BUILTIN :
2433 if (fin->fin_family != fr->fr_family)
2434 continue;
2435 if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2436 continue;
2437 break;
2438
2439 default :
2440 break;
2441 }
2442
2443 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2444 if (fin->fin_nattag == NULL)
2445 continue;
2446 if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2447 continue;
2448 }
2449 FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2450
2451 passt = fr->fr_flags;
2452
2453 /*
2454 * If the rule is a "call now" rule, then call the function
2455 * in the rule, if it exists and use the results from that.
2456 * If the function pointer is bad, just make like we ignore
2457 * it, except for increasing the hit counter.
2458 */
2459 if ((passt & FR_CALLNOW) != 0) {
2460 frentry_t *frs;
2461
2462 ATOMIC_INC64(fr->fr_hits);
2463 if ((fr->fr_func == NULL) ||
2464 (fr->fr_func == (ipfunc_t)-1))
2465 continue;
2466
2467 frs = fin->fin_fr;
2468 fin->fin_fr = fr;
2469 fr = (*fr->fr_func)(fin, &passt);
2470 if (fr == NULL) {
2471 fin->fin_fr = frs;
2472 continue;
2473 }
2474 passt = fr->fr_flags;
2475 }
2476 fin->fin_fr = fr;
2477
2478 #ifdef IPFILTER_LOG
2479 /*
2480 * Just log this packet...
2481 */
2482 if ((passt & FR_LOGMASK) == FR_LOG) {
2483 if (ipf_log_pkt(fin, passt) == -1) {
2484 if (passt & FR_LOGORBLOCK) {
2485 DT(frb_logfail);
2486 passt &= ~FR_CMDMASK;
2487 passt |= FR_BLOCK|FR_QUICK;
2488 fin->fin_reason = FRB_LOGFAIL;
2489 }
2490 }
2491 }
2492 #endif /* IPFILTER_LOG */
2493
2494 MUTEX_ENTER(&fr->fr_lock);
2495 fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2496 fr->fr_hits++;
2497 MUTEX_EXIT(&fr->fr_lock);
2498 fin->fin_rule = rulen;
2499
2500 passo = pass;
2501 if (FR_ISSKIP(passt)) {
2502 skip = fr->fr_arg;
2503 continue;
2504 } else if (((passt & FR_LOGMASK) != FR_LOG) &&
2505 ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2506 pass = passt;
2507 }
2508
2509 if (passt & (FR_RETICMP|FR_FAKEICMP))
2510 fin->fin_icode = fr->fr_icode;
2511
2512 if (fr->fr_group != -1) {
2513 (void) strncpy(fin->fin_group,
2514 FR_NAME(fr, fr_group),
2515 strlen(FR_NAME(fr, fr_group)));
2516 } else {
2517 fin->fin_group[0] = '\0';
2518 }
2519
2520 FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2521
2522 if (fr->fr_grphead != NULL) {
2523 fin->fin_fr = fr->fr_grphead->fg_start;
2524 FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2525
2526 if (FR_ISDECAPS(passt))
2527 passt = ipf_decaps(fin, pass, fr->fr_icode);
2528 else
2529 passt = ipf_scanlist(fin, pass);
2530
2531 if (fin->fin_fr == NULL) {
2532 fin->fin_rule = rulen;
2533 if (fr->fr_group != -1)
2534 (void) strncpy(fin->fin_group,
2535 fr->fr_names +
2536 fr->fr_group,
2537 strlen(fr->fr_names +
2538 fr->fr_group));
2539 fin->fin_fr = fr;
2540 passt = pass;
2541 }
2542 pass = passt;
2543 }
2544
2545 if (pass & FR_QUICK) {
2546 /*
2547 * Finally, if we've asked to track state for this
2548 * packet, set it up. Add state for "quick" rules
2549 * here so that if the action fails we can consider
2550 * the rule to "not match" and keep on processing
2551 * filter rules.
2552 */
2553 if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2554 !(fin->fin_flx & FI_STATE)) {
2555 int out = fin->fin_out;
2556
2557 fin->fin_fr = fr;
2558 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2559 LBUMPD(ipf_stats[out], fr_ads);
2560 } else {
2561 LBUMPD(ipf_stats[out], fr_bads);
2562 pass = passo;
2563 continue;
2564 }
2565 }
2566 break;
2567 }
2568 }
2569 fin->fin_depth--;
2570 return pass;
2571 }
2572
2573
2574 /* ------------------------------------------------------------------------ */
2575 /* Function: ipf_acctpkt */
2576 /* Returns: frentry_t* - always returns NULL */
2577 /* Parameters: fin(I) - pointer to packet information */
2578 /* passp(IO) - pointer to current/new filter decision (unused) */
2579 /* */
2580 /* Checks a packet against accounting rules, if there are any for the given */
2581 /* IP protocol version. */
2582 /* */
2583 /* N.B.: this function returns NULL to match the prototype used by other */
2584 /* functions called from the IPFilter "mainline" in ipf_check(). */
2585 /* ------------------------------------------------------------------------ */
2586 frentry_t *
2587 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2588 {
2589 ipf_main_softc_t *softc = fin->fin_main_soft;
2590 char group[FR_GROUPLEN];
2591 frentry_t *fr, *frsave;
2592 u_32_t pass, rulen;
2593
2594 passp = passp;
2595 fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2596
2597 if (fr != NULL) {
2598 frsave = fin->fin_fr;
2599 bcopy(fin->fin_group, group, FR_GROUPLEN);
2600 rulen = fin->fin_rule;
2601 fin->fin_fr = fr;
2602 pass = ipf_scanlist(fin, FR_NOMATCH);
2603 if (FR_ISACCOUNT(pass)) {
2604 LBUMPD(ipf_stats[0], fr_acct);
2605 }
2606 fin->fin_fr = frsave;
2607 bcopy(group, fin->fin_group, FR_GROUPLEN);
2608 fin->fin_rule = rulen;
2609 }
2610 return NULL;
2611 }
2612
2613
2614 /* ------------------------------------------------------------------------ */
2615 /* Function: ipf_firewall */
2616 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */
2617 /* were found, returns NULL. */
2618 /* Parameters: fin(I) - pointer to packet information */
2619 /* passp(IO) - pointer to current/new filter decision (unused) */
2620 /* */
2621 /* Applies an appropriate set of firewall rules to the packet, to see if */
2622 /* there are any matches. The first check is to see if a match can be seen */
2623 /* in the cache. If not, then search an appropriate list of rules. Once a */
2624 /* matching rule is found, take any appropriate actions as defined by the */
2625 /* rule - except logging. */
2626 /* ------------------------------------------------------------------------ */
2627 static frentry_t *
2628 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2629 {
2630 ipf_main_softc_t *softc = fin->fin_main_soft;
2631 frentry_t *fr;
2632 u_32_t pass;
2633 int out;
2634
2635 out = fin->fin_out;
2636 pass = *passp;
2637
2638 /*
2639 * This rule cache will only affect packets that are not being
2640 * statefully filtered.
2641 */
2642 fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2643 if (fin->fin_fr != NULL)
2644 pass = ipf_scanlist(fin, softc->ipf_pass);
2645
2646 if ((pass & FR_NOMATCH)) {
2647 LBUMPD(ipf_stats[out], fr_nom);
2648 }
2649 fr = fin->fin_fr;
2650
2651 /*
2652 * Apply packets per second rate-limiting to a rule as required.
2653 */
2654 if ((fr != NULL) && (fr->fr_pps != 0) &&
2655 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2656 DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2657 pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2658 pass |= FR_BLOCK;
2659 LBUMPD(ipf_stats[out], fr_ppshit);
2660 fin->fin_reason = FRB_PPSRATE;
2661 }
2662
2663 /*
2664 * If we fail to add a packet to the authorization queue, then we
2665 * drop the packet later. However, if it was added then pretend
2666 * we've dropped it already.
2667 */
2668 if (FR_ISAUTH(pass)) {
2669 if (ipf_auth_new(fin->fin_m, fin) != 0) {
2670 DT1(frb_authnew, fr_info_t *, fin);
2671 fin->fin_m = *fin->fin_mp = NULL;
2672 fin->fin_reason = FRB_AUTHNEW;
2673 fin->fin_error = 0;
2674 } else {
2675 IPFERROR(1);
2676 fin->fin_error = ENOSPC;
2677 }
2678 }
2679
2680 if ((fr != NULL) && (fr->fr_func != NULL) &&
2681 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2682 (void) (*fr->fr_func)(fin, &pass);
2683
2684 /*
2685 * If a rule is a pre-auth rule, check again in the list of rules
2686 * loaded for authenticated use. It does not particulary matter
2687 * if this search fails because a "preauth" result, from a rule,
2688 * is treated as "not a pass", hence the packet is blocked.
2689 */
2690 if (FR_ISPREAUTH(pass)) {
2691 pass = ipf_auth_pre_scanlist(softc, fin, pass);
2692 }
2693
2694 /*
2695 * If the rule has "keep frag" and the packet is actually a fragment,
2696 * then create a fragment state entry.
2697 */
2698 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2699 if (fin->fin_flx & FI_FRAG) {
2700 if (ipf_frag_new(softc, fin, pass) == -1) {
2701 LBUMP(ipf_stats[out].fr_bnfr);
2702 } else {
2703 LBUMP(ipf_stats[out].fr_nfr);
2704 }
2705 } else {
2706 LBUMP(ipf_stats[out].fr_cfr);
2707 }
2708 }
2709
2710 fr = fin->fin_fr;
2711 *passp = pass;
2712
2713 return fr;
2714 }
2715
2716
2717 /* ------------------------------------------------------------------------ */
2718 /* Function: ipf_check */
2719 /* Returns: int - 0 == packet allowed through, */
2720 /* User space: */
2721 /* -1 == packet blocked */
2722 /* 1 == packet not matched */
2723 /* -2 == requires authentication */
2724 /* Kernel: */
2725 /* > 0 == filter error # for packet */
2726 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */
2727 /* hlen(I) - length of header */
2728 /* ifp(I) - pointer to interface this packet is on */
2729 /* out(I) - 0 == packet going in, 1 == packet going out */
2730 /* mp(IO) - pointer to caller's buffer pointer that holds this */
2731 /* IP packet. */
2732 /* Solaris & HP-UX ONLY : */
2733 /* qpi(I) - pointer to STREAMS queue information for this */
2734 /* interface & direction. */
2735 /* */
2736 /* ipf_check() is the master function for all IPFilter packet processing. */
2737 /* It orchestrates: Network Address Translation (NAT), checking for packet */
2738 /* authorisation (or pre-authorisation), presence of related state info., */
2739 /* generating log entries, IP packet accounting, routing of packets as */
2740 /* directed by firewall rules and of course whether or not to allow the */
2741 /* packet to be further processed by the kernel. */
2742 /* */
2743 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */
2744 /* freed. Packets passed may be returned with the pointer pointed to by */
2745 /* by "mp" changed to a new buffer. */
2746 /* ------------------------------------------------------------------------ */
2747 int
2748 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out,
2749 #if defined(_KERNEL) && defined(MENTAT)
2750 void *qif,
2751 #endif
2752 mb_t **mp)
2753 {
2754 /*
2755 * The above really sucks, but short of writing a diff
2756 */
2757 ipf_main_softc_t *softc = ctx;
2758 fr_info_t frinfo;
2759 fr_info_t *fin = &frinfo;
2760 u_32_t pass = softc->ipf_pass;
2761 frentry_t *fr = NULL;
2762 int v = IP_V(ip);
2763 mb_t *mc = NULL;
2764 mb_t *m;
2765 /*
2766 * The first part of ipf_check() deals with making sure that what goes
2767 * into the filtering engine makes some sense. Information about the
2768 * the packet is distilled, collected into a fr_info_t structure and
2769 * the an attempt to ensure the buffer the packet is in is big enough
2770 * to hold all the required packet headers.
2771 */
2772 #ifdef _KERNEL
2773 # ifdef MENTAT
2774 qpktinfo_t *qpi = qif;
2775
2776 # ifdef __sparc
2777 if ((u_int)ip & 0x3)
2778 return 2;
2779 # endif
2780 # else
2781 SPL_INT(s);
2782 # endif
2783
2784 if (softc->ipf_running <= 0) {
2785 return 0;
2786 }
2787
2788 bzero((char *)fin, sizeof(*fin));
2789
2790 # ifdef MENTAT
2791 if (qpi->qpi_flags & QF_BROADCAST)
2792 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2793 if (qpi->qpi_flags & QF_MULTICAST)
2794 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2795 m = qpi->qpi_m;
2796 fin->fin_qfm = m;
2797 fin->fin_qpi = qpi;
2798 # else /* MENTAT */
2799
2800 m = *mp;
2801
2802 # if defined(M_MCAST)
2803 if ((m->m_flags & M_MCAST) != 0)
2804 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2805 # endif
2806 # if defined(M_MLOOP)
2807 if ((m->m_flags & M_MLOOP) != 0)
2808 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2809 # endif
2810 # if defined(M_BCAST)
2811 if ((m->m_flags & M_BCAST) != 0)
2812 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2813 # endif
2814 # ifdef M_CANFASTFWD
2815 /*
2816 * XXX For now, IP Filter and fast-forwarding of cached flows
2817 * XXX are mutually exclusive. Eventually, IP Filter should
2818 * XXX get a "can-fast-forward" filter rule.
2819 */
2820 m->m_flags &= ~M_CANFASTFWD;
2821 # endif /* M_CANFASTFWD */
2822 # if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2823 (__FreeBSD_version < 501108))
2824 /*
2825 * disable delayed checksums.
2826 */
2827 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2828 in_delayed_cksum(m);
2829 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2830 }
2831 # endif /* CSUM_DELAY_DATA */
2832 # endif /* MENTAT */
2833 #else
2834 bzero((char *)fin, sizeof(*fin));
2835 m = *mp;
2836 # if defined(M_MCAST)
2837 if ((m->m_flags & M_MCAST) != 0)
2838 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2839 # endif
2840 # if defined(M_MLOOP)
2841 if ((m->m_flags & M_MLOOP) != 0)
2842 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2843 # endif
2844 # if defined(M_BCAST)
2845 if ((m->m_flags & M_BCAST) != 0)
2846 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2847 # endif
2848 #endif /* _KERNEL */
2849
2850 fin->fin_v = v;
2851 fin->fin_m = m;
2852 fin->fin_ip = ip;
2853 fin->fin_mp = mp;
2854 fin->fin_out = out;
2855 fin->fin_ifp = ifp;
2856 fin->fin_error = ENETUNREACH;
2857 fin->fin_hlen = (u_short)hlen;
2858 fin->fin_dp = (char *)ip + hlen;
2859 fin->fin_main_soft = softc;
2860
2861 fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2862
2863 SPL_NET(s);
2864
2865 #ifdef USE_INET6
2866 if (v == 6) {
2867 LBUMP(ipf_stats[out].fr_ipv6);
2868 /*
2869 * Jumbo grams are quite likely too big for internal buffer
2870 * structures to handle comfortably, for now, so just drop
2871 * them.
2872 */
2873 if (((ip6_t *)ip)->ip6_plen == 0) {
2874 DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2875 pass = FR_BLOCK|FR_NOMATCH;
2876 fin->fin_reason = FRB_JUMBO;
2877 goto finished;
2878 }
2879 fin->fin_family = AF_INET6;
2880 } else
2881 #endif
2882 {
2883 fin->fin_family = AF_INET;
2884 }
2885
2886 if (ipf_makefrip(hlen, ip, fin) == -1) {
2887 DT1(frb_makefrip, fr_info_t *, fin);
2888 pass = FR_BLOCK|FR_NOMATCH;
2889 fin->fin_reason = FRB_MAKEFRIP;
2890 goto finished;
2891 }
2892
2893 /*
2894 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2895 * becomes NULL and so we have no packet to free.
2896 */
2897 if (*fin->fin_mp == NULL)
2898 goto finished;
2899
2900 if (!out) {
2901 if (v == 4) {
2902 if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2903 LBUMPD(ipf_stats[0], fr_v4_badsrc);
2904 fin->fin_flx |= FI_BADSRC;
2905 }
2906 if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2907 LBUMPD(ipf_stats[0], fr_v4_badttl);
2908 fin->fin_flx |= FI_LOWTTL;
2909 }
2910 }
2911 #ifdef USE_INET6
2912 else if (v == 6) {
2913 if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2914 LBUMPD(ipf_stats[0], fr_v6_badttl);
2915 fin->fin_flx |= FI_LOWTTL;
2916 }
2917 }
2918 #endif
2919 }
2920
2921 if (fin->fin_flx & FI_SHORT) {
2922 LBUMPD(ipf_stats[out], fr_short);
2923 }
2924
2925 READ_ENTER(&softc->ipf_mutex);
2926
2927 if (!out) {
2928 switch (fin->fin_v)
2929 {
2930 case 4 :
2931 if (ipf_nat_checkin(fin, &pass) == -1) {
2932 goto filterdone;
2933 }
2934 break;
2935 #ifdef USE_INET6
2936 case 6 :
2937 if (ipf_nat6_checkin(fin, &pass) == -1) {
2938 goto filterdone;
2939 }
2940 break;
2941 #endif
2942 default :
2943 break;
2944 }
2945 }
2946 /*
2947 * Check auth now.
2948 * If a packet is found in the auth table, then skip checking
2949 * the access lists for permission but we do need to consider
2950 * the result as if it were from the ACL's. In addition, being
2951 * found in the auth table means it has been seen before, so do
2952 * not pass it through accounting (again), lest it be counted twice.
2953 */
2954 fr = ipf_auth_check(fin, &pass);
2955 if (!out && (fr == NULL))
2956 (void) ipf_acctpkt(fin, NULL);
2957
2958 if (fr == NULL) {
2959 if ((fin->fin_flx & FI_FRAG) != 0)
2960 fr = ipf_frag_known(fin, &pass);
2961
2962 if (fr == NULL)
2963 fr = ipf_state_check(fin, &pass);
2964 }
2965
2966 if ((pass & FR_NOMATCH) || (fr == NULL))
2967 fr = ipf_firewall(fin, &pass);
2968
2969 /*
2970 * If we've asked to track state for this packet, set it up.
2971 * Here rather than ipf_firewall because ipf_checkauth may decide
2972 * to return a packet for "keep state"
2973 */
2974 if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
2975 !(fin->fin_flx & FI_STATE)) {
2976 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2977 LBUMP(ipf_stats[out].fr_ads);
2978 } else {
2979 LBUMP(ipf_stats[out].fr_bads);
2980 if (FR_ISPASS(pass)) {
2981 DT(frb_stateadd);
2982 pass &= ~FR_CMDMASK;
2983 pass |= FR_BLOCK;
2984 fin->fin_reason = FRB_STATEADD;
2985 }
2986 }
2987 }
2988
2989 fin->fin_fr = fr;
2990 if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
2991 fin->fin_dif = &fr->fr_dif;
2992 fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
2993 }
2994
2995 /*
2996 * Only count/translate packets which will be passed on, out the
2997 * interface.
2998 */
2999 if (out && FR_ISPASS(pass)) {
3000 (void) ipf_acctpkt(fin, NULL);
3001
3002 switch (fin->fin_v)
3003 {
3004 case 4 :
3005 if (ipf_nat_checkout(fin, &pass) == -1) {
3006 ;
3007 } else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3008 if (ipf_updateipid(fin) == -1) {
3009 DT(frb_updateipid);
3010 LBUMP(ipf_stats[1].fr_ipud);
3011 pass &= ~FR_CMDMASK;
3012 pass |= FR_BLOCK;
3013 fin->fin_reason = FRB_UPDATEIPID;
3014 } else {
3015 LBUMP(ipf_stats[0].fr_ipud);
3016 }
3017 }
3018 break;
3019 #ifdef USE_INET6
3020 case 6 :
3021 (void) ipf_nat6_checkout(fin, &pass);
3022 break;
3023 #endif
3024 default :
3025 break;
3026 }
3027 }
3028
3029 filterdone:
3030 #ifdef IPFILTER_LOG
3031 if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3032 (void) ipf_dolog(fin, &pass);
3033 }
3034 #endif
3035
3036 /*
3037 * The FI_STATE flag is cleared here so that calling ipf_state_check
3038 * will work when called from inside of fr_fastroute. Although
3039 * there is a similar flag, FI_NATED, for NAT, it does have the same
3040 * impact on code execution.
3041 */
3042 fin->fin_flx &= ~FI_STATE;
3043
3044 #if defined(FASTROUTE_RECURSION)
3045 /*
3046 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3047 * a packet below can sometimes cause a recursive call into IPFilter.
3048 * On those platforms where that does happen, we need to hang onto
3049 * the filter rule just in case someone decides to remove or flush it
3050 * in the meantime.
3051 */
3052 if (fr != NULL) {
3053 MUTEX_ENTER(&fr->fr_lock);
3054 fr->fr_ref++;
3055 MUTEX_EXIT(&fr->fr_lock);
3056 }
3057
3058 RWLOCK_EXIT(&softc->ipf_mutex);
3059 #endif
3060
3061 if ((pass & FR_RETMASK) != 0) {
3062 /*
3063 * Should we return an ICMP packet to indicate error
3064 * status passing through the packet filter ?
3065 * WARNING: ICMP error packets AND TCP RST packets should
3066 * ONLY be sent in repsonse to incoming packets. Sending
3067 * them in response to outbound packets can result in a
3068 * panic on some operating systems.
3069 */
3070 if (!out) {
3071 if (pass & FR_RETICMP) {
3072 int dst;
3073
3074 if ((pass & FR_RETMASK) == FR_FAKEICMP)
3075 dst = 1;
3076 else
3077 dst = 0;
3078 (void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3079 dst);
3080 LBUMP(ipf_stats[0].fr_ret);
3081 } else if (((pass & FR_RETMASK) == FR_RETRST) &&
3082 !(fin->fin_flx & FI_SHORT)) {
3083 if (((fin->fin_flx & FI_OOW) != 0) ||
3084 (ipf_send_reset(fin) == 0)) {
3085 LBUMP(ipf_stats[1].fr_ret);
3086 }
3087 }
3088
3089 /*
3090 * When using return-* with auth rules, the auth code
3091 * takes over disposing of this packet.
3092 */
3093 if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3094 DT1(frb_authcapture, fr_info_t *, fin);
3095 fin->fin_m = *fin->fin_mp = NULL;
3096 fin->fin_reason = FRB_AUTHCAPTURE;
3097 m = NULL;
3098 }
3099 } else {
3100 if (pass & FR_RETRST) {
3101 fin->fin_error = ECONNRESET;
3102 }
3103 }
3104 }
3105
3106 /*
3107 * After the above so that ICMP unreachables and TCP RSTs get
3108 * created properly.
3109 */
3110 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3111 ipf_nat_uncreate(fin);
3112
3113 /*
3114 * If we didn't drop off the bottom of the list of rules (and thus
3115 * the 'current' rule fr is not NULL), then we may have some extra
3116 * instructions about what to do with a packet.
3117 * Once we're finished return to our caller, freeing the packet if
3118 * we are dropping it.
3119 */
3120 if (fr != NULL) {
3121 frdest_t *fdp;
3122
3123 /*
3124 * Generate a duplicated packet first because ipf_fastroute
3125 * can lead to fin_m being free'd... not good.
3126 */
3127 fdp = fin->fin_dif;
3128 if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3129 (fdp->fd_ptr != (void *)-1)) {
3130 mc = M_COPY(fin->fin_m);
3131 if (mc != NULL)
3132 ipf_fastroute(mc, &mc, fin, fdp);
3133 }
3134
3135 fdp = fin->fin_tif;
3136 if (!out && (pass & FR_FASTROUTE)) {
3137 /*
3138 * For fastroute rule, no destination interface defined
3139 * so pass NULL as the frdest_t parameter
3140 */
3141 (void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3142 m = *mp = NULL;
3143 } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3144 (fdp->fd_ptr != (struct ifnet *)-1)) {
3145 /* this is for to rules: */
3146 ipf_fastroute(fin->fin_m, mp, fin, fdp);
3147 m = *mp = NULL;
3148 }
3149
3150 #if defined(FASTROUTE_RECURSION)
3151 (void) ipf_derefrule(softc, &fr);
3152 #endif
3153 }
3154 #if !defined(FASTROUTE_RECURSION)
3155 RWLOCK_EXIT(&softc->ipf_mutex);
3156 #endif
3157
3158 finished:
3159 if (!FR_ISPASS(pass)) {
3160 LBUMP(ipf_stats[out].fr_block);
3161 if (*mp != NULL) {
3162 #ifdef _KERNEL
3163 FREE_MB_T(*mp);
3164 #endif
3165 m = *mp = NULL;
3166 }
3167 } else {
3168 LBUMP(ipf_stats[out].fr_pass);
3169 #if defined(_KERNEL) && defined(__sgi)
3170 if ((fin->fin_hbuf != NULL) &&
3171 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3172 COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3173 }
3174 #endif
3175 }
3176
3177 SPL_X(s);
3178
3179 #ifdef _KERNEL
3180 if (FR_ISPASS(pass))
3181 return 0;
3182 LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3183 return fin->fin_error;
3184 #else /* _KERNEL */
3185 if (*mp != NULL)
3186 (*mp)->mb_ifp = fin->fin_ifp;
3187 blockreason = fin->fin_reason;
3188 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3189 /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3190 if ((pass & FR_NOMATCH) != 0)
3191 return 1;
3192
3193 if ((pass & FR_RETMASK) != 0)
3194 switch (pass & FR_RETMASK)
3195 {
3196 case FR_RETRST :
3197 return 3;
3198 case FR_RETICMP :
3199 return 4;
3200 case FR_FAKEICMP :
3201 return 5;
3202 }
3203
3204 switch (pass & FR_CMDMASK)
3205 {
3206 case FR_PASS :
3207 return 0;
3208 case FR_BLOCK :
3209 return -1;
3210 case FR_AUTH :
3211 return -2;
3212 case FR_ACCOUNT :
3213 return -3;
3214 case FR_PREAUTH :
3215 return -4;
3216 }
3217 return 2;
3218 #endif /* _KERNEL */
3219 }
3220
3221
3222 #ifdef IPFILTER_LOG
3223 /* ------------------------------------------------------------------------ */
3224 /* Function: ipf_dolog */
3225 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */
3226 /* Parameters: fin(I) - pointer to packet information */
3227 /* passp(IO) - pointer to current/new filter decision (unused) */
3228 /* */
3229 /* Checks flags set to see how a packet should be logged, if it is to be */
3230 /* logged. Adjust statistics based on its success or not. */
3231 /* ------------------------------------------------------------------------ */
3232 frentry_t *
3233 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3234 {
3235 ipf_main_softc_t *softc = fin->fin_main_soft;
3236 u_32_t pass;
3237 int out;
3238
3239 out = fin->fin_out;
3240 pass = *passp;
3241
3242 if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3243 pass |= FF_LOGNOMATCH;
3244 LBUMPD(ipf_stats[out], fr_npkl);
3245 goto logit;
3246
3247 } else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3248 (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3249 if ((pass & FR_LOGMASK) != FR_LOGP)
3250 pass |= FF_LOGPASS;
3251 LBUMPD(ipf_stats[out], fr_ppkl);
3252 goto logit;
3253
3254 } else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3255 (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3256 if ((pass & FR_LOGMASK) != FR_LOGB)
3257 pass |= FF_LOGBLOCK;
3258 LBUMPD(ipf_stats[out], fr_bpkl);
3259
3260 logit:
3261 if (ipf_log_pkt(fin, pass) == -1) {
3262 /*
3263 * If the "or-block" option has been used then
3264 * block the packet if we failed to log it.
3265 */
3266 if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3267 DT1(frb_logfail2, u_int, pass);
3268 pass &= ~FR_CMDMASK;
3269 pass |= FR_BLOCK;
3270 fin->fin_reason = FRB_LOGFAIL2;
3271 }
3272 }
3273 *passp = pass;
3274 }
3275
3276 return fin->fin_fr;
3277 }
3278 #endif /* IPFILTER_LOG */
3279
3280
3281 /* ------------------------------------------------------------------------ */
3282 /* Function: ipf_cksum */
3283 /* Returns: u_short - IP header checksum */
3284 /* Parameters: addr(I) - pointer to start of buffer to checksum */
3285 /* len(I) - length of buffer in bytes */
3286 /* */
3287 /* Calculate the two's complement 16 bit checksum of the buffer passed. */
3288 /* */
3289 /* N.B.: addr should be 16bit aligned. */
3290 /* ------------------------------------------------------------------------ */
3291 u_short
3292 ipf_cksum(u_short *addr, int len)
3293 {
3294 u_32_t sum = 0;
3295
3296 for (sum = 0; len > 1; len -= 2)
3297 sum += *addr++;
3298
3299 /* mop up an odd byte, if necessary */
3300 if (len == 1)
3301 sum += *(u_char *)addr;
3302
3303 /*
3304 * add back carry outs from top 16 bits to low 16 bits
3305 */
3306 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
3307 sum += (sum >> 16); /* add carry */
3308 return (u_short)(~sum);
3309 }
3310
3311
3312 /* ------------------------------------------------------------------------ */
3313 /* Function: fr_cksum */
3314 /* Returns: u_short - layer 4 checksum */
3315 /* Parameters: fin(I) - pointer to packet information */
3316 /* ip(I) - pointer to IP header */
3317 /* l4proto(I) - protocol to caclulate checksum for */
3318 /* l4hdr(I) - pointer to layer 4 header */
3319 /* */
3320 /* Calculates the TCP checksum for the packet held in "m", using the data */
3321 /* in the IP header "ip" to seed it. */
3322 /* */
3323 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3324 /* and the TCP header. We also assume that data blocks aren't allocated in */
3325 /* odd sizes. */
3326 /* */
3327 /* Expects ip_len and ip_off to be in network byte order when called. */
3328 /* ------------------------------------------------------------------------ */
3329 u_short
3330 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3331 {
3332 u_short *sp, slen, sumsave, *csump;
3333 u_int sum, sum2;
3334 int hlen;
3335 int off;
3336 #ifdef USE_INET6
3337 ip6_t *ip6;
3338 #endif
3339
3340 csump = NULL;
3341 sumsave = 0;
3342 sp = NULL;
3343 slen = 0;
3344 hlen = 0;
3345 sum = 0;
3346
3347 sum = htons((u_short)l4proto);
3348 /*
3349 * Add up IP Header portion
3350 */
3351 #ifdef USE_INET6
3352 if (IP_V(ip) == 4) {
3353 #endif
3354 hlen = IP_HL(ip) << 2;
3355 off = hlen;
3356 sp = (u_short *)&ip->ip_src;
3357 sum += *sp++; /* ip_src */
3358 sum += *sp++;
3359 sum += *sp++; /* ip_dst */
3360 sum += *sp++;
3361 #ifdef USE_INET6
3362 } else if (IP_V(ip) == 6) {
3363 ip6 = (ip6_t *)ip;
3364 hlen = sizeof(*ip6);
3365 off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3366 sp = (u_short *)&ip6->ip6_src;
3367 sum += *sp++; /* ip6_src */
3368 sum += *sp++;
3369 sum += *sp++;
3370 sum += *sp++;
3371 sum += *sp++;
3372 sum += *sp++;
3373 sum += *sp++;
3374 sum += *sp++;
3375 /* This needs to be routing header aware. */
3376 sum += *sp++; /* ip6_dst */
3377 sum += *sp++;
3378 sum += *sp++;
3379 sum += *sp++;
3380 sum += *sp++;
3381 sum += *sp++;
3382 sum += *sp++;
3383 sum += *sp++;
3384 } else {
3385 return 0xffff;
3386 }
3387 #endif
3388 slen = fin->fin_plen - off;
3389 sum += htons(slen);
3390
3391 switch (l4proto)
3392 {
3393 case IPPROTO_UDP :
3394 csump = &((udphdr_t *)l4hdr)->uh_sum;
3395 break;
3396
3397 case IPPROTO_TCP :
3398 csump = &((tcphdr_t *)l4hdr)->th_sum;
3399 break;
3400 case IPPROTO_ICMP :
3401 csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3402 sum = 0; /* Pseudo-checksum is not included */
3403 break;
3404 #ifdef USE_INET6
3405 case IPPROTO_ICMPV6 :
3406 csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3407 break;
3408 #endif
3409 default :
3410 break;
3411 }
3412
3413 if (csump != NULL) {
3414 sumsave = *csump;
3415 *csump = 0;
3416 }
3417
3418 sum2 = ipf_pcksum(fin, off, sum);
3419 if (csump != NULL)
3420 *csump = sumsave;
3421 return sum2;
3422 }
3423
3424
3425 /* ------------------------------------------------------------------------ */
3426 /* Function: ipf_findgroup */
3427 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */
3428 /* Parameters: softc(I) - pointer to soft context main structure */
3429 /* group(I) - group name to search for */
3430 /* unit(I) - device to which this group belongs */
3431 /* set(I) - which set of rules (inactive/inactive) this is */
3432 /* fgpp(O) - pointer to place to store pointer to the pointer */
3433 /* to where to add the next (last) group or where */
3434 /* to delete group from. */
3435 /* */
3436 /* Search amongst the defined groups for a particular group number. */
3437 /* ------------------------------------------------------------------------ */
3438 frgroup_t *
3439 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3440 frgroup_t ***fgpp)
3441 {
3442 frgroup_t *fg, **fgp;
3443
3444 /*
3445 * Which list of groups to search in is dependent on which list of
3446 * rules are being operated on.
3447 */
3448 fgp = &softc->ipf_groups[unit][set];
3449
3450 while ((fg = *fgp) != NULL) {
3451 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3452 break;
3453 else
3454 fgp = &fg->fg_next;
3455 }
3456 if (fgpp != NULL)
3457 *fgpp = fgp;
3458 return fg;
3459 }
3460
3461
3462 /* ------------------------------------------------------------------------ */
3463 /* Function: ipf_group_add */
3464 /* Returns: frgroup_t * - NULL == did not create group, */
3465 /* != NULL == pointer to the group */
3466 /* Parameters: softc(I) - pointer to soft context main structure */
3467 /* num(I) - group number to add */
3468 /* head(I) - rule pointer that is using this as the head */
3469 /* flags(I) - rule flags which describe the type of rule it is */
3470 /* unit(I) - device to which this group will belong to */
3471 /* set(I) - which set of rules (inactive/inactive) this is */
3472 /* Write Locks: ipf_mutex */
3473 /* */
3474 /* Add a new group head, or if it already exists, increase the reference */
3475 /* count to it. */
3476 /* ------------------------------------------------------------------------ */
3477 frgroup_t *
3478 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3479 minor_t unit, int set)
3480 {
3481 frgroup_t *fg, **fgp;
3482 u_32_t gflags;
3483
3484 if (group == NULL)
3485 return NULL;
3486
3487 if (unit == IPL_LOGIPF && *group == '\0')
3488 return NULL;
3489
3490 fgp = NULL;
3491 gflags = flags & FR_INOUT;
3492
3493 fg = ipf_findgroup(softc, group, unit, set, &fgp);
3494 if (fg != NULL) {
3495 if (fg->fg_head == NULL && head != NULL)
3496 fg->fg_head = head;
3497 if (fg->fg_flags == 0)
3498 fg->fg_flags = gflags;
3499 else if (gflags != fg->fg_flags)
3500 return NULL;
3501 fg->fg_ref++;
3502 return fg;
3503 }
3504
3505 KMALLOC(fg, frgroup_t *);
3506 if (fg != NULL) {
3507 fg->fg_head = head;
3508 fg->fg_start = NULL;
3509 fg->fg_next = *fgp;
3510 bcopy(group, fg->fg_name, strlen(group) + 1);
3511 fg->fg_flags = gflags;
3512 fg->fg_ref = 1;
3513 fg->fg_set = &softc->ipf_groups[unit][set];
3514 *fgp = fg;
3515 }
3516 return fg;
3517 }
3518
3519
3520 /* ------------------------------------------------------------------------ */
3521 /* Function: ipf_group_del */
3522 /* Returns: int - number of rules deleted */
3523 /* Parameters: softc(I) - pointer to soft context main structure */
3524 /* group(I) - group name to delete */
3525 /* fr(I) - filter rule from which group is referenced */
3526 /* Write Locks: ipf_mutex */
3527 /* */
3528 /* This function is called whenever a reference to a group is to be dropped */
3529 /* and thus its reference count needs to be lowered and the group free'd if */
3530 /* the reference count reaches zero. Passing in fr is really for the sole */
3531 /* purpose of knowing when the head rule is being deleted. */
3532 /* ------------------------------------------------------------------------ */
3533 void
3534 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3535 {
3536
3537 if (group->fg_head == fr)
3538 group->fg_head = NULL;
3539
3540 group->fg_ref--;
3541 if ((group->fg_ref == 0) && (group->fg_start == NULL))
3542 ipf_group_free(group);
3543 }
3544
3545
3546 /* ------------------------------------------------------------------------ */
3547 /* Function: ipf_group_free */
3548 /* Returns: Nil */
3549 /* Parameters: group(I) - pointer to filter rule group */
3550 /* */
3551 /* Remove the group from the list of groups and free it. */
3552 /* ------------------------------------------------------------------------ */
3553 static void
3554 ipf_group_free(frgroup_t *group)
3555 {
3556 frgroup_t **gp;
3557
3558 for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3559 if (*gp == group) {
3560 *gp = group->fg_next;
3561 break;
3562 }
3563 }
3564 KFREE(group);
3565 }
3566
3567
3568 /* ------------------------------------------------------------------------ */
3569 /* Function: ipf_group_flush */
3570 /* Returns: int - number of rules flush from group */
3571 /* Parameters: softc(I) - pointer to soft context main structure */
3572 /* Parameters: group(I) - pointer to filter rule group */
3573 /* */
3574 /* Remove all of the rules that currently are listed under the given group. */
3575 /* ------------------------------------------------------------------------ */
3576 static int
3577 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3578 {
3579 int gone = 0;
3580
3581 (void) ipf_flushlist(softc, &gone, &group->fg_start);
3582
3583 return gone;
3584 }
3585
3586
3587 /* ------------------------------------------------------------------------ */
3588 /* Function: ipf_getrulen */
3589 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */
3590 /* Parameters: softc(I) - pointer to soft context main structure */
3591 /* Parameters: unit(I) - device for which to count the rule's number */
3592 /* flags(I) - which set of rules to find the rule in */
3593 /* group(I) - group name */
3594 /* n(I) - rule number to find */
3595 /* */
3596 /* Find rule # n in group # g and return a pointer to it. Return NULl if */
3597 /* group # g doesn't exist or there are less than n rules in the group. */
3598 /* ------------------------------------------------------------------------ */
3599 frentry_t *
3600 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3601 {
3602 frentry_t *fr;
3603 frgroup_t *fg;
3604
3605 fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3606 if (fg == NULL)
3607 return NULL;
3608 for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3609 ;
3610 if (n != 0)
3611 return NULL;
3612 return fr;
3613 }
3614
3615
3616 /* ------------------------------------------------------------------------ */
3617 /* Function: ipf_flushlist */
3618 /* Returns: int - >= 0 - number of flushed rules */
3619 /* Parameters: softc(I) - pointer to soft context main structure */
3620 /* nfreedp(O) - pointer to int where flush count is stored */
3621 /* listp(I) - pointer to list to flush pointer */
3622 /* Write Locks: ipf_mutex */
3623 /* */
3624 /* Recursively flush rules from the list, descending groups as they are */
3625 /* encountered. if a rule is the head of a group and it has lost all its */
3626 /* group members, then also delete the group reference. nfreedp is needed */
3627 /* to store the accumulating count of rules removed, whereas the returned */
3628 /* value is just the number removed from the current list. The latter is */
3629 /* needed to correctly adjust reference counts on rules that define groups. */
3630 /* */
3631 /* NOTE: Rules not loaded from user space cannot be flushed. */
3632 /* ------------------------------------------------------------------------ */
3633 static int
3634 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3635 {
3636 int freed = 0;
3637 frentry_t *fp;
3638
3639 while ((fp = *listp) != NULL) {
3640 if ((fp->fr_type & FR_T_BUILTIN) ||
3641 !(fp->fr_flags & FR_COPIED)) {
3642 listp = &fp->fr_next;
3643 continue;
3644 }
3645 *listp = fp->fr_next;
3646 if (fp->fr_next != NULL)
3647 fp->fr_next->fr_pnext = fp->fr_pnext;
3648 fp->fr_pnext = NULL;
3649
3650 if (fp->fr_grphead != NULL) {
3651 freed += ipf_group_flush(softc, fp->fr_grphead);
3652 fp->fr_names[fp->fr_grhead] = '\0';
3653 }
3654
3655 if (fp->fr_icmpgrp != NULL) {
3656 freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3657 fp->fr_names[fp->fr_icmphead] = '\0';
3658 }
3659
3660 if (fp->fr_srctrack.ht_max_nodes)
3661 ipf_rb_ht_flush(&fp->fr_srctrack);
3662
3663 fp->fr_next = NULL;
3664
3665 ASSERT(fp->fr_ref > 0);
3666 if (ipf_derefrule(softc, &fp) == 0)
3667 freed++;
3668 }
3669 *nfreedp += freed;
3670 return freed;
3671 }
3672
3673
3674 /* ------------------------------------------------------------------------ */
3675 /* Function: ipf_flush */
3676 /* Returns: int - >= 0 - number of flushed rules */
3677 /* Parameters: softc(I) - pointer to soft context main structure */
3678 /* unit(I) - device for which to flush rules */
3679 /* flags(I) - which set of rules to flush */
3680 /* */
3681 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3682 /* and IPv6) as defined by the value of flags. */
3683 /* ------------------------------------------------------------------------ */
3684 int
3685 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3686 {
3687 int flushed = 0, set;
3688
3689 WRITE_ENTER(&softc->ipf_mutex);
3690
3691 set = softc->ipf_active;
3692 if ((flags & FR_INACTIVE) == FR_INACTIVE)
3693 set = 1 - set;
3694
3695 if (flags & FR_OUTQUE) {
3696 ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3697 ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3698 }
3699 if (flags & FR_INQUE) {
3700 ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3701 ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3702 }
3703
3704 flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3705 flags & (FR_INQUE|FR_OUTQUE));
3706
3707 RWLOCK_EXIT(&softc->ipf_mutex);
3708
3709 if (unit == IPL_LOGIPF) {
3710 int tmp;
3711
3712 tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3713 if (tmp >= 0)
3714 flushed += tmp;
3715 }
3716 return flushed;
3717 }
3718
3719
3720 /* ------------------------------------------------------------------------ */
3721 /* Function: ipf_flush_groups */
3722 /* Returns: int - >= 0 - number of flushed rules */
3723 /* Parameters: softc(I) - soft context pointerto work with */
3724 /* grhead(I) - pointer to the start of the group list to flush */
3725 /* flags(I) - which set of rules to flush */
3726 /* */
3727 /* Walk through all of the groups under the given group head and remove all */
3728 /* of those that match the flags passed in. The for loop here is bit more */
3729 /* complicated than usual because the removal of a rule with ipf_derefrule */
3730 /* may end up removing not only the structure pointed to by "fg" but also */
3731 /* what is fg_next and fg_next after that. So if a filter rule is actually */
3732 /* removed from the group then it is necessary to start again. */
3733 /* ------------------------------------------------------------------------ */
3734 static int
3735 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3736 {
3737 frentry_t *fr, **frp;
3738 frgroup_t *fg, **fgp;
3739 int flushed = 0;
3740 int removed = 0;
3741
3742 for (fgp = grhead; (fg = *fgp) != NULL; ) {
3743 while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3744 fg = fg->fg_next;
3745 if (fg == NULL)
3746 break;
3747 removed = 0;
3748 frp = &fg->fg_start;
3749 while ((removed == 0) && ((fr = *frp) != NULL)) {
3750 if ((fr->fr_flags & flags) == 0) {
3751 frp = &fr->fr_next;
3752 } else {
3753 if (fr->fr_next != NULL)
3754 fr->fr_next->fr_pnext = fr->fr_pnext;
3755 *frp = fr->fr_next;
3756 fr->fr_pnext = NULL;
3757 fr->fr_next = NULL;
3758 (void) ipf_derefrule(softc, &fr);
3759 flushed++;
3760 removed++;
3761 }
3762 }
3763 if (removed == 0)
3764 fgp = &fg->fg_next;
3765 }
3766 return flushed;
3767 }
3768
3769
3770 /* ------------------------------------------------------------------------ */
3771 /* Function: memstr */
3772 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */
3773 /* Parameters: src(I) - pointer to byte sequence to match */
3774 /* dst(I) - pointer to byte sequence to search */
3775 /* slen(I) - match length */
3776 /* dlen(I) - length available to search in */
3777 /* */
3778 /* Search dst for a sequence of bytes matching those at src and extend for */
3779 /* slen bytes. */
3780 /* ------------------------------------------------------------------------ */
3781 char *
3782 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3783 {
3784 char *s = NULL;
3785
3786 while (dlen >= slen) {
3787 if (memcmp(src, dst, slen) == 0) {
3788 s = dst;
3789 break;
3790 }
3791 dst++;
3792 dlen--;
3793 }
3794 return s;
3795 }
3796 /* ------------------------------------------------------------------------ */
3797 /* Function: ipf_fixskip */
3798 /* Returns: Nil */
3799 /* Parameters: listp(IO) - pointer to start of list with skip rule */
3800 /* rp(I) - rule added/removed with skip in it. */
3801 /* addremove(I) - adjustment (-1/+1) to make to skip count, */
3802 /* depending on whether a rule was just added */
3803 /* or removed. */
3804 /* */
3805 /* Adjust all the rules in a list which would have skip'd past the position */
3806 /* where we are inserting to skip to the right place given the change. */
3807 /* ------------------------------------------------------------------------ */
3808 void
3809 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3810 {
3811 int rules, rn;
3812 frentry_t *fp;
3813
3814 rules = 0;
3815 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3816 rules++;
3817
3818 if (!fp)
3819 return;
3820
3821 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3822 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3823 fp->fr_arg += addremove;
3824 }
3825
3826
3827 #ifdef _KERNEL
3828 /* ------------------------------------------------------------------------ */
3829 /* Function: count4bits */
3830 /* Returns: int - >= 0 - number of consecutive bits in input */
3831 /* Parameters: ip(I) - 32bit IP address */
3832 /* */
3833 /* IPv4 ONLY */
3834 /* count consecutive 1's in bit mask. If the mask generated by counting */
3835 /* consecutive 1's is different to that passed, return -1, else return # */
3836 /* of bits. */
3837 /* ------------------------------------------------------------------------ */
3838 int
3839 count4bits(u_32_t ip)
3840 {
3841 u_32_t ipn;
3842 int cnt = 0, i, j;
3843
3844 ip = ipn = ntohl(ip);
3845 for (i = 32; i; i--, ipn *= 2)
3846 if (ipn & 0x80000000)
3847 cnt++;
3848 else
3849 break;
3850 ipn = 0;
3851 for (i = 32, j = cnt; i; i--, j--) {
3852 ipn *= 2;
3853 if (j > 0)
3854 ipn++;
3855 }
3856 if (ipn == ip)
3857 return cnt;
3858 return -1;
3859 }
3860
3861
3862 /* ------------------------------------------------------------------------ */
3863 /* Function: count6bits */
3864 /* Returns: int - >= 0 - number of consecutive bits in input */
3865 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */
3866 /* */
3867 /* IPv6 ONLY */
3868 /* count consecutive 1's in bit mask. */
3869 /* ------------------------------------------------------------------------ */
3870 # ifdef USE_INET6
3871 int
3872 count6bits(u_32_t *msk)
3873 {
3874 int i = 0, k;
3875 u_32_t j;
3876
3877 for (k = 3; k >= 0; k--)
3878 if (msk[k] == 0xffffffff)
3879 i += 32;
3880 else {
3881 for (j = msk[k]; j; j <<= 1)
3882 if (j & 0x80000000)
3883 i++;
3884 }
3885 return i;
3886 }
3887 # endif
3888 #endif /* _KERNEL */
3889
3890
3891 /* ------------------------------------------------------------------------ */
3892 /* Function: ipf_synclist */
3893 /* Returns: int - 0 = no failures, else indication of first failure */
3894 /* Parameters: fr(I) - start of filter list to sync interface names for */
3895 /* ifp(I) - interface pointer for limiting sync lookups */
3896 /* Write Locks: ipf_mutex */
3897 /* */
3898 /* Walk through a list of filter rules and resolve any interface names into */
3899 /* pointers. Where dynamic addresses are used, also update the IP address */
3900 /* used in the rule. The interface pointer is used to limit the lookups to */
3901 /* a specific set of matching names if it is non-NULL. */
3902 /* Errors can occur when resolving the destination name of to/dup-to fields */
3903 /* when the name points to a pool and that pool doest not exist. If this */
3904 /* does happen then it is necessary to check if there are any lookup refs */
3905 /* that need to be dropped before returning with an error. */
3906 /* ------------------------------------------------------------------------ */
3907 static int
3908 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3909 {
3910 frentry_t *frt, *start = fr;
3911 frdest_t *fdp;
3912 char *name;
3913 int error;
3914 void *ifa;
3915 int v, i;
3916
3917 error = 0;
3918
3919 for (; fr; fr = fr->fr_next) {
3920 if (fr->fr_family == AF_INET)
3921 v = 4;
3922 else if (fr->fr_family == AF_INET6)
3923 v = 6;
3924 else
3925 v = 0;
3926
3927 /*
3928 * Lookup all the interface names that are part of the rule.
3929 */
3930 for (i = 0; i < 4; i++) {
3931 if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3932 continue;
3933 if (fr->fr_ifnames[i] == -1)
3934 continue;
3935 name = FR_NAME(fr, fr_ifnames[i]);
3936 fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3937 }
3938
3939 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3940 if (fr->fr_satype != FRI_NORMAL &&
3941 fr->fr_satype != FRI_LOOKUP) {
3942 ifa = ipf_resolvenic(softc, fr->fr_names +
3943 fr->fr_sifpidx, v);
3944 ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3945 &fr->fr_src6, &fr->fr_smsk6);
3946 }
3947 if (fr->fr_datype != FRI_NORMAL &&
3948 fr->fr_datype != FRI_LOOKUP) {
3949 ifa = ipf_resolvenic(softc, fr->fr_names +
3950 fr->fr_sifpidx, v);
3951 ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3952 &fr->fr_dst6, &fr->fr_dmsk6);
3953 }
3954 }
3955
3956 fdp = &fr->fr_tifs[0];
3957 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3958 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3959 if (error != 0)
3960 goto unwind;
3961 }
3962
3963 fdp = &fr->fr_tifs[1];
3964 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3965 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3966 if (error != 0)
3967 goto unwind;
3968 }
3969
3970 fdp = &fr->fr_dif;
3971 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3972 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3973 if (error != 0)
3974 goto unwind;
3975 }
3976
3977 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3978 (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
3979 fr->fr_srcptr = ipf_lookup_res_num(softc,
3980 fr->fr_srctype,
3981 IPL_LOGIPF,
3982 fr->fr_srcnum,
3983 &fr->fr_srcfunc);
3984 }
3985 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3986 (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
3987 fr->fr_dstptr = ipf_lookup_res_num(softc,
3988 fr->fr_dsttype,
3989 IPL_LOGIPF,
3990 fr->fr_dstnum,
3991 &fr->fr_dstfunc);
3992 }
3993 }
3994 return 0;
3995
3996 unwind:
3997 for (frt = start; frt != fr; fr = fr->fr_next) {
3998 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3999 (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4000 ipf_lookup_deref(softc, frt->fr_srctype,
4001 frt->fr_srcptr);
4002 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4003 (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4004 ipf_lookup_deref(softc, frt->fr_dsttype,
4005 frt->fr_dstptr);
4006 }
4007 return error;
4008 }
4009
4010
4011 /* ------------------------------------------------------------------------ */
4012 /* Function: ipf_sync */
4013 /* Returns: void */
4014 /* Parameters: Nil */
4015 /* */
4016 /* ipf_sync() is called when we suspect that the interface list or */
4017 /* information about interfaces (like IP#) has changed. Go through all */
4018 /* filter rules, NAT entries and the state table and check if anything */
4019 /* needs to be changed/updated. */
4020 /* ------------------------------------------------------------------------ */
4021 int
4022 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4023 {
4024 int i;
4025
4026 # if !SOLARIS
4027 ipf_nat_sync(softc, ifp);
4028 ipf_state_sync(softc, ifp);
4029 ipf_lookup_sync(softc, ifp);
4030 # endif
4031
4032 WRITE_ENTER(&softc->ipf_mutex);
4033 (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4034 (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4035 (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4036 (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4037
4038 for (i = 0; i < IPL_LOGSIZE; i++) {
4039 frgroup_t *g;
4040
4041 for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4042 (void) ipf_synclist(softc, g->fg_start, ifp);
4043 for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4044 (void) ipf_synclist(softc, g->fg_start, ifp);
4045 }
4046 RWLOCK_EXIT(&softc->ipf_mutex);
4047
4048 return 0;
4049 }
4050
4051
4052 /*
4053 * In the functions below, bcopy() is called because the pointer being
4054 * copied _from_ in this instance is a pointer to a char buf (which could
4055 * end up being unaligned) and on the kernel's local stack.
4056 */
4057 /* ------------------------------------------------------------------------ */
4058 /* Function: copyinptr */
4059 /* Returns: int - 0 = success, else failure */
4060 /* Parameters: src(I) - pointer to the source address */
4061 /* dst(I) - destination address */
4062 /* size(I) - number of bytes to copy */
4063 /* */
4064 /* Copy a block of data in from user space, given a pointer to the pointer */
4065 /* to start copying from (src) and a pointer to where to store it (dst). */
4066 /* NB: src - pointer to user space pointer, dst - kernel space pointer */
4067 /* ------------------------------------------------------------------------ */
4068 int
4069 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4070 {
4071 void *ca;
4072 int error;
4073
4074 # if SOLARIS
4075 error = COPYIN(src, &ca, sizeof(ca));
4076 if (error != 0)
4077 return error;
4078 # else
4079 bcopy(src, (void *)&ca, sizeof(ca));
4080 # endif
4081 error = COPYIN(ca, dst, size);
4082 if (error != 0) {
4083 IPFERROR(3);
4084 error = EFAULT;
4085 }
4086 return error;
4087 }
4088
4089
4090 /* ------------------------------------------------------------------------ */
4091 /* Function: copyoutptr */
4092 /* Returns: int - 0 = success, else failure */
4093 /* Parameters: src(I) - pointer to the source address */
4094 /* dst(I) - destination address */
4095 /* size(I) - number of bytes to copy */
4096 /* */
4097 /* Copy a block of data out to user space, given a pointer to the pointer */
4098 /* to start copying from (src) and a pointer to where to store it (dst). */
4099 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */
4100 /* ------------------------------------------------------------------------ */
4101 int
4102 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4103 {
4104 void *ca;
4105 int error;
4106
4107 bcopy(dst, &ca, sizeof(ca));
4108 error = COPYOUT(src, ca, size);
4109 if (error != 0) {
4110 IPFERROR(4);
4111 error = EFAULT;
4112 }
4113 return error;
4114 }
4115 #ifdef _KERNEL
4116 #endif
4117
4118
4119 /* ------------------------------------------------------------------------ */
4120 /* Function: ipf_lock */
4121 /* Returns: int - 0 = success, else error */
4122 /* Parameters: data(I) - pointer to lock value to set */
4123 /* lockp(O) - pointer to location to store old lock value */
4124 /* */
4125 /* Get the new value for the lock integer, set it and return the old value */
4126 /* in *lockp. */
4127 /* ------------------------------------------------------------------------ */
4128 int
4129 ipf_lock(void *data, int *lockp)
4130 {
4131 int arg, err;
4132
4133 err = BCOPYIN(data, &arg, sizeof(arg));
4134 if (err != 0)
4135 return EFAULT;
4136 err = BCOPYOUT(lockp, data, sizeof(*lockp));
4137 if (err != 0)
4138 return EFAULT;
4139 *lockp = arg;
4140 return 0;
4141 }
4142
4143
4144 /* ------------------------------------------------------------------------ */
4145 /* Function: ipf_getstat */
4146 /* Returns: Nil */
4147 /* Parameters: softc(I) - pointer to soft context main structure */
4148 /* fiop(I) - pointer to ipfilter stats structure */
4149 /* rev(I) - version claim by program doing ioctl */
4150 /* */
4151 /* Stores a copy of current pointers, counters, etc, in the friostat */
4152 /* structure. */
4153 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */
4154 /* program is looking for. This ensure that validation of the version it */
4155 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */
4156 /* allow older binaries to work but kernels without it will not. */
4157 /* ------------------------------------------------------------------------ */
4158 /*ARGSUSED*/
4159 static void
4160 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4161 {
4162 int i;
4163
4164 bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4165 sizeof(ipf_statistics_t) * 2);
4166 fiop->f_locks[IPL_LOGSTATE] = -1;
4167 fiop->f_locks[IPL_LOGNAT] = -1;
4168 fiop->f_locks[IPL_LOGIPF] = -1;
4169 fiop->f_locks[IPL_LOGAUTH] = -1;
4170
4171 fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4172 fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4173 fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4174 fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4175 fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4176 fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4177 fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4178 fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4179
4180 fiop->f_ticks = softc->ipf_ticks;
4181 fiop->f_active = softc->ipf_active;
4182 fiop->f_froute[0] = softc->ipf_frouteok[0];
4183 fiop->f_froute[1] = softc->ipf_frouteok[1];
4184 fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4185 fiop->f_rb_node_max = softc->ipf_rb_node_max;
4186
4187 fiop->f_running = softc->ipf_running;
4188 for (i = 0; i < IPL_LOGSIZE; i++) {
4189 fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4190 fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4191 }
4192 #ifdef IPFILTER_LOG
4193 fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4194 fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4195 fiop->f_logging = 1;
4196 #else
4197 fiop->f_log_ok = 0;
4198 fiop->f_log_fail = 0;
4199 fiop->f_logging = 0;
4200 #endif
4201 fiop->f_defpass = softc->ipf_pass;
4202 fiop->f_features = ipf_features;
4203
4204 #ifdef IPFILTER_COMPAT
4205 sprintf(fiop->f_version, "IP Filter: v%d.%d.%d",
4206 (rev / 1000000) % 100,
4207 (rev / 10000) % 100,
4208 (rev / 100) % 100);
4209 #else
4210 rev = rev;
4211 (void) strncpy(fiop->f_version, ipfilter_version,
4212 sizeof(fiop->f_version));
4213 #endif
4214 }
4215
4216
4217 #ifdef USE_INET6
4218 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4219 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */
4220 -1, /* 1: UNUSED */
4221 -1, /* 2: UNUSED */
4222 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */
4223 -1, /* 4: ICMP_SOURCEQUENCH */
4224 ND_REDIRECT, /* 5: ICMP_REDIRECT */
4225 -1, /* 6: UNUSED */
4226 -1, /* 7: UNUSED */
4227 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */
4228 -1, /* 9: UNUSED */
4229 -1, /* 10: UNUSED */
4230 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */
4231 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */
4232 -1, /* 13: ICMP_TSTAMP */
4233 -1, /* 14: ICMP_TSTAMPREPLY */
4234 -1, /* 15: ICMP_IREQ */
4235 -1, /* 16: ICMP_IREQREPLY */
4236 -1, /* 17: ICMP_MASKREQ */
4237 -1, /* 18: ICMP_MASKREPLY */
4238 };
4239
4240
4241 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4242 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */
4243 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */
4244 -1, /* 2: ICMP_UNREACH_PROTOCOL */
4245 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */
4246 -1, /* 4: ICMP_UNREACH_NEEDFRAG */
4247 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */
4248 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */
4249 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */
4250 -1, /* 8: ICMP_UNREACH_ISOLATED */
4251 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */
4252 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */
4253 -1, /* 11: ICMP_UNREACH_TOSNET */
4254 -1, /* 12: ICMP_UNREACH_TOSHOST */
4255 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4256 };
4257 int icmpreplytype6[ICMP6_MAXTYPE + 1];
4258 #endif
4259
4260 int icmpreplytype4[ICMP_MAXTYPE + 1];
4261
4262
4263 /* ------------------------------------------------------------------------ */
4264 /* Function: ipf_matchicmpqueryreply */
4265 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */
4266 /* Parameters: v(I) - IP protocol version (4 or 6) */
4267 /* ic(I) - ICMP information */
4268 /* icmp(I) - ICMP packet header */
4269 /* rev(I) - direction (0 = forward/1 = reverse) of packet */
4270 /* */
4271 /* Check if the ICMP packet defined by the header pointed to by icmp is a */
4272 /* reply to one as described by what's in ic. If it is a match, return 1, */
4273 /* else return 0 for no match. */
4274 /* ------------------------------------------------------------------------ */
4275 int
4276 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4277 {
4278 int ictype;
4279
4280 ictype = ic->ici_type;
4281
4282 if (v == 4) {
4283 /*
4284 * If we matched its type on the way in, then when going out
4285 * it will still be the same type.
4286 */
4287 if ((!rev && (icmp->icmp_type == ictype)) ||
4288 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4289 if (icmp->icmp_type != ICMP_ECHOREPLY)
4290 return 1;
4291 if (icmp->icmp_id == ic->ici_id)
4292 return 1;
4293 }
4294 }
4295 #ifdef USE_INET6
4296 else if (v == 6) {
4297 if ((!rev && (icmp->icmp_type == ictype)) ||
4298 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4299 if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4300 return 1;
4301 if (icmp->icmp_id == ic->ici_id)
4302 return 1;
4303 }
4304 }
4305 #endif
4306 return 0;
4307 }
4308
4309
4310 /* ------------------------------------------------------------------------ */
4311 /* Function: frrequest */
4312 /* Returns: int - 0 == success, > 0 == errno value */
4313 /* Parameters: unit(I) - device for which this is for */
4314 /* req(I) - ioctl command (SIOC*) */
4315 /* data(I) - pointr to ioctl data */
4316 /* set(I) - 1 or 0 (filter set) */
4317 /* makecopy(I) - flag indicating whether data points to a rule */
4318 /* in kernel space & hence doesn't need copying. */
4319 /* */
4320 /* This function handles all the requests which operate on the list of */
4321 /* filter rules. This includes adding, deleting, insertion. It is also */
4322 /* responsible for creating groups when a "head" rule is loaded. Interface */
4323 /* names are resolved here and other sanity checks are made on the content */
4324 /* of the rule structure being loaded. If a rule has user defined timeouts */
4325 /* then make sure they are created and initialised before exiting. */
4326 /* ------------------------------------------------------------------------ */
4327 int
4328 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data,
4329 int set, int makecopy)
4330 {
4331 int error = 0, in, family, addrem, need_free = 0;
4332 frentry_t frd, *fp, *f, **fprev, **ftail;
4333 void *ptr, *uptr;
4334 u_int *p, *pp;
4335 frgroup_t *fg;
4336 char *group;
4337
4338 ptr = NULL;
4339 fg = NULL;
4340 fp = &frd;
4341 if (makecopy != 0) {
4342 bzero(fp, sizeof(frd));
4343 error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4344 if (error) {
4345 return error;
4346 }
4347 if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4348 IPFERROR(6);
4349 return EINVAL;
4350 }
4351 KMALLOCS(f, frentry_t *, fp->fr_size);
4352 if (f == NULL) {
4353 IPFERROR(131);
4354 return ENOMEM;
4355 }
4356 bzero(f, fp->fr_size);
4357 error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4358 fp->fr_size);
4359 if (error) {
4360 KFREES(f, fp->fr_size);
4361 return error;
4362 }
4363
4364 fp = f;
4365 f = NULL;
4366 fp->fr_dnext = NULL;
4367 fp->fr_ref = 0;
4368 fp->fr_flags |= FR_COPIED;
4369 } else {
4370 fp = (frentry_t *)data;
4371 if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4372 IPFERROR(7);
4373 return EINVAL;
4374 }
4375 fp->fr_flags &= ~FR_COPIED;
4376 }
4377
4378 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4379 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4380 IPFERROR(8);
4381 error = EINVAL;
4382 goto donenolock;
4383 }
4384
4385 family = fp->fr_family;
4386 uptr = fp->fr_data;
4387
4388 if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4389 req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4390 addrem = 0;
4391 else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4392 addrem = 1;
4393 else if (req == (ioctlcmd_t)SIOCZRLST)
4394 addrem = 2;
4395 else {
4396 IPFERROR(9);
4397 error = EINVAL;
4398 goto donenolock;
4399 }
4400
4401 /*
4402 * Only filter rules for IPv4 or IPv6 are accepted.
4403 */
4404 if (family == AF_INET) {
4405 /*EMPTY*/;
4406 #ifdef USE_INET6
4407 } else if (family == AF_INET6) {
4408 /*EMPTY*/;
4409 #endif
4410 } else if (family != 0) {
4411 IPFERROR(10);
4412 error = EINVAL;
4413 goto donenolock;
4414 }
4415
4416 /*
4417 * If the rule is being loaded from user space, i.e. we had to copy it
4418 * into kernel space, then do not trust the function pointer in the
4419 * rule.
4420 */
4421 if ((makecopy == 1) && (fp->fr_func != NULL)) {
4422 if (ipf_findfunc(fp->fr_func) == NULL) {
4423 IPFERROR(11);
4424 error = ESRCH;
4425 goto donenolock;
4426 }
4427
4428 if (addrem == 0) {
4429 error = ipf_funcinit(softc, fp);
4430 if (error != 0)
4431 goto donenolock;
4432 }
4433 }
4434 if ((fp->fr_flags & FR_CALLNOW) &&
4435 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4436 IPFERROR(142);
4437 error = ESRCH;
4438 goto donenolock;
4439 }
4440 if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4441 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4442 IPFERROR(143);
4443 error = ESRCH;
4444 goto donenolock;
4445 }
4446
4447 ptr = NULL;
4448
4449 if (FR_ISACCOUNT(fp->fr_flags))
4450 unit = IPL_LOGCOUNT;
4451
4452 /*
4453 * Check that each group name in the rule has a start index that
4454 * is valid.
4455 */
4456 if (fp->fr_icmphead != -1) {
4457 if ((fp->fr_icmphead < 0) ||
4458 (fp->fr_icmphead >= fp->fr_namelen)) {
4459 IPFERROR(136);
4460 error = EINVAL;
4461 goto donenolock;
4462 }
4463 if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4464 fp->fr_names[fp->fr_icmphead] = '\0';
4465 }
4466
4467 if (fp->fr_grhead != -1) {
4468 if ((fp->fr_grhead < 0) ||
4469 (fp->fr_grhead >= fp->fr_namelen)) {
4470 IPFERROR(137);
4471 error = EINVAL;
4472 goto donenolock;
4473 }
4474 if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4475 fp->fr_names[fp->fr_grhead] = '\0';
4476 }
4477
4478 if (fp->fr_group != -1) {
4479 if ((fp->fr_group < 0) ||
4480 (fp->fr_group >= fp->fr_namelen)) {
4481 IPFERROR(138);
4482 error = EINVAL;
4483 goto donenolock;
4484 }
4485 if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4486 /*
4487 * Allow loading rules that are in groups to cause
4488 * them to be created if they don't already exit.
4489 */
4490 group = FR_NAME(fp, fr_group);
4491 if (addrem == 0) {
4492 fg = ipf_group_add(softc, group, NULL,
4493 fp->fr_flags, unit, set);
4494 fp->fr_grp = fg;
4495 } else {
4496 fg = ipf_findgroup(softc, group, unit,
4497 set, NULL);
4498 if (fg == NULL) {
4499 IPFERROR(12);
4500 error = ESRCH;
4501 goto donenolock;
4502 }
4503 }
4504
4505 if (fg->fg_flags == 0) {
4506 fg->fg_flags = fp->fr_flags & FR_INOUT;
4507 } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4508 IPFERROR(13);
4509 error = ESRCH;
4510 goto donenolock;
4511 }
4512 }
4513 } else {
4514 /*
4515 * If a rule is going to be part of a group then it does
4516 * not matter whether it is an in or out rule, but if it
4517 * isn't in a group, then it does...
4518 */
4519 if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4520 IPFERROR(14);
4521 error = EINVAL;
4522 goto donenolock;
4523 }
4524 }
4525 in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4526
4527 /*
4528 * Work out which rule list this change is being applied to.
4529 */
4530 ftail = NULL;
4531 fprev = NULL;
4532 if (unit == IPL_LOGAUTH) {
4533 if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4534 (fp->fr_tifs[1].fd_ptr != NULL) ||
4535 (fp->fr_dif.fd_ptr != NULL) ||
4536 (fp->fr_flags & FR_FASTROUTE)) {
4537 IPFERROR(145);
4538 error = EINVAL;
4539 goto donenolock;
4540 }
4541 fprev = ipf_auth_rulehead(softc);
4542 } else {
4543 if (FR_ISACCOUNT(fp->fr_flags))
4544 fprev = &softc->ipf_acct[in][set];
4545 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4546 fprev = &softc->ipf_rules[in][set];
4547 }
4548 if (fprev == NULL) {
4549 IPFERROR(15);
4550 error = ESRCH;
4551 goto donenolock;
4552 }
4553
4554 if (fg != NULL)
4555 fprev = &fg->fg_start;
4556
4557 /*
4558 * Copy in extra data for the rule.
4559 */
4560 if (fp->fr_dsize != 0) {
4561 if (makecopy != 0) {
4562 KMALLOCS(ptr, void *, fp->fr_dsize);
4563 if (ptr == NULL) {
4564 IPFERROR(16);
4565 error = ENOMEM;
4566 goto donenolock;
4567 }
4568
4569 /*
4570 * The bcopy case is for when the data is appended
4571 * to the rule by ipf_in_compat().
4572 */
4573 if (uptr >= (void *)fp &&
4574 uptr < (void *)((char *)fp + fp->fr_size)) {
4575 bcopy(uptr, ptr, fp->fr_dsize);
4576 error = 0;
4577 } else {
4578 error = COPYIN(uptr, ptr, fp->fr_dsize);
4579 if (error != 0) {
4580 IPFERROR(17);
4581 error = EFAULT;
4582 goto donenolock;
4583 }
4584 }
4585 } else {
4586 ptr = uptr;
4587 }
4588 fp->fr_data = ptr;
4589 } else {
4590 fp->fr_data = NULL;
4591 }
4592
4593 /*
4594 * Perform per-rule type sanity checks of their members.
4595 * All code after this needs to be aware that allocated memory
4596 * may need to be free'd before exiting.
4597 */
4598 switch (fp->fr_type & ~FR_T_BUILTIN)
4599 {
4600 #if defined(IPFILTER_BPF)
4601 case FR_T_BPFOPC :
4602 if (fp->fr_dsize == 0) {
4603 IPFERROR(19);
4604 error = EINVAL;
4605 break;
4606 }
4607 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4608 IPFERROR(20);
4609 error = EINVAL;
4610 break;
4611 }
4612 break;
4613 #endif
4614 case FR_T_IPF :
4615 /*
4616 * Preparation for error case at the bottom of this function.
4617 */
4618 if (fp->fr_datype == FRI_LOOKUP)
4619 fp->fr_dstptr = NULL;
4620 if (fp->fr_satype == FRI_LOOKUP)
4621 fp->fr_srcptr = NULL;
4622
4623 if (fp->fr_dsize != sizeof(fripf_t)) {
4624 IPFERROR(21);
4625 error = EINVAL;
4626 break;
4627 }
4628
4629 /*
4630 * Allowing a rule with both "keep state" and "with oow" is
4631 * pointless because adding a state entry to the table will
4632 * fail with the out of window (oow) flag set.
4633 */
4634 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4635 IPFERROR(22);
4636 error = EINVAL;
4637 break;
4638 }
4639
4640 switch (fp->fr_satype)
4641 {
4642 case FRI_BROADCAST :
4643 case FRI_DYNAMIC :
4644 case FRI_NETWORK :
4645 case FRI_NETMASKED :
4646 case FRI_PEERADDR :
4647 if (fp->fr_sifpidx < 0) {
4648 IPFERROR(23);
4649 error = EINVAL;
4650 }
4651 break;
4652 case FRI_LOOKUP :
4653 fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4654 &fp->fr_src6,
4655 &fp->fr_smsk6);
4656 if (fp->fr_srcfunc == NULL) {
4657 IPFERROR(132);
4658 error = ESRCH;
4659 break;
4660 }
4661 break;
4662 case FRI_NORMAL :
4663 break;
4664 default :
4665 IPFERROR(133);
4666 error = EINVAL;
4667 break;
4668 }
4669 if (error != 0)
4670 break;
4671
4672 switch (fp->fr_datype)
4673 {
4674 case FRI_BROADCAST :
4675 case FRI_DYNAMIC :
4676 case FRI_NETWORK :
4677 case FRI_NETMASKED :
4678 case FRI_PEERADDR :
4679 if (fp->fr_difpidx < 0) {
4680 IPFERROR(24);
4681 error = EINVAL;
4682 }
4683 break;
4684 case FRI_LOOKUP :
4685 fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4686 &fp->fr_dst6,
4687 &fp->fr_dmsk6);
4688 if (fp->fr_dstfunc == NULL) {
4689 IPFERROR(134);
4690 error = ESRCH;
4691 }
4692 break;
4693 case FRI_NORMAL :
4694 break;
4695 default :
4696 IPFERROR(135);
4697 error = EINVAL;
4698 }
4699 break;
4700
4701 case FR_T_NONE :
4702 case FR_T_CALLFUNC :
4703 case FR_T_COMPIPF :
4704 break;
4705
4706 case FR_T_IPFEXPR :
4707 if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4708 IPFERROR(25);
4709 error = EINVAL;
4710 }
4711 break;
4712
4713 default :
4714 IPFERROR(26);
4715 error = EINVAL;
4716 break;
4717 }
4718 if (error != 0)
4719 goto donenolock;
4720
4721 if (fp->fr_tif.fd_name != -1) {
4722 if ((fp->fr_tif.fd_name < 0) ||
4723 (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4724 IPFERROR(139);
4725 error = EINVAL;
4726 goto donenolock;
4727 }
4728 }
4729
4730 if (fp->fr_dif.fd_name != -1) {
4731 if ((fp->fr_dif.fd_name < 0) ||
4732 (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4733 IPFERROR(140);
4734 error = EINVAL;
4735 goto donenolock;
4736 }
4737 }
4738
4739 if (fp->fr_rif.fd_name != -1) {
4740 if ((fp->fr_rif.fd_name < 0) ||
4741 (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4742 IPFERROR(141);
4743 error = EINVAL;
4744 goto donenolock;
4745 }
4746 }
4747
4748 /*
4749 * Lookup all the interface names that are part of the rule.
4750 */
4751 error = ipf_synclist(softc, fp, NULL);
4752 if (error != 0)
4753 goto donenolock;
4754 fp->fr_statecnt = 0;
4755 if (fp->fr_srctrack.ht_max_nodes != 0)
4756 ipf_rb_ht_init(&fp->fr_srctrack);
4757
4758 /*
4759 * Look for an existing matching filter rule, but don't include the
4760 * next or interface pointer in the comparison (fr_next, fr_ifa).
4761 * This elminates rules which are indentical being loaded. Checksum
4762 * the constant part of the filter rule to make comparisons quicker
4763 * (this meaning no pointers are included).
4764 */
4765 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4766 p < pp; p++)
4767 fp->fr_cksum += *p;
4768 pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize);
4769 for (p = (u_int *)fp->fr_data; p < pp; p++)
4770 fp->fr_cksum += *p;
4771
4772 WRITE_ENTER(&softc->ipf_mutex);
4773
4774 /*
4775 * Now that the filter rule lists are locked, we can walk the
4776 * chain of them without fear.
4777 */
4778 ftail = fprev;
4779 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4780 if (fp->fr_collect <= f->fr_collect) {
4781 ftail = fprev;
4782 f = NULL;
4783 break;
4784 }
4785 fprev = ftail;
4786 }
4787
4788 for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4789 DT2(rule_cmp, frentry_t *, fp, frentry_t *, f);
4790 if ((fp->fr_cksum != f->fr_cksum) ||
4791 (fp->fr_size != f->fr_size) ||
4792 (f->fr_dsize != fp->fr_dsize))
4793 continue;
4794 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func,
4795 fp->fr_size - offsetof(struct frentry, fr_func)) != 0)
4796 continue;
4797 if ((!ptr && !f->fr_data) ||
4798 (ptr && f->fr_data &&
4799 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4800 break;
4801 }
4802
4803 /*
4804 * If zero'ing statistics, copy current to caller and zero.
4805 */
4806 if (addrem == 2) {
4807 if (f == NULL) {
4808 IPFERROR(27);
4809 error = ESRCH;
4810 } else {
4811 /*
4812 * Copy and reduce lock because of impending copyout.
4813 * Well we should, but if we do then the atomicity of
4814 * this call and the correctness of fr_hits and
4815 * fr_bytes cannot be guaranteed. As it is, this code
4816 * only resets them to 0 if they are successfully
4817 * copied out into user space.
4818 */
4819 bcopy((char *)f, (char *)fp, f->fr_size);
4820 /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4821
4822 /*
4823 * When we copy this rule back out, set the data
4824 * pointer to be what it was in user space.
4825 */
4826 fp->fr_data = uptr;
4827 error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4828
4829 if (error == 0) {
4830 if ((f->fr_dsize != 0) && (uptr != NULL))
4831 error = COPYOUT(f->fr_data, uptr,
4832 f->fr_dsize);
4833 if (error != 0) {
4834 IPFERROR(28);
4835 error = EFAULT;
4836 }
4837 if (error == 0) {
4838 f->fr_hits = 0;
4839 f->fr_bytes = 0;
4840 }
4841 }
4842 }
4843
4844 if (makecopy != 0) {
4845 if (ptr != NULL) {
4846 KFREES(ptr, fp->fr_dsize);
4847 }
4848 KFREES(fp, fp->fr_size);
4849 }
4850 RWLOCK_EXIT(&softc->ipf_mutex);
4851 return error;
4852 }
4853
4854 if (!f) {
4855 /*
4856 * At the end of this, ftail must point to the place where the
4857 * new rule is to be saved/inserted/added.
4858 * For SIOCAD*FR, this should be the last rule in the group of
4859 * rules that have equal fr_collect fields.
4860 * For SIOCIN*FR, ...
4861 */
4862 if (req == (ioctlcmd_t)SIOCADAFR ||
4863 req == (ioctlcmd_t)SIOCADIFR) {
4864
4865 for (ftail = fprev; (f = *ftail) != NULL; ) {
4866 if (f->fr_collect > fp->fr_collect)
4867 break;
4868 ftail = &f->fr_next;
4869 }
4870 f = NULL;
4871 ptr = NULL;
4872 } else if (req == (ioctlcmd_t)SIOCINAFR ||
4873 req == (ioctlcmd_t)SIOCINIFR) {
4874 while ((f = *fprev) != NULL) {
4875 if (f->fr_collect >= fp->fr_collect)
4876 break;
4877 fprev = &f->fr_next;
4878 }
4879 ftail = fprev;
4880 if (fp->fr_hits != 0) {
4881 while (fp->fr_hits && (f = *ftail)) {
4882 if (f->fr_collect != fp->fr_collect)
4883 break;
4884 fprev = ftail;
4885 ftail = &f->fr_next;
4886 fp->fr_hits--;
4887 }
4888 }
4889 f = NULL;
4890 ptr = NULL;
4891 }
4892 }
4893
4894 /*
4895 * Request to remove a rule.
4896 */
4897 if (addrem == 1) {
4898 if (!f) {
4899 IPFERROR(29);
4900 error = ESRCH;
4901 } else {
4902 /*
4903 * Do not allow activity from user space to interfere
4904 * with rules not loaded that way.
4905 */
4906 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4907 IPFERROR(30);
4908 error = EPERM;
4909 goto done;
4910 }
4911
4912 /*
4913 * Return EBUSY if the rule is being reference by
4914 * something else (eg state information.)
4915 */
4916 if (f->fr_ref > 1) {
4917 IPFERROR(31);
4918 error = EBUSY;
4919 goto done;
4920 }
4921 #ifdef IPFILTER_SCAN
4922 if (f->fr_isctag != -1 &&
4923 (f->fr_isc != (struct ipscan *)-1))
4924 ipf_scan_detachfr(f);
4925 #endif
4926
4927 if (unit == IPL_LOGAUTH) {
4928 error = ipf_auth_precmd(softc, req, f, ftail);
4929 goto done;
4930 }
4931
4932 ipf_rule_delete(softc, f, unit, set);
4933
4934 need_free = makecopy;
4935 }
4936 } else {
4937 /*
4938 * Not removing, so we must be adding/inserting a rule.
4939 */
4940 if (f != NULL) {
4941 IPFERROR(32);
4942 error = EEXIST;
4943 goto done;
4944 }
4945 if (unit == IPL_LOGAUTH) {
4946 error = ipf_auth_precmd(softc, req, fp, ftail);
4947 goto done;
4948 }
4949
4950 MUTEX_NUKE(&fp->fr_lock);
4951 MUTEX_INIT(&fp->fr_lock, "filter rule lock");
4952 if (fp->fr_die != 0)
4953 ipf_rule_expire_insert(softc, fp, set);
4954
4955 fp->fr_hits = 0;
4956 if (makecopy != 0)
4957 fp->fr_ref = 1;
4958 fp->fr_pnext = ftail;
4959 fp->fr_next = *ftail;
4960 *ftail = fp;
4961 if (addrem == 0)
4962 ipf_fixskip(ftail, fp, 1);
4963
4964 fp->fr_icmpgrp = NULL;
4965 if (fp->fr_icmphead != -1) {
4966 group = FR_NAME(fp, fr_icmphead);
4967 fg = ipf_group_add(softc, group, fp, 0, unit, set);
4968 fp->fr_icmpgrp = fg;
4969 }
4970
4971 fp->fr_grphead = NULL;
4972 if (fp->fr_grhead != -1) {
4973 group = FR_NAME(fp, fr_grhead);
4974 fg = ipf_group_add(softc, group, fp, fp->fr_flags,
4975 unit, set);
4976 fp->fr_grphead = fg;
4977 }
4978 }
4979 done:
4980 RWLOCK_EXIT(&softc->ipf_mutex);
4981 donenolock:
4982 if (need_free || (error != 0)) {
4983 if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
4984 if ((fp->fr_satype == FRI_LOOKUP) &&
4985 (fp->fr_srcptr != NULL))
4986 ipf_lookup_deref(softc, fp->fr_srctype,
4987 fp->fr_srcptr);
4988 if ((fp->fr_datype == FRI_LOOKUP) &&
4989 (fp->fr_dstptr != NULL))
4990 ipf_lookup_deref(softc, fp->fr_dsttype,
4991 fp->fr_dstptr);
4992 }
4993 if (fp->fr_grp != NULL) {
4994 WRITE_ENTER(&softc->ipf_mutex);
4995 ipf_group_del(softc, fp->fr_grp, fp);
4996 RWLOCK_EXIT(&softc->ipf_mutex);
4997 }
4998 if ((ptr != NULL) && (makecopy != 0)) {
4999 KFREES(ptr, fp->fr_dsize);
5000 }
5001 KFREES(fp, fp->fr_size);
5002 }
5003 return (error);
5004 }
5005
5006
5007 /* ------------------------------------------------------------------------ */
5008 /* Function: ipf_rule_delete */
5009 /* Returns: Nil */
5010 /* Parameters: softc(I) - pointer to soft context main structure */
5011 /* f(I) - pointer to the rule being deleted */
5012 /* ftail(I) - pointer to the pointer to f */
5013 /* unit(I) - device for which this is for */
5014 /* set(I) - 1 or 0 (filter set) */
5015 /* */
5016 /* This function attempts to do what it can to delete a filter rule: remove */
5017 /* it from any linked lists and remove any groups it is responsible for. */
5018 /* But in the end, removing a rule can only drop the reference count - we */
5019 /* must use that as the guide for whether or not it can be freed. */
5020 /* ------------------------------------------------------------------------ */
5021 static void
5022 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5023 {
5024
5025 /*
5026 * If fr_pdnext is set, then the rule is on the expire list, so
5027 * remove it from there.
5028 */
5029 if (f->fr_pdnext != NULL) {
5030 *f->fr_pdnext = f->fr_dnext;
5031 if (f->fr_dnext != NULL)
5032 f->fr_dnext->fr_pdnext = f->fr_pdnext;
5033 f->fr_pdnext = NULL;
5034 f->fr_dnext = NULL;
5035 }
5036
5037 ipf_fixskip(f->fr_pnext, f, -1);
5038 if (f->fr_pnext != NULL)
5039 *f->fr_pnext = f->fr_next;
5040 if (f->fr_next != NULL)
5041 f->fr_next->fr_pnext = f->fr_pnext;
5042 f->fr_pnext = NULL;
5043 f->fr_next = NULL;
5044
5045 (void) ipf_derefrule(softc, &f);
5046 }
5047
5048 /* ------------------------------------------------------------------------ */
5049 /* Function: ipf_rule_expire_insert */
5050 /* Returns: Nil */
5051 /* Parameters: softc(I) - pointer to soft context main structure */
5052 /* f(I) - pointer to rule to be added to expire list */
5053 /* set(I) - 1 or 0 (filter set) */
5054 /* */
5055 /* If the new rule has a given expiration time, insert it into the list of */
5056 /* expiring rules with the ones to be removed first added to the front of */
5057 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5058 /* expiration interval checks. */
5059 /* ------------------------------------------------------------------------ */
5060 static void
5061 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5062 {
5063 frentry_t *fr;
5064
5065 /*
5066 */
5067
5068 f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5069 for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5070 fr = fr->fr_dnext) {
5071 if (f->fr_die < fr->fr_die)
5072 break;
5073 if (fr->fr_dnext == NULL) {
5074 /*
5075 * We've got to the last rule and everything
5076 * wanted to be expired before this new node,
5077 * so we have to tack it on the end...
5078 */
5079 fr->fr_dnext = f;
5080 f->fr_pdnext = &fr->fr_dnext;
5081 fr = NULL;
5082 break;
5083 }
5084 }
5085
5086 if (softc->ipf_rule_explist[set] == NULL) {
5087 softc->ipf_rule_explist[set] = f;
5088 f->fr_pdnext = &softc->ipf_rule_explist[set];
5089 } else if (fr != NULL) {
5090 f->fr_dnext = fr;
5091 f->fr_pdnext = fr->fr_pdnext;
5092 fr->fr_pdnext = &f->fr_dnext;
5093 }
5094 }
5095
5096
5097 /* ------------------------------------------------------------------------ */
5098 /* Function: ipf_findlookup */
5099 /* Returns: NULL = failure, else success */
5100 /* Parameters: softc(I) - pointer to soft context main structure */
5101 /* unit(I) - ipf device we want to find match for */
5102 /* fp(I) - rule for which lookup is for */
5103 /* addrp(I) - pointer to lookup information in address struct */
5104 /* maskp(O) - pointer to lookup information for storage */
5105 /* */
5106 /* When using pools and hash tables to store addresses for matching in */
5107 /* rules, it is necessary to resolve both the object referred to by the */
5108 /* name or address (and return that pointer) and also provide the means by */
5109 /* which to determine if an address belongs to that object to make the */
5110 /* packet matching quicker. */
5111 /* ------------------------------------------------------------------------ */
5112 static void *
5113 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5114 i6addr_t *addrp, i6addr_t *maskp)
5115 {
5116 void *ptr = NULL;
5117
5118 switch (addrp->iplookupsubtype)
5119 {
5120 case 0 :
5121 ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5122 addrp->iplookupnum,
5123 &maskp->iplookupfunc);
5124 break;
5125 case 1 :
5126 if (addrp->iplookupname < 0)
5127 break;
5128 if (addrp->iplookupname >= fr->fr_namelen)
5129 break;
5130 ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5131 fr->fr_names + addrp->iplookupname,
5132 &maskp->iplookupfunc);
5133 break;
5134 default :
5135 break;
5136 }
5137
5138 return ptr;
5139 }
5140
5141
5142 /* ------------------------------------------------------------------------ */
5143 /* Function: ipf_funcinit */
5144 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */
5145 /* Parameters: softc(I) - pointer to soft context main structure */
5146 /* fr(I) - pointer to filter rule */
5147 /* */
5148 /* If a rule is a call rule, then check if the function it points to needs */
5149 /* an init function to be called now the rule has been loaded. */
5150 /* ------------------------------------------------------------------------ */
5151 static int
5152 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5153 {
5154 ipfunc_resolve_t *ft;
5155 int err;
5156
5157 IPFERROR(34);
5158 err = ESRCH;
5159
5160 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5161 if (ft->ipfu_addr == fr->fr_func) {
5162 err = 0;
5163 if (ft->ipfu_init != NULL)
5164 err = (*ft->ipfu_init)(softc, fr);
5165 break;
5166 }
5167 return err;
5168 }
5169
5170
5171 /* ------------------------------------------------------------------------ */
5172 /* Function: ipf_funcfini */
5173 /* Returns: Nil */
5174 /* Parameters: softc(I) - pointer to soft context main structure */
5175 /* fr(I) - pointer to filter rule */
5176 /* */
5177 /* For a given filter rule, call the matching "fini" function if the rule */
5178 /* is using a known function that would have resulted in the "init" being */
5179 /* called for ealier. */
5180 /* ------------------------------------------------------------------------ */
5181 static void
5182 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5183 {
5184 ipfunc_resolve_t *ft;
5185
5186 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5187 if (ft->ipfu_addr == fr->fr_func) {
5188 if (ft->ipfu_fini != NULL)
5189 (void) (*ft->ipfu_fini)(softc, fr);
5190 break;
5191 }
5192 }
5193
5194
5195 /* ------------------------------------------------------------------------ */
5196 /* Function: ipf_findfunc */
5197 /* Returns: ipfunc_t - pointer to function if found, else NULL */
5198 /* Parameters: funcptr(I) - function pointer to lookup */
5199 /* */
5200 /* Look for a function in the table of known functions. */
5201 /* ------------------------------------------------------------------------ */
5202 static ipfunc_t
5203 ipf_findfunc(ipfunc_t funcptr)
5204 {
5205 ipfunc_resolve_t *ft;
5206
5207 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5208 if (ft->ipfu_addr == funcptr)
5209 return funcptr;
5210 return NULL;
5211 }
5212
5213
5214 /* ------------------------------------------------------------------------ */
5215 /* Function: ipf_resolvefunc */
5216 /* Returns: int - 0 == success, else error */
5217 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */
5218 /* */
5219 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5220 /* This will either be the function name (if the pointer is set) or the */
5221 /* function pointer if the name is set. When found, fill in the other one */
5222 /* so that the entire, complete, structure can be copied back to user space.*/
5223 /* ------------------------------------------------------------------------ */
5224 int
5225 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5226 {
5227 ipfunc_resolve_t res, *ft;
5228 int error;
5229
5230 error = BCOPYIN(data, &res, sizeof(res));
5231 if (error != 0) {
5232 IPFERROR(123);
5233 return EFAULT;
5234 }
5235
5236 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5237 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5238 if (strncmp(res.ipfu_name, ft->ipfu_name,
5239 sizeof(res.ipfu_name)) == 0) {
5240 res.ipfu_addr = ft->ipfu_addr;
5241 res.ipfu_init = ft->ipfu_init;
5242 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5243 IPFERROR(35);
5244 return EFAULT;
5245 }
5246 return 0;
5247 }
5248 }
5249 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5250 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5251 if (ft->ipfu_addr == res.ipfu_addr) {
5252 (void) strncpy(res.ipfu_name, ft->ipfu_name,
5253 sizeof(res.ipfu_name));
5254 res.ipfu_init = ft->ipfu_init;
5255 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5256 IPFERROR(36);
5257 return EFAULT;
5258 }
5259 return 0;
5260 }
5261 }
5262 IPFERROR(37);
5263 return ESRCH;
5264 }
5265
5266
5267 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5268 !defined(__FreeBSD__)) || \
5269 FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5270 OPENBSD_LT_REV(200006)
5271 /*
5272 * From: NetBSD
5273 * ppsratecheck(): packets (or events) per second limitation.
5274 */
5275 int
5276 ppsratecheck(lasttime, curpps, maxpps)
5277 struct timeval *lasttime;
5278 int *curpps;
5279 int maxpps; /* maximum pps allowed */
5280 {
5281 struct timeval tv, delta;
5282 int rv;
5283
5284 GETKTIME(&tv);
5285
5286 delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5287 delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5288 if (delta.tv_usec < 0) {
5289 delta.tv_sec--;
5290 delta.tv_usec += 1000000;
5291 }
5292
5293 /*
5294 * check for 0,0 is so that the message will be seen at least once.
5295 * if more than one second have passed since the last update of
5296 * lasttime, reset the counter.
5297 *
5298 * we do increment *curpps even in *curpps < maxpps case, as some may
5299 * try to use *curpps for stat purposes as well.
5300 */
5301 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5302 delta.tv_sec >= 1) {
5303 *lasttime = tv;
5304 *curpps = 0;
5305 rv = 1;
5306 } else if (maxpps < 0)
5307 rv = 1;
5308 else if (*curpps < maxpps)
5309 rv = 1;
5310 else
5311 rv = 0;
5312 *curpps = *curpps + 1;
5313
5314 return (rv);
5315 }
5316 #endif
5317
5318
5319 /* ------------------------------------------------------------------------ */
5320 /* Function: ipf_derefrule */
5321 /* Returns: int - 0 == rule freed up, else rule not freed */
5322 /* Parameters: fr(I) - pointer to filter rule */
5323 /* */
5324 /* Decrement the reference counter to a rule by one. If it reaches zero, */
5325 /* free it and any associated storage space being used by it. */
5326 /* ------------------------------------------------------------------------ */
5327 int
5328 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5329 {
5330 frentry_t *fr;
5331 frdest_t *fdp;
5332
5333 fr = *frp;
5334 *frp = NULL;
5335
5336 MUTEX_ENTER(&fr->fr_lock);
5337 fr->fr_ref--;
5338 if (fr->fr_ref == 0) {
5339 MUTEX_EXIT(&fr->fr_lock);
5340 MUTEX_DESTROY(&fr->fr_lock);
5341
5342 ipf_funcfini(softc, fr);
5343
5344 fdp = &fr->fr_tif;
5345 if (fdp->fd_type == FRD_DSTLIST)
5346 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5347
5348 fdp = &fr->fr_rif;
5349 if (fdp->fd_type == FRD_DSTLIST)
5350 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5351
5352 fdp = &fr->fr_dif;
5353 if (fdp->fd_type == FRD_DSTLIST)
5354 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5355
5356 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5357 fr->fr_satype == FRI_LOOKUP)
5358 ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5359 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5360 fr->fr_datype == FRI_LOOKUP)
5361 ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5362
5363 if (fr->fr_grp != NULL)
5364 ipf_group_del(softc, fr->fr_grp, fr);
5365
5366 if (fr->fr_grphead != NULL)
5367 ipf_group_del(softc, fr->fr_grphead, fr);
5368
5369 if (fr->fr_icmpgrp != NULL)
5370 ipf_group_del(softc, fr->fr_icmpgrp, fr);
5371
5372 if ((fr->fr_flags & FR_COPIED) != 0) {
5373 if (fr->fr_dsize) {
5374 KFREES(fr->fr_data, fr->fr_dsize);
5375 }
5376 KFREES(fr, fr->fr_size);
5377 return 0;
5378 }
5379 return 1;
5380 } else {
5381 MUTEX_EXIT(&fr->fr_lock);
5382 }
5383 return -1;
5384 }
5385
5386
5387 /* ------------------------------------------------------------------------ */
5388 /* Function: ipf_grpmapinit */
5389 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5390 /* Parameters: fr(I) - pointer to rule to find hash table for */
5391 /* */
5392 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */
5393 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */
5394 /* ------------------------------------------------------------------------ */
5395 static int
5396 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5397 {
5398 char name[FR_GROUPLEN];
5399 iphtable_t *iph;
5400
5401 #if defined(SNPRINTF) && defined(_KERNEL)
5402 SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
5403 #else
5404 (void) sprintf(name, "%d", fr->fr_arg);
5405 #endif
5406 iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5407 if (iph == NULL) {
5408 IPFERROR(38);
5409 return ESRCH;
5410 }
5411 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5412 IPFERROR(39);
5413 return ESRCH;
5414 }
5415 iph->iph_ref++;
5416 fr->fr_ptr = iph;
5417 return 0;
5418 }
5419
5420
5421 /* ------------------------------------------------------------------------ */
5422 /* Function: ipf_grpmapfini */
5423 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5424 /* Parameters: softc(I) - pointer to soft context main structure */
5425 /* fr(I) - pointer to rule to release hash table for */
5426 /* */
5427 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5428 /* be called to undo what ipf_grpmapinit caused to be done. */
5429 /* ------------------------------------------------------------------------ */
5430 static int
5431 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5432 {
5433 iphtable_t *iph;
5434 iph = fr->fr_ptr;
5435 if (iph != NULL)
5436 ipf_lookup_deref(softc, IPLT_HASH, iph);
5437 return 0;
5438 }
5439
5440
5441 /* ------------------------------------------------------------------------ */
5442 /* Function: ipf_srcgrpmap */
5443 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5444 /* Parameters: fin(I) - pointer to packet information */
5445 /* passp(IO) - pointer to current/new filter decision (unused) */
5446 /* */
5447 /* Look for a rule group head in a hash table, using the source address as */
5448 /* the key, and descend into that group and continue matching rules against */
5449 /* the packet. */
5450 /* ------------------------------------------------------------------------ */
5451 frentry_t *
5452 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5453 {
5454 frgroup_t *fg;
5455 void *rval;
5456
5457 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5458 &fin->fin_src);
5459 if (rval == NULL)
5460 return NULL;
5461
5462 fg = rval;
5463 fin->fin_fr = fg->fg_start;
5464 (void) ipf_scanlist(fin, *passp);
5465 return fin->fin_fr;
5466 }
5467
5468
5469 /* ------------------------------------------------------------------------ */
5470 /* Function: ipf_dstgrpmap */
5471 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5472 /* Parameters: fin(I) - pointer to packet information */
5473 /* passp(IO) - pointer to current/new filter decision (unused) */
5474 /* */
5475 /* Look for a rule group head in a hash table, using the destination */
5476 /* address as the key, and descend into that group and continue matching */
5477 /* rules against the packet. */
5478 /* ------------------------------------------------------------------------ */
5479 frentry_t *
5480 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5481 {
5482 frgroup_t *fg;
5483 void *rval;
5484
5485 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5486 &fin->fin_dst);
5487 if (rval == NULL)
5488 return NULL;
5489
5490 fg = rval;
5491 fin->fin_fr = fg->fg_start;
5492 (void) ipf_scanlist(fin, *passp);
5493 return fin->fin_fr;
5494 }
5495
5496 /*
5497 * Queue functions
5498 * ===============
5499 * These functions manage objects on queues for efficient timeouts. There
5500 * are a number of system defined queues as well as user defined timeouts.
5501 * It is expected that a lock is held in the domain in which the queue
5502 * belongs (i.e. either state or NAT) when calling any of these functions
5503 * that prevents ipf_freetimeoutqueue() from being called at the same time
5504 * as any other.
5505 */
5506
5507
5508 /* ------------------------------------------------------------------------ */
5509 /* Function: ipf_addtimeoutqueue */
5510 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */
5511 /* timeout queue with given interval. */
5512 /* Parameters: parent(I) - pointer to pointer to parent node of this list */
5513 /* of interface queues. */
5514 /* seconds(I) - timeout value in seconds for this queue. */
5515 /* */
5516 /* This routine first looks for a timeout queue that matches the interval */
5517 /* being requested. If it finds one, increments the reference counter and */
5518 /* returns a pointer to it. If none are found, it allocates a new one and */
5519 /* inserts it at the top of the list. */
5520 /* */
5521 /* Locking. */
5522 /* It is assumed that the caller of this function has an appropriate lock */
5523 /* held (exclusively) in the domain that encompases 'parent'. */
5524 /* ------------------------------------------------------------------------ */
5525 ipftq_t *
5526 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5527 {
5528 ipftq_t *ifq;
5529 u_int period;
5530
5531 period = seconds * IPF_HZ_DIVIDE;
5532
5533 MUTEX_ENTER(&softc->ipf_timeoutlock);
5534 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5535 if (ifq->ifq_ttl == period) {
5536 /*
5537 * Reset the delete flag, if set, so the structure
5538 * gets reused rather than freed and reallocated.
5539 */
5540 MUTEX_ENTER(&ifq->ifq_lock);
5541 ifq->ifq_flags &= ~IFQF_DELETE;
5542 ifq->ifq_ref++;
5543 MUTEX_EXIT(&ifq->ifq_lock);
5544 MUTEX_EXIT(&softc->ipf_timeoutlock);
5545
5546 return ifq;
5547 }
5548 }
5549
5550 KMALLOC(ifq, ipftq_t *);
5551 if (ifq != NULL) {
5552 MUTEX_NUKE(&ifq->ifq_lock);
5553 IPFTQ_INIT(ifq, period, "ipftq mutex");
5554 ifq->ifq_next = *parent;
5555 ifq->ifq_pnext = parent;
5556 ifq->ifq_flags = IFQF_USER;
5557 ifq->ifq_ref++;
5558 *parent = ifq;
5559 softc->ipf_userifqs++;
5560 }
5561 MUTEX_EXIT(&softc->ipf_timeoutlock);
5562 return ifq;
5563 }
5564
5565
5566 /* ------------------------------------------------------------------------ */
5567 /* Function: ipf_deletetimeoutqueue */
5568 /* Returns: int - new reference count value of the timeout queue */
5569 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5570 /* Locks: ifq->ifq_lock */
5571 /* */
5572 /* This routine must be called when we're discarding a pointer to a timeout */
5573 /* queue object, taking care of the reference counter. */
5574 /* */
5575 /* Now that this just sets a DELETE flag, it requires the expire code to */
5576 /* check the list of user defined timeout queues and call the free function */
5577 /* below (currently commented out) to stop memory leaking. It is done this */
5578 /* way because the locking may not be sufficient to safely do a free when */
5579 /* this function is called. */
5580 /* ------------------------------------------------------------------------ */
5581 int
5582 ipf_deletetimeoutqueue(ipftq_t *ifq)
5583 {
5584
5585 ifq->ifq_ref--;
5586 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5587 ifq->ifq_flags |= IFQF_DELETE;
5588 }
5589
5590 return ifq->ifq_ref;
5591 }
5592
5593
5594 /* ------------------------------------------------------------------------ */
5595 /* Function: ipf_freetimeoutqueue */
5596 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5597 /* Returns: Nil */
5598 /* */
5599 /* Locking: */
5600 /* It is assumed that the caller of this function has an appropriate lock */
5601 /* held (exclusively) in the domain that encompases the callers "domain". */
5602 /* The ifq_lock for this structure should not be held. */
5603 /* */
5604 /* Remove a user defined timeout queue from the list of queues it is in and */
5605 /* tidy up after this is done. */
5606 /* ------------------------------------------------------------------------ */
5607 void
5608 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5609 {
5610
5611 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5612 ((ifq->ifq_flags & IFQF_USER) == 0)) {
5613 printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5614 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5615 ifq->ifq_ref);
5616 return;
5617 }
5618
5619 /*
5620 * Remove from its position in the list.
5621 */
5622 *ifq->ifq_pnext = ifq->ifq_next;
5623 if (ifq->ifq_next != NULL)
5624 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5625 ifq->ifq_next = NULL;
5626 ifq->ifq_pnext = NULL;
5627
5628 MUTEX_DESTROY(&ifq->ifq_lock);
5629 ATOMIC_DEC(softc->ipf_userifqs);
5630 KFREE(ifq);
5631 }
5632
5633
5634 /* ------------------------------------------------------------------------ */
5635 /* Function: ipf_deletequeueentry */
5636 /* Returns: Nil */
5637 /* Parameters: tqe(I) - timeout queue entry to delete */
5638 /* */
5639 /* Remove a tail queue entry from its queue and make it an orphan. */
5640 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5641 /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */
5642 /* the correct lock(s) may not be held that would make it safe to do so. */
5643 /* ------------------------------------------------------------------------ */
5644 void
5645 ipf_deletequeueentry(ipftqent_t *tqe)
5646 {
5647 ipftq_t *ifq;
5648
5649 ifq = tqe->tqe_ifq;
5650
5651 MUTEX_ENTER(&ifq->ifq_lock);
5652
5653 if (tqe->tqe_pnext != NULL) {
5654 *tqe->tqe_pnext = tqe->tqe_next;
5655 if (tqe->tqe_next != NULL)
5656 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5657 else /* we must be the tail anyway */
5658 ifq->ifq_tail = tqe->tqe_pnext;
5659
5660 tqe->tqe_pnext = NULL;
5661 tqe->tqe_ifq = NULL;
5662 }
5663
5664 (void) ipf_deletetimeoutqueue(ifq);
5665 ASSERT(ifq->ifq_ref > 0);
5666
5667 MUTEX_EXIT(&ifq->ifq_lock);
5668 }
5669
5670
5671 /* ------------------------------------------------------------------------ */
5672 /* Function: ipf_queuefront */
5673 /* Returns: Nil */
5674 /* Parameters: tqe(I) - pointer to timeout queue entry */
5675 /* */
5676 /* Move a queue entry to the front of the queue, if it isn't already there. */
5677 /* ------------------------------------------------------------------------ */
5678 void
5679 ipf_queuefront(ipftqent_t *tqe)
5680 {
5681 ipftq_t *ifq;
5682
5683 ifq = tqe->tqe_ifq;
5684 if (ifq == NULL)
5685 return;
5686
5687 MUTEX_ENTER(&ifq->ifq_lock);
5688 if (ifq->ifq_head != tqe) {
5689 *tqe->tqe_pnext = tqe->tqe_next;
5690 if (tqe->tqe_next)
5691 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5692 else
5693 ifq->ifq_tail = tqe->tqe_pnext;
5694
5695 tqe->tqe_next = ifq->ifq_head;
5696 ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5697 ifq->ifq_head = tqe;
5698 tqe->tqe_pnext = &ifq->ifq_head;
5699 }
5700 MUTEX_EXIT(&ifq->ifq_lock);
5701 }
5702
5703
5704 /* ------------------------------------------------------------------------ */
5705 /* Function: ipf_queueback */
5706 /* Returns: Nil */
5707 /* Parameters: ticks(I) - ipf tick time to use with this call */
5708 /* tqe(I) - pointer to timeout queue entry */
5709 /* */
5710 /* Move a queue entry to the back of the queue, if it isn't already there. */
5711 /* We use use ticks to calculate the expiration and mark for when we last */
5712 /* touched the structure. */
5713 /* ------------------------------------------------------------------------ */
5714 void
5715 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5716 {
5717 ipftq_t *ifq;
5718
5719 ifq = tqe->tqe_ifq;
5720 if (ifq == NULL)
5721 return;
5722 tqe->tqe_die = ticks + ifq->ifq_ttl;
5723 tqe->tqe_touched = ticks;
5724
5725 MUTEX_ENTER(&ifq->ifq_lock);
5726 if (tqe->tqe_next != NULL) { /* at the end already ? */
5727 /*
5728 * Remove from list
5729 */
5730 *tqe->tqe_pnext = tqe->tqe_next;
5731 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5732
5733 /*
5734 * Make it the last entry.
5735 */
5736 tqe->tqe_next = NULL;
5737 tqe->tqe_pnext = ifq->ifq_tail;
5738 *ifq->ifq_tail = tqe;
5739 ifq->ifq_tail = &tqe->tqe_next;
5740 }
5741 MUTEX_EXIT(&ifq->ifq_lock);
5742 }
5743
5744
5745 /* ------------------------------------------------------------------------ */
5746 /* Function: ipf_queueappend */
5747 /* Returns: Nil */
5748 /* Parameters: ticks(I) - ipf tick time to use with this call */
5749 /* tqe(I) - pointer to timeout queue entry */
5750 /* ifq(I) - pointer to timeout queue */
5751 /* parent(I) - owing object pointer */
5752 /* */
5753 /* Add a new item to this queue and put it on the very end. */
5754 /* We use use ticks to calculate the expiration and mark for when we last */
5755 /* touched the structure. */
5756 /* ------------------------------------------------------------------------ */
5757 void
5758 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5759 {
5760
5761 MUTEX_ENTER(&ifq->ifq_lock);
5762 tqe->tqe_parent = parent;
5763 tqe->tqe_pnext = ifq->ifq_tail;
5764 *ifq->ifq_tail = tqe;
5765 ifq->ifq_tail = &tqe->tqe_next;
5766 tqe->tqe_next = NULL;
5767 tqe->tqe_ifq = ifq;
5768 tqe->tqe_die = ticks + ifq->ifq_ttl;
5769 tqe->tqe_touched = ticks;
5770 ifq->ifq_ref++;
5771 MUTEX_EXIT(&ifq->ifq_lock);
5772 }
5773
5774
5775 /* ------------------------------------------------------------------------ */
5776 /* Function: ipf_movequeue */
5777 /* Returns: Nil */
5778 /* Parameters: tq(I) - pointer to timeout queue information */
5779 /* oifp(I) - old timeout queue entry was on */
5780 /* nifp(I) - new timeout queue to put entry on */
5781 /* */
5782 /* Move a queue entry from one timeout queue to another timeout queue. */
5783 /* If it notices that the current entry is already last and does not need */
5784 /* to move queue, the return. */
5785 /* ------------------------------------------------------------------------ */
5786 void
5787 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5788 {
5789
5790 /*
5791 * If the queue hasn't changed and we last touched this entry at the
5792 * same ipf time, then we're not going to achieve anything by either
5793 * changing the ttl or moving it on the queue.
5794 */
5795 if (oifq == nifq && tqe->tqe_touched == ticks)
5796 return;
5797
5798 /*
5799 * For any of this to be outside the lock, there is a risk that two
5800 * packets entering simultaneously, with one changing to a different
5801 * queue and one not, could end up with things in a bizarre state.
5802 */
5803 MUTEX_ENTER(&oifq->ifq_lock);
5804
5805 tqe->tqe_touched = ticks;
5806 tqe->tqe_die = ticks + nifq->ifq_ttl;
5807 /*
5808 * Is the operation here going to be a no-op ?
5809 */
5810 if (oifq == nifq) {
5811 if ((tqe->tqe_next == NULL) ||
5812 (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5813 MUTEX_EXIT(&oifq->ifq_lock);
5814 return;
5815 }
5816 }
5817
5818 /*
5819 * Remove from the old queue
5820 */
5821 *tqe->tqe_pnext = tqe->tqe_next;
5822 if (tqe->tqe_next)
5823 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5824 else
5825 oifq->ifq_tail = tqe->tqe_pnext;
5826 tqe->tqe_next = NULL;
5827
5828 /*
5829 * If we're moving from one queue to another, release the
5830 * lock on the old queue and get a lock on the new queue.
5831 * For user defined queues, if we're moving off it, call
5832 * delete in case it can now be freed.
5833 */
5834 if (oifq != nifq) {
5835 tqe->tqe_ifq = NULL;
5836
5837 (void) ipf_deletetimeoutqueue(oifq);
5838
5839 MUTEX_EXIT(&oifq->ifq_lock);
5840
5841 MUTEX_ENTER(&nifq->ifq_lock);
5842
5843 tqe->tqe_ifq = nifq;
5844 nifq->ifq_ref++;
5845 }
5846
5847 /*
5848 * Add to the bottom of the new queue
5849 */
5850 tqe->tqe_pnext = nifq->ifq_tail;
5851 *nifq->ifq_tail = tqe;
5852 nifq->ifq_tail = &tqe->tqe_next;
5853 MUTEX_EXIT(&nifq->ifq_lock);
5854 }
5855
5856
5857 /* ------------------------------------------------------------------------ */
5858 /* Function: ipf_updateipid */
5859 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */
5860 /* Parameters: fin(I) - pointer to packet information */
5861 /* */
5862 /* When we are doing NAT, change the IP of every packet to represent a */
5863 /* single sequence of packets coming from the host, hiding any host */
5864 /* specific sequencing that might otherwise be revealed. If the packet is */
5865 /* a fragment, then store the 'new' IPid in the fragment cache and look up */
5866 /* the fragment cache for non-leading fragments. If a non-leading fragment */
5867 /* has no match in the cache, return an error. */
5868 /* ------------------------------------------------------------------------ */
5869 static int
5870 ipf_updateipid(fr_info_t *fin)
5871 {
5872 u_short id, ido, sums;
5873 u_32_t sumd, sum;
5874 ip_t *ip;
5875
5876 if (fin->fin_off != 0) {
5877 sum = ipf_frag_ipidknown(fin);
5878 if (sum == 0xffffffff)
5879 return -1;
5880 sum &= 0xffff;
5881 id = (u_short)sum;
5882 } else {
5883 id = ipf_nextipid(fin);
5884 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5885 (void) ipf_frag_ipidnew(fin, (u_32_t)id);
5886 }
5887
5888 ip = fin->fin_ip;
5889 ido = ntohs(ip->ip_id);
5890 if (id == ido)
5891 return 0;
5892 ip->ip_id = htons(id);
5893 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */
5894 sum = (~ntohs(ip->ip_sum)) & 0xffff;
5895 sum += sumd;
5896 sum = (sum >> 16) + (sum & 0xffff);
5897 sum = (sum >> 16) + (sum & 0xffff);
5898 sums = ~(u_short)sum;
5899 ip->ip_sum = htons(sums);
5900 return 0;
5901 }
5902
5903
5904 #ifdef NEED_FRGETIFNAME
5905 /* ------------------------------------------------------------------------ */
5906 /* Function: ipf_getifname */
5907 /* Returns: char * - pointer to interface name */
5908 /* Parameters: ifp(I) - pointer to network interface */
5909 /* buffer(O) - pointer to where to store interface name */
5910 /* */
5911 /* Constructs an interface name in the buffer passed. The buffer passed is */
5912 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */
5913 /* as a NULL pointer then return a pointer to a static array. */
5914 /* ------------------------------------------------------------------------ */
5915 char *
5916 ipf_getifname(ifp, buffer)
5917 struct ifnet *ifp;
5918 char *buffer;
5919 {
5920 static char namebuf[LIFNAMSIZ];
5921 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5922 defined(__sgi) || defined(linux) || defined(_AIX51) || \
5923 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5924 int unit, space;
5925 char temp[20];
5926 char *s;
5927 # endif
5928
5929 if (buffer == NULL)
5930 buffer = namebuf;
5931 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5932 buffer[LIFNAMSIZ - 1] = '\0';
5933 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5934 defined(__sgi) || defined(_AIX51) || \
5935 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5936 for (s = buffer; *s; s++)
5937 ;
5938 unit = ifp->if_unit;
5939 space = LIFNAMSIZ - (s - buffer);
5940 if ((space > 0) && (unit >= 0)) {
5941 # if defined(SNPRINTF) && defined(_KERNEL)
5942 SNPRINTF(temp, sizeof(temp), "%d", unit);
5943 # else
5944 (void) sprintf(temp, "%d", unit);
5945 # endif
5946 (void) strncpy(s, temp, space);
5947 }
5948 # endif
5949 return buffer;
5950 }
5951 #endif
5952
5953
5954 /* ------------------------------------------------------------------------ */
5955 /* Function: ipf_ioctlswitch */
5956 /* Returns: int - -1 continue processing, else ioctl return value */
5957 /* Parameters: unit(I) - device unit opened */
5958 /* data(I) - pointer to ioctl data */
5959 /* cmd(I) - ioctl command */
5960 /* mode(I) - mode value */
5961 /* uid(I) - uid making the ioctl call */
5962 /* ctx(I) - pointer to context data */
5963 /* */
5964 /* Based on the value of unit, call the appropriate ioctl handler or return */
5965 /* EIO if ipfilter is not running. Also checks if write perms are req'd */
5966 /* for the device in order to execute the ioctl. A special case is made */
5967 /* SIOCIPFINTERROR so that the same code isn't required in every handler. */
5968 /* The context data pointer is passed through as this is used as the key */
5969 /* for locating a matching token for continued access for walking lists, */
5970 /* etc. */
5971 /* ------------------------------------------------------------------------ */
5972 int
5973 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
5974 int mode, int uid, void *ctx)
5975 {
5976 int error = 0;
5977
5978 switch (cmd)
5979 {
5980 case SIOCIPFINTERROR :
5981 error = BCOPYOUT(&softc->ipf_interror, data,
5982 sizeof(softc->ipf_interror));
5983 if (error != 0) {
5984 IPFERROR(40);
5985 error = EFAULT;
5986 }
5987 return error;
5988 default :
5989 break;
5990 }
5991
5992 switch (unit)
5993 {
5994 case IPL_LOGIPF :
5995 error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
5996 break;
5997 case IPL_LOGNAT :
5998 if (softc->ipf_running > 0) {
5999 error = ipf_nat_ioctl(softc, data, cmd, mode,
6000 uid, ctx);
6001 } else {
6002 IPFERROR(42);
6003 error = EIO;
6004 }
6005 break;
6006 case IPL_LOGSTATE :
6007 if (softc->ipf_running > 0) {
6008 error = ipf_state_ioctl(softc, data, cmd, mode,
6009 uid, ctx);
6010 } else {
6011 IPFERROR(43);
6012 error = EIO;
6013 }
6014 break;
6015 case IPL_LOGAUTH :
6016 if (softc->ipf_running > 0) {
6017 error = ipf_auth_ioctl(softc, data, cmd, mode,
6018 uid, ctx);
6019 } else {
6020 IPFERROR(44);
6021 error = EIO;
6022 }
6023 break;
6024 case IPL_LOGSYNC :
6025 if (softc->ipf_running > 0) {
6026 error = ipf_sync_ioctl(softc, data, cmd, mode,
6027 uid, ctx);
6028 } else {
6029 error = EIO;
6030 IPFERROR(45);
6031 }
6032 break;
6033 case IPL_LOGSCAN :
6034 #ifdef IPFILTER_SCAN
6035 if (softc->ipf_running > 0)
6036 error = ipf_scan_ioctl(softc, data, cmd, mode,
6037 uid, ctx);
6038 else
6039 #endif
6040 {
6041 error = EIO;
6042 IPFERROR(46);
6043 }
6044 break;
6045 case IPL_LOGLOOKUP :
6046 if (softc->ipf_running > 0) {
6047 error = ipf_lookup_ioctl(softc, data, cmd, mode,
6048 uid, ctx);
6049 } else {
6050 error = EIO;
6051 IPFERROR(47);
6052 }
6053 break;
6054 default :
6055 IPFERROR(48);
6056 error = EIO;
6057 break;
6058 }
6059
6060 return error;
6061 }
6062
6063
6064 /*
6065 * This array defines the expected size of objects coming into the kernel
6066 * for the various recognised object types. The first column is flags (see
6067 * below), 2nd column is current size, 3rd column is the version number of
6068 * when the current size became current.
6069 * Flags:
6070 * 1 = minimum size, not absolute size
6071 */
6072 static int ipf_objbytes[IPFOBJ_COUNT][3] = {
6073 { 1, sizeof(struct frentry), 5010000 }, /* 0 */
6074 { 1, sizeof(struct friostat), 5010000 },
6075 { 0, sizeof(struct fr_info), 5010000 },
6076 { 0, sizeof(struct ipf_authstat), 4010100 },
6077 { 0, sizeof(struct ipfrstat), 5010000 },
6078 { 1, sizeof(struct ipnat), 5010000 }, /* 5 */
6079 { 0, sizeof(struct natstat), 5010000 },
6080 { 0, sizeof(struct ipstate_save), 5010000 },
6081 { 1, sizeof(struct nat_save), 5010000 },
6082 { 0, sizeof(struct natlookup), 5010000 },
6083 { 1, sizeof(struct ipstate), 5010000 }, /* 10 */
6084 { 0, sizeof(struct ips_stat), 5010000 },
6085 { 0, sizeof(struct frauth), 5010000 },
6086 { 0, sizeof(struct ipftune), 4010100 },
6087 { 0, sizeof(struct nat), 5010000 },
6088 { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */
6089 { 0, sizeof(struct ipfgeniter), 4011400 },
6090 { 0, sizeof(struct ipftable), 4011400 },
6091 { 0, sizeof(struct ipflookupiter), 4011400 },
6092 { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES },
6093 { 1, 0, 0 }, /* IPFEXPR */
6094 { 0, 0, 0 }, /* PROXYCTL */
6095 { 0, sizeof (struct fripf), 5010000 }
6096 };
6097
6098
6099 /* ------------------------------------------------------------------------ */
6100 /* Function: ipf_inobj */
6101 /* Returns: int - 0 = success, else failure */
6102 /* Parameters: softc(I) - soft context pointerto work with */
6103 /* data(I) - pointer to ioctl data */
6104 /* objp(O) - where to store ipfobj structure */
6105 /* ptr(I) - pointer to data to copy out */
6106 /* type(I) - type of structure being moved */
6107 /* */
6108 /* Copy in the contents of what the ipfobj_t points to. In future, we */
6109 /* add things to check for version numbers, sizes, etc, to make it backward */
6110 /* compatible at the ABI for user land. */
6111 /* If objp is not NULL then we assume that the caller wants to see what is */
6112 /* in the ipfobj_t structure being copied in. As an example, this can tell */
6113 /* the caller what version of ipfilter the ioctl program was written to. */
6114 /* ------------------------------------------------------------------------ */
6115 int
6116 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6117 int type)
6118 {
6119 ipfobj_t obj;
6120 int error;
6121 int size;
6122
6123 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6124 IPFERROR(49);
6125 return EINVAL;
6126 }
6127
6128 if (objp == NULL)
6129 objp = &obj;
6130 error = BCOPYIN(data, objp, sizeof(*objp));
6131 if (error != 0) {
6132 IPFERROR(124);
6133 return EFAULT;
6134 }
6135
6136 if (objp->ipfo_type != type) {
6137 IPFERROR(50);
6138 return EINVAL;
6139 }
6140
6141 if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6142 if ((ipf_objbytes[type][0] & 1) != 0) {
6143 if (objp->ipfo_size < ipf_objbytes[type][1]) {
6144 IPFERROR(51);
6145 return EINVAL;
6146 }
6147 size = ipf_objbytes[type][1];
6148 } else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6149 size = objp->ipfo_size;
6150 } else {
6151 IPFERROR(52);
6152 return EINVAL;
6153 }
6154 error = COPYIN(objp->ipfo_ptr, ptr, size);
6155 if (error != 0) {
6156 IPFERROR(55);
6157 error = EFAULT;
6158 }
6159 } else {
6160 #ifdef IPFILTER_COMPAT
6161 error = ipf_in_compat(softc, objp, ptr, 0);
6162 #else
6163 IPFERROR(54);
6164 error = EINVAL;
6165 #endif
6166 }
6167 return error;
6168 }
6169
6170
6171 /* ------------------------------------------------------------------------ */
6172 /* Function: ipf_inobjsz */
6173 /* Returns: int - 0 = success, else failure */
6174 /* Parameters: softc(I) - soft context pointerto work with */
6175 /* data(I) - pointer to ioctl data */
6176 /* ptr(I) - pointer to store real data in */
6177 /* type(I) - type of structure being moved */
6178 /* sz(I) - size of data to copy */
6179 /* */
6180 /* As per ipf_inobj, except the size of the object to copy in is passed in */
6181 /* but it must not be smaller than the size defined for the type and the */
6182 /* type must allow for varied sized objects. The extra requirement here is */
6183 /* that sz must match the size of the object being passed in - this is not */
6184 /* not possible nor required in ipf_inobj(). */
6185 /* ------------------------------------------------------------------------ */
6186 int
6187 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6188 {
6189 ipfobj_t obj;
6190 int error;
6191
6192 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6193 IPFERROR(56);
6194 return EINVAL;
6195 }
6196
6197 error = BCOPYIN(data, &obj, sizeof(obj));
6198 if (error != 0) {
6199 IPFERROR(125);
6200 return EFAULT;
6201 }
6202
6203 if (obj.ipfo_type != type) {
6204 IPFERROR(58);
6205 return EINVAL;
6206 }
6207
6208 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6209 if (((ipf_objbytes[type][0] & 1) == 0) ||
6210 (sz < ipf_objbytes[type][1])) {
6211 IPFERROR(57);
6212 return EINVAL;
6213 }
6214 error = COPYIN(obj.ipfo_ptr, ptr, sz);
6215 if (error != 0) {
6216 IPFERROR(61);
6217 error = EFAULT;
6218 }
6219 } else {
6220 #ifdef IPFILTER_COMPAT
6221 error = ipf_in_compat(softc, &obj, ptr, sz);
6222 #else
6223 IPFERROR(60);
6224 error = EINVAL;
6225 #endif
6226 }
6227 return error;
6228 }
6229
6230
6231 /* ------------------------------------------------------------------------ */
6232 /* Function: ipf_outobjsz */
6233 /* Returns: int - 0 = success, else failure */
6234 /* Parameters: data(I) - pointer to ioctl data */
6235 /* ptr(I) - pointer to store real data in */
6236 /* type(I) - type of structure being moved */
6237 /* sz(I) - size of data to copy */
6238 /* */
6239 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6240 /* but it must not be smaller than the size defined for the type and the */
6241 /* type must allow for varied sized objects. The extra requirement here is */
6242 /* that sz must match the size of the object being passed in - this is not */
6243 /* not possible nor required in ipf_outobj(). */
6244 /* ------------------------------------------------------------------------ */
6245 int
6246 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6247 {
6248 ipfobj_t obj;
6249 int error;
6250
6251 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6252 IPFERROR(62);
6253 return EINVAL;
6254 }
6255
6256 error = BCOPYIN(data, &obj, sizeof(obj));
6257 if (error != 0) {
6258 IPFERROR(127);
6259 return EFAULT;
6260 }
6261
6262 if (obj.ipfo_type != type) {
6263 IPFERROR(63);
6264 return EINVAL;
6265 }
6266
6267 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6268 if (((ipf_objbytes[type][0] & 1) == 0) ||
6269 (sz < ipf_objbytes[type][1])) {
6270 IPFERROR(146);
6271 return EINVAL;
6272 }
6273 error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6274 if (error != 0) {
6275 IPFERROR(66);
6276 error = EFAULT;
6277 }
6278 } else {
6279 #ifdef IPFILTER_COMPAT
6280 error = ipf_out_compat(softc, &obj, ptr);
6281 #else
6282 IPFERROR(65);
6283 error = EINVAL;
6284 #endif
6285 }
6286 return error;
6287 }
6288
6289
6290 /* ------------------------------------------------------------------------ */
6291 /* Function: ipf_outobj */
6292 /* Returns: int - 0 = success, else failure */
6293 /* Parameters: data(I) - pointer to ioctl data */
6294 /* ptr(I) - pointer to store real data in */
6295 /* type(I) - type of structure being moved */
6296 /* */
6297 /* Copy out the contents of what ptr is to where ipfobj points to. In */
6298 /* future, we add things to check for version numbers, sizes, etc, to make */
6299 /* it backward compatible at the ABI for user land. */
6300 /* ------------------------------------------------------------------------ */
6301 int
6302 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6303 {
6304 ipfobj_t obj;
6305 int error;
6306
6307 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6308 IPFERROR(67);
6309 return EINVAL;
6310 }
6311
6312 error = BCOPYIN(data, &obj, sizeof(obj));
6313 if (error != 0) {
6314 IPFERROR(126);
6315 return EFAULT;
6316 }
6317
6318 if (obj.ipfo_type != type) {
6319 IPFERROR(68);
6320 return EINVAL;
6321 }
6322
6323 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6324 if ((ipf_objbytes[type][0] & 1) != 0) {
6325 if (obj.ipfo_size < ipf_objbytes[type][1]) {
6326 IPFERROR(69);
6327 return EINVAL;
6328 }
6329 } else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6330 IPFERROR(70);
6331 return EINVAL;
6332 }
6333
6334 error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6335 if (error != 0) {
6336 IPFERROR(73);
6337 error = EFAULT;
6338 }
6339 } else {
6340 #ifdef IPFILTER_COMPAT
6341 error = ipf_out_compat(softc, &obj, ptr);
6342 #else
6343 IPFERROR(72);
6344 error = EINVAL;
6345 #endif
6346 }
6347 return error;
6348 }
6349
6350
6351 /* ------------------------------------------------------------------------ */
6352 /* Function: ipf_outobjk */
6353 /* Returns: int - 0 = success, else failure */
6354 /* Parameters: obj(I) - pointer to data description structure */
6355 /* ptr(I) - pointer to kernel data to copy out */
6356 /* */
6357 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6358 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6359 /* already populated with information and now we just need to use it. */
6360 /* There is no need for this function to have a "type" parameter as there */
6361 /* is no point in validating information that comes from the kernel with */
6362 /* itself. */
6363 /* ------------------------------------------------------------------------ */
6364 int
6365 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6366 {
6367 int type = obj->ipfo_type;
6368 int error;
6369
6370 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6371 IPFERROR(147);
6372 return EINVAL;
6373 }
6374
6375 if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6376 if ((ipf_objbytes[type][0] & 1) != 0) {
6377 if (obj->ipfo_size < ipf_objbytes[type][1]) {
6378 IPFERROR(148);
6379 return EINVAL;
6380 }
6381
6382 } else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6383 IPFERROR(149);
6384 return EINVAL;
6385 }
6386
6387 error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6388 if (error != 0) {
6389 IPFERROR(150);
6390 error = EFAULT;
6391 }
6392 } else {
6393 #ifdef IPFILTER_COMPAT
6394 error = ipf_out_compat(softc, obj, ptr);
6395 #else
6396 IPFERROR(151);
6397 error = EINVAL;
6398 #endif
6399 }
6400 return error;
6401 }
6402
6403
6404 /* ------------------------------------------------------------------------ */
6405 /* Function: ipf_checkl4sum */
6406 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */
6407 /* Parameters: fin(I) - pointer to packet information */
6408 /* */
6409 /* If possible, calculate the layer 4 checksum for the packet. If this is */
6410 /* not possible, return without indicating a failure or success but in a */
6411 /* way that is ditinguishable. This function should only be called by the */
6412 /* ipf_checkv6sum() for each platform. */
6413 /* ------------------------------------------------------------------------ */
6414 int
6415 ipf_checkl4sum(fr_info_t *fin)
6416 {
6417 u_short sum, hdrsum, *csump;
6418 udphdr_t *udp;
6419 int dosum;
6420
6421 /*
6422 * If the TCP packet isn't a fragment, isn't too short and otherwise
6423 * isn't already considered "bad", then validate the checksum. If
6424 * this check fails then considered the packet to be "bad".
6425 */
6426 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6427 return 1;
6428
6429 csump = NULL;
6430 hdrsum = 0;
6431 dosum = 0;
6432 sum = 0;
6433
6434 switch (fin->fin_p)
6435 {
6436 case IPPROTO_TCP :
6437 csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6438 dosum = 1;
6439 break;
6440
6441 case IPPROTO_UDP :
6442 udp = fin->fin_dp;
6443 if (udp->uh_sum != 0) {
6444 csump = &udp->uh_sum;
6445 dosum = 1;
6446 }
6447 break;
6448
6449 #ifdef USE_INET6
6450 case IPPROTO_ICMPV6 :
6451 csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6452 dosum = 1;
6453 break;
6454 #endif
6455
6456 case IPPROTO_ICMP :
6457 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6458 dosum = 1;
6459 break;
6460
6461 default :
6462 return 1;
6463 /*NOTREACHED*/
6464 }
6465
6466 if (csump != NULL)
6467 hdrsum = *csump;
6468
6469 if (dosum) {
6470 sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6471 }
6472 #if !defined(_KERNEL)
6473 if (sum == hdrsum) {
6474 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6475 } else {
6476 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6477 }
6478 #endif
6479 DT2(l4sums, u_short, hdrsum, u_short, sum);
6480 if (hdrsum == sum) {
6481 fin->fin_cksum = FI_CK_SUMOK;
6482 return 0;
6483 }
6484 fin->fin_cksum = FI_CK_BAD;
6485 return -1;
6486 }
6487
6488
6489 /* ------------------------------------------------------------------------ */
6490 /* Function: ipf_ifpfillv4addr */
6491 /* Returns: int - 0 = address update, -1 = address not updated */
6492 /* Parameters: atype(I) - type of network address update to perform */
6493 /* sin(I) - pointer to source of address information */
6494 /* mask(I) - pointer to source of netmask information */
6495 /* inp(I) - pointer to destination address store */
6496 /* inpmask(I) - pointer to destination netmask store */
6497 /* */
6498 /* Given a type of network address update (atype) to perform, copy */
6499 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6500 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6501 /* which case the operation fails. For all values of atype other than */
6502 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6503 /* value. */
6504 /* ------------------------------------------------------------------------ */
6505 int
6506 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6507 struct in_addr *inp, struct in_addr *inpmask)
6508 {
6509 if (inpmask != NULL && atype != FRI_NETMASKED)
6510 inpmask->s_addr = 0xffffffff;
6511
6512 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6513 if (atype == FRI_NETMASKED) {
6514 if (inpmask == NULL)
6515 return -1;
6516 inpmask->s_addr = mask->sin_addr.s_addr;
6517 }
6518 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6519 } else {
6520 inp->s_addr = sin->sin_addr.s_addr;
6521 }
6522 return 0;
6523 }
6524
6525
6526 #ifdef USE_INET6
6527 /* ------------------------------------------------------------------------ */
6528 /* Function: ipf_ifpfillv6addr */
6529 /* Returns: int - 0 = address update, -1 = address not updated */
6530 /* Parameters: atype(I) - type of network address update to perform */
6531 /* sin(I) - pointer to source of address information */
6532 /* mask(I) - pointer to source of netmask information */
6533 /* inp(I) - pointer to destination address store */
6534 /* inpmask(I) - pointer to destination netmask store */
6535 /* */
6536 /* Given a type of network address update (atype) to perform, copy */
6537 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6538 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6539 /* which case the operation fails. For all values of atype other than */
6540 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6541 /* value. */
6542 /* ------------------------------------------------------------------------ */
6543 int
6544 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6545 struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6546 {
6547 i6addr_t *src, *and;
6548
6549 src = (i6addr_t *)&sin->sin6_addr;
6550 and = (i6addr_t *)&mask->sin6_addr;
6551
6552 if (inpmask != NULL && atype != FRI_NETMASKED) {
6553 inpmask->i6[0] = 0xffffffff;
6554 inpmask->i6[1] = 0xffffffff;
6555 inpmask->i6[2] = 0xffffffff;
6556 inpmask->i6[3] = 0xffffffff;
6557 }
6558
6559 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6560 if (atype == FRI_NETMASKED) {
6561 if (inpmask == NULL)
6562 return -1;
6563 inpmask->i6[0] = and->i6[0];
6564 inpmask->i6[1] = and->i6[1];
6565 inpmask->i6[2] = and->i6[2];
6566 inpmask->i6[3] = and->i6[3];
6567 }
6568
6569 inp->i6[0] = src->i6[0] & and->i6[0];
6570 inp->i6[1] = src->i6[1] & and->i6[1];
6571 inp->i6[2] = src->i6[2] & and->i6[2];
6572 inp->i6[3] = src->i6[3] & and->i6[3];
6573 } else {
6574 inp->i6[0] = src->i6[0];
6575 inp->i6[1] = src->i6[1];
6576 inp->i6[2] = src->i6[2];
6577 inp->i6[3] = src->i6[3];
6578 }
6579 return 0;
6580 }
6581 #endif
6582
6583
6584 /* ------------------------------------------------------------------------ */
6585 /* Function: ipf_matchtag */
6586 /* Returns: 0 == mismatch, 1 == match. */
6587 /* Parameters: tag1(I) - pointer to first tag to compare */
6588 /* tag2(I) - pointer to second tag to compare */
6589 /* */
6590 /* Returns true (non-zero) or false(0) if the two tag structures can be */
6591 /* considered to be a match or not match, respectively. The tag is 16 */
6592 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */
6593 /* compare the ints instead, for speed. tag1 is the master of the */
6594 /* comparison. This function should only be called with both tag1 and tag2 */
6595 /* as non-NULL pointers. */
6596 /* ------------------------------------------------------------------------ */
6597 int
6598 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6599 {
6600 if (tag1 == tag2)
6601 return 1;
6602
6603 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6604 return 1;
6605
6606 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6607 (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6608 (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6609 (tag1->ipt_num[3] == tag2->ipt_num[3]))
6610 return 1;
6611 return 0;
6612 }
6613
6614
6615 /* ------------------------------------------------------------------------ */
6616 /* Function: ipf_coalesce */
6617 /* Returns: 1 == success, -1 == failure, 0 == no change */
6618 /* Parameters: fin(I) - pointer to packet information */
6619 /* */
6620 /* Attempt to get all of the packet data into a single, contiguous buffer. */
6621 /* If this call returns a failure then the buffers have also been freed. */
6622 /* ------------------------------------------------------------------------ */
6623 int
6624 ipf_coalesce(fr_info_t *fin)
6625 {
6626
6627 if ((fin->fin_flx & FI_COALESCE) != 0)
6628 return 1;
6629
6630 /*
6631 * If the mbuf pointers indicate that there is no mbuf to work with,
6632 * return but do not indicate success or failure.
6633 */
6634 if (fin->fin_m == NULL || fin->fin_mp == NULL)
6635 return 0;
6636
6637 #if defined(_KERNEL)
6638 if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6639 ipf_main_softc_t *softc = fin->fin_main_soft;
6640
6641 DT1(frb_coalesce, fr_info_t *, fin);
6642 LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6643 # ifdef MENTAT
6644 FREE_MB_T(*fin->fin_mp);
6645 # endif
6646 fin->fin_reason = FRB_COALESCE;
6647 *fin->fin_mp = NULL;
6648 fin->fin_m = NULL;
6649 return -1;
6650 }
6651 #else
6652 fin = fin; /* LINT */
6653 #endif
6654 return 1;
6655 }
6656
6657
6658 /*
6659 * The following table lists all of the tunable variables that can be
6660 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row
6661 * in the table below is as follows:
6662 *
6663 * pointer to value, name of value, minimum, maximum, size of the value's
6664 * container, value attribute flags
6665 *
6666 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6667 * means the value can only be written to when IPFilter is loaded but disabled.
6668 * The obvious implication is if neither of these are set then the value can be
6669 * changed at any time without harm.
6670 */
6671
6672
6673 /* ------------------------------------------------------------------------ */
6674 /* Function: ipf_tune_findbycookie */
6675 /* Returns: NULL = search failed, else pointer to tune struct */
6676 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */
6677 /* next(O) - pointer to place to store the cookie for the */
6678 /* "next" tuneable, if it is desired. */
6679 /* */
6680 /* This function is used to walk through all of the existing tunables with */
6681 /* successive calls. It searches the known tunables for the one which has */
6682 /* a matching value for "cookie" - ie its address. When returning a match, */
6683 /* the next one to be found may be returned inside next. */
6684 /* ------------------------------------------------------------------------ */
6685 static ipftuneable_t *
6686 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6687 {
6688 ipftuneable_t *ta, **tap;
6689
6690 for (ta = *ptop; ta->ipft_name != NULL; ta++)
6691 if (ta == cookie) {
6692 if (next != NULL) {
6693 /*
6694 * If the next entry in the array has a name
6695 * present, then return a pointer to it for
6696 * where to go next, else return a pointer to
6697 * the dynaminc list as a key to search there
6698 * next. This facilitates a weak linking of
6699 * the two "lists" together.
6700 */
6701 if ((ta + 1)->ipft_name != NULL)
6702 *next = ta + 1;
6703 else
6704 *next = ptop;
6705 }
6706 return ta;
6707 }
6708
6709 for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6710 if (tap == cookie) {
6711 if (next != NULL)
6712 *next = &ta->ipft_next;
6713 return ta;
6714 }
6715
6716 if (next != NULL)
6717 *next = NULL;
6718 return NULL;
6719 }
6720
6721
6722 /* ------------------------------------------------------------------------ */
6723 /* Function: ipf_tune_findbyname */
6724 /* Returns: NULL = search failed, else pointer to tune struct */
6725 /* Parameters: name(I) - name of the tuneable entry to find. */
6726 /* */
6727 /* Search the static array of tuneables and the list of dynamic tuneables */
6728 /* for an entry with a matching name. If we can find one, return a pointer */
6729 /* to the matching structure. */
6730 /* ------------------------------------------------------------------------ */
6731 static ipftuneable_t *
6732 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6733 {
6734 ipftuneable_t *ta;
6735
6736 for (ta = top; ta != NULL; ta = ta->ipft_next)
6737 if (!strcmp(ta->ipft_name, name)) {
6738 return ta;
6739 }
6740
6741 return NULL;
6742 }
6743
6744
6745 /* ------------------------------------------------------------------------ */
6746 /* Function: ipf_tune_add_array */
6747 /* Returns: int - 0 == success, else failure */
6748 /* Parameters: newtune - pointer to new tune array to add to tuneables */
6749 /* */
6750 /* Appends tune structures from the array passed in (newtune) to the end of */
6751 /* the current list of "dynamic" tuneable parameters. */
6752 /* If any entry to be added is already present (by name) then the operation */
6753 /* is aborted - entries that have been added are removed before returning. */
6754 /* An entry with no name (NULL) is used as the indication that the end of */
6755 /* the array has been reached. */
6756 /* ------------------------------------------------------------------------ */
6757 int
6758 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6759 {
6760 ipftuneable_t *nt, *dt;
6761 int error = 0;
6762
6763 for (nt = newtune; nt->ipft_name != NULL; nt++) {
6764 error = ipf_tune_add(softc, nt);
6765 if (error != 0) {
6766 for (dt = newtune; dt != nt; dt++) {
6767 (void) ipf_tune_del(softc, dt);
6768 }
6769 }
6770 }
6771
6772 return error;
6773 }
6774
6775
6776 /* ------------------------------------------------------------------------ */
6777 /* Function: ipf_tune_array_link */
6778 /* Returns: 0 == success, -1 == failure */
6779 /* Parameters: softc(I) - soft context pointerto work with */
6780 /* array(I) - pointer to an array of tuneables */
6781 /* */
6782 /* Given an array of tunables (array), append them to the current list of */
6783 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */
6784 /* the array for being appended to the list, initialise all of the next */
6785 /* pointers so we don't need to walk parts of it with ++ and others with */
6786 /* next. The array is expected to have an entry with a NULL name as the */
6787 /* terminator. Trying to add an array with no non-NULL names will return as */
6788 /* a failure. */
6789 /* ------------------------------------------------------------------------ */
6790 int
6791 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6792 {
6793 ipftuneable_t *t, **p;
6794
6795 t = array;
6796 if (t->ipft_name == NULL)
6797 return -1;
6798
6799 for (; t[1].ipft_name != NULL; t++)
6800 t[0].ipft_next = &t[1];
6801 t->ipft_next = NULL;
6802
6803 /*
6804 * Since a pointer to the last entry isn't kept, we need to find it
6805 * each time we want to add new variables to the list.
6806 */
6807 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6808 if (t->ipft_name == NULL)
6809 break;
6810 *p = array;
6811
6812 return 0;
6813 }
6814
6815
6816 /* ------------------------------------------------------------------------ */
6817 /* Function: ipf_tune_array_unlink */
6818 /* Returns: 0 == success, -1 == failure */
6819 /* Parameters: softc(I) - soft context pointerto work with */
6820 /* array(I) - pointer to an array of tuneables */
6821 /* */
6822 /* ------------------------------------------------------------------------ */
6823 int
6824 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6825 {
6826 ipftuneable_t *t, **p;
6827
6828 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6829 if (t == array)
6830 break;
6831 if (t == NULL)
6832 return -1;
6833
6834 for (; t[1].ipft_name != NULL; t++)
6835 ;
6836
6837 *p = t->ipft_next;
6838
6839 return 0;
6840 }
6841
6842
6843 /* ------------------------------------------------------------------------ */
6844 /* Function: ipf_tune_array_copy */
6845 /* Returns: NULL = failure, else pointer to new array */
6846 /* Parameters: base(I) - pointer to structure base */
6847 /* size(I) - size of the array at template */
6848 /* template(I) - original array to copy */
6849 /* */
6850 /* Allocate memory for a new set of tuneable values and copy everything */
6851 /* from template into the new region of memory. The new region is full of */
6852 /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */
6853 /* */
6854 /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */
6855 /* In the array template, ipftp_offset is the offset (in bytes) of the */
6856 /* location of the tuneable value inside the structure pointed to by base. */
6857 /* As ipftp_offset is a union over the pointers to the tuneable values, if */
6858 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */
6859 /* ipftp_void that points to the stored value. */
6860 /* ------------------------------------------------------------------------ */
6861 ipftuneable_t *
6862 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template)
6863 {
6864 ipftuneable_t *copy;
6865 int i;
6866
6867
6868 KMALLOCS(copy, ipftuneable_t *, size);
6869 if (copy == NULL) {
6870 return NULL;
6871 }
6872 bcopy(template, copy, size);
6873
6874 for (i = 0; copy[i].ipft_name; i++) {
6875 copy[i].ipft_una.ipftp_offset += (u_long)base;
6876 copy[i].ipft_next = copy + i + 1;
6877 }
6878
6879 return copy;
6880 }
6881
6882
6883 /* ------------------------------------------------------------------------ */
6884 /* Function: ipf_tune_add */
6885 /* Returns: int - 0 == success, else failure */
6886 /* Parameters: newtune - pointer to new tune entry to add to tuneables */
6887 /* */
6888 /* Appends tune structures from the array passed in (newtune) to the end of */
6889 /* the current list of "dynamic" tuneable parameters. Once added, the */
6890 /* owner of the object is not expected to ever change "ipft_next". */
6891 /* ------------------------------------------------------------------------ */
6892 int
6893 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6894 {
6895 ipftuneable_t *ta, **tap;
6896
6897 ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6898 if (ta != NULL) {
6899 IPFERROR(74);
6900 return EEXIST;
6901 }
6902
6903 for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6904 ;
6905
6906 newtune->ipft_next = NULL;
6907 *tap = newtune;
6908 return 0;
6909 }
6910
6911
6912 /* ------------------------------------------------------------------------ */
6913 /* Function: ipf_tune_del */
6914 /* Returns: int - 0 == success, else failure */
6915 /* Parameters: oldtune - pointer to tune entry to remove from the list of */
6916 /* current dynamic tuneables */
6917 /* */
6918 /* Search for the tune structure, by pointer, in the list of those that are */
6919 /* dynamically added at run time. If found, adjust the list so that this */
6920 /* structure is no longer part of it. */
6921 /* ------------------------------------------------------------------------ */
6922 int
6923 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6924 {
6925 ipftuneable_t *ta, **tap;
6926 int error = 0;
6927
6928 for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
6929 tap = &ta->ipft_next) {
6930 if (ta == oldtune) {
6931 *tap = oldtune->ipft_next;
6932 oldtune->ipft_next = NULL;
6933 break;
6934 }
6935 }
6936
6937 if (ta == NULL) {
6938 error = ESRCH;
6939 IPFERROR(75);
6940 }
6941 return error;
6942 }
6943
6944
6945 /* ------------------------------------------------------------------------ */
6946 /* Function: ipf_tune_del_array */
6947 /* Returns: int - 0 == success, else failure */
6948 /* Parameters: oldtune - pointer to tuneables array */
6949 /* */
6950 /* Remove each tuneable entry in the array from the list of "dynamic" */
6951 /* tunables. If one entry should fail to be found, an error will be */
6952 /* returned and no further ones removed. */
6953 /* An entry with a NULL name is used as the indicator of the last entry in */
6954 /* the array. */
6955 /* ------------------------------------------------------------------------ */
6956 int
6957 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6958 {
6959 ipftuneable_t *ot;
6960 int error = 0;
6961
6962 for (ot = oldtune; ot->ipft_name != NULL; ot++) {
6963 error = ipf_tune_del(softc, ot);
6964 if (error != 0)
6965 break;
6966 }
6967
6968 return error;
6969
6970 }
6971
6972
6973 /* ------------------------------------------------------------------------ */
6974 /* Function: ipf_tune */
6975 /* Returns: int - 0 == success, else failure */
6976 /* Parameters: cmd(I) - ioctl command number */
6977 /* data(I) - pointer to ioctl data structure */
6978 /* */
6979 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */
6980 /* three ioctls provide the means to access and control global variables */
6981 /* within IPFilter, allowing (for example) timeouts and table sizes to be */
6982 /* changed without rebooting, reloading or recompiling. The initialisation */
6983 /* and 'destruction' routines of the various components of ipfilter are all */
6984 /* each responsible for handling their own values being too big. */
6985 /* ------------------------------------------------------------------------ */
6986 int
6987 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
6988 {
6989 ipftuneable_t *ta;
6990 ipftune_t tu;
6991 void *cookie;
6992 int error;
6993
6994 error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
6995 if (error != 0)
6996 return error;
6997
6998 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
6999 cookie = tu.ipft_cookie;
7000 ta = NULL;
7001
7002 switch (cmd)
7003 {
7004 case SIOCIPFGETNEXT :
7005 /*
7006 * If cookie is non-NULL, assume it to be a pointer to the last
7007 * entry we looked at, so find it (if possible) and return a
7008 * pointer to the next one after it. The last entry in the
7009 * the table is a NULL entry, so when we get to it, set cookie
7010 * to NULL and return that, indicating end of list, erstwhile
7011 * if we come in with cookie set to NULL, we are starting anew
7012 * at the front of the list.
7013 */
7014 if (cookie != NULL) {
7015 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7016 cookie, &tu.ipft_cookie);
7017 } else {
7018 ta = softc->ipf_tuners;
7019 tu.ipft_cookie = ta + 1;
7020 }
7021 if (ta != NULL) {
7022 /*
7023 * Entry found, but does the data pointed to by that
7024 * row fit in what we can return?
7025 */
7026 if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7027 IPFERROR(76);
7028 return EINVAL;
7029 }
7030
7031 tu.ipft_vlong = 0;
7032 if (ta->ipft_sz == sizeof(u_long))
7033 tu.ipft_vlong = *ta->ipft_plong;
7034 else if (ta->ipft_sz == sizeof(u_int))
7035 tu.ipft_vint = *ta->ipft_pint;
7036 else if (ta->ipft_sz == sizeof(u_short))
7037 tu.ipft_vshort = *ta->ipft_pshort;
7038 else if (ta->ipft_sz == sizeof(u_char))
7039 tu.ipft_vchar = *ta->ipft_pchar;
7040
7041 tu.ipft_sz = ta->ipft_sz;
7042 tu.ipft_min = ta->ipft_min;
7043 tu.ipft_max = ta->ipft_max;
7044 tu.ipft_flags = ta->ipft_flags;
7045 bcopy(ta->ipft_name, tu.ipft_name,
7046 MIN(sizeof(tu.ipft_name),
7047 strlen(ta->ipft_name) + 1));
7048 }
7049 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7050 break;
7051
7052 case SIOCIPFGET :
7053 case SIOCIPFSET :
7054 /*
7055 * Search by name or by cookie value for a particular entry
7056 * in the tuning paramter table.
7057 */
7058 IPFERROR(77);
7059 error = ESRCH;
7060 if (cookie != NULL) {
7061 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7062 cookie, NULL);
7063 if (ta != NULL)
7064 error = 0;
7065 } else if (tu.ipft_name[0] != '\0') {
7066 ta = ipf_tune_findbyname(softc->ipf_tuners,
7067 tu.ipft_name);
7068 if (ta != NULL)
7069 error = 0;
7070 }
7071 if (error != 0)
7072 break;
7073
7074 if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7075 /*
7076 * Fetch the tuning parameters for a particular value
7077 */
7078 tu.ipft_vlong = 0;
7079 if (ta->ipft_sz == sizeof(u_long))
7080 tu.ipft_vlong = *ta->ipft_plong;
7081 else if (ta->ipft_sz == sizeof(u_int))
7082 tu.ipft_vint = *ta->ipft_pint;
7083 else if (ta->ipft_sz == sizeof(u_short))
7084 tu.ipft_vshort = *ta->ipft_pshort;
7085 else if (ta->ipft_sz == sizeof(u_char))
7086 tu.ipft_vchar = *ta->ipft_pchar;
7087 tu.ipft_cookie = ta;
7088 tu.ipft_sz = ta->ipft_sz;
7089 tu.ipft_min = ta->ipft_min;
7090 tu.ipft_max = ta->ipft_max;
7091 tu.ipft_flags = ta->ipft_flags;
7092 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7093
7094 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7095 /*
7096 * Set an internal parameter. The hard part here is
7097 * getting the new value safely and correctly out of
7098 * the kernel (given we only know its size, not type.)
7099 */
7100 u_long in;
7101
7102 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7103 (softc->ipf_running > 0)) {
7104 IPFERROR(78);
7105 error = EBUSY;
7106 break;
7107 }
7108
7109 in = tu.ipft_vlong;
7110 if (in < ta->ipft_min || in > ta->ipft_max) {
7111 IPFERROR(79);
7112 error = EINVAL;
7113 break;
7114 }
7115
7116 if (ta->ipft_func != NULL) {
7117 SPL_INT(s);
7118
7119 SPL_NET(s);
7120 error = (*ta->ipft_func)(softc, ta,
7121 &tu.ipft_un);
7122 SPL_X(s);
7123
7124 } else if (ta->ipft_sz == sizeof(u_long)) {
7125 tu.ipft_vlong = *ta->ipft_plong;
7126 *ta->ipft_plong = in;
7127
7128 } else if (ta->ipft_sz == sizeof(u_int)) {
7129 tu.ipft_vint = *ta->ipft_pint;
7130 *ta->ipft_pint = (u_int)(in & 0xffffffff);
7131
7132 } else if (ta->ipft_sz == sizeof(u_short)) {
7133 tu.ipft_vshort = *ta->ipft_pshort;
7134 *ta->ipft_pshort = (u_short)(in & 0xffff);
7135
7136 } else if (ta->ipft_sz == sizeof(u_char)) {
7137 tu.ipft_vchar = *ta->ipft_pchar;
7138 *ta->ipft_pchar = (u_char)(in & 0xff);
7139 }
7140 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7141 }
7142 break;
7143
7144 default :
7145 IPFERROR(80);
7146 error = EINVAL;
7147 break;
7148 }
7149
7150 return error;
7151 }
7152
7153
7154 /* ------------------------------------------------------------------------ */
7155 /* Function: ipf_zerostats */
7156 /* Returns: int - 0 = success, else failure */
7157 /* Parameters: data(O) - pointer to pointer for copying data back to */
7158 /* */
7159 /* Copies the current statistics out to userspace and then zero's the */
7160 /* current ones in the kernel. The lock is only held across the bzero() as */
7161 /* the copyout may result in paging (ie network activity.) */
7162 /* ------------------------------------------------------------------------ */
7163 int
7164 ipf_zerostats(ipf_main_softc_t *softc, void *data)
7165 {
7166 friostat_t fio;
7167 ipfobj_t obj;
7168 int error;
7169
7170 error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7171 if (error != 0)
7172 return error;
7173 ipf_getstat(softc, &fio, obj.ipfo_rev);
7174 error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7175 if (error != 0)
7176 return error;
7177
7178 WRITE_ENTER(&softc->ipf_mutex);
7179 bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7180 RWLOCK_EXIT(&softc->ipf_mutex);
7181
7182 return 0;
7183 }
7184
7185
7186 /* ------------------------------------------------------------------------ */
7187 /* Function: ipf_resolvedest */
7188 /* Returns: Nil */
7189 /* Parameters: softc(I) - pointer to soft context main structure */
7190 /* base(I) - where strings are stored */
7191 /* fdp(IO) - pointer to destination information to resolve */
7192 /* v(I) - IP protocol version to match */
7193 /* */
7194 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7195 /* if a matching name can be found for the particular IP protocol version */
7196 /* then store the interface pointer in the frdest struct. If no match is */
7197 /* found, then set the interface pointer to be -1 as NULL is considered to */
7198 /* indicate there is no information at all in the structure. */
7199 /* ------------------------------------------------------------------------ */
7200 int
7201 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7202 {
7203 int errval = 0;
7204 void *ifp;
7205
7206 ifp = NULL;
7207
7208 if (fdp->fd_name != -1) {
7209 if (fdp->fd_type == FRD_DSTLIST) {
7210 ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7211 IPLT_DSTLIST,
7212 base + fdp->fd_name,
7213 NULL);
7214 if (ifp == NULL) {
7215 IPFERROR(144);
7216 errval = ESRCH;
7217 }
7218 } else {
7219 ifp = GETIFP(base + fdp->fd_name, v);
7220 if (ifp == NULL)
7221 ifp = (void *)-1;
7222 if ((ifp != NULL) && (ifp != (void *)-1))
7223 fdp->fd_local = ipf_deliverlocal(softc, v, ifp,
7224 &fdp->fd_ip6);
7225 }
7226 }
7227 fdp->fd_ptr = ifp;
7228
7229 return errval;
7230 }
7231
7232
7233 /* ------------------------------------------------------------------------ */
7234 /* Function: ipf_resolvenic */
7235 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */
7236 /* pointer to interface structure for NIC */
7237 /* Parameters: softc(I)- pointer to soft context main structure */
7238 /* name(I) - complete interface name */
7239 /* v(I) - IP protocol version */
7240 /* */
7241 /* Look for a network interface structure that firstly has a matching name */
7242 /* to that passed in and that is also being used for that IP protocol */
7243 /* version (necessary on some platforms where there are separate listings */
7244 /* for both IPv4 and IPv6 on the same physical NIC. */
7245 /* */
7246 /* ------------------------------------------------------------------------ */
7247 void *
7248 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7249 {
7250 void *nic;
7251
7252 softc = softc; /* gcc -Wextra */
7253 if (name[0] == '\0')
7254 return NULL;
7255
7256 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7257 return NULL;
7258 }
7259
7260 nic = GETIFP(name, v);
7261 if (nic == NULL)
7262 nic = (void *)-1;
7263 return nic;
7264 }
7265
7266
7267 /* ------------------------------------------------------------------------ */
7268 /* Function: ipf_token_expire */
7269 /* Returns: None. */
7270 /* Parameters: softc(I) - pointer to soft context main structure */
7271 /* */
7272 /* This function is run every ipf tick to see if there are any tokens that */
7273 /* have been held for too long and need to be freed up. */
7274 /* ------------------------------------------------------------------------ */
7275 void
7276 ipf_token_expire(ipf_main_softc_t *softc)
7277 {
7278 ipftoken_t *it;
7279
7280 WRITE_ENTER(&softc->ipf_tokens);
7281 while ((it = softc->ipf_token_head) != NULL) {
7282 if (it->ipt_die > softc->ipf_ticks)
7283 break;
7284
7285 ipf_token_deref(softc, it);
7286 }
7287 RWLOCK_EXIT(&softc->ipf_tokens);
7288 }
7289
7290
7291 /* ------------------------------------------------------------------------ */
7292 /* Function: ipf_token_flush */
7293 /* Returns: None. */
7294 /* Parameters: softc(I) - pointer to soft context main structure */
7295 /* */
7296 /* Loop through all of the existing tokens and call deref to see if they */
7297 /* can be freed. Normally a function like this might just loop on */
7298 /* ipf_token_head but there is a chance that a token might have a ref count */
7299 /* of greater than one and in that case the the reference would drop twice */
7300 /* by code that is only entitled to drop it once. */
7301 /* ------------------------------------------------------------------------ */
7302 static void
7303 ipf_token_flush(ipf_main_softc_t *softc)
7304 {
7305 ipftoken_t *it, *next;
7306
7307 WRITE_ENTER(&softc->ipf_tokens);
7308 for (it = softc->ipf_token_head; it != NULL; it = next) {
7309 next = it->ipt_next;
7310 (void) ipf_token_deref(softc, it);
7311 }
7312 RWLOCK_EXIT(&softc->ipf_tokens);
7313 }
7314
7315
7316 /* ------------------------------------------------------------------------ */
7317 /* Function: ipf_token_del */
7318 /* Returns: int - 0 = success, else error */
7319 /* Parameters: softc(I)- pointer to soft context main structure */
7320 /* type(I) - the token type to match */
7321 /* uid(I) - uid owning the token */
7322 /* ptr(I) - context pointer for the token */
7323 /* */
7324 /* This function looks for a a token in the current list that matches up */
7325 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */
7326 /* call ipf_token_dewref() to remove it from the list. In the event that */
7327 /* the token has a reference held elsewhere, setting ipt_complete to 2 */
7328 /* enables debugging to distinguish between the two paths that ultimately */
7329 /* lead to a token to be deleted. */
7330 /* ------------------------------------------------------------------------ */
7331 int
7332 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7333 {
7334 ipftoken_t *it;
7335 int error;
7336
7337 IPFERROR(82);
7338 error = ESRCH;
7339
7340 WRITE_ENTER(&softc->ipf_tokens);
7341 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7342 if (ptr == it->ipt_ctx && type == it->ipt_type &&
7343 uid == it->ipt_uid) {
7344 it->ipt_complete = 2;
7345 ipf_token_deref(softc, it);
7346 error = 0;
7347 break;
7348 }
7349 }
7350 RWLOCK_EXIT(&softc->ipf_tokens);
7351
7352 return error;
7353 }
7354
7355
7356 /* ------------------------------------------------------------------------ */
7357 /* Function: ipf_token_mark_complete */
7358 /* Returns: None. */
7359 /* Parameters: token(I) - pointer to token structure */
7360 /* */
7361 /* Mark a token as being ineligable for being found with ipf_token_find. */
7362 /* ------------------------------------------------------------------------ */
7363 void
7364 ipf_token_mark_complete(ipftoken_t *token)
7365 {
7366 if (token->ipt_complete == 0)
7367 token->ipt_complete = 1;
7368 }
7369
7370
7371 /* ------------------------------------------------------------------------ */
7372 /* Function: ipf_token_find */
7373 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */
7374 /* Parameters: softc(I)- pointer to soft context main structure */
7375 /* type(I) - the token type to match */
7376 /* uid(I) - uid owning the token */
7377 /* ptr(I) - context pointer for the token */
7378 /* */
7379 /* This function looks for a live token in the list of current tokens that */
7380 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */
7381 /* allocated. If one is found then it is moved to the top of the list of */
7382 /* currently active tokens. */
7383 /* ------------------------------------------------------------------------ */
7384 ipftoken_t *
7385 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7386 {
7387 ipftoken_t *it, *new;
7388
7389 KMALLOC(new, ipftoken_t *);
7390 if (new != NULL)
7391 bzero((char *)new, sizeof(*new));
7392
7393 WRITE_ENTER(&softc->ipf_tokens);
7394 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7395 if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7396 (uid == it->ipt_uid) && (it->ipt_complete < 2))
7397 break;
7398 }
7399
7400 if (it == NULL) {
7401 it = new;
7402 new = NULL;
7403 if (it == NULL) {
7404 RWLOCK_EXIT(&softc->ipf_tokens);
7405 return NULL;
7406 }
7407 it->ipt_ctx = ptr;
7408 it->ipt_uid = uid;
7409 it->ipt_type = type;
7410 it->ipt_ref = 1;
7411 } else {
7412 if (new != NULL) {
7413 KFREE(new);
7414 new = NULL;
7415 }
7416
7417 if (it->ipt_complete > 0)
7418 it = NULL;
7419 else
7420 ipf_token_unlink(softc, it);
7421 }
7422
7423 if (it != NULL) {
7424 it->ipt_pnext = softc->ipf_token_tail;
7425 *softc->ipf_token_tail = it;
7426 softc->ipf_token_tail = &it->ipt_next;
7427 it->ipt_next = NULL;
7428 it->ipt_ref++;
7429
7430 it->ipt_die = softc->ipf_ticks + 20;
7431 }
7432
7433 RWLOCK_EXIT(&softc->ipf_tokens);
7434
7435 return it;
7436 }
7437
7438
7439 /* ------------------------------------------------------------------------ */
7440 /* Function: ipf_token_unlink */
7441 /* Returns: None. */
7442 /* Parameters: softc(I) - pointer to soft context main structure */
7443 /* token(I) - pointer to token structure */
7444 /* Write Locks: ipf_tokens */
7445 /* */
7446 /* This function unlinks a token structure from the linked list of tokens */
7447 /* that "own" it. The head pointer never needs to be explicitly adjusted */
7448 /* but the tail does due to the linked list implementation. */
7449 /* ------------------------------------------------------------------------ */
7450 static void
7451 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7452 {
7453
7454 if (softc->ipf_token_tail == &token->ipt_next)
7455 softc->ipf_token_tail = token->ipt_pnext;
7456
7457 *token->ipt_pnext = token->ipt_next;
7458 if (token->ipt_next != NULL)
7459 token->ipt_next->ipt_pnext = token->ipt_pnext;
7460 token->ipt_next = NULL;
7461 token->ipt_pnext = NULL;
7462 }
7463
7464
7465 /* ------------------------------------------------------------------------ */
7466 /* Function: ipf_token_deref */
7467 /* Returns: int - 0 == token freed, else reference count */
7468 /* Parameters: softc(I) - pointer to soft context main structure */
7469 /* token(I) - pointer to token structure */
7470 /* Write Locks: ipf_tokens */
7471 /* */
7472 /* Drop the reference count on the token structure and if it drops to zero, */
7473 /* call the dereference function for the token type because it is then */
7474 /* possible to free the token data structure. */
7475 /* ------------------------------------------------------------------------ */
7476 int
7477 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7478 {
7479 void *data, **datap;
7480
7481 ASSERT(token->ipt_ref > 0);
7482 token->ipt_ref--;
7483 if (token->ipt_ref > 0)
7484 return token->ipt_ref;
7485
7486 data = token->ipt_data;
7487 datap = &data;
7488
7489 if ((data != NULL) && (data != (void *)-1)) {
7490 switch (token->ipt_type)
7491 {
7492 case IPFGENITER_IPF :
7493 (void) ipf_derefrule(softc, (frentry_t **)datap);
7494 break;
7495 case IPFGENITER_IPNAT :
7496 WRITE_ENTER(&softc->ipf_nat);
7497 ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7498 RWLOCK_EXIT(&softc->ipf_nat);
7499 break;
7500 case IPFGENITER_NAT :
7501 ipf_nat_deref(softc, (nat_t **)datap);
7502 break;
7503 case IPFGENITER_STATE :
7504 ipf_state_deref(softc, (ipstate_t **)datap);
7505 break;
7506 case IPFGENITER_FRAG :
7507 ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7508 break;
7509 case IPFGENITER_NATFRAG :
7510 ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7511 break;
7512 case IPFGENITER_HOSTMAP :
7513 WRITE_ENTER(&softc->ipf_nat);
7514 ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7515 RWLOCK_EXIT(&softc->ipf_nat);
7516 break;
7517 default :
7518 ipf_lookup_iterderef(softc, token->ipt_type, data);
7519 break;
7520 }
7521 }
7522
7523 ipf_token_unlink(softc, token);
7524 KFREE(token);
7525 return 0;
7526 }
7527
7528
7529 /* ------------------------------------------------------------------------ */
7530 /* Function: ipf_nextrule */
7531 /* Returns: frentry_t * - NULL == no more rules, else pointer to next */
7532 /* Parameters: softc(I) - pointer to soft context main structure */
7533 /* fr(I) - pointer to filter rule */
7534 /* out(I) - 1 == out rules, 0 == input rules */
7535 /* */
7536 /* Starting with "fr", find the next rule to visit. This includes visiting */
7537 /* the list of rule groups if either fr is NULL (empty list) or it is the */
7538 /* last rule in the list. When walking rule lists, it is either input or */
7539 /* output rules that are returned, never both. */
7540 /* ------------------------------------------------------------------------ */
7541 static frentry_t *
7542 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit,
7543 frentry_t *fr, int out)
7544 {
7545 frentry_t *next;
7546 frgroup_t *fg;
7547
7548 if (fr != NULL && fr->fr_group != -1) {
7549 fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7550 unit, active, NULL);
7551 if (fg != NULL)
7552 fg = fg->fg_next;
7553 } else {
7554 fg = softc->ipf_groups[unit][active];
7555 }
7556
7557 while (fg != NULL) {
7558 next = fg->fg_start;
7559 while (next != NULL) {
7560 if (out) {
7561 if (next->fr_flags & FR_OUTQUE)
7562 return next;
7563 } else if (next->fr_flags & FR_INQUE) {
7564 return next;
7565 }
7566 next = next->fr_next;
7567 }
7568 if (next == NULL)
7569 fg = fg->fg_next;
7570 }
7571
7572 return NULL;
7573 }
7574
7575 /* ------------------------------------------------------------------------ */
7576 /* Function: ipf_getnextrule */
7577 /* Returns: int - 0 = success, else error */
7578 /* Parameters: softc(I)- pointer to soft context main structure */
7579 /* t(I) - pointer to destination information to resolve */
7580 /* ptr(I) - pointer to ipfobj_t to copyin from user space */
7581 /* */
7582 /* This function's first job is to bring in the ipfruleiter_t structure via */
7583 /* the ipfobj_t structure to determine what should be the next rule to */
7584 /* return. Once the ipfruleiter_t has been brought in, it then tries to */
7585 /* find the 'next rule'. This may include searching rule group lists or */
7586 /* just be as simple as looking at the 'next' field in the rule structure. */
7587 /* When we have found the rule to return, increase its reference count and */
7588 /* if we used an existing rule to get here, decrease its reference count. */
7589 /* ------------------------------------------------------------------------ */
7590 int
7591 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7592 {
7593 frentry_t *fr, *next, zero;
7594 ipfruleiter_t it;
7595 int error, out;
7596 frgroup_t *fg;
7597 ipfobj_t obj;
7598 int predict;
7599 char *dst;
7600 int unit;
7601
7602 if (t == NULL || ptr == NULL) {
7603 IPFERROR(84);
7604 return EFAULT;
7605 }
7606
7607 error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7608 if (error != 0)
7609 return error;
7610
7611 if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7612 IPFERROR(85);
7613 return EINVAL;
7614 }
7615 if ((it.iri_active != 0) && (it.iri_active != 1)) {
7616 IPFERROR(86);
7617 return EINVAL;
7618 }
7619 if (it.iri_nrules == 0) {
7620 IPFERROR(87);
7621 return ENOSPC;
7622 }
7623 if (it.iri_rule == NULL) {
7624 IPFERROR(88);
7625 return EFAULT;
7626 }
7627
7628 fg = NULL;
7629 fr = t->ipt_data;
7630 if ((it.iri_inout & F_OUT) != 0)
7631 out = 1;
7632 else
7633 out = 0;
7634 if ((it.iri_inout & F_ACIN) != 0)
7635 unit = IPL_LOGCOUNT;
7636 else
7637 unit = IPL_LOGIPF;
7638
7639 READ_ENTER(&softc->ipf_mutex);
7640 if (fr == NULL) {
7641 if (*it.iri_group == '\0') {
7642 if (unit == IPL_LOGCOUNT) {
7643 next = softc->ipf_acct[out][it.iri_active];
7644 } else {
7645 next = softc->ipf_rules[out][it.iri_active];
7646 }
7647 if (next == NULL)
7648 next = ipf_nextrule(softc, it.iri_active,
7649 unit, NULL, out);
7650 } else {
7651 fg = ipf_findgroup(softc, it.iri_group, unit,
7652 it.iri_active, NULL);
7653 if (fg != NULL)
7654 next = fg->fg_start;
7655 else
7656 next = NULL;
7657 }
7658 } else {
7659 next = fr->fr_next;
7660 if (next == NULL)
7661 next = ipf_nextrule(softc, it.iri_active, unit,
7662 fr, out);
7663 }
7664
7665 if (next != NULL && next->fr_next != NULL)
7666 predict = 1;
7667 else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7668 predict = 1;
7669 else
7670 predict = 0;
7671
7672 if (fr != NULL)
7673 (void) ipf_derefrule(softc, &fr);
7674
7675 obj.ipfo_type = IPFOBJ_FRENTRY;
7676 dst = (char *)it.iri_rule;
7677
7678 if (next != NULL) {
7679 obj.ipfo_size = next->fr_size;
7680 MUTEX_ENTER(&next->fr_lock);
7681 next->fr_ref++;
7682 MUTEX_EXIT(&next->fr_lock);
7683 t->ipt_data = next;
7684 } else {
7685 obj.ipfo_size = sizeof(frentry_t);
7686 bzero(&zero, sizeof(zero));
7687 next = &zero;
7688 t->ipt_data = NULL;
7689 }
7690 it.iri_rule = predict ? next : NULL;
7691 if (predict == 0)
7692 ipf_token_mark_complete(t);
7693
7694 RWLOCK_EXIT(&softc->ipf_mutex);
7695
7696 obj.ipfo_ptr = dst;
7697 error = ipf_outobjk(softc, &obj, next);
7698 if (error == 0 && t->ipt_data != NULL) {
7699 dst += obj.ipfo_size;
7700 if (next->fr_data != NULL) {
7701 ipfobj_t dobj;
7702
7703 if (next->fr_type == FR_T_IPFEXPR)
7704 dobj.ipfo_type = IPFOBJ_IPFEXPR;
7705 else
7706 dobj.ipfo_type = IPFOBJ_FRIPF;
7707 dobj.ipfo_size = next->fr_dsize;
7708 dobj.ipfo_rev = obj.ipfo_rev;
7709 dobj.ipfo_ptr = dst;
7710 error = ipf_outobjk(softc, &dobj, next->fr_data);
7711 }
7712 }
7713
7714 if ((fr != NULL) && (next == &zero))
7715 (void) ipf_derefrule(softc, &fr);
7716
7717 return error;
7718 }
7719
7720
7721 /* ------------------------------------------------------------------------ */
7722 /* Function: ipf_frruleiter */
7723 /* Returns: int - 0 = success, else error */
7724 /* Parameters: softc(I)- pointer to soft context main structure */
7725 /* data(I) - the token type to match */
7726 /* uid(I) - uid owning the token */
7727 /* ptr(I) - context pointer for the token */
7728 /* */
7729 /* This function serves as a stepping stone between ipf_ipf_ioctl and */
7730 /* ipf_getnextrule. It's role is to find the right token in the kernel for */
7731 /* the process doing the ioctl and use that to ask for the next rule. */
7732 /* ------------------------------------------------------------------------ */
7733 static int
7734 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7735 {
7736 ipftoken_t *token;
7737 ipfruleiter_t it;
7738 ipfobj_t obj;
7739 int error;
7740
7741 token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7742 if (token != NULL) {
7743 error = ipf_getnextrule(softc, token, data);
7744 WRITE_ENTER(&softc->ipf_tokens);
7745 ipf_token_deref(softc, token);
7746 RWLOCK_EXIT(&softc->ipf_tokens);
7747 } else {
7748 error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7749 if (error != 0)
7750 return error;
7751 it.iri_rule = NULL;
7752 error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7753 }
7754
7755 return error;
7756 }
7757
7758
7759 /* ------------------------------------------------------------------------ */
7760 /* Function: ipf_geniter */
7761 /* Returns: int - 0 = success, else error */
7762 /* Parameters: softc(I) - pointer to soft context main structure */
7763 /* token(I) - pointer to ipftoken_t structure */
7764 /* itp(I) - pointer to iterator data */
7765 /* */
7766 /* Decide which iterator function to call using information passed through */
7767 /* the ipfgeniter_t structure at itp. */
7768 /* ------------------------------------------------------------------------ */
7769 static int
7770 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7771 {
7772 int error;
7773
7774 switch (itp->igi_type)
7775 {
7776 case IPFGENITER_FRAG :
7777 error = ipf_frag_pkt_next(softc, token, itp);
7778 break;
7779 default :
7780 IPFERROR(92);
7781 error = EINVAL;
7782 break;
7783 }
7784
7785 return error;
7786 }
7787
7788
7789 /* ------------------------------------------------------------------------ */
7790 /* Function: ipf_genericiter */
7791 /* Returns: int - 0 = success, else error */
7792 /* Parameters: softc(I)- pointer to soft context main structure */
7793 /* data(I) - the token type to match */
7794 /* uid(I) - uid owning the token */
7795 /* ptr(I) - context pointer for the token */
7796 /* */
7797 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */
7798 /* ------------------------------------------------------------------------ */
7799 int
7800 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7801 {
7802 ipftoken_t *token;
7803 ipfgeniter_t iter;
7804 int error;
7805
7806 error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7807 if (error != 0)
7808 return error;
7809
7810 token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7811 if (token != NULL) {
7812 token->ipt_subtype = iter.igi_type;
7813 error = ipf_geniter(softc, token, &iter);
7814 WRITE_ENTER(&softc->ipf_tokens);
7815 ipf_token_deref(softc, token);
7816 RWLOCK_EXIT(&softc->ipf_tokens);
7817 } else {
7818 IPFERROR(93);
7819 error = 0;
7820 }
7821
7822 return error;
7823 }
7824
7825
7826 /* ------------------------------------------------------------------------ */
7827 /* Function: ipf_ipf_ioctl */
7828 /* Returns: int - 0 = success, else error */
7829 /* Parameters: softc(I)- pointer to soft context main structure */
7830 /* data(I) - the token type to match */
7831 /* cmd(I) - the ioctl command number */
7832 /* mode(I) - mode flags for the ioctl */
7833 /* uid(I) - uid owning the token */
7834 /* ptr(I) - context pointer for the token */
7835 /* */
7836 /* This function handles all of the ioctl command that are actually isssued */
7837 /* to the /dev/ipl device. */
7838 /* ------------------------------------------------------------------------ */
7839 int
7840 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode,
7841 int uid, void *ctx)
7842 {
7843 friostat_t fio;
7844 int error, tmp;
7845 ipfobj_t obj;
7846 SPL_INT(s);
7847
7848 switch (cmd)
7849 {
7850 case SIOCFRENB :
7851 if (!(mode & FWRITE)) {
7852 IPFERROR(94);
7853 error = EPERM;
7854 } else {
7855 error = BCOPYIN(data, &tmp, sizeof(tmp));
7856 if (error != 0) {
7857 IPFERROR(95);
7858 error = EFAULT;
7859 break;
7860 }
7861
7862 WRITE_ENTER(&softc->ipf_global);
7863 if (tmp) {
7864 if (softc->ipf_running > 0)
7865 error = 0;
7866 else
7867 error = ipfattach(softc);
7868 if (error == 0)
7869 softc->ipf_running = 1;
7870 else
7871 (void) ipfdetach(softc);
7872 } else {
7873 if (softc->ipf_running == 1)
7874 error = ipfdetach(softc);
7875 else
7876 error = 0;
7877 if (error == 0)
7878 softc->ipf_running = -1;
7879 }
7880 RWLOCK_EXIT(&softc->ipf_global);
7881 }
7882 break;
7883
7884 case SIOCIPFSET :
7885 if (!(mode & FWRITE)) {
7886 IPFERROR(96);
7887 error = EPERM;
7888 break;
7889 }
7890 /* FALLTHRU */
7891 case SIOCIPFGETNEXT :
7892 case SIOCIPFGET :
7893 error = ipf_ipftune(softc, cmd, (void *)data);
7894 break;
7895
7896 case SIOCSETFF :
7897 if (!(mode & FWRITE)) {
7898 IPFERROR(97);
7899 error = EPERM;
7900 } else {
7901 error = BCOPYIN(data, &softc->ipf_flags,
7902 sizeof(softc->ipf_flags));
7903 if (error != 0) {
7904 IPFERROR(98);
7905 error = EFAULT;
7906 }
7907 }
7908 break;
7909
7910 case SIOCGETFF :
7911 error = BCOPYOUT(&softc->ipf_flags, data,
7912 sizeof(softc->ipf_flags));
7913 if (error != 0) {
7914 IPFERROR(99);
7915 error = EFAULT;
7916 }
7917 break;
7918
7919 case SIOCFUNCL :
7920 error = ipf_resolvefunc(softc, (void *)data);
7921 break;
7922
7923 case SIOCINAFR :
7924 case SIOCRMAFR :
7925 case SIOCADAFR :
7926 case SIOCZRLST :
7927 if (!(mode & FWRITE)) {
7928 IPFERROR(100);
7929 error = EPERM;
7930 } else {
7931 error = frrequest(softc, IPL_LOGIPF, cmd, data,
7932 softc->ipf_active, 1);
7933 }
7934 break;
7935
7936 case SIOCINIFR :
7937 case SIOCRMIFR :
7938 case SIOCADIFR :
7939 if (!(mode & FWRITE)) {
7940 IPFERROR(101);
7941 error = EPERM;
7942 } else {
7943 error = frrequest(softc, IPL_LOGIPF, cmd, data,
7944 1 - softc->ipf_active, 1);
7945 }
7946 break;
7947
7948 case SIOCSWAPA :
7949 if (!(mode & FWRITE)) {
7950 IPFERROR(102);
7951 error = EPERM;
7952 } else {
7953 WRITE_ENTER(&softc->ipf_mutex);
7954 error = BCOPYOUT(&softc->ipf_active, data,
7955 sizeof(softc->ipf_active));
7956 if (error != 0) {
7957 IPFERROR(103);
7958 error = EFAULT;
7959 } else {
7960 softc->ipf_active = 1 - softc->ipf_active;
7961 }
7962 RWLOCK_EXIT(&softc->ipf_mutex);
7963 }
7964 break;
7965
7966 case SIOCGETFS :
7967 error = ipf_inobj(softc, (void *)data, &obj, &fio,
7968 IPFOBJ_IPFSTAT);
7969 if (error != 0)
7970 break;
7971 ipf_getstat(softc, &fio, obj.ipfo_rev);
7972 error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
7973 break;
7974
7975 case SIOCFRZST :
7976 if (!(mode & FWRITE)) {
7977 IPFERROR(104);
7978 error = EPERM;
7979 } else
7980 error = ipf_zerostats(softc, data);
7981 break;
7982
7983 case SIOCIPFFL :
7984 if (!(mode & FWRITE)) {
7985 IPFERROR(105);
7986 error = EPERM;
7987 } else {
7988 error = BCOPYIN(data, &tmp, sizeof(tmp));
7989 if (!error) {
7990 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
7991 error = BCOPYOUT(&tmp, data, sizeof(tmp));
7992 if (error != 0) {
7993 IPFERROR(106);
7994 error = EFAULT;
7995 }
7996 } else {
7997 IPFERROR(107);
7998 error = EFAULT;
7999 }
8000 }
8001 break;
8002
8003 #ifdef USE_INET6
8004 case SIOCIPFL6 :
8005 if (!(mode & FWRITE)) {
8006 IPFERROR(108);
8007 error = EPERM;
8008 } else {
8009 error = BCOPYIN(data, &tmp, sizeof(tmp));
8010 if (!error) {
8011 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8012 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8013 if (error != 0) {
8014 IPFERROR(109);
8015 error = EFAULT;
8016 }
8017 } else {
8018 IPFERROR(110);
8019 error = EFAULT;
8020 }
8021 }
8022 break;
8023 #endif
8024
8025 case SIOCSTLCK :
8026 if (!(mode & FWRITE)) {
8027 IPFERROR(122);
8028 error = EPERM;
8029 } else {
8030 error = BCOPYIN(data, &tmp, sizeof(tmp));
8031 if (error == 0) {
8032 ipf_state_setlock(softc->ipf_state_soft, tmp);
8033 ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8034 ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8035 ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8036 } else {
8037 IPFERROR(111);
8038 error = EFAULT;
8039 }
8040 }
8041 break;
8042
8043 #ifdef IPFILTER_LOG
8044 case SIOCIPFFB :
8045 if (!(mode & FWRITE)) {
8046 IPFERROR(112);
8047 error = EPERM;
8048 } else {
8049 tmp = ipf_log_clear(softc, IPL_LOGIPF);
8050 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8051 if (error) {
8052 IPFERROR(113);
8053 error = EFAULT;
8054 }
8055 }
8056 break;
8057 #endif /* IPFILTER_LOG */
8058
8059 case SIOCFRSYN :
8060 if (!(mode & FWRITE)) {
8061 IPFERROR(114);
8062 error = EPERM;
8063 } else {
8064 WRITE_ENTER(&softc->ipf_global);
8065 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8066 error = ipfsync();
8067 #else
8068 ipf_sync(softc, NULL);
8069 error = 0;
8070 #endif
8071 RWLOCK_EXIT(&softc->ipf_global);
8072
8073 }
8074 break;
8075
8076 case SIOCGFRST :
8077 error = ipf_outobj(softc, (void *)data,
8078 ipf_frag_stats(softc->ipf_frag_soft),
8079 IPFOBJ_FRAGSTAT);
8080 break;
8081
8082 #ifdef IPFILTER_LOG
8083 case FIONREAD :
8084 tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8085 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8086 break;
8087 #endif
8088
8089 case SIOCIPFITER :
8090 SPL_SCHED(s);
8091 error = ipf_frruleiter(softc, data, uid, ctx);
8092 SPL_X(s);
8093 break;
8094
8095 case SIOCGENITER :
8096 SPL_SCHED(s);
8097 error = ipf_genericiter(softc, data, uid, ctx);
8098 SPL_X(s);
8099 break;
8100
8101 case SIOCIPFDELTOK :
8102 error = BCOPYIN(data, &tmp, sizeof(tmp));
8103 if (error == 0) {
8104 SPL_SCHED(s);
8105 error = ipf_token_del(softc, tmp, uid, ctx);
8106 SPL_X(s);
8107 }
8108 break;
8109
8110 default :
8111 IPFERROR(115);
8112 error = EINVAL;
8113 break;
8114 }
8115
8116 return error;
8117 }
8118
8119
8120 /* ------------------------------------------------------------------------ */
8121 /* Function: ipf_decaps */
8122 /* Returns: int - -1 == decapsulation failed, else bit mask of */
8123 /* flags indicating packet filtering decision. */
8124 /* Parameters: fin(I) - pointer to packet information */
8125 /* pass(I) - IP protocol version to match */
8126 /* l5proto(I) - layer 5 protocol to decode UDP data as. */
8127 /* */
8128 /* This function is called for packets that are wrapt up in other packets, */
8129 /* for example, an IP packet that is the entire data segment for another IP */
8130 /* packet. If the basic constraints for this are satisfied, change the */
8131 /* buffer to point to the start of the inner packet and start processing */
8132 /* rules belonging to the head group this rule specifies. */
8133 /* ------------------------------------------------------------------------ */
8134 u_32_t
8135 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8136 {
8137 fr_info_t fin2, *fino = NULL;
8138 int elen, hlen, nh;
8139 grehdr_t gre;
8140 ip_t *ip;
8141 mb_t *m;
8142
8143 if ((fin->fin_flx & FI_COALESCE) == 0)
8144 if (ipf_coalesce(fin) == -1)
8145 goto cantdecaps;
8146
8147 m = fin->fin_m;
8148 hlen = fin->fin_hlen;
8149
8150 switch (fin->fin_p)
8151 {
8152 case IPPROTO_UDP :
8153 /*
8154 * In this case, the specific protocol being decapsulated
8155 * inside UDP frames comes from the rule.
8156 */
8157 nh = fin->fin_fr->fr_icode;
8158 break;
8159
8160 case IPPROTO_GRE : /* 47 */
8161 bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8162 hlen += sizeof(grehdr_t);
8163 if (gre.gr_R|gre.gr_s)
8164 goto cantdecaps;
8165 if (gre.gr_C)
8166 hlen += 4;
8167 if (gre.gr_K)
8168 hlen += 4;
8169 if (gre.gr_S)
8170 hlen += 4;
8171
8172 nh = IPPROTO_IP;
8173
8174 /*
8175 * If the routing options flag is set, validate that it is
8176 * there and bounce over it.
8177 */
8178 #if 0
8179 /* This is really heavy weight and lots of room for error, */
8180 /* so for now, put it off and get the simple stuff right. */
8181 if (gre.gr_R) {
8182 u_char off, len, *s;
8183 u_short af;
8184 int end;
8185
8186 end = 0;
8187 s = fin->fin_dp;
8188 s += hlen;
8189 aplen = fin->fin_plen - hlen;
8190 while (aplen > 3) {
8191 af = (s[0] << 8) | s[1];
8192 off = s[2];
8193 len = s[3];
8194 aplen -= 4;
8195 s += 4;
8196 if (af == 0 && len == 0) {
8197 end = 1;
8198 break;
8199 }
8200 if (aplen < len)
8201 break;
8202 s += len;
8203 aplen -= len;
8204 }
8205 if (end != 1)
8206 goto cantdecaps;
8207 hlen = s - (u_char *)fin->fin_dp;
8208 }
8209 #endif
8210 break;
8211
8212 #ifdef IPPROTO_IPIP
8213 case IPPROTO_IPIP : /* 4 */
8214 #endif
8215 nh = IPPROTO_IP;
8216 break;
8217
8218 default : /* Includes ESP, AH is special for IPv4 */
8219 goto cantdecaps;
8220 }
8221
8222 switch (nh)
8223 {
8224 case IPPROTO_IP :
8225 case IPPROTO_IPV6 :
8226 break;
8227 default :
8228 goto cantdecaps;
8229 }
8230
8231 bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8232 fino = fin;
8233 fin = &fin2;
8234 elen = hlen;
8235 #if defined(MENTAT) && defined(_KERNEL)
8236 m->b_rptr += elen;
8237 #else
8238 m->m_data += elen;
8239 m->m_len -= elen;
8240 #endif
8241 fin->fin_plen -= elen;
8242
8243 ip = (ip_t *)((char *)fin->fin_ip + elen);
8244
8245 /*
8246 * Make sure we have at least enough data for the network layer
8247 * header.
8248 */
8249 if (IP_V(ip) == 4)
8250 hlen = IP_HL(ip) << 2;
8251 #ifdef USE_INET6
8252 else if (IP_V(ip) == 6)
8253 hlen = sizeof(ip6_t);
8254 #endif
8255 else
8256 goto cantdecaps2;
8257
8258 if (fin->fin_plen < hlen)
8259 goto cantdecaps2;
8260
8261 fin->fin_dp = (char *)ip + hlen;
8262
8263 if (IP_V(ip) == 4) {
8264 /*
8265 * Perform IPv4 header checksum validation.
8266 */
8267 if (ipf_cksum((u_short *)ip, hlen))
8268 goto cantdecaps2;
8269 }
8270
8271 if (ipf_makefrip(hlen, ip, fin) == -1) {
8272 cantdecaps2:
8273 if (m != NULL) {
8274 #if defined(MENTAT) && defined(_KERNEL)
8275 m->b_rptr -= elen;
8276 #else
8277 m->m_data -= elen;
8278 m->m_len += elen;
8279 #endif
8280 }
8281 cantdecaps:
8282 DT1(frb_decapfrip, fr_info_t *, fin);
8283 pass &= ~FR_CMDMASK;
8284 pass |= FR_BLOCK|FR_QUICK;
8285 fin->fin_reason = FRB_DECAPFRIP;
8286 return -1;
8287 }
8288
8289 pass = ipf_scanlist(fin, pass);
8290
8291 /*
8292 * Copy the packet filter "result" fields out of the fr_info_t struct
8293 * that is local to the decapsulation processing and back into the
8294 * one we were called with.
8295 */
8296 fino->fin_flx = fin->fin_flx;
8297 fino->fin_rev = fin->fin_rev;
8298 fino->fin_icode = fin->fin_icode;
8299 fino->fin_rule = fin->fin_rule;
8300 (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8301 fino->fin_fr = fin->fin_fr;
8302 fino->fin_error = fin->fin_error;
8303 fino->fin_mp = fin->fin_mp;
8304 fino->fin_m = fin->fin_m;
8305 m = fin->fin_m;
8306 if (m != NULL) {
8307 #if defined(MENTAT) && defined(_KERNEL)
8308 m->b_rptr -= elen;
8309 #else
8310 m->m_data -= elen;
8311 m->m_len += elen;
8312 #endif
8313 }
8314 return pass;
8315 }
8316
8317
8318 /* ------------------------------------------------------------------------ */
8319 /* Function: ipf_matcharray_load */
8320 /* Returns: int - 0 = success, else error */
8321 /* Parameters: softc(I) - pointer to soft context main structure */
8322 /* data(I) - pointer to ioctl data */
8323 /* objp(I) - ipfobj_t structure to load data into */
8324 /* arrayptr(I) - pointer to location to store array pointer */
8325 /* */
8326 /* This function loads in a mathing array through the ipfobj_t struct that */
8327 /* describes it. Sanity checking and array size limitations are enforced */
8328 /* in this function to prevent userspace from trying to load in something */
8329 /* that is insanely big. Once the size of the array is known, the memory */
8330 /* required is malloc'd and returned through changing *arrayptr. The */
8331 /* contents of the array are verified before returning. Only in the event */
8332 /* of a successful call is the caller required to free up the malloc area. */
8333 /* ------------------------------------------------------------------------ */
8334 int
8335 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp,
8336 int **arrayptr)
8337 {
8338 int arraysize, *array, error;
8339
8340 *arrayptr = NULL;
8341
8342 error = BCOPYIN(data, objp, sizeof(*objp));
8343 if (error != 0) {
8344 IPFERROR(116);
8345 return EFAULT;
8346 }
8347
8348 if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8349 IPFERROR(117);
8350 return EINVAL;
8351 }
8352
8353 if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8354 (objp->ipfo_size > 1024)) {
8355 IPFERROR(118);
8356 return EINVAL;
8357 }
8358
8359 arraysize = objp->ipfo_size * sizeof(*array);
8360 KMALLOCS(array, int *, arraysize);
8361 if (array == NULL) {
8362 IPFERROR(119);
8363 return ENOMEM;
8364 }
8365
8366 error = COPYIN(objp->ipfo_ptr, array, arraysize);
8367 if (error != 0) {
8368 KFREES(array, arraysize);
8369 IPFERROR(120);
8370 return EFAULT;
8371 }
8372
8373 if (ipf_matcharray_verify(array, arraysize) != 0) {
8374 KFREES(array, arraysize);
8375 IPFERROR(121);
8376 return EINVAL;
8377 }
8378
8379 *arrayptr = array;
8380 return 0;
8381 }
8382
8383
8384 /* ------------------------------------------------------------------------ */
8385 /* Function: ipf_matcharray_verify */
8386 /* Returns: Nil */
8387 /* Parameters: array(I) - pointer to matching array */
8388 /* arraysize(I) - number of elements in the array */
8389 /* */
8390 /* Verify the contents of a matching array by stepping through each element */
8391 /* in it. The actual commands in the array are not verified for */
8392 /* correctness, only that all of the sizes are correctly within limits. */
8393 /* ------------------------------------------------------------------------ */
8394 int
8395 ipf_matcharray_verify(int *array, int arraysize)
8396 {
8397 int i, nelem, maxidx;
8398 ipfexp_t *e;
8399
8400 nelem = arraysize / sizeof(*array);
8401
8402 /*
8403 * Currently, it makes no sense to have an array less than 6
8404 * elements long - the initial size at the from, a single operation
8405 * (minimum 4 in length) and a trailer, for a total of 6.
8406 */
8407 if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8408 return -1;
8409 }
8410
8411 /*
8412 * Verify the size of data pointed to by array with how long
8413 * the array claims to be itself.
8414 */
8415 if (array[0] * sizeof(*array) != arraysize) {
8416 return -1;
8417 }
8418
8419 maxidx = nelem - 1;
8420 /*
8421 * The last opcode in this array should be an IPF_EXP_END.
8422 */
8423 if (array[maxidx] != IPF_EXP_END) {
8424 return -1;
8425 }
8426
8427 for (i = 1; i < maxidx; ) {
8428 e = (ipfexp_t *)(array + i);
8429
8430 /*
8431 * The length of the bits to check must be at least 1
8432 * (or else there is nothing to comapre with!) and it
8433 * cannot exceed the length of the data present.
8434 */
8435 if ((e->ipfe_size < 1 ) ||
8436 (e->ipfe_size + i > maxidx)) {
8437 return -1;
8438 }
8439 i += e->ipfe_size;
8440 }
8441 return 0;
8442 }
8443
8444
8445 /* ------------------------------------------------------------------------ */
8446 /* Function: ipf_fr_matcharray */
8447 /* Returns: int - 0 = match failed, else positive match */
8448 /* Parameters: fin(I) - pointer to packet information */
8449 /* array(I) - pointer to matching array */
8450 /* */
8451 /* This function is used to apply a matching array against a packet and */
8452 /* return an indication of whether or not the packet successfully matches */
8453 /* all of the commands in it. */
8454 /* ------------------------------------------------------------------------ */
8455 static int
8456 ipf_fr_matcharray(fr_info_t *fin, int *array)
8457 {
8458 int i, n, *x, rv, p;
8459 ipfexp_t *e;
8460
8461 rv = 0;
8462 n = array[0];
8463 x = array + 1;
8464
8465 for (; n > 0; x += 3 + x[3], rv = 0) {
8466 e = (ipfexp_t *)x;
8467 if (e->ipfe_cmd == IPF_EXP_END)
8468 break;
8469 n -= e->ipfe_size;
8470
8471 /*
8472 * The upper 16 bits currently store the protocol value.
8473 * This is currently used with TCP and UDP port compares and
8474 * allows "tcp.port = 80" without requiring an explicit
8475 " "ip.pr = tcp" first.
8476 */
8477 p = e->ipfe_cmd >> 16;
8478 if ((p != 0) && (p != fin->fin_p))
8479 break;
8480
8481 switch (e->ipfe_cmd)
8482 {
8483 case IPF_EXP_IP_PR :
8484 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8485 rv |= (fin->fin_p == e->ipfe_arg0[i]);
8486 }
8487 break;
8488
8489 case IPF_EXP_IP_SRCADDR :
8490 if (fin->fin_v != 4)
8491 break;
8492 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8493 rv |= ((fin->fin_saddr &
8494 e->ipfe_arg0[i * 2 + 1]) ==
8495 e->ipfe_arg0[i * 2]);
8496 }
8497 break;
8498
8499 case IPF_EXP_IP_DSTADDR :
8500 if (fin->fin_v != 4)
8501 break;
8502 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8503 rv |= ((fin->fin_daddr &
8504 e->ipfe_arg0[i * 2 + 1]) ==
8505 e->ipfe_arg0[i * 2]);
8506 }
8507 break;
8508
8509 case IPF_EXP_IP_ADDR :
8510 if (fin->fin_v != 4)
8511 break;
8512 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8513 rv |= ((fin->fin_saddr &
8514 e->ipfe_arg0[i * 2 + 1]) ==
8515 e->ipfe_arg0[i * 2]) ||
8516 ((fin->fin_daddr &
8517 e->ipfe_arg0[i * 2 + 1]) ==
8518 e->ipfe_arg0[i * 2]);
8519 }
8520 break;
8521
8522 #ifdef USE_INET6
8523 case IPF_EXP_IP6_SRCADDR :
8524 if (fin->fin_v != 6)
8525 break;
8526 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8527 rv |= IP6_MASKEQ(&fin->fin_src6,
8528 &e->ipfe_arg0[i * 8 + 4],
8529 &e->ipfe_arg0[i * 8]);
8530 }
8531 break;
8532
8533 case IPF_EXP_IP6_DSTADDR :
8534 if (fin->fin_v != 6)
8535 break;
8536 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8537 rv |= IP6_MASKEQ(&fin->fin_dst6,
8538 &e->ipfe_arg0[i * 8 + 4],
8539 &e->ipfe_arg0[i * 8]);
8540 }
8541 break;
8542
8543 case IPF_EXP_IP6_ADDR :
8544 if (fin->fin_v != 6)
8545 break;
8546 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8547 rv |= IP6_MASKEQ(&fin->fin_src6,
8548 &e->ipfe_arg0[i * 8 + 4],
8549 &e->ipfe_arg0[i * 8]) ||
8550 IP6_MASKEQ(&fin->fin_dst6,
8551 &e->ipfe_arg0[i * 8 + 4],
8552 &e->ipfe_arg0[i * 8]);
8553 }
8554 break;
8555 #endif
8556
8557 case IPF_EXP_UDP_PORT :
8558 case IPF_EXP_TCP_PORT :
8559 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8560 rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8561 (fin->fin_dport == e->ipfe_arg0[i]);
8562 }
8563 break;
8564
8565 case IPF_EXP_UDP_SPORT :
8566 case IPF_EXP_TCP_SPORT :
8567 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8568 rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8569 }
8570 break;
8571
8572 case IPF_EXP_UDP_DPORT :
8573 case IPF_EXP_TCP_DPORT :
8574 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8575 rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8576 }
8577 break;
8578
8579 case IPF_EXP_TCP_FLAGS :
8580 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8581 rv |= ((fin->fin_tcpf &
8582 e->ipfe_arg0[i * 2 + 1]) ==
8583 e->ipfe_arg0[i * 2]);
8584 }
8585 break;
8586 }
8587 rv ^= e->ipfe_not;
8588
8589 if (rv == 0)
8590 break;
8591 }
8592
8593 return rv;
8594 }
8595
8596
8597 /* ------------------------------------------------------------------------ */
8598 /* Function: ipf_queueflush */
8599 /* Returns: int - number of entries flushed (0 = none) */
8600 /* Parameters: softc(I) - pointer to soft context main structure */
8601 /* deletefn(I) - function to call to delete entry */
8602 /* ipfqs(I) - top of the list of ipf internal queues */
8603 /* userqs(I) - top of the list of user defined timeouts */
8604 /* */
8605 /* This fucntion gets called when the state/NAT hash tables fill up and we */
8606 /* need to try a bit harder to free up some space. The algorithm used here */
8607 /* split into two parts but both halves have the same goal: to reduce the */
8608 /* number of connections considered to be "active" to the low watermark. */
8609 /* There are two steps in doing this: */
8610 /* 1) Remove any TCP connections that are already considered to be "closed" */
8611 /* but have not yet been removed from the state table. The two states */
8612 /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */
8613 /* candidates for this style of removal. If freeing up entries in */
8614 /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */
8615 /* we do not go on to step 2. */
8616 /* */
8617 /* 2) Look for the oldest entries on each timeout queue and free them if */
8618 /* they are within the given window we are considering. Where the */
8619 /* window starts and the steps taken to increase its size depend upon */
8620 /* how long ipf has been running (ipf_ticks.) Anything modified in the */
8621 /* last 30 seconds is not touched. */
8622 /* touched */
8623 /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */
8624 /* | | | | | | */
8625 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8626 /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */
8627 /* */
8628 /* Points to note: */
8629 /* - tqe_die is the time, in the future, when entries die. */
8630 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8631 /* ticks. */
8632 /* - tqe_touched is when the entry was last used by NAT/state */
8633 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */
8634 /* ipf_ticks any given timeout queue and vice versa. */
8635 /* - both tqe_die and tqe_touched increase over time */
8636 /* - timeout queues are sorted with the highest value of tqe_die at the */
8637 /* bottom and therefore the smallest values of each are at the top */
8638 /* - the pointer passed in as ipfqs should point to an array of timeout */
8639 /* queues representing each of the TCP states */
8640 /* */
8641 /* We start by setting up a maximum range to scan for things to move of */
8642 /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */
8643 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8644 /* we start again with a new value for "iend" and "istart". This is */
8645 /* continued until we either finish the scan of 30 second intervals or the */
8646 /* low water mark is reached. */
8647 /* ------------------------------------------------------------------------ */
8648 int
8649 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8650 ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8651 {
8652 u_long interval, istart, iend;
8653 ipftq_t *ifq, *ifqnext;
8654 ipftqent_t *tqe, *tqn;
8655 int removed = 0;
8656
8657 for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8658 tqn = tqe->tqe_next;
8659 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8660 removed++;
8661 }
8662 if ((*activep * 100 / size) > low) {
8663 for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8664 ((tqe = tqn) != NULL); ) {
8665 tqn = tqe->tqe_next;
8666 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8667 removed++;
8668 }
8669 }
8670
8671 if ((*activep * 100 / size) <= low) {
8672 return removed;
8673 }
8674
8675 /*
8676 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8677 * used then the operations are upgraded to floating point
8678 * and kernels don't like floating point...
8679 */
8680 if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8681 istart = IPF_TTLVAL(86400 * 4);
8682 interval = IPF_TTLVAL(43200);
8683 } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8684 istart = IPF_TTLVAL(43200);
8685 interval = IPF_TTLVAL(1800);
8686 } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8687 istart = IPF_TTLVAL(1800);
8688 interval = IPF_TTLVAL(30);
8689 } else {
8690 return 0;
8691 }
8692 if (istart > softc->ipf_ticks) {
8693 if (softc->ipf_ticks - interval < interval)
8694 istart = interval;
8695 else
8696 istart = (softc->ipf_ticks / interval) * interval;
8697 }
8698
8699 iend = softc->ipf_ticks - interval;
8700
8701 while ((*activep * 100 / size) > low) {
8702 u_long try;
8703
8704 try = softc->ipf_ticks - istart;
8705
8706 for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8707 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8708 if (try < tqe->tqe_touched)
8709 break;
8710 tqn = tqe->tqe_next;
8711 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8712 removed++;
8713 }
8714 }
8715
8716 for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8717 ifqnext = ifq->ifq_next;
8718
8719 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8720 if (try < tqe->tqe_touched)
8721 break;
8722 tqn = tqe->tqe_next;
8723 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8724 removed++;
8725 }
8726 }
8727
8728 if (try >= iend) {
8729 if (interval == IPF_TTLVAL(43200)) {
8730 interval = IPF_TTLVAL(1800);
8731 } else if (interval == IPF_TTLVAL(1800)) {
8732 interval = IPF_TTLVAL(30);
8733 } else {
8734 break;
8735 }
8736 if (interval >= softc->ipf_ticks)
8737 break;
8738
8739 iend = softc->ipf_ticks - interval;
8740 }
8741 istart -= interval;
8742 }
8743
8744 return removed;
8745 }
8746
8747
8748 /* ------------------------------------------------------------------------ */
8749 /* Function: ipf_deliverlocal */
8750 /* Returns: int - 1 = local address, 0 = non-local address */
8751 /* Parameters: softc(I) - pointer to soft context main structure */
8752 /* ipversion(I) - IP protocol version (4 or 6) */
8753 /* ifp(I) - network interface pointer */
8754 /* ipaddr(I) - IPv4/6 destination address */
8755 /* */
8756 /* This fucntion is used to determine in the address "ipaddr" belongs to */
8757 /* the network interface represented by ifp. */
8758 /* ------------------------------------------------------------------------ */
8759 int
8760 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8761 i6addr_t *ipaddr)
8762 {
8763 i6addr_t addr;
8764 int islocal = 0;
8765
8766 if (ipversion == 4) {
8767 if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8768 if (addr.in4.s_addr == ipaddr->in4.s_addr)
8769 islocal = 1;
8770 }
8771
8772 #ifdef USE_INET6
8773 } else if (ipversion == 6) {
8774 if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8775 if (IP6_EQ(&addr, ipaddr))
8776 islocal = 1;
8777 }
8778 #endif
8779 }
8780
8781 return islocal;
8782 }
8783
8784
8785 /* ------------------------------------------------------------------------ */
8786 /* Function: ipf_settimeout */
8787 /* Returns: int - 0 = success, -1 = failure */
8788 /* Parameters: softc(I) - pointer to soft context main structure */
8789 /* t(I) - pointer to tuneable array entry */
8790 /* p(I) - pointer to values passed in to apply */
8791 /* */
8792 /* This function is called to set the timeout values for each distinct */
8793 /* queue timeout that is available. When called, it calls into both the */
8794 /* state and NAT code, telling them to update their timeout queues. */
8795 /* ------------------------------------------------------------------------ */
8796 static int
8797 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8798 ipftuneval_t *p)
8799 {
8800
8801 /*
8802 * ipf_interror should be set by the functions called here, not
8803 * by this function - it's just a middle man.
8804 */
8805 if (ipf_state_settimeout(softc, t, p) == -1)
8806 return -1;
8807 if (ipf_nat_settimeout(softc, t, p) == -1)
8808 return -1;
8809 return 0;
8810 }
8811
8812
8813 /* ------------------------------------------------------------------------ */
8814 /* Function: ipf_apply_timeout */
8815 /* Returns: int - 0 = success, -1 = failure */
8816 /* Parameters: head(I) - pointer to tuneable array entry */
8817 /* seconds(I) - pointer to values passed in to apply */
8818 /* */
8819 /* This function applies a timeout of "seconds" to the timeout queue that */
8820 /* is pointed to by "head". All entries on this list have an expiration */
8821 /* set to be the current tick value of ipf plus the ttl. Given that this */
8822 /* function should only be called when the delta is non-zero, the task is */
8823 /* to walk the entire list and apply the change. The sort order will not */
8824 /* change. The only catch is that this is O(n) across the list, so if the */
8825 /* queue has lots of entries (10s of thousands or 100s of thousands), it */
8826 /* could take a relatively long time to work through them all. */
8827 /* ------------------------------------------------------------------------ */
8828 void
8829 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8830 {
8831 u_int oldtimeout, newtimeout;
8832 ipftqent_t *tqe;
8833 int delta;
8834
8835 MUTEX_ENTER(&head->ifq_lock);
8836 oldtimeout = head->ifq_ttl;
8837 newtimeout = IPF_TTLVAL(seconds);
8838 delta = oldtimeout - newtimeout;
8839
8840 head->ifq_ttl = newtimeout;
8841
8842 for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8843 tqe->tqe_die += delta;
8844 }
8845 MUTEX_EXIT(&head->ifq_lock);
8846 }
8847
8848
8849 /* ------------------------------------------------------------------------ */
8850 /* Function: ipf_settimeout_tcp */
8851 /* Returns: int - 0 = successfully applied, -1 = failed */
8852 /* Parameters: t(I) - pointer to tuneable to change */
8853 /* p(I) - pointer to new timeout information */
8854 /* tab(I) - pointer to table of TCP queues */
8855 /* */
8856 /* This function applies the new timeout (p) to the TCP tunable (t) and */
8857 /* updates all of the entries on the relevant timeout queue by calling */
8858 /* ipf_apply_timeout(). */
8859 /* ------------------------------------------------------------------------ */
8860 int
8861 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8862 {
8863 if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8864 !strcmp(t->ipft_name, "tcp_established")) {
8865 ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8866 } else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8867 ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8868 } else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8869 ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8870 } else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8871 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8872 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8873 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8874 } else if (!strcmp(t->ipft_name, "tcp_listen")) {
8875 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8876 } else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8877 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8878 } else if (!strcmp(t->ipft_name, "tcp_closing")) {
8879 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8880 } else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8881 ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8882 } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8883 ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8884 } else if (!strcmp(t->ipft_name, "tcp_closed")) {
8885 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8886 } else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8887 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8888 } else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8889 ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8890 } else {
8891 /*
8892 * ipf_interror isn't set here because it should be set
8893 * by whatever called this function.
8894 */
8895 return -1;
8896 }
8897 return 0;
8898 }
8899
8900
8901 /* ------------------------------------------------------------------------ */
8902 /* Function: ipf_main_soft_create */
8903 /* Returns: NULL = failure, else success */
8904 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8905 /* */
8906 /* Create the foundation soft context structure. In circumstances where it */
8907 /* is not required to dynamically allocate the context, a pointer can be */
8908 /* passed in (rather than NULL) to a structure to be initialised. */
8909 /* The main thing of interest is that a number of locks are initialised */
8910 /* here instead of in the where might be expected - in the relevant create */
8911 /* function elsewhere. This is done because the current locking design has */
8912 /* some areas where these locks are used outside of their module. */
8913 /* Possibly the most important exercise that is done here is setting of all */
8914 /* the timeout values, allowing them to be changed before init(). */
8915 /* ------------------------------------------------------------------------ */
8916 void *
8917 ipf_main_soft_create(void *arg)
8918 {
8919 ipf_main_softc_t *softc;
8920
8921 if (arg == NULL) {
8922 KMALLOC(softc, ipf_main_softc_t *);
8923 if (softc == NULL)
8924 return NULL;
8925 } else {
8926 softc = arg;
8927 }
8928
8929 bzero((char *)softc, sizeof(*softc));
8930
8931 /*
8932 * This serves as a flag as to whether or not the softc should be
8933 * free'd when _destroy is called.
8934 */
8935 softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
8936
8937 softc->ipf_tuners = ipf_tune_array_copy(softc,
8938 sizeof(ipf_main_tuneables),
8939 ipf_main_tuneables);
8940 if (softc->ipf_tuners == NULL) {
8941 ipf_main_soft_destroy(softc);
8942 return NULL;
8943 }
8944
8945 MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
8946 MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
8947 RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
8948 RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
8949 RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
8950 RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
8951 RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
8952 RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
8953 RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
8954
8955 softc->ipf_token_head = NULL;
8956 softc->ipf_token_tail = &softc->ipf_token_head;
8957
8958 softc->ipf_tcpidletimeout = FIVE_DAYS;
8959 softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
8960 softc->ipf_tcplastack = IPF_TTLVAL(30);
8961 softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
8962 softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
8963 softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
8964 softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
8965 softc->ipf_tcpclosed = IPF_TTLVAL(30);
8966 softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
8967 softc->ipf_udptimeout = IPF_TTLVAL(120);
8968 softc->ipf_udpacktimeout = IPF_TTLVAL(12);
8969 softc->ipf_icmptimeout = IPF_TTLVAL(60);
8970 softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
8971 softc->ipf_iptimeout = IPF_TTLVAL(60);
8972
8973 #if defined(IPFILTER_DEFAULT_BLOCK)
8974 softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
8975 #else
8976 softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
8977 #endif
8978 softc->ipf_minttl = 4;
8979 softc->ipf_icmpminfragmtu = 68;
8980 softc->ipf_flags = IPF_LOGGING;
8981
8982 return softc;
8983 }
8984
8985 /* ------------------------------------------------------------------------ */
8986 /* Function: ipf_main_soft_init */
8987 /* Returns: 0 = success, -1 = failure */
8988 /* Parameters: softc(I) - pointer to soft context main structure */
8989 /* */
8990 /* A null-op function that exists as a placeholder so that the flow in */
8991 /* other functions is obvious. */
8992 /* ------------------------------------------------------------------------ */
8993 /*ARGSUSED*/
8994 int
8995 ipf_main_soft_init(ipf_main_softc_t *softc)
8996 {
8997 return 0;
8998 }
8999
9000
9001 /* ------------------------------------------------------------------------ */
9002 /* Function: ipf_main_soft_destroy */
9003 /* Returns: void */
9004 /* Parameters: softc(I) - pointer to soft context main structure */
9005 /* */
9006 /* Undo everything that we did in ipf_main_soft_create. */
9007 /* */
9008 /* The most important check that needs to be made here is whether or not */
9009 /* the structure was allocated by ipf_main_soft_create() by checking what */
9010 /* value is stored in ipf_dynamic_main. */
9011 /* ------------------------------------------------------------------------ */
9012 /*ARGSUSED*/
9013 void
9014 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9015 {
9016
9017 RW_DESTROY(&softc->ipf_frag);
9018 RW_DESTROY(&softc->ipf_poolrw);
9019 RW_DESTROY(&softc->ipf_nat);
9020 RW_DESTROY(&softc->ipf_state);
9021 RW_DESTROY(&softc->ipf_tokens);
9022 RW_DESTROY(&softc->ipf_mutex);
9023 RW_DESTROY(&softc->ipf_global);
9024 MUTEX_DESTROY(&softc->ipf_timeoutlock);
9025 MUTEX_DESTROY(&softc->ipf_rw);
9026
9027 if (softc->ipf_tuners != NULL) {
9028 KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9029 }
9030 if (softc->ipf_dynamic_softc == 1) {
9031 KFREE(softc);
9032 }
9033 }
9034
9035
9036 /* ------------------------------------------------------------------------ */
9037 /* Function: ipf_main_soft_fini */
9038 /* Returns: 0 = success, -1 = failure */
9039 /* Parameters: softc(I) - pointer to soft context main structure */
9040 /* */
9041 /* Clean out the rules which have been added since _init was last called, */
9042 /* the only dynamic part of the mainline. */
9043 /* ------------------------------------------------------------------------ */
9044 int
9045 ipf_main_soft_fini(ipf_main_softc_t *softc)
9046 {
9047 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9048 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9049 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9050 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9051
9052 return 0;
9053 }
9054
9055
9056 /* ------------------------------------------------------------------------ */
9057 /* Function: ipf_main_load */
9058 /* Returns: 0 = success, -1 = failure */
9059 /* Parameters: none */
9060 /* */
9061 /* Handle global initialisation that needs to be done for the base part of */
9062 /* IPFilter. At present this just amounts to initialising some ICMP lookup */
9063 /* arrays that get used by the state/NAT code. */
9064 /* ------------------------------------------------------------------------ */
9065 int
9066 ipf_main_load(void)
9067 {
9068 int i;
9069
9070 /* fill icmp reply type table */
9071 for (i = 0; i <= ICMP_MAXTYPE; i++)
9072 icmpreplytype4[i] = -1;
9073 icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9074 icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9075 icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9076 icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9077
9078 #ifdef USE_INET6
9079 /* fill icmp reply type table */
9080 for (i = 0; i <= ICMP6_MAXTYPE; i++)
9081 icmpreplytype6[i] = -1;
9082 icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9083 icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9084 icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9085 icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9086 icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9087 #endif
9088
9089 return 0;
9090 }
9091
9092
9093 /* ------------------------------------------------------------------------ */
9094 /* Function: ipf_main_unload */
9095 /* Returns: 0 = success, -1 = failure */
9096 /* Parameters: none */
9097 /* */
9098 /* A null-op function that exists as a placeholder so that the flow in */
9099 /* other functions is obvious. */
9100 /* ------------------------------------------------------------------------ */
9101 int
9102 ipf_main_unload(void)
9103 {
9104 return 0;
9105 }
9106
9107
9108 /* ------------------------------------------------------------------------ */
9109 /* Function: ipf_load_all */
9110 /* Returns: 0 = success, -1 = failure */
9111 /* Parameters: none */
9112 /* */
9113 /* Work through all of the subsystems inside IPFilter and call the load */
9114 /* function for each in an order that won't lead to a crash :) */
9115 /* ------------------------------------------------------------------------ */
9116 int
9117 ipf_load_all(void)
9118 {
9119 if (ipf_main_load() == -1)
9120 return -1;
9121
9122 if (ipf_state_main_load() == -1)
9123 return -1;
9124
9125 if (ipf_nat_main_load() == -1)
9126 return -1;
9127
9128 if (ipf_frag_main_load() == -1)
9129 return -1;
9130
9131 if (ipf_auth_main_load() == -1)
9132 return -1;
9133
9134 if (ipf_proxy_main_load() == -1)
9135 return -1;
9136
9137 return 0;
9138 }
9139
9140
9141 /* ------------------------------------------------------------------------ */
9142 /* Function: ipf_unload_all */
9143 /* Returns: 0 = success, -1 = failure */
9144 /* Parameters: none */
9145 /* */
9146 /* Work through all of the subsystems inside IPFilter and call the unload */
9147 /* function for each in an order that won't lead to a crash :) */
9148 /* ------------------------------------------------------------------------ */
9149 int
9150 ipf_unload_all(void)
9151 {
9152 if (ipf_proxy_main_unload() == -1)
9153 return -1;
9154
9155 if (ipf_auth_main_unload() == -1)
9156 return -1;
9157
9158 if (ipf_frag_main_unload() == -1)
9159 return -1;
9160
9161 if (ipf_nat_main_unload() == -1)
9162 return -1;
9163
9164 if (ipf_state_main_unload() == -1)
9165 return -1;
9166
9167 if (ipf_main_unload() == -1)
9168 return -1;
9169
9170 return 0;
9171 }
9172
9173
9174 /* ------------------------------------------------------------------------ */
9175 /* Function: ipf_create_all */
9176 /* Returns: NULL = failure, else success */
9177 /* Parameters: arg(I) - pointer to soft context main structure */
9178 /* */
9179 /* Work through all of the subsystems inside IPFilter and call the create */
9180 /* function for each in an order that won't lead to a crash :) */
9181 /* ------------------------------------------------------------------------ */
9182 ipf_main_softc_t *
9183 ipf_create_all(void *arg)
9184 {
9185 ipf_main_softc_t *softc;
9186
9187 softc = ipf_main_soft_create(arg);
9188 if (softc == NULL)
9189 return NULL;
9190
9191 #ifdef IPFILTER_LOG
9192 softc->ipf_log_soft = ipf_log_soft_create(softc);
9193 if (softc->ipf_log_soft == NULL) {
9194 ipf_destroy_all(softc);
9195 return NULL;
9196 }
9197 #endif
9198
9199 softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9200 if (softc->ipf_lookup_soft == NULL) {
9201 ipf_destroy_all(softc);
9202 return NULL;
9203 }
9204
9205 softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9206 if (softc->ipf_sync_soft == NULL) {
9207 ipf_destroy_all(softc);
9208 return NULL;
9209 }
9210
9211 softc->ipf_state_soft = ipf_state_soft_create(softc);
9212 if (softc->ipf_state_soft == NULL) {
9213 ipf_destroy_all(softc);
9214 return NULL;
9215 }
9216
9217 softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9218 if (softc->ipf_nat_soft == NULL) {
9219 ipf_destroy_all(softc);
9220 return NULL;
9221 }
9222
9223 softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9224 if (softc->ipf_frag_soft == NULL) {
9225 ipf_destroy_all(softc);
9226 return NULL;
9227 }
9228
9229 softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9230 if (softc->ipf_auth_soft == NULL) {
9231 ipf_destroy_all(softc);
9232 return NULL;
9233 }
9234
9235 softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9236 if (softc->ipf_proxy_soft == NULL) {
9237 ipf_destroy_all(softc);
9238 return NULL;
9239 }
9240
9241 return softc;
9242 }
9243
9244
9245 /* ------------------------------------------------------------------------ */
9246 /* Function: ipf_destroy_all */
9247 /* Returns: void */
9248 /* Parameters: softc(I) - pointer to soft context main structure */
9249 /* */
9250 /* Work through all of the subsystems inside IPFilter and call the destroy */
9251 /* function for each in an order that won't lead to a crash :) */
9252 /* */
9253 /* Every one of these functions is expected to succeed, so there is no */
9254 /* checking of return values. */
9255 /* ------------------------------------------------------------------------ */
9256 void
9257 ipf_destroy_all(ipf_main_softc_t *softc)
9258 {
9259
9260 if (softc->ipf_state_soft != NULL) {
9261 ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9262 softc->ipf_state_soft = NULL;
9263 }
9264
9265 if (softc->ipf_nat_soft != NULL) {
9266 ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9267 softc->ipf_nat_soft = NULL;
9268 }
9269
9270 if (softc->ipf_frag_soft != NULL) {
9271 ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9272 softc->ipf_frag_soft = NULL;
9273 }
9274
9275 if (softc->ipf_auth_soft != NULL) {
9276 ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9277 softc->ipf_auth_soft = NULL;
9278 }
9279
9280 if (softc->ipf_proxy_soft != NULL) {
9281 ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9282 softc->ipf_proxy_soft = NULL;
9283 }
9284
9285 if (softc->ipf_sync_soft != NULL) {
9286 ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9287 softc->ipf_sync_soft = NULL;
9288 }
9289
9290 if (softc->ipf_lookup_soft != NULL) {
9291 ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9292 softc->ipf_lookup_soft = NULL;
9293 }
9294
9295 #ifdef IPFILTER_LOG
9296 if (softc->ipf_log_soft != NULL) {
9297 ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9298 softc->ipf_log_soft = NULL;
9299 }
9300 #endif
9301
9302 ipf_main_soft_destroy(softc);
9303 }
9304
9305
9306 /* ------------------------------------------------------------------------ */
9307 /* Function: ipf_init_all */
9308 /* Returns: 0 = success, -1 = failure */
9309 /* Parameters: softc(I) - pointer to soft context main structure */
9310 /* */
9311 /* Work through all of the subsystems inside IPFilter and call the init */
9312 /* function for each in an order that won't lead to a crash :) */
9313 /* ------------------------------------------------------------------------ */
9314 int
9315 ipf_init_all(ipf_main_softc_t *softc)
9316 {
9317
9318 if (ipf_main_soft_init(softc) == -1)
9319 return -1;
9320
9321 #ifdef IPFILTER_LOG
9322 if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9323 return -1;
9324 #endif
9325
9326 if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9327 return -1;
9328
9329 if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9330 return -1;
9331
9332 if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9333 return -1;
9334
9335 if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9336 return -1;
9337
9338 if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9339 return -1;
9340
9341 if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9342 return -1;
9343
9344 if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9345 return -1;
9346
9347 return 0;
9348 }
9349
9350
9351 /* ------------------------------------------------------------------------ */
9352 /* Function: ipf_fini_all */
9353 /* Returns: 0 = success, -1 = failure */
9354 /* Parameters: softc(I) - pointer to soft context main structure */
9355 /* */
9356 /* Work through all of the subsystems inside IPFilter and call the fini */
9357 /* function for each in an order that won't lead to a crash :) */
9358 /* ------------------------------------------------------------------------ */
9359 int
9360 ipf_fini_all(ipf_main_softc_t *softc)
9361 {
9362
9363 ipf_token_flush(softc);
9364
9365 if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9366 return -1;
9367
9368 if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9369 return -1;
9370
9371 if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9372 return -1;
9373
9374 if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9375 return -1;
9376
9377 if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9378 return -1;
9379
9380 if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9381 return -1;
9382
9383 if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9384 return -1;
9385
9386 #ifdef IPFILTER_LOG
9387 if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9388 return -1;
9389 #endif
9390
9391 if (ipf_main_soft_fini(softc) == -1)
9392 return -1;
9393
9394 return 0;
9395 }
9396
9397
9398 /* ------------------------------------------------------------------------ */
9399 /* Function: ipf_rule_expire */
9400 /* Returns: Nil */
9401 /* Parameters: softc(I) - pointer to soft context main structure */
9402 /* */
9403 /* At present this function exists just to support temporary addition of */
9404 /* firewall rules. Both inactive and active lists are scanned for items to */
9405 /* purge, as by rights, the expiration is computed as soon as the rule is */
9406 /* loaded in. */
9407 /* ------------------------------------------------------------------------ */
9408 void
9409 ipf_rule_expire(ipf_main_softc_t *softc)
9410 {
9411 frentry_t *fr;
9412
9413 if ((softc->ipf_rule_explist[0] == NULL) &&
9414 (softc->ipf_rule_explist[1] == NULL))
9415 return;
9416
9417 WRITE_ENTER(&softc->ipf_mutex);
9418
9419 while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9420 /*
9421 * Because the list is kept sorted on insertion, the fist
9422 * one that dies in the future means no more work to do.
9423 */
9424 if (fr->fr_die > softc->ipf_ticks)
9425 break;
9426 ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9427 }
9428
9429 while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9430 /*
9431 * Because the list is kept sorted on insertion, the fist
9432 * one that dies in the future means no more work to do.
9433 */
9434 if (fr->fr_die > softc->ipf_ticks)
9435 break;
9436 ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9437 }
9438
9439 RWLOCK_EXIT(&softc->ipf_mutex);
9440 }
9441
9442
9443 static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *);
9444 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9445 i6addr_t *);
9446
9447 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9448
9449
9450 /* ------------------------------------------------------------------------ */
9451 /* Function: ipf_ht_node_cmp */
9452 /* Returns: int - 0 == nodes are the same, .. */
9453 /* Parameters: k1(I) - pointer to first key to compare */
9454 /* k2(I) - pointer to second key to compare */
9455 /* */
9456 /* The "key" for the node is a combination of two fields: the address */
9457 /* family and the address itself. */
9458 /* */
9459 /* Because we're not actually interpreting the address data, it isn't */
9460 /* necessary to convert them to/from network/host byte order. The mask is */
9461 /* just used to remove bits that aren't significant - it doesn't matter */
9462 /* where they are, as long as they're always in the same place. */
9463 /* */
9464 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */
9465 /* this is where individual ones will differ the most - but not true for */
9466 /* for /48's, etc. */
9467 /* ------------------------------------------------------------------------ */
9468 static int
9469 ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2)
9470 {
9471 int i;
9472
9473 i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9474 if (i != 0)
9475 return i;
9476
9477 if (k1->hn_addr.adf_family == AF_INET)
9478 return (k2->hn_addr.adf_addr.in4.s_addr -
9479 k1->hn_addr.adf_addr.in4.s_addr);
9480
9481 i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9482 if (i != 0)
9483 return i;
9484 i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9485 if (i != 0)
9486 return i;
9487 i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9488 if (i != 0)
9489 return i;
9490 i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9491 return i;
9492 }
9493
9494
9495 /* ------------------------------------------------------------------------ */
9496 /* Function: ipf_ht_node_make_key */
9497 /* Returns: Nil */
9498 /* parameters: htp(I) - pointer to address tracking structure */
9499 /* key(I) - where to store masked address for lookup */
9500 /* family(I) - protocol family of address */
9501 /* addr(I) - pointer to network address */
9502 /* */
9503 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9504 /* copy the address passed in into the key structure whilst masking out the */
9505 /* bits that we don't want. */
9506 /* */
9507 /* Because the parser will set ht_netmask to 128 if there is no protocol */
9508 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */
9509 /* have to be wary of that and not allow 32-128 to happen. */
9510 /* ------------------------------------------------------------------------ */
9511 static void
9512 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9513 i6addr_t *addr)
9514 {
9515 key->hn_addr.adf_family = family;
9516 if (family == AF_INET) {
9517 u_32_t mask;
9518 int bits;
9519
9520 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9521 bits = htp->ht_netmask;
9522 if (bits >= 32) {
9523 mask = 0xffffffff;
9524 } else {
9525 mask = htonl(0xffffffff << (32 - bits));
9526 }
9527 key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9528 #ifdef USE_INET6
9529 } else {
9530 int bits = htp->ht_netmask;
9531
9532 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9533 if (bits > 96) {
9534 key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9535 htonl(0xffffffff << (128 - bits));
9536 key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9537 key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9538 key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9539 } else if (bits > 64) {
9540 key->hn_addr.adf_addr.i6[3] = 0;
9541 key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9542 htonl(0xffffffff << (96 - bits));
9543 key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9544 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9545 } else if (bits > 32) {
9546 key->hn_addr.adf_addr.i6[3] = 0;
9547 key->hn_addr.adf_addr.i6[2] = 0;
9548 key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9549 htonl(0xffffffff << (64 - bits));
9550 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9551 } else {
9552 key->hn_addr.adf_addr.i6[3] = 0;
9553 key->hn_addr.adf_addr.i6[2] = 0;
9554 key->hn_addr.adf_addr.i6[1] = 0;
9555 key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9556 htonl(0xffffffff << (32 - bits));
9557 }
9558 #endif
9559 }
9560 }
9561
9562
9563 /* ------------------------------------------------------------------------ */
9564 /* Function: ipf_ht_node_add */
9565 /* Returns: int - 0 == success, -1 == failure */
9566 /* Parameters: softc(I) - pointer to soft context main structure */
9567 /* htp(I) - pointer to address tracking structure */
9568 /* family(I) - protocol family of address */
9569 /* addr(I) - pointer to network address */
9570 /* */
9571 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9572 /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9573 /* */
9574 /* After preparing the key with the address information to find, look in */
9575 /* the red-black tree to see if the address is known. A successful call to */
9576 /* this function can mean one of two things: a new node was added to the */
9577 /* tree or a matching node exists and we're able to bump up its activity. */
9578 /* ------------------------------------------------------------------------ */
9579 int
9580 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9581 i6addr_t *addr)
9582 {
9583 host_node_t *h;
9584 host_node_t k;
9585
9586 ipf_ht_node_make_key(htp, &k, family, addr);
9587
9588 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9589 if (h == NULL) {
9590 if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9591 return -1;
9592 KMALLOC(h, host_node_t *);
9593 if (h == NULL) {
9594 DT(ipf_rb_no_mem);
9595 LBUMP(ipf_rb_no_mem);
9596 return -1;
9597 }
9598
9599 /*
9600 * If there was a macro to initialise the RB node then that
9601 * would get used here, but there isn't...
9602 */
9603 bzero((char *)h, sizeof(*h));
9604 h->hn_addr = k.hn_addr;
9605 h->hn_addr.adf_family = k.hn_addr.adf_family;
9606 RBI_INSERT(ipf_rb, &htp->ht_root, h);
9607 htp->ht_cur_nodes++;
9608 } else {
9609 if ((htp->ht_max_per_node != 0) &&
9610 (h->hn_active >= htp->ht_max_per_node)) {
9611 DT(ipf_rb_node_max);
9612 LBUMP(ipf_rb_node_max);
9613 return -1;
9614 }
9615 }
9616
9617 h->hn_active++;
9618
9619 return 0;
9620 }
9621
9622
9623 /* ------------------------------------------------------------------------ */
9624 /* Function: ipf_ht_node_del */
9625 /* Returns: int - 0 == success, -1 == failure */
9626 /* parameters: htp(I) - pointer to address tracking structure */
9627 /* family(I) - protocol family of address */
9628 /* addr(I) - pointer to network address */
9629 /* */
9630 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9631 /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9632 /* */
9633 /* Try and find the address passed in amongst the leaves on this tree to */
9634 /* be friend. If found then drop the active account for that node drops by */
9635 /* one. If that count reaches 0, it is time to free it all up. */
9636 /* ------------------------------------------------------------------------ */
9637 int
9638 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9639 {
9640 host_node_t *h;
9641 host_node_t k;
9642
9643 ipf_ht_node_make_key(htp, &k, family, addr);
9644
9645 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9646 if (h == NULL) {
9647 return -1;
9648 } else {
9649 h->hn_active--;
9650 if (h->hn_active == 0) {
9651 (void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9652 htp->ht_cur_nodes--;
9653 KFREE(h);
9654 }
9655 }
9656
9657 return 0;
9658 }
9659
9660
9661 /* ------------------------------------------------------------------------ */
9662 /* Function: ipf_rb_ht_init */
9663 /* Returns: Nil */
9664 /* Parameters: head(I) - pointer to host tracking structure */
9665 /* */
9666 /* Initialise the host tracking structure to be ready for use above. */
9667 /* ------------------------------------------------------------------------ */
9668 void
9669 ipf_rb_ht_init(host_track_t *head)
9670 {
9671 memset(head, 0, sizeof(*head));
9672 RBI_INIT(ipf_rb, &head->ht_root);
9673 }
9674
9675
9676 /* ------------------------------------------------------------------------ */
9677 /* Function: ipf_rb_ht_freenode */
9678 /* Returns: Nil */
9679 /* Parameters: head(I) - pointer to host tracking structure */
9680 /* arg(I) - additional argument from walk caller */
9681 /* */
9682 /* Free an actual host_node_t structure. */
9683 /* ------------------------------------------------------------------------ */
9684 void
9685 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9686 {
9687 KFREE(node);
9688 }
9689
9690
9691 /* ------------------------------------------------------------------------ */
9692 /* Function: ipf_rb_ht_flush */
9693 /* Returns: Nil */
9694 /* Parameters: head(I) - pointer to host tracking structure */
9695 /* */
9696 /* Remove all of the nodes in the tree tracking hosts by calling a walker */
9697 /* and free'ing each one. */
9698 /* ------------------------------------------------------------------------ */
9699 void
9700 ipf_rb_ht_flush(host_track_t *head)
9701 {
9702 /* XXX - May use node members after freeing the node. */
9703 RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9704 }
9705
9706
9707 /* ------------------------------------------------------------------------ */
9708 /* Function: ipf_slowtimer */
9709 /* Returns: Nil */
9710 /* Parameters: ptr(I) - pointer to main ipf soft context structure */
9711 /* */
9712 /* Slowly expire held state for fragments. Timeouts are set * in */
9713 /* expectation of this being called twice per second. */
9714 /* ------------------------------------------------------------------------ */
9715 void
9716 ipf_slowtimer(ipf_main_softc_t *softc)
9717 {
9718
9719 ipf_token_expire(softc);
9720 ipf_frag_expire(softc);
9721 ipf_state_expire(softc);
9722 ipf_nat_expire(softc);
9723 ipf_auth_expire(softc);
9724 ipf_lookup_expire(softc);
9725 ipf_rule_expire(softc);
9726 ipf_sync_expire(softc);
9727 softc->ipf_ticks++;
9728 # if defined(__OpenBSD__)
9729 timeout_add(&ipf_slowtimer_ch, hz/2);
9730 # endif
9731 }
9732
9733
9734 /* ------------------------------------------------------------------------ */
9735 /* Function: ipf_inet_mask_add */
9736 /* Returns: Nil */
9737 /* Parameters: bits(I) - pointer to nat context information */
9738 /* mtab(I) - pointer to mask hash table structure */
9739 /* */
9740 /* When called, bits represents the mask of a new NAT rule that has just */
9741 /* been added. This function inserts a bitmask into the array of masks to */
9742 /* search when searching for a matching NAT rule for a packet. */
9743 /* Prevention of duplicate masks is achieved by checking the use count for */
9744 /* a given netmask. */
9745 /* ------------------------------------------------------------------------ */
9746 void
9747 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9748 {
9749 u_32_t mask;
9750 int i, j;
9751
9752 mtab->imt4_masks[bits]++;
9753 if (mtab->imt4_masks[bits] > 1)
9754 return;
9755
9756 if (bits == 0)
9757 mask = 0;
9758 else
9759 mask = 0xffffffff << (32 - bits);
9760
9761 for (i = 0; i < 33; i++) {
9762 if (ntohl(mtab->imt4_active[i]) < mask) {
9763 for (j = 32; j > i; j--)
9764 mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9765 mtab->imt4_active[i] = htonl(mask);
9766 break;
9767 }
9768 }
9769 mtab->imt4_max++;
9770 }
9771
9772
9773 /* ------------------------------------------------------------------------ */
9774 /* Function: ipf_inet_mask_del */
9775 /* Returns: Nil */
9776 /* Parameters: bits(I) - number of bits set in the netmask */
9777 /* mtab(I) - pointer to mask hash table structure */
9778 /* */
9779 /* Remove the 32bit bitmask represented by "bits" from the collection of */
9780 /* netmasks stored inside of mtab. */
9781 /* ------------------------------------------------------------------------ */
9782 void
9783 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9784 {
9785 u_32_t mask;
9786 int i, j;
9787
9788 mtab->imt4_masks[bits]--;
9789 if (mtab->imt4_masks[bits] > 0)
9790 return;
9791
9792 mask = htonl(0xffffffff << (32 - bits));
9793 for (i = 0; i < 33; i++) {
9794 if (mtab->imt4_active[i] == mask) {
9795 for (j = i + 1; j < 33; j++)
9796 mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9797 break;
9798 }
9799 }
9800 mtab->imt4_max--;
9801 ASSERT(mtab->imt4_max >= 0);
9802 }
9803
9804
9805 #ifdef USE_INET6
9806 /* ------------------------------------------------------------------------ */
9807 /* Function: ipf_inet6_mask_add */
9808 /* Returns: Nil */
9809 /* Parameters: bits(I) - number of bits set in mask */
9810 /* mask(I) - pointer to mask to add */
9811 /* mtab(I) - pointer to mask hash table structure */
9812 /* */
9813 /* When called, bitcount represents the mask of a IPv6 NAT map rule that */
9814 /* has just been added. This function inserts a bitmask into the array of */
9815 /* masks to search when searching for a matching NAT rule for a packet. */
9816 /* Prevention of duplicate masks is achieved by checking the use count for */
9817 /* a given netmask. */
9818 /* ------------------------------------------------------------------------ */
9819 void
9820 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9821 {
9822 i6addr_t zero;
9823 int i, j;
9824
9825 mtab->imt6_masks[bits]++;
9826 if (mtab->imt6_masks[bits] > 1)
9827 return;
9828
9829 if (bits == 0) {
9830 mask = &zero;
9831 zero.i6[0] = 0;
9832 zero.i6[1] = 0;
9833 zero.i6[2] = 0;
9834 zero.i6[3] = 0;
9835 }
9836
9837 for (i = 0; i < 129; i++) {
9838 if (IP6_LT(&mtab->imt6_active[i], mask)) {
9839 for (j = 128; j > i; j--)
9840 mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9841 mtab->imt6_active[i] = *mask;
9842 break;
9843 }
9844 }
9845 mtab->imt6_max++;
9846 }
9847
9848
9849 /* ------------------------------------------------------------------------ */
9850 /* Function: ipf_inet6_mask_del */
9851 /* Returns: Nil */
9852 /* Parameters: bits(I) - number of bits set in mask */
9853 /* mask(I) - pointer to mask to remove */
9854 /* mtab(I) - pointer to mask hash table structure */
9855 /* */
9856 /* Remove the 128bit bitmask represented by "bits" from the collection of */
9857 /* netmasks stored inside of mtab. */
9858 /* ------------------------------------------------------------------------ */
9859 void
9860 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9861 {
9862 i6addr_t zero;
9863 int i, j;
9864
9865 mtab->imt6_masks[bits]--;
9866 if (mtab->imt6_masks[bits] > 0)
9867 return;
9868
9869 if (bits == 0)
9870 mask = &zero;
9871 zero.i6[0] = 0;
9872 zero.i6[1] = 0;
9873 zero.i6[2] = 0;
9874 zero.i6[3] = 0;
9875
9876 for (i = 0; i < 129; i++) {
9877 if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9878 for (j = i + 1; j < 129; j++) {
9879 mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9880 if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9881 break;
9882 }
9883 break;
9884 }
9885 }
9886 mtab->imt6_max--;
9887 ASSERT(mtab->imt6_max >= 0);
9888 }
9889 #endif
9890