fil.c revision 1.3 1 /* $NetBSD: fil.c,v 1.3 2012/07/22 14:27:51 darrenr Exp $ */
2
3 /*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $
9 *
10 */
11 #if defined(KERNEL) || defined(_KERNEL)
12 # undef KERNEL
13 # undef _KERNEL
14 # define KERNEL 1
15 # define _KERNEL 1
16 #endif
17 #include <sys/errno.h>
18 #include <sys/types.h>
19 #include <sys/param.h>
20 #include <sys/time.h>
21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
22 (__FreeBSD_version >= 220000)
23 # if (__FreeBSD_version >= 400000)
24 # if !defined(IPFILTER_LKM)
25 # include "opt_inet6.h"
26 # endif
27 # if (__FreeBSD_version == 400019)
28 # define CSUM_DELAY_DATA
29 # endif
30 # endif
31 # include <sys/filio.h>
32 #else
33 # include <sys/ioctl.h>
34 #endif
35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
36 # include <sys/filio.h>
37 #endif
38 #if !defined(_AIX51)
39 # include <sys/fcntl.h>
40 #endif
41 #if defined(_KERNEL)
42 # include <sys/systm.h>
43 # include <sys/file.h>
44 #else
45 # include <stdio.h>
46 # include <string.h>
47 # include <stdlib.h>
48 # include <stddef.h>
49 # include <sys/file.h>
50 # define _KERNEL
51 # ifdef __OpenBSD__
52 struct file;
53 # endif
54 # include <sys/uio.h>
55 # undef _KERNEL
56 #endif
57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
58 !defined(linux)
59 # include <sys/mbuf.h>
60 #else
61 # if !defined(linux)
62 # include <sys/byteorder.h>
63 # endif
64 # if (SOLARIS2 < 5) && defined(sun)
65 # include <sys/dditypes.h>
66 # endif
67 #endif
68 #ifdef __hpux
69 # define _NET_ROUTE_INCLUDED
70 #endif
71 #if !defined(linux)
72 # include <sys/protosw.h>
73 #endif
74 #include <sys/socket.h>
75 #include <net/if.h>
76 #ifdef sun
77 # include <net/af.h>
78 #endif
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
83 # include <sys/hashing.h>
84 # include <netinet/in_var.h>
85 #endif
86 #include <netinet/tcp.h>
87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
88 # include <netinet/udp.h>
89 # include <netinet/ip_icmp.h>
90 #endif
91 #ifdef __hpux
92 # undef _NET_ROUTE_INCLUDED
93 #endif
94 #ifdef __osf__
95 # undef _RADIX_H_
96 #endif
97 #include "netinet/ip_compat.h"
98 #ifdef USE_INET6
99 # include <netinet/icmp6.h>
100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
101 # include <netinet6/in6_var.h>
102 # endif
103 #endif
104 #include "netinet/ip_fil.h"
105 #include "netinet/ip_nat.h"
106 #include "netinet/ip_frag.h"
107 #include "netinet/ip_state.h"
108 #include "netinet/ip_proxy.h"
109 #include "netinet/ip_auth.h"
110 #ifdef IPFILTER_SCAN
111 # include "netinet/ip_scan.h"
112 #endif
113 #include "netinet/ip_sync.h"
114 #include "netinet/ip_lookup.h"
115 #include "netinet/ip_pool.h"
116 #include "netinet/ip_htable.h"
117 #ifdef IPFILTER_COMPILED
118 # include "netinet/ip_rules.h"
119 #endif
120 #if defined(IPFILTER_BPF) && defined(_KERNEL)
121 # include <net/bpf.h>
122 #endif
123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
124 # include <sys/malloc.h>
125 #endif
126 #include "netinet/ipl.h"
127
128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
129 # include <sys/callout.h>
130 extern struct callout ipf_slowtimer_ch;
131 #endif
132 #if defined(__OpenBSD__)
133 # include <sys/timeout.h>
134 extern struct timeout ipf_slowtimer_ch;
135 #endif
136 /* END OF INCLUDES */
137
138 #if !defined(lint)
139 #if defined(__NetBSD__)
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.3 2012/07/22 14:27:51 darrenr Exp $");
142 #else
143 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed";
144 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $";
145 #endif
146 #endif
147
148 #ifndef _KERNEL
149 # include "ipf.h"
150 # include "ipt.h"
151 extern int opts;
152 extern int blockreason;
153 #endif /* _KERNEL */
154
155 #define LBUMP(x) softc->x++
156 #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0)
157
158 static INLINE int ipf_check_ipf(fr_info_t *, frentry_t *, int);
159 static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int);
160 static u_32_t ipf_checkripso(u_char *);
161 static u_32_t ipf_decaps(fr_info_t *, u_32_t, int);
162 #ifdef IPFILTER_LOG
163 static frentry_t *ipf_dolog(fr_info_t *, u_32_t *);
164 #endif
165 static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
166 static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int);
167 static ipfunc_t ipf_findfunc(ipfunc_t);
168 static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
169 i6addr_t *, i6addr_t *);
170 static frentry_t *ipf_firewall(fr_info_t *, u_32_t *);
171 static int ipf_fr_matcharray(fr_info_t *, int *);
172 static int ipf_frruleiter(ipf_main_softc_t *, void *, int, void *);
173 static void ipf_funcfini(ipf_main_softc_t *, frentry_t *);;
174 static int ipf_funcinit(ipf_main_softc_t *, frentry_t *);
175 static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
176 ipfgeniter_t *);
177 static void ipf_getstat(ipf_main_softc_t *,
178 struct friostat *, int);
179 static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
180 static void ipf_group_free(frgroup_t *);
181 static int ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *);
182 static int ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *);
183 static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int,
184 frentry_t *, int);
185 static int ipf_portcheck(frpcmp_t *, u_32_t);
186 static INLINE int ipf_pr_ah(fr_info_t *);
187 static INLINE void ipf_pr_esp(fr_info_t *);
188 static INLINE void ipf_pr_gre(fr_info_t *);
189 static INLINE void ipf_pr_udp(fr_info_t *);
190 static INLINE void ipf_pr_tcp(fr_info_t *);
191 static INLINE void ipf_pr_icmp(fr_info_t *);
192 static INLINE void ipf_pr_ipv4hdr(fr_info_t *);
193 static INLINE void ipf_pr_short(fr_info_t *, int);
194 static INLINE int ipf_pr_tcpcommon(fr_info_t *);
195 static INLINE int ipf_pr_udpcommon(fr_info_t *);
196 static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
197 int, int);
198 static void ipf_rule_expire_insert(ipf_main_softc_t *,
199 frentry_t *, int);
200 static int ipf_synclist(ipf_main_softc_t *, frentry_t *, void *);
201 static void ipf_token_flush(ipf_main_softc_t *);
202 static void ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *);
203 static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *, const char *);
204 static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *,
205 void **);
206 static int ipf_updateipid(fr_info_t *);
207 static int ipf_settimeout(struct ipf_main_softc_s *,
208 struct ipftuneable *, ipftuneval_t *);
209
210
211 /*
212 * bit values for identifying presence of individual IP options
213 * All of these tables should be ordered by increasing key value on the left
214 * hand side to allow for binary searching of the array and include a trailer
215 * with a 0 for the bitmask for linear searches to easily find the end with.
216 */
217 static const struct optlist ipopts[20] = {
218 { IPOPT_NOP, 0x000001 },
219 { IPOPT_RR, 0x000002 },
220 { IPOPT_ZSU, 0x000004 },
221 { IPOPT_MTUP, 0x000008 },
222 { IPOPT_MTUR, 0x000010 },
223 { IPOPT_ENCODE, 0x000020 },
224 { IPOPT_TS, 0x000040 },
225 { IPOPT_TR, 0x000080 },
226 { IPOPT_SECURITY, 0x000100 },
227 { IPOPT_LSRR, 0x000200 },
228 { IPOPT_E_SEC, 0x000400 },
229 { IPOPT_CIPSO, 0x000800 },
230 { IPOPT_SATID, 0x001000 },
231 { IPOPT_SSRR, 0x002000 },
232 { IPOPT_ADDEXT, 0x004000 },
233 { IPOPT_VISA, 0x008000 },
234 { IPOPT_IMITD, 0x010000 },
235 { IPOPT_EIP, 0x020000 },
236 { IPOPT_FINN, 0x040000 },
237 { 0, 0x000000 }
238 };
239
240 #ifdef USE_INET6
241 static struct optlist ip6exthdr[] = {
242 { IPPROTO_HOPOPTS, 0x000001 },
243 { IPPROTO_IPV6, 0x000002 },
244 { IPPROTO_ROUTING, 0x000004 },
245 { IPPROTO_FRAGMENT, 0x000008 },
246 { IPPROTO_ESP, 0x000010 },
247 { IPPROTO_AH, 0x000020 },
248 { IPPROTO_NONE, 0x000040 },
249 { IPPROTO_DSTOPTS, 0x000080 },
250 { IPPROTO_MOBILITY, 0x000100 },
251 { 0, 0 }
252 };
253 #endif
254
255 /*
256 * bit values for identifying presence of individual IP security options
257 */
258 static const struct optlist secopt[8] = {
259 { IPSO_CLASS_RES4, 0x01 },
260 { IPSO_CLASS_TOPS, 0x02 },
261 { IPSO_CLASS_SECR, 0x04 },
262 { IPSO_CLASS_RES3, 0x08 },
263 { IPSO_CLASS_CONF, 0x10 },
264 { IPSO_CLASS_UNCL, 0x20 },
265 { IPSO_CLASS_RES2, 0x40 },
266 { IPSO_CLASS_RES1, 0x80 }
267 };
268
269 char ipfilter_version[] = IPL_VERSION;
270
271 int ipf_features = 0
272 #ifdef IPFILTER_LKM
273 | IPF_FEAT_LKM
274 #endif
275 #ifdef IPFILTER_LOG
276 | IPF_FEAT_LOG
277 #endif
278 | IPF_FEAT_LOOKUP
279 #ifdef IPFILTER_BPF
280 | IPF_FEAT_BPF
281 #endif
282 #ifdef IPFILTER_COMPILED
283 | IPF_FEAT_COMPILED
284 #endif
285 #ifdef IPFILTER_CKSUM
286 | IPF_FEAT_CKSUM
287 #endif
288 | IPF_FEAT_SYNC
289 #ifdef IPFILTER_SCAN
290 | IPF_FEAT_SCAN
291 #endif
292 #ifdef USE_INET6
293 | IPF_FEAT_IPV6
294 #endif
295 ;
296
297
298 /*
299 * Table of functions available for use with call rules.
300 */
301 static ipfunc_resolve_t ipf_availfuncs[] = {
302 { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
303 { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
304 { "", NULL, NULL, NULL }
305 };
306
307 static ipftuneable_t ipf_main_tuneables[] = {
308 { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
309 "ipf_flags", 0, 0xffffffff,
310 stsizeof(ipf_main_softc_t, ipf_flags),
311 0, NULL, NULL },
312 { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
313 "active", 0, 0,
314 stsizeof(ipf_main_softc_t, ipf_active),
315 IPFT_RDONLY, NULL, NULL },
316 { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
317 "control_forwarding", 0, 1,
318 stsizeof(ipf_main_softc_t, ipf_control_forwarding),
319 0, NULL, NULL },
320 { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
321 "update_ipid", 0, 1,
322 stsizeof(ipf_main_softc_t, ipf_update_ipid),
323 0, NULL, NULL },
324 { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
325 "chksrc", 0, 1,
326 stsizeof(ipf_main_softc_t, ipf_chksrc),
327 0, NULL, NULL },
328 { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
329 "min_ttl", 0, 1,
330 stsizeof(ipf_main_softc_t, ipf_minttl),
331 0, NULL, NULL },
332 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
333 "icmp_minfragmtu", 0, 1,
334 stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
335 0, NULL, NULL },
336 { { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
337 "default_pass", 0, 0xffffffff,
338 stsizeof(ipf_main_softc_t, ipf_pass),
339 0, NULL, NULL },
340 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
341 "tcp_idle_timeout", 1, 0x7fffffff,
342 stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
343 0, NULL, ipf_settimeout },
344 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
345 "tcp_close_wait", 1, 0x7fffffff,
346 stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
347 0, NULL, ipf_settimeout },
348 { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
349 "tcp_last_ack", 1, 0x7fffffff,
350 stsizeof(ipf_main_softc_t, ipf_tcplastack),
351 0, NULL, ipf_settimeout },
352 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
353 "tcp_timeout", 1, 0x7fffffff,
354 stsizeof(ipf_main_softc_t, ipf_tcptimeout),
355 0, NULL, ipf_settimeout },
356 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
357 "tcp_syn_sent", 1, 0x7fffffff,
358 stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
359 0, NULL, ipf_settimeout },
360 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
361 "tcp_syn_received", 1, 0x7fffffff,
362 stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
363 0, NULL, ipf_settimeout },
364 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
365 "tcp_closed", 1, 0x7fffffff,
366 stsizeof(ipf_main_softc_t, ipf_tcpclosed),
367 0, NULL, ipf_settimeout },
368 { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
369 "tcp_half_closed", 1, 0x7fffffff,
370 stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
371 0, NULL, ipf_settimeout },
372 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
373 "tcp_time_wait", 1, 0x7fffffff,
374 stsizeof(ipf_main_softc_t, ipf_tcptimewait),
375 0, NULL, ipf_settimeout },
376 { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
377 "udp_timeout", 1, 0x7fffffff,
378 stsizeof(ipf_main_softc_t, ipf_udptimeout),
379 0, NULL, ipf_settimeout },
380 { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
381 "udp_ack_timeout", 1, 0x7fffffff,
382 stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
383 0, NULL, ipf_settimeout },
384 { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
385 "icmp_timeout", 1, 0x7fffffff,
386 stsizeof(ipf_main_softc_t, ipf_icmptimeout),
387 0, NULL, ipf_settimeout },
388 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
389 "icmp_ack_timeout", 1, 0x7fffffff,
390 stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
391 0, NULL, ipf_settimeout },
392 { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
393 "ip_timeout", 1, 0x7fffffff,
394 stsizeof(ipf_main_softc_t, ipf_iptimeout),
395 0, NULL, ipf_settimeout },
396 #if defined(INSTANCES) && defined(_KERNEL)
397 { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
398 "intercept_loopback", 0, 1,
399 stsizeof(ipf_main_softc_t, ipf_get_loopback),
400 0, NULL, ipf_set_loopback },
401 #endif
402 { { 0 },
403 NULL, 0, 0,
404 0,
405 0, NULL, NULL }
406 };
407
408
409 /*
410 * The next section of code is a a collection of small routines that set
411 * fields in the fr_info_t structure passed based on properties of the
412 * current packet. There are different routines for the same protocol
413 * for each of IPv4 and IPv6. Adding a new protocol, for which there
414 * will "special" inspection for setup, is now more easily done by adding
415 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
416 * adding more code to a growing switch statement.
417 */
418 #ifdef USE_INET6
419 static INLINE int ipf_pr_ah6(fr_info_t *);
420 static INLINE void ipf_pr_esp6(fr_info_t *);
421 static INLINE void ipf_pr_gre6(fr_info_t *);
422 static INLINE void ipf_pr_udp6(fr_info_t *);
423 static INLINE void ipf_pr_tcp6(fr_info_t *);
424 static INLINE void ipf_pr_icmp6(fr_info_t *);
425 static INLINE void ipf_pr_ipv6hdr(fr_info_t *);
426 static INLINE void ipf_pr_short6(fr_info_t *, int);
427 static INLINE int ipf_pr_hopopts6(fr_info_t *);
428 static INLINE int ipf_pr_mobility6(fr_info_t *);
429 static INLINE int ipf_pr_routing6(fr_info_t *);
430 static INLINE int ipf_pr_dstopts6(fr_info_t *);
431 static INLINE int ipf_pr_fragment6(fr_info_t *);
432 static INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
433
434
435 /* ------------------------------------------------------------------------ */
436 /* Function: ipf_pr_short6 */
437 /* Returns: void */
438 /* Parameters: fin(I) - pointer to packet information */
439 /* xmin(I) - minimum header size */
440 /* */
441 /* IPv6 Only */
442 /* This is function enforces the 'is a packet too short to be legit' rule */
443 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */
444 /* for ipf_pr_short() for more details. */
445 /* ------------------------------------------------------------------------ */
446 static INLINE void
447 ipf_pr_short6(fr_info_t *fin, int xmin)
448 {
449
450 if (fin->fin_dlen < xmin)
451 fin->fin_flx |= FI_SHORT;
452 }
453
454
455 /* ------------------------------------------------------------------------ */
456 /* Function: ipf_pr_ipv6hdr */
457 /* Returns: void */
458 /* Parameters: fin(I) - pointer to packet information */
459 /* */
460 /* IPv6 Only */
461 /* Copy values from the IPv6 header into the fr_info_t struct and call the */
462 /* per-protocol analyzer if it exists. In validating the packet, a protocol*/
463 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
464 /* of that possibility arising. */
465 /* ------------------------------------------------------------------------ */
466 static INLINE void
467 ipf_pr_ipv6hdr(fr_info_t *fin)
468 {
469 ip6_t *ip6 = (ip6_t *)fin->fin_ip;
470 int p, go = 1, i, hdrcount;
471 fr_ip_t *fi = &fin->fin_fi;
472
473 fin->fin_off = 0;
474
475 fi->fi_tos = 0;
476 fi->fi_optmsk = 0;
477 fi->fi_secmsk = 0;
478 fi->fi_auth = 0;
479
480 p = ip6->ip6_nxt;
481 fin->fin_crc = p;
482 fi->fi_ttl = ip6->ip6_hlim;
483 fi->fi_src.in6 = ip6->ip6_src;
484 fin->fin_crc += fi->fi_src.i6[0];
485 fin->fin_crc += fi->fi_src.i6[1];
486 fin->fin_crc += fi->fi_src.i6[2];
487 fin->fin_crc += fi->fi_src.i6[3];
488 fi->fi_dst.in6 = ip6->ip6_dst;
489 fin->fin_crc += fi->fi_dst.i6[0];
490 fin->fin_crc += fi->fi_dst.i6[1];
491 fin->fin_crc += fi->fi_dst.i6[2];
492 fin->fin_crc += fi->fi_dst.i6[3];
493 fin->fin_id = 0;
494 if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
495 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
496
497 hdrcount = 0;
498 while (go && !(fin->fin_flx & FI_SHORT)) {
499 switch (p)
500 {
501 case IPPROTO_UDP :
502 ipf_pr_udp6(fin);
503 go = 0;
504 break;
505
506 case IPPROTO_TCP :
507 ipf_pr_tcp6(fin);
508 go = 0;
509 break;
510
511 case IPPROTO_ICMPV6 :
512 ipf_pr_icmp6(fin);
513 go = 0;
514 break;
515
516 case IPPROTO_GRE :
517 ipf_pr_gre6(fin);
518 go = 0;
519 break;
520
521 case IPPROTO_HOPOPTS :
522 p = ipf_pr_hopopts6(fin);
523 break;
524
525 case IPPROTO_MOBILITY :
526 p = ipf_pr_mobility6(fin);
527 break;
528
529 case IPPROTO_DSTOPTS :
530 p = ipf_pr_dstopts6(fin);
531 break;
532
533 case IPPROTO_ROUTING :
534 p = ipf_pr_routing6(fin);
535 break;
536
537 case IPPROTO_AH :
538 p = ipf_pr_ah6(fin);
539 break;
540
541 case IPPROTO_ESP :
542 ipf_pr_esp6(fin);
543 go = 0;
544 break;
545
546 case IPPROTO_IPV6 :
547 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
548 if (ip6exthdr[i].ol_val == p) {
549 fin->fin_flx |= ip6exthdr[i].ol_bit;
550 break;
551 }
552 go = 0;
553 break;
554
555 case IPPROTO_NONE :
556 go = 0;
557 break;
558
559 case IPPROTO_FRAGMENT :
560 p = ipf_pr_fragment6(fin);
561 /*
562 * Given that the only fragments we want to let through
563 * (where fin_off != 0) are those where the non-first
564 * fragments only have data, we can safely stop looking
565 * at headers if this is a non-leading fragment.
566 */
567 if (fin->fin_off != 0)
568 go = 0;
569 break;
570
571 default :
572 go = 0;
573 break;
574 }
575 hdrcount++;
576
577 /*
578 * It is important to note that at this point, for the
579 * extension headers (go != 0), the entire header may not have
580 * been pulled up when the code gets to this point. This is
581 * only done for "go != 0" because the other header handlers
582 * will all pullup their complete header. The other indicator
583 * of an incomplete packet is that this was just an extension
584 * header.
585 */
586 if ((go != 0) && (p != IPPROTO_NONE) &&
587 (ipf_pr_pullup(fin, 0) == -1)) {
588 p = IPPROTO_NONE;
589 break;
590 }
591 }
592
593 /*
594 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
595 * and destroy whatever packet was here. The caller of this function
596 * expects us to return if there is a problem with ipf_pullup.
597 */
598 if (fin->fin_m == NULL) {
599 ipf_main_softc_t *softc = fin->fin_main_soft;
600
601 LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
602 return;
603 }
604
605 fi->fi_p = p;
606
607 /*
608 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
609 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
610 */
611 if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
612 ipf_main_softc_t *softc = fin->fin_main_soft;
613
614 fin->fin_flx |= FI_BAD;
615 LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
616 LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
617 }
618 }
619
620
621 /* ------------------------------------------------------------------------ */
622 /* Function: ipf_pr_ipv6exthdr */
623 /* Returns: struct ip6_ext * - pointer to the start of the next header */
624 /* or NULL if there is a prolblem. */
625 /* Parameters: fin(I) - pointer to packet information */
626 /* multiple(I) - flag indicating yes/no if multiple occurances */
627 /* of this extension header are allowed. */
628 /* proto(I) - protocol number for this extension header */
629 /* */
630 /* IPv6 Only */
631 /* This function embodies a number of common checks that all IPv6 extension */
632 /* headers must be subjected to. For example, making sure the packet is */
633 /* big enough for it to be in, checking if it is repeated and setting a */
634 /* flag to indicate its presence. */
635 /* ------------------------------------------------------------------------ */
636 static INLINE struct ip6_ext *
637 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
638 {
639 ipf_main_softc_t *softc = fin->fin_main_soft;
640 struct ip6_ext *hdr;
641 u_short shift;
642 int i;
643
644 fin->fin_flx |= FI_V6EXTHDR;
645
646 /* 8 is default length of extension hdr */
647 if ((fin->fin_dlen - 8) < 0) {
648 fin->fin_flx |= FI_SHORT;
649 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
650 return NULL;
651 }
652
653 if (ipf_pr_pullup(fin, 8) == -1) {
654 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
655 return NULL;
656 }
657
658 hdr = fin->fin_dp;
659 switch (proto)
660 {
661 case IPPROTO_FRAGMENT :
662 shift = 8;
663 break;
664 default :
665 shift = 8 + (hdr->ip6e_len << 3);
666 break;
667 }
668
669 if (shift > fin->fin_dlen) { /* Nasty extension header length? */
670 fin->fin_flx |= FI_BAD;
671 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
672 return NULL;
673 }
674
675 fin->fin_dp = (char *)fin->fin_dp + shift;
676 fin->fin_dlen -= shift;
677
678 /*
679 * If we have seen a fragment header, do not set any flags to indicate
680 * the presence of this extension header as it has no impact on the
681 * end result until after it has been defragmented.
682 */
683 if (fin->fin_flx & FI_FRAG)
684 return hdr;
685
686 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
687 if (ip6exthdr[i].ol_val == proto) {
688 /*
689 * Most IPv6 extension headers are only allowed once.
690 */
691 if ((multiple == 0) &&
692 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
693 fin->fin_flx |= FI_BAD;
694 else
695 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
696 break;
697 }
698
699 return hdr;
700 }
701
702
703 /* ------------------------------------------------------------------------ */
704 /* Function: ipf_pr_hopopts6 */
705 /* Returns: int - value of the next header or IPPROTO_NONE if error */
706 /* Parameters: fin(I) - pointer to packet information */
707 /* */
708 /* IPv6 Only */
709 /* This is function checks pending hop by hop options extension header */
710 /* ------------------------------------------------------------------------ */
711 static INLINE int
712 ipf_pr_hopopts6(fr_info_t *fin)
713 {
714 struct ip6_ext *hdr;
715
716 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
717 if (hdr == NULL)
718 return IPPROTO_NONE;
719 return hdr->ip6e_nxt;
720 }
721
722
723 /* ------------------------------------------------------------------------ */
724 /* Function: ipf_pr_mobility6 */
725 /* Returns: int - value of the next header or IPPROTO_NONE if error */
726 /* Parameters: fin(I) - pointer to packet information */
727 /* */
728 /* IPv6 Only */
729 /* This is function checks the IPv6 mobility extension header */
730 /* ------------------------------------------------------------------------ */
731 static INLINE int
732 ipf_pr_mobility6(fr_info_t *fin)
733 {
734 struct ip6_ext *hdr;
735
736 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
737 if (hdr == NULL)
738 return IPPROTO_NONE;
739 return hdr->ip6e_nxt;
740 }
741
742
743 /* ------------------------------------------------------------------------ */
744 /* Function: ipf_pr_routing6 */
745 /* Returns: int - value of the next header or IPPROTO_NONE if error */
746 /* Parameters: fin(I) - pointer to packet information */
747 /* */
748 /* IPv6 Only */
749 /* This is function checks pending routing extension header */
750 /* ------------------------------------------------------------------------ */
751 static INLINE int
752 ipf_pr_routing6(fr_info_t *fin)
753 {
754 struct ip6_routing *hdr;
755
756 hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
757 if (hdr == NULL)
758 return IPPROTO_NONE;
759
760 switch (hdr->ip6r_type)
761 {
762 case 0 :
763 /*
764 * Nasty extension header length?
765 */
766 if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
767 (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
768 ipf_main_softc_t *softc = fin->fin_main_soft;
769
770 fin->fin_flx |= FI_BAD;
771 LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
772 return IPPROTO_NONE;
773 }
774 break;
775
776 default :
777 break;
778 }
779
780 return hdr->ip6r_nxt;
781 }
782
783
784 /* ------------------------------------------------------------------------ */
785 /* Function: ipf_pr_fragment6 */
786 /* Returns: int - value of the next header or IPPROTO_NONE if error */
787 /* Parameters: fin(I) - pointer to packet information */
788 /* */
789 /* IPv6 Only */
790 /* Examine the IPv6 fragment header and extract fragment offset information.*/
791 /* */
792 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
793 /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */
794 /* packets with a fragment header can fit into. They are as follows: */
795 /* */
796 /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */
797 /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */
798 /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */
799 /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */
800 /* 5. [IPV6][0-n EH][FH][data] */
801 /* */
802 /* IPV6 = IPv6 header, FH = Fragment Header, */
803 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
804 /* */
805 /* Packets that match 1, 2, 3 will be dropped as the only reasonable */
806 /* scenario in which they happen is in extreme circumstances that are most */
807 /* likely to be an indication of an attack rather than normal traffic. */
808 /* A type 3 packet may be sent by an attacked after a type 4 packet. There */
809 /* are two rules that can be used to guard against type 3 packets: L4 */
810 /* headers must always be in a packet that has the offset field set to 0 */
811 /* and no packet is allowed to overlay that where offset = 0. */
812 /* ------------------------------------------------------------------------ */
813 static INLINE int
814 ipf_pr_fragment6(fr_info_t *fin)
815 {
816 ipf_main_softc_t *softc = fin->fin_main_soft;
817 struct ip6_frag *frag;
818
819 fin->fin_flx |= FI_FRAG;
820
821 frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
822 if (frag == NULL) {
823 LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
824 return IPPROTO_NONE;
825 }
826
827 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
828 /*
829 * Any fragment that isn't the last fragment must have its
830 * length as a multiple of 8.
831 */
832 if ((fin->fin_plen & 7) != 0)
833 fin->fin_flx |= FI_BAD;
834 }
835
836 fin->fin_fraghdr = frag;
837 fin->fin_id = frag->ip6f_ident;
838 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
839 if (fin->fin_off != 0)
840 fin->fin_flx |= FI_FRAGBODY;
841
842 /*
843 * Jumbograms aren't handled, so the max. length is 64k
844 */
845 if ((fin->fin_off << 3) + fin->fin_dlen > 65535)
846 fin->fin_flx |= FI_BAD;
847
848 /*
849 * We don't know where the transport layer header (or whatever is next
850 * is), as it could be behind destination options (amongst others) so
851 * return the fragment header as the type of packet this is. Note that
852 * this effectively disables the fragment cache for > 1 protocol at a
853 * time.
854 */
855 return frag->ip6f_nxt;
856 }
857
858
859 /* ------------------------------------------------------------------------ */
860 /* Function: ipf_pr_dstopts6 */
861 /* Returns: int - value of the next header or IPPROTO_NONE if error */
862 /* Parameters: fin(I) - pointer to packet information */
863 /* */
864 /* IPv6 Only */
865 /* This is function checks pending destination options extension header */
866 /* ------------------------------------------------------------------------ */
867 static INLINE int
868 ipf_pr_dstopts6(fr_info_t *fin)
869 {
870 ipf_main_softc_t *softc = fin->fin_main_soft;
871 struct ip6_ext *hdr;
872
873 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
874 if (hdr == NULL) {
875 LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
876 return IPPROTO_NONE;
877 }
878 return hdr->ip6e_nxt;
879 }
880
881
882 /* ------------------------------------------------------------------------ */
883 /* Function: ipf_pr_icmp6 */
884 /* Returns: void */
885 /* Parameters: fin(I) - pointer to packet information */
886 /* */
887 /* IPv6 Only */
888 /* This routine is mainly concerned with determining the minimum valid size */
889 /* for an ICMPv6 packet. */
890 /* ------------------------------------------------------------------------ */
891 static INLINE void
892 ipf_pr_icmp6(fr_info_t *fin)
893 {
894 int minicmpsz = sizeof(struct icmp6_hdr);
895 struct icmp6_hdr *icmp6;
896
897 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
898 ipf_main_softc_t *softc = fin->fin_main_soft;
899
900 LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
901 return;
902 }
903
904 if (fin->fin_dlen > 1) {
905 ip6_t *ip6;
906
907 icmp6 = fin->fin_dp;
908
909 fin->fin_data[0] = *(u_short *)icmp6;
910
911 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
912 fin->fin_flx |= FI_ICMPQUERY;
913
914 switch (icmp6->icmp6_type)
915 {
916 case ICMP6_ECHO_REPLY :
917 case ICMP6_ECHO_REQUEST :
918 if (fin->fin_dlen >= 6)
919 fin->fin_data[1] = icmp6->icmp6_id;
920 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
921 break;
922
923 case ICMP6_DST_UNREACH :
924 case ICMP6_PACKET_TOO_BIG :
925 case ICMP6_TIME_EXCEEDED :
926 case ICMP6_PARAM_PROB :
927 fin->fin_flx |= FI_ICMPERR;
928 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
929 if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
930 break;
931
932 if (M_LEN(fin->fin_m) < fin->fin_plen) {
933 if (ipf_coalesce(fin) != 1)
934 return;
935 }
936
937 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
938 return;
939
940 /*
941 * If the destination of this packet doesn't match the
942 * source of the original packet then this packet is
943 * not correct.
944 */
945 icmp6 = fin->fin_dp;
946 ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
947 if (IP6_NEQ(&fin->fin_fi.fi_dst,
948 &ip6->ip6_src))
949 fin->fin_flx |= FI_BAD;
950 break;
951 default :
952 break;
953 }
954 }
955
956 ipf_pr_short6(fin, minicmpsz);
957 if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
958 u_char p = fin->fin_p;
959
960 fin->fin_p = IPPROTO_ICMPV6;
961 ipf_checkv6sum(fin);
962 fin->fin_p = p;
963 }
964 }
965
966
967 /* ------------------------------------------------------------------------ */
968 /* Function: ipf_pr_udp6 */
969 /* Returns: void */
970 /* Parameters: fin(I) - pointer to packet information */
971 /* */
972 /* IPv6 Only */
973 /* Analyse the packet for IPv6/UDP properties. */
974 /* Is not expected to be called for fragmented packets. */
975 /* ------------------------------------------------------------------------ */
976 static INLINE void
977 ipf_pr_udp6(fr_info_t *fin)
978 {
979
980 if (ipf_pr_udpcommon(fin) == 0) {
981 u_char p = fin->fin_p;
982
983 fin->fin_p = IPPROTO_UDP;
984 ipf_checkv6sum(fin);
985 fin->fin_p = p;
986 }
987 }
988
989
990 /* ------------------------------------------------------------------------ */
991 /* Function: ipf_pr_tcp6 */
992 /* Returns: void */
993 /* Parameters: fin(I) - pointer to packet information */
994 /* */
995 /* IPv6 Only */
996 /* Analyse the packet for IPv6/TCP properties. */
997 /* Is not expected to be called for fragmented packets. */
998 /* ------------------------------------------------------------------------ */
999 static INLINE void
1000 ipf_pr_tcp6(fr_info_t *fin)
1001 {
1002
1003 if (ipf_pr_tcpcommon(fin) == 0) {
1004 u_char p = fin->fin_p;
1005
1006 fin->fin_p = IPPROTO_TCP;
1007 ipf_checkv6sum(fin);
1008 fin->fin_p = p;
1009 }
1010 }
1011
1012
1013 /* ------------------------------------------------------------------------ */
1014 /* Function: ipf_pr_esp6 */
1015 /* Returns: void */
1016 /* Parameters: fin(I) - pointer to packet information */
1017 /* */
1018 /* IPv6 Only */
1019 /* Analyse the packet for ESP properties. */
1020 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1021 /* even though the newer ESP packets must also have a sequence number that */
1022 /* is 32bits as well, it is not possible(?) to determine the version from a */
1023 /* simple packet header. */
1024 /* ------------------------------------------------------------------------ */
1025 static INLINE void
1026 ipf_pr_esp6(fr_info_t *fin)
1027 {
1028
1029 if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1030 ipf_main_softc_t *softc = fin->fin_main_soft;
1031
1032 LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1033 return;
1034 }
1035 }
1036
1037
1038 /* ------------------------------------------------------------------------ */
1039 /* Function: ipf_pr_ah6 */
1040 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1041 /* Parameters: fin(I) - pointer to packet information */
1042 /* */
1043 /* IPv6 Only */
1044 /* Analyse the packet for AH properties. */
1045 /* The minimum length is taken to be the combination of all fields in the */
1046 /* header being present and no authentication data (null algorithm used.) */
1047 /* ------------------------------------------------------------------------ */
1048 static INLINE int
1049 ipf_pr_ah6(fr_info_t *fin)
1050 {
1051 authhdr_t *ah;
1052
1053 fin->fin_flx |= FI_AH;
1054
1055 ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1056 if (ah == NULL) {
1057 ipf_main_softc_t *softc = fin->fin_main_soft;
1058
1059 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1060 return IPPROTO_NONE;
1061 }
1062
1063 ipf_pr_short6(fin, sizeof(*ah));
1064
1065 /*
1066 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1067 * enough data to satisfy ah_next (the very first one.)
1068 */
1069 return ah->ah_next;
1070 }
1071
1072
1073 /* ------------------------------------------------------------------------ */
1074 /* Function: ipf_pr_gre6 */
1075 /* Returns: void */
1076 /* Parameters: fin(I) - pointer to packet information */
1077 /* */
1078 /* Analyse the packet for GRE properties. */
1079 /* ------------------------------------------------------------------------ */
1080 static INLINE void
1081 ipf_pr_gre6(fr_info_t *fin)
1082 {
1083 grehdr_t *gre;
1084
1085 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1086 ipf_main_softc_t *softc = fin->fin_main_soft;
1087
1088 LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1089 return;
1090 }
1091
1092 gre = fin->fin_dp;
1093 if (GRE_REV(gre->gr_flags) == 1)
1094 fin->fin_data[0] = gre->gr_call;
1095 }
1096 #endif /* USE_INET6 */
1097
1098
1099 /* ------------------------------------------------------------------------ */
1100 /* Function: ipf_pr_pullup */
1101 /* Returns: int - 0 == pullup succeeded, -1 == failure */
1102 /* Parameters: fin(I) - pointer to packet information */
1103 /* plen(I) - length (excluding L3 header) to pullup */
1104 /* */
1105 /* Short inline function to cut down on code duplication to perform a call */
1106 /* to ipf_pullup to ensure there is the required amount of data, */
1107 /* consecutively in the packet buffer. */
1108 /* */
1109 /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */
1110 /* points to the first byte after the complete layer 3 header, which will */
1111 /* include all of the known extension headers for IPv6 or options for IPv4. */
1112 /* */
1113 /* Since fr_pullup() expects the total length of bytes to be pulled up, it */
1114 /* is necessary to add those we can already assume to be pulled up (fin_dp */
1115 /* - fin_ip) to what is passed through. */
1116 /* ------------------------------------------------------------------------ */
1117 int
1118 ipf_pr_pullup(fr_info_t *fin, int plen)
1119 {
1120 ipf_main_softc_t *softc = fin->fin_main_soft;
1121
1122 if (fin->fin_m != NULL) {
1123 if (fin->fin_dp != NULL)
1124 plen += (char *)fin->fin_dp -
1125 ((char *)fin->fin_ip + fin->fin_hlen);
1126 plen += fin->fin_hlen;
1127 if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1128 #if defined(_KERNEL)
1129 if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1130 DT(ipf_pullup_fail);
1131 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1132 return -1;
1133 }
1134 LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1135 #else
1136 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1137 /*
1138 * Fake ipf_pullup failing
1139 */
1140 fin->fin_reason = FRB_PULLUP;
1141 *fin->fin_mp = NULL;
1142 fin->fin_m = NULL;
1143 fin->fin_ip = NULL;
1144 return -1;
1145 #endif
1146 }
1147 }
1148 return 0;
1149 }
1150
1151
1152 /* ------------------------------------------------------------------------ */
1153 /* Function: ipf_pr_short */
1154 /* Returns: void */
1155 /* Parameters: fin(I) - pointer to packet information */
1156 /* xmin(I) - minimum header size */
1157 /* */
1158 /* Check if a packet is "short" as defined by xmin. The rule we are */
1159 /* applying here is that the packet must not be fragmented within the layer */
1160 /* 4 header. That is, it must not be a fragment that has its offset set to */
1161 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */
1162 /* entire layer 4 header must be present (min). */
1163 /* ------------------------------------------------------------------------ */
1164 static INLINE void
1165 ipf_pr_short(fr_info_t *fin, int xmin)
1166 {
1167
1168 if (fin->fin_off == 0) {
1169 if (fin->fin_dlen < xmin)
1170 fin->fin_flx |= FI_SHORT;
1171 } else if (fin->fin_off < xmin) {
1172 fin->fin_flx |= FI_SHORT;
1173 }
1174 }
1175
1176
1177 /* ------------------------------------------------------------------------ */
1178 /* Function: ipf_pr_icmp */
1179 /* Returns: void */
1180 /* Parameters: fin(I) - pointer to packet information */
1181 /* */
1182 /* IPv4 Only */
1183 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */
1184 /* except extrememly bad packets, both type and code will be present. */
1185 /* The expected minimum size of an ICMP packet is very much dependent on */
1186 /* the type of it. */
1187 /* */
1188 /* XXX - other ICMP sanity checks? */
1189 /* ------------------------------------------------------------------------ */
1190 static INLINE void
1191 ipf_pr_icmp(fr_info_t *fin)
1192 {
1193 ipf_main_softc_t *softc = fin->fin_main_soft;
1194 int minicmpsz = sizeof(struct icmp);
1195 icmphdr_t *icmp;
1196 ip_t *oip;
1197
1198 ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1199
1200 if (fin->fin_off != 0) {
1201 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1202 return;
1203 }
1204
1205 if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1206 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1207 return;
1208 }
1209
1210 icmp = fin->fin_dp;
1211
1212 fin->fin_data[0] = *(u_short *)icmp;
1213 fin->fin_data[1] = icmp->icmp_id;
1214
1215 switch (icmp->icmp_type)
1216 {
1217 case ICMP_ECHOREPLY :
1218 case ICMP_ECHO :
1219 /* Router discovery messaes - RFC 1256 */
1220 case ICMP_ROUTERADVERT :
1221 case ICMP_ROUTERSOLICIT :
1222 fin->fin_flx |= FI_ICMPQUERY;
1223 minicmpsz = ICMP_MINLEN;
1224 break;
1225 /*
1226 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1227 * 3 * timestamp(3 * 4)
1228 */
1229 case ICMP_TSTAMP :
1230 case ICMP_TSTAMPREPLY :
1231 fin->fin_flx |= FI_ICMPQUERY;
1232 minicmpsz = 20;
1233 break;
1234 /*
1235 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1236 * mask(4)
1237 */
1238 case ICMP_IREQ :
1239 case ICMP_IREQREPLY :
1240 case ICMP_MASKREQ :
1241 case ICMP_MASKREPLY :
1242 fin->fin_flx |= FI_ICMPQUERY;
1243 minicmpsz = 12;
1244 break;
1245 /*
1246 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1247 */
1248 case ICMP_UNREACH :
1249 #ifdef icmp_nextmtu
1250 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1251 if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu)
1252 fin->fin_flx |= FI_BAD;
1253 }
1254 #endif
1255 case ICMP_SOURCEQUENCH :
1256 case ICMP_REDIRECT :
1257 case ICMP_TIMXCEED :
1258 case ICMP_PARAMPROB :
1259 fin->fin_flx |= FI_ICMPERR;
1260 if (ipf_coalesce(fin) != 1) {
1261 LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1262 return;
1263 }
1264
1265 /*
1266 * ICMP error packets should not be generated for IP
1267 * packets that are a fragment that isn't the first
1268 * fragment.
1269 */
1270 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1271 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1272 fin->fin_flx |= FI_BAD;
1273
1274 /*
1275 * If the destination of this packet doesn't match the
1276 * source of the original packet then this packet is
1277 * not correct.
1278 */
1279 if (oip->ip_src.s_addr != fin->fin_daddr)
1280 fin->fin_flx |= FI_BAD;
1281 break;
1282 default :
1283 break;
1284 }
1285
1286 ipf_pr_short(fin, minicmpsz);
1287
1288 ipf_checkv4sum(fin);
1289 }
1290
1291
1292 /* ------------------------------------------------------------------------ */
1293 /* Function: ipf_pr_tcpcommon */
1294 /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */
1295 /* Parameters: fin(I) - pointer to packet information */
1296 /* */
1297 /* TCP header sanity checking. Look for bad combinations of TCP flags, */
1298 /* and make some checks with how they interact with other fields. */
1299 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */
1300 /* valid and mark the packet as bad if not. */
1301 /* ------------------------------------------------------------------------ */
1302 static INLINE int
1303 ipf_pr_tcpcommon(fr_info_t *fin)
1304 {
1305 ipf_main_softc_t *softc = fin->fin_main_soft;
1306 int flags, tlen;
1307 tcphdr_t *tcp;
1308
1309 fin->fin_flx |= FI_TCPUDP;
1310 if (fin->fin_off != 0) {
1311 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1312 return 0;
1313 }
1314
1315 if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1316 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1317 return -1;
1318 }
1319
1320 tcp = fin->fin_dp;
1321 if (fin->fin_dlen > 3) {
1322 fin->fin_sport = ntohs(tcp->th_sport);
1323 fin->fin_dport = ntohs(tcp->th_dport);
1324 }
1325
1326 if ((fin->fin_flx & FI_SHORT) != 0) {
1327 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1328 return 1;
1329 }
1330
1331 /*
1332 * Use of the TCP data offset *must* result in a value that is at
1333 * least the same size as the TCP header.
1334 */
1335 tlen = TCP_OFF(tcp) << 2;
1336 if (tlen < sizeof(tcphdr_t)) {
1337 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1338 fin->fin_flx |= FI_BAD;
1339 return 1;
1340 }
1341
1342 flags = tcp->th_flags;
1343 fin->fin_tcpf = tcp->th_flags;
1344
1345 /*
1346 * If the urgent flag is set, then the urgent pointer must
1347 * also be set and vice versa. Good TCP packets do not have
1348 * just one of these set.
1349 */
1350 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1351 fin->fin_flx |= FI_BAD;
1352 #if 0
1353 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1354 /*
1355 * Ignore this case (#if 0) as it shows up in "real"
1356 * traffic with bogus values in the urgent pointer field.
1357 */
1358 fin->fin_flx |= FI_BAD;
1359 #endif
1360 } else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1361 ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1362 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1363 fin->fin_flx |= FI_BAD;
1364 #if 1
1365 } else if (((flags & TH_SYN) != 0) &&
1366 ((flags & (TH_URG|TH_PUSH)) != 0)) {
1367 /*
1368 * SYN with URG and PUSH set is not for normal TCP but it is
1369 * possible(?) with T/TCP...but who uses T/TCP?
1370 */
1371 fin->fin_flx |= FI_BAD;
1372 #endif
1373 } else if (!(flags & TH_ACK)) {
1374 /*
1375 * If the ack bit isn't set, then either the SYN or
1376 * RST bit must be set. If the SYN bit is set, then
1377 * we expect the ACK field to be 0. If the ACK is
1378 * not set and if URG, PSH or FIN are set, consdier
1379 * that to indicate a bad TCP packet.
1380 */
1381 if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1382 /*
1383 * Cisco PIX sets the ACK field to a random value.
1384 * In light of this, do not set FI_BAD until a patch
1385 * is available from Cisco to ensure that
1386 * interoperability between existing systems is
1387 * achieved.
1388 */
1389 /*fin->fin_flx |= FI_BAD*/;
1390 } else if (!(flags & (TH_RST|TH_SYN))) {
1391 fin->fin_flx |= FI_BAD;
1392 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1393 fin->fin_flx |= FI_BAD;
1394 }
1395 }
1396 if (fin->fin_flx & FI_BAD) {
1397 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1398 return 1;
1399 }
1400
1401 /*
1402 * At this point, it's not exactly clear what is to be gained by
1403 * marking up which TCP options are and are not present. The one we
1404 * are most interested in is the TCP window scale. This is only in
1405 * a SYN packet [RFC1323] so we don't need this here...?
1406 * Now if we were to analyse the header for passive fingerprinting,
1407 * then that might add some weight to adding this...
1408 */
1409 if (tlen == sizeof(tcphdr_t)) {
1410 return 0;
1411 }
1412
1413 if (ipf_pr_pullup(fin, tlen) == -1) {
1414 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1415 return -1;
1416 }
1417
1418 #if 0
1419 tcp = fin->fin_dp;
1420 ip = fin->fin_ip;
1421 s = (u_char *)(tcp + 1);
1422 off = IP_HL(ip) << 2;
1423 # ifdef _KERNEL
1424 if (fin->fin_mp != NULL) {
1425 mb_t *m = *fin->fin_mp;
1426
1427 if (off + tlen > M_LEN(m))
1428 return;
1429 }
1430 # endif
1431 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1432 opt = *s;
1433 if (opt == '\0')
1434 break;
1435 else if (opt == TCPOPT_NOP)
1436 ol = 1;
1437 else {
1438 if (tlen < 2)
1439 break;
1440 ol = (int)*(s + 1);
1441 if (ol < 2 || ol > tlen)
1442 break;
1443 }
1444
1445 for (i = 9, mv = 4; mv >= 0; ) {
1446 op = ipopts + i;
1447 if (opt == (u_char)op->ol_val) {
1448 optmsk |= op->ol_bit;
1449 break;
1450 }
1451 }
1452 tlen -= ol;
1453 s += ol;
1454 }
1455 #endif /* 0 */
1456
1457 return 0;
1458 }
1459
1460
1461
1462 /* ------------------------------------------------------------------------ */
1463 /* Function: ipf_pr_udpcommon */
1464 /* Returns: int - 0 = header ok, 1 = bad packet */
1465 /* Parameters: fin(I) - pointer to packet information */
1466 /* */
1467 /* Extract the UDP source and destination ports, if present. If compiled */
1468 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */
1469 /* ------------------------------------------------------------------------ */
1470 static INLINE int
1471 ipf_pr_udpcommon(fr_info_t *fin)
1472 {
1473 udphdr_t *udp;
1474
1475 fin->fin_flx |= FI_TCPUDP;
1476
1477 if (!fin->fin_off && (fin->fin_dlen > 3)) {
1478 if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1479 ipf_main_softc_t *softc = fin->fin_main_soft;
1480
1481 fin->fin_flx |= FI_SHORT;
1482 LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1483 return 1;
1484 }
1485
1486 udp = fin->fin_dp;
1487
1488 fin->fin_sport = ntohs(udp->uh_sport);
1489 fin->fin_dport = ntohs(udp->uh_dport);
1490 }
1491
1492 return 0;
1493 }
1494
1495
1496 /* ------------------------------------------------------------------------ */
1497 /* Function: ipf_pr_tcp */
1498 /* Returns: void */
1499 /* Parameters: fin(I) - pointer to packet information */
1500 /* */
1501 /* IPv4 Only */
1502 /* Analyse the packet for IPv4/TCP properties. */
1503 /* ------------------------------------------------------------------------ */
1504 static INLINE void
1505 ipf_pr_tcp(fr_info_t *fin)
1506 {
1507
1508 ipf_pr_short(fin, sizeof(tcphdr_t));
1509
1510 if (ipf_pr_tcpcommon(fin) == 0)
1511 ipf_checkv4sum(fin);
1512 }
1513
1514
1515 /* ------------------------------------------------------------------------ */
1516 /* Function: ipf_pr_udp */
1517 /* Returns: void */
1518 /* Parameters: fin(I) - pointer to packet information */
1519 /* */
1520 /* IPv4 Only */
1521 /* Analyse the packet for IPv4/UDP properties. */
1522 /* ------------------------------------------------------------------------ */
1523 static INLINE void
1524 ipf_pr_udp(fr_info_t *fin)
1525 {
1526
1527 ipf_pr_short(fin, sizeof(udphdr_t));
1528
1529 if (ipf_pr_udpcommon(fin) == 0)
1530 ipf_checkv4sum(fin);
1531 }
1532
1533
1534 /* ------------------------------------------------------------------------ */
1535 /* Function: ipf_pr_esp */
1536 /* Returns: void */
1537 /* Parameters: fin(I) - pointer to packet information */
1538 /* */
1539 /* Analyse the packet for ESP properties. */
1540 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1541 /* even though the newer ESP packets must also have a sequence number that */
1542 /* is 32bits as well, it is not possible(?) to determine the version from a */
1543 /* simple packet header. */
1544 /* ------------------------------------------------------------------------ */
1545 static INLINE void
1546 ipf_pr_esp(fr_info_t *fin)
1547 {
1548
1549 if (fin->fin_off == 0) {
1550 ipf_pr_short(fin, 8);
1551 if (ipf_pr_pullup(fin, 8) == -1) {
1552 ipf_main_softc_t *softc = fin->fin_main_soft;
1553
1554 LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1555 }
1556 }
1557 }
1558
1559
1560 /* ------------------------------------------------------------------------ */
1561 /* Function: ipf_pr_ah */
1562 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1563 /* Parameters: fin(I) - pointer to packet information */
1564 /* */
1565 /* Analyse the packet for AH properties. */
1566 /* The minimum length is taken to be the combination of all fields in the */
1567 /* header being present and no authentication data (null algorithm used.) */
1568 /* ------------------------------------------------------------------------ */
1569 static INLINE int
1570 ipf_pr_ah(fr_info_t *fin)
1571 {
1572 ipf_main_softc_t *softc = fin->fin_main_soft;
1573 authhdr_t *ah;
1574 int len;
1575
1576 fin->fin_flx |= FI_AH;
1577 ipf_pr_short(fin, sizeof(*ah));
1578
1579 if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1580 LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1581 return IPPROTO_NONE;
1582 }
1583
1584 if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1585 DT(fr_v4_ah_pullup_1);
1586 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1587 return IPPROTO_NONE;
1588 }
1589
1590 ah = (authhdr_t *)fin->fin_dp;
1591
1592 len = (ah->ah_plen + 2) << 2;
1593 ipf_pr_short(fin, len);
1594 if (ipf_pr_pullup(fin, len) == -1) {
1595 DT(fr_v4_ah_pullup_2);
1596 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1597 return IPPROTO_NONE;
1598 }
1599
1600 /*
1601 * Adjust fin_dp and fin_dlen for skipping over the authentication
1602 * header.
1603 */
1604 fin->fin_dp = (char *)fin->fin_dp + len;
1605 fin->fin_dlen -= len;
1606 return ah->ah_next;
1607 }
1608
1609
1610 /* ------------------------------------------------------------------------ */
1611 /* Function: ipf_pr_gre */
1612 /* Returns: void */
1613 /* Parameters: fin(I) - pointer to packet information */
1614 /* */
1615 /* Analyse the packet for GRE properties. */
1616 /* ------------------------------------------------------------------------ */
1617 static INLINE void
1618 ipf_pr_gre(fr_info_t *fin)
1619 {
1620 ipf_main_softc_t *softc = fin->fin_main_soft;
1621 grehdr_t *gre;
1622
1623 ipf_pr_short(fin, sizeof(grehdr_t));
1624
1625 if (fin->fin_off != 0) {
1626 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1627 return;
1628 }
1629
1630 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1631 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1632 return;
1633 }
1634
1635 gre = fin->fin_dp;
1636 if (GRE_REV(gre->gr_flags) == 1)
1637 fin->fin_data[0] = gre->gr_call;
1638 }
1639
1640
1641 /* ------------------------------------------------------------------------ */
1642 /* Function: ipf_pr_ipv4hdr */
1643 /* Returns: void */
1644 /* Parameters: fin(I) - pointer to packet information */
1645 /* */
1646 /* IPv4 Only */
1647 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */
1648 /* Check all options present and flag their presence if any exist. */
1649 /* ------------------------------------------------------------------------ */
1650 static INLINE void
1651 ipf_pr_ipv4hdr(fr_info_t *fin)
1652 {
1653 u_short optmsk = 0, secmsk = 0, auth = 0;
1654 int hlen, ol, mv, p, i;
1655 const struct optlist *op;
1656 u_char *s, opt;
1657 u_short off;
1658 fr_ip_t *fi;
1659 ip_t *ip;
1660
1661 fi = &fin->fin_fi;
1662 hlen = fin->fin_hlen;
1663
1664 ip = fin->fin_ip;
1665 p = ip->ip_p;
1666 fi->fi_p = p;
1667 fin->fin_crc = p;
1668 fi->fi_tos = ip->ip_tos;
1669 fin->fin_id = ip->ip_id;
1670 off = ntohs(ip->ip_off);
1671
1672 /* Get both TTL and protocol */
1673 fi->fi_p = ip->ip_p;
1674 fi->fi_ttl = ip->ip_ttl;
1675
1676 /* Zero out bits not used in IPv6 address */
1677 fi->fi_src.i6[1] = 0;
1678 fi->fi_src.i6[2] = 0;
1679 fi->fi_src.i6[3] = 0;
1680 fi->fi_dst.i6[1] = 0;
1681 fi->fi_dst.i6[2] = 0;
1682 fi->fi_dst.i6[3] = 0;
1683
1684 fi->fi_saddr = ip->ip_src.s_addr;
1685 fin->fin_crc += fi->fi_saddr;
1686 fi->fi_daddr = ip->ip_dst.s_addr;
1687 fin->fin_crc += fi->fi_daddr;
1688 if (IN_CLASSD(ntohl(fi->fi_daddr)))
1689 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1690
1691 /*
1692 * set packet attribute flags based on the offset and
1693 * calculate the byte offset that it represents.
1694 */
1695 off &= IP_MF|IP_OFFMASK;
1696 if (off != 0) {
1697 int morefrag = off & IP_MF;
1698
1699 fi->fi_flx |= FI_FRAG;
1700 off &= IP_OFFMASK;
1701 if (off != 0) {
1702 fin->fin_flx |= FI_FRAGBODY;
1703 off <<= 3;
1704 if ((off + fin->fin_dlen > 65535) ||
1705 (fin->fin_dlen == 0) ||
1706 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1707 /*
1708 * The length of the packet, starting at its
1709 * offset cannot exceed 65535 (0xffff) as the
1710 * length of an IP packet is only 16 bits.
1711 *
1712 * Any fragment that isn't the last fragment
1713 * must have a length greater than 0 and it
1714 * must be an even multiple of 8.
1715 */
1716 fi->fi_flx |= FI_BAD;
1717 }
1718 }
1719 }
1720 fin->fin_off = off;
1721
1722 /*
1723 * Call per-protocol setup and checking
1724 */
1725 if (p == IPPROTO_AH) {
1726 /*
1727 * Treat AH differently because we expect there to be another
1728 * layer 4 header after it.
1729 */
1730 p = ipf_pr_ah(fin);
1731 }
1732
1733 switch (p)
1734 {
1735 case IPPROTO_UDP :
1736 ipf_pr_udp(fin);
1737 break;
1738 case IPPROTO_TCP :
1739 ipf_pr_tcp(fin);
1740 break;
1741 case IPPROTO_ICMP :
1742 ipf_pr_icmp(fin);
1743 break;
1744 case IPPROTO_ESP :
1745 ipf_pr_esp(fin);
1746 break;
1747 case IPPROTO_GRE :
1748 ipf_pr_gre(fin);
1749 break;
1750 }
1751
1752 ip = fin->fin_ip;
1753 if (ip == NULL)
1754 return;
1755
1756 /*
1757 * If it is a standard IP header (no options), set the flag fields
1758 * which relate to options to 0.
1759 */
1760 if (hlen == sizeof(*ip)) {
1761 fi->fi_optmsk = 0;
1762 fi->fi_secmsk = 0;
1763 fi->fi_auth = 0;
1764 return;
1765 }
1766
1767 /*
1768 * So the IP header has some IP options attached. Walk the entire
1769 * list of options present with this packet and set flags to indicate
1770 * which ones are here and which ones are not. For the somewhat out
1771 * of date and obscure security classification options, set a flag to
1772 * represent which classification is present.
1773 */
1774 fi->fi_flx |= FI_OPTIONS;
1775
1776 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1777 opt = *s;
1778 if (opt == '\0')
1779 break;
1780 else if (opt == IPOPT_NOP)
1781 ol = 1;
1782 else {
1783 if (hlen < 2)
1784 break;
1785 ol = (int)*(s + 1);
1786 if (ol < 2 || ol > hlen)
1787 break;
1788 }
1789 for (i = 9, mv = 4; mv >= 0; ) {
1790 op = ipopts + i;
1791
1792 if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1793 u_32_t doi;
1794
1795 switch (opt)
1796 {
1797 case IPOPT_SECURITY :
1798 if (optmsk & op->ol_bit) {
1799 fin->fin_flx |= FI_BAD;
1800 } else {
1801 doi = ipf_checkripso(s);
1802 secmsk = doi >> 16;
1803 auth = doi & 0xffff;
1804 }
1805 break;
1806
1807 case IPOPT_CIPSO :
1808
1809 if (optmsk & op->ol_bit) {
1810 fin->fin_flx |= FI_BAD;
1811 } else {
1812 doi = ipf_checkcipso(fin,
1813 s, ol);
1814 secmsk = doi >> 16;
1815 auth = doi & 0xffff;
1816 }
1817 break;
1818 }
1819 optmsk |= op->ol_bit;
1820 }
1821
1822 if (opt < op->ol_val)
1823 i -= mv;
1824 else
1825 i += mv;
1826 mv--;
1827 }
1828 hlen -= ol;
1829 s += ol;
1830 }
1831
1832 /*
1833 *
1834 */
1835 if (auth && !(auth & 0x0100))
1836 auth &= 0xff00;
1837 fi->fi_optmsk = optmsk;
1838 fi->fi_secmsk = secmsk;
1839 fi->fi_auth = auth;
1840 }
1841
1842
1843 /* ------------------------------------------------------------------------ */
1844 /* Function: ipf_checkripso */
1845 /* Returns: void */
1846 /* Parameters: s(I) - pointer to start of RIPSO option */
1847 /* */
1848 /* ------------------------------------------------------------------------ */
1849 static u_32_t
1850 ipf_checkripso(u_char *s)
1851 {
1852 const struct optlist *sp;
1853 u_short secmsk = 0, auth = 0;
1854 u_char sec;
1855 int j, m;
1856
1857 sec = *(s + 2); /* classification */
1858 for (j = 3, m = 2; m >= 0; ) {
1859 sp = secopt + j;
1860 if (sec == sp->ol_val) {
1861 secmsk |= sp->ol_bit;
1862 auth = *(s + 3);
1863 auth *= 256;
1864 auth += *(s + 4);
1865 break;
1866 }
1867 if (sec < sp->ol_val)
1868 j -= m;
1869 else
1870 j += m;
1871 m--;
1872 }
1873
1874 return (secmsk << 16) | auth;
1875 }
1876
1877
1878 /* ------------------------------------------------------------------------ */
1879 /* Function: ipf_checkcipso */
1880 /* Returns: u_32_t - 0 = failure, else the doi from the header */
1881 /* Parameters: fin(IO) - pointer to packet information */
1882 /* s(I) - pointer to start of CIPSO option */
1883 /* ol(I) - length of CIPSO option field */
1884 /* */
1885 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1886 /* header and returns that whilst also storing the highest sensitivity */
1887 /* value found in the fr_info_t structure. */
1888 /* */
1889 /* No attempt is made to extract the category bitmaps as these are defined */
1890 /* by the user (rather than the protocol) and can be rather numerous on the */
1891 /* end nodes. */
1892 /* ------------------------------------------------------------------------ */
1893 static u_32_t
1894 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1895 {
1896 ipf_main_softc_t *softc = fin->fin_main_soft;
1897 fr_ip_t *fi;
1898 u_32_t doi;
1899 u_char *t, tag, tlen, sensitivity;
1900 int len;
1901
1902 if (ol < 6 || ol > 40) {
1903 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1904 fin->fin_flx |= FI_BAD;
1905 return 0;
1906 }
1907
1908 fi = &fin->fin_fi;
1909 fi->fi_sensitivity = 0;
1910 /*
1911 * The DOI field MUST be there.
1912 */
1913 bcopy(s + 2, &doi, sizeof(doi));
1914
1915 t = (u_char *)s + 6;
1916 for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1917 tag = *t;
1918 tlen = *(t + 1);
1919 if (tlen > len || tlen < 4 || tlen > 34) {
1920 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1921 fin->fin_flx |= FI_BAD;
1922 return 0;
1923 }
1924
1925 sensitivity = 0;
1926 /*
1927 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1928 * draft (16 July 1992) that has expired.
1929 */
1930 if (tag == 0) {
1931 fin->fin_flx |= FI_BAD;
1932 continue;
1933 } else if (tag == 1) {
1934 if (*(t + 2) != 0) {
1935 fin->fin_flx |= FI_BAD;
1936 continue;
1937 }
1938 sensitivity = *(t + 3);
1939 /* Category bitmap for categories 0-239 */
1940
1941 } else if (tag == 4) {
1942 if (*(t + 2) != 0) {
1943 fin->fin_flx |= FI_BAD;
1944 continue;
1945 }
1946 sensitivity = *(t + 3);
1947 /* Enumerated categories, 16bits each, upto 15 */
1948
1949 } else if (tag == 5) {
1950 if (*(t + 2) != 0) {
1951 fin->fin_flx |= FI_BAD;
1952 continue;
1953 }
1954 sensitivity = *(t + 3);
1955 /* Range of categories (2*16bits), up to 7 pairs */
1956
1957 } else if (tag > 127) {
1958 /* Custom defined DOI */
1959 ;
1960 } else {
1961 fin->fin_flx |= FI_BAD;
1962 continue;
1963 }
1964
1965 if (sensitivity > fi->fi_sensitivity)
1966 fi->fi_sensitivity = sensitivity;
1967 }
1968
1969 return doi;
1970 }
1971
1972
1973 /* ------------------------------------------------------------------------ */
1974 /* Function: ipf_makefrip */
1975 /* Returns: int - 0 == packet ok, -1 == packet freed */
1976 /* Parameters: hlen(I) - length of IP packet header */
1977 /* ip(I) - pointer to the IP header */
1978 /* fin(IO) - pointer to packet information */
1979 /* */
1980 /* Compact the IP header into a structure which contains just the info. */
1981 /* which is useful for comparing IP headers with and store this information */
1982 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */
1983 /* this function will be called with either an IPv4 or IPv6 packet. */
1984 /* ------------------------------------------------------------------------ */
1985 int
1986 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
1987 {
1988 ipf_main_softc_t *softc = fin->fin_main_soft;
1989 int v;
1990
1991 fin->fin_depth = 0;
1992 fin->fin_hlen = (u_short)hlen;
1993 fin->fin_ip = ip;
1994 fin->fin_rule = 0xffffffff;
1995 fin->fin_group[0] = -1;
1996 fin->fin_group[1] = '\0';
1997 fin->fin_dp = (char *)ip + hlen;
1998
1999 v = fin->fin_v;
2000 if (v == 4) {
2001 fin->fin_plen = ntohs(ip->ip_len);
2002 fin->fin_dlen = fin->fin_plen - hlen;
2003 ipf_pr_ipv4hdr(fin);
2004 #ifdef USE_INET6
2005 } else if (v == 6) {
2006 fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2007 fin->fin_dlen = fin->fin_plen;
2008 fin->fin_plen += hlen;
2009
2010 ipf_pr_ipv6hdr(fin);
2011 #endif
2012 }
2013 if (fin->fin_ip == NULL) {
2014 LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2015 return -1;
2016 }
2017 return 0;
2018 }
2019
2020
2021 /* ------------------------------------------------------------------------ */
2022 /* Function: ipf_portcheck */
2023 /* Returns: int - 1 == port matched, 0 == port match failed */
2024 /* Parameters: frp(I) - pointer to port check `expression' */
2025 /* pop(I) - port number to evaluate */
2026 /* */
2027 /* Perform a comparison of a port number against some other(s), using a */
2028 /* structure with compare information stored in it. */
2029 /* ------------------------------------------------------------------------ */
2030 static INLINE int
2031 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2032 {
2033 int err = 1;
2034 u_32_t po;
2035
2036 po = frp->frp_port;
2037
2038 /*
2039 * Do opposite test to that required and continue if that succeeds.
2040 */
2041 switch (frp->frp_cmp)
2042 {
2043 case FR_EQUAL :
2044 if (pop != po) /* EQUAL */
2045 err = 0;
2046 break;
2047 case FR_NEQUAL :
2048 if (pop == po) /* NOTEQUAL */
2049 err = 0;
2050 break;
2051 case FR_LESST :
2052 if (pop >= po) /* LESSTHAN */
2053 err = 0;
2054 break;
2055 case FR_GREATERT :
2056 if (pop <= po) /* GREATERTHAN */
2057 err = 0;
2058 break;
2059 case FR_LESSTE :
2060 if (pop > po) /* LT or EQ */
2061 err = 0;
2062 break;
2063 case FR_GREATERTE :
2064 if (pop < po) /* GT or EQ */
2065 err = 0;
2066 break;
2067 case FR_OUTRANGE :
2068 if (pop >= po && pop <= frp->frp_top) /* Out of range */
2069 err = 0;
2070 break;
2071 case FR_INRANGE :
2072 if (pop <= po || pop >= frp->frp_top) /* In range */
2073 err = 0;
2074 break;
2075 case FR_INCRANGE :
2076 if (pop < po || pop > frp->frp_top) /* Inclusive range */
2077 err = 0;
2078 break;
2079 default :
2080 break;
2081 }
2082 return err;
2083 }
2084
2085
2086 /* ------------------------------------------------------------------------ */
2087 /* Function: ipf_tcpudpchk */
2088 /* Returns: int - 1 == protocol matched, 0 == check failed */
2089 /* Parameters: fda(I) - pointer to packet information */
2090 /* ft(I) - pointer to structure with comparison data */
2091 /* */
2092 /* Compares the current pcket (assuming it is TCP/UDP) information with a */
2093 /* structure containing information that we want to match against. */
2094 /* ------------------------------------------------------------------------ */
2095 int
2096 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2097 {
2098 int err = 1;
2099
2100 /*
2101 * Both ports should *always* be in the first fragment.
2102 * So far, I cannot find any cases where they can not be.
2103 *
2104 * compare destination ports
2105 */
2106 if (ft->ftu_dcmp)
2107 err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2108
2109 /*
2110 * compare source ports
2111 */
2112 if (err && ft->ftu_scmp)
2113 err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2114
2115 /*
2116 * If we don't have all the TCP/UDP header, then how can we
2117 * expect to do any sort of match on it ? If we were looking for
2118 * TCP flags, then NO match. If not, then match (which should
2119 * satisfy the "short" class too).
2120 */
2121 if (err && (fi->fi_p == IPPROTO_TCP)) {
2122 if (fi->fi_flx & FI_SHORT)
2123 return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2124 /*
2125 * Match the flags ? If not, abort this match.
2126 */
2127 if (ft->ftu_tcpfm &&
2128 ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2129 FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2130 ft->ftu_tcpfm, ft->ftu_tcpf));
2131 err = 0;
2132 }
2133 }
2134 return err;
2135 }
2136
2137
2138 /* ------------------------------------------------------------------------ */
2139 /* Function: ipf_check_ipf */
2140 /* Returns: int - 0 == match, else no match */
2141 /* Parameters: fin(I) - pointer to packet information */
2142 /* fr(I) - pointer to filter rule */
2143 /* portcmp(I) - flag indicating whether to attempt matching on */
2144 /* TCP/UDP port data. */
2145 /* */
2146 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */
2147 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2148 /* this function. */
2149 /* ------------------------------------------------------------------------ */
2150 static INLINE int
2151 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2152 {
2153 u_32_t *ld, *lm, *lip;
2154 fripf_t *fri;
2155 fr_ip_t *fi;
2156 int i;
2157
2158 fi = &fin->fin_fi;
2159 fri = fr->fr_ipf;
2160 lip = (u_32_t *)fi;
2161 lm = (u_32_t *)&fri->fri_mip;
2162 ld = (u_32_t *)&fri->fri_ip;
2163
2164 /*
2165 * first 32 bits to check coversion:
2166 * IP version, TOS, TTL, protocol
2167 */
2168 i = ((*lip & *lm) != *ld);
2169 FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2170 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2171 if (i)
2172 return 1;
2173
2174 /*
2175 * Next 32 bits is a constructed bitmask indicating which IP options
2176 * are present (if any) in this packet.
2177 */
2178 lip++, lm++, ld++;
2179 i = ((*lip & *lm) != *ld);
2180 FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2181 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2182 if (i != 0)
2183 return 1;
2184
2185 lip++, lm++, ld++;
2186 /*
2187 * Unrolled loops (4 each, for 32 bits) for address checks.
2188 */
2189 /*
2190 * Check the source address.
2191 */
2192 if (fr->fr_satype == FRI_LOOKUP) {
2193 i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2194 fi->fi_v, lip, fin->fin_plen);
2195 if (i == -1)
2196 return 1;
2197 lip += 3;
2198 lm += 3;
2199 ld += 3;
2200 } else {
2201 i = ((*lip & *lm) != *ld);
2202 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2203 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2204 if (fi->fi_v == 6) {
2205 lip++, lm++, ld++;
2206 i |= ((*lip & *lm) != *ld);
2207 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2208 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2209 lip++, lm++, ld++;
2210 i |= ((*lip & *lm) != *ld);
2211 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2212 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2213 lip++, lm++, ld++;
2214 i |= ((*lip & *lm) != *ld);
2215 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2216 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2217 } else {
2218 lip += 3;
2219 lm += 3;
2220 ld += 3;
2221 }
2222 }
2223 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2224 if (i != 0)
2225 return 1;
2226
2227 /*
2228 * Check the destination address.
2229 */
2230 lip++, lm++, ld++;
2231 if (fr->fr_datype == FRI_LOOKUP) {
2232 i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2233 fi->fi_v, lip, fin->fin_plen);
2234 if (i == -1)
2235 return 1;
2236 lip += 3;
2237 lm += 3;
2238 ld += 3;
2239 } else {
2240 i = ((*lip & *lm) != *ld);
2241 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2242 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2243 if (fi->fi_v == 6) {
2244 lip++, lm++, ld++;
2245 i |= ((*lip & *lm) != *ld);
2246 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2247 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2248 lip++, lm++, ld++;
2249 i |= ((*lip & *lm) != *ld);
2250 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2251 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2252 lip++, lm++, ld++;
2253 i |= ((*lip & *lm) != *ld);
2254 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2255 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2256 } else {
2257 lip += 3;
2258 lm += 3;
2259 ld += 3;
2260 }
2261 }
2262 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2263 if (i != 0)
2264 return 1;
2265 /*
2266 * IP addresses matched. The next 32bits contains:
2267 * mast of old IP header security & authentication bits.
2268 */
2269 lip++, lm++, ld++;
2270 i = (*ld - (*lip & *lm));
2271 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2272
2273 /*
2274 * Next we have 32 bits of packet flags.
2275 */
2276 lip++, lm++, ld++;
2277 i |= (*ld - (*lip & *lm));
2278 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2279
2280 if (i == 0) {
2281 /*
2282 * If a fragment, then only the first has what we're
2283 * looking for here...
2284 */
2285 if (portcmp) {
2286 if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2287 i = 1;
2288 } else {
2289 if (fr->fr_dcmp || fr->fr_scmp ||
2290 fr->fr_tcpf || fr->fr_tcpfm)
2291 i = 1;
2292 if (fr->fr_icmpm || fr->fr_icmp) {
2293 if (((fi->fi_p != IPPROTO_ICMP) &&
2294 (fi->fi_p != IPPROTO_ICMPV6)) ||
2295 fin->fin_off || (fin->fin_dlen < 2))
2296 i = 1;
2297 else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2298 fr->fr_icmp) {
2299 FR_DEBUG(("i. %#x & %#x != %#x\n",
2300 fin->fin_data[0],
2301 fr->fr_icmpm, fr->fr_icmp));
2302 i = 1;
2303 }
2304 }
2305 }
2306 }
2307 return i;
2308 }
2309
2310
2311 /* ------------------------------------------------------------------------ */
2312 /* Function: ipf_scanlist */
2313 /* Returns: int - result flags of scanning filter list */
2314 /* Parameters: fin(I) - pointer to packet information */
2315 /* pass(I) - default result to return for filtering */
2316 /* */
2317 /* Check the input/output list of rules for a match to the current packet. */
2318 /* If a match is found, the value of fr_flags from the rule becomes the */
2319 /* return value and fin->fin_fr points to the matched rule. */
2320 /* */
2321 /* This function may be called recusively upto 16 times (limit inbuilt.) */
2322 /* When unwinding, it should finish up with fin_depth as 0. */
2323 /* */
2324 /* Could be per interface, but this gets real nasty when you don't have, */
2325 /* or can't easily change, the kernel source code to . */
2326 /* ------------------------------------------------------------------------ */
2327 int
2328 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2329 {
2330 ipf_main_softc_t *softc = fin->fin_main_soft;
2331 int rulen, portcmp, off, skip;
2332 struct frentry *fr, *fnext;
2333 u_32_t passt, passo;
2334
2335 /*
2336 * Do not allow nesting deeper than 16 levels.
2337 */
2338 if (fin->fin_depth >= 16)
2339 return pass;
2340
2341 fr = fin->fin_fr;
2342
2343 /*
2344 * If there are no rules in this list, return now.
2345 */
2346 if (fr == NULL)
2347 return pass;
2348
2349 skip = 0;
2350 portcmp = 0;
2351 fin->fin_depth++;
2352 fin->fin_fr = NULL;
2353 off = fin->fin_off;
2354
2355 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2356 portcmp = 1;
2357
2358 for (rulen = 0; fr; fr = fnext, rulen++) {
2359 fnext = fr->fr_next;
2360 if (skip != 0) {
2361 FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2362 skip--;
2363 continue;
2364 }
2365
2366 /*
2367 * In all checks below, a null (zero) value in the
2368 * filter struture is taken to mean a wildcard.
2369 *
2370 * check that we are working for the right interface
2371 */
2372 #ifdef _KERNEL
2373 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2374 continue;
2375 #else
2376 if (opts & (OPT_VERBOSE|OPT_DEBUG))
2377 printf("\n");
2378 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2379 FR_ISPASS(pass) ? 'p' :
2380 FR_ISACCOUNT(pass) ? 'A' :
2381 FR_ISAUTH(pass) ? 'a' :
2382 (pass & FR_NOMATCH) ? 'n' :'b'));
2383 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2384 continue;
2385 FR_VERBOSE((":i"));
2386 #endif
2387
2388 switch (fr->fr_type)
2389 {
2390 case FR_T_IPF :
2391 case FR_T_IPF_BUILTIN :
2392 if (ipf_check_ipf(fin, fr, portcmp))
2393 continue;
2394 break;
2395 #if defined(IPFILTER_BPF)
2396 case FR_T_BPFOPC :
2397 case FR_T_BPFOPC_BUILTIN :
2398 {
2399 u_char *mc;
2400 int wlen;
2401
2402 if (*fin->fin_mp == NULL)
2403 continue;
2404 if (fin->fin_family != fr->fr_family)
2405 continue;
2406 mc = (u_char *)fin->fin_m;
2407 wlen = fin->fin_dlen + fin->fin_hlen;
2408 if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2409 continue;
2410 break;
2411 }
2412 #endif
2413 case FR_T_CALLFUNC_BUILTIN :
2414 {
2415 frentry_t *f;
2416
2417 f = (*fr->fr_func)(fin, &pass);
2418 if (f != NULL)
2419 fr = f;
2420 else
2421 continue;
2422 break;
2423 }
2424
2425 case FR_T_IPFEXPR :
2426 case FR_T_IPFEXPR_BUILTIN :
2427 if (fin->fin_family != fr->fr_family)
2428 continue;
2429 if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2430 continue;
2431 break;
2432
2433 default :
2434 break;
2435 }
2436
2437 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2438 if (fin->fin_nattag == NULL)
2439 continue;
2440 if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2441 continue;
2442 }
2443 FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2444
2445 passt = fr->fr_flags;
2446
2447 /*
2448 * If the rule is a "call now" rule, then call the function
2449 * in the rule, if it exists and use the results from that.
2450 * If the function pointer is bad, just make like we ignore
2451 * it, except for increasing the hit counter.
2452 */
2453 if ((passt & FR_CALLNOW) != 0) {
2454 frentry_t *frs;
2455
2456 ATOMIC_INC64(fr->fr_hits);
2457 if ((fr->fr_func == NULL) ||
2458 (fr->fr_func == (ipfunc_t)-1))
2459 continue;
2460
2461 frs = fin->fin_fr;
2462 fin->fin_fr = fr;
2463 fr = (*fr->fr_func)(fin, &passt);
2464 if (fr == NULL) {
2465 fin->fin_fr = frs;
2466 continue;
2467 }
2468 passt = fr->fr_flags;
2469 }
2470 fin->fin_fr = fr;
2471
2472 #ifdef IPFILTER_LOG
2473 /*
2474 * Just log this packet...
2475 */
2476 if ((passt & FR_LOGMASK) == FR_LOG) {
2477 if (ipf_log_pkt(fin, passt) == -1) {
2478 if (passt & FR_LOGORBLOCK) {
2479 DT(frb_logfail);
2480 passt &= ~FR_CMDMASK;
2481 passt |= FR_BLOCK|FR_QUICK;
2482 fin->fin_reason = FRB_LOGFAIL;
2483 }
2484 }
2485 }
2486 #endif /* IPFILTER_LOG */
2487
2488 MUTEX_ENTER(&fr->fr_lock);
2489 fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2490 fr->fr_hits++;
2491 MUTEX_EXIT(&fr->fr_lock);
2492 fin->fin_rule = rulen;
2493
2494 passo = pass;
2495 if (FR_ISSKIP(passt)) {
2496 skip = fr->fr_arg;
2497 continue;
2498 } else if (((passt & FR_LOGMASK) != FR_LOG) &&
2499 ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2500 pass = passt;
2501 }
2502
2503 if (passt & (FR_RETICMP|FR_FAKEICMP))
2504 fin->fin_icode = fr->fr_icode;
2505
2506 if (fr->fr_group != -1) {
2507 (void) strncpy(fin->fin_group,
2508 FR_NAME(fr, fr_group),
2509 strlen(FR_NAME(fr, fr_group)));
2510 } else {
2511 fin->fin_group[0] = '\0';
2512 }
2513
2514 FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2515
2516 if (fr->fr_grphead != NULL) {
2517 fin->fin_fr = fr->fr_grphead->fg_start;
2518 FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2519
2520 if (FR_ISDECAPS(passt))
2521 passt = ipf_decaps(fin, pass, fr->fr_icode);
2522 else
2523 passt = ipf_scanlist(fin, pass);
2524
2525 if (fin->fin_fr == NULL) {
2526 fin->fin_rule = rulen;
2527 if (fr->fr_group != -1)
2528 (void) strncpy(fin->fin_group,
2529 fr->fr_names +
2530 fr->fr_group,
2531 strlen(fr->fr_names +
2532 fr->fr_group));
2533 fin->fin_fr = fr;
2534 passt = pass;
2535 }
2536 pass = passt;
2537 }
2538
2539 if (pass & FR_QUICK) {
2540 /*
2541 * Finally, if we've asked to track state for this
2542 * packet, set it up. Add state for "quick" rules
2543 * here so that if the action fails we can consider
2544 * the rule to "not match" and keep on processing
2545 * filter rules.
2546 */
2547 if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2548 !(fin->fin_flx & FI_STATE)) {
2549 int out = fin->fin_out;
2550
2551 fin->fin_fr = fr;
2552 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2553 LBUMPD(ipf_stats[out], fr_ads);
2554 } else {
2555 LBUMPD(ipf_stats[out], fr_bads);
2556 pass = passo;
2557 continue;
2558 }
2559 }
2560 break;
2561 }
2562 }
2563 fin->fin_depth--;
2564 return pass;
2565 }
2566
2567
2568 /* ------------------------------------------------------------------------ */
2569 /* Function: ipf_acctpkt */
2570 /* Returns: frentry_t* - always returns NULL */
2571 /* Parameters: fin(I) - pointer to packet information */
2572 /* passp(IO) - pointer to current/new filter decision (unused) */
2573 /* */
2574 /* Checks a packet against accounting rules, if there are any for the given */
2575 /* IP protocol version. */
2576 /* */
2577 /* N.B.: this function returns NULL to match the prototype used by other */
2578 /* functions called from the IPFilter "mainline" in ipf_check(). */
2579 /* ------------------------------------------------------------------------ */
2580 frentry_t *
2581 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2582 {
2583 ipf_main_softc_t *softc = fin->fin_main_soft;
2584 char group[FR_GROUPLEN];
2585 frentry_t *fr, *frsave;
2586 u_32_t pass, rulen;
2587
2588 passp = passp;
2589 fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2590
2591 if (fr != NULL) {
2592 frsave = fin->fin_fr;
2593 bcopy(fin->fin_group, group, FR_GROUPLEN);
2594 rulen = fin->fin_rule;
2595 fin->fin_fr = fr;
2596 pass = ipf_scanlist(fin, FR_NOMATCH);
2597 if (FR_ISACCOUNT(pass)) {
2598 LBUMPD(ipf_stats[0], fr_acct);
2599 }
2600 fin->fin_fr = frsave;
2601 bcopy(group, fin->fin_group, FR_GROUPLEN);
2602 fin->fin_rule = rulen;
2603 }
2604 return NULL;
2605 }
2606
2607
2608 /* ------------------------------------------------------------------------ */
2609 /* Function: ipf_firewall */
2610 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */
2611 /* were found, returns NULL. */
2612 /* Parameters: fin(I) - pointer to packet information */
2613 /* passp(IO) - pointer to current/new filter decision (unused) */
2614 /* */
2615 /* Applies an appropriate set of firewall rules to the packet, to see if */
2616 /* there are any matches. The first check is to see if a match can be seen */
2617 /* in the cache. If not, then search an appropriate list of rules. Once a */
2618 /* matching rule is found, take any appropriate actions as defined by the */
2619 /* rule - except logging. */
2620 /* ------------------------------------------------------------------------ */
2621 static frentry_t *
2622 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2623 {
2624 ipf_main_softc_t *softc = fin->fin_main_soft;
2625 frentry_t *fr;
2626 u_32_t pass;
2627 int out;
2628
2629 out = fin->fin_out;
2630 pass = *passp;
2631
2632 /*
2633 * This rule cache will only affect packets that are not being
2634 * statefully filtered.
2635 */
2636 fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2637 if (fin->fin_fr != NULL)
2638 pass = ipf_scanlist(fin, softc->ipf_pass);
2639
2640 if ((pass & FR_NOMATCH)) {
2641 LBUMPD(ipf_stats[out], fr_nom);
2642 }
2643 fr = fin->fin_fr;
2644
2645 /*
2646 * Apply packets per second rate-limiting to a rule as required.
2647 */
2648 if ((fr != NULL) && (fr->fr_pps != 0) &&
2649 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2650 DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2651 pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2652 pass |= FR_BLOCK;
2653 LBUMPD(ipf_stats[out], fr_ppshit);
2654 fin->fin_reason = FRB_PPSRATE;
2655 }
2656
2657 /*
2658 * If we fail to add a packet to the authorization queue, then we
2659 * drop the packet later. However, if it was added then pretend
2660 * we've dropped it already.
2661 */
2662 if (FR_ISAUTH(pass)) {
2663 if (ipf_auth_new(fin->fin_m, fin) != 0) {
2664 DT1(frb_authnew, fr_info_t *, fin);
2665 fin->fin_m = *fin->fin_mp = NULL;
2666 fin->fin_reason = FRB_AUTHNEW;
2667 fin->fin_error = 0;
2668 } else {
2669 IPFERROR(1);
2670 fin->fin_error = ENOSPC;
2671 }
2672 }
2673
2674 if ((fr != NULL) && (fr->fr_func != NULL) &&
2675 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2676 (void) (*fr->fr_func)(fin, &pass);
2677
2678 /*
2679 * If a rule is a pre-auth rule, check again in the list of rules
2680 * loaded for authenticated use. It does not particulary matter
2681 * if this search fails because a "preauth" result, from a rule,
2682 * is treated as "not a pass", hence the packet is blocked.
2683 */
2684 if (FR_ISPREAUTH(pass)) {
2685 pass = ipf_auth_pre_scanlist(softc, fin, pass);
2686 }
2687
2688 /*
2689 * If the rule has "keep frag" and the packet is actually a fragment,
2690 * then create a fragment state entry.
2691 */
2692 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2693 if (fin->fin_flx & FI_FRAG) {
2694 if (ipf_frag_new(softc, fin, pass) == -1) {
2695 LBUMP(ipf_stats[out].fr_bnfr);
2696 } else {
2697 LBUMP(ipf_stats[out].fr_nfr);
2698 }
2699 } else {
2700 LBUMP(ipf_stats[out].fr_cfr);
2701 }
2702 }
2703
2704 fr = fin->fin_fr;
2705 *passp = pass;
2706
2707 return fr;
2708 }
2709
2710
2711 /* ------------------------------------------------------------------------ */
2712 /* Function: ipf_check */
2713 /* Returns: int - 0 == packet allowed through, */
2714 /* User space: */
2715 /* -1 == packet blocked */
2716 /* 1 == packet not matched */
2717 /* -2 == requires authentication */
2718 /* Kernel: */
2719 /* > 0 == filter error # for packet */
2720 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */
2721 /* hlen(I) - length of header */
2722 /* ifp(I) - pointer to interface this packet is on */
2723 /* out(I) - 0 == packet going in, 1 == packet going out */
2724 /* mp(IO) - pointer to caller's buffer pointer that holds this */
2725 /* IP packet. */
2726 /* Solaris & HP-UX ONLY : */
2727 /* qpi(I) - pointer to STREAMS queue information for this */
2728 /* interface & direction. */
2729 /* */
2730 /* ipf_check() is the master function for all IPFilter packet processing. */
2731 /* It orchestrates: Network Address Translation (NAT), checking for packet */
2732 /* authorisation (or pre-authorisation), presence of related state info., */
2733 /* generating log entries, IP packet accounting, routing of packets as */
2734 /* directed by firewall rules and of course whether or not to allow the */
2735 /* packet to be further processed by the kernel. */
2736 /* */
2737 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */
2738 /* freed. Packets passed may be returned with the pointer pointed to by */
2739 /* by "mp" changed to a new buffer. */
2740 /* ------------------------------------------------------------------------ */
2741 int
2742 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out,
2743 #if defined(_KERNEL) && defined(MENTAT)
2744 void *qif,
2745 #endif
2746 mb_t **mp)
2747 {
2748 /*
2749 * The above really sucks, but short of writing a diff
2750 */
2751 ipf_main_softc_t *softc = ctx;
2752 fr_info_t frinfo;
2753 fr_info_t *fin = &frinfo;
2754 u_32_t pass = softc->ipf_pass;
2755 frentry_t *fr = NULL;
2756 int v = IP_V(ip);
2757 mb_t *mc = NULL;
2758 mb_t *m;
2759 /*
2760 * The first part of ipf_check() deals with making sure that what goes
2761 * into the filtering engine makes some sense. Information about the
2762 * the packet is distilled, collected into a fr_info_t structure and
2763 * the an attempt to ensure the buffer the packet is in is big enough
2764 * to hold all the required packet headers.
2765 */
2766 #ifdef _KERNEL
2767 # ifdef MENTAT
2768 qpktinfo_t *qpi = qif;
2769
2770 # ifdef __sparc
2771 if ((u_int)ip & 0x3)
2772 return 2;
2773 # endif
2774 # else
2775 SPL_INT(s);
2776 # endif
2777
2778 if (softc->ipf_running <= 0) {
2779 return 0;
2780 }
2781
2782 bzero((char *)fin, sizeof(*fin));
2783
2784 # ifdef MENTAT
2785 if (qpi->qpi_flags & QF_BROADCAST)
2786 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2787 if (qpi->qpi_flags & QF_MULTICAST)
2788 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2789 m = qpi->qpi_m;
2790 fin->fin_qfm = m;
2791 fin->fin_qpi = qpi;
2792 # else /* MENTAT */
2793
2794 m = *mp;
2795
2796 # if defined(M_MCAST)
2797 if ((m->m_flags & M_MCAST) != 0)
2798 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2799 # endif
2800 # if defined(M_MLOOP)
2801 if ((m->m_flags & M_MLOOP) != 0)
2802 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2803 # endif
2804 # if defined(M_BCAST)
2805 if ((m->m_flags & M_BCAST) != 0)
2806 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2807 # endif
2808 # ifdef M_CANFASTFWD
2809 /*
2810 * XXX For now, IP Filter and fast-forwarding of cached flows
2811 * XXX are mutually exclusive. Eventually, IP Filter should
2812 * XXX get a "can-fast-forward" filter rule.
2813 */
2814 m->m_flags &= ~M_CANFASTFWD;
2815 # endif /* M_CANFASTFWD */
2816 # if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2817 (__FreeBSD_version < 501108))
2818 /*
2819 * disable delayed checksums.
2820 */
2821 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2822 in_delayed_cksum(m);
2823 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2824 }
2825 # endif /* CSUM_DELAY_DATA */
2826 # endif /* MENTAT */
2827 #else
2828 bzero((char *)fin, sizeof(*fin));
2829 m = *mp;
2830 # if defined(M_MCAST)
2831 if ((m->m_flags & M_MCAST) != 0)
2832 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2833 # endif
2834 # if defined(M_MLOOP)
2835 if ((m->m_flags & M_MLOOP) != 0)
2836 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2837 # endif
2838 # if defined(M_BCAST)
2839 if ((m->m_flags & M_BCAST) != 0)
2840 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2841 # endif
2842 #endif /* _KERNEL */
2843
2844 fin->fin_v = v;
2845 fin->fin_m = m;
2846 fin->fin_ip = ip;
2847 fin->fin_mp = mp;
2848 fin->fin_out = out;
2849 fin->fin_ifp = ifp;
2850 fin->fin_error = ENETUNREACH;
2851 fin->fin_hlen = (u_short)hlen;
2852 fin->fin_dp = (char *)ip + hlen;
2853 fin->fin_main_soft = softc;
2854
2855 fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2856
2857 SPL_NET(s);
2858
2859 #ifdef USE_INET6
2860 if (v == 6) {
2861 LBUMP(ipf_stats[out].fr_ipv6);
2862 /*
2863 * Jumbo grams are quite likely too big for internal buffer
2864 * structures to handle comfortably, for now, so just drop
2865 * them.
2866 */
2867 if (((ip6_t *)ip)->ip6_plen == 0) {
2868 DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2869 pass = FR_BLOCK|FR_NOMATCH;
2870 fin->fin_reason = FRB_JUMBO;
2871 goto finished;
2872 }
2873 fin->fin_family = AF_INET6;
2874 } else
2875 #endif
2876 {
2877 fin->fin_family = AF_INET;
2878 }
2879
2880 if (ipf_makefrip(hlen, ip, fin) == -1) {
2881 DT1(frb_makefrip, fr_info_t *, fin);
2882 pass = FR_BLOCK|FR_NOMATCH;
2883 fin->fin_reason = FRB_MAKEFRIP;
2884 goto finished;
2885 }
2886
2887 /*
2888 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2889 * becomes NULL and so we have no packet to free.
2890 */
2891 if (*fin->fin_mp == NULL)
2892 goto finished;
2893
2894 if (!out) {
2895 if (v == 4) {
2896 if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2897 LBUMPD(ipf_stats[0], fr_v4_badsrc);
2898 fin->fin_flx |= FI_BADSRC;
2899 }
2900 if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2901 LBUMPD(ipf_stats[0], fr_v4_badttl);
2902 fin->fin_flx |= FI_LOWTTL;
2903 }
2904 }
2905 #ifdef USE_INET6
2906 else if (v == 6) {
2907 if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2908 LBUMPD(ipf_stats[0], fr_v6_badttl);
2909 fin->fin_flx |= FI_LOWTTL;
2910 }
2911 }
2912 #endif
2913 }
2914
2915 if (fin->fin_flx & FI_SHORT) {
2916 LBUMPD(ipf_stats[out], fr_short);
2917 }
2918
2919 READ_ENTER(&softc->ipf_mutex);
2920
2921 if (!out) {
2922 switch (fin->fin_v)
2923 {
2924 case 4 :
2925 if (ipf_nat_checkin(fin, &pass) == -1) {
2926 goto filterdone;
2927 }
2928 break;
2929 #ifdef USE_INET6
2930 case 6 :
2931 if (ipf_nat6_checkin(fin, &pass) == -1) {
2932 goto filterdone;
2933 }
2934 break;
2935 #endif
2936 default :
2937 break;
2938 }
2939 }
2940 /*
2941 * Check auth now.
2942 * If a packet is found in the auth table, then skip checking
2943 * the access lists for permission but we do need to consider
2944 * the result as if it were from the ACL's. In addition, being
2945 * found in the auth table means it has been seen before, so do
2946 * not pass it through accounting (again), lest it be counted twice.
2947 */
2948 fr = ipf_auth_check(fin, &pass);
2949 if (!out && (fr == NULL))
2950 (void) ipf_acctpkt(fin, NULL);
2951
2952 if (fr == NULL) {
2953 if ((fin->fin_flx & FI_FRAG) != 0)
2954 fr = ipf_frag_known(fin, &pass);
2955
2956 if (fr == NULL)
2957 fr = ipf_state_check(fin, &pass);
2958 }
2959
2960 if ((pass & FR_NOMATCH) || (fr == NULL))
2961 fr = ipf_firewall(fin, &pass);
2962
2963 /*
2964 * If we've asked to track state for this packet, set it up.
2965 * Here rather than ipf_firewall because ipf_checkauth may decide
2966 * to return a packet for "keep state"
2967 */
2968 if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
2969 !(fin->fin_flx & FI_STATE)) {
2970 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2971 LBUMP(ipf_stats[out].fr_ads);
2972 } else {
2973 LBUMP(ipf_stats[out].fr_bads);
2974 if (FR_ISPASS(pass)) {
2975 DT(frb_stateadd);
2976 pass &= ~FR_CMDMASK;
2977 pass |= FR_BLOCK;
2978 fin->fin_reason = FRB_STATEADD;
2979 }
2980 }
2981 }
2982
2983 fin->fin_fr = fr;
2984 if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
2985 fin->fin_dif = &fr->fr_dif;
2986 fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
2987 }
2988
2989 /*
2990 * Only count/translate packets which will be passed on, out the
2991 * interface.
2992 */
2993 if (out && FR_ISPASS(pass)) {
2994 (void) ipf_acctpkt(fin, NULL);
2995
2996 switch (fin->fin_v)
2997 {
2998 case 4 :
2999 if (ipf_nat_checkout(fin, &pass) == -1) {
3000 ;
3001 } else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3002 if (ipf_updateipid(fin) == -1) {
3003 DT(frb_updateipid);
3004 LBUMP(ipf_stats[1].fr_ipud);
3005 pass &= ~FR_CMDMASK;
3006 pass |= FR_BLOCK;
3007 fin->fin_reason = FRB_UPDATEIPID;
3008 } else {
3009 LBUMP(ipf_stats[0].fr_ipud);
3010 }
3011 }
3012 break;
3013 #ifdef USE_INET6
3014 case 6 :
3015 (void) ipf_nat6_checkout(fin, &pass);
3016 break;
3017 #endif
3018 default :
3019 break;
3020 }
3021 }
3022
3023 filterdone:
3024 #ifdef IPFILTER_LOG
3025 if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3026 (void) ipf_dolog(fin, &pass);
3027 }
3028 #endif
3029
3030 /*
3031 * The FI_STATE flag is cleared here so that calling ipf_state_check
3032 * will work when called from inside of fr_fastroute. Although
3033 * there is a similar flag, FI_NATED, for NAT, it does have the same
3034 * impact on code execution.
3035 */
3036 fin->fin_flx &= ~FI_STATE;
3037
3038 #if defined(FASTROUTE_RECURSION)
3039 /*
3040 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3041 * a packet below can sometimes cause a recursive call into IPFilter.
3042 * On those platforms where that does happen, we need to hang onto
3043 * the filter rule just in case someone decides to remove or flush it
3044 * in the meantime.
3045 */
3046 if (fr != NULL) {
3047 MUTEX_ENTER(&fr->fr_lock);
3048 fr->fr_ref++;
3049 MUTEX_EXIT(&fr->fr_lock);
3050 }
3051
3052 RWLOCK_EXIT(&softc->ipf_mutex);
3053 #endif
3054
3055 if ((pass & FR_RETMASK) != 0) {
3056 /*
3057 * Should we return an ICMP packet to indicate error
3058 * status passing through the packet filter ?
3059 * WARNING: ICMP error packets AND TCP RST packets should
3060 * ONLY be sent in repsonse to incoming packets. Sending
3061 * them in response to outbound packets can result in a
3062 * panic on some operating systems.
3063 */
3064 if (!out) {
3065 if (pass & FR_RETICMP) {
3066 int dst;
3067
3068 if ((pass & FR_RETMASK) == FR_FAKEICMP)
3069 dst = 1;
3070 else
3071 dst = 0;
3072 (void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3073 dst);
3074 LBUMP(ipf_stats[0].fr_ret);
3075 } else if (((pass & FR_RETMASK) == FR_RETRST) &&
3076 !(fin->fin_flx & FI_SHORT)) {
3077 if (((fin->fin_flx & FI_OOW) != 0) ||
3078 (ipf_send_reset(fin) == 0)) {
3079 LBUMP(ipf_stats[1].fr_ret);
3080 }
3081 }
3082
3083 /*
3084 * When using return-* with auth rules, the auth code
3085 * takes over disposing of this packet.
3086 */
3087 if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3088 DT1(frb_authcapture, fr_info_t *, fin);
3089 fin->fin_m = *fin->fin_mp = NULL;
3090 fin->fin_reason = FRB_AUTHCAPTURE;
3091 m = NULL;
3092 }
3093 } else {
3094 if (pass & FR_RETRST) {
3095 fin->fin_error = ECONNRESET;
3096 }
3097 }
3098 }
3099
3100 /*
3101 * After the above so that ICMP unreachables and TCP RSTs get
3102 * created properly.
3103 */
3104 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3105 ipf_nat_uncreate(fin);
3106
3107 /*
3108 * If we didn't drop off the bottom of the list of rules (and thus
3109 * the 'current' rule fr is not NULL), then we may have some extra
3110 * instructions about what to do with a packet.
3111 * Once we're finished return to our caller, freeing the packet if
3112 * we are dropping it.
3113 */
3114 if (fr != NULL) {
3115 frdest_t *fdp;
3116
3117 /*
3118 * Generate a duplicated packet first because ipf_fastroute
3119 * can lead to fin_m being free'd... not good.
3120 */
3121 fdp = fin->fin_dif;
3122 if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3123 (fdp->fd_ptr != (void *)-1)) {
3124 mc = M_COPY(fin->fin_m);
3125 if (mc != NULL)
3126 ipf_fastroute(mc, &mc, fin, fdp);
3127 }
3128
3129 fdp = fin->fin_tif;
3130 if (!out && (pass & FR_FASTROUTE)) {
3131 /*
3132 * For fastroute rule, no destination interface defined
3133 * so pass NULL as the frdest_t parameter
3134 */
3135 (void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3136 m = *mp = NULL;
3137 } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3138 (fdp->fd_ptr != (struct ifnet *)-1)) {
3139 /* this is for to rules: */
3140 ipf_fastroute(fin->fin_m, mp, fin, fdp);
3141 m = *mp = NULL;
3142 }
3143
3144 #if defined(FASTROUTE_RECURSION)
3145 (void) ipf_derefrule(softc, &fr);
3146 #endif
3147 }
3148 #if !defined(FASTROUTE_RECURSION)
3149 RWLOCK_EXIT(&softc->ipf_mutex);
3150 #endif
3151
3152 finished:
3153 if (!FR_ISPASS(pass)) {
3154 LBUMP(ipf_stats[out].fr_block);
3155 if (*mp != NULL) {
3156 #ifdef _KERNEL
3157 FREE_MB_T(*mp);
3158 #endif
3159 m = *mp = NULL;
3160 }
3161 } else {
3162 LBUMP(ipf_stats[out].fr_pass);
3163 #if defined(_KERNEL) && defined(__sgi)
3164 if ((fin->fin_hbuf != NULL) &&
3165 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3166 COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3167 }
3168 #endif
3169 }
3170
3171 SPL_X(s);
3172
3173 #ifdef _KERNEL
3174 if (FR_ISPASS(pass))
3175 return 0;
3176 LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3177 return fin->fin_error;
3178 #else /* _KERNEL */
3179 if (*mp != NULL)
3180 (*mp)->mb_ifp = fin->fin_ifp;
3181 blockreason = fin->fin_reason;
3182 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3183 /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3184 if ((pass & FR_NOMATCH) != 0)
3185 return 1;
3186
3187 if ((pass & FR_RETMASK) != 0)
3188 switch (pass & FR_RETMASK)
3189 {
3190 case FR_RETRST :
3191 return 3;
3192 case FR_RETICMP :
3193 return 4;
3194 case FR_FAKEICMP :
3195 return 5;
3196 }
3197
3198 switch (pass & FR_CMDMASK)
3199 {
3200 case FR_PASS :
3201 return 0;
3202 case FR_BLOCK :
3203 return -1;
3204 case FR_AUTH :
3205 return -2;
3206 case FR_ACCOUNT :
3207 return -3;
3208 case FR_PREAUTH :
3209 return -4;
3210 }
3211 return 2;
3212 #endif /* _KERNEL */
3213 }
3214
3215
3216 #ifdef IPFILTER_LOG
3217 /* ------------------------------------------------------------------------ */
3218 /* Function: ipf_dolog */
3219 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */
3220 /* Parameters: fin(I) - pointer to packet information */
3221 /* passp(IO) - pointer to current/new filter decision (unused) */
3222 /* */
3223 /* Checks flags set to see how a packet should be logged, if it is to be */
3224 /* logged. Adjust statistics based on its success or not. */
3225 /* ------------------------------------------------------------------------ */
3226 frentry_t *
3227 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3228 {
3229 ipf_main_softc_t *softc = fin->fin_main_soft;
3230 u_32_t pass;
3231 int out;
3232
3233 out = fin->fin_out;
3234 pass = *passp;
3235
3236 if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3237 pass |= FF_LOGNOMATCH;
3238 LBUMPD(ipf_stats[out], fr_npkl);
3239 goto logit;
3240
3241 } else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3242 (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3243 if ((pass & FR_LOGMASK) != FR_LOGP)
3244 pass |= FF_LOGPASS;
3245 LBUMPD(ipf_stats[out], fr_ppkl);
3246 goto logit;
3247
3248 } else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3249 (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3250 if ((pass & FR_LOGMASK) != FR_LOGB)
3251 pass |= FF_LOGBLOCK;
3252 LBUMPD(ipf_stats[out], fr_bpkl);
3253
3254 logit:
3255 if (ipf_log_pkt(fin, pass) == -1) {
3256 /*
3257 * If the "or-block" option has been used then
3258 * block the packet if we failed to log it.
3259 */
3260 if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3261 DT1(frb_logfail2, u_int, pass);
3262 pass &= ~FR_CMDMASK;
3263 pass |= FR_BLOCK;
3264 fin->fin_reason = FRB_LOGFAIL2;
3265 }
3266 }
3267 *passp = pass;
3268 }
3269
3270 return fin->fin_fr;
3271 }
3272 #endif /* IPFILTER_LOG */
3273
3274
3275 /* ------------------------------------------------------------------------ */
3276 /* Function: ipf_cksum */
3277 /* Returns: u_short - IP header checksum */
3278 /* Parameters: addr(I) - pointer to start of buffer to checksum */
3279 /* len(I) - length of buffer in bytes */
3280 /* */
3281 /* Calculate the two's complement 16 bit checksum of the buffer passed. */
3282 /* */
3283 /* N.B.: addr should be 16bit aligned. */
3284 /* ------------------------------------------------------------------------ */
3285 u_short
3286 ipf_cksum(u_short *addr, int len)
3287 {
3288 u_32_t sum = 0;
3289
3290 for (sum = 0; len > 1; len -= 2)
3291 sum += *addr++;
3292
3293 /* mop up an odd byte, if necessary */
3294 if (len == 1)
3295 sum += *(u_char *)addr;
3296
3297 /*
3298 * add back carry outs from top 16 bits to low 16 bits
3299 */
3300 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
3301 sum += (sum >> 16); /* add carry */
3302 return (u_short)(~sum);
3303 }
3304
3305
3306 /* ------------------------------------------------------------------------ */
3307 /* Function: fr_cksum */
3308 /* Returns: u_short - layer 4 checksum */
3309 /* Parameters: fin(I) - pointer to packet information */
3310 /* ip(I) - pointer to IP header */
3311 /* l4proto(I) - protocol to caclulate checksum for */
3312 /* l4hdr(I) - pointer to layer 4 header */
3313 /* */
3314 /* Calculates the TCP checksum for the packet held in "m", using the data */
3315 /* in the IP header "ip" to seed it. */
3316 /* */
3317 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3318 /* and the TCP header. We also assume that data blocks aren't allocated in */
3319 /* odd sizes. */
3320 /* */
3321 /* Expects ip_len and ip_off to be in network byte order when called. */
3322 /* ------------------------------------------------------------------------ */
3323 u_short
3324 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3325 {
3326 u_short *sp, slen, sumsave, *csump;
3327 u_int sum, sum2;
3328 int hlen;
3329 int off;
3330 #ifdef USE_INET6
3331 ip6_t *ip6;
3332 #endif
3333
3334 csump = NULL;
3335 sumsave = 0;
3336 sp = NULL;
3337 slen = 0;
3338 hlen = 0;
3339 sum = 0;
3340
3341 sum = htons((u_short)l4proto);
3342 /*
3343 * Add up IP Header portion
3344 */
3345 #ifdef USE_INET6
3346 if (IP_V(ip) == 4) {
3347 #endif
3348 hlen = IP_HL(ip) << 2;
3349 off = hlen;
3350 sp = (u_short *)&ip->ip_src;
3351 sum += *sp++; /* ip_src */
3352 sum += *sp++;
3353 sum += *sp++; /* ip_dst */
3354 sum += *sp++;
3355 #ifdef USE_INET6
3356 } else if (IP_V(ip) == 6) {
3357 ip6 = (ip6_t *)ip;
3358 hlen = sizeof(*ip6);
3359 off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3360 sp = (u_short *)&ip6->ip6_src;
3361 sum += *sp++; /* ip6_src */
3362 sum += *sp++;
3363 sum += *sp++;
3364 sum += *sp++;
3365 sum += *sp++;
3366 sum += *sp++;
3367 sum += *sp++;
3368 sum += *sp++;
3369 /* This needs to be routing header aware. */
3370 sum += *sp++; /* ip6_dst */
3371 sum += *sp++;
3372 sum += *sp++;
3373 sum += *sp++;
3374 sum += *sp++;
3375 sum += *sp++;
3376 sum += *sp++;
3377 sum += *sp++;
3378 } else {
3379 return 0xffff;
3380 }
3381 #endif
3382 slen = fin->fin_plen - off;
3383 sum += htons(slen);
3384
3385 switch (l4proto)
3386 {
3387 case IPPROTO_UDP :
3388 csump = &((udphdr_t *)l4hdr)->uh_sum;
3389 break;
3390
3391 case IPPROTO_TCP :
3392 csump = &((tcphdr_t *)l4hdr)->th_sum;
3393 break;
3394 case IPPROTO_ICMP :
3395 csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3396 sum = 0; /* Pseudo-checksum is not included */
3397 break;
3398 #ifdef USE_INET6
3399 case IPPROTO_ICMPV6 :
3400 csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3401 break;
3402 #endif
3403 default :
3404 break;
3405 }
3406
3407 if (csump != NULL) {
3408 sumsave = *csump;
3409 *csump = 0;
3410 }
3411
3412 sum2 = ipf_pcksum(fin, off, sum);
3413 if (csump != NULL)
3414 *csump = sumsave;
3415 return sum2;
3416 }
3417
3418
3419 /* ------------------------------------------------------------------------ */
3420 /* Function: ipf_findgroup */
3421 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */
3422 /* Parameters: softc(I) - pointer to soft context main structure */
3423 /* group(I) - group name to search for */
3424 /* unit(I) - device to which this group belongs */
3425 /* set(I) - which set of rules (inactive/inactive) this is */
3426 /* fgpp(O) - pointer to place to store pointer to the pointer */
3427 /* to where to add the next (last) group or where */
3428 /* to delete group from. */
3429 /* */
3430 /* Search amongst the defined groups for a particular group number. */
3431 /* ------------------------------------------------------------------------ */
3432 frgroup_t *
3433 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3434 frgroup_t ***fgpp)
3435 {
3436 frgroup_t *fg, **fgp;
3437
3438 /*
3439 * Which list of groups to search in is dependent on which list of
3440 * rules are being operated on.
3441 */
3442 fgp = &softc->ipf_groups[unit][set];
3443
3444 while ((fg = *fgp) != NULL) {
3445 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3446 break;
3447 else
3448 fgp = &fg->fg_next;
3449 }
3450 if (fgpp != NULL)
3451 *fgpp = fgp;
3452 return fg;
3453 }
3454
3455
3456 /* ------------------------------------------------------------------------ */
3457 /* Function: ipf_group_add */
3458 /* Returns: frgroup_t * - NULL == did not create group, */
3459 /* != NULL == pointer to the group */
3460 /* Parameters: softc(I) - pointer to soft context main structure */
3461 /* num(I) - group number to add */
3462 /* head(I) - rule pointer that is using this as the head */
3463 /* flags(I) - rule flags which describe the type of rule it is */
3464 /* unit(I) - device to which this group will belong to */
3465 /* set(I) - which set of rules (inactive/inactive) this is */
3466 /* Write Locks: ipf_mutex */
3467 /* */
3468 /* Add a new group head, or if it already exists, increase the reference */
3469 /* count to it. */
3470 /* ------------------------------------------------------------------------ */
3471 frgroup_t *
3472 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3473 minor_t unit, int set)
3474 {
3475 frgroup_t *fg, **fgp;
3476 u_32_t gflags;
3477
3478 if (group == NULL)
3479 return NULL;
3480
3481 if (unit == IPL_LOGIPF && *group == '\0')
3482 return NULL;
3483
3484 fgp = NULL;
3485 gflags = flags & FR_INOUT;
3486
3487 fg = ipf_findgroup(softc, group, unit, set, &fgp);
3488 if (fg != NULL) {
3489 if (fg->fg_head == NULL && head != NULL)
3490 fg->fg_head = head;
3491 if (fg->fg_flags == 0)
3492 fg->fg_flags = gflags;
3493 else if (gflags != fg->fg_flags)
3494 return NULL;
3495 fg->fg_ref++;
3496 return fg;
3497 }
3498
3499 KMALLOC(fg, frgroup_t *);
3500 if (fg != NULL) {
3501 fg->fg_head = head;
3502 fg->fg_start = NULL;
3503 fg->fg_next = *fgp;
3504 bcopy(group, fg->fg_name, strlen(group) + 1);
3505 fg->fg_flags = gflags;
3506 fg->fg_ref = 1;
3507 fg->fg_set = &softc->ipf_groups[unit][set];
3508 *fgp = fg;
3509 }
3510 return fg;
3511 }
3512
3513
3514 /* ------------------------------------------------------------------------ */
3515 /* Function: ipf_group_del */
3516 /* Returns: int - number of rules deleted */
3517 /* Parameters: softc(I) - pointer to soft context main structure */
3518 /* group(I) - group name to delete */
3519 /* fr(I) - filter rule from which group is referenced */
3520 /* Write Locks: ipf_mutex */
3521 /* */
3522 /* This function is called whenever a reference to a group is to be dropped */
3523 /* and thus its reference count needs to be lowered and the group free'd if */
3524 /* the reference count reaches zero. Passing in fr is really for the sole */
3525 /* purpose of knowing when the head rule is being deleted. */
3526 /* ------------------------------------------------------------------------ */
3527 void
3528 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3529 {
3530
3531 if (group->fg_head == fr)
3532 group->fg_head = NULL;
3533
3534 group->fg_ref--;
3535 if ((group->fg_ref == 0) && (group->fg_start == NULL))
3536 ipf_group_free(group);
3537 }
3538
3539
3540 /* ------------------------------------------------------------------------ */
3541 /* Function: ipf_group_free */
3542 /* Returns: Nil */
3543 /* Parameters: group(I) - pointer to filter rule group */
3544 /* */
3545 /* Remove the group from the list of groups and free it. */
3546 /* ------------------------------------------------------------------------ */
3547 static void
3548 ipf_group_free(frgroup_t *group)
3549 {
3550 frgroup_t **gp;
3551
3552 for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3553 if (*gp == group) {
3554 *gp = group->fg_next;
3555 break;
3556 }
3557 }
3558 KFREE(group);
3559 }
3560
3561
3562 /* ------------------------------------------------------------------------ */
3563 /* Function: ipf_group_flush */
3564 /* Returns: int - number of rules flush from group */
3565 /* Parameters: softc(I) - pointer to soft context main structure */
3566 /* Parameters: group(I) - pointer to filter rule group */
3567 /* */
3568 /* Remove all of the rules that currently are listed under the given group. */
3569 /* ------------------------------------------------------------------------ */
3570 static int
3571 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3572 {
3573 int gone = 0;
3574
3575 (void) ipf_flushlist(softc, &gone, &group->fg_start);
3576
3577 return gone;
3578 }
3579
3580
3581 /* ------------------------------------------------------------------------ */
3582 /* Function: ipf_getrulen */
3583 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */
3584 /* Parameters: softc(I) - pointer to soft context main structure */
3585 /* Parameters: unit(I) - device for which to count the rule's number */
3586 /* flags(I) - which set of rules to find the rule in */
3587 /* group(I) - group name */
3588 /* n(I) - rule number to find */
3589 /* */
3590 /* Find rule # n in group # g and return a pointer to it. Return NULl if */
3591 /* group # g doesn't exist or there are less than n rules in the group. */
3592 /* ------------------------------------------------------------------------ */
3593 frentry_t *
3594 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3595 {
3596 frentry_t *fr;
3597 frgroup_t *fg;
3598
3599 fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3600 if (fg == NULL)
3601 return NULL;
3602 for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3603 ;
3604 if (n != 0)
3605 return NULL;
3606 return fr;
3607 }
3608
3609
3610 /* ------------------------------------------------------------------------ */
3611 /* Function: ipf_flushlist */
3612 /* Returns: int - >= 0 - number of flushed rules */
3613 /* Parameters: softc(I) - pointer to soft context main structure */
3614 /* nfreedp(O) - pointer to int where flush count is stored */
3615 /* listp(I) - pointer to list to flush pointer */
3616 /* Write Locks: ipf_mutex */
3617 /* */
3618 /* Recursively flush rules from the list, descending groups as they are */
3619 /* encountered. if a rule is the head of a group and it has lost all its */
3620 /* group members, then also delete the group reference. nfreedp is needed */
3621 /* to store the accumulating count of rules removed, whereas the returned */
3622 /* value is just the number removed from the current list. The latter is */
3623 /* needed to correctly adjust reference counts on rules that define groups. */
3624 /* */
3625 /* NOTE: Rules not loaded from user space cannot be flushed. */
3626 /* ------------------------------------------------------------------------ */
3627 static int
3628 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3629 {
3630 int freed = 0;
3631 frentry_t *fp;
3632
3633 while ((fp = *listp) != NULL) {
3634 if ((fp->fr_type & FR_T_BUILTIN) ||
3635 !(fp->fr_flags & FR_COPIED)) {
3636 listp = &fp->fr_next;
3637 continue;
3638 }
3639 *listp = fp->fr_next;
3640 if (fp->fr_next != NULL)
3641 fp->fr_next->fr_pnext = fp->fr_pnext;
3642 fp->fr_pnext = NULL;
3643
3644 if (fp->fr_grphead != NULL) {
3645 freed += ipf_group_flush(softc, fp->fr_grphead);
3646 fp->fr_names[fp->fr_grhead] = '\0';
3647 }
3648
3649 if (fp->fr_icmpgrp != NULL) {
3650 freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3651 fp->fr_names[fp->fr_icmphead] = '\0';
3652 }
3653
3654 if (fp->fr_srctrack.ht_max_nodes)
3655 ipf_rb_ht_flush(&fp->fr_srctrack);
3656
3657 fp->fr_next = NULL;
3658
3659 ASSERT(fp->fr_ref > 0);
3660 if (ipf_derefrule(softc, &fp) == 0)
3661 freed++;
3662 }
3663 *nfreedp += freed;
3664 return freed;
3665 }
3666
3667
3668 /* ------------------------------------------------------------------------ */
3669 /* Function: ipf_flush */
3670 /* Returns: int - >= 0 - number of flushed rules */
3671 /* Parameters: softc(I) - pointer to soft context main structure */
3672 /* unit(I) - device for which to flush rules */
3673 /* flags(I) - which set of rules to flush */
3674 /* */
3675 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3676 /* and IPv6) as defined by the value of flags. */
3677 /* ------------------------------------------------------------------------ */
3678 int
3679 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3680 {
3681 int flushed = 0, set;
3682
3683 WRITE_ENTER(&softc->ipf_mutex);
3684
3685 set = softc->ipf_active;
3686 if ((flags & FR_INACTIVE) == FR_INACTIVE)
3687 set = 1 - set;
3688
3689 if (flags & FR_OUTQUE) {
3690 ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3691 ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3692 }
3693 if (flags & FR_INQUE) {
3694 ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3695 ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3696 }
3697
3698 flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3699 flags & (FR_INQUE|FR_OUTQUE));
3700
3701 RWLOCK_EXIT(&softc->ipf_mutex);
3702
3703 if (unit == IPL_LOGIPF) {
3704 int tmp;
3705
3706 tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3707 if (tmp >= 0)
3708 flushed += tmp;
3709 }
3710 return flushed;
3711 }
3712
3713
3714 /* ------------------------------------------------------------------------ */
3715 /* Function: ipf_flush_groups */
3716 /* Returns: int - >= 0 - number of flushed rules */
3717 /* Parameters: softc(I) - soft context pointerto work with */
3718 /* grhead(I) - pointer to the start of the group list to flush */
3719 /* flags(I) - which set of rules to flush */
3720 /* */
3721 /* Walk through all of the groups under the given group head and remove all */
3722 /* of those that match the flags passed in. The for loop here is bit more */
3723 /* complicated than usual because the removal of a rule with ipf_derefrule */
3724 /* may end up removing not only the structure pointed to by "fg" but also */
3725 /* what is fg_next and fg_next after that. So if a filter rule is actually */
3726 /* removed from the group then it is necessary to start again. */
3727 /* ------------------------------------------------------------------------ */
3728 static int
3729 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3730 {
3731 frentry_t *fr, **frp;
3732 frgroup_t *fg, **fgp;
3733 int flushed = 0;
3734 int removed = 0;
3735
3736 for (fgp = grhead; (fg = *fgp) != NULL; ) {
3737 while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3738 fg = fg->fg_next;
3739 if (fg == NULL)
3740 break;
3741 removed = 0;
3742 frp = &fg->fg_start;
3743 while ((removed == 0) && ((fr = *frp) != NULL)) {
3744 if ((fr->fr_flags & flags) == 0) {
3745 frp = &fr->fr_next;
3746 } else {
3747 if (fr->fr_next != NULL)
3748 fr->fr_next->fr_pnext = fr->fr_pnext;
3749 *frp = fr->fr_next;
3750 fr->fr_pnext = NULL;
3751 fr->fr_next = NULL;
3752 (void) ipf_derefrule(softc, &fr);
3753 flushed++;
3754 removed++;
3755 }
3756 }
3757 if (removed == 0)
3758 fgp = &fg->fg_next;
3759 }
3760 return flushed;
3761 }
3762
3763
3764 /* ------------------------------------------------------------------------ */
3765 /* Function: memstr */
3766 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */
3767 /* Parameters: src(I) - pointer to byte sequence to match */
3768 /* dst(I) - pointer to byte sequence to search */
3769 /* slen(I) - match length */
3770 /* dlen(I) - length available to search in */
3771 /* */
3772 /* Search dst for a sequence of bytes matching those at src and extend for */
3773 /* slen bytes. */
3774 /* ------------------------------------------------------------------------ */
3775 char *
3776 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3777 {
3778 char *s = NULL;
3779
3780 while (dlen >= slen) {
3781 if (memcmp(src, dst, slen) == 0) {
3782 s = dst;
3783 break;
3784 }
3785 dst++;
3786 dlen--;
3787 }
3788 return s;
3789 }
3790 /* ------------------------------------------------------------------------ */
3791 /* Function: ipf_fixskip */
3792 /* Returns: Nil */
3793 /* Parameters: listp(IO) - pointer to start of list with skip rule */
3794 /* rp(I) - rule added/removed with skip in it. */
3795 /* addremove(I) - adjustment (-1/+1) to make to skip count, */
3796 /* depending on whether a rule was just added */
3797 /* or removed. */
3798 /* */
3799 /* Adjust all the rules in a list which would have skip'd past the position */
3800 /* where we are inserting to skip to the right place given the change. */
3801 /* ------------------------------------------------------------------------ */
3802 void
3803 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3804 {
3805 int rules, rn;
3806 frentry_t *fp;
3807
3808 rules = 0;
3809 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3810 rules++;
3811
3812 if (!fp)
3813 return;
3814
3815 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3816 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3817 fp->fr_arg += addremove;
3818 }
3819
3820
3821 #ifdef _KERNEL
3822 /* ------------------------------------------------------------------------ */
3823 /* Function: count4bits */
3824 /* Returns: int - >= 0 - number of consecutive bits in input */
3825 /* Parameters: ip(I) - 32bit IP address */
3826 /* */
3827 /* IPv4 ONLY */
3828 /* count consecutive 1's in bit mask. If the mask generated by counting */
3829 /* consecutive 1's is different to that passed, return -1, else return # */
3830 /* of bits. */
3831 /* ------------------------------------------------------------------------ */
3832 int
3833 count4bits(u_32_t ip)
3834 {
3835 u_32_t ipn;
3836 int cnt = 0, i, j;
3837
3838 ip = ipn = ntohl(ip);
3839 for (i = 32; i; i--, ipn *= 2)
3840 if (ipn & 0x80000000)
3841 cnt++;
3842 else
3843 break;
3844 ipn = 0;
3845 for (i = 32, j = cnt; i; i--, j--) {
3846 ipn *= 2;
3847 if (j > 0)
3848 ipn++;
3849 }
3850 if (ipn == ip)
3851 return cnt;
3852 return -1;
3853 }
3854
3855
3856 /* ------------------------------------------------------------------------ */
3857 /* Function: count6bits */
3858 /* Returns: int - >= 0 - number of consecutive bits in input */
3859 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */
3860 /* */
3861 /* IPv6 ONLY */
3862 /* count consecutive 1's in bit mask. */
3863 /* ------------------------------------------------------------------------ */
3864 # ifdef USE_INET6
3865 int
3866 count6bits(u_32_t *msk)
3867 {
3868 int i = 0, k;
3869 u_32_t j;
3870
3871 for (k = 3; k >= 0; k--)
3872 if (msk[k] == 0xffffffff)
3873 i += 32;
3874 else {
3875 for (j = msk[k]; j; j <<= 1)
3876 if (j & 0x80000000)
3877 i++;
3878 }
3879 return i;
3880 }
3881 # endif
3882 #endif /* _KERNEL */
3883
3884
3885 /* ------------------------------------------------------------------------ */
3886 /* Function: ipf_synclist */
3887 /* Returns: int - 0 = no failures, else indication of first failure */
3888 /* Parameters: fr(I) - start of filter list to sync interface names for */
3889 /* ifp(I) - interface pointer for limiting sync lookups */
3890 /* Write Locks: ipf_mutex */
3891 /* */
3892 /* Walk through a list of filter rules and resolve any interface names into */
3893 /* pointers. Where dynamic addresses are used, also update the IP address */
3894 /* used in the rule. The interface pointer is used to limit the lookups to */
3895 /* a specific set of matching names if it is non-NULL. */
3896 /* Errors can occur when resolving the destination name of to/dup-to fields */
3897 /* when the name points to a pool and that pool doest not exist. If this */
3898 /* does happen then it is necessary to check if there are any lookup refs */
3899 /* that need to be dropped before returning with an error. */
3900 /* ------------------------------------------------------------------------ */
3901 static int
3902 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3903 {
3904 frentry_t *frt, *start = fr;
3905 frdest_t *fdp;
3906 char *name;
3907 int error;
3908 void *ifa;
3909 int v, i;
3910
3911 error = 0;
3912
3913 for (; fr; fr = fr->fr_next) {
3914 if (fr->fr_family == AF_INET)
3915 v = 4;
3916 else if (fr->fr_family == AF_INET6)
3917 v = 6;
3918 else
3919 v = 0;
3920
3921 /*
3922 * Lookup all the interface names that are part of the rule.
3923 */
3924 for (i = 0; i < 4; i++) {
3925 if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3926 continue;
3927 if (fr->fr_ifnames[i] == -1)
3928 continue;
3929 name = FR_NAME(fr, fr_ifnames[i]);
3930 fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3931 }
3932
3933 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3934 if (fr->fr_satype != FRI_NORMAL &&
3935 fr->fr_satype != FRI_LOOKUP) {
3936 ifa = ipf_resolvenic(softc, fr->fr_names +
3937 fr->fr_sifpidx, v);
3938 ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3939 &fr->fr_src6, &fr->fr_smsk6);
3940 }
3941 if (fr->fr_datype != FRI_NORMAL &&
3942 fr->fr_datype != FRI_LOOKUP) {
3943 ifa = ipf_resolvenic(softc, fr->fr_names +
3944 fr->fr_sifpidx, v);
3945 ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3946 &fr->fr_dst6, &fr->fr_dmsk6);
3947 }
3948 }
3949
3950 fdp = &fr->fr_tifs[0];
3951 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3952 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3953 if (error != 0)
3954 goto unwind;
3955 }
3956
3957 fdp = &fr->fr_tifs[1];
3958 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3959 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3960 if (error != 0)
3961 goto unwind;
3962 }
3963
3964 fdp = &fr->fr_dif;
3965 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3966 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3967 if (error != 0)
3968 goto unwind;
3969 }
3970
3971 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3972 (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
3973 fr->fr_srcptr = ipf_lookup_res_num(softc,
3974 fr->fr_srctype,
3975 IPL_LOGIPF,
3976 fr->fr_srcnum,
3977 &fr->fr_srcfunc);
3978 }
3979 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3980 (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
3981 fr->fr_dstptr = ipf_lookup_res_num(softc,
3982 fr->fr_dsttype,
3983 IPL_LOGIPF,
3984 fr->fr_dstnum,
3985 &fr->fr_dstfunc);
3986 }
3987 }
3988 return 0;
3989
3990 unwind:
3991 for (frt = start; frt != fr; fr = fr->fr_next) {
3992 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3993 (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
3994 ipf_lookup_deref(softc, frt->fr_srctype,
3995 frt->fr_srcptr);
3996 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3997 (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
3998 ipf_lookup_deref(softc, frt->fr_dsttype,
3999 frt->fr_dstptr);
4000 }
4001 return error;
4002 }
4003
4004
4005 /* ------------------------------------------------------------------------ */
4006 /* Function: ipf_sync */
4007 /* Returns: void */
4008 /* Parameters: Nil */
4009 /* */
4010 /* ipf_sync() is called when we suspect that the interface list or */
4011 /* information about interfaces (like IP#) has changed. Go through all */
4012 /* filter rules, NAT entries and the state table and check if anything */
4013 /* needs to be changed/updated. */
4014 /* ------------------------------------------------------------------------ */
4015 int
4016 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4017 {
4018 int i;
4019
4020 # if !SOLARIS
4021 ipf_nat_sync(softc, ifp);
4022 ipf_state_sync(softc, ifp);
4023 ipf_lookup_sync(softc, ifp);
4024 # endif
4025
4026 WRITE_ENTER(&softc->ipf_mutex);
4027 (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4028 (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4029 (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4030 (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4031
4032 for (i = 0; i < IPL_LOGSIZE; i++) {
4033 frgroup_t *g;
4034
4035 for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4036 (void) ipf_synclist(softc, g->fg_start, ifp);
4037 for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4038 (void) ipf_synclist(softc, g->fg_start, ifp);
4039 }
4040 RWLOCK_EXIT(&softc->ipf_mutex);
4041
4042 return 0;
4043 }
4044
4045
4046 /*
4047 * In the functions below, bcopy() is called because the pointer being
4048 * copied _from_ in this instance is a pointer to a char buf (which could
4049 * end up being unaligned) and on the kernel's local stack.
4050 */
4051 /* ------------------------------------------------------------------------ */
4052 /* Function: copyinptr */
4053 /* Returns: int - 0 = success, else failure */
4054 /* Parameters: src(I) - pointer to the source address */
4055 /* dst(I) - destination address */
4056 /* size(I) - number of bytes to copy */
4057 /* */
4058 /* Copy a block of data in from user space, given a pointer to the pointer */
4059 /* to start copying from (src) and a pointer to where to store it (dst). */
4060 /* NB: src - pointer to user space pointer, dst - kernel space pointer */
4061 /* ------------------------------------------------------------------------ */
4062 int
4063 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4064 {
4065 void *ca;
4066 int error;
4067
4068 # if SOLARIS
4069 error = COPYIN(src, &ca, sizeof(ca));
4070 if (error != 0)
4071 return error;
4072 # else
4073 bcopy(src, (void *)&ca, sizeof(ca));
4074 # endif
4075 error = COPYIN(ca, dst, size);
4076 if (error != 0) {
4077 IPFERROR(3);
4078 error = EFAULT;
4079 }
4080 return error;
4081 }
4082
4083
4084 /* ------------------------------------------------------------------------ */
4085 /* Function: copyoutptr */
4086 /* Returns: int - 0 = success, else failure */
4087 /* Parameters: src(I) - pointer to the source address */
4088 /* dst(I) - destination address */
4089 /* size(I) - number of bytes to copy */
4090 /* */
4091 /* Copy a block of data out to user space, given a pointer to the pointer */
4092 /* to start copying from (src) and a pointer to where to store it (dst). */
4093 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */
4094 /* ------------------------------------------------------------------------ */
4095 int
4096 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4097 {
4098 void *ca;
4099 int error;
4100
4101 bcopy(dst, &ca, sizeof(ca));
4102 error = COPYOUT(src, ca, size);
4103 if (error != 0) {
4104 IPFERROR(4);
4105 error = EFAULT;
4106 }
4107 return error;
4108 }
4109 #ifdef _KERNEL
4110 #endif
4111
4112
4113 /* ------------------------------------------------------------------------ */
4114 /* Function: ipf_lock */
4115 /* Returns: int - 0 = success, else error */
4116 /* Parameters: data(I) - pointer to lock value to set */
4117 /* lockp(O) - pointer to location to store old lock value */
4118 /* */
4119 /* Get the new value for the lock integer, set it and return the old value */
4120 /* in *lockp. */
4121 /* ------------------------------------------------------------------------ */
4122 int
4123 ipf_lock(void *data, int *lockp)
4124 {
4125 int arg, err;
4126
4127 err = BCOPYIN(data, &arg, sizeof(arg));
4128 if (err != 0)
4129 return EFAULT;
4130 err = BCOPYOUT(lockp, data, sizeof(*lockp));
4131 if (err != 0)
4132 return EFAULT;
4133 *lockp = arg;
4134 return 0;
4135 }
4136
4137
4138 /* ------------------------------------------------------------------------ */
4139 /* Function: ipf_getstat */
4140 /* Returns: Nil */
4141 /* Parameters: softc(I) - pointer to soft context main structure */
4142 /* fiop(I) - pointer to ipfilter stats structure */
4143 /* rev(I) - version claim by program doing ioctl */
4144 /* */
4145 /* Stores a copy of current pointers, counters, etc, in the friostat */
4146 /* structure. */
4147 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */
4148 /* program is looking for. This ensure that validation of the version it */
4149 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */
4150 /* allow older binaries to work but kernels without it will not. */
4151 /* ------------------------------------------------------------------------ */
4152 /*ARGSUSED*/
4153 static void
4154 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4155 {
4156 int i;
4157
4158 bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4159 sizeof(ipf_statistics_t) * 2);
4160 fiop->f_locks[IPL_LOGSTATE] = -1;
4161 fiop->f_locks[IPL_LOGNAT] = -1;
4162 fiop->f_locks[IPL_LOGIPF] = -1;
4163 fiop->f_locks[IPL_LOGAUTH] = -1;
4164
4165 fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4166 fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4167 fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4168 fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4169 fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4170 fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4171 fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4172 fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4173
4174 fiop->f_ticks = softc->ipf_ticks;
4175 fiop->f_active = softc->ipf_active;
4176 fiop->f_froute[0] = softc->ipf_frouteok[0];
4177 fiop->f_froute[1] = softc->ipf_frouteok[1];
4178 fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4179 fiop->f_rb_node_max = softc->ipf_rb_node_max;
4180
4181 fiop->f_running = softc->ipf_running;
4182 for (i = 0; i < IPL_LOGSIZE; i++) {
4183 fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4184 fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4185 }
4186 #ifdef IPFILTER_LOG
4187 fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4188 fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4189 fiop->f_logging = 1;
4190 #else
4191 fiop->f_log_ok = 0;
4192 fiop->f_log_fail = 0;
4193 fiop->f_logging = 0;
4194 #endif
4195 fiop->f_defpass = softc->ipf_pass;
4196 fiop->f_features = ipf_features;
4197
4198 #ifdef IPFILTER_COMPAT
4199 sprintf(fiop->f_version, "IP Filter: v%d.%d.%d",
4200 (rev / 1000000) % 100,
4201 (rev / 10000) % 100,
4202 (rev / 100) % 100);
4203 #else
4204 rev = rev;
4205 (void) strncpy(fiop->f_version, ipfilter_version,
4206 sizeof(fiop->f_version));
4207 #endif
4208 }
4209
4210
4211 #ifdef USE_INET6
4212 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4213 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */
4214 -1, /* 1: UNUSED */
4215 -1, /* 2: UNUSED */
4216 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */
4217 -1, /* 4: ICMP_SOURCEQUENCH */
4218 ND_REDIRECT, /* 5: ICMP_REDIRECT */
4219 -1, /* 6: UNUSED */
4220 -1, /* 7: UNUSED */
4221 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */
4222 -1, /* 9: UNUSED */
4223 -1, /* 10: UNUSED */
4224 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */
4225 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */
4226 -1, /* 13: ICMP_TSTAMP */
4227 -1, /* 14: ICMP_TSTAMPREPLY */
4228 -1, /* 15: ICMP_IREQ */
4229 -1, /* 16: ICMP_IREQREPLY */
4230 -1, /* 17: ICMP_MASKREQ */
4231 -1, /* 18: ICMP_MASKREPLY */
4232 };
4233
4234
4235 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4236 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */
4237 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */
4238 -1, /* 2: ICMP_UNREACH_PROTOCOL */
4239 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */
4240 -1, /* 4: ICMP_UNREACH_NEEDFRAG */
4241 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */
4242 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */
4243 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */
4244 -1, /* 8: ICMP_UNREACH_ISOLATED */
4245 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */
4246 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */
4247 -1, /* 11: ICMP_UNREACH_TOSNET */
4248 -1, /* 12: ICMP_UNREACH_TOSHOST */
4249 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4250 };
4251 int icmpreplytype6[ICMP6_MAXTYPE + 1];
4252 #endif
4253
4254 int icmpreplytype4[ICMP_MAXTYPE + 1];
4255
4256
4257 /* ------------------------------------------------------------------------ */
4258 /* Function: ipf_matchicmpqueryreply */
4259 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */
4260 /* Parameters: v(I) - IP protocol version (4 or 6) */
4261 /* ic(I) - ICMP information */
4262 /* icmp(I) - ICMP packet header */
4263 /* rev(I) - direction (0 = forward/1 = reverse) of packet */
4264 /* */
4265 /* Check if the ICMP packet defined by the header pointed to by icmp is a */
4266 /* reply to one as described by what's in ic. If it is a match, return 1, */
4267 /* else return 0 for no match. */
4268 /* ------------------------------------------------------------------------ */
4269 int
4270 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4271 {
4272 int ictype;
4273
4274 ictype = ic->ici_type;
4275
4276 if (v == 4) {
4277 /*
4278 * If we matched its type on the way in, then when going out
4279 * it will still be the same type.
4280 */
4281 if ((!rev && (icmp->icmp_type == ictype)) ||
4282 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4283 if (icmp->icmp_type != ICMP_ECHOREPLY)
4284 return 1;
4285 if (icmp->icmp_id == ic->ici_id)
4286 return 1;
4287 }
4288 }
4289 #ifdef USE_INET6
4290 else if (v == 6) {
4291 if ((!rev && (icmp->icmp_type == ictype)) ||
4292 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4293 if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4294 return 1;
4295 if (icmp->icmp_id == ic->ici_id)
4296 return 1;
4297 }
4298 }
4299 #endif
4300 return 0;
4301 }
4302
4303
4304 /* ------------------------------------------------------------------------ */
4305 /* Function: frrequest */
4306 /* Returns: int - 0 == success, > 0 == errno value */
4307 /* Parameters: unit(I) - device for which this is for */
4308 /* req(I) - ioctl command (SIOC*) */
4309 /* data(I) - pointr to ioctl data */
4310 /* set(I) - 1 or 0 (filter set) */
4311 /* makecopy(I) - flag indicating whether data points to a rule */
4312 /* in kernel space & hence doesn't need copying. */
4313 /* */
4314 /* This function handles all the requests which operate on the list of */
4315 /* filter rules. This includes adding, deleting, insertion. It is also */
4316 /* responsible for creating groups when a "head" rule is loaded. Interface */
4317 /* names are resolved here and other sanity checks are made on the content */
4318 /* of the rule structure being loaded. If a rule has user defined timeouts */
4319 /* then make sure they are created and initialised before exiting. */
4320 /* ------------------------------------------------------------------------ */
4321 int
4322 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data,
4323 int set, int makecopy)
4324 {
4325 int error = 0, in, family, addrem, need_free = 0;
4326 frentry_t frd, *fp, *f, **fprev, **ftail;
4327 void *ptr, *uptr, *cptr;
4328 u_int *p, *pp;
4329 frgroup_t *fg;
4330 char *group;
4331
4332 ptr = NULL;
4333 cptr = NULL;
4334 fg = NULL;
4335 fp = &frd;
4336 if (makecopy != 0) {
4337 bzero(fp, sizeof(frd));
4338 error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4339 if (error) {
4340 return error;
4341 }
4342 if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4343 IPFERROR(6);
4344 return EINVAL;
4345 }
4346 KMALLOCS(f, frentry_t *, fp->fr_size);
4347 if (f == NULL) {
4348 IPFERROR(131);
4349 return ENOMEM;
4350 }
4351 bzero(f, fp->fr_size);
4352 error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4353 fp->fr_size);
4354 if (error) {
4355 KFREES(f, fp->fr_size);
4356 return error;
4357 }
4358
4359 fp = f;
4360 f = NULL;
4361 fp->fr_dnext = NULL;
4362 fp->fr_ref = 0;
4363 fp->fr_flags |= FR_COPIED;
4364 } else {
4365 fp = (frentry_t *)data;
4366 if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4367 IPFERROR(7);
4368 return EINVAL;
4369 }
4370 fp->fr_flags &= ~FR_COPIED;
4371 }
4372
4373 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4374 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4375 IPFERROR(8);
4376 error = EINVAL;
4377 goto donenolock;
4378 }
4379
4380 family = fp->fr_family;
4381 uptr = fp->fr_data;
4382
4383 if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4384 req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4385 addrem = 0;
4386 else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4387 addrem = 1;
4388 else if (req == (ioctlcmd_t)SIOCZRLST)
4389 addrem = 2;
4390 else {
4391 IPFERROR(9);
4392 error = EINVAL;
4393 goto donenolock;
4394 }
4395
4396 /*
4397 * Only filter rules for IPv4 or IPv6 are accepted.
4398 */
4399 if (family == AF_INET) {
4400 /*EMPTY*/;
4401 #ifdef USE_INET6
4402 } else if (family == AF_INET6) {
4403 /*EMPTY*/;
4404 #endif
4405 } else if (family != 0) {
4406 IPFERROR(10);
4407 error = EINVAL;
4408 goto donenolock;
4409 }
4410
4411 /*
4412 * If the rule is being loaded from user space, i.e. we had to copy it
4413 * into kernel space, then do not trust the function pointer in the
4414 * rule.
4415 */
4416 if ((makecopy == 1) && (fp->fr_func != NULL)) {
4417 if (ipf_findfunc(fp->fr_func) == NULL) {
4418 IPFERROR(11);
4419 error = ESRCH;
4420 goto donenolock;
4421 }
4422
4423 if (addrem == 0) {
4424 error = ipf_funcinit(softc, fp);
4425 if (error != 0)
4426 goto donenolock;
4427 }
4428 }
4429 if ((fp->fr_flags & FR_CALLNOW) &&
4430 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4431 IPFERROR(142);
4432 error = ESRCH;
4433 goto donenolock;
4434 }
4435 if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4436 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4437 IPFERROR(143);
4438 error = ESRCH;
4439 goto donenolock;
4440 }
4441
4442 ptr = NULL;
4443 cptr = NULL;
4444
4445 if (FR_ISACCOUNT(fp->fr_flags))
4446 unit = IPL_LOGCOUNT;
4447
4448 /*
4449 * Check that each group name in the rule has a start index that
4450 * is valid.
4451 */
4452 if (fp->fr_icmphead != -1) {
4453 if ((fp->fr_icmphead < 0) ||
4454 (fp->fr_icmphead >= fp->fr_namelen)) {
4455 IPFERROR(136);
4456 error = EINVAL;
4457 goto donenolock;
4458 }
4459 if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4460 fp->fr_names[fp->fr_icmphead] = '\0';
4461 }
4462
4463 if (fp->fr_grhead != -1) {
4464 if ((fp->fr_grhead < 0) ||
4465 (fp->fr_grhead >= fp->fr_namelen)) {
4466 IPFERROR(137);
4467 error = EINVAL;
4468 goto donenolock;
4469 }
4470 if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4471 fp->fr_names[fp->fr_grhead] = '\0';
4472 }
4473
4474 if (fp->fr_group != -1) {
4475 if ((fp->fr_group < 0) ||
4476 (fp->fr_group >= fp->fr_namelen)) {
4477 IPFERROR(138);
4478 error = EINVAL;
4479 goto donenolock;
4480 }
4481 if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4482 /*
4483 * Allow loading rules that are in groups to cause
4484 * them to be created if they don't already exit.
4485 */
4486 group = FR_NAME(fp, fr_group);
4487 if (addrem == 0) {
4488 fg = ipf_group_add(softc, group, NULL,
4489 fp->fr_flags, unit, set);
4490 fp->fr_grp = fg;
4491 } else {
4492 fg = ipf_findgroup(softc, group, unit,
4493 set, NULL);
4494 if (fg == NULL) {
4495 IPFERROR(12);
4496 error = ESRCH;
4497 goto donenolock;
4498 }
4499 }
4500
4501 if (fg->fg_flags == 0) {
4502 fg->fg_flags = fp->fr_flags & FR_INOUT;
4503 } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4504 IPFERROR(13);
4505 error = ESRCH;
4506 goto donenolock;
4507 }
4508 }
4509 } else {
4510 /*
4511 * If a rule is going to be part of a group then it does
4512 * not matter whether it is an in or out rule, but if it
4513 * isn't in a group, then it does...
4514 */
4515 if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4516 IPFERROR(14);
4517 error = EINVAL;
4518 goto donenolock;
4519 }
4520 }
4521 in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4522
4523 /*
4524 * Work out which rule list this change is being applied to.
4525 */
4526 ftail = NULL;
4527 fprev = NULL;
4528 if (unit == IPL_LOGAUTH) {
4529 if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4530 (fp->fr_tifs[1].fd_ptr != NULL) ||
4531 (fp->fr_dif.fd_ptr != NULL) ||
4532 (fp->fr_flags & FR_FASTROUTE)) {
4533 IPFERROR(145);
4534 error = EINVAL;
4535 goto donenolock;
4536 }
4537 fprev = ipf_auth_rulehead(softc);
4538 } else {
4539 if (FR_ISACCOUNT(fp->fr_flags))
4540 fprev = &softc->ipf_acct[in][set];
4541 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4542 fprev = &softc->ipf_rules[in][set];
4543 }
4544 if (fprev == NULL) {
4545 IPFERROR(15);
4546 error = ESRCH;
4547 goto donenolock;
4548 }
4549
4550 if (fg != NULL)
4551 fprev = &fg->fg_start;
4552
4553 /*
4554 * Copy in extra data for the rule.
4555 */
4556 if (fp->fr_dsize != 0) {
4557 if (makecopy != 0) {
4558 KMALLOCS(ptr, void *, fp->fr_dsize);
4559 if (ptr == NULL) {
4560 IPFERROR(16);
4561 error = ENOMEM;
4562 goto donenolock;
4563 }
4564
4565 /*
4566 * The bcopy case is for when the data is appended
4567 * to the rule by ipf_in_compat().
4568 */
4569 if (uptr >= (void *)fp &&
4570 uptr < (void *)((char *)fp + fp->fr_size)) {
4571 bcopy(uptr, ptr, fp->fr_dsize);
4572 error = 0;
4573 } else {
4574 error = COPYIN(uptr, ptr, fp->fr_dsize);
4575 if (error != 0) {
4576 IPFERROR(17);
4577 error = EFAULT;
4578 goto donenolock;
4579 }
4580 }
4581 } else {
4582 ptr = uptr;
4583 }
4584 fp->fr_data = ptr;
4585 } else {
4586 fp->fr_data = NULL;
4587 }
4588
4589 /*
4590 * Perform per-rule type sanity checks of their members.
4591 * All code after this needs to be aware that allocated memory
4592 * may need to be free'd before exiting.
4593 */
4594 switch (fp->fr_type & ~FR_T_BUILTIN)
4595 {
4596 #if defined(IPFILTER_BPF)
4597 case FR_T_BPFOPC :
4598 if (fp->fr_dsize == 0) {
4599 IPFERROR(19);
4600 error = EINVAL;
4601 break;
4602 }
4603 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4604 IPFERROR(20);
4605 error = EINVAL;
4606 break;
4607 }
4608 break;
4609 #endif
4610 case FR_T_IPF :
4611 /*
4612 * Preparation for error case at the bottom of this function.
4613 */
4614 if (fp->fr_datype == FRI_LOOKUP)
4615 fp->fr_dstptr = NULL;
4616 if (fp->fr_satype == FRI_LOOKUP)
4617 fp->fr_srcptr = NULL;
4618
4619 if (fp->fr_dsize != sizeof(fripf_t)) {
4620 IPFERROR(21);
4621 error = EINVAL;
4622 break;
4623 }
4624
4625 /*
4626 * Allowing a rule with both "keep state" and "with oow" is
4627 * pointless because adding a state entry to the table will
4628 * fail with the out of window (oow) flag set.
4629 */
4630 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4631 IPFERROR(22);
4632 error = EINVAL;
4633 break;
4634 }
4635
4636 switch (fp->fr_satype)
4637 {
4638 case FRI_BROADCAST :
4639 case FRI_DYNAMIC :
4640 case FRI_NETWORK :
4641 case FRI_NETMASKED :
4642 case FRI_PEERADDR :
4643 if (fp->fr_sifpidx < 0) {
4644 IPFERROR(23);
4645 error = EINVAL;
4646 }
4647 break;
4648 case FRI_LOOKUP :
4649 fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4650 &fp->fr_src6,
4651 &fp->fr_smsk6);
4652 if (fp->fr_srcfunc == NULL) {
4653 IPFERROR(132);
4654 error = ESRCH;
4655 break;
4656 }
4657 break;
4658 case FRI_NORMAL :
4659 break;
4660 default :
4661 IPFERROR(133);
4662 error = EINVAL;
4663 break;
4664 }
4665 if (error != 0)
4666 break;
4667
4668 switch (fp->fr_datype)
4669 {
4670 case FRI_BROADCAST :
4671 case FRI_DYNAMIC :
4672 case FRI_NETWORK :
4673 case FRI_NETMASKED :
4674 case FRI_PEERADDR :
4675 if (fp->fr_difpidx < 0) {
4676 IPFERROR(24);
4677 error = EINVAL;
4678 }
4679 break;
4680 case FRI_LOOKUP :
4681 fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4682 &fp->fr_dst6,
4683 &fp->fr_dmsk6);
4684 if (fp->fr_dstfunc == NULL) {
4685 IPFERROR(134);
4686 error = ESRCH;
4687 }
4688 break;
4689 case FRI_NORMAL :
4690 break;
4691 default :
4692 IPFERROR(135);
4693 error = EINVAL;
4694 }
4695 break;
4696
4697 case FR_T_NONE :
4698 case FR_T_CALLFUNC :
4699 case FR_T_COMPIPF :
4700 break;
4701
4702 case FR_T_IPFEXPR :
4703 if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4704 IPFERROR(25);
4705 error = EINVAL;
4706 }
4707 break;
4708
4709 default :
4710 IPFERROR(26);
4711 error = EINVAL;
4712 break;
4713 }
4714 if (error != 0)
4715 goto donenolock;
4716
4717 if (fp->fr_tif.fd_name != -1) {
4718 if ((fp->fr_tif.fd_name < 0) ||
4719 (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4720 IPFERROR(139);
4721 error = EINVAL;
4722 goto donenolock;
4723 }
4724 }
4725
4726 if (fp->fr_dif.fd_name != -1) {
4727 if ((fp->fr_dif.fd_name < 0) ||
4728 (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4729 IPFERROR(140);
4730 error = EINVAL;
4731 goto donenolock;
4732 }
4733 }
4734
4735 if (fp->fr_rif.fd_name != -1) {
4736 if ((fp->fr_rif.fd_name < 0) ||
4737 (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4738 IPFERROR(141);
4739 error = EINVAL;
4740 goto donenolock;
4741 }
4742 }
4743
4744 /*
4745 * Lookup all the interface names that are part of the rule.
4746 */
4747 error = ipf_synclist(softc, fp, NULL);
4748 if (error != 0)
4749 goto donenolock;
4750 fp->fr_statecnt = 0;
4751 if (fp->fr_srctrack.ht_max_nodes != 0)
4752 ipf_rb_ht_init(&fp->fr_srctrack);
4753
4754 /*
4755 * Look for an existing matching filter rule, but don't include the
4756 * next or interface pointer in the comparison (fr_next, fr_ifa).
4757 * This elminates rules which are indentical being loaded. Checksum
4758 * the constant part of the filter rule to make comparisons quicker
4759 * (this meaning no pointers are included).
4760 */
4761 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4762 p < pp; p++)
4763 fp->fr_cksum += *p;
4764 pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize);
4765 for (p = (u_int *)fp->fr_data; p < pp; p++)
4766 fp->fr_cksum += *p;
4767
4768 WRITE_ENTER(&softc->ipf_mutex);
4769
4770 /*
4771 * Now that the filter rule lists are locked, we can walk the
4772 * chain of them without fear.
4773 */
4774 ftail = fprev;
4775 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4776 if (fp->fr_collect <= f->fr_collect) {
4777 ftail = fprev;
4778 f = NULL;
4779 break;
4780 }
4781 fprev = ftail;
4782 }
4783
4784 for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4785 DT2(rule_cmp, frentry_t *, fp, frentry_t *, f);
4786 if ((fp->fr_cksum != f->fr_cksum) ||
4787 (fp->fr_size != f->fr_size) ||
4788 (f->fr_dsize != fp->fr_dsize))
4789 continue;
4790 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func,
4791 fp->fr_size - offsetof(struct frentry, fr_func)) != 0)
4792 continue;
4793 if ((!ptr && !f->fr_data) ||
4794 (ptr && f->fr_data &&
4795 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4796 break;
4797 }
4798
4799 /*
4800 * If zero'ing statistics, copy current to caller and zero.
4801 */
4802 if (addrem == 2) {
4803 if (f == NULL) {
4804 IPFERROR(27);
4805 error = ESRCH;
4806 } else {
4807 /*
4808 * Copy and reduce lock because of impending copyout.
4809 * Well we should, but if we do then the atomicity of
4810 * this call and the correctness of fr_hits and
4811 * fr_bytes cannot be guaranteed. As it is, this code
4812 * only resets them to 0 if they are successfully
4813 * copied out into user space.
4814 */
4815 bcopy((char *)f, (char *)fp, f->fr_size);
4816 /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4817
4818 /*
4819 * When we copy this rule back out, set the data
4820 * pointer to be what it was in user space.
4821 */
4822 fp->fr_data = uptr;
4823 error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4824
4825 if (error == 0) {
4826 if ((f->fr_dsize != 0) && (uptr != NULL))
4827 error = COPYOUT(f->fr_data, uptr,
4828 f->fr_dsize);
4829 if (error != 0) {
4830 IPFERROR(28);
4831 error = EFAULT;
4832 }
4833 if (error == 0) {
4834 f->fr_hits = 0;
4835 f->fr_bytes = 0;
4836 }
4837 }
4838 }
4839
4840 if (makecopy != 0) {
4841 if (ptr != NULL) {
4842 KFREES(ptr, fp->fr_dsize);
4843 }
4844 KFREES(fp, fp->fr_size);
4845 }
4846 RWLOCK_EXIT(&softc->ipf_mutex);
4847 return error;
4848 }
4849
4850 if (!f) {
4851 /*
4852 * At the end of this, ftail must point to the place where the
4853 * new rule is to be saved/inserted/added.
4854 * For SIOCAD*FR, this should be the last rule in the group of
4855 * rules that have equal fr_collect fields.
4856 * For SIOCIN*FR, ...
4857 */
4858 if (req == (ioctlcmd_t)SIOCADAFR ||
4859 req == (ioctlcmd_t)SIOCADIFR) {
4860
4861 for (ftail = fprev; (f = *ftail) != NULL; ) {
4862 if (f->fr_collect > fp->fr_collect)
4863 break;
4864 ftail = &f->fr_next;
4865 }
4866 f = NULL;
4867 ptr = NULL;
4868 } else if (req == (ioctlcmd_t)SIOCINAFR ||
4869 req == (ioctlcmd_t)SIOCINIFR) {
4870 while ((f = *fprev) != NULL) {
4871 if (f->fr_collect >= fp->fr_collect)
4872 break;
4873 fprev = &f->fr_next;
4874 }
4875 ftail = fprev;
4876 if (fp->fr_hits != 0) {
4877 while (fp->fr_hits && (f = *ftail)) {
4878 if (f->fr_collect != fp->fr_collect)
4879 break;
4880 fprev = ftail;
4881 ftail = &f->fr_next;
4882 fp->fr_hits--;
4883 }
4884 }
4885 f = NULL;
4886 ptr = NULL;
4887 }
4888 }
4889
4890 /*
4891 * Request to remove a rule.
4892 */
4893 if (addrem == 1) {
4894 if (!f) {
4895 IPFERROR(29);
4896 error = ESRCH;
4897 } else {
4898 /*
4899 * Do not allow activity from user space to interfere
4900 * with rules not loaded that way.
4901 */
4902 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4903 IPFERROR(30);
4904 error = EPERM;
4905 goto done;
4906 }
4907
4908 /*
4909 * Return EBUSY if the rule is being reference by
4910 * something else (eg state information.)
4911 */
4912 if (f->fr_ref > 1) {
4913 IPFERROR(31);
4914 error = EBUSY;
4915 goto done;
4916 }
4917 #ifdef IPFILTER_SCAN
4918 if (f->fr_isctag != -1 &&
4919 (f->fr_isc != (struct ipscan *)-1))
4920 ipf_scan_detachfr(f);
4921 #endif
4922
4923 if (unit == IPL_LOGAUTH) {
4924 error = ipf_auth_precmd(softc, req, f, ftail);
4925 goto done;
4926 }
4927
4928 ipf_rule_delete(softc, f, unit, set);
4929
4930 need_free = makecopy;
4931 }
4932 } else {
4933 /*
4934 * Not removing, so we must be adding/inserting a rule.
4935 */
4936 if (f != NULL) {
4937 IPFERROR(32);
4938 error = EEXIST;
4939 goto done;
4940 }
4941 if (unit == IPL_LOGAUTH) {
4942 error = ipf_auth_precmd(softc, req, fp, ftail);
4943 goto done;
4944 }
4945
4946 MUTEX_NUKE(&fp->fr_lock);
4947 MUTEX_INIT(&fp->fr_lock, "filter rule lock");
4948 if (fp->fr_die != 0)
4949 ipf_rule_expire_insert(softc, fp, set);
4950
4951 fp->fr_hits = 0;
4952 if (makecopy != 0)
4953 fp->fr_ref = 1;
4954 fp->fr_pnext = ftail;
4955 fp->fr_next = *ftail;
4956 *ftail = fp;
4957 if (addrem == 0)
4958 ipf_fixskip(ftail, fp, 1);
4959
4960 fp->fr_icmpgrp = NULL;
4961 if (fp->fr_icmphead != -1) {
4962 group = FR_NAME(fp, fr_icmphead);
4963 fg = ipf_group_add(softc, group, fp, 0, unit, set);
4964 fp->fr_icmpgrp = fg;
4965 }
4966
4967 fp->fr_grphead = NULL;
4968 if (fp->fr_grhead != -1) {
4969 group = FR_NAME(fp, fr_grhead);
4970 fg = ipf_group_add(softc, group, fp, fp->fr_flags,
4971 unit, set);
4972 fp->fr_grphead = fg;
4973 }
4974 }
4975 done:
4976 RWLOCK_EXIT(&softc->ipf_mutex);
4977 donenolock:
4978 if (need_free || (error != 0)) {
4979 if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
4980 if ((fp->fr_satype == FRI_LOOKUP) &&
4981 (fp->fr_srcptr != NULL))
4982 ipf_lookup_deref(softc, fp->fr_srctype,
4983 fp->fr_srcptr);
4984 if ((fp->fr_datype == FRI_LOOKUP) &&
4985 (fp->fr_dstptr != NULL))
4986 ipf_lookup_deref(softc, fp->fr_dsttype,
4987 fp->fr_dstptr);
4988 }
4989 if (fp->fr_grp != NULL) {
4990 WRITE_ENTER(&softc->ipf_mutex);
4991 ipf_group_del(softc, fp->fr_grp, fp);
4992 RWLOCK_EXIT(&softc->ipf_mutex);
4993 }
4994 if ((ptr != NULL) && (makecopy != 0)) {
4995 KFREES(ptr, fp->fr_dsize);
4996 }
4997 KFREES(fp, fp->fr_size);
4998 }
4999 return (error);
5000 }
5001
5002
5003 /* ------------------------------------------------------------------------ */
5004 /* Function: ipf_rule_delete */
5005 /* Returns: Nil */
5006 /* Parameters: softc(I) - pointer to soft context main structure */
5007 /* f(I) - pointer to the rule being deleted */
5008 /* ftail(I) - pointer to the pointer to f */
5009 /* unit(I) - device for which this is for */
5010 /* set(I) - 1 or 0 (filter set) */
5011 /* */
5012 /* This function attempts to do what it can to delete a filter rule: remove */
5013 /* it from any linked lists and remove any groups it is responsible for. */
5014 /* But in the end, removing a rule can only drop the reference count - we */
5015 /* must use that as the guide for whether or not it can be freed. */
5016 /* ------------------------------------------------------------------------ */
5017 static void
5018 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5019 {
5020
5021 /*
5022 * If fr_pdnext is set, then the rule is on the expire list, so
5023 * remove it from there.
5024 */
5025 if (f->fr_pdnext != NULL) {
5026 *f->fr_pdnext = f->fr_dnext;
5027 if (f->fr_dnext != NULL)
5028 f->fr_dnext->fr_pdnext = f->fr_pdnext;
5029 f->fr_pdnext = NULL;
5030 f->fr_dnext = NULL;
5031 }
5032
5033 ipf_fixskip(f->fr_pnext, f, -1);
5034 if (f->fr_pnext != NULL)
5035 *f->fr_pnext = f->fr_next;
5036 if (f->fr_next != NULL)
5037 f->fr_next->fr_pnext = f->fr_pnext;
5038 f->fr_pnext = NULL;
5039 f->fr_next = NULL;
5040
5041 (void) ipf_derefrule(softc, &f);
5042 }
5043
5044 /* ------------------------------------------------------------------------ */
5045 /* Function: ipf_rule_expire_insert */
5046 /* Returns: Nil */
5047 /* Parameters: softc(I) - pointer to soft context main structure */
5048 /* f(I) - pointer to rule to be added to expire list */
5049 /* set(I) - 1 or 0 (filter set) */
5050 /* */
5051 /* If the new rule has a given expiration time, insert it into the list of */
5052 /* expiring rules with the ones to be removed first added to the front of */
5053 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5054 /* expiration interval checks. */
5055 /* ------------------------------------------------------------------------ */
5056 static void
5057 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5058 {
5059 frentry_t *fr;
5060
5061 /*
5062 */
5063
5064 f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5065 for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5066 fr = fr->fr_dnext) {
5067 if (f->fr_die < fr->fr_die)
5068 break;
5069 if (fr->fr_dnext == NULL) {
5070 /*
5071 * We've got to the last rule and everything
5072 * wanted to be expired before this new node,
5073 * so we have to tack it on the end...
5074 */
5075 fr->fr_dnext = f;
5076 f->fr_pdnext = &fr->fr_dnext;
5077 fr = NULL;
5078 break;
5079 }
5080 }
5081
5082 if (softc->ipf_rule_explist[set] == NULL) {
5083 softc->ipf_rule_explist[set] = f;
5084 f->fr_pdnext = &softc->ipf_rule_explist[set];
5085 } else if (fr != NULL) {
5086 f->fr_dnext = fr;
5087 f->fr_pdnext = fr->fr_pdnext;
5088 fr->fr_pdnext = &f->fr_dnext;
5089 }
5090 }
5091
5092
5093 /* ------------------------------------------------------------------------ */
5094 /* Function: ipf_findlookup */
5095 /* Returns: NULL = failure, else success */
5096 /* Parameters: softc(I) - pointer to soft context main structure */
5097 /* unit(I) - ipf device we want to find match for */
5098 /* fp(I) - rule for which lookup is for */
5099 /* addrp(I) - pointer to lookup information in address struct */
5100 /* maskp(O) - pointer to lookup information for storage */
5101 /* */
5102 /* When using pools and hash tables to store addresses for matching in */
5103 /* rules, it is necessary to resolve both the object referred to by the */
5104 /* name or address (and return that pointer) and also provide the means by */
5105 /* which to determine if an address belongs to that object to make the */
5106 /* packet matching quicker. */
5107 /* ------------------------------------------------------------------------ */
5108 static void *
5109 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5110 i6addr_t *addrp, i6addr_t *maskp)
5111 {
5112 void *ptr = NULL;
5113
5114 switch (addrp->iplookupsubtype)
5115 {
5116 case 0 :
5117 ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5118 addrp->iplookupnum,
5119 &maskp->iplookupfunc);
5120 break;
5121 case 1 :
5122 if (addrp->iplookupname < 0)
5123 break;
5124 if (addrp->iplookupname >= fr->fr_namelen)
5125 break;
5126 ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5127 fr->fr_names + addrp->iplookupname,
5128 &maskp->iplookupfunc);
5129 break;
5130 default :
5131 break;
5132 }
5133
5134 return ptr;
5135 }
5136
5137
5138 /* ------------------------------------------------------------------------ */
5139 /* Function: ipf_funcinit */
5140 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */
5141 /* Parameters: softc(I) - pointer to soft context main structure */
5142 /* fr(I) - pointer to filter rule */
5143 /* */
5144 /* If a rule is a call rule, then check if the function it points to needs */
5145 /* an init function to be called now the rule has been loaded. */
5146 /* ------------------------------------------------------------------------ */
5147 static int
5148 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5149 {
5150 ipfunc_resolve_t *ft;
5151 int err;
5152
5153 IPFERROR(34);
5154 err = ESRCH;
5155
5156 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5157 if (ft->ipfu_addr == fr->fr_func) {
5158 err = 0;
5159 if (ft->ipfu_init != NULL)
5160 err = (*ft->ipfu_init)(softc, fr);
5161 break;
5162 }
5163 return err;
5164 }
5165
5166
5167 /* ------------------------------------------------------------------------ */
5168 /* Function: ipf_funcfini */
5169 /* Returns: Nil */
5170 /* Parameters: softc(I) - pointer to soft context main structure */
5171 /* fr(I) - pointer to filter rule */
5172 /* */
5173 /* For a given filter rule, call the matching "fini" function if the rule */
5174 /* is using a known function that would have resulted in the "init" being */
5175 /* called for ealier. */
5176 /* ------------------------------------------------------------------------ */
5177 static void
5178 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5179 {
5180 ipfunc_resolve_t *ft;
5181
5182 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5183 if (ft->ipfu_addr == fr->fr_func) {
5184 if (ft->ipfu_fini != NULL)
5185 (void) (*ft->ipfu_fini)(softc, fr);
5186 break;
5187 }
5188 }
5189
5190
5191 /* ------------------------------------------------------------------------ */
5192 /* Function: ipf_findfunc */
5193 /* Returns: ipfunc_t - pointer to function if found, else NULL */
5194 /* Parameters: funcptr(I) - function pointer to lookup */
5195 /* */
5196 /* Look for a function in the table of known functions. */
5197 /* ------------------------------------------------------------------------ */
5198 static ipfunc_t
5199 ipf_findfunc(ipfunc_t funcptr)
5200 {
5201 ipfunc_resolve_t *ft;
5202
5203 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5204 if (ft->ipfu_addr == funcptr)
5205 return funcptr;
5206 return NULL;
5207 }
5208
5209
5210 /* ------------------------------------------------------------------------ */
5211 /* Function: ipf_resolvefunc */
5212 /* Returns: int - 0 == success, else error */
5213 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */
5214 /* */
5215 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5216 /* This will either be the function name (if the pointer is set) or the */
5217 /* function pointer if the name is set. When found, fill in the other one */
5218 /* so that the entire, complete, structure can be copied back to user space.*/
5219 /* ------------------------------------------------------------------------ */
5220 int
5221 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5222 {
5223 ipfunc_resolve_t res, *ft;
5224 int error;
5225
5226 error = BCOPYIN(data, &res, sizeof(res));
5227 if (error != 0) {
5228 IPFERROR(123);
5229 return EFAULT;
5230 }
5231
5232 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5233 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5234 if (strncmp(res.ipfu_name, ft->ipfu_name,
5235 sizeof(res.ipfu_name)) == 0) {
5236 res.ipfu_addr = ft->ipfu_addr;
5237 res.ipfu_init = ft->ipfu_init;
5238 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5239 IPFERROR(35);
5240 return EFAULT;
5241 }
5242 return 0;
5243 }
5244 }
5245 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5246 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5247 if (ft->ipfu_addr == res.ipfu_addr) {
5248 (void) strncpy(res.ipfu_name, ft->ipfu_name,
5249 sizeof(res.ipfu_name));
5250 res.ipfu_init = ft->ipfu_init;
5251 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5252 IPFERROR(36);
5253 return EFAULT;
5254 }
5255 return 0;
5256 }
5257 }
5258 IPFERROR(37);
5259 return ESRCH;
5260 }
5261
5262
5263 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5264 !defined(__FreeBSD__)) || \
5265 FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5266 OPENBSD_LT_REV(200006)
5267 /*
5268 * From: NetBSD
5269 * ppsratecheck(): packets (or events) per second limitation.
5270 */
5271 int
5272 ppsratecheck(lasttime, curpps, maxpps)
5273 struct timeval *lasttime;
5274 int *curpps;
5275 int maxpps; /* maximum pps allowed */
5276 {
5277 struct timeval tv, delta;
5278 int rv;
5279
5280 GETKTIME(&tv);
5281
5282 delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5283 delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5284 if (delta.tv_usec < 0) {
5285 delta.tv_sec--;
5286 delta.tv_usec += 1000000;
5287 }
5288
5289 /*
5290 * check for 0,0 is so that the message will be seen at least once.
5291 * if more than one second have passed since the last update of
5292 * lasttime, reset the counter.
5293 *
5294 * we do increment *curpps even in *curpps < maxpps case, as some may
5295 * try to use *curpps for stat purposes as well.
5296 */
5297 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5298 delta.tv_sec >= 1) {
5299 *lasttime = tv;
5300 *curpps = 0;
5301 rv = 1;
5302 } else if (maxpps < 0)
5303 rv = 1;
5304 else if (*curpps < maxpps)
5305 rv = 1;
5306 else
5307 rv = 0;
5308 *curpps = *curpps + 1;
5309
5310 return (rv);
5311 }
5312 #endif
5313
5314
5315 /* ------------------------------------------------------------------------ */
5316 /* Function: ipf_derefrule */
5317 /* Returns: int - 0 == rule freed up, else rule not freed */
5318 /* Parameters: fr(I) - pointer to filter rule */
5319 /* */
5320 /* Decrement the reference counter to a rule by one. If it reaches zero, */
5321 /* free it and any associated storage space being used by it. */
5322 /* ------------------------------------------------------------------------ */
5323 int
5324 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5325 {
5326 frentry_t *fr;
5327 frdest_t *fdp;
5328
5329 fr = *frp;
5330 *frp = NULL;
5331
5332 MUTEX_ENTER(&fr->fr_lock);
5333 fr->fr_ref--;
5334 if (fr->fr_ref == 0) {
5335 MUTEX_EXIT(&fr->fr_lock);
5336 MUTEX_DESTROY(&fr->fr_lock);
5337
5338 ipf_funcfini(softc, fr);
5339
5340 fdp = &fr->fr_tif;
5341 if (fdp->fd_type == FRD_DSTLIST)
5342 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5343
5344 fdp = &fr->fr_rif;
5345 if (fdp->fd_type == FRD_DSTLIST)
5346 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5347
5348 fdp = &fr->fr_dif;
5349 if (fdp->fd_type == FRD_DSTLIST)
5350 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5351
5352 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5353 fr->fr_satype == FRI_LOOKUP)
5354 ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5355 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5356 fr->fr_datype == FRI_LOOKUP)
5357 ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5358
5359 if (fr->fr_grp != NULL)
5360 ipf_group_del(softc, fr->fr_grp, fr);
5361
5362 if (fr->fr_grphead != NULL)
5363 ipf_group_del(softc, fr->fr_grphead, fr);
5364
5365 if (fr->fr_icmpgrp != NULL)
5366 ipf_group_del(softc, fr->fr_icmpgrp, fr);
5367
5368 if ((fr->fr_flags & FR_COPIED) != 0) {
5369 if (fr->fr_dsize) {
5370 KFREES(fr->fr_data, fr->fr_dsize);
5371 }
5372 KFREES(fr, fr->fr_size);
5373 return 0;
5374 }
5375 return 1;
5376 } else {
5377 MUTEX_EXIT(&fr->fr_lock);
5378 }
5379 return -1;
5380 }
5381
5382
5383 /* ------------------------------------------------------------------------ */
5384 /* Function: ipf_grpmapinit */
5385 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5386 /* Parameters: fr(I) - pointer to rule to find hash table for */
5387 /* */
5388 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */
5389 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */
5390 /* ------------------------------------------------------------------------ */
5391 static int
5392 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5393 {
5394 char name[FR_GROUPLEN];
5395 iphtable_t *iph;
5396
5397 #if defined(SNPRINTF) && defined(_KERNEL)
5398 SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
5399 #else
5400 (void) sprintf(name, "%d", fr->fr_arg);
5401 #endif
5402 iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5403 if (iph == NULL) {
5404 IPFERROR(38);
5405 return ESRCH;
5406 }
5407 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5408 IPFERROR(39);
5409 return ESRCH;
5410 }
5411 iph->iph_ref++;
5412 fr->fr_ptr = iph;
5413 return 0;
5414 }
5415
5416
5417 /* ------------------------------------------------------------------------ */
5418 /* Function: ipf_grpmapfini */
5419 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5420 /* Parameters: softc(I) - pointer to soft context main structure */
5421 /* fr(I) - pointer to rule to release hash table for */
5422 /* */
5423 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5424 /* be called to undo what ipf_grpmapinit caused to be done. */
5425 /* ------------------------------------------------------------------------ */
5426 static int
5427 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5428 {
5429 iphtable_t *iph;
5430 iph = fr->fr_ptr;
5431 if (iph != NULL)
5432 ipf_lookup_deref(softc, IPLT_HASH, iph);
5433 return 0;
5434 }
5435
5436
5437 /* ------------------------------------------------------------------------ */
5438 /* Function: ipf_srcgrpmap */
5439 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5440 /* Parameters: fin(I) - pointer to packet information */
5441 /* passp(IO) - pointer to current/new filter decision (unused) */
5442 /* */
5443 /* Look for a rule group head in a hash table, using the source address as */
5444 /* the key, and descend into that group and continue matching rules against */
5445 /* the packet. */
5446 /* ------------------------------------------------------------------------ */
5447 frentry_t *
5448 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5449 {
5450 frgroup_t *fg;
5451 void *rval;
5452
5453 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5454 &fin->fin_src);
5455 if (rval == NULL)
5456 return NULL;
5457
5458 fg = rval;
5459 fin->fin_fr = fg->fg_start;
5460 (void) ipf_scanlist(fin, *passp);
5461 return fin->fin_fr;
5462 }
5463
5464
5465 /* ------------------------------------------------------------------------ */
5466 /* Function: ipf_dstgrpmap */
5467 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5468 /* Parameters: fin(I) - pointer to packet information */
5469 /* passp(IO) - pointer to current/new filter decision (unused) */
5470 /* */
5471 /* Look for a rule group head in a hash table, using the destination */
5472 /* address as the key, and descend into that group and continue matching */
5473 /* rules against the packet. */
5474 /* ------------------------------------------------------------------------ */
5475 frentry_t *
5476 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5477 {
5478 frgroup_t *fg;
5479 void *rval;
5480
5481 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5482 &fin->fin_dst);
5483 if (rval == NULL)
5484 return NULL;
5485
5486 fg = rval;
5487 fin->fin_fr = fg->fg_start;
5488 (void) ipf_scanlist(fin, *passp);
5489 return fin->fin_fr;
5490 }
5491
5492 /*
5493 * Queue functions
5494 * ===============
5495 * These functions manage objects on queues for efficient timeouts. There
5496 * are a number of system defined queues as well as user defined timeouts.
5497 * It is expected that a lock is held in the domain in which the queue
5498 * belongs (i.e. either state or NAT) when calling any of these functions
5499 * that prevents ipf_freetimeoutqueue() from being called at the same time
5500 * as any other.
5501 */
5502
5503
5504 /* ------------------------------------------------------------------------ */
5505 /* Function: ipf_addtimeoutqueue */
5506 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */
5507 /* timeout queue with given interval. */
5508 /* Parameters: parent(I) - pointer to pointer to parent node of this list */
5509 /* of interface queues. */
5510 /* seconds(I) - timeout value in seconds for this queue. */
5511 /* */
5512 /* This routine first looks for a timeout queue that matches the interval */
5513 /* being requested. If it finds one, increments the reference counter and */
5514 /* returns a pointer to it. If none are found, it allocates a new one and */
5515 /* inserts it at the top of the list. */
5516 /* */
5517 /* Locking. */
5518 /* It is assumed that the caller of this function has an appropriate lock */
5519 /* held (exclusively) in the domain that encompases 'parent'. */
5520 /* ------------------------------------------------------------------------ */
5521 ipftq_t *
5522 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5523 {
5524 ipftq_t *ifq;
5525 u_int period;
5526
5527 period = seconds * IPF_HZ_DIVIDE;
5528
5529 MUTEX_ENTER(&softc->ipf_timeoutlock);
5530 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5531 if (ifq->ifq_ttl == period) {
5532 /*
5533 * Reset the delete flag, if set, so the structure
5534 * gets reused rather than freed and reallocated.
5535 */
5536 MUTEX_ENTER(&ifq->ifq_lock);
5537 ifq->ifq_flags &= ~IFQF_DELETE;
5538 ifq->ifq_ref++;
5539 MUTEX_EXIT(&ifq->ifq_lock);
5540 MUTEX_EXIT(&softc->ipf_timeoutlock);
5541
5542 return ifq;
5543 }
5544 }
5545
5546 KMALLOC(ifq, ipftq_t *);
5547 if (ifq != NULL) {
5548 MUTEX_NUKE(&ifq->ifq_lock);
5549 IPFTQ_INIT(ifq, period, "ipftq mutex");
5550 ifq->ifq_next = *parent;
5551 ifq->ifq_pnext = parent;
5552 ifq->ifq_flags = IFQF_USER;
5553 ifq->ifq_ref++;
5554 *parent = ifq;
5555 softc->ipf_userifqs++;
5556 }
5557 MUTEX_EXIT(&softc->ipf_timeoutlock);
5558 return ifq;
5559 }
5560
5561
5562 /* ------------------------------------------------------------------------ */
5563 /* Function: ipf_deletetimeoutqueue */
5564 /* Returns: int - new reference count value of the timeout queue */
5565 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5566 /* Locks: ifq->ifq_lock */
5567 /* */
5568 /* This routine must be called when we're discarding a pointer to a timeout */
5569 /* queue object, taking care of the reference counter. */
5570 /* */
5571 /* Now that this just sets a DELETE flag, it requires the expire code to */
5572 /* check the list of user defined timeout queues and call the free function */
5573 /* below (currently commented out) to stop memory leaking. It is done this */
5574 /* way because the locking may not be sufficient to safely do a free when */
5575 /* this function is called. */
5576 /* ------------------------------------------------------------------------ */
5577 int
5578 ipf_deletetimeoutqueue(ipftq_t *ifq)
5579 {
5580
5581 ifq->ifq_ref--;
5582 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5583 ifq->ifq_flags |= IFQF_DELETE;
5584 }
5585
5586 return ifq->ifq_ref;
5587 }
5588
5589
5590 /* ------------------------------------------------------------------------ */
5591 /* Function: ipf_freetimeoutqueue */
5592 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5593 /* Returns: Nil */
5594 /* */
5595 /* Locking: */
5596 /* It is assumed that the caller of this function has an appropriate lock */
5597 /* held (exclusively) in the domain that encompases the callers "domain". */
5598 /* The ifq_lock for this structure should not be held. */
5599 /* */
5600 /* Remove a user defined timeout queue from the list of queues it is in and */
5601 /* tidy up after this is done. */
5602 /* ------------------------------------------------------------------------ */
5603 void
5604 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5605 {
5606
5607 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5608 ((ifq->ifq_flags & IFQF_USER) == 0)) {
5609 printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5610 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5611 ifq->ifq_ref);
5612 return;
5613 }
5614
5615 /*
5616 * Remove from its position in the list.
5617 */
5618 *ifq->ifq_pnext = ifq->ifq_next;
5619 if (ifq->ifq_next != NULL)
5620 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5621 ifq->ifq_next = NULL;
5622 ifq->ifq_pnext = NULL;
5623
5624 MUTEX_DESTROY(&ifq->ifq_lock);
5625 ATOMIC_DEC(softc->ipf_userifqs);
5626 KFREE(ifq);
5627 }
5628
5629
5630 /* ------------------------------------------------------------------------ */
5631 /* Function: ipf_deletequeueentry */
5632 /* Returns: Nil */
5633 /* Parameters: tqe(I) - timeout queue entry to delete */
5634 /* */
5635 /* Remove a tail queue entry from its queue and make it an orphan. */
5636 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5637 /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */
5638 /* the correct lock(s) may not be held that would make it safe to do so. */
5639 /* ------------------------------------------------------------------------ */
5640 void
5641 ipf_deletequeueentry(ipftqent_t *tqe)
5642 {
5643 ipftq_t *ifq;
5644
5645 ifq = tqe->tqe_ifq;
5646
5647 MUTEX_ENTER(&ifq->ifq_lock);
5648
5649 if (tqe->tqe_pnext != NULL) {
5650 *tqe->tqe_pnext = tqe->tqe_next;
5651 if (tqe->tqe_next != NULL)
5652 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5653 else /* we must be the tail anyway */
5654 ifq->ifq_tail = tqe->tqe_pnext;
5655
5656 tqe->tqe_pnext = NULL;
5657 tqe->tqe_ifq = NULL;
5658 }
5659
5660 (void) ipf_deletetimeoutqueue(ifq);
5661 ASSERT(ifq->ifq_ref > 0);
5662
5663 MUTEX_EXIT(&ifq->ifq_lock);
5664 }
5665
5666
5667 /* ------------------------------------------------------------------------ */
5668 /* Function: ipf_queuefront */
5669 /* Returns: Nil */
5670 /* Parameters: tqe(I) - pointer to timeout queue entry */
5671 /* */
5672 /* Move a queue entry to the front of the queue, if it isn't already there. */
5673 /* ------------------------------------------------------------------------ */
5674 void
5675 ipf_queuefront(ipftqent_t *tqe)
5676 {
5677 ipftq_t *ifq;
5678
5679 ifq = tqe->tqe_ifq;
5680 if (ifq == NULL)
5681 return;
5682
5683 MUTEX_ENTER(&ifq->ifq_lock);
5684 if (ifq->ifq_head != tqe) {
5685 *tqe->tqe_pnext = tqe->tqe_next;
5686 if (tqe->tqe_next)
5687 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5688 else
5689 ifq->ifq_tail = tqe->tqe_pnext;
5690
5691 tqe->tqe_next = ifq->ifq_head;
5692 ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5693 ifq->ifq_head = tqe;
5694 tqe->tqe_pnext = &ifq->ifq_head;
5695 }
5696 MUTEX_EXIT(&ifq->ifq_lock);
5697 }
5698
5699
5700 /* ------------------------------------------------------------------------ */
5701 /* Function: ipf_queueback */
5702 /* Returns: Nil */
5703 /* Parameters: ticks(I) - ipf tick time to use with this call */
5704 /* tqe(I) - pointer to timeout queue entry */
5705 /* */
5706 /* Move a queue entry to the back of the queue, if it isn't already there. */
5707 /* We use use ticks to calculate the expiration and mark for when we last */
5708 /* touched the structure. */
5709 /* ------------------------------------------------------------------------ */
5710 void
5711 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5712 {
5713 ipftq_t *ifq;
5714
5715 ifq = tqe->tqe_ifq;
5716 if (ifq == NULL)
5717 return;
5718 tqe->tqe_die = ticks + ifq->ifq_ttl;
5719 tqe->tqe_touched = ticks;
5720
5721 MUTEX_ENTER(&ifq->ifq_lock);
5722 if (tqe->tqe_next != NULL) { /* at the end already ? */
5723 /*
5724 * Remove from list
5725 */
5726 *tqe->tqe_pnext = tqe->tqe_next;
5727 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5728
5729 /*
5730 * Make it the last entry.
5731 */
5732 tqe->tqe_next = NULL;
5733 tqe->tqe_pnext = ifq->ifq_tail;
5734 *ifq->ifq_tail = tqe;
5735 ifq->ifq_tail = &tqe->tqe_next;
5736 }
5737 MUTEX_EXIT(&ifq->ifq_lock);
5738 }
5739
5740
5741 /* ------------------------------------------------------------------------ */
5742 /* Function: ipf_queueappend */
5743 /* Returns: Nil */
5744 /* Parameters: ticks(I) - ipf tick time to use with this call */
5745 /* tqe(I) - pointer to timeout queue entry */
5746 /* ifq(I) - pointer to timeout queue */
5747 /* parent(I) - owing object pointer */
5748 /* */
5749 /* Add a new item to this queue and put it on the very end. */
5750 /* We use use ticks to calculate the expiration and mark for when we last */
5751 /* touched the structure. */
5752 /* ------------------------------------------------------------------------ */
5753 void
5754 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5755 {
5756
5757 MUTEX_ENTER(&ifq->ifq_lock);
5758 tqe->tqe_parent = parent;
5759 tqe->tqe_pnext = ifq->ifq_tail;
5760 *ifq->ifq_tail = tqe;
5761 ifq->ifq_tail = &tqe->tqe_next;
5762 tqe->tqe_next = NULL;
5763 tqe->tqe_ifq = ifq;
5764 tqe->tqe_die = ticks + ifq->ifq_ttl;
5765 tqe->tqe_touched = ticks;
5766 ifq->ifq_ref++;
5767 MUTEX_EXIT(&ifq->ifq_lock);
5768 }
5769
5770
5771 /* ------------------------------------------------------------------------ */
5772 /* Function: ipf_movequeue */
5773 /* Returns: Nil */
5774 /* Parameters: tq(I) - pointer to timeout queue information */
5775 /* oifp(I) - old timeout queue entry was on */
5776 /* nifp(I) - new timeout queue to put entry on */
5777 /* */
5778 /* Move a queue entry from one timeout queue to another timeout queue. */
5779 /* If it notices that the current entry is already last and does not need */
5780 /* to move queue, the return. */
5781 /* ------------------------------------------------------------------------ */
5782 void
5783 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5784 {
5785
5786 /*
5787 * If the queue hasn't changed and we last touched this entry at the
5788 * same ipf time, then we're not going to achieve anything by either
5789 * changing the ttl or moving it on the queue.
5790 */
5791 if (oifq == nifq && tqe->tqe_touched == ticks)
5792 return;
5793
5794 /*
5795 * For any of this to be outside the lock, there is a risk that two
5796 * packets entering simultaneously, with one changing to a different
5797 * queue and one not, could end up with things in a bizarre state.
5798 */
5799 MUTEX_ENTER(&oifq->ifq_lock);
5800
5801 tqe->tqe_touched = ticks;
5802 tqe->tqe_die = ticks + nifq->ifq_ttl;
5803 /*
5804 * Is the operation here going to be a no-op ?
5805 */
5806 if (oifq == nifq) {
5807 if ((tqe->tqe_next == NULL) ||
5808 (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5809 MUTEX_EXIT(&oifq->ifq_lock);
5810 return;
5811 }
5812 }
5813
5814 /*
5815 * Remove from the old queue
5816 */
5817 *tqe->tqe_pnext = tqe->tqe_next;
5818 if (tqe->tqe_next)
5819 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5820 else
5821 oifq->ifq_tail = tqe->tqe_pnext;
5822 tqe->tqe_next = NULL;
5823
5824 /*
5825 * If we're moving from one queue to another, release the
5826 * lock on the old queue and get a lock on the new queue.
5827 * For user defined queues, if we're moving off it, call
5828 * delete in case it can now be freed.
5829 */
5830 if (oifq != nifq) {
5831 tqe->tqe_ifq = NULL;
5832
5833 (void) ipf_deletetimeoutqueue(oifq);
5834
5835 MUTEX_EXIT(&oifq->ifq_lock);
5836
5837 MUTEX_ENTER(&nifq->ifq_lock);
5838
5839 tqe->tqe_ifq = nifq;
5840 nifq->ifq_ref++;
5841 }
5842
5843 /*
5844 * Add to the bottom of the new queue
5845 */
5846 tqe->tqe_pnext = nifq->ifq_tail;
5847 *nifq->ifq_tail = tqe;
5848 nifq->ifq_tail = &tqe->tqe_next;
5849 MUTEX_EXIT(&nifq->ifq_lock);
5850 }
5851
5852
5853 /* ------------------------------------------------------------------------ */
5854 /* Function: ipf_updateipid */
5855 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */
5856 /* Parameters: fin(I) - pointer to packet information */
5857 /* */
5858 /* When we are doing NAT, change the IP of every packet to represent a */
5859 /* single sequence of packets coming from the host, hiding any host */
5860 /* specific sequencing that might otherwise be revealed. If the packet is */
5861 /* a fragment, then store the 'new' IPid in the fragment cache and look up */
5862 /* the fragment cache for non-leading fragments. If a non-leading fragment */
5863 /* has no match in the cache, return an error. */
5864 /* ------------------------------------------------------------------------ */
5865 static int
5866 ipf_updateipid(fr_info_t *fin)
5867 {
5868 u_short id, ido, sums;
5869 u_32_t sumd, sum;
5870 ip_t *ip;
5871
5872 if (fin->fin_off != 0) {
5873 sum = ipf_frag_ipidknown(fin);
5874 if (sum == 0xffffffff)
5875 return -1;
5876 sum &= 0xffff;
5877 id = (u_short)sum;
5878 } else {
5879 id = ipf_nextipid(fin);
5880 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5881 (void) ipf_frag_ipidnew(fin, (u_32_t)id);
5882 }
5883
5884 ip = fin->fin_ip;
5885 ido = ntohs(ip->ip_id);
5886 if (id == ido)
5887 return 0;
5888 ip->ip_id = htons(id);
5889 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */
5890 sum = (~ntohs(ip->ip_sum)) & 0xffff;
5891 sum += sumd;
5892 sum = (sum >> 16) + (sum & 0xffff);
5893 sum = (sum >> 16) + (sum & 0xffff);
5894 sums = ~(u_short)sum;
5895 ip->ip_sum = htons(sums);
5896 return 0;
5897 }
5898
5899
5900 #ifdef NEED_FRGETIFNAME
5901 /* ------------------------------------------------------------------------ */
5902 /* Function: ipf_getifname */
5903 /* Returns: char * - pointer to interface name */
5904 /* Parameters: ifp(I) - pointer to network interface */
5905 /* buffer(O) - pointer to where to store interface name */
5906 /* */
5907 /* Constructs an interface name in the buffer passed. The buffer passed is */
5908 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */
5909 /* as a NULL pointer then return a pointer to a static array. */
5910 /* ------------------------------------------------------------------------ */
5911 char *
5912 ipf_getifname(ifp, buffer)
5913 struct ifnet *ifp;
5914 char *buffer;
5915 {
5916 static char namebuf[LIFNAMSIZ];
5917 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5918 defined(__sgi) || defined(linux) || defined(_AIX51) || \
5919 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5920 int unit, space;
5921 char temp[20];
5922 char *s;
5923 # endif
5924
5925 if (buffer == NULL)
5926 buffer = namebuf;
5927 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5928 buffer[LIFNAMSIZ - 1] = '\0';
5929 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5930 defined(__sgi) || defined(_AIX51) || \
5931 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5932 for (s = buffer; *s; s++)
5933 ;
5934 unit = ifp->if_unit;
5935 space = LIFNAMSIZ - (s - buffer);
5936 if ((space > 0) && (unit >= 0)) {
5937 # if defined(SNPRINTF) && defined(_KERNEL)
5938 SNPRINTF(temp, sizeof(temp), "%d", unit);
5939 # else
5940 (void) sprintf(temp, "%d", unit);
5941 # endif
5942 (void) strncpy(s, temp, space);
5943 }
5944 # endif
5945 return buffer;
5946 }
5947 #endif
5948
5949
5950 /* ------------------------------------------------------------------------ */
5951 /* Function: ipf_ioctlswitch */
5952 /* Returns: int - -1 continue processing, else ioctl return value */
5953 /* Parameters: unit(I) - device unit opened */
5954 /* data(I) - pointer to ioctl data */
5955 /* cmd(I) - ioctl command */
5956 /* mode(I) - mode value */
5957 /* uid(I) - uid making the ioctl call */
5958 /* ctx(I) - pointer to context data */
5959 /* */
5960 /* Based on the value of unit, call the appropriate ioctl handler or return */
5961 /* EIO if ipfilter is not running. Also checks if write perms are req'd */
5962 /* for the device in order to execute the ioctl. A special case is made */
5963 /* SIOCIPFINTERROR so that the same code isn't required in every handler. */
5964 /* The context data pointer is passed through as this is used as the key */
5965 /* for locating a matching token for continued access for walking lists, */
5966 /* etc. */
5967 /* ------------------------------------------------------------------------ */
5968 int
5969 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
5970 int mode, int uid, void *ctx)
5971 {
5972 int error = 0;
5973
5974 switch (cmd)
5975 {
5976 case SIOCIPFINTERROR :
5977 error = BCOPYOUT(&softc->ipf_interror, data,
5978 sizeof(softc->ipf_interror));
5979 if (error != 0) {
5980 IPFERROR(40);
5981 error = EFAULT;
5982 }
5983 return error;
5984 default :
5985 break;
5986 }
5987
5988 switch (unit)
5989 {
5990 case IPL_LOGIPF :
5991 error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
5992 break;
5993 case IPL_LOGNAT :
5994 if (softc->ipf_running > 0) {
5995 error = ipf_nat_ioctl(softc, data, cmd, mode,
5996 uid, ctx);
5997 } else {
5998 IPFERROR(42);
5999 error = EIO;
6000 }
6001 break;
6002 case IPL_LOGSTATE :
6003 if (softc->ipf_running > 0) {
6004 error = ipf_state_ioctl(softc, data, cmd, mode,
6005 uid, ctx);
6006 } else {
6007 IPFERROR(43);
6008 error = EIO;
6009 }
6010 break;
6011 case IPL_LOGAUTH :
6012 if (softc->ipf_running > 0) {
6013 error = ipf_auth_ioctl(softc, data, cmd, mode,
6014 uid, ctx);
6015 } else {
6016 IPFERROR(44);
6017 error = EIO;
6018 }
6019 break;
6020 case IPL_LOGSYNC :
6021 if (softc->ipf_running > 0) {
6022 error = ipf_sync_ioctl(softc, data, cmd, mode,
6023 uid, ctx);
6024 } else {
6025 error = EIO;
6026 IPFERROR(45);
6027 }
6028 break;
6029 case IPL_LOGSCAN :
6030 #ifdef IPFILTER_SCAN
6031 if (softc->ipf_running > 0)
6032 error = ipf_scan_ioctl(softc, data, cmd, mode,
6033 uid, ctx);
6034 else
6035 #endif
6036 {
6037 error = EIO;
6038 IPFERROR(46);
6039 }
6040 break;
6041 case IPL_LOGLOOKUP :
6042 if (softc->ipf_running > 0) {
6043 error = ipf_lookup_ioctl(softc, data, cmd, mode,
6044 uid, ctx);
6045 } else {
6046 error = EIO;
6047 IPFERROR(47);
6048 }
6049 break;
6050 default :
6051 IPFERROR(48);
6052 error = EIO;
6053 break;
6054 }
6055
6056 return error;
6057 }
6058
6059
6060 /*
6061 * This array defines the expected size of objects coming into the kernel
6062 * for the various recognised object types. The first column is flags (see
6063 * below), 2nd column is current size, 3rd column is the version number of
6064 * when the current size became current.
6065 * Flags:
6066 * 1 = minimum size, not absolute size
6067 */
6068 static int ipf_objbytes[IPFOBJ_COUNT][3] = {
6069 { 1, sizeof(struct frentry), 5010000 }, /* 0 */
6070 { 1, sizeof(struct friostat), 5010000 },
6071 { 0, sizeof(struct fr_info), 5010000 },
6072 { 0, sizeof(struct ipf_authstat), 4010100 },
6073 { 0, sizeof(struct ipfrstat), 5010000 },
6074 { 1, sizeof(struct ipnat), 5010000 }, /* 5 */
6075 { 0, sizeof(struct natstat), 5010000 },
6076 { 0, sizeof(struct ipstate_save), 5010000 },
6077 { 1, sizeof(struct nat_save), 5010000 },
6078 { 0, sizeof(struct natlookup), 5010000 },
6079 { 1, sizeof(struct ipstate), 5010000 }, /* 10 */
6080 { 0, sizeof(struct ips_stat), 5010000 },
6081 { 0, sizeof(struct frauth), 5010000 },
6082 { 0, sizeof(struct ipftune), 4010100 },
6083 { 0, sizeof(struct nat), 5010000 },
6084 { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */
6085 { 0, sizeof(struct ipfgeniter), 4011400 },
6086 { 0, sizeof(struct ipftable), 4011400 },
6087 { 0, sizeof(struct ipflookupiter), 4011400 },
6088 { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES },
6089 { 1, 0, 0 }, /* IPFEXPR */
6090 { 0, 0, 0 }, /* PROXYCTL */
6091 { 0, sizeof (struct fripf), 5010000 }
6092 };
6093
6094
6095 /* ------------------------------------------------------------------------ */
6096 /* Function: ipf_inobj */
6097 /* Returns: int - 0 = success, else failure */
6098 /* Parameters: softc(I) - soft context pointerto work with */
6099 /* data(I) - pointer to ioctl data */
6100 /* objp(O) - where to store ipfobj structure */
6101 /* ptr(I) - pointer to data to copy out */
6102 /* type(I) - type of structure being moved */
6103 /* */
6104 /* Copy in the contents of what the ipfobj_t points to. In future, we */
6105 /* add things to check for version numbers, sizes, etc, to make it backward */
6106 /* compatible at the ABI for user land. */
6107 /* If objp is not NULL then we assume that the caller wants to see what is */
6108 /* in the ipfobj_t structure being copied in. As an example, this can tell */
6109 /* the caller what version of ipfilter the ioctl program was written to. */
6110 /* ------------------------------------------------------------------------ */
6111 int
6112 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6113 int type)
6114 {
6115 ipfobj_t obj;
6116 int error;
6117 int size;
6118
6119 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6120 IPFERROR(49);
6121 return EINVAL;
6122 }
6123
6124 if (objp == NULL)
6125 objp = &obj;
6126 error = BCOPYIN(data, objp, sizeof(*objp));
6127 if (error != 0) {
6128 IPFERROR(124);
6129 return EFAULT;
6130 }
6131
6132 if (objp->ipfo_type != type) {
6133 IPFERROR(50);
6134 return EINVAL;
6135 }
6136
6137 if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6138 if ((ipf_objbytes[type][0] & 1) != 0) {
6139 if (objp->ipfo_size < ipf_objbytes[type][1]) {
6140 IPFERROR(51);
6141 return EINVAL;
6142 }
6143 size = ipf_objbytes[type][1];
6144 } else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6145 size = objp->ipfo_size;
6146 } else {
6147 IPFERROR(52);
6148 return EINVAL;
6149 }
6150 error = COPYIN(objp->ipfo_ptr, ptr, size);
6151 if (error != 0) {
6152 IPFERROR(55);
6153 error = EFAULT;
6154 }
6155 } else {
6156 #ifdef IPFILTER_COMPAT
6157 error = ipf_in_compat(softc, objp, ptr, 0);
6158 #else
6159 IPFERROR(54);
6160 error = EINVAL;
6161 #endif
6162 }
6163 return error;
6164 }
6165
6166
6167 /* ------------------------------------------------------------------------ */
6168 /* Function: ipf_inobjsz */
6169 /* Returns: int - 0 = success, else failure */
6170 /* Parameters: softc(I) - soft context pointerto work with */
6171 /* data(I) - pointer to ioctl data */
6172 /* ptr(I) - pointer to store real data in */
6173 /* type(I) - type of structure being moved */
6174 /* sz(I) - size of data to copy */
6175 /* */
6176 /* As per ipf_inobj, except the size of the object to copy in is passed in */
6177 /* but it must not be smaller than the size defined for the type and the */
6178 /* type must allow for varied sized objects. The extra requirement here is */
6179 /* that sz must match the size of the object being passed in - this is not */
6180 /* not possible nor required in ipf_inobj(). */
6181 /* ------------------------------------------------------------------------ */
6182 int
6183 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6184 {
6185 ipfobj_t obj;
6186 int error;
6187
6188 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6189 IPFERROR(56);
6190 return EINVAL;
6191 }
6192
6193 error = BCOPYIN(data, &obj, sizeof(obj));
6194 if (error != 0) {
6195 IPFERROR(125);
6196 return EFAULT;
6197 }
6198
6199 if (obj.ipfo_type != type) {
6200 IPFERROR(58);
6201 return EINVAL;
6202 }
6203
6204 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6205 if (((ipf_objbytes[type][0] & 1) == 0) ||
6206 (sz < ipf_objbytes[type][1])) {
6207 IPFERROR(57);
6208 return EINVAL;
6209 }
6210 error = COPYIN(obj.ipfo_ptr, ptr, sz);
6211 if (error != 0) {
6212 IPFERROR(61);
6213 error = EFAULT;
6214 }
6215 } else {
6216 #ifdef IPFILTER_COMPAT
6217 error = ipf_in_compat(softc, &obj, ptr, sz);
6218 #else
6219 IPFERROR(60);
6220 error = EINVAL;
6221 #endif
6222 }
6223 return error;
6224 }
6225
6226
6227 /* ------------------------------------------------------------------------ */
6228 /* Function: ipf_outobjsz */
6229 /* Returns: int - 0 = success, else failure */
6230 /* Parameters: data(I) - pointer to ioctl data */
6231 /* ptr(I) - pointer to store real data in */
6232 /* type(I) - type of structure being moved */
6233 /* sz(I) - size of data to copy */
6234 /* */
6235 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6236 /* but it must not be smaller than the size defined for the type and the */
6237 /* type must allow for varied sized objects. The extra requirement here is */
6238 /* that sz must match the size of the object being passed in - this is not */
6239 /* not possible nor required in ipf_outobj(). */
6240 /* ------------------------------------------------------------------------ */
6241 int
6242 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6243 {
6244 ipfobj_t obj;
6245 int error;
6246
6247 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6248 IPFERROR(62);
6249 return EINVAL;
6250 }
6251
6252 error = BCOPYIN(data, &obj, sizeof(obj));
6253 if (error != 0) {
6254 IPFERROR(127);
6255 return EFAULT;
6256 }
6257
6258 if (obj.ipfo_type != type) {
6259 IPFERROR(63);
6260 return EINVAL;
6261 }
6262
6263 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6264 if (((ipf_objbytes[type][0] & 1) == 0) ||
6265 (sz < ipf_objbytes[type][1])) {
6266 IPFERROR(146);
6267 return EINVAL;
6268 }
6269 error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6270 if (error != 0) {
6271 IPFERROR(66);
6272 error = EFAULT;
6273 }
6274 } else {
6275 #ifdef IPFILTER_COMPAT
6276 error = ipf_out_compat(softc, &obj, ptr);
6277 #else
6278 IPFERROR(65);
6279 error = EINVAL;
6280 #endif
6281 }
6282 return error;
6283 }
6284
6285
6286 /* ------------------------------------------------------------------------ */
6287 /* Function: ipf_outobj */
6288 /* Returns: int - 0 = success, else failure */
6289 /* Parameters: data(I) - pointer to ioctl data */
6290 /* ptr(I) - pointer to store real data in */
6291 /* type(I) - type of structure being moved */
6292 /* */
6293 /* Copy out the contents of what ptr is to where ipfobj points to. In */
6294 /* future, we add things to check for version numbers, sizes, etc, to make */
6295 /* it backward compatible at the ABI for user land. */
6296 /* ------------------------------------------------------------------------ */
6297 int
6298 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6299 {
6300 ipfobj_t obj;
6301 int error;
6302
6303 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6304 IPFERROR(67);
6305 return EINVAL;
6306 }
6307
6308 error = BCOPYIN(data, &obj, sizeof(obj));
6309 if (error != 0) {
6310 IPFERROR(126);
6311 return EFAULT;
6312 }
6313
6314 if (obj.ipfo_type != type) {
6315 IPFERROR(68);
6316 return EINVAL;
6317 }
6318
6319 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6320 if ((ipf_objbytes[type][0] & 1) != 0) {
6321 if (obj.ipfo_size < ipf_objbytes[type][1]) {
6322 IPFERROR(69);
6323 return EINVAL;
6324 }
6325 } else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6326 IPFERROR(70);
6327 return EINVAL;
6328 }
6329
6330 error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6331 if (error != 0) {
6332 IPFERROR(73);
6333 error = EFAULT;
6334 }
6335 } else {
6336 #ifdef IPFILTER_COMPAT
6337 error = ipf_out_compat(softc, &obj, ptr);
6338 #else
6339 IPFERROR(72);
6340 error = EINVAL;
6341 #endif
6342 }
6343 return error;
6344 }
6345
6346
6347 /* ------------------------------------------------------------------------ */
6348 /* Function: ipf_outobjk */
6349 /* Returns: int - 0 = success, else failure */
6350 /* Parameters: obj(I) - pointer to data description structure */
6351 /* ptr(I) - pointer to kernel data to copy out */
6352 /* */
6353 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6354 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6355 /* already populated with information and now we just need to use it. */
6356 /* There is no need for this function to have a "type" parameter as there */
6357 /* is no point in validating information that comes from the kernel with */
6358 /* itself. */
6359 /* ------------------------------------------------------------------------ */
6360 int
6361 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6362 {
6363 int type = obj->ipfo_type;
6364 int error;
6365
6366 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6367 IPFERROR(147);
6368 return EINVAL;
6369 }
6370
6371 if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6372 if ((ipf_objbytes[type][0] & 1) != 0) {
6373 if (obj->ipfo_size < ipf_objbytes[type][1]) {
6374 IPFERROR(148);
6375 return EINVAL;
6376 }
6377
6378 } else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6379 IPFERROR(149);
6380 return EINVAL;
6381 }
6382
6383 error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6384 if (error != 0) {
6385 IPFERROR(150);
6386 error = EFAULT;
6387 }
6388 } else {
6389 #ifdef IPFILTER_COMPAT
6390 error = ipf_out_compat(softc, obj, ptr);
6391 #else
6392 IPFERROR(151);
6393 error = EINVAL;
6394 #endif
6395 }
6396 return error;
6397 }
6398
6399
6400 /* ------------------------------------------------------------------------ */
6401 /* Function: ipf_checkl4sum */
6402 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */
6403 /* Parameters: fin(I) - pointer to packet information */
6404 /* */
6405 /* If possible, calculate the layer 4 checksum for the packet. If this is */
6406 /* not possible, return without indicating a failure or success but in a */
6407 /* way that is ditinguishable. This function should only be called by the */
6408 /* ipf_checkv6sum() for each platform. */
6409 /* ------------------------------------------------------------------------ */
6410 int
6411 ipf_checkl4sum(fr_info_t *fin)
6412 {
6413 u_short sum, hdrsum, *csump;
6414 udphdr_t *udp;
6415 int dosum;
6416
6417 /*
6418 * If the TCP packet isn't a fragment, isn't too short and otherwise
6419 * isn't already considered "bad", then validate the checksum. If
6420 * this check fails then considered the packet to be "bad".
6421 */
6422 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6423 return 1;
6424
6425 csump = NULL;
6426 hdrsum = 0;
6427 dosum = 0;
6428 sum = 0;
6429
6430 switch (fin->fin_p)
6431 {
6432 case IPPROTO_TCP :
6433 csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6434 dosum = 1;
6435 break;
6436
6437 case IPPROTO_UDP :
6438 udp = fin->fin_dp;
6439 if (udp->uh_sum != 0) {
6440 csump = &udp->uh_sum;
6441 dosum = 1;
6442 }
6443 break;
6444
6445 #ifdef USE_INET6
6446 case IPPROTO_ICMPV6 :
6447 csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6448 dosum = 1;
6449 break;
6450 #endif
6451
6452 case IPPROTO_ICMP :
6453 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6454 dosum = 1;
6455 break;
6456
6457 default :
6458 return 1;
6459 /*NOTREACHED*/
6460 }
6461
6462 if (csump != NULL)
6463 hdrsum = *csump;
6464
6465 if (dosum) {
6466 sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6467 }
6468 #if !defined(_KERNEL)
6469 if (sum == hdrsum) {
6470 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6471 } else {
6472 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6473 }
6474 #endif
6475 DT2(l4sums, u_short, hdrsum, u_short, sum);
6476 if (hdrsum == sum) {
6477 fin->fin_cksum = FI_CK_SUMOK;
6478 return 0;
6479 }
6480 fin->fin_cksum = FI_CK_BAD;
6481 return -1;
6482 }
6483
6484
6485 /* ------------------------------------------------------------------------ */
6486 /* Function: ipf_ifpfillv4addr */
6487 /* Returns: int - 0 = address update, -1 = address not updated */
6488 /* Parameters: atype(I) - type of network address update to perform */
6489 /* sin(I) - pointer to source of address information */
6490 /* mask(I) - pointer to source of netmask information */
6491 /* inp(I) - pointer to destination address store */
6492 /* inpmask(I) - pointer to destination netmask store */
6493 /* */
6494 /* Given a type of network address update (atype) to perform, copy */
6495 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6496 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6497 /* which case the operation fails. For all values of atype other than */
6498 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6499 /* value. */
6500 /* ------------------------------------------------------------------------ */
6501 int
6502 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6503 struct in_addr *inp, struct in_addr *inpmask)
6504 {
6505 if (inpmask != NULL && atype != FRI_NETMASKED)
6506 inpmask->s_addr = 0xffffffff;
6507
6508 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6509 if (atype == FRI_NETMASKED) {
6510 if (inpmask == NULL)
6511 return -1;
6512 inpmask->s_addr = mask->sin_addr.s_addr;
6513 }
6514 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6515 } else {
6516 inp->s_addr = sin->sin_addr.s_addr;
6517 }
6518 return 0;
6519 }
6520
6521
6522 #ifdef USE_INET6
6523 /* ------------------------------------------------------------------------ */
6524 /* Function: ipf_ifpfillv6addr */
6525 /* Returns: int - 0 = address update, -1 = address not updated */
6526 /* Parameters: atype(I) - type of network address update to perform */
6527 /* sin(I) - pointer to source of address information */
6528 /* mask(I) - pointer to source of netmask information */
6529 /* inp(I) - pointer to destination address store */
6530 /* inpmask(I) - pointer to destination netmask store */
6531 /* */
6532 /* Given a type of network address update (atype) to perform, copy */
6533 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6534 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6535 /* which case the operation fails. For all values of atype other than */
6536 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6537 /* value. */
6538 /* ------------------------------------------------------------------------ */
6539 int
6540 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6541 struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6542 {
6543 i6addr_t *src, *and;
6544
6545 src = (i6addr_t *)&sin->sin6_addr;
6546 and = (i6addr_t *)&mask->sin6_addr;
6547
6548 if (inpmask != NULL && atype != FRI_NETMASKED) {
6549 inpmask->i6[0] = 0xffffffff;
6550 inpmask->i6[1] = 0xffffffff;
6551 inpmask->i6[2] = 0xffffffff;
6552 inpmask->i6[3] = 0xffffffff;
6553 }
6554
6555 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6556 if (atype == FRI_NETMASKED) {
6557 if (inpmask == NULL)
6558 return -1;
6559 inpmask->i6[0] = and->i6[0];
6560 inpmask->i6[1] = and->i6[1];
6561 inpmask->i6[2] = and->i6[2];
6562 inpmask->i6[3] = and->i6[3];
6563 }
6564
6565 inp->i6[0] = src->i6[0] & and->i6[0];
6566 inp->i6[1] = src->i6[1] & and->i6[1];
6567 inp->i6[2] = src->i6[2] & and->i6[2];
6568 inp->i6[3] = src->i6[3] & and->i6[3];
6569 } else {
6570 inp->i6[0] = src->i6[0];
6571 inp->i6[1] = src->i6[1];
6572 inp->i6[2] = src->i6[2];
6573 inp->i6[3] = src->i6[3];
6574 }
6575 return 0;
6576 }
6577 #endif
6578
6579
6580 /* ------------------------------------------------------------------------ */
6581 /* Function: ipf_matchtag */
6582 /* Returns: 0 == mismatch, 1 == match. */
6583 /* Parameters: tag1(I) - pointer to first tag to compare */
6584 /* tag2(I) - pointer to second tag to compare */
6585 /* */
6586 /* Returns true (non-zero) or false(0) if the two tag structures can be */
6587 /* considered to be a match or not match, respectively. The tag is 16 */
6588 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */
6589 /* compare the ints instead, for speed. tag1 is the master of the */
6590 /* comparison. This function should only be called with both tag1 and tag2 */
6591 /* as non-NULL pointers. */
6592 /* ------------------------------------------------------------------------ */
6593 int
6594 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6595 {
6596 if (tag1 == tag2)
6597 return 1;
6598
6599 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6600 return 1;
6601
6602 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6603 (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6604 (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6605 (tag1->ipt_num[3] == tag2->ipt_num[3]))
6606 return 1;
6607 return 0;
6608 }
6609
6610
6611 /* ------------------------------------------------------------------------ */
6612 /* Function: ipf_coalesce */
6613 /* Returns: 1 == success, -1 == failure, 0 == no change */
6614 /* Parameters: fin(I) - pointer to packet information */
6615 /* */
6616 /* Attempt to get all of the packet data into a single, contiguous buffer. */
6617 /* If this call returns a failure then the buffers have also been freed. */
6618 /* ------------------------------------------------------------------------ */
6619 int
6620 ipf_coalesce(fr_info_t *fin)
6621 {
6622
6623 if ((fin->fin_flx & FI_COALESCE) != 0)
6624 return 1;
6625
6626 /*
6627 * If the mbuf pointers indicate that there is no mbuf to work with,
6628 * return but do not indicate success or failure.
6629 */
6630 if (fin->fin_m == NULL || fin->fin_mp == NULL)
6631 return 0;
6632
6633 #if defined(_KERNEL)
6634 if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6635 ipf_main_softc_t *softc = fin->fin_main_soft;
6636
6637 DT1(frb_coalesce, fr_info_t *, fin);
6638 LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6639 # ifdef MENTAT
6640 FREE_MB_T(*fin->fin_mp);
6641 # endif
6642 fin->fin_reason = FRB_COALESCE;
6643 *fin->fin_mp = NULL;
6644 fin->fin_m = NULL;
6645 return -1;
6646 }
6647 #else
6648 fin = fin; /* LINT */
6649 #endif
6650 return 1;
6651 }
6652
6653
6654 /*
6655 * The following table lists all of the tunable variables that can be
6656 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row
6657 * in the table below is as follows:
6658 *
6659 * pointer to value, name of value, minimum, maximum, size of the value's
6660 * container, value attribute flags
6661 *
6662 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6663 * means the value can only be written to when IPFilter is loaded but disabled.
6664 * The obvious implication is if neither of these are set then the value can be
6665 * changed at any time without harm.
6666 */
6667
6668
6669 /* ------------------------------------------------------------------------ */
6670 /* Function: ipf_tune_findbycookie */
6671 /* Returns: NULL = search failed, else pointer to tune struct */
6672 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */
6673 /* next(O) - pointer to place to store the cookie for the */
6674 /* "next" tuneable, if it is desired. */
6675 /* */
6676 /* This function is used to walk through all of the existing tunables with */
6677 /* successive calls. It searches the known tunables for the one which has */
6678 /* a matching value for "cookie" - ie its address. When returning a match, */
6679 /* the next one to be found may be returned inside next. */
6680 /* ------------------------------------------------------------------------ */
6681 static ipftuneable_t *
6682 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6683 {
6684 ipftuneable_t *ta, **tap;
6685
6686 for (ta = *ptop; ta->ipft_name != NULL; ta++)
6687 if (ta == cookie) {
6688 if (next != NULL) {
6689 /*
6690 * If the next entry in the array has a name
6691 * present, then return a pointer to it for
6692 * where to go next, else return a pointer to
6693 * the dynaminc list as a key to search there
6694 * next. This facilitates a weak linking of
6695 * the two "lists" together.
6696 */
6697 if ((ta + 1)->ipft_name != NULL)
6698 *next = ta + 1;
6699 else
6700 *next = ptop;
6701 }
6702 return ta;
6703 }
6704
6705 for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6706 if (tap == cookie) {
6707 if (next != NULL)
6708 *next = &ta->ipft_next;
6709 return ta;
6710 }
6711
6712 if (next != NULL)
6713 *next = NULL;
6714 return NULL;
6715 }
6716
6717
6718 /* ------------------------------------------------------------------------ */
6719 /* Function: ipf_tune_findbyname */
6720 /* Returns: NULL = search failed, else pointer to tune struct */
6721 /* Parameters: name(I) - name of the tuneable entry to find. */
6722 /* */
6723 /* Search the static array of tuneables and the list of dynamic tuneables */
6724 /* for an entry with a matching name. If we can find one, return a pointer */
6725 /* to the matching structure. */
6726 /* ------------------------------------------------------------------------ */
6727 static ipftuneable_t *
6728 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6729 {
6730 ipftuneable_t *ta;
6731
6732 for (ta = top; ta != NULL; ta = ta->ipft_next)
6733 if (!strcmp(ta->ipft_name, name)) {
6734 return ta;
6735 }
6736
6737 return NULL;
6738 }
6739
6740
6741 /* ------------------------------------------------------------------------ */
6742 /* Function: ipf_tune_add_array */
6743 /* Returns: int - 0 == success, else failure */
6744 /* Parameters: newtune - pointer to new tune array to add to tuneables */
6745 /* */
6746 /* Appends tune structures from the array passed in (newtune) to the end of */
6747 /* the current list of "dynamic" tuneable parameters. */
6748 /* If any entry to be added is already present (by name) then the operation */
6749 /* is aborted - entries that have been added are removed before returning. */
6750 /* An entry with no name (NULL) is used as the indication that the end of */
6751 /* the array has been reached. */
6752 /* ------------------------------------------------------------------------ */
6753 int
6754 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6755 {
6756 ipftuneable_t *nt, *dt;
6757 int error = 0;
6758
6759 for (nt = newtune; nt->ipft_name != NULL; nt++) {
6760 error = ipf_tune_add(softc, nt);
6761 if (error != 0) {
6762 for (dt = newtune; dt != nt; dt++) {
6763 (void) ipf_tune_del(softc, dt);
6764 }
6765 }
6766 }
6767
6768 return error;
6769 }
6770
6771
6772 /* ------------------------------------------------------------------------ */
6773 /* Function: ipf_tune_array_link */
6774 /* Returns: 0 == success, -1 == failure */
6775 /* Parameters: softc(I) - soft context pointerto work with */
6776 /* array(I) - pointer to an array of tuneables */
6777 /* */
6778 /* Given an array of tunables (array), append them to the current list of */
6779 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */
6780 /* the array for being appended to the list, initialise all of the next */
6781 /* pointers so we don't need to walk parts of it with ++ and others with */
6782 /* next. The array is expected to have an entry with a NULL name as the */
6783 /* terminator. Trying to add an array with no non-NULL names will return as */
6784 /* a failure. */
6785 /* ------------------------------------------------------------------------ */
6786 int
6787 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6788 {
6789 ipftuneable_t *t, **p;
6790
6791 t = array;
6792 if (t->ipft_name == NULL)
6793 return -1;
6794
6795 for (; t[1].ipft_name != NULL; t++)
6796 t[0].ipft_next = &t[1];
6797 t->ipft_next = NULL;
6798
6799 /*
6800 * Since a pointer to the last entry isn't kept, we need to find it
6801 * each time we want to add new variables to the list.
6802 */
6803 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6804 if (t->ipft_name == NULL)
6805 break;
6806 *p = array;
6807
6808 return 0;
6809 }
6810
6811
6812 /* ------------------------------------------------------------------------ */
6813 /* Function: ipf_tune_array_unlink */
6814 /* Returns: 0 == success, -1 == failure */
6815 /* Parameters: softc(I) - soft context pointerto work with */
6816 /* array(I) - pointer to an array of tuneables */
6817 /* */
6818 /* ------------------------------------------------------------------------ */
6819 int
6820 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6821 {
6822 ipftuneable_t *t, **p;
6823
6824 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6825 if (t == array)
6826 break;
6827 if (t == NULL)
6828 return -1;
6829
6830 for (; t[1].ipft_name != NULL; t++)
6831 ;
6832
6833 *p = t->ipft_next;
6834
6835 return 0;
6836 }
6837
6838
6839 /* ------------------------------------------------------------------------ */
6840 /* Function: ipf_tune_array_copy */
6841 /* Returns: NULL = failure, else pointer to new array */
6842 /* Parameters: base(I) - pointer to structure base */
6843 /* size(I) - size of the array at template */
6844 /* template(I) - original array to copy */
6845 /* */
6846 /* Allocate memory for a new set of tuneable values and copy everything */
6847 /* from template into the new region of memory. The new region is full of */
6848 /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */
6849 /* */
6850 /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */
6851 /* In the array template, ipftp_offset is the offset (in bytes) of the */
6852 /* location of the tuneable value inside the structure pointed to by base. */
6853 /* As ipftp_offset is a union over the pointers to the tuneable values, if */
6854 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */
6855 /* ipftp_void that points to the stored value. */
6856 /* ------------------------------------------------------------------------ */
6857 ipftuneable_t *
6858 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template)
6859 {
6860 ipftuneable_t *copy;
6861 int i;
6862
6863
6864 KMALLOCS(copy, ipftuneable_t *, size);
6865 if (copy == NULL) {
6866 return NULL;
6867 }
6868 bcopy(template, copy, size);
6869
6870 for (i = 0; copy[i].ipft_name; i++) {
6871 copy[i].ipft_una.ipftp_offset += (u_long)base;
6872 copy[i].ipft_next = copy + i + 1;
6873 }
6874
6875 return copy;
6876 }
6877
6878
6879 /* ------------------------------------------------------------------------ */
6880 /* Function: ipf_tune_add */
6881 /* Returns: int - 0 == success, else failure */
6882 /* Parameters: newtune - pointer to new tune entry to add to tuneables */
6883 /* */
6884 /* Appends tune structures from the array passed in (newtune) to the end of */
6885 /* the current list of "dynamic" tuneable parameters. Once added, the */
6886 /* owner of the object is not expected to ever change "ipft_next". */
6887 /* ------------------------------------------------------------------------ */
6888 int
6889 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6890 {
6891 ipftuneable_t *ta, **tap;
6892
6893 ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6894 if (ta != NULL) {
6895 IPFERROR(74);
6896 return EEXIST;
6897 }
6898
6899 for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6900 ;
6901
6902 newtune->ipft_next = NULL;
6903 *tap = newtune;
6904 return 0;
6905 }
6906
6907
6908 /* ------------------------------------------------------------------------ */
6909 /* Function: ipf_tune_del */
6910 /* Returns: int - 0 == success, else failure */
6911 /* Parameters: oldtune - pointer to tune entry to remove from the list of */
6912 /* current dynamic tuneables */
6913 /* */
6914 /* Search for the tune structure, by pointer, in the list of those that are */
6915 /* dynamically added at run time. If found, adjust the list so that this */
6916 /* structure is no longer part of it. */
6917 /* ------------------------------------------------------------------------ */
6918 int
6919 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6920 {
6921 ipftuneable_t *ta, **tap;
6922 int error = 0;
6923
6924 for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
6925 tap = &ta->ipft_next) {
6926 if (ta == oldtune) {
6927 *tap = oldtune->ipft_next;
6928 oldtune->ipft_next = NULL;
6929 break;
6930 }
6931 }
6932
6933 if (ta == NULL) {
6934 error = ESRCH;
6935 IPFERROR(75);
6936 }
6937 return error;
6938 }
6939
6940
6941 /* ------------------------------------------------------------------------ */
6942 /* Function: ipf_tune_del_array */
6943 /* Returns: int - 0 == success, else failure */
6944 /* Parameters: oldtune - pointer to tuneables array */
6945 /* */
6946 /* Remove each tuneable entry in the array from the list of "dynamic" */
6947 /* tunables. If one entry should fail to be found, an error will be */
6948 /* returned and no further ones removed. */
6949 /* An entry with a NULL name is used as the indicator of the last entry in */
6950 /* the array. */
6951 /* ------------------------------------------------------------------------ */
6952 int
6953 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6954 {
6955 ipftuneable_t *ot;
6956 int error = 0;
6957
6958 for (ot = oldtune; ot->ipft_name != NULL; ot++) {
6959 error = ipf_tune_del(softc, ot);
6960 if (error != 0)
6961 break;
6962 }
6963
6964 return error;
6965
6966 }
6967
6968
6969 /* ------------------------------------------------------------------------ */
6970 /* Function: ipf_tune */
6971 /* Returns: int - 0 == success, else failure */
6972 /* Parameters: cmd(I) - ioctl command number */
6973 /* data(I) - pointer to ioctl data structure */
6974 /* */
6975 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */
6976 /* three ioctls provide the means to access and control global variables */
6977 /* within IPFilter, allowing (for example) timeouts and table sizes to be */
6978 /* changed without rebooting, reloading or recompiling. The initialisation */
6979 /* and 'destruction' routines of the various components of ipfilter are all */
6980 /* each responsible for handling their own values being too big. */
6981 /* ------------------------------------------------------------------------ */
6982 int
6983 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
6984 {
6985 ipftuneable_t *ta;
6986 ipftune_t tu;
6987 void *cookie;
6988 int error;
6989
6990 error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
6991 if (error != 0)
6992 return error;
6993
6994 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
6995 cookie = tu.ipft_cookie;
6996 ta = NULL;
6997
6998 switch (cmd)
6999 {
7000 case SIOCIPFGETNEXT :
7001 /*
7002 * If cookie is non-NULL, assume it to be a pointer to the last
7003 * entry we looked at, so find it (if possible) and return a
7004 * pointer to the next one after it. The last entry in the
7005 * the table is a NULL entry, so when we get to it, set cookie
7006 * to NULL and return that, indicating end of list, erstwhile
7007 * if we come in with cookie set to NULL, we are starting anew
7008 * at the front of the list.
7009 */
7010 if (cookie != NULL) {
7011 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7012 cookie, &tu.ipft_cookie);
7013 } else {
7014 ta = softc->ipf_tuners;
7015 tu.ipft_cookie = ta + 1;
7016 }
7017 if (ta != NULL) {
7018 /*
7019 * Entry found, but does the data pointed to by that
7020 * row fit in what we can return?
7021 */
7022 if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7023 IPFERROR(76);
7024 return EINVAL;
7025 }
7026
7027 tu.ipft_vlong = 0;
7028 if (ta->ipft_sz == sizeof(u_long))
7029 tu.ipft_vlong = *ta->ipft_plong;
7030 else if (ta->ipft_sz == sizeof(u_int))
7031 tu.ipft_vint = *ta->ipft_pint;
7032 else if (ta->ipft_sz == sizeof(u_short))
7033 tu.ipft_vshort = *ta->ipft_pshort;
7034 else if (ta->ipft_sz == sizeof(u_char))
7035 tu.ipft_vchar = *ta->ipft_pchar;
7036
7037 tu.ipft_sz = ta->ipft_sz;
7038 tu.ipft_min = ta->ipft_min;
7039 tu.ipft_max = ta->ipft_max;
7040 tu.ipft_flags = ta->ipft_flags;
7041 bcopy(ta->ipft_name, tu.ipft_name,
7042 MIN(sizeof(tu.ipft_name),
7043 strlen(ta->ipft_name) + 1));
7044 }
7045 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7046 break;
7047
7048 case SIOCIPFGET :
7049 case SIOCIPFSET :
7050 /*
7051 * Search by name or by cookie value for a particular entry
7052 * in the tuning paramter table.
7053 */
7054 IPFERROR(77);
7055 error = ESRCH;
7056 if (cookie != NULL) {
7057 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7058 cookie, NULL);
7059 if (ta != NULL)
7060 error = 0;
7061 } else if (tu.ipft_name[0] != '\0') {
7062 ta = ipf_tune_findbyname(softc->ipf_tuners,
7063 tu.ipft_name);
7064 if (ta != NULL)
7065 error = 0;
7066 }
7067 if (error != 0)
7068 break;
7069
7070 if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7071 /*
7072 * Fetch the tuning parameters for a particular value
7073 */
7074 tu.ipft_vlong = 0;
7075 if (ta->ipft_sz == sizeof(u_long))
7076 tu.ipft_vlong = *ta->ipft_plong;
7077 else if (ta->ipft_sz == sizeof(u_int))
7078 tu.ipft_vint = *ta->ipft_pint;
7079 else if (ta->ipft_sz == sizeof(u_short))
7080 tu.ipft_vshort = *ta->ipft_pshort;
7081 else if (ta->ipft_sz == sizeof(u_char))
7082 tu.ipft_vchar = *ta->ipft_pchar;
7083 tu.ipft_cookie = ta;
7084 tu.ipft_sz = ta->ipft_sz;
7085 tu.ipft_min = ta->ipft_min;
7086 tu.ipft_max = ta->ipft_max;
7087 tu.ipft_flags = ta->ipft_flags;
7088 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7089
7090 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7091 /*
7092 * Set an internal parameter. The hard part here is
7093 * getting the new value safely and correctly out of
7094 * the kernel (given we only know its size, not type.)
7095 */
7096 u_long in;
7097
7098 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7099 (softc->ipf_running > 0)) {
7100 IPFERROR(78);
7101 error = EBUSY;
7102 break;
7103 }
7104
7105 in = tu.ipft_vlong;
7106 if (in < ta->ipft_min || in > ta->ipft_max) {
7107 IPFERROR(79);
7108 error = EINVAL;
7109 break;
7110 }
7111
7112 if (ta->ipft_func != NULL) {
7113 SPL_INT(s);
7114
7115 SPL_NET(s);
7116 error = (*ta->ipft_func)(softc, ta,
7117 &tu.ipft_un);
7118 SPL_X(s);
7119
7120 } else if (ta->ipft_sz == sizeof(u_long)) {
7121 tu.ipft_vlong = *ta->ipft_plong;
7122 *ta->ipft_plong = in;
7123
7124 } else if (ta->ipft_sz == sizeof(u_int)) {
7125 tu.ipft_vint = *ta->ipft_pint;
7126 *ta->ipft_pint = (u_int)(in & 0xffffffff);
7127
7128 } else if (ta->ipft_sz == sizeof(u_short)) {
7129 tu.ipft_vshort = *ta->ipft_pshort;
7130 *ta->ipft_pshort = (u_short)(in & 0xffff);
7131
7132 } else if (ta->ipft_sz == sizeof(u_char)) {
7133 tu.ipft_vchar = *ta->ipft_pchar;
7134 *ta->ipft_pchar = (u_char)(in & 0xff);
7135 }
7136 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7137 }
7138 break;
7139
7140 default :
7141 IPFERROR(80);
7142 error = EINVAL;
7143 break;
7144 }
7145
7146 return error;
7147 }
7148
7149
7150 /* ------------------------------------------------------------------------ */
7151 /* Function: ipf_zerostats */
7152 /* Returns: int - 0 = success, else failure */
7153 /* Parameters: data(O) - pointer to pointer for copying data back to */
7154 /* */
7155 /* Copies the current statistics out to userspace and then zero's the */
7156 /* current ones in the kernel. The lock is only held across the bzero() as */
7157 /* the copyout may result in paging (ie network activity.) */
7158 /* ------------------------------------------------------------------------ */
7159 int
7160 ipf_zerostats(ipf_main_softc_t *softc, void *data)
7161 {
7162 friostat_t fio;
7163 ipfobj_t obj;
7164 int error;
7165
7166 error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7167 if (error != 0)
7168 return error;
7169 ipf_getstat(softc, &fio, obj.ipfo_rev);
7170 error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7171 if (error != 0)
7172 return error;
7173
7174 WRITE_ENTER(&softc->ipf_mutex);
7175 bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7176 RWLOCK_EXIT(&softc->ipf_mutex);
7177
7178 return 0;
7179 }
7180
7181
7182 /* ------------------------------------------------------------------------ */
7183 /* Function: ipf_resolvedest */
7184 /* Returns: Nil */
7185 /* Parameters: softc(I) - pointer to soft context main structure */
7186 /* base(I) - where strings are stored */
7187 /* fdp(IO) - pointer to destination information to resolve */
7188 /* v(I) - IP protocol version to match */
7189 /* */
7190 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7191 /* if a matching name can be found for the particular IP protocol version */
7192 /* then store the interface pointer in the frdest struct. If no match is */
7193 /* found, then set the interface pointer to be -1 as NULL is considered to */
7194 /* indicate there is no information at all in the structure. */
7195 /* ------------------------------------------------------------------------ */
7196 int
7197 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7198 {
7199 int errval = 0;
7200 void *ifp;
7201
7202 ifp = NULL;
7203
7204 if (fdp->fd_name != -1) {
7205 if (fdp->fd_type == FRD_DSTLIST) {
7206 ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7207 IPLT_DSTLIST,
7208 base + fdp->fd_name,
7209 NULL);
7210 if (ifp == NULL) {
7211 IPFERROR(144);
7212 errval = ESRCH;
7213 }
7214 } else {
7215 ifp = GETIFP(base + fdp->fd_name, v);
7216 if (ifp == NULL)
7217 ifp = (void *)-1;
7218 if ((ifp != NULL) && (ifp != (void *)-1))
7219 fdp->fd_local = ipf_deliverlocal(softc, v, ifp,
7220 &fdp->fd_ip6);
7221 }
7222 }
7223 fdp->fd_ptr = ifp;
7224
7225 return errval;
7226 }
7227
7228
7229 /* ------------------------------------------------------------------------ */
7230 /* Function: ipf_resolvenic */
7231 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */
7232 /* pointer to interface structure for NIC */
7233 /* Parameters: softc(I)- pointer to soft context main structure */
7234 /* name(I) - complete interface name */
7235 /* v(I) - IP protocol version */
7236 /* */
7237 /* Look for a network interface structure that firstly has a matching name */
7238 /* to that passed in and that is also being used for that IP protocol */
7239 /* version (necessary on some platforms where there are separate listings */
7240 /* for both IPv4 and IPv6 on the same physical NIC. */
7241 /* */
7242 /* ------------------------------------------------------------------------ */
7243 void *
7244 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7245 {
7246 void *nic;
7247
7248 softc = softc; /* gcc -Wextra */
7249 if (name[0] == '\0')
7250 return NULL;
7251
7252 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7253 return NULL;
7254 }
7255
7256 nic = GETIFP(name, v);
7257 if (nic == NULL)
7258 nic = (void *)-1;
7259 return nic;
7260 }
7261
7262
7263 /* ------------------------------------------------------------------------ */
7264 /* Function: ipf_token_expire */
7265 /* Returns: None. */
7266 /* Parameters: softc(I) - pointer to soft context main structure */
7267 /* */
7268 /* This function is run every ipf tick to see if there are any tokens that */
7269 /* have been held for too long and need to be freed up. */
7270 /* ------------------------------------------------------------------------ */
7271 void
7272 ipf_token_expire(ipf_main_softc_t *softc)
7273 {
7274 ipftoken_t *it;
7275
7276 WRITE_ENTER(&softc->ipf_tokens);
7277 while ((it = softc->ipf_token_head) != NULL) {
7278 if (it->ipt_die > softc->ipf_ticks)
7279 break;
7280
7281 ipf_token_deref(softc, it);
7282 }
7283 RWLOCK_EXIT(&softc->ipf_tokens);
7284 }
7285
7286
7287 /* ------------------------------------------------------------------------ */
7288 /* Function: ipf_token_flush */
7289 /* Returns: None. */
7290 /* Parameters: softc(I) - pointer to soft context main structure */
7291 /* */
7292 /* Loop through all of the existing tokens and call deref to see if they */
7293 /* can be freed. Normally a function like this might just loop on */
7294 /* ipf_token_head but there is a chance that a token might have a ref count */
7295 /* of greater than one and in that case the the reference would drop twice */
7296 /* by code that is only entitled to drop it once. */
7297 /* ------------------------------------------------------------------------ */
7298 static void
7299 ipf_token_flush(softc)
7300 ipf_main_softc_t *softc;
7301 {
7302 ipftoken_t *it, *next;
7303
7304 WRITE_ENTER(&softc->ipf_tokens);
7305 for (it = softc->ipf_token_head; it != NULL; it = next) {
7306 next = it->ipt_next;
7307 (void) ipf_token_deref(softc, it);
7308 }
7309 RWLOCK_EXIT(&softc->ipf_tokens);
7310 }
7311
7312
7313 /* ------------------------------------------------------------------------ */
7314 /* Function: ipf_token_del */
7315 /* Returns: int - 0 = success, else error */
7316 /* Parameters: softc(I)- pointer to soft context main structure */
7317 /* type(I) - the token type to match */
7318 /* uid(I) - uid owning the token */
7319 /* ptr(I) - context pointer for the token */
7320 /* */
7321 /* This function looks for a a token in the current list that matches up */
7322 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */
7323 /* call ipf_token_dewref() to remove it from the list. In the event that */
7324 /* the token has a reference held elsewhere, setting ipt_complete to 2 */
7325 /* enables debugging to distinguish between the two paths that ultimately */
7326 /* lead to a token to be deleted. */
7327 /* ------------------------------------------------------------------------ */
7328 int
7329 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7330 {
7331 ipftoken_t *it;
7332 int error;
7333
7334 IPFERROR(82);
7335 error = ESRCH;
7336
7337 WRITE_ENTER(&softc->ipf_tokens);
7338 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7339 if (ptr == it->ipt_ctx && type == it->ipt_type &&
7340 uid == it->ipt_uid) {
7341 it->ipt_complete = 2;
7342 ipf_token_deref(softc, it);
7343 error = 0;
7344 break;
7345 }
7346 }
7347 RWLOCK_EXIT(&softc->ipf_tokens);
7348
7349 return error;
7350 }
7351
7352
7353 /* ------------------------------------------------------------------------ */
7354 /* Function: ipf_token_mark_complete */
7355 /* Returns: None. */
7356 /* Parameters: token(I) - pointer to token structure */
7357 /* */
7358 /* Mark a token as being ineligable for being found with ipf_token_find. */
7359 /* ------------------------------------------------------------------------ */
7360 void
7361 ipf_token_mark_complete(ipftoken_t *token)
7362 {
7363 if (token->ipt_complete == 0)
7364 token->ipt_complete = 1;
7365 }
7366
7367
7368 /* ------------------------------------------------------------------------ */
7369 /* Function: ipf_token_find */
7370 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */
7371 /* Parameters: softc(I)- pointer to soft context main structure */
7372 /* type(I) - the token type to match */
7373 /* uid(I) - uid owning the token */
7374 /* ptr(I) - context pointer for the token */
7375 /* */
7376 /* This function looks for a live token in the list of current tokens that */
7377 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */
7378 /* allocated. If one is found then it is moved to the top of the list of */
7379 /* currently active tokens. */
7380 /* ------------------------------------------------------------------------ */
7381 ipftoken_t *
7382 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7383 {
7384 ipftoken_t *it, *new;
7385
7386 KMALLOC(new, ipftoken_t *);
7387 if (new != NULL)
7388 bzero((char *)new, sizeof(*new));
7389
7390 WRITE_ENTER(&softc->ipf_tokens);
7391 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7392 if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7393 (uid == it->ipt_uid) && (it->ipt_complete < 2))
7394 break;
7395 }
7396
7397 if (it == NULL) {
7398 it = new;
7399 new = NULL;
7400 if (it == NULL) {
7401 RWLOCK_EXIT(&softc->ipf_tokens);
7402 return NULL;
7403 }
7404 it->ipt_ctx = ptr;
7405 it->ipt_uid = uid;
7406 it->ipt_type = type;
7407 it->ipt_ref = 1;
7408 } else {
7409 if (new != NULL) {
7410 KFREE(new);
7411 new = NULL;
7412 }
7413
7414 if (it->ipt_complete > 0)
7415 it = NULL;
7416 else
7417 ipf_token_unlink(softc, it);
7418 }
7419
7420 if (it != NULL) {
7421 it->ipt_pnext = softc->ipf_token_tail;
7422 *softc->ipf_token_tail = it;
7423 softc->ipf_token_tail = &it->ipt_next;
7424 it->ipt_next = NULL;
7425 it->ipt_ref++;
7426
7427 it->ipt_die = softc->ipf_ticks + 20;
7428 }
7429
7430 RWLOCK_EXIT(&softc->ipf_tokens);
7431
7432 return it;
7433 }
7434
7435
7436 /* ------------------------------------------------------------------------ */
7437 /* Function: ipf_token_unlink */
7438 /* Returns: None. */
7439 /* Parameters: softc(I) - pointer to soft context main structure */
7440 /* token(I) - pointer to token structure */
7441 /* Write Locks: ipf_tokens */
7442 /* */
7443 /* This function unlinks a token structure from the linked list of tokens */
7444 /* that "own" it. The head pointer never needs to be explicitly adjusted */
7445 /* but the tail does due to the linked list implementation. */
7446 /* ------------------------------------------------------------------------ */
7447 static void
7448 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7449 {
7450
7451 if (softc->ipf_token_tail == &token->ipt_next)
7452 softc->ipf_token_tail = token->ipt_pnext;
7453
7454 *token->ipt_pnext = token->ipt_next;
7455 if (token->ipt_next != NULL)
7456 token->ipt_next->ipt_pnext = token->ipt_pnext;
7457 token->ipt_next = NULL;
7458 token->ipt_pnext = NULL;
7459 }
7460
7461
7462 /* ------------------------------------------------------------------------ */
7463 /* Function: ipf_token_deref */
7464 /* Returns: int - 0 == token freed, else reference count */
7465 /* Parameters: softc(I) - pointer to soft context main structure */
7466 /* token(I) - pointer to token structure */
7467 /* Write Locks: ipf_tokens */
7468 /* */
7469 /* Drop the reference count on the token structure and if it drops to zero, */
7470 /* call the dereference function for the token type because it is then */
7471 /* possible to free the token data structure. */
7472 /* ------------------------------------------------------------------------ */
7473 int
7474 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7475 {
7476 void *data, **datap;
7477
7478 ASSERT(token->ipt_ref > 0);
7479 token->ipt_ref--;
7480 if (token->ipt_ref > 0)
7481 return token->ipt_ref;
7482
7483 data = token->ipt_data;
7484 datap = &data;
7485
7486 if ((data != NULL) && (data != (void *)-1)) {
7487 switch (token->ipt_type)
7488 {
7489 case IPFGENITER_IPF :
7490 (void) ipf_derefrule(softc, (frentry_t **)datap);
7491 break;
7492 case IPFGENITER_IPNAT :
7493 WRITE_ENTER(&softc->ipf_nat);
7494 ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7495 RWLOCK_EXIT(&softc->ipf_nat);
7496 break;
7497 case IPFGENITER_NAT :
7498 ipf_nat_deref(softc, (nat_t **)datap);
7499 break;
7500 case IPFGENITER_STATE :
7501 ipf_state_deref(softc, (ipstate_t **)datap);
7502 break;
7503 case IPFGENITER_FRAG :
7504 ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7505 break;
7506 case IPFGENITER_NATFRAG :
7507 ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7508 break;
7509 case IPFGENITER_HOSTMAP :
7510 WRITE_ENTER(&softc->ipf_nat);
7511 ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7512 RWLOCK_EXIT(&softc->ipf_nat);
7513 break;
7514 default :
7515 ipf_lookup_iterderef(softc, token->ipt_type, data);
7516 break;
7517 }
7518 }
7519
7520 ipf_token_unlink(softc, token);
7521 KFREE(token);
7522 return 0;
7523 }
7524
7525
7526 /* ------------------------------------------------------------------------ */
7527 /* Function: ipf_nextrule */
7528 /* Returns: frentry_t * - NULL == no more rules, else pointer to next */
7529 /* Parameters: softc(I) - pointer to soft context main structure */
7530 /* fr(I) - pointer to filter rule */
7531 /* out(I) - 1 == out rules, 0 == input rules */
7532 /* */
7533 /* Starting with "fr", find the next rule to visit. This includes visiting */
7534 /* the list of rule groups if either fr is NULL (empty list) or it is the */
7535 /* last rule in the list. When walking rule lists, it is either input or */
7536 /* output rules that are returned, never both. */
7537 /* ------------------------------------------------------------------------ */
7538 static frentry_t *
7539 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit,
7540 frentry_t *fr, int out)
7541 {
7542 frentry_t *next;
7543 frgroup_t *fg;
7544
7545 if (fr != NULL && fr->fr_group != -1) {
7546 fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7547 unit, active, NULL);
7548 if (fg != NULL)
7549 fg = fg->fg_next;
7550 } else {
7551 fg = softc->ipf_groups[unit][active];
7552 }
7553
7554 while (fg != NULL) {
7555 next = fg->fg_start;
7556 while (next != NULL) {
7557 if (out) {
7558 if (next->fr_flags & FR_OUTQUE)
7559 return next;
7560 } else if (next->fr_flags & FR_INQUE) {
7561 return next;
7562 }
7563 next = next->fr_next;
7564 }
7565 if (next == NULL)
7566 fg = fg->fg_next;
7567 }
7568
7569 return NULL;
7570 }
7571
7572 /* ------------------------------------------------------------------------ */
7573 /* Function: ipf_getnextrule */
7574 /* Returns: int - 0 = success, else error */
7575 /* Parameters: softc(I)- pointer to soft context main structure */
7576 /* t(I) - pointer to destination information to resolve */
7577 /* ptr(I) - pointer to ipfobj_t to copyin from user space */
7578 /* */
7579 /* This function's first job is to bring in the ipfruleiter_t structure via */
7580 /* the ipfobj_t structure to determine what should be the next rule to */
7581 /* return. Once the ipfruleiter_t has been brought in, it then tries to */
7582 /* find the 'next rule'. This may include searching rule group lists or */
7583 /* just be as simple as looking at the 'next' field in the rule structure. */
7584 /* When we have found the rule to return, increase its reference count and */
7585 /* if we used an existing rule to get here, decrease its reference count. */
7586 /* ------------------------------------------------------------------------ */
7587 int
7588 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7589 {
7590 frentry_t *fr, *next, zero;
7591 ipfruleiter_t it;
7592 int error, out;
7593 frgroup_t *fg;
7594 ipfobj_t obj;
7595 int predict;
7596 char *dst;
7597 int unit;
7598
7599 if (t == NULL || ptr == NULL) {
7600 IPFERROR(84);
7601 return EFAULT;
7602 }
7603
7604 error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7605 if (error != 0)
7606 return error;
7607
7608 if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7609 IPFERROR(85);
7610 return EINVAL;
7611 }
7612 if ((it.iri_active != 0) && (it.iri_active != 1)) {
7613 IPFERROR(86);
7614 return EINVAL;
7615 }
7616 if (it.iri_nrules == 0) {
7617 IPFERROR(87);
7618 return ENOSPC;
7619 }
7620 if (it.iri_rule == NULL) {
7621 IPFERROR(88);
7622 return EFAULT;
7623 }
7624
7625 fg = NULL;
7626 fr = t->ipt_data;
7627 if ((it.iri_inout & F_OUT) != 0)
7628 out = 1;
7629 else
7630 out = 0;
7631 if ((it.iri_inout & F_ACIN) != 0)
7632 unit = IPL_LOGCOUNT;
7633 else
7634 unit = IPL_LOGIPF;
7635
7636 READ_ENTER(&softc->ipf_mutex);
7637 if (fr == NULL) {
7638 if (*it.iri_group == '\0') {
7639 if (unit == IPL_LOGCOUNT) {
7640 next = softc->ipf_acct[out][it.iri_active];
7641 } else {
7642 next = softc->ipf_rules[out][it.iri_active];
7643 }
7644 if (next == NULL)
7645 next = ipf_nextrule(softc, it.iri_active,
7646 unit, NULL, out);
7647 } else {
7648 fg = ipf_findgroup(softc, it.iri_group, unit,
7649 it.iri_active, NULL);
7650 if (fg != NULL)
7651 next = fg->fg_start;
7652 else
7653 next = NULL;
7654 }
7655 } else {
7656 next = fr->fr_next;
7657 if (next == NULL)
7658 next = ipf_nextrule(softc, it.iri_active, unit,
7659 fr, out);
7660 }
7661
7662 if (next != NULL && next->fr_next != NULL)
7663 predict = 1;
7664 else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7665 predict = 1;
7666 else
7667 predict = 0;
7668
7669 if (fr != NULL)
7670 (void) ipf_derefrule(softc, &fr);
7671
7672 obj.ipfo_type = IPFOBJ_FRENTRY;
7673 dst = (char *)it.iri_rule;
7674
7675 if (next != NULL) {
7676 obj.ipfo_size = next->fr_size;
7677 MUTEX_ENTER(&next->fr_lock);
7678 next->fr_ref++;
7679 MUTEX_EXIT(&next->fr_lock);
7680 t->ipt_data = next;
7681 } else {
7682 obj.ipfo_size = sizeof(frentry_t);
7683 bzero(&zero, sizeof(zero));
7684 next = &zero;
7685 t->ipt_data = NULL;
7686 }
7687 it.iri_rule = predict ? next : NULL;
7688 if (predict == 0)
7689 ipf_token_mark_complete(t);
7690
7691 RWLOCK_EXIT(&softc->ipf_mutex);
7692
7693 obj.ipfo_ptr = dst;
7694 error = ipf_outobjk(softc, &obj, next);
7695 if (error == 0 && t->ipt_data != NULL) {
7696 dst += obj.ipfo_size;
7697 if (next->fr_data != NULL) {
7698 ipfobj_t dobj;
7699
7700 if (next->fr_type == FR_T_IPFEXPR)
7701 dobj.ipfo_type = IPFOBJ_IPFEXPR;
7702 else
7703 dobj.ipfo_type = IPFOBJ_FRIPF;
7704 dobj.ipfo_size = next->fr_dsize;
7705 dobj.ipfo_rev = obj.ipfo_rev;
7706 dobj.ipfo_ptr = dst;
7707 error = ipf_outobjk(softc, &dobj, next->fr_data);
7708 }
7709 }
7710
7711 if ((fr != NULL) && (next == &zero))
7712 (void) ipf_derefrule(softc, &fr);
7713
7714 return error;
7715 }
7716
7717
7718 /* ------------------------------------------------------------------------ */
7719 /* Function: ipf_frruleiter */
7720 /* Returns: int - 0 = success, else error */
7721 /* Parameters: softc(I)- pointer to soft context main structure */
7722 /* data(I) - the token type to match */
7723 /* uid(I) - uid owning the token */
7724 /* ptr(I) - context pointer for the token */
7725 /* */
7726 /* This function serves as a stepping stone between ipf_ipf_ioctl and */
7727 /* ipf_getnextrule. It's role is to find the right token in the kernel for */
7728 /* the process doing the ioctl and use that to ask for the next rule. */
7729 /* ------------------------------------------------------------------------ */
7730 static int
7731 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7732 {
7733 ipftoken_t *token;
7734 ipfruleiter_t it;
7735 ipfobj_t obj;
7736 int error;
7737
7738 token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7739 if (token != NULL) {
7740 error = ipf_getnextrule(softc, token, data);
7741 WRITE_ENTER(&softc->ipf_tokens);
7742 ipf_token_deref(softc, token);
7743 RWLOCK_EXIT(&softc->ipf_tokens);
7744 } else {
7745 error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7746 if (error != 0)
7747 return error;
7748 it.iri_rule = NULL;
7749 error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7750 }
7751
7752 return error;
7753 }
7754
7755
7756 /* ------------------------------------------------------------------------ */
7757 /* Function: ipf_geniter */
7758 /* Returns: int - 0 = success, else error */
7759 /* Parameters: softc(I) - pointer to soft context main structure */
7760 /* token(I) - pointer to ipftoken_t structure */
7761 /* itp(I) - pointer to iterator data */
7762 /* */
7763 /* Decide which iterator function to call using information passed through */
7764 /* the ipfgeniter_t structure at itp. */
7765 /* ------------------------------------------------------------------------ */
7766 static int
7767 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7768 {
7769 int error;
7770
7771 switch (itp->igi_type)
7772 {
7773 case IPFGENITER_FRAG :
7774 error = ipf_frag_pkt_next(softc, token, itp);
7775 break;
7776 default :
7777 IPFERROR(92);
7778 error = EINVAL;
7779 break;
7780 }
7781
7782 return error;
7783 }
7784
7785
7786 /* ------------------------------------------------------------------------ */
7787 /* Function: ipf_genericiter */
7788 /* Returns: int - 0 = success, else error */
7789 /* Parameters: softc(I)- pointer to soft context main structure */
7790 /* data(I) - the token type to match */
7791 /* uid(I) - uid owning the token */
7792 /* ptr(I) - context pointer for the token */
7793 /* */
7794 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */
7795 /* ------------------------------------------------------------------------ */
7796 int
7797 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7798 {
7799 ipftoken_t *token;
7800 ipfgeniter_t iter;
7801 int error;
7802
7803 error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7804 if (error != 0)
7805 return error;
7806
7807 token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7808 if (token != NULL) {
7809 token->ipt_subtype = iter.igi_type;
7810 error = ipf_geniter(softc, token, &iter);
7811 WRITE_ENTER(&softc->ipf_tokens);
7812 ipf_token_deref(softc, token);
7813 RWLOCK_EXIT(&softc->ipf_tokens);
7814 } else {
7815 IPFERROR(93);
7816 error = 0;
7817 }
7818
7819 return error;
7820 }
7821
7822
7823 /* ------------------------------------------------------------------------ */
7824 /* Function: ipf_ipf_ioctl */
7825 /* Returns: int - 0 = success, else error */
7826 /* Parameters: softc(I)- pointer to soft context main structure */
7827 /* data(I) - the token type to match */
7828 /* cmd(I) - the ioctl command number */
7829 /* mode(I) - mode flags for the ioctl */
7830 /* uid(I) - uid owning the token */
7831 /* ptr(I) - context pointer for the token */
7832 /* */
7833 /* This function handles all of the ioctl command that are actually isssued */
7834 /* to the /dev/ipl device. */
7835 /* ------------------------------------------------------------------------ */
7836 int
7837 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode,
7838 int uid, void *ctx)
7839 {
7840 friostat_t fio;
7841 int error, tmp;
7842 ipfobj_t obj;
7843 SPL_INT(s);
7844
7845 switch (cmd)
7846 {
7847 case SIOCFRENB :
7848 if (!(mode & FWRITE)) {
7849 IPFERROR(94);
7850 error = EPERM;
7851 } else {
7852 error = BCOPYIN(data, &tmp, sizeof(tmp));
7853 if (error != 0) {
7854 IPFERROR(95);
7855 error = EFAULT;
7856 break;
7857 }
7858
7859 WRITE_ENTER(&softc->ipf_global);
7860 if (tmp) {
7861 if (softc->ipf_running > 0)
7862 error = 0;
7863 else
7864 error = ipfattach(softc);
7865 if (error == 0)
7866 softc->ipf_running = 1;
7867 else
7868 (void) ipfdetach(softc);
7869 } else {
7870 if (softc->ipf_running == 1)
7871 error = ipfdetach(softc);
7872 else
7873 error = 0;
7874 if (error == 0)
7875 softc->ipf_running = -1;
7876 }
7877 RWLOCK_EXIT(&softc->ipf_global);
7878 }
7879 break;
7880
7881 case SIOCIPFSET :
7882 if (!(mode & FWRITE)) {
7883 IPFERROR(96);
7884 error = EPERM;
7885 break;
7886 }
7887 /* FALLTHRU */
7888 case SIOCIPFGETNEXT :
7889 case SIOCIPFGET :
7890 error = ipf_ipftune(softc, cmd, (void *)data);
7891 break;
7892
7893 case SIOCSETFF :
7894 if (!(mode & FWRITE)) {
7895 IPFERROR(97);
7896 error = EPERM;
7897 } else {
7898 error = BCOPYIN(data, &softc->ipf_flags,
7899 sizeof(softc->ipf_flags));
7900 if (error != 0) {
7901 IPFERROR(98);
7902 error = EFAULT;
7903 }
7904 }
7905 break;
7906
7907 case SIOCGETFF :
7908 error = BCOPYOUT(&softc->ipf_flags, data,
7909 sizeof(softc->ipf_flags));
7910 if (error != 0) {
7911 IPFERROR(99);
7912 error = EFAULT;
7913 }
7914 break;
7915
7916 case SIOCFUNCL :
7917 error = ipf_resolvefunc(softc, (void *)data);
7918 break;
7919
7920 case SIOCINAFR :
7921 case SIOCRMAFR :
7922 case SIOCADAFR :
7923 case SIOCZRLST :
7924 if (!(mode & FWRITE)) {
7925 IPFERROR(100);
7926 error = EPERM;
7927 } else {
7928 error = frrequest(softc, IPL_LOGIPF, cmd, data,
7929 softc->ipf_active, 1);
7930 }
7931 break;
7932
7933 case SIOCINIFR :
7934 case SIOCRMIFR :
7935 case SIOCADIFR :
7936 if (!(mode & FWRITE)) {
7937 IPFERROR(101);
7938 error = EPERM;
7939 } else {
7940 error = frrequest(softc, IPL_LOGIPF, cmd, data,
7941 1 - softc->ipf_active, 1);
7942 }
7943 break;
7944
7945 case SIOCSWAPA :
7946 if (!(mode & FWRITE)) {
7947 IPFERROR(102);
7948 error = EPERM;
7949 } else {
7950 WRITE_ENTER(&softc->ipf_mutex);
7951 error = BCOPYOUT(&softc->ipf_active, data,
7952 sizeof(softc->ipf_active));
7953 if (error != 0) {
7954 IPFERROR(103);
7955 error = EFAULT;
7956 } else {
7957 softc->ipf_active = 1 - softc->ipf_active;
7958 }
7959 RWLOCK_EXIT(&softc->ipf_mutex);
7960 }
7961 break;
7962
7963 case SIOCGETFS :
7964 error = ipf_inobj(softc, (void *)data, &obj, &fio,
7965 IPFOBJ_IPFSTAT);
7966 if (error != 0)
7967 break;
7968 ipf_getstat(softc, &fio, obj.ipfo_rev);
7969 error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
7970 break;
7971
7972 case SIOCFRZST :
7973 if (!(mode & FWRITE)) {
7974 IPFERROR(104);
7975 error = EPERM;
7976 } else
7977 error = ipf_zerostats(softc, data);
7978 break;
7979
7980 case SIOCIPFFL :
7981 if (!(mode & FWRITE)) {
7982 IPFERROR(105);
7983 error = EPERM;
7984 } else {
7985 error = BCOPYIN(data, &tmp, sizeof(tmp));
7986 if (!error) {
7987 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
7988 error = BCOPYOUT(&tmp, data, sizeof(tmp));
7989 if (error != 0) {
7990 IPFERROR(106);
7991 error = EFAULT;
7992 }
7993 } else {
7994 IPFERROR(107);
7995 error = EFAULT;
7996 }
7997 }
7998 break;
7999
8000 #ifdef USE_INET6
8001 case SIOCIPFL6 :
8002 if (!(mode & FWRITE)) {
8003 IPFERROR(108);
8004 error = EPERM;
8005 } else {
8006 error = BCOPYIN(data, &tmp, sizeof(tmp));
8007 if (!error) {
8008 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8009 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8010 if (error != 0) {
8011 IPFERROR(109);
8012 error = EFAULT;
8013 }
8014 } else {
8015 IPFERROR(110);
8016 error = EFAULT;
8017 }
8018 }
8019 break;
8020 #endif
8021
8022 case SIOCSTLCK :
8023 if (!(mode & FWRITE)) {
8024 IPFERROR(122);
8025 error = EPERM;
8026 } else {
8027 error = BCOPYIN(data, &tmp, sizeof(tmp));
8028 if (error == 0) {
8029 ipf_state_setlock(softc->ipf_state_soft, tmp);
8030 ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8031 ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8032 ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8033 } else {
8034 IPFERROR(111);
8035 error = EFAULT;
8036 }
8037 }
8038 break;
8039
8040 #ifdef IPFILTER_LOG
8041 case SIOCIPFFB :
8042 if (!(mode & FWRITE)) {
8043 IPFERROR(112);
8044 error = EPERM;
8045 } else {
8046 tmp = ipf_log_clear(softc, IPL_LOGIPF);
8047 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8048 if (error) {
8049 IPFERROR(113);
8050 error = EFAULT;
8051 }
8052 }
8053 break;
8054 #endif /* IPFILTER_LOG */
8055
8056 case SIOCFRSYN :
8057 if (!(mode & FWRITE)) {
8058 IPFERROR(114);
8059 error = EPERM;
8060 } else {
8061 WRITE_ENTER(&softc->ipf_global);
8062 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8063 error = ipfsync();
8064 #else
8065 ipf_sync(softc, NULL);
8066 error = 0;
8067 #endif
8068 RWLOCK_EXIT(&softc->ipf_global);
8069
8070 }
8071 break;
8072
8073 case SIOCGFRST :
8074 error = ipf_outobj(softc, (void *)data,
8075 ipf_frag_stats(softc->ipf_frag_soft),
8076 IPFOBJ_FRAGSTAT);
8077 break;
8078
8079 #ifdef IPFILTER_LOG
8080 case FIONREAD :
8081 tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8082 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8083 break;
8084 #endif
8085
8086 case SIOCIPFITER :
8087 SPL_SCHED(s);
8088 error = ipf_frruleiter(softc, data, uid, ctx);
8089 SPL_X(s);
8090 break;
8091
8092 case SIOCGENITER :
8093 SPL_SCHED(s);
8094 error = ipf_genericiter(softc, data, uid, ctx);
8095 SPL_X(s);
8096 break;
8097
8098 case SIOCIPFDELTOK :
8099 error = BCOPYIN(data, &tmp, sizeof(tmp));
8100 if (error == 0) {
8101 SPL_SCHED(s);
8102 error = ipf_token_del(softc, tmp, uid, ctx);
8103 SPL_X(s);
8104 }
8105 break;
8106
8107 default :
8108 IPFERROR(115);
8109 error = EINVAL;
8110 break;
8111 }
8112
8113 return error;
8114 }
8115
8116
8117 /* ------------------------------------------------------------------------ */
8118 /* Function: ipf_decaps */
8119 /* Returns: int - -1 == decapsulation failed, else bit mask of */
8120 /* flags indicating packet filtering decision. */
8121 /* Parameters: fin(I) - pointer to packet information */
8122 /* pass(I) - IP protocol version to match */
8123 /* l5proto(I) - layer 5 protocol to decode UDP data as. */
8124 /* */
8125 /* This function is called for packets that are wrapt up in other packets, */
8126 /* for example, an IP packet that is the entire data segment for another IP */
8127 /* packet. If the basic constraints for this are satisfied, change the */
8128 /* buffer to point to the start of the inner packet and start processing */
8129 /* rules belonging to the head group this rule specifies. */
8130 /* ------------------------------------------------------------------------ */
8131 u_32_t
8132 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8133 {
8134 fr_info_t fin2, *fino = NULL;
8135 int elen, hlen, nh;
8136 grehdr_t gre;
8137 ip_t *ip;
8138 mb_t *m;
8139
8140 if ((fin->fin_flx & FI_COALESCE) == 0)
8141 if (ipf_coalesce(fin) == -1)
8142 goto cantdecaps;
8143
8144 m = fin->fin_m;
8145 hlen = fin->fin_hlen;
8146
8147 switch (fin->fin_p)
8148 {
8149 case IPPROTO_UDP :
8150 /*
8151 * In this case, the specific protocol being decapsulated
8152 * inside UDP frames comes from the rule.
8153 */
8154 nh = fin->fin_fr->fr_icode;
8155 break;
8156
8157 case IPPROTO_GRE : /* 47 */
8158 bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8159 hlen += sizeof(grehdr_t);
8160 if (gre.gr_R|gre.gr_s)
8161 goto cantdecaps;
8162 if (gre.gr_C)
8163 hlen += 4;
8164 if (gre.gr_K)
8165 hlen += 4;
8166 if (gre.gr_S)
8167 hlen += 4;
8168
8169 nh = IPPROTO_IP;
8170
8171 /*
8172 * If the routing options flag is set, validate that it is
8173 * there and bounce over it.
8174 */
8175 #if 0
8176 /* This is really heavy weight and lots of room for error, */
8177 /* so for now, put it off and get the simple stuff right. */
8178 if (gre.gr_R) {
8179 u_char off, len, *s;
8180 u_short af;
8181 int end;
8182
8183 end = 0;
8184 s = fin->fin_dp;
8185 s += hlen;
8186 aplen = fin->fin_plen - hlen;
8187 while (aplen > 3) {
8188 af = (s[0] << 8) | s[1];
8189 off = s[2];
8190 len = s[3];
8191 aplen -= 4;
8192 s += 4;
8193 if (af == 0 && len == 0) {
8194 end = 1;
8195 break;
8196 }
8197 if (aplen < len)
8198 break;
8199 s += len;
8200 aplen -= len;
8201 }
8202 if (end != 1)
8203 goto cantdecaps;
8204 hlen = s - (u_char *)fin->fin_dp;
8205 }
8206 #endif
8207 break;
8208
8209 #ifdef IPPROTO_IPIP
8210 case IPPROTO_IPIP : /* 4 */
8211 #endif
8212 nh = IPPROTO_IP;
8213 break;
8214
8215 default : /* Includes ESP, AH is special for IPv4 */
8216 goto cantdecaps;
8217 }
8218
8219 switch (nh)
8220 {
8221 case IPPROTO_IP :
8222 case IPPROTO_IPV6 :
8223 break;
8224 default :
8225 goto cantdecaps;
8226 }
8227
8228 bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8229 fino = fin;
8230 fin = &fin2;
8231 elen = hlen;
8232 #if defined(MENTAT) && defined(_KERNEL)
8233 m->b_rptr += elen;
8234 #else
8235 m->m_data += elen;
8236 m->m_len -= elen;
8237 #endif
8238 fin->fin_plen -= elen;
8239
8240 ip = (ip_t *)((char *)fin->fin_ip + elen);
8241
8242 /*
8243 * Make sure we have at least enough data for the network layer
8244 * header.
8245 */
8246 if (IP_V(ip) == 4)
8247 hlen = IP_HL(ip) << 2;
8248 #ifdef USE_INET6
8249 else if (IP_V(ip) == 6)
8250 hlen = sizeof(ip6_t);
8251 #endif
8252 else
8253 goto cantdecaps2;
8254
8255 if (fin->fin_plen < hlen)
8256 goto cantdecaps2;
8257
8258 fin->fin_dp = (char *)ip + hlen;
8259
8260 if (IP_V(ip) == 4) {
8261 /*
8262 * Perform IPv4 header checksum validation.
8263 */
8264 if (ipf_cksum((u_short *)ip, hlen))
8265 goto cantdecaps2;
8266 }
8267
8268 if (ipf_makefrip(hlen, ip, fin) == -1) {
8269 cantdecaps2:
8270 if (m != NULL) {
8271 #if defined(MENTAT) && defined(_KERNEL)
8272 m->b_rptr -= elen;
8273 #else
8274 m->m_data -= elen;
8275 m->m_len += elen;
8276 #endif
8277 }
8278 cantdecaps:
8279 DT1(frb_decapfrip, fr_info_t *, fin);
8280 pass &= ~FR_CMDMASK;
8281 pass |= FR_BLOCK|FR_QUICK;
8282 fin->fin_reason = FRB_DECAPFRIP;
8283 return -1;
8284 }
8285
8286 pass = ipf_scanlist(fin, pass);
8287
8288 /*
8289 * Copy the packet filter "result" fields out of the fr_info_t struct
8290 * that is local to the decapsulation processing and back into the
8291 * one we were called with.
8292 */
8293 fino->fin_flx = fin->fin_flx;
8294 fino->fin_rev = fin->fin_rev;
8295 fino->fin_icode = fin->fin_icode;
8296 fino->fin_rule = fin->fin_rule;
8297 (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8298 fino->fin_fr = fin->fin_fr;
8299 fino->fin_error = fin->fin_error;
8300 fino->fin_mp = fin->fin_mp;
8301 fino->fin_m = fin->fin_m;
8302 m = fin->fin_m;
8303 if (m != NULL) {
8304 #if defined(MENTAT) && defined(_KERNEL)
8305 m->b_rptr -= elen;
8306 #else
8307 m->m_data -= elen;
8308 m->m_len += elen;
8309 #endif
8310 }
8311 return pass;
8312 }
8313
8314
8315 /* ------------------------------------------------------------------------ */
8316 /* Function: ipf_matcharray_load */
8317 /* Returns: int - 0 = success, else error */
8318 /* Parameters: softc(I) - pointer to soft context main structure */
8319 /* data(I) - pointer to ioctl data */
8320 /* objp(I) - ipfobj_t structure to load data into */
8321 /* arrayptr(I) - pointer to location to store array pointer */
8322 /* */
8323 /* This function loads in a mathing array through the ipfobj_t struct that */
8324 /* describes it. Sanity checking and array size limitations are enforced */
8325 /* in this function to prevent userspace from trying to load in something */
8326 /* that is insanely big. Once the size of the array is known, the memory */
8327 /* required is malloc'd and returned through changing *arrayptr. The */
8328 /* contents of the array are verified before returning. Only in the event */
8329 /* of a successful call is the caller required to free up the malloc area. */
8330 /* ------------------------------------------------------------------------ */
8331 int
8332 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp,
8333 int **arrayptr)
8334 {
8335 int arraysize, *array, error;
8336
8337 *arrayptr = NULL;
8338
8339 error = BCOPYIN(data, objp, sizeof(*objp));
8340 if (error != 0) {
8341 IPFERROR(116);
8342 return EFAULT;
8343 }
8344
8345 if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8346 IPFERROR(117);
8347 return EINVAL;
8348 }
8349
8350 if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8351 (objp->ipfo_size > 1024)) {
8352 IPFERROR(118);
8353 return EINVAL;
8354 }
8355
8356 arraysize = objp->ipfo_size * sizeof(*array);
8357 KMALLOCS(array, int *, arraysize);
8358 if (array == NULL) {
8359 IPFERROR(119);
8360 return ENOMEM;
8361 }
8362
8363 error = COPYIN(objp->ipfo_ptr, array, arraysize);
8364 if (error != 0) {
8365 KFREES(array, arraysize);
8366 IPFERROR(120);
8367 return EFAULT;
8368 }
8369
8370 if (ipf_matcharray_verify(array, arraysize) != 0) {
8371 KFREES(array, arraysize);
8372 IPFERROR(121);
8373 return EINVAL;
8374 }
8375
8376 *arrayptr = array;
8377 return 0;
8378 }
8379
8380
8381 /* ------------------------------------------------------------------------ */
8382 /* Function: ipf_matcharray_verify */
8383 /* Returns: Nil */
8384 /* Parameters: array(I) - pointer to matching array */
8385 /* arraysize(I) - number of elements in the array */
8386 /* */
8387 /* Verify the contents of a matching array by stepping through each element */
8388 /* in it. The actual commands in the array are not verified for */
8389 /* correctness, only that all of the sizes are correctly within limits. */
8390 /* ------------------------------------------------------------------------ */
8391 int
8392 ipf_matcharray_verify(int *array, int arraysize)
8393 {
8394 int i, nelem, maxidx;
8395 ipfexp_t *e;
8396
8397 nelem = arraysize / sizeof(*array);
8398
8399 /*
8400 * Currently, it makes no sense to have an array less than 6
8401 * elements long - the initial size at the from, a single operation
8402 * (minimum 4 in length) and a trailer, for a total of 6.
8403 */
8404 if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8405 return -1;
8406 }
8407
8408 /*
8409 * Verify the size of data pointed to by array with how long
8410 * the array claims to be itself.
8411 */
8412 if (array[0] * sizeof(*array) != arraysize) {
8413 return -1;
8414 }
8415
8416 maxidx = nelem - 1;
8417 /*
8418 * The last opcode in this array should be an IPF_EXP_END.
8419 */
8420 if (array[maxidx] != IPF_EXP_END) {
8421 return -1;
8422 }
8423
8424 for (i = 1; i < maxidx; ) {
8425 e = (ipfexp_t *)(array + i);
8426
8427 /*
8428 * The length of the bits to check must be at least 1
8429 * (or else there is nothing to comapre with!) and it
8430 * cannot exceed the length of the data present.
8431 */
8432 if ((e->ipfe_size < 1 ) ||
8433 (e->ipfe_size + i > maxidx)) {
8434 return -1;
8435 }
8436 i += e->ipfe_size;
8437 }
8438 return 0;
8439 }
8440
8441
8442 /* ------------------------------------------------------------------------ */
8443 /* Function: ipf_fr_matcharray */
8444 /* Returns: int - 0 = match failed, else positive match */
8445 /* Parameters: fin(I) - pointer to packet information */
8446 /* array(I) - pointer to matching array */
8447 /* */
8448 /* This function is used to apply a matching array against a packet and */
8449 /* return an indication of whether or not the packet successfully matches */
8450 /* all of the commands in it. */
8451 /* ------------------------------------------------------------------------ */
8452 static int
8453 ipf_fr_matcharray(fr_info_t *fin, int *array)
8454 {
8455 int i, n, *x, rv, p;
8456 ipfexp_t *e;
8457
8458 rv = 0;
8459 n = array[0];
8460 x = array + 1;
8461
8462 for (; n > 0; x += 3 + x[3], rv = 0) {
8463 e = (ipfexp_t *)x;
8464 if (e->ipfe_cmd == IPF_EXP_END)
8465 break;
8466 n -= e->ipfe_size;
8467
8468 /*
8469 * The upper 16 bits currently store the protocol value.
8470 * This is currently used with TCP and UDP port compares and
8471 * allows "tcp.port = 80" without requiring an explicit
8472 " "ip.pr = tcp" first.
8473 */
8474 p = e->ipfe_cmd >> 16;
8475 if ((p != 0) && (p != fin->fin_p))
8476 break;
8477
8478 switch (e->ipfe_cmd)
8479 {
8480 case IPF_EXP_IP_PR :
8481 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8482 rv |= (fin->fin_p == e->ipfe_arg0[i]);
8483 }
8484 break;
8485
8486 case IPF_EXP_IP_SRCADDR :
8487 if (fin->fin_v != 4)
8488 break;
8489 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8490 rv |= ((fin->fin_saddr &
8491 e->ipfe_arg0[i * 2 + 1]) ==
8492 e->ipfe_arg0[i * 2]);
8493 }
8494 break;
8495
8496 case IPF_EXP_IP_DSTADDR :
8497 if (fin->fin_v != 4)
8498 break;
8499 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8500 rv |= ((fin->fin_daddr &
8501 e->ipfe_arg0[i * 2 + 1]) ==
8502 e->ipfe_arg0[i * 2]);
8503 }
8504 break;
8505
8506 case IPF_EXP_IP_ADDR :
8507 if (fin->fin_v != 4)
8508 break;
8509 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8510 rv |= ((fin->fin_saddr &
8511 e->ipfe_arg0[i * 2 + 1]) ==
8512 e->ipfe_arg0[i * 2]) ||
8513 ((fin->fin_daddr &
8514 e->ipfe_arg0[i * 2 + 1]) ==
8515 e->ipfe_arg0[i * 2]);
8516 }
8517 break;
8518
8519 #ifdef USE_INET6
8520 case IPF_EXP_IP6_SRCADDR :
8521 if (fin->fin_v != 6)
8522 break;
8523 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8524 rv |= IP6_MASKEQ(&fin->fin_src6,
8525 &e->ipfe_arg0[i * 8 + 4],
8526 &e->ipfe_arg0[i * 8]);
8527 }
8528 break;
8529
8530 case IPF_EXP_IP6_DSTADDR :
8531 if (fin->fin_v != 6)
8532 break;
8533 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8534 rv |= IP6_MASKEQ(&fin->fin_dst6,
8535 &e->ipfe_arg0[i * 8 + 4],
8536 &e->ipfe_arg0[i * 8]);
8537 }
8538 break;
8539
8540 case IPF_EXP_IP6_ADDR :
8541 if (fin->fin_v != 6)
8542 break;
8543 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8544 rv |= IP6_MASKEQ(&fin->fin_src6,
8545 &e->ipfe_arg0[i * 8 + 4],
8546 &e->ipfe_arg0[i * 8]) ||
8547 IP6_MASKEQ(&fin->fin_dst6,
8548 &e->ipfe_arg0[i * 8 + 4],
8549 &e->ipfe_arg0[i * 8]);
8550 }
8551 break;
8552 #endif
8553
8554 case IPF_EXP_UDP_PORT :
8555 case IPF_EXP_TCP_PORT :
8556 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8557 rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8558 (fin->fin_dport == e->ipfe_arg0[i]);
8559 }
8560 break;
8561
8562 case IPF_EXP_UDP_SPORT :
8563 case IPF_EXP_TCP_SPORT :
8564 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8565 rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8566 }
8567 break;
8568
8569 case IPF_EXP_UDP_DPORT :
8570 case IPF_EXP_TCP_DPORT :
8571 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8572 rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8573 }
8574 break;
8575
8576 case IPF_EXP_TCP_FLAGS :
8577 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8578 rv |= ((fin->fin_tcpf &
8579 e->ipfe_arg0[i * 2 + 1]) ==
8580 e->ipfe_arg0[i * 2]);
8581 }
8582 break;
8583 }
8584 rv ^= e->ipfe_not;
8585
8586 if (rv == 0)
8587 break;
8588 }
8589
8590 return rv;
8591 }
8592
8593
8594 /* ------------------------------------------------------------------------ */
8595 /* Function: ipf_queueflush */
8596 /* Returns: int - number of entries flushed (0 = none) */
8597 /* Parameters: softc(I) - pointer to soft context main structure */
8598 /* deletefn(I) - function to call to delete entry */
8599 /* ipfqs(I) - top of the list of ipf internal queues */
8600 /* userqs(I) - top of the list of user defined timeouts */
8601 /* */
8602 /* This fucntion gets called when the state/NAT hash tables fill up and we */
8603 /* need to try a bit harder to free up some space. The algorithm used here */
8604 /* split into two parts but both halves have the same goal: to reduce the */
8605 /* number of connections considered to be "active" to the low watermark. */
8606 /* There are two steps in doing this: */
8607 /* 1) Remove any TCP connections that are already considered to be "closed" */
8608 /* but have not yet been removed from the state table. The two states */
8609 /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */
8610 /* candidates for this style of removal. If freeing up entries in */
8611 /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */
8612 /* we do not go on to step 2. */
8613 /* */
8614 /* 2) Look for the oldest entries on each timeout queue and free them if */
8615 /* they are within the given window we are considering. Where the */
8616 /* window starts and the steps taken to increase its size depend upon */
8617 /* how long ipf has been running (ipf_ticks.) Anything modified in the */
8618 /* last 30 seconds is not touched. */
8619 /* touched */
8620 /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */
8621 /* | | | | | | */
8622 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8623 /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */
8624 /* */
8625 /* Points to note: */
8626 /* - tqe_die is the time, in the future, when entries die. */
8627 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8628 /* ticks. */
8629 /* - tqe_touched is when the entry was last used by NAT/state */
8630 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */
8631 /* ipf_ticks any given timeout queue and vice versa. */
8632 /* - both tqe_die and tqe_touched increase over time */
8633 /* - timeout queues are sorted with the highest value of tqe_die at the */
8634 /* bottom and therefore the smallest values of each are at the top */
8635 /* - the pointer passed in as ipfqs should point to an array of timeout */
8636 /* queues representing each of the TCP states */
8637 /* */
8638 /* We start by setting up a maximum range to scan for things to move of */
8639 /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */
8640 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8641 /* we start again with a new value for "iend" and "istart". This is */
8642 /* continued until we either finish the scan of 30 second intervals or the */
8643 /* low water mark is reached. */
8644 /* ------------------------------------------------------------------------ */
8645 int
8646 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8647 ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8648 {
8649 u_long interval, istart, iend;
8650 ipftq_t *ifq, *ifqnext;
8651 ipftqent_t *tqe, *tqn;
8652 int removed = 0;
8653
8654 for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8655 tqn = tqe->tqe_next;
8656 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8657 removed++;
8658 }
8659 if ((*activep * 100 / size) > low) {
8660 for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8661 ((tqe = tqn) != NULL); ) {
8662 tqn = tqe->tqe_next;
8663 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8664 removed++;
8665 }
8666 }
8667
8668 if ((*activep * 100 / size) <= low) {
8669 return removed;
8670 }
8671
8672 /*
8673 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8674 * used then the operations are upgraded to floating point
8675 * and kernels don't like floating point...
8676 */
8677 if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8678 istart = IPF_TTLVAL(86400 * 4);
8679 interval = IPF_TTLVAL(43200);
8680 } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8681 istart = IPF_TTLVAL(43200);
8682 interval = IPF_TTLVAL(1800);
8683 } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8684 istart = IPF_TTLVAL(1800);
8685 interval = IPF_TTLVAL(30);
8686 } else {
8687 return 0;
8688 }
8689 if (istart > softc->ipf_ticks) {
8690 if (softc->ipf_ticks - interval < interval)
8691 istart = interval;
8692 else
8693 istart = (softc->ipf_ticks / interval) * interval;
8694 }
8695
8696 iend = softc->ipf_ticks - interval;
8697
8698 while ((*activep * 100 / size) > low) {
8699 u_long try;
8700
8701 try = softc->ipf_ticks - istart;
8702
8703 for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8704 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8705 if (try < tqe->tqe_touched)
8706 break;
8707 tqn = tqe->tqe_next;
8708 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8709 removed++;
8710 }
8711 }
8712
8713 for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8714 ifqnext = ifq->ifq_next;
8715
8716 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8717 if (try < tqe->tqe_touched)
8718 break;
8719 tqn = tqe->tqe_next;
8720 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8721 removed++;
8722 }
8723 }
8724
8725 if (try >= iend) {
8726 if (interval == IPF_TTLVAL(43200)) {
8727 interval = IPF_TTLVAL(1800);
8728 } else if (interval == IPF_TTLVAL(1800)) {
8729 interval = IPF_TTLVAL(30);
8730 } else {
8731 break;
8732 }
8733 if (interval >= softc->ipf_ticks)
8734 break;
8735
8736 iend = softc->ipf_ticks - interval;
8737 }
8738 istart -= interval;
8739 }
8740
8741 return removed;
8742 }
8743
8744
8745 /* ------------------------------------------------------------------------ */
8746 /* Function: ipf_deliverlocal */
8747 /* Returns: int - 1 = local address, 0 = non-local address */
8748 /* Parameters: softc(I) - pointer to soft context main structure */
8749 /* ipversion(I) - IP protocol version (4 or 6) */
8750 /* ifp(I) - network interface pointer */
8751 /* ipaddr(I) - IPv4/6 destination address */
8752 /* */
8753 /* This fucntion is used to determine in the address "ipaddr" belongs to */
8754 /* the network interface represented by ifp. */
8755 /* ------------------------------------------------------------------------ */
8756 int
8757 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8758 i6addr_t *ipaddr)
8759 {
8760 i6addr_t addr;
8761 int islocal = 0;
8762
8763 if (ipversion == 4) {
8764 if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8765 if (addr.in4.s_addr == ipaddr->in4.s_addr)
8766 islocal = 1;
8767 }
8768
8769 #ifdef USE_INET6
8770 } else if (ipversion == 6) {
8771 if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8772 if (IP6_EQ(&addr, ipaddr))
8773 islocal = 1;
8774 }
8775 #endif
8776 }
8777
8778 return islocal;
8779 }
8780
8781
8782 /* ------------------------------------------------------------------------ */
8783 /* Function: ipf_settimeout */
8784 /* Returns: int - 0 = success, -1 = failure */
8785 /* Parameters: softc(I) - pointer to soft context main structure */
8786 /* t(I) - pointer to tuneable array entry */
8787 /* p(I) - pointer to values passed in to apply */
8788 /* */
8789 /* This function is called to set the timeout values for each distinct */
8790 /* queue timeout that is available. When called, it calls into both the */
8791 /* state and NAT code, telling them to update their timeout queues. */
8792 /* ------------------------------------------------------------------------ */
8793 static int
8794 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8795 ipftuneval_t *p)
8796 {
8797
8798 /*
8799 * ipf_interror should be set by the functions called here, not
8800 * by this function - it's just a middle man.
8801 */
8802 if (ipf_state_settimeout(softc, t, p) == -1)
8803 return -1;
8804 if (ipf_nat_settimeout(softc, t, p) == -1)
8805 return -1;
8806 return 0;
8807 }
8808
8809
8810 /* ------------------------------------------------------------------------ */
8811 /* Function: ipf_apply_timeout */
8812 /* Returns: int - 0 = success, -1 = failure */
8813 /* Parameters: head(I) - pointer to tuneable array entry */
8814 /* seconds(I) - pointer to values passed in to apply */
8815 /* */
8816 /* This function applies a timeout of "seconds" to the timeout queue that */
8817 /* is pointed to by "head". All entries on this list have an expiration */
8818 /* set to be the current tick value of ipf plus the ttl. Given that this */
8819 /* function should only be called when the delta is non-zero, the task is */
8820 /* to walk the entire list and apply the change. The sort order will not */
8821 /* change. The only catch is that this is O(n) across the list, so if the */
8822 /* queue has lots of entries (10s of thousands or 100s of thousands), it */
8823 /* could take a relatively long time to work through them all. */
8824 /* ------------------------------------------------------------------------ */
8825 void
8826 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8827 {
8828 u_int oldtimeout, newtimeout;
8829 ipftqent_t *tqe;
8830 int delta;
8831
8832 MUTEX_ENTER(&head->ifq_lock);
8833 oldtimeout = head->ifq_ttl;
8834 newtimeout = IPF_TTLVAL(seconds);
8835 delta = oldtimeout - newtimeout;
8836
8837 head->ifq_ttl = newtimeout;
8838
8839 for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8840 tqe->tqe_die += delta;
8841 }
8842 MUTEX_EXIT(&head->ifq_lock);
8843 }
8844
8845
8846 /* ------------------------------------------------------------------------ */
8847 /* Function: ipf_settimeout_tcp */
8848 /* Returns: int - 0 = successfully applied, -1 = failed */
8849 /* Parameters: t(I) - pointer to tuneable to change */
8850 /* p(I) - pointer to new timeout information */
8851 /* tab(I) - pointer to table of TCP queues */
8852 /* */
8853 /* This function applies the new timeout (p) to the TCP tunable (t) and */
8854 /* updates all of the entries on the relevant timeout queue by calling */
8855 /* ipf_apply_timeout(). */
8856 /* ------------------------------------------------------------------------ */
8857 int
8858 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8859 {
8860 if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8861 !strcmp(t->ipft_name, "tcp_established")) {
8862 ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8863 } else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8864 ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8865 } else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8866 ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8867 } else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8868 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8869 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8870 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8871 } else if (!strcmp(t->ipft_name, "tcp_listen")) {
8872 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8873 } else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8874 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8875 } else if (!strcmp(t->ipft_name, "tcp_closing")) {
8876 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8877 } else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8878 ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8879 } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8880 ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8881 } else if (!strcmp(t->ipft_name, "tcp_closed")) {
8882 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8883 } else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8884 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8885 } else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8886 ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8887 } else {
8888 /*
8889 * ipf_interror isn't set here because it should be set
8890 * by whatever called this function.
8891 */
8892 return -1;
8893 }
8894 return 0;
8895 }
8896
8897
8898 /* ------------------------------------------------------------------------ */
8899 /* Function: ipf_main_soft_create */
8900 /* Returns: NULL = failure, else success */
8901 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8902 /* */
8903 /* Create the foundation soft context structure. In circumstances where it */
8904 /* is not required to dynamically allocate the context, a pointer can be */
8905 /* passed in (rather than NULL) to a structure to be initialised. */
8906 /* The main thing of interest is that a number of locks are initialised */
8907 /* here instead of in the where might be expected - in the relevant create */
8908 /* function elsewhere. This is done because the current locking design has */
8909 /* some areas where these locks are used outside of their module. */
8910 /* Possibly the most important exercise that is done here is setting of all */
8911 /* the timeout values, allowing them to be changed before init(). */
8912 /* ------------------------------------------------------------------------ */
8913 void *
8914 ipf_main_soft_create(void *arg)
8915 {
8916 ipf_main_softc_t *softc;
8917
8918 if (arg == NULL) {
8919 KMALLOC(softc, ipf_main_softc_t *);
8920 if (softc == NULL)
8921 return NULL;
8922 } else {
8923 softc = arg;
8924 }
8925
8926 bzero((char *)softc, sizeof(*softc));
8927
8928 /*
8929 * This serves as a flag as to whether or not the softc should be
8930 * free'd when _destroy is called.
8931 */
8932 softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
8933
8934 softc->ipf_tuners = ipf_tune_array_copy(softc,
8935 sizeof(ipf_main_tuneables),
8936 ipf_main_tuneables);
8937 if (softc->ipf_tuners == NULL) {
8938 ipf_main_soft_destroy(softc);
8939 return NULL;
8940 }
8941
8942 MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
8943 MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
8944 RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
8945 RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
8946 RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
8947 RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
8948 RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
8949 RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
8950 RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
8951
8952 softc->ipf_token_head = NULL;
8953 softc->ipf_token_tail = &softc->ipf_token_head;
8954
8955 softc->ipf_tcpidletimeout = FIVE_DAYS;
8956 softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
8957 softc->ipf_tcplastack = IPF_TTLVAL(30);
8958 softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
8959 softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
8960 softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
8961 softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
8962 softc->ipf_tcpclosed = IPF_TTLVAL(30);
8963 softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
8964 softc->ipf_udptimeout = IPF_TTLVAL(120);
8965 softc->ipf_udpacktimeout = IPF_TTLVAL(12);
8966 softc->ipf_icmptimeout = IPF_TTLVAL(60);
8967 softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
8968 softc->ipf_iptimeout = IPF_TTLVAL(60);
8969
8970 #if defined(IPFILTER_DEFAULT_BLOCK)
8971 softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
8972 #else
8973 softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
8974 #endif
8975 softc->ipf_minttl = 4;
8976 softc->ipf_icmpminfragmtu = 68;
8977 softc->ipf_flags = IPF_LOGGING;
8978
8979 return softc;
8980 }
8981
8982 /* ------------------------------------------------------------------------ */
8983 /* Function: ipf_main_soft_init */
8984 /* Returns: 0 = success, -1 = failure */
8985 /* Parameters: softc(I) - pointer to soft context main structure */
8986 /* */
8987 /* A null-op function that exists as a placeholder so that the flow in */
8988 /* other functions is obvious. */
8989 /* ------------------------------------------------------------------------ */
8990 /*ARGSUSED*/
8991 int
8992 ipf_main_soft_init(ipf_main_softc_t *softc)
8993 {
8994 return 0;
8995 }
8996
8997
8998 /* ------------------------------------------------------------------------ */
8999 /* Function: ipf_main_soft_destroy */
9000 /* Returns: void */
9001 /* Parameters: softc(I) - pointer to soft context main structure */
9002 /* */
9003 /* Undo everything that we did in ipf_main_soft_create. */
9004 /* */
9005 /* The most important check that needs to be made here is whether or not */
9006 /* the structure was allocated by ipf_main_soft_create() by checking what */
9007 /* value is stored in ipf_dynamic_main. */
9008 /* ------------------------------------------------------------------------ */
9009 /*ARGSUSED*/
9010 void
9011 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9012 {
9013
9014 RW_DESTROY(&softc->ipf_frag);
9015 RW_DESTROY(&softc->ipf_poolrw);
9016 RW_DESTROY(&softc->ipf_nat);
9017 RW_DESTROY(&softc->ipf_state);
9018 RW_DESTROY(&softc->ipf_tokens);
9019 RW_DESTROY(&softc->ipf_mutex);
9020 RW_DESTROY(&softc->ipf_global);
9021 MUTEX_DESTROY(&softc->ipf_timeoutlock);
9022 MUTEX_DESTROY(&softc->ipf_rw);
9023
9024 if (softc->ipf_tuners != NULL) {
9025 KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9026 }
9027 if (softc->ipf_dynamic_softc == 1) {
9028 KFREE(softc);
9029 }
9030 }
9031
9032
9033 /* ------------------------------------------------------------------------ */
9034 /* Function: ipf_main_soft_fini */
9035 /* Returns: 0 = success, -1 = failure */
9036 /* Parameters: softc(I) - pointer to soft context main structure */
9037 /* */
9038 /* Clean out the rules which have been added since _init was last called, */
9039 /* the only dynamic part of the mainline. */
9040 /* ------------------------------------------------------------------------ */
9041 int
9042 ipf_main_soft_fini(ipf_main_softc_t *softc)
9043 {
9044 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9045 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9046 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9047 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9048
9049 return 0;
9050 }
9051
9052
9053 /* ------------------------------------------------------------------------ */
9054 /* Function: ipf_main_load */
9055 /* Returns: 0 = success, -1 = failure */
9056 /* Parameters: none */
9057 /* */
9058 /* Handle global initialisation that needs to be done for the base part of */
9059 /* IPFilter. At present this just amounts to initialising some ICMP lookup */
9060 /* arrays that get used by the state/NAT code. */
9061 /* ------------------------------------------------------------------------ */
9062 int
9063 ipf_main_load(void)
9064 {
9065 int i;
9066
9067 /* fill icmp reply type table */
9068 for (i = 0; i <= ICMP_MAXTYPE; i++)
9069 icmpreplytype4[i] = -1;
9070 icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9071 icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9072 icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9073 icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9074
9075 #ifdef USE_INET6
9076 /* fill icmp reply type table */
9077 for (i = 0; i <= ICMP6_MAXTYPE; i++)
9078 icmpreplytype6[i] = -1;
9079 icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9080 icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9081 icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9082 icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9083 icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9084 #endif
9085
9086 return 0;
9087 }
9088
9089
9090 /* ------------------------------------------------------------------------ */
9091 /* Function: ipf_main_unload */
9092 /* Returns: 0 = success, -1 = failure */
9093 /* Parameters: none */
9094 /* */
9095 /* A null-op function that exists as a placeholder so that the flow in */
9096 /* other functions is obvious. */
9097 /* ------------------------------------------------------------------------ */
9098 int
9099 ipf_main_unload(void)
9100 {
9101 return 0;
9102 }
9103
9104
9105 /* ------------------------------------------------------------------------ */
9106 /* Function: ipf_load_all */
9107 /* Returns: 0 = success, -1 = failure */
9108 /* Parameters: none */
9109 /* */
9110 /* Work through all of the subsystems inside IPFilter and call the load */
9111 /* function for each in an order that won't lead to a crash :) */
9112 /* ------------------------------------------------------------------------ */
9113 int
9114 ipf_load_all(void)
9115 {
9116 if (ipf_main_load() == -1)
9117 return -1;
9118
9119 if (ipf_state_main_load() == -1)
9120 return -1;
9121
9122 if (ipf_nat_main_load() == -1)
9123 return -1;
9124
9125 if (ipf_frag_main_load() == -1)
9126 return -1;
9127
9128 if (ipf_auth_main_load() == -1)
9129 return -1;
9130
9131 if (ipf_proxy_main_load() == -1)
9132 return -1;
9133
9134 return 0;
9135 }
9136
9137
9138 /* ------------------------------------------------------------------------ */
9139 /* Function: ipf_unload_all */
9140 /* Returns: 0 = success, -1 = failure */
9141 /* Parameters: none */
9142 /* */
9143 /* Work through all of the subsystems inside IPFilter and call the unload */
9144 /* function for each in an order that won't lead to a crash :) */
9145 /* ------------------------------------------------------------------------ */
9146 int
9147 ipf_unload_all(void)
9148 {
9149 if (ipf_proxy_main_unload() == -1)
9150 return -1;
9151
9152 if (ipf_auth_main_unload() == -1)
9153 return -1;
9154
9155 if (ipf_frag_main_unload() == -1)
9156 return -1;
9157
9158 if (ipf_nat_main_unload() == -1)
9159 return -1;
9160
9161 if (ipf_state_main_unload() == -1)
9162 return -1;
9163
9164 if (ipf_main_unload() == -1)
9165 return -1;
9166
9167 return 0;
9168 }
9169
9170
9171 /* ------------------------------------------------------------------------ */
9172 /* Function: ipf_create_all */
9173 /* Returns: NULL = failure, else success */
9174 /* Parameters: arg(I) - pointer to soft context main structure */
9175 /* */
9176 /* Work through all of the subsystems inside IPFilter and call the create */
9177 /* function for each in an order that won't lead to a crash :) */
9178 /* ------------------------------------------------------------------------ */
9179 ipf_main_softc_t *
9180 ipf_create_all(void *arg)
9181 {
9182 ipf_main_softc_t *softc;
9183
9184 softc = ipf_main_soft_create(arg);
9185 if (softc == NULL)
9186 return NULL;
9187
9188 #ifdef IPFILTER_LOG
9189 softc->ipf_log_soft = ipf_log_soft_create(softc);
9190 if (softc->ipf_log_soft == NULL) {
9191 ipf_destroy_all(softc);
9192 return NULL;
9193 }
9194 #endif
9195
9196 softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9197 if (softc->ipf_lookup_soft == NULL) {
9198 ipf_destroy_all(softc);
9199 return NULL;
9200 }
9201
9202 softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9203 if (softc->ipf_sync_soft == NULL) {
9204 ipf_destroy_all(softc);
9205 return NULL;
9206 }
9207
9208 softc->ipf_state_soft = ipf_state_soft_create(softc);
9209 if (softc->ipf_state_soft == NULL) {
9210 ipf_destroy_all(softc);
9211 return NULL;
9212 }
9213
9214 softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9215 if (softc->ipf_nat_soft == NULL) {
9216 ipf_destroy_all(softc);
9217 return NULL;
9218 }
9219
9220 softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9221 if (softc->ipf_frag_soft == NULL) {
9222 ipf_destroy_all(softc);
9223 return NULL;
9224 }
9225
9226 softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9227 if (softc->ipf_auth_soft == NULL) {
9228 ipf_destroy_all(softc);
9229 return NULL;
9230 }
9231
9232 softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9233 if (softc->ipf_proxy_soft == NULL) {
9234 ipf_destroy_all(softc);
9235 return NULL;
9236 }
9237
9238 return softc;
9239 }
9240
9241
9242 /* ------------------------------------------------------------------------ */
9243 /* Function: ipf_destroy_all */
9244 /* Returns: void */
9245 /* Parameters: softc(I) - pointer to soft context main structure */
9246 /* */
9247 /* Work through all of the subsystems inside IPFilter and call the destroy */
9248 /* function for each in an order that won't lead to a crash :) */
9249 /* */
9250 /* Every one of these functions is expected to succeed, so there is no */
9251 /* checking of return values. */
9252 /* ------------------------------------------------------------------------ */
9253 void
9254 ipf_destroy_all(ipf_main_softc_t *softc)
9255 {
9256
9257 if (softc->ipf_state_soft != NULL) {
9258 ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9259 softc->ipf_state_soft = NULL;
9260 }
9261
9262 if (softc->ipf_nat_soft != NULL) {
9263 ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9264 softc->ipf_nat_soft = NULL;
9265 }
9266
9267 if (softc->ipf_frag_soft != NULL) {
9268 ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9269 softc->ipf_frag_soft = NULL;
9270 }
9271
9272 if (softc->ipf_auth_soft != NULL) {
9273 ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9274 softc->ipf_auth_soft = NULL;
9275 }
9276
9277 if (softc->ipf_proxy_soft != NULL) {
9278 ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9279 softc->ipf_proxy_soft = NULL;
9280 }
9281
9282 if (softc->ipf_sync_soft != NULL) {
9283 ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9284 softc->ipf_sync_soft = NULL;
9285 }
9286
9287 if (softc->ipf_lookup_soft != NULL) {
9288 ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9289 softc->ipf_lookup_soft = NULL;
9290 }
9291
9292 #ifdef IPFILTER_LOG
9293 if (softc->ipf_log_soft != NULL) {
9294 ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9295 softc->ipf_log_soft = NULL;
9296 }
9297 #endif
9298
9299 ipf_main_soft_destroy(softc);
9300 }
9301
9302
9303 /* ------------------------------------------------------------------------ */
9304 /* Function: ipf_init_all */
9305 /* Returns: 0 = success, -1 = failure */
9306 /* Parameters: softc(I) - pointer to soft context main structure */
9307 /* */
9308 /* Work through all of the subsystems inside IPFilter and call the init */
9309 /* function for each in an order that won't lead to a crash :) */
9310 /* ------------------------------------------------------------------------ */
9311 int
9312 ipf_init_all(ipf_main_softc_t *softc)
9313 {
9314
9315 if (ipf_main_soft_init(softc) == -1)
9316 return -1;
9317
9318 #ifdef IPFILTER_LOG
9319 if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9320 return -1;
9321 #endif
9322
9323 if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9324 return -1;
9325
9326 if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9327 return -1;
9328
9329 if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9330 return -1;
9331
9332 if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9333 return -1;
9334
9335 if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9336 return -1;
9337
9338 if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9339 return -1;
9340
9341 if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9342 return -1;
9343
9344 return 0;
9345 }
9346
9347
9348 /* ------------------------------------------------------------------------ */
9349 /* Function: ipf_fini_all */
9350 /* Returns: 0 = success, -1 = failure */
9351 /* Parameters: softc(I) - pointer to soft context main structure */
9352 /* */
9353 /* Work through all of the subsystems inside IPFilter and call the fini */
9354 /* function for each in an order that won't lead to a crash :) */
9355 /* ------------------------------------------------------------------------ */
9356 int
9357 ipf_fini_all(ipf_main_softc_t *softc)
9358 {
9359
9360 ipf_token_flush(softc);
9361
9362 if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9363 return -1;
9364
9365 if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9366 return -1;
9367
9368 if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9369 return -1;
9370
9371 if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9372 return -1;
9373
9374 if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9375 return -1;
9376
9377 if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9378 return -1;
9379
9380 if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9381 return -1;
9382
9383 #ifdef IPFILTER_LOG
9384 if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9385 return -1;
9386 #endif
9387
9388 if (ipf_main_soft_fini(softc) == -1)
9389 return -1;
9390
9391 return 0;
9392 }
9393
9394
9395 /* ------------------------------------------------------------------------ */
9396 /* Function: ipf_rule_expire */
9397 /* Returns: Nil */
9398 /* Parameters: softc(I) - pointer to soft context main structure */
9399 /* */
9400 /* At present this function exists just to support temporary addition of */
9401 /* firewall rules. Both inactive and active lists are scanned for items to */
9402 /* purge, as by rights, the expiration is computed as soon as the rule is */
9403 /* loaded in. */
9404 /* ------------------------------------------------------------------------ */
9405 void
9406 ipf_rule_expire(ipf_main_softc_t *softc)
9407 {
9408 frentry_t *fr;
9409
9410 if ((softc->ipf_rule_explist[0] == NULL) &&
9411 (softc->ipf_rule_explist[1] == NULL))
9412 return;
9413
9414 WRITE_ENTER(&softc->ipf_mutex);
9415
9416 while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9417 /*
9418 * Because the list is kept sorted on insertion, the fist
9419 * one that dies in the future means no more work to do.
9420 */
9421 if (fr->fr_die > softc->ipf_ticks)
9422 break;
9423 ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9424 }
9425
9426 while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9427 /*
9428 * Because the list is kept sorted on insertion, the fist
9429 * one that dies in the future means no more work to do.
9430 */
9431 if (fr->fr_die > softc->ipf_ticks)
9432 break;
9433 ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9434 }
9435
9436 RWLOCK_EXIT(&softc->ipf_mutex);
9437 }
9438
9439
9440 static int ipf_ht_node_cmp(struct host_node_s *, struct host_node_s *);
9441 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9442 i6addr_t *);
9443
9444 host_node_t RBI_ZERO(ipf_rb);
9445 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9446
9447
9448 /* ------------------------------------------------------------------------ */
9449 /* Function: ipf_ht_node_cmp */
9450 /* Returns: int - 0 == nodes are the same, .. */
9451 /* Parameters: k1(I) - pointer to first key to compare */
9452 /* k2(I) - pointer to second key to compare */
9453 /* */
9454 /* The "key" for the node is a combination of two fields: the address */
9455 /* family and the address itself. */
9456 /* */
9457 /* Because we're not actually interpreting the address data, it isn't */
9458 /* necessary to convert them to/from network/host byte order. The mask is */
9459 /* just used to remove bits that aren't significant - it doesn't matter */
9460 /* where they are, as long as they're always in the same place. */
9461 /* */
9462 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */
9463 /* this is where individual ones will differ the most - but not true for */
9464 /* for /48's, etc. */
9465 /* ------------------------------------------------------------------------ */
9466 static int
9467 ipf_ht_node_cmp(struct host_node_s *k1, struct host_node_s *k2)
9468 {
9469 int i;
9470
9471 i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9472 if (i != 0)
9473 return i;
9474
9475 if (k1->hn_addr.adf_family == AF_INET)
9476 return (k2->hn_addr.adf_addr.in4.s_addr -
9477 k1->hn_addr.adf_addr.in4.s_addr);
9478
9479 i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9480 if (i != 0)
9481 return i;
9482 i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9483 if (i != 0)
9484 return i;
9485 i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9486 if (i != 0)
9487 return i;
9488 i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9489 return i;
9490 }
9491
9492
9493 /* ------------------------------------------------------------------------ */
9494 /* Function: ipf_ht_node_make_key */
9495 /* Returns: Nil */
9496 /* parameters: htp(I) - pointer to address tracking structure */
9497 /* key(I) - where to store masked address for lookup */
9498 /* family(I) - protocol family of address */
9499 /* addr(I) - pointer to network address */
9500 /* */
9501 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9502 /* copy the address passed in into the key structure whilst masking out the */
9503 /* bits that we don't want. */
9504 /* */
9505 /* Because the parser will set ht_netmask to 128 if there is no protocol */
9506 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */
9507 /* have to be wary of that and not allow 32-128 to happen. */
9508 /* ------------------------------------------------------------------------ */
9509 static void
9510 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9511 i6addr_t *addr)
9512 {
9513 key->hn_addr.adf_family = family;
9514 if (family == AF_INET) {
9515 u_32_t mask;
9516 int bits;
9517
9518 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9519 bits = htp->ht_netmask;
9520 if (bits >= 32) {
9521 mask = 0xffffffff;
9522 } else {
9523 mask = htonl(0xffffffff << (32 - bits));
9524 }
9525 key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9526 #ifdef USE_INET6
9527 } else {
9528 int bits = htp->ht_netmask;
9529
9530 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9531 if (bits > 96) {
9532 key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9533 htonl(0xffffffff << (128 - bits));
9534 key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9535 key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9536 key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9537 } else if (bits > 64) {
9538 key->hn_addr.adf_addr.i6[3] = 0;
9539 key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9540 htonl(0xffffffff << (96 - bits));
9541 key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9542 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9543 } else if (bits > 32) {
9544 key->hn_addr.adf_addr.i6[3] = 0;
9545 key->hn_addr.adf_addr.i6[2] = 0;
9546 key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9547 htonl(0xffffffff << (64 - bits));
9548 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9549 } else {
9550 key->hn_addr.adf_addr.i6[3] = 0;
9551 key->hn_addr.adf_addr.i6[2] = 0;
9552 key->hn_addr.adf_addr.i6[1] = 0;
9553 key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9554 htonl(0xffffffff << (32 - bits));
9555 }
9556 #endif
9557 }
9558 }
9559
9560
9561 /* ------------------------------------------------------------------------ */
9562 /* Function: ipf_ht_node_add */
9563 /* Returns: int - 0 == success, -1 == failure */
9564 /* Parameters: softc(I) - pointer to soft context main structure */
9565 /* htp(I) - pointer to address tracking structure */
9566 /* family(I) - protocol family of address */
9567 /* addr(I) - pointer to network address */
9568 /* */
9569 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9570 /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9571 /* */
9572 /* After preparing the key with the address information to find, look in */
9573 /* the red-black tree to see if the address is known. A successful call to */
9574 /* this function can mean one of two things: a new node was added to the */
9575 /* tree or a matching node exists and we're able to bump up its activity. */
9576 /* ------------------------------------------------------------------------ */
9577 int
9578 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9579 i6addr_t *addr)
9580 {
9581 host_node_t *h;
9582 host_node_t k;
9583
9584 ipf_ht_node_make_key(htp, &k, family, addr);
9585
9586 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9587 if (h == NULL) {
9588 if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9589 return -1;
9590 KMALLOC(h, host_node_t *);
9591 if (h == NULL) {
9592 DT(ipf_rb_no_mem);
9593 LBUMP(ipf_rb_no_mem);
9594 return -1;
9595 }
9596
9597 /*
9598 * If there was a macro to initialise the RB node then that
9599 * would get used here, but there isn't...
9600 */
9601 bzero((char *)h, sizeof(*h));
9602 h->hn_addr = k.hn_addr;
9603 h->hn_addr.adf_family = k.hn_addr.adf_family;
9604 RBI_INSERT(ipf_rb, &htp->ht_root, h);
9605 htp->ht_cur_nodes++;
9606 } else {
9607 if ((htp->ht_max_per_node != 0) &&
9608 (h->hn_active >= htp->ht_max_per_node)) {
9609 DT(ipf_rb_node_max);
9610 LBUMP(ipf_rb_node_max);
9611 return -1;
9612 }
9613 }
9614
9615 h->hn_active++;
9616
9617 return 0;
9618 }
9619
9620
9621 /* ------------------------------------------------------------------------ */
9622 /* Function: ipf_ht_node_del */
9623 /* Returns: int - 0 == success, -1 == failure */
9624 /* parameters: htp(I) - pointer to address tracking structure */
9625 /* family(I) - protocol family of address */
9626 /* addr(I) - pointer to network address */
9627 /* */
9628 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9629 /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9630 /* */
9631 /* Try and find the address passed in amongst the leavese on this tree to */
9632 /* be friend. If found then drop the active account for that node drops by */
9633 /* one. If that count reaches 0, it is time to free it all up. */
9634 /* ------------------------------------------------------------------------ */
9635 int
9636 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9637 {
9638 host_node_t *h;
9639 host_node_t k;
9640
9641 ipf_ht_node_make_key(htp, &k, family, addr);
9642
9643 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9644 if (h == NULL) {
9645 return -1;
9646 } else {
9647 h->hn_active--;
9648 if (h->hn_active == 0) {
9649 (void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9650 htp->ht_cur_nodes--;
9651 KFREE(h);
9652 }
9653 }
9654
9655 return 0;
9656 }
9657
9658
9659 /* ------------------------------------------------------------------------ */
9660 /* Function: ipf_rb_ht_init */
9661 /* Returns: Nil */
9662 /* Parameters: head(I) - pointer to host tracking structure */
9663 /* */
9664 /* Initialise the host tracking structure to be ready for use above. */
9665 /* ------------------------------------------------------------------------ */
9666 void
9667 ipf_rb_ht_init(host_track_t *head)
9668 {
9669 RBI_INIT(ipf_rb, &head->ht_root);
9670 }
9671
9672
9673 /* ------------------------------------------------------------------------ */
9674 /* Function: ipf_rb_ht_freenode */
9675 /* Returns: Nil */
9676 /* Parameters: head(I) - pointer to host tracking structure */
9677 /* arg(I) - additional argument from walk caller */
9678 /* */
9679 /* Free an actual host_node_t structure. */
9680 /* ------------------------------------------------------------------------ */
9681 void
9682 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9683 {
9684 KFREE(node);
9685 }
9686
9687
9688 /* ------------------------------------------------------------------------ */
9689 /* Function: ipf_rb_ht_flush */
9690 /* Returns: Nil */
9691 /* Parameters: head(I) - pointer to host tracking structure */
9692 /* */
9693 /* Remove all of the nodes in the tree tracking hosts by calling a walker */
9694 /* and free'ing each one. */
9695 /* ------------------------------------------------------------------------ */
9696 void
9697 ipf_rb_ht_flush(host_track_t *head)
9698 {
9699 RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9700 }
9701
9702
9703 /* ------------------------------------------------------------------------ */
9704 /* Function: ipf_slowtimer */
9705 /* Returns: Nil */
9706 /* Parameters: ptr(I) - pointer to main ipf soft context structure */
9707 /* */
9708 /* Slowly expire held state for fragments. Timeouts are set * in */
9709 /* expectation of this being called twice per second. */
9710 /* ------------------------------------------------------------------------ */
9711 void
9712 ipf_slowtimer(ipf_main_softc_t *softc)
9713 {
9714
9715 ipf_token_expire(softc);
9716 ipf_frag_expire(softc);
9717 ipf_state_expire(softc);
9718 ipf_nat_expire(softc);
9719 ipf_auth_expire(softc);
9720 ipf_lookup_expire(softc);
9721 ipf_rule_expire(softc);
9722 ipf_sync_expire(softc);
9723 softc->ipf_ticks++;
9724 # if defined(__OpenBSD__)
9725 timeout_add(&ipf_slowtimer_ch, hz/2);
9726 # endif
9727 }
9728
9729
9730 /* ------------------------------------------------------------------------ */
9731 /* Function: ipf_inet_mask_add */
9732 /* Returns: Nil */
9733 /* Parameters: bits(I) - pointer to nat context information */
9734 /* mtab(I) - pointer to mask hash table structure */
9735 /* */
9736 /* When called, bits represents the mask of a new NAT rule that has just */
9737 /* been added. This function inserts a bitmask into the array of masks to */
9738 /* search when searching for a matching NAT rule for a packet. */
9739 /* Prevention of duplicate masks is achieved by checking the use count for */
9740 /* a given netmask. */
9741 /* ------------------------------------------------------------------------ */
9742 void
9743 ipf_inet_mask_add(bits, mtab)
9744 int bits;
9745 ipf_v4_masktab_t *mtab;
9746 {
9747 u_32_t mask;
9748 int i, j;
9749
9750 mtab->imt4_masks[bits]++;
9751 if (mtab->imt4_masks[bits] > 1)
9752 return;
9753
9754 if (bits == 0)
9755 mask = 0;
9756 else
9757 mask = 0xffffffff << (32 - bits);
9758
9759 for (i = 0; i < 33; i++) {
9760 if (ntohl(mtab->imt4_active[i]) < mask) {
9761 for (j = 32; j > i; j--)
9762 mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9763 mtab->imt4_active[i] = htonl(mask);
9764 break;
9765 }
9766 }
9767 mtab->imt4_max++;
9768 }
9769
9770
9771 /* ------------------------------------------------------------------------ */
9772 /* Function: ipf_inet_mask_del */
9773 /* Returns: Nil */
9774 /* Parameters: bits(I) - number of bits set in the netmask */
9775 /* mtab(I) - pointer to mask hash table structure */
9776 /* */
9777 /* Remove the 32bit bitmask represented by "bits" from the collection of */
9778 /* netmasks stored inside of mtab. */
9779 /* ------------------------------------------------------------------------ */
9780 void
9781 ipf_inet_mask_del(bits, mtab)
9782 int bits;
9783 ipf_v4_masktab_t *mtab;
9784 {
9785 u_32_t mask;
9786 int i, j;
9787
9788 mtab->imt4_masks[bits]--;
9789 if (mtab->imt4_masks[bits] > 0)
9790 return;
9791
9792 mask = htonl(0xffffffff << (32 - bits));
9793 for (i = 0; i < 33; i++) {
9794 if (mtab->imt4_active[i] == mask) {
9795 for (j = i + 1; j < 33; j++)
9796 mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9797 break;
9798 }
9799 }
9800 mtab->imt4_max--;
9801 ASSERT(mtab->imt4_max >= 0);
9802 }
9803
9804
9805 #ifdef USE_INET6
9806 /* ------------------------------------------------------------------------ */
9807 /* Function: ipf_inet6_mask_add */
9808 /* Returns: Nil */
9809 /* Parameters: bits(I) - number of bits set in mask */
9810 /* mask(I) - pointer to mask to add */
9811 /* mtab(I) - pointer to mask hash table structure */
9812 /* */
9813 /* When called, bitcount represents the mask of a IPv6 NAT map rule that */
9814 /* has just been added. This function inserts a bitmask into the array of */
9815 /* masks to search when searching for a matching NAT rule for a packet. */
9816 /* Prevention of duplicate masks is achieved by checking the use count for */
9817 /* a given netmask. */
9818 /* ------------------------------------------------------------------------ */
9819 void
9820 ipf_inet6_mask_add(bits, mask, mtab)
9821 int bits;
9822 i6addr_t *mask;
9823 ipf_v6_masktab_t *mtab;
9824 {
9825 i6addr_t zero;
9826 int i, j;
9827
9828 mtab->imt6_masks[bits]++;
9829 if (mtab->imt6_masks[bits] > 1)
9830 return;
9831
9832 if (bits == 0) {
9833 mask = &zero;
9834 zero.i6[0] = 0;
9835 zero.i6[1] = 0;
9836 zero.i6[2] = 0;
9837 zero.i6[3] = 0;
9838 }
9839
9840 for (i = 0; i < 129; i++) {
9841 if (IP6_LT(&mtab->imt6_active[i], mask)) {
9842 for (j = 128; j > i; j--)
9843 mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9844 mtab->imt6_active[i] = *mask;
9845 break;
9846 }
9847 }
9848 mtab->imt6_max++;
9849 }
9850
9851
9852 /* ------------------------------------------------------------------------ */
9853 /* Function: ipf_inet6_mask_del */
9854 /* Returns: Nil */
9855 /* Parameters: bits(I) - number of bits set in mask */
9856 /* mask(I) - pointer to mask to remove */
9857 /* mtab(I) - pointer to mask hash table structure */
9858 /* */
9859 /* Remove the 128bit bitmask represented by "bits" from the collection of */
9860 /* netmasks stored inside of mtab. */
9861 /* ------------------------------------------------------------------------ */
9862 void
9863 ipf_inet6_mask_del(bits, mask, mtab)
9864 int bits;
9865 i6addr_t *mask;
9866 ipf_v6_masktab_t *mtab;
9867 {
9868 i6addr_t zero;
9869 int i, j;
9870
9871 mtab->imt6_masks[bits]--;
9872 if (mtab->imt6_masks[bits] > 0)
9873 return;
9874
9875 if (bits == 0)
9876 mask = &zero;
9877 zero.i6[0] = 0;
9878 zero.i6[1] = 0;
9879 zero.i6[2] = 0;
9880 zero.i6[3] = 0;
9881
9882 for (i = 0; i < 129; i++) {
9883 if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9884 for (j = i + 1; j < 129; j++) {
9885 mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9886 if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9887 break;
9888 }
9889 break;
9890 }
9891 }
9892 mtab->imt6_max--;
9893 ASSERT(mtab->imt6_max >= 0);
9894 }
9895 #endif
9896