fil.c revision 1.30 1 /* $NetBSD: fil.c,v 1.30 2019/08/08 14:38:53 christos Exp $ */
2
3 /*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $
9 *
10 */
11 #if defined(KERNEL) || defined(_KERNEL)
12 # undef KERNEL
13 # undef _KERNEL
14 # define KERNEL 1
15 # define _KERNEL 1
16 #endif
17 #include <sys/errno.h>
18 #include <sys/types.h>
19 #include <sys/param.h>
20 #include <sys/time.h>
21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
22 (__FreeBSD_version >= 220000)
23 # if (__FreeBSD_version >= 400000)
24 # if !defined(IPFILTER_LKM)
25 # include "opt_inet6.h"
26 # endif
27 # if (__FreeBSD_version == 400019)
28 # define CSUM_DELAY_DATA
29 # endif
30 # endif
31 # include <sys/filio.h>
32 #else
33 # include <sys/ioctl.h>
34 #endif
35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
36 # include <sys/filio.h>
37 #endif
38 #if !defined(_AIX51)
39 # include <sys/fcntl.h>
40 #endif
41 #if defined(_KERNEL)
42 # include <sys/systm.h>
43 # include <sys/file.h>
44 #else
45 # include <stdio.h>
46 # include <string.h>
47 # include <stdlib.h>
48 # include <stddef.h>
49 # include <sys/file.h>
50 # define _KERNEL
51 # ifdef __OpenBSD__
52 struct file;
53 # endif
54 # include <sys/uio.h>
55 # undef _KERNEL
56 #endif
57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
58 !defined(linux)
59 # include <sys/mbuf.h>
60 #else
61 # if !defined(linux)
62 # include <sys/byteorder.h>
63 # endif
64 # if (SOLARIS2 < 5) && defined(sun)
65 # include <sys/dditypes.h>
66 # endif
67 #endif
68 #ifdef __hpux
69 # define _NET_ROUTE_INCLUDED
70 #endif
71 #if !defined(linux)
72 # include <sys/protosw.h>
73 #endif
74 #include <sys/socket.h>
75 #include <net/if.h>
76 #ifdef sun
77 # include <net/af.h>
78 #endif
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
83 # include <sys/hashing.h>
84 # include <netinet/in_var.h>
85 #endif
86 #include <netinet/tcp.h>
87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
88 # include <netinet/udp.h>
89 # include <netinet/ip_icmp.h>
90 #endif
91 #ifdef __hpux
92 # undef _NET_ROUTE_INCLUDED
93 #endif
94 #ifdef __osf__
95 # undef _RADIX_H_
96 #endif
97 #include "netinet/ip_compat.h"
98 #ifdef USE_INET6
99 # include <netinet/icmp6.h>
100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
101 # include <netinet6/in6_var.h>
102 # endif
103 #endif
104 #include "netinet/ip_fil.h"
105 #include "netinet/ip_nat.h"
106 #include "netinet/ip_frag.h"
107 #include "netinet/ip_state.h"
108 #include "netinet/ip_proxy.h"
109 #include "netinet/ip_auth.h"
110 #ifdef IPFILTER_SCAN
111 # include "netinet/ip_scan.h"
112 #endif
113 #include "netinet/ip_sync.h"
114 #include "netinet/ip_lookup.h"
115 #include "netinet/ip_pool.h"
116 #include "netinet/ip_htable.h"
117 #ifdef IPFILTER_COMPILED
118 # include "netinet/ip_rules.h"
119 #endif
120 #if defined(IPFILTER_BPF) && defined(_KERNEL)
121 # include <net/bpf.h>
122 #endif
123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
124 # include <sys/malloc.h>
125 #endif
126 #include "netinet/ipl.h"
127
128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
129 # include <sys/callout.h>
130 extern struct callout ipf_slowtimer_ch;
131 #endif
132 #if defined(__OpenBSD__)
133 # include <sys/timeout.h>
134 extern struct timeout ipf_slowtimer_ch;
135 #endif
136 #if defined(__NetBSD__)
137 #include <netinet/in_offload.h>
138 #endif
139 /* END OF INCLUDES */
140
141 #if !defined(lint)
142 #if defined(__NetBSD__)
143 #include <sys/cdefs.h>
144 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.30 2019/08/08 14:38:53 christos Exp $");
145 #else
146 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed";
147 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $";
148 #endif
149 #endif
150
151 #ifndef _KERNEL
152 # include "ipf.h"
153 # include "ipt.h"
154 extern int opts;
155 extern int blockreason;
156 #endif /* _KERNEL */
157
158 #define LBUMP(x) softc->x++
159 #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0)
160
161 static INLINE int ipf_check_ipf(fr_info_t *, frentry_t *, int);
162 static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int);
163 static u_32_t ipf_checkripso(u_char *);
164 static u_32_t ipf_decaps(fr_info_t *, u_32_t, int);
165 #ifdef IPFILTER_LOG
166 static frentry_t *ipf_dolog(fr_info_t *, u_32_t *);
167 #endif
168 static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
169 static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int);
170 static ipfunc_t ipf_findfunc(ipfunc_t);
171 static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
172 i6addr_t *, i6addr_t *);
173 static frentry_t *ipf_firewall(fr_info_t *, u_32_t *);
174 static int ipf_fr_matcharray(fr_info_t *, int *);
175 static int ipf_frruleiter(ipf_main_softc_t *, void *, int, void *);
176 static void ipf_funcfini(ipf_main_softc_t *, frentry_t *);;
177 static int ipf_funcinit(ipf_main_softc_t *, frentry_t *);
178 static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
179 ipfgeniter_t *);
180 static void ipf_getstat(ipf_main_softc_t *,
181 struct friostat *, int);
182 static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
183 static void ipf_group_free(frgroup_t *);
184 static int ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *);
185 static int ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *);
186 static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int,
187 frentry_t *, int);
188 static int ipf_portcheck(frpcmp_t *, u_32_t);
189 static INLINE int ipf_pr_ah(fr_info_t *);
190 static INLINE void ipf_pr_esp(fr_info_t *);
191 static INLINE void ipf_pr_gre(fr_info_t *);
192 static INLINE void ipf_pr_udp(fr_info_t *);
193 static INLINE void ipf_pr_tcp(fr_info_t *);
194 static INLINE void ipf_pr_icmp(fr_info_t *);
195 static INLINE void ipf_pr_ipv4hdr(fr_info_t *);
196 static INLINE void ipf_pr_short(fr_info_t *, int);
197 static INLINE int ipf_pr_tcpcommon(fr_info_t *);
198 static INLINE int ipf_pr_udpcommon(fr_info_t *);
199 static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
200 int, int);
201 static void ipf_rule_expire_insert(ipf_main_softc_t *,
202 frentry_t *, int);
203 static int ipf_synclist(ipf_main_softc_t *, frentry_t *, void *);
204 static void ipf_token_flush(ipf_main_softc_t *);
205 static void ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *);
206 static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *, const char *);
207 static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *,
208 void **);
209 static int ipf_updateipid(fr_info_t *);
210 static int ipf_settimeout(struct ipf_main_softc_s *,
211 struct ipftuneable *, ipftuneval_t *);
212
213
214 /*
215 * bit values for identifying presence of individual IP options
216 * All of these tables should be ordered by increasing key value on the left
217 * hand side to allow for binary searching of the array and include a trailer
218 * with a 0 for the bitmask for linear searches to easily find the end with.
219 */
220 static const struct optlist ipopts[20] = {
221 { IPOPT_NOP, 0x000001 },
222 { IPOPT_RR, 0x000002 },
223 { IPOPT_ZSU, 0x000004 },
224 { IPOPT_MTUP, 0x000008 },
225 { IPOPT_MTUR, 0x000010 },
226 { IPOPT_ENCODE, 0x000020 },
227 { IPOPT_TS, 0x000040 },
228 { IPOPT_TR, 0x000080 },
229 { IPOPT_SECURITY, 0x000100 },
230 { IPOPT_LSRR, 0x000200 },
231 { IPOPT_E_SEC, 0x000400 },
232 { IPOPT_CIPSO, 0x000800 },
233 { IPOPT_SATID, 0x001000 },
234 { IPOPT_SSRR, 0x002000 },
235 { IPOPT_ADDEXT, 0x004000 },
236 { IPOPT_VISA, 0x008000 },
237 { IPOPT_IMITD, 0x010000 },
238 { IPOPT_EIP, 0x020000 },
239 { IPOPT_FINN, 0x040000 },
240 { 0, 0x000000 }
241 };
242
243 #ifdef USE_INET6
244 static const struct optlist ip6exthdr[] = {
245 { IPPROTO_HOPOPTS, 0x000001 },
246 { IPPROTO_IPV6, 0x000002 },
247 { IPPROTO_ROUTING, 0x000004 },
248 { IPPROTO_FRAGMENT, 0x000008 },
249 { IPPROTO_ESP, 0x000010 },
250 { IPPROTO_AH, 0x000020 },
251 { IPPROTO_NONE, 0x000040 },
252 { IPPROTO_DSTOPTS, 0x000080 },
253 { IPPROTO_MOBILITY, 0x000100 },
254 { 0, 0 }
255 };
256 #endif
257
258 /*
259 * bit values for identifying presence of individual IP security options
260 */
261 static const struct optlist secopt[8] = {
262 { IPSO_CLASS_RES4, 0x01 },
263 { IPSO_CLASS_TOPS, 0x02 },
264 { IPSO_CLASS_SECR, 0x04 },
265 { IPSO_CLASS_RES3, 0x08 },
266 { IPSO_CLASS_CONF, 0x10 },
267 { IPSO_CLASS_UNCL, 0x20 },
268 { IPSO_CLASS_RES2, 0x40 },
269 { IPSO_CLASS_RES1, 0x80 }
270 };
271
272 char ipfilter_version[] = IPL_VERSION;
273
274 int ipf_features = 0
275 #ifdef IPFILTER_LKM
276 | IPF_FEAT_LKM
277 #endif
278 #ifdef IPFILTER_LOG
279 | IPF_FEAT_LOG
280 #endif
281 | IPF_FEAT_LOOKUP
282 #ifdef IPFILTER_BPF
283 | IPF_FEAT_BPF
284 #endif
285 #ifdef IPFILTER_COMPILED
286 | IPF_FEAT_COMPILED
287 #endif
288 #ifdef IPFILTER_CKSUM
289 | IPF_FEAT_CKSUM
290 #endif
291 | IPF_FEAT_SYNC
292 #ifdef IPFILTER_SCAN
293 | IPF_FEAT_SCAN
294 #endif
295 #ifdef USE_INET6
296 | IPF_FEAT_IPV6
297 #endif
298 ;
299
300
301 /*
302 * Table of functions available for use with call rules.
303 */
304 static ipfunc_resolve_t ipf_availfuncs[] = {
305 { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
306 { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
307 { "", NULL, NULL, NULL }
308 };
309
310 static const ipftuneable_t ipf_main_tuneables[] = {
311 { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
312 "ipf_flags", 0, 0xffffffff,
313 stsizeof(ipf_main_softc_t, ipf_flags),
314 0, NULL, NULL },
315 { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
316 "active", 0, 0,
317 stsizeof(ipf_main_softc_t, ipf_active),
318 IPFT_RDONLY, NULL, NULL },
319 { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
320 "control_forwarding", 0, 1,
321 stsizeof(ipf_main_softc_t, ipf_control_forwarding),
322 0, NULL, NULL },
323 { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
324 "update_ipid", 0, 1,
325 stsizeof(ipf_main_softc_t, ipf_update_ipid),
326 0, NULL, NULL },
327 { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
328 "chksrc", 0, 1,
329 stsizeof(ipf_main_softc_t, ipf_chksrc),
330 0, NULL, NULL },
331 { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
332 "min_ttl", 0, 1,
333 stsizeof(ipf_main_softc_t, ipf_minttl),
334 0, NULL, NULL },
335 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
336 "icmp_minfragmtu", 0, 1,
337 stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
338 0, NULL, NULL },
339 { { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
340 "default_pass", 0, 0xffffffff,
341 stsizeof(ipf_main_softc_t, ipf_pass),
342 0, NULL, NULL },
343 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
344 "tcp_idle_timeout", 1, 0x7fffffff,
345 stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
346 0, NULL, ipf_settimeout },
347 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
348 "tcp_close_wait", 1, 0x7fffffff,
349 stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
350 0, NULL, ipf_settimeout },
351 { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
352 "tcp_last_ack", 1, 0x7fffffff,
353 stsizeof(ipf_main_softc_t, ipf_tcplastack),
354 0, NULL, ipf_settimeout },
355 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
356 "tcp_timeout", 1, 0x7fffffff,
357 stsizeof(ipf_main_softc_t, ipf_tcptimeout),
358 0, NULL, ipf_settimeout },
359 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
360 "tcp_syn_sent", 1, 0x7fffffff,
361 stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
362 0, NULL, ipf_settimeout },
363 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
364 "tcp_syn_received", 1, 0x7fffffff,
365 stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
366 0, NULL, ipf_settimeout },
367 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
368 "tcp_closed", 1, 0x7fffffff,
369 stsizeof(ipf_main_softc_t, ipf_tcpclosed),
370 0, NULL, ipf_settimeout },
371 { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
372 "tcp_half_closed", 1, 0x7fffffff,
373 stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
374 0, NULL, ipf_settimeout },
375 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
376 "tcp_time_wait", 1, 0x7fffffff,
377 stsizeof(ipf_main_softc_t, ipf_tcptimewait),
378 0, NULL, ipf_settimeout },
379 { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
380 "udp_timeout", 1, 0x7fffffff,
381 stsizeof(ipf_main_softc_t, ipf_udptimeout),
382 0, NULL, ipf_settimeout },
383 { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
384 "udp_ack_timeout", 1, 0x7fffffff,
385 stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
386 0, NULL, ipf_settimeout },
387 { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
388 "icmp_timeout", 1, 0x7fffffff,
389 stsizeof(ipf_main_softc_t, ipf_icmptimeout),
390 0, NULL, ipf_settimeout },
391 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
392 "icmp_ack_timeout", 1, 0x7fffffff,
393 stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
394 0, NULL, ipf_settimeout },
395 { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
396 "ip_timeout", 1, 0x7fffffff,
397 stsizeof(ipf_main_softc_t, ipf_iptimeout),
398 0, NULL, ipf_settimeout },
399 #if defined(INSTANCES) && defined(_KERNEL)
400 { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
401 "intercept_loopback", 0, 1,
402 stsizeof(ipf_main_softc_t, ipf_get_loopback),
403 0, NULL, ipf_set_loopback },
404 #endif
405 { { 0 },
406 NULL, 0, 0,
407 0,
408 0, NULL, NULL }
409 };
410
411
412 /*
413 * The next section of code is a a collection of small routines that set
414 * fields in the fr_info_t structure passed based on properties of the
415 * current packet. There are different routines for the same protocol
416 * for each of IPv4 and IPv6. Adding a new protocol, for which there
417 * will "special" inspection for setup, is now more easily done by adding
418 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
419 * adding more code to a growing switch statement.
420 */
421 #ifdef USE_INET6
422 static INLINE int ipf_pr_ah6(fr_info_t *);
423 static INLINE void ipf_pr_esp6(fr_info_t *);
424 static INLINE void ipf_pr_gre6(fr_info_t *);
425 static INLINE void ipf_pr_udp6(fr_info_t *);
426 static INLINE void ipf_pr_tcp6(fr_info_t *);
427 static INLINE void ipf_pr_icmp6(fr_info_t *);
428 static INLINE void ipf_pr_ipv6hdr(fr_info_t *);
429 static INLINE void ipf_pr_short6(fr_info_t *, int);
430 static INLINE int ipf_pr_hopopts6(fr_info_t *);
431 static INLINE int ipf_pr_mobility6(fr_info_t *);
432 static INLINE int ipf_pr_routing6(fr_info_t *);
433 static INLINE int ipf_pr_dstopts6(fr_info_t *);
434 static INLINE int ipf_pr_fragment6(fr_info_t *);
435 static INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
436
437
438 /* ------------------------------------------------------------------------ */
439 /* Function: ipf_pr_short6 */
440 /* Returns: void */
441 /* Parameters: fin(I) - pointer to packet information */
442 /* xmin(I) - minimum header size */
443 /* */
444 /* IPv6 Only */
445 /* This is function enforces the 'is a packet too short to be legit' rule */
446 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */
447 /* for ipf_pr_short() for more details. */
448 /* ------------------------------------------------------------------------ */
449 static INLINE void
450 ipf_pr_short6(fr_info_t *fin, int xmin)
451 {
452
453 if (fin->fin_dlen < xmin)
454 fin->fin_flx |= FI_SHORT;
455 }
456
457
458 /* ------------------------------------------------------------------------ */
459 /* Function: ipf_pr_ipv6hdr */
460 /* Returns: void */
461 /* Parameters: fin(I) - pointer to packet information */
462 /* */
463 /* IPv6 Only */
464 /* Copy values from the IPv6 header into the fr_info_t struct and call the */
465 /* per-protocol analyzer if it exists. In validating the packet, a protocol*/
466 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
467 /* of that possibility arising. */
468 /* ------------------------------------------------------------------------ */
469 static INLINE void
470 ipf_pr_ipv6hdr(fr_info_t *fin)
471 {
472 ip6_t *ip6 = (ip6_t *)fin->fin_ip;
473 int p, go = 1, i, hdrcount;
474 fr_ip_t *fi = &fin->fin_fi;
475
476 fin->fin_off = 0;
477
478 fi->fi_tos = 0;
479 fi->fi_optmsk = 0;
480 fi->fi_secmsk = 0;
481 fi->fi_auth = 0;
482
483 p = ip6->ip6_nxt;
484 fin->fin_crc = p;
485 fi->fi_ttl = ip6->ip6_hlim;
486 fi->fi_src.in6 = ip6->ip6_src;
487 fin->fin_crc += fi->fi_src.i6[0];
488 fin->fin_crc += fi->fi_src.i6[1];
489 fin->fin_crc += fi->fi_src.i6[2];
490 fin->fin_crc += fi->fi_src.i6[3];
491 fi->fi_dst.in6 = ip6->ip6_dst;
492 fin->fin_crc += fi->fi_dst.i6[0];
493 fin->fin_crc += fi->fi_dst.i6[1];
494 fin->fin_crc += fi->fi_dst.i6[2];
495 fin->fin_crc += fi->fi_dst.i6[3];
496 fin->fin_id = 0;
497 if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
498 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
499
500 hdrcount = 0;
501 while (go && !(fin->fin_flx & FI_SHORT)) {
502 switch (p)
503 {
504 case IPPROTO_UDP :
505 ipf_pr_udp6(fin);
506 go = 0;
507 break;
508
509 case IPPROTO_TCP :
510 ipf_pr_tcp6(fin);
511 go = 0;
512 break;
513
514 case IPPROTO_ICMPV6 :
515 ipf_pr_icmp6(fin);
516 go = 0;
517 break;
518
519 case IPPROTO_GRE :
520 ipf_pr_gre6(fin);
521 go = 0;
522 break;
523
524 case IPPROTO_HOPOPTS :
525 p = ipf_pr_hopopts6(fin);
526 break;
527
528 case IPPROTO_MOBILITY :
529 p = ipf_pr_mobility6(fin);
530 break;
531
532 case IPPROTO_DSTOPTS :
533 p = ipf_pr_dstopts6(fin);
534 break;
535
536 case IPPROTO_ROUTING :
537 p = ipf_pr_routing6(fin);
538 break;
539
540 case IPPROTO_AH :
541 p = ipf_pr_ah6(fin);
542 break;
543
544 case IPPROTO_ESP :
545 ipf_pr_esp6(fin);
546 go = 0;
547 break;
548
549 case IPPROTO_IPV6 :
550 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
551 if (ip6exthdr[i].ol_val == p) {
552 fin->fin_flx |= ip6exthdr[i].ol_bit;
553 break;
554 }
555 go = 0;
556 break;
557
558 case IPPROTO_NONE :
559 go = 0;
560 break;
561
562 case IPPROTO_FRAGMENT :
563 p = ipf_pr_fragment6(fin);
564 /*
565 * Given that the only fragments we want to let through
566 * (where fin_off != 0) are those where the non-first
567 * fragments only have data, we can safely stop looking
568 * at headers if this is a non-leading fragment.
569 */
570 if (fin->fin_off != 0)
571 go = 0;
572 break;
573
574 default :
575 go = 0;
576 break;
577 }
578 hdrcount++;
579
580 /*
581 * It is important to note that at this point, for the
582 * extension headers (go != 0), the entire header may not have
583 * been pulled up when the code gets to this point. This is
584 * only done for "go != 0" because the other header handlers
585 * will all pullup their complete header. The other indicator
586 * of an incomplete packet is that this was just an extension
587 * header.
588 */
589 if ((go != 0) && (p != IPPROTO_NONE) &&
590 (ipf_pr_pullup(fin, 0) == -1)) {
591 p = IPPROTO_NONE;
592 break;
593 }
594 }
595
596 /*
597 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
598 * and destroy whatever packet was here. The caller of this function
599 * expects us to return if there is a problem with ipf_pullup.
600 */
601 if (fin->fin_m == NULL) {
602 ipf_main_softc_t *softc = fin->fin_main_soft;
603
604 LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
605 return;
606 }
607
608 fi->fi_p = p;
609
610 /*
611 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
612 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
613 */
614 if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
615 ipf_main_softc_t *softc = fin->fin_main_soft;
616
617 fin->fin_flx |= FI_BAD;
618 DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
619 LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
620 LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
621 }
622 }
623
624
625 /* ------------------------------------------------------------------------ */
626 /* Function: ipf_pr_ipv6exthdr */
627 /* Returns: struct ip6_ext * - pointer to the start of the next header */
628 /* or NULL if there is a prolblem. */
629 /* Parameters: fin(I) - pointer to packet information */
630 /* multiple(I) - flag indicating yes/no if multiple occurances */
631 /* of this extension header are allowed. */
632 /* proto(I) - protocol number for this extension header */
633 /* */
634 /* IPv6 Only */
635 /* This function embodies a number of common checks that all IPv6 extension */
636 /* headers must be subjected to. For example, making sure the packet is */
637 /* big enough for it to be in, checking if it is repeated and setting a */
638 /* flag to indicate its presence. */
639 /* ------------------------------------------------------------------------ */
640 static INLINE struct ip6_ext *
641 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
642 {
643 ipf_main_softc_t *softc = fin->fin_main_soft;
644 struct ip6_ext *hdr;
645 u_short shift;
646 int i;
647
648 fin->fin_flx |= FI_V6EXTHDR;
649
650 /* 8 is default length of extension hdr */
651 if ((fin->fin_dlen - 8) < 0) {
652 fin->fin_flx |= FI_SHORT;
653 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
654 return NULL;
655 }
656
657 if (ipf_pr_pullup(fin, 8) == -1) {
658 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
659 return NULL;
660 }
661
662 hdr = fin->fin_dp;
663 switch (proto)
664 {
665 case IPPROTO_FRAGMENT :
666 shift = 8;
667 break;
668 default :
669 shift = 8 + (hdr->ip6e_len << 3);
670 break;
671 }
672
673 if (shift > fin->fin_dlen) { /* Nasty extension header length? */
674 fin->fin_flx |= FI_BAD;
675 DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
676 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
677 return NULL;
678 }
679
680 fin->fin_dp = (char *)fin->fin_dp + shift;
681 fin->fin_dlen -= shift;
682
683 /*
684 * If we have seen a fragment header, do not set any flags to indicate
685 * the presence of this extension header as it has no impact on the
686 * end result until after it has been defragmented.
687 */
688 if (fin->fin_flx & FI_FRAG)
689 return hdr;
690
691 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
692 if (ip6exthdr[i].ol_val == proto) {
693 /*
694 * Most IPv6 extension headers are only allowed once.
695 */
696 if ((multiple == 0) &&
697 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
698 fin->fin_flx |= FI_BAD;
699 DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
700 } else
701 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
702 break;
703 }
704
705 return hdr;
706 }
707
708
709 /* ------------------------------------------------------------------------ */
710 /* Function: ipf_pr_hopopts6 */
711 /* Returns: int - value of the next header or IPPROTO_NONE if error */
712 /* Parameters: fin(I) - pointer to packet information */
713 /* */
714 /* IPv6 Only */
715 /* This is function checks pending hop by hop options extension header */
716 /* ------------------------------------------------------------------------ */
717 static INLINE int
718 ipf_pr_hopopts6(fr_info_t *fin)
719 {
720 struct ip6_ext *hdr;
721
722 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
723 if (hdr == NULL)
724 return IPPROTO_NONE;
725 return hdr->ip6e_nxt;
726 }
727
728
729 /* ------------------------------------------------------------------------ */
730 /* Function: ipf_pr_mobility6 */
731 /* Returns: int - value of the next header or IPPROTO_NONE if error */
732 /* Parameters: fin(I) - pointer to packet information */
733 /* */
734 /* IPv6 Only */
735 /* This is function checks the IPv6 mobility extension header */
736 /* ------------------------------------------------------------------------ */
737 static INLINE int
738 ipf_pr_mobility6(fr_info_t *fin)
739 {
740 struct ip6_ext *hdr;
741
742 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
743 if (hdr == NULL)
744 return IPPROTO_NONE;
745 return hdr->ip6e_nxt;
746 }
747
748
749 /* ------------------------------------------------------------------------ */
750 /* Function: ipf_pr_routing6 */
751 /* Returns: int - value of the next header or IPPROTO_NONE if error */
752 /* Parameters: fin(I) - pointer to packet information */
753 /* */
754 /* IPv6 Only */
755 /* This is function checks pending routing extension header */
756 /* ------------------------------------------------------------------------ */
757 static INLINE int
758 ipf_pr_routing6(fr_info_t *fin)
759 {
760 struct ip6_routing *hdr;
761
762 hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
763 if (hdr == NULL)
764 return IPPROTO_NONE;
765
766 switch (hdr->ip6r_type)
767 {
768 case 0 :
769 /*
770 * Nasty extension header length?
771 */
772 if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
773 (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
774 ipf_main_softc_t *softc = fin->fin_main_soft;
775
776 fin->fin_flx |= FI_BAD;
777 DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
778 LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
779 return IPPROTO_NONE;
780 }
781 break;
782
783 default :
784 break;
785 }
786
787 return hdr->ip6r_nxt;
788 }
789
790
791 /* ------------------------------------------------------------------------ */
792 /* Function: ipf_pr_fragment6 */
793 /* Returns: int - value of the next header or IPPROTO_NONE if error */
794 /* Parameters: fin(I) - pointer to packet information */
795 /* */
796 /* IPv6 Only */
797 /* Examine the IPv6 fragment header and extract fragment offset information.*/
798 /* */
799 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
800 /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */
801 /* packets with a fragment header can fit into. They are as follows: */
802 /* */
803 /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */
804 /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */
805 /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */
806 /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */
807 /* 5. [IPV6][0-n EH][FH][data] */
808 /* */
809 /* IPV6 = IPv6 header, FH = Fragment Header, */
810 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
811 /* */
812 /* Packets that match 1, 2, 3 will be dropped as the only reasonable */
813 /* scenario in which they happen is in extreme circumstances that are most */
814 /* likely to be an indication of an attack rather than normal traffic. */
815 /* A type 3 packet may be sent by an attacked after a type 4 packet. There */
816 /* are two rules that can be used to guard against type 3 packets: L4 */
817 /* headers must always be in a packet that has the offset field set to 0 */
818 /* and no packet is allowed to overlay that where offset = 0. */
819 /* ------------------------------------------------------------------------ */
820 static INLINE int
821 ipf_pr_fragment6(fr_info_t *fin)
822 {
823 ipf_main_softc_t *softc = fin->fin_main_soft;
824 struct ip6_frag *frag;
825
826 fin->fin_flx |= FI_FRAG;
827
828 frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
829 if (frag == NULL) {
830 LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
831 return IPPROTO_NONE;
832 }
833
834 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
835 /*
836 * Any fragment that isn't the last fragment must have its
837 * length as a multiple of 8.
838 */
839 if ((fin->fin_plen & 7) != 0) {
840 fin->fin_flx |= FI_BAD;
841 DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
842 }
843 }
844
845 fin->fin_fraghdr = frag;
846 fin->fin_id = frag->ip6f_ident;
847 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
848 if (fin->fin_off != 0)
849 fin->fin_flx |= FI_FRAGBODY;
850
851 /*
852 * Jumbograms aren't handled, so the max. length is 64k
853 */
854 if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
855 fin->fin_flx |= FI_BAD;
856 DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
857 }
858
859 /*
860 * We don't know where the transport layer header (or whatever is next
861 * is), as it could be behind destination options (amongst others) so
862 * return the fragment header as the type of packet this is. Note that
863 * this effectively disables the fragment cache for > 1 protocol at a
864 * time.
865 */
866 return frag->ip6f_nxt;
867 }
868
869
870 /* ------------------------------------------------------------------------ */
871 /* Function: ipf_pr_dstopts6 */
872 /* Returns: int - value of the next header or IPPROTO_NONE if error */
873 /* Parameters: fin(I) - pointer to packet information */
874 /* */
875 /* IPv6 Only */
876 /* This is function checks pending destination options extension header */
877 /* ------------------------------------------------------------------------ */
878 static INLINE int
879 ipf_pr_dstopts6(fr_info_t *fin)
880 {
881 ipf_main_softc_t *softc = fin->fin_main_soft;
882 struct ip6_ext *hdr;
883
884 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
885 if (hdr == NULL) {
886 LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
887 return IPPROTO_NONE;
888 }
889 return hdr->ip6e_nxt;
890 }
891
892
893 /* ------------------------------------------------------------------------ */
894 /* Function: ipf_pr_icmp6 */
895 /* Returns: void */
896 /* Parameters: fin(I) - pointer to packet information */
897 /* */
898 /* IPv6 Only */
899 /* This routine is mainly concerned with determining the minimum valid size */
900 /* for an ICMPv6 packet. */
901 /* ------------------------------------------------------------------------ */
902 static INLINE void
903 ipf_pr_icmp6(fr_info_t *fin)
904 {
905 int minicmpsz = sizeof(struct icmp6_hdr);
906 struct icmp6_hdr *icmp6;
907
908 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
909 ipf_main_softc_t *softc = fin->fin_main_soft;
910
911 LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
912 return;
913 }
914
915 if (fin->fin_dlen > 1) {
916 ip6_t *ip6;
917
918 icmp6 = fin->fin_dp;
919
920 fin->fin_data[0] = *(u_short *)icmp6;
921
922 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
923 fin->fin_flx |= FI_ICMPQUERY;
924
925 switch (icmp6->icmp6_type)
926 {
927 case ICMP6_ECHO_REPLY :
928 case ICMP6_ECHO_REQUEST :
929 if (fin->fin_dlen >= 6)
930 fin->fin_data[1] = icmp6->icmp6_id;
931 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
932 break;
933
934 case ICMP6_DST_UNREACH :
935 case ICMP6_PACKET_TOO_BIG :
936 case ICMP6_TIME_EXCEEDED :
937 case ICMP6_PARAM_PROB :
938 fin->fin_flx |= FI_ICMPERR;
939 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
940 if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
941 break;
942
943 if (M_LEN(fin->fin_m) < fin->fin_plen) {
944 if (ipf_coalesce(fin) != 1)
945 return;
946 }
947
948 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
949 return;
950
951 /*
952 * If the destination of this packet doesn't match the
953 * source of the original packet then this packet is
954 * not correct.
955 */
956 icmp6 = fin->fin_dp;
957 ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
958 if (IP6_NEQ(&fin->fin_fi.fi_dst,
959 &ip6->ip6_src)) {
960 fin->fin_flx |= FI_BAD;
961 DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
962 }
963 break;
964 default :
965 break;
966 }
967 }
968
969 ipf_pr_short6(fin, minicmpsz);
970 if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
971 u_char p = fin->fin_p;
972
973 fin->fin_p = IPPROTO_ICMPV6;
974 ipf_checkv6sum(fin);
975 fin->fin_p = p;
976 }
977 }
978
979
980 /* ------------------------------------------------------------------------ */
981 /* Function: ipf_pr_udp6 */
982 /* Returns: void */
983 /* Parameters: fin(I) - pointer to packet information */
984 /* */
985 /* IPv6 Only */
986 /* Analyse the packet for IPv6/UDP properties. */
987 /* Is not expected to be called for fragmented packets. */
988 /* ------------------------------------------------------------------------ */
989 static INLINE void
990 ipf_pr_udp6(fr_info_t *fin)
991 {
992
993 if (ipf_pr_udpcommon(fin) == 0) {
994 u_char p = fin->fin_p;
995
996 fin->fin_p = IPPROTO_UDP;
997 ipf_checkv6sum(fin);
998 fin->fin_p = p;
999 }
1000 }
1001
1002
1003 /* ------------------------------------------------------------------------ */
1004 /* Function: ipf_pr_tcp6 */
1005 /* Returns: void */
1006 /* Parameters: fin(I) - pointer to packet information */
1007 /* */
1008 /* IPv6 Only */
1009 /* Analyse the packet for IPv6/TCP properties. */
1010 /* Is not expected to be called for fragmented packets. */
1011 /* ------------------------------------------------------------------------ */
1012 static INLINE void
1013 ipf_pr_tcp6(fr_info_t *fin)
1014 {
1015
1016 if (ipf_pr_tcpcommon(fin) == 0) {
1017 u_char p = fin->fin_p;
1018
1019 fin->fin_p = IPPROTO_TCP;
1020 ipf_checkv6sum(fin);
1021 fin->fin_p = p;
1022 }
1023 }
1024
1025
1026 /* ------------------------------------------------------------------------ */
1027 /* Function: ipf_pr_esp6 */
1028 /* Returns: void */
1029 /* Parameters: fin(I) - pointer to packet information */
1030 /* */
1031 /* IPv6 Only */
1032 /* Analyse the packet for ESP properties. */
1033 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1034 /* even though the newer ESP packets must also have a sequence number that */
1035 /* is 32bits as well, it is not possible(?) to determine the version from a */
1036 /* simple packet header. */
1037 /* ------------------------------------------------------------------------ */
1038 static INLINE void
1039 ipf_pr_esp6(fr_info_t *fin)
1040 {
1041
1042 if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1043 ipf_main_softc_t *softc = fin->fin_main_soft;
1044
1045 LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1046 return;
1047 }
1048 }
1049
1050
1051 /* ------------------------------------------------------------------------ */
1052 /* Function: ipf_pr_ah6 */
1053 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1054 /* Parameters: fin(I) - pointer to packet information */
1055 /* */
1056 /* IPv6 Only */
1057 /* Analyse the packet for AH properties. */
1058 /* The minimum length is taken to be the combination of all fields in the */
1059 /* header being present and no authentication data (null algorithm used.) */
1060 /* ------------------------------------------------------------------------ */
1061 static INLINE int
1062 ipf_pr_ah6(fr_info_t *fin)
1063 {
1064 authhdr_t *ah;
1065
1066 fin->fin_flx |= FI_AH;
1067
1068 ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1069 if (ah == NULL) {
1070 ipf_main_softc_t *softc = fin->fin_main_soft;
1071
1072 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1073 return IPPROTO_NONE;
1074 }
1075
1076 ipf_pr_short6(fin, sizeof(*ah));
1077
1078 /*
1079 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1080 * enough data to satisfy ah_next (the very first one.)
1081 */
1082 return ah->ah_next;
1083 }
1084
1085
1086 /* ------------------------------------------------------------------------ */
1087 /* Function: ipf_pr_gre6 */
1088 /* Returns: void */
1089 /* Parameters: fin(I) - pointer to packet information */
1090 /* */
1091 /* Analyse the packet for GRE properties. */
1092 /* ------------------------------------------------------------------------ */
1093 static INLINE void
1094 ipf_pr_gre6(fr_info_t *fin)
1095 {
1096 grehdr_t *gre;
1097
1098 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1099 ipf_main_softc_t *softc = fin->fin_main_soft;
1100
1101 LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1102 return;
1103 }
1104
1105 gre = fin->fin_dp;
1106 if (GRE_REV(gre->gr_flags) == 1)
1107 fin->fin_data[0] = gre->gr_call;
1108 }
1109 #endif /* USE_INET6 */
1110
1111
1112 /* ------------------------------------------------------------------------ */
1113 /* Function: ipf_pr_pullup */
1114 /* Returns: int - 0 == pullup succeeded, -1 == failure */
1115 /* Parameters: fin(I) - pointer to packet information */
1116 /* plen(I) - length (excluding L3 header) to pullup */
1117 /* */
1118 /* Short inline function to cut down on code duplication to perform a call */
1119 /* to ipf_pullup to ensure there is the required amount of data, */
1120 /* consecutively in the packet buffer. */
1121 /* */
1122 /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */
1123 /* points to the first byte after the complete layer 3 header, which will */
1124 /* include all of the known extension headers for IPv6 or options for IPv4. */
1125 /* */
1126 /* Since fr_pullup() expects the total length of bytes to be pulled up, it */
1127 /* is necessary to add those we can already assume to be pulled up (fin_dp */
1128 /* - fin_ip) to what is passed through. */
1129 /* ------------------------------------------------------------------------ */
1130 int
1131 ipf_pr_pullup(fr_info_t *fin, int plen)
1132 {
1133 ipf_main_softc_t *softc = fin->fin_main_soft;
1134
1135 if (fin->fin_m != NULL) {
1136 if (fin->fin_dp != NULL)
1137 plen += (char *)fin->fin_dp -
1138 ((char *)fin->fin_ip + fin->fin_hlen);
1139 plen += fin->fin_hlen;
1140 if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1141 #if defined(_KERNEL)
1142 if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1143 DT(ipf_pullup_fail);
1144 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1145 return -1;
1146 }
1147 LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1148 #else
1149 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1150 /*
1151 * Fake ipf_pullup failing
1152 */
1153 fin->fin_reason = FRB_PULLUP;
1154 *fin->fin_mp = NULL;
1155 fin->fin_m = NULL;
1156 fin->fin_ip = NULL;
1157 return -1;
1158 #endif
1159 }
1160 }
1161 return 0;
1162 }
1163
1164
1165 /* ------------------------------------------------------------------------ */
1166 /* Function: ipf_pr_short */
1167 /* Returns: void */
1168 /* Parameters: fin(I) - pointer to packet information */
1169 /* xmin(I) - minimum header size */
1170 /* */
1171 /* Check if a packet is "short" as defined by xmin. The rule we are */
1172 /* applying here is that the packet must not be fragmented within the layer */
1173 /* 4 header. That is, it must not be a fragment that has its offset set to */
1174 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */
1175 /* entire layer 4 header must be present (min). */
1176 /* ------------------------------------------------------------------------ */
1177 static INLINE void
1178 ipf_pr_short(fr_info_t *fin, int xmin)
1179 {
1180
1181 if (fin->fin_off == 0) {
1182 if (fin->fin_dlen < xmin)
1183 fin->fin_flx |= FI_SHORT;
1184 } else if (fin->fin_off < xmin) {
1185 fin->fin_flx |= FI_SHORT;
1186 }
1187 }
1188
1189
1190 /* ------------------------------------------------------------------------ */
1191 /* Function: ipf_pr_icmp */
1192 /* Returns: void */
1193 /* Parameters: fin(I) - pointer to packet information */
1194 /* */
1195 /* IPv4 Only */
1196 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */
1197 /* except extrememly bad packets, both type and code will be present. */
1198 /* The expected minimum size of an ICMP packet is very much dependent on */
1199 /* the type of it. */
1200 /* */
1201 /* XXX - other ICMP sanity checks? */
1202 /* ------------------------------------------------------------------------ */
1203 static INLINE void
1204 ipf_pr_icmp(fr_info_t *fin)
1205 {
1206 ipf_main_softc_t *softc = fin->fin_main_soft;
1207 int minicmpsz = sizeof(struct icmp);
1208 icmphdr_t *icmp;
1209 ip_t *oip;
1210
1211 ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1212
1213 if (fin->fin_off != 0) {
1214 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1215 return;
1216 }
1217
1218 if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1219 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1220 return;
1221 }
1222
1223 icmp = fin->fin_dp;
1224
1225 fin->fin_data[0] = *(u_short *)icmp;
1226 fin->fin_data[1] = icmp->icmp_id;
1227
1228 switch (icmp->icmp_type)
1229 {
1230 case ICMP_ECHOREPLY :
1231 case ICMP_ECHO :
1232 /* Router discovery messaes - RFC 1256 */
1233 case ICMP_ROUTERADVERT :
1234 case ICMP_ROUTERSOLICIT :
1235 fin->fin_flx |= FI_ICMPQUERY;
1236 minicmpsz = ICMP_MINLEN;
1237 break;
1238 /*
1239 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1240 * 3 * timestamp(3 * 4)
1241 */
1242 case ICMP_TSTAMP :
1243 case ICMP_TSTAMPREPLY :
1244 fin->fin_flx |= FI_ICMPQUERY;
1245 minicmpsz = 20;
1246 break;
1247 /*
1248 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1249 * mask(4)
1250 */
1251 case ICMP_IREQ :
1252 case ICMP_IREQREPLY :
1253 case ICMP_MASKREQ :
1254 case ICMP_MASKREPLY :
1255 fin->fin_flx |= FI_ICMPQUERY;
1256 minicmpsz = 12;
1257 break;
1258 /*
1259 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1260 */
1261 case ICMP_UNREACH :
1262 #ifdef icmp_nextmtu
1263 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1264 if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1265 fin->fin_flx |= FI_BAD;
1266 DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1267 }
1268 }
1269 #endif
1270 /* FALLTHROUGH */
1271 case ICMP_SOURCEQUENCH :
1272 case ICMP_REDIRECT :
1273 case ICMP_TIMXCEED :
1274 case ICMP_PARAMPROB :
1275 fin->fin_flx |= FI_ICMPERR;
1276 if (ipf_coalesce(fin) != 1) {
1277 LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1278 return;
1279 }
1280
1281 /*
1282 * ICMP error packets should not be generated for IP
1283 * packets that are a fragment that isn't the first
1284 * fragment.
1285 */
1286 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1287 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1288 fin->fin_flx |= FI_BAD;
1289 DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1290 }
1291
1292 /*
1293 * If the destination of this packet doesn't match the
1294 * source of the original packet then this packet is
1295 * not correct.
1296 */
1297 if (oip->ip_src.s_addr != fin->fin_daddr) {
1298 fin->fin_flx |= FI_BAD;
1299 DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1300 }
1301 break;
1302 default :
1303 break;
1304 }
1305
1306 ipf_pr_short(fin, minicmpsz);
1307
1308 ipf_checkv4sum(fin);
1309 }
1310
1311
1312 /* ------------------------------------------------------------------------ */
1313 /* Function: ipf_pr_tcpcommon */
1314 /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */
1315 /* Parameters: fin(I) - pointer to packet information */
1316 /* */
1317 /* TCP header sanity checking. Look for bad combinations of TCP flags, */
1318 /* and make some checks with how they interact with other fields. */
1319 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */
1320 /* valid and mark the packet as bad if not. */
1321 /* ------------------------------------------------------------------------ */
1322 static INLINE int
1323 ipf_pr_tcpcommon(fr_info_t *fin)
1324 {
1325 ipf_main_softc_t *softc = fin->fin_main_soft;
1326 int flags, tlen;
1327 tcphdr_t *tcp;
1328
1329 fin->fin_flx |= FI_TCPUDP;
1330 if (fin->fin_off != 0) {
1331 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1332 return 0;
1333 }
1334
1335 if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1336 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1337 return -1;
1338 }
1339
1340 tcp = fin->fin_dp;
1341 if (fin->fin_dlen > 3) {
1342 fin->fin_sport = ntohs(tcp->th_sport);
1343 fin->fin_dport = ntohs(tcp->th_dport);
1344 }
1345
1346 if ((fin->fin_flx & FI_SHORT) != 0) {
1347 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1348 return 1;
1349 }
1350
1351 /*
1352 * Use of the TCP data offset *must* result in a value that is at
1353 * least the same size as the TCP header.
1354 */
1355 tlen = TCP_OFF(tcp) << 2;
1356 if (tlen < sizeof(tcphdr_t)) {
1357 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1358 fin->fin_flx |= FI_BAD;
1359 DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1360 return 1;
1361 }
1362
1363 flags = tcp->th_flags;
1364 fin->fin_tcpf = tcp->th_flags;
1365
1366 /*
1367 * If the urgent flag is set, then the urgent pointer must
1368 * also be set and vice versa. Good TCP packets do not have
1369 * just one of these set.
1370 */
1371 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1372 fin->fin_flx |= FI_BAD;
1373 DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1374 #if 0
1375 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1376 /*
1377 * Ignore this case (#if 0) as it shows up in "real"
1378 * traffic with bogus values in the urgent pointer field.
1379 */
1380 fin->fin_flx |= FI_BAD;
1381 DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1382 #endif
1383 } else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1384 ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1385 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1386 fin->fin_flx |= FI_BAD;
1387 DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1388 #if 1
1389 } else if (((flags & TH_SYN) != 0) &&
1390 ((flags & (TH_URG|TH_PUSH)) != 0)) {
1391 /*
1392 * SYN with URG and PUSH set is not for normal TCP but it is
1393 * possible(?) with T/TCP...but who uses T/TCP?
1394 */
1395 fin->fin_flx |= FI_BAD;
1396 DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1397 #endif
1398 } else if (!(flags & TH_ACK)) {
1399 /*
1400 * If the ack bit isn't set, then either the SYN or
1401 * RST bit must be set. If the SYN bit is set, then
1402 * we expect the ACK field to be 0. If the ACK is
1403 * not set and if URG, PSH or FIN are set, consdier
1404 * that to indicate a bad TCP packet.
1405 */
1406 if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1407 /*
1408 * Cisco PIX sets the ACK field to a random value.
1409 * In light of this, do not set FI_BAD until a patch
1410 * is available from Cisco to ensure that
1411 * interoperability between existing systems is
1412 * achieved.
1413 */
1414 /*fin->fin_flx |= FI_BAD*/;
1415 /*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1416 } else if (!(flags & (TH_RST|TH_SYN))) {
1417 fin->fin_flx |= FI_BAD;
1418 DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1419 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1420 fin->fin_flx |= FI_BAD;
1421 DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1422 }
1423 }
1424 if (fin->fin_flx & FI_BAD) {
1425 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1426 return 1;
1427 }
1428
1429 /*
1430 * At this point, it's not exactly clear what is to be gained by
1431 * marking up which TCP options are and are not present. The one we
1432 * are most interested in is the TCP window scale. This is only in
1433 * a SYN packet [RFC1323] so we don't need this here...?
1434 * Now if we were to analyse the header for passive fingerprinting,
1435 * then that might add some weight to adding this...
1436 */
1437 if (tlen == sizeof(tcphdr_t)) {
1438 return 0;
1439 }
1440
1441 if (ipf_pr_pullup(fin, tlen) == -1) {
1442 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1443 return -1;
1444 }
1445
1446 #if 0
1447 tcp = fin->fin_dp;
1448 ip = fin->fin_ip;
1449 s = (u_char *)(tcp + 1);
1450 off = IP_HL(ip) << 2;
1451 # ifdef _KERNEL
1452 if (fin->fin_mp != NULL) {
1453 mb_t *m = *fin->fin_mp;
1454
1455 if (off + tlen > M_LEN(m))
1456 return;
1457 }
1458 # endif
1459 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1460 opt = *s;
1461 if (opt == '\0')
1462 break;
1463 else if (opt == TCPOPT_NOP)
1464 ol = 1;
1465 else {
1466 if (tlen < 2)
1467 break;
1468 ol = (int)*(s + 1);
1469 if (ol < 2 || ol > tlen)
1470 break;
1471 }
1472
1473 for (i = 9, mv = 4; mv >= 0; ) {
1474 op = ipopts + i;
1475 if (opt == (u_char)op->ol_val) {
1476 optmsk |= op->ol_bit;
1477 break;
1478 }
1479 }
1480 tlen -= ol;
1481 s += ol;
1482 }
1483 #endif /* 0 */
1484
1485 return 0;
1486 }
1487
1488
1489
1490 /* ------------------------------------------------------------------------ */
1491 /* Function: ipf_pr_udpcommon */
1492 /* Returns: int - 0 = header ok, 1 = bad packet */
1493 /* Parameters: fin(I) - pointer to packet information */
1494 /* */
1495 /* Extract the UDP source and destination ports, if present. If compiled */
1496 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */
1497 /* ------------------------------------------------------------------------ */
1498 static INLINE int
1499 ipf_pr_udpcommon(fr_info_t *fin)
1500 {
1501 udphdr_t *udp;
1502
1503 fin->fin_flx |= FI_TCPUDP;
1504
1505 if (!fin->fin_off && (fin->fin_dlen > 3)) {
1506 if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1507 ipf_main_softc_t *softc = fin->fin_main_soft;
1508
1509 fin->fin_flx |= FI_SHORT;
1510 LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1511 return 1;
1512 }
1513
1514 udp = fin->fin_dp;
1515
1516 fin->fin_sport = ntohs(udp->uh_sport);
1517 fin->fin_dport = ntohs(udp->uh_dport);
1518 }
1519
1520 return 0;
1521 }
1522
1523
1524 /* ------------------------------------------------------------------------ */
1525 /* Function: ipf_pr_tcp */
1526 /* Returns: void */
1527 /* Parameters: fin(I) - pointer to packet information */
1528 /* */
1529 /* IPv4 Only */
1530 /* Analyse the packet for IPv4/TCP properties. */
1531 /* ------------------------------------------------------------------------ */
1532 static INLINE void
1533 ipf_pr_tcp(fr_info_t *fin)
1534 {
1535
1536 ipf_pr_short(fin, sizeof(tcphdr_t));
1537
1538 if (ipf_pr_tcpcommon(fin) == 0)
1539 ipf_checkv4sum(fin);
1540 }
1541
1542
1543 /* ------------------------------------------------------------------------ */
1544 /* Function: ipf_pr_udp */
1545 /* Returns: void */
1546 /* Parameters: fin(I) - pointer to packet information */
1547 /* */
1548 /* IPv4 Only */
1549 /* Analyse the packet for IPv4/UDP properties. */
1550 /* ------------------------------------------------------------------------ */
1551 static INLINE void
1552 ipf_pr_udp(fr_info_t *fin)
1553 {
1554
1555 ipf_pr_short(fin, sizeof(udphdr_t));
1556
1557 if (ipf_pr_udpcommon(fin) == 0)
1558 ipf_checkv4sum(fin);
1559 }
1560
1561
1562 /* ------------------------------------------------------------------------ */
1563 /* Function: ipf_pr_esp */
1564 /* Returns: void */
1565 /* Parameters: fin(I) - pointer to packet information */
1566 /* */
1567 /* Analyse the packet for ESP properties. */
1568 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1569 /* even though the newer ESP packets must also have a sequence number that */
1570 /* is 32bits as well, it is not possible(?) to determine the version from a */
1571 /* simple packet header. */
1572 /* ------------------------------------------------------------------------ */
1573 static INLINE void
1574 ipf_pr_esp(fr_info_t *fin)
1575 {
1576
1577 if (fin->fin_off == 0) {
1578 ipf_pr_short(fin, 8);
1579 if (ipf_pr_pullup(fin, 8) == -1) {
1580 ipf_main_softc_t *softc = fin->fin_main_soft;
1581
1582 LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1583 }
1584 }
1585 }
1586
1587
1588 /* ------------------------------------------------------------------------ */
1589 /* Function: ipf_pr_ah */
1590 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1591 /* Parameters: fin(I) - pointer to packet information */
1592 /* */
1593 /* Analyse the packet for AH properties. */
1594 /* The minimum length is taken to be the combination of all fields in the */
1595 /* header being present and no authentication data (null algorithm used.) */
1596 /* ------------------------------------------------------------------------ */
1597 static INLINE int
1598 ipf_pr_ah(fr_info_t *fin)
1599 {
1600 ipf_main_softc_t *softc = fin->fin_main_soft;
1601 authhdr_t *ah;
1602 int len;
1603
1604 fin->fin_flx |= FI_AH;
1605 ipf_pr_short(fin, sizeof(*ah));
1606
1607 if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1608 LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1609 return IPPROTO_NONE;
1610 }
1611
1612 if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1613 DT(fr_v4_ah_pullup_1);
1614 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1615 return IPPROTO_NONE;
1616 }
1617
1618 ah = (authhdr_t *)fin->fin_dp;
1619
1620 len = (ah->ah_plen + 2) << 2;
1621 ipf_pr_short(fin, len);
1622 if (ipf_pr_pullup(fin, len) == -1) {
1623 DT(fr_v4_ah_pullup_2);
1624 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1625 return IPPROTO_NONE;
1626 }
1627
1628 /*
1629 * Adjust fin_dp and fin_dlen for skipping over the authentication
1630 * header.
1631 */
1632 fin->fin_dp = (char *)fin->fin_dp + len;
1633 fin->fin_dlen -= len;
1634 return ah->ah_next;
1635 }
1636
1637
1638 /* ------------------------------------------------------------------------ */
1639 /* Function: ipf_pr_gre */
1640 /* Returns: void */
1641 /* Parameters: fin(I) - pointer to packet information */
1642 /* */
1643 /* Analyse the packet for GRE properties. */
1644 /* ------------------------------------------------------------------------ */
1645 static INLINE void
1646 ipf_pr_gre(fr_info_t *fin)
1647 {
1648 ipf_main_softc_t *softc = fin->fin_main_soft;
1649 grehdr_t *gre;
1650
1651 ipf_pr_short(fin, sizeof(grehdr_t));
1652
1653 if (fin->fin_off != 0) {
1654 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1655 return;
1656 }
1657
1658 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1659 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1660 return;
1661 }
1662
1663 gre = fin->fin_dp;
1664 if (GRE_REV(gre->gr_flags) == 1)
1665 fin->fin_data[0] = gre->gr_call;
1666 }
1667
1668
1669 /* ------------------------------------------------------------------------ */
1670 /* Function: ipf_pr_ipv4hdr */
1671 /* Returns: void */
1672 /* Parameters: fin(I) - pointer to packet information */
1673 /* */
1674 /* IPv4 Only */
1675 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */
1676 /* Check all options present and flag their presence if any exist. */
1677 /* ------------------------------------------------------------------------ */
1678 static INLINE void
1679 ipf_pr_ipv4hdr(fr_info_t *fin)
1680 {
1681 u_short optmsk = 0, secmsk = 0, auth = 0;
1682 int hlen, ol, mv, p, i;
1683 const struct optlist *op;
1684 u_char *s, opt;
1685 u_short off;
1686 fr_ip_t *fi;
1687 ip_t *ip;
1688
1689 fi = &fin->fin_fi;
1690 hlen = fin->fin_hlen;
1691
1692 ip = fin->fin_ip;
1693 p = ip->ip_p;
1694 fi->fi_p = p;
1695 fin->fin_crc = p;
1696 fi->fi_tos = ip->ip_tos;
1697 fin->fin_id = ip->ip_id;
1698 off = ntohs(ip->ip_off);
1699
1700 /* Get both TTL and protocol */
1701 fi->fi_p = ip->ip_p;
1702 fi->fi_ttl = ip->ip_ttl;
1703
1704 /* Zero out bits not used in IPv6 address */
1705 fi->fi_src.i6[1] = 0;
1706 fi->fi_src.i6[2] = 0;
1707 fi->fi_src.i6[3] = 0;
1708 fi->fi_dst.i6[1] = 0;
1709 fi->fi_dst.i6[2] = 0;
1710 fi->fi_dst.i6[3] = 0;
1711
1712 fi->fi_saddr = ip->ip_src.s_addr;
1713 fin->fin_crc += fi->fi_saddr;
1714 fi->fi_daddr = ip->ip_dst.s_addr;
1715 fin->fin_crc += fi->fi_daddr;
1716 if (IN_CLASSD(fi->fi_daddr))
1717 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1718
1719 /*
1720 * set packet attribute flags based on the offset and
1721 * calculate the byte offset that it represents.
1722 */
1723 off &= IP_MF|IP_OFFMASK;
1724 if (off != 0) {
1725 fi->fi_flx |= FI_FRAG;
1726 off &= IP_OFFMASK;
1727 if (off != 0) {
1728 int morefrag = off & IP_MF;
1729
1730 if (off == 1 && p == IPPROTO_TCP) {
1731 fin->fin_flx |= FI_SHORT; /* RFC 3128 */
1732 DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin);
1733 }
1734
1735 fin->fin_flx |= FI_FRAGBODY;
1736 off <<= 3;
1737 if ((off + fin->fin_dlen > 65535) ||
1738 (fin->fin_dlen == 0) ||
1739 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1740 /*
1741 * The length of the packet, starting at its
1742 * offset cannot exceed 65535 (0xffff) as the
1743 * length of an IP packet is only 16 bits.
1744 *
1745 * Any fragment that isn't the last fragment
1746 * must have a length greater than 0 and it
1747 * must be an even multiple of 8.
1748 */
1749 fi->fi_flx |= FI_BAD;
1750 DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1751 }
1752 }
1753 }
1754 fin->fin_off = off;
1755
1756 /*
1757 * Call per-protocol setup and checking
1758 */
1759 if (p == IPPROTO_AH) {
1760 /*
1761 * Treat AH differently because we expect there to be another
1762 * layer 4 header after it.
1763 */
1764 p = ipf_pr_ah(fin);
1765 }
1766
1767 switch (p)
1768 {
1769 case IPPROTO_UDP :
1770 ipf_pr_udp(fin);
1771 break;
1772 case IPPROTO_TCP :
1773 ipf_pr_tcp(fin);
1774 break;
1775 case IPPROTO_ICMP :
1776 ipf_pr_icmp(fin);
1777 break;
1778 case IPPROTO_ESP :
1779 ipf_pr_esp(fin);
1780 break;
1781 case IPPROTO_GRE :
1782 ipf_pr_gre(fin);
1783 break;
1784 }
1785
1786 ip = fin->fin_ip;
1787 if (ip == NULL)
1788 return;
1789
1790 /*
1791 * If it is a standard IP header (no options), set the flag fields
1792 * which relate to options to 0.
1793 */
1794 if (hlen == sizeof(*ip)) {
1795 fi->fi_optmsk = 0;
1796 fi->fi_secmsk = 0;
1797 fi->fi_auth = 0;
1798 return;
1799 }
1800
1801 /*
1802 * So the IP header has some IP options attached. Walk the entire
1803 * list of options present with this packet and set flags to indicate
1804 * which ones are here and which ones are not. For the somewhat out
1805 * of date and obscure security classification options, set a flag to
1806 * represent which classification is present.
1807 */
1808 fi->fi_flx |= FI_OPTIONS;
1809
1810 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1811 opt = *s;
1812 if (opt == '\0')
1813 break;
1814 else if (opt == IPOPT_NOP)
1815 ol = 1;
1816 else {
1817 if (hlen < 2)
1818 break;
1819 ol = (int)*(s + 1);
1820 if (ol < 2 || ol > hlen)
1821 break;
1822 }
1823 for (i = 9, mv = 4; mv >= 0; ) {
1824 op = ipopts + i;
1825
1826 if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1827 u_32_t doi;
1828
1829 switch (opt)
1830 {
1831 case IPOPT_SECURITY :
1832 if (optmsk & op->ol_bit) {
1833 fin->fin_flx |= FI_BAD;
1834 DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1835 } else {
1836 doi = ipf_checkripso(s);
1837 secmsk = doi >> 16;
1838 auth = doi & 0xffff;
1839 }
1840 break;
1841
1842 case IPOPT_CIPSO :
1843
1844 if (optmsk & op->ol_bit) {
1845 fin->fin_flx |= FI_BAD;
1846 DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1847 } else {
1848 doi = ipf_checkcipso(fin,
1849 s, ol);
1850 secmsk = doi >> 16;
1851 auth = doi & 0xffff;
1852 }
1853 break;
1854 }
1855 optmsk |= op->ol_bit;
1856 }
1857
1858 if (opt < op->ol_val)
1859 i -= mv;
1860 else
1861 i += mv;
1862 mv--;
1863 }
1864 hlen -= ol;
1865 s += ol;
1866 }
1867
1868 /*
1869 *
1870 */
1871 if (auth && !(auth & 0x0100))
1872 auth &= 0xff00;
1873 fi->fi_optmsk = optmsk;
1874 fi->fi_secmsk = secmsk;
1875 fi->fi_auth = auth;
1876 }
1877
1878
1879 /* ------------------------------------------------------------------------ */
1880 /* Function: ipf_checkripso */
1881 /* Returns: void */
1882 /* Parameters: s(I) - pointer to start of RIPSO option */
1883 /* */
1884 /* ------------------------------------------------------------------------ */
1885 static u_32_t
1886 ipf_checkripso(u_char *s)
1887 {
1888 const struct optlist *sp;
1889 u_short secmsk = 0, auth = 0;
1890 u_char sec;
1891 int j, m;
1892
1893 sec = *(s + 2); /* classification */
1894 for (j = 3, m = 2; m >= 0; ) {
1895 sp = secopt + j;
1896 if (sec == sp->ol_val) {
1897 secmsk |= sp->ol_bit;
1898 auth = *(s + 3);
1899 auth *= 256;
1900 auth += *(s + 4);
1901 break;
1902 }
1903 if (sec < sp->ol_val)
1904 j -= m;
1905 else
1906 j += m;
1907 m--;
1908 }
1909
1910 return (secmsk << 16) | auth;
1911 }
1912
1913
1914 /* ------------------------------------------------------------------------ */
1915 /* Function: ipf_checkcipso */
1916 /* Returns: u_32_t - 0 = failure, else the doi from the header */
1917 /* Parameters: fin(IO) - pointer to packet information */
1918 /* s(I) - pointer to start of CIPSO option */
1919 /* ol(I) - length of CIPSO option field */
1920 /* */
1921 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1922 /* header and returns that whilst also storing the highest sensitivity */
1923 /* value found in the fr_info_t structure. */
1924 /* */
1925 /* No attempt is made to extract the category bitmaps as these are defined */
1926 /* by the user (rather than the protocol) and can be rather numerous on the */
1927 /* end nodes. */
1928 /* ------------------------------------------------------------------------ */
1929 static u_32_t
1930 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1931 {
1932 ipf_main_softc_t *softc = fin->fin_main_soft;
1933 fr_ip_t *fi;
1934 u_32_t doi;
1935 u_char *t, tag, tlen, sensitivity;
1936 int len;
1937
1938 if (ol < 6 || ol > 40) {
1939 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1940 fin->fin_flx |= FI_BAD;
1941 DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1942 return 0;
1943 }
1944
1945 fi = &fin->fin_fi;
1946 fi->fi_sensitivity = 0;
1947 /*
1948 * The DOI field MUST be there.
1949 */
1950 bcopy(s + 2, &doi, sizeof(doi));
1951
1952 t = (u_char *)s + 6;
1953 for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1954 tag = *t;
1955 tlen = *(t + 1);
1956 if (tlen > len || tlen < 4 || tlen > 34) {
1957 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1958 fin->fin_flx |= FI_BAD;
1959 DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1960 return 0;
1961 }
1962
1963 sensitivity = 0;
1964 /*
1965 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1966 * draft (16 July 1992) that has expired.
1967 */
1968 if (tag == 0) {
1969 fin->fin_flx |= FI_BAD;
1970 DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1971 continue;
1972 } else if (tag == 1) {
1973 if (*(t + 2) != 0) {
1974 fin->fin_flx |= FI_BAD;
1975 DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1976 continue;
1977 }
1978 sensitivity = *(t + 3);
1979 /* Category bitmap for categories 0-239 */
1980
1981 } else if (tag == 4) {
1982 if (*(t + 2) != 0) {
1983 fin->fin_flx |= FI_BAD;
1984 DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1985 continue;
1986 }
1987 sensitivity = *(t + 3);
1988 /* Enumerated categories, 16bits each, upto 15 */
1989
1990 } else if (tag == 5) {
1991 if (*(t + 2) != 0) {
1992 fin->fin_flx |= FI_BAD;
1993 DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
1994 continue;
1995 }
1996 sensitivity = *(t + 3);
1997 /* Range of categories (2*16bits), up to 7 pairs */
1998
1999 } else if (tag > 127) {
2000 /* Custom defined DOI */
2001 ;
2002 } else {
2003 DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
2004 fin->fin_flx |= FI_BAD;
2005 continue;
2006 }
2007
2008 if (sensitivity > fi->fi_sensitivity)
2009 fi->fi_sensitivity = sensitivity;
2010 }
2011
2012 return doi;
2013 }
2014
2015
2016 /* ------------------------------------------------------------------------ */
2017 /* Function: ipf_makefrip */
2018 /* Returns: int - 0 == packet ok, -1 == packet freed */
2019 /* Parameters: hlen(I) - length of IP packet header */
2020 /* ip(I) - pointer to the IP header */
2021 /* fin(IO) - pointer to packet information */
2022 /* */
2023 /* Compact the IP header into a structure which contains just the info. */
2024 /* which is useful for comparing IP headers with and store this information */
2025 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */
2026 /* this function will be called with either an IPv4 or IPv6 packet. */
2027 /* ------------------------------------------------------------------------ */
2028 int
2029 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
2030 {
2031 ipf_main_softc_t *softc = fin->fin_main_soft;
2032 int v;
2033
2034 fin->fin_depth = 0;
2035 fin->fin_hlen = (u_short)hlen;
2036 fin->fin_ip = ip;
2037 fin->fin_rule = 0xffffffff;
2038 fin->fin_group[0] = -1;
2039 fin->fin_group[1] = '\0';
2040 fin->fin_dp = (char *)ip + hlen;
2041
2042 v = fin->fin_v;
2043 if (v == 4) {
2044 fin->fin_plen = ntohs(ip->ip_len);
2045 fin->fin_dlen = fin->fin_plen - hlen;
2046 ipf_pr_ipv4hdr(fin);
2047 #ifdef USE_INET6
2048 } else if (v == 6) {
2049 fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2050 fin->fin_dlen = fin->fin_plen;
2051 fin->fin_plen += hlen;
2052
2053 ipf_pr_ipv6hdr(fin);
2054 #endif
2055 }
2056 if (fin->fin_ip == NULL) {
2057 LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2058 return -1;
2059 }
2060 return 0;
2061 }
2062
2063
2064 /* ------------------------------------------------------------------------ */
2065 /* Function: ipf_portcheck */
2066 /* Returns: int - 1 == port matched, 0 == port match failed */
2067 /* Parameters: frp(I) - pointer to port check `expression' */
2068 /* pop(I) - port number to evaluate */
2069 /* */
2070 /* Perform a comparison of a port number against some other(s), using a */
2071 /* structure with compare information stored in it. */
2072 /* ------------------------------------------------------------------------ */
2073 static INLINE int
2074 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2075 {
2076 int err = 1;
2077 u_32_t po;
2078
2079 po = frp->frp_port;
2080
2081 /*
2082 * Do opposite test to that required and continue if that succeeds.
2083 */
2084 switch (frp->frp_cmp)
2085 {
2086 case FR_EQUAL :
2087 if (pop != po) /* EQUAL */
2088 err = 0;
2089 break;
2090 case FR_NEQUAL :
2091 if (pop == po) /* NOTEQUAL */
2092 err = 0;
2093 break;
2094 case FR_LESST :
2095 if (pop >= po) /* LESSTHAN */
2096 err = 0;
2097 break;
2098 case FR_GREATERT :
2099 if (pop <= po) /* GREATERTHAN */
2100 err = 0;
2101 break;
2102 case FR_LESSTE :
2103 if (pop > po) /* LT or EQ */
2104 err = 0;
2105 break;
2106 case FR_GREATERTE :
2107 if (pop < po) /* GT or EQ */
2108 err = 0;
2109 break;
2110 case FR_OUTRANGE :
2111 if (pop >= po && pop <= frp->frp_top) /* Out of range */
2112 err = 0;
2113 break;
2114 case FR_INRANGE :
2115 if (pop <= po || pop >= frp->frp_top) /* In range */
2116 err = 0;
2117 break;
2118 case FR_INCRANGE :
2119 if (pop < po || pop > frp->frp_top) /* Inclusive range */
2120 err = 0;
2121 break;
2122 default :
2123 break;
2124 }
2125 return err;
2126 }
2127
2128
2129 /* ------------------------------------------------------------------------ */
2130 /* Function: ipf_tcpudpchk */
2131 /* Returns: int - 1 == protocol matched, 0 == check failed */
2132 /* Parameters: fda(I) - pointer to packet information */
2133 /* ft(I) - pointer to structure with comparison data */
2134 /* */
2135 /* Compares the current pcket (assuming it is TCP/UDP) information with a */
2136 /* structure containing information that we want to match against. */
2137 /* ------------------------------------------------------------------------ */
2138 int
2139 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2140 {
2141 int err = 1;
2142
2143 /*
2144 * Both ports should *always* be in the first fragment.
2145 * So far, I cannot find any cases where they can not be.
2146 *
2147 * compare destination ports
2148 */
2149 if (ft->ftu_dcmp)
2150 err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2151
2152 /*
2153 * compare source ports
2154 */
2155 if (err && ft->ftu_scmp)
2156 err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2157
2158 /*
2159 * If we don't have all the TCP/UDP header, then how can we
2160 * expect to do any sort of match on it ? If we were looking for
2161 * TCP flags, then NO match. If not, then match (which should
2162 * satisfy the "short" class too).
2163 */
2164 if (err && (fi->fi_p == IPPROTO_TCP)) {
2165 if (fi->fi_flx & FI_SHORT)
2166 return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2167 /*
2168 * Match the flags ? If not, abort this match.
2169 */
2170 if (ft->ftu_tcpfm &&
2171 ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2172 FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2173 ft->ftu_tcpfm, ft->ftu_tcpf));
2174 err = 0;
2175 }
2176 }
2177 return err;
2178 }
2179
2180
2181 /* ------------------------------------------------------------------------ */
2182 /* Function: ipf_check_ipf */
2183 /* Returns: int - 0 == match, else no match */
2184 /* Parameters: fin(I) - pointer to packet information */
2185 /* fr(I) - pointer to filter rule */
2186 /* portcmp(I) - flag indicating whether to attempt matching on */
2187 /* TCP/UDP port data. */
2188 /* */
2189 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */
2190 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2191 /* this function. */
2192 /* ------------------------------------------------------------------------ */
2193 static INLINE int
2194 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2195 {
2196 u_32_t *ld, *lm, *lip;
2197 fripf_t *fri;
2198 fr_ip_t *fi;
2199 int i;
2200
2201 fi = &fin->fin_fi;
2202 fri = fr->fr_ipf;
2203 lip = (u_32_t *)fi;
2204 lm = (u_32_t *)&fri->fri_mip;
2205 ld = (u_32_t *)&fri->fri_ip;
2206
2207 /*
2208 * first 32 bits to check coversion:
2209 * IP version, TOS, TTL, protocol
2210 */
2211 i = ((*lip & *lm) != *ld);
2212 FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2213 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2214 if (i)
2215 return 1;
2216
2217 /*
2218 * Next 32 bits is a constructed bitmask indicating which IP options
2219 * are present (if any) in this packet.
2220 */
2221 lip++, lm++, ld++;
2222 i = ((*lip & *lm) != *ld);
2223 FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2224 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2225 if (i != 0)
2226 return 1;
2227
2228 lip++, lm++, ld++;
2229 /*
2230 * Unrolled loops (4 each, for 32 bits) for address checks.
2231 */
2232 /*
2233 * Check the source address.
2234 */
2235 if (fr->fr_satype == FRI_LOOKUP) {
2236 i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2237 fi->fi_v, lip, fin->fin_plen);
2238 if (i == -1)
2239 return 1;
2240 lip += 3;
2241 lm += 3;
2242 ld += 3;
2243 } else {
2244 i = ((*lip & *lm) != *ld);
2245 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2246 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2247 if (fi->fi_v == 6) {
2248 lip++, lm++, ld++;
2249 i |= ((*lip & *lm) != *ld);
2250 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2251 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2252 lip++, lm++, ld++;
2253 i |= ((*lip & *lm) != *ld);
2254 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2255 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2256 lip++, lm++, ld++;
2257 i |= ((*lip & *lm) != *ld);
2258 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2259 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2260 } else {
2261 lip += 3;
2262 lm += 3;
2263 ld += 3;
2264 }
2265 }
2266 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2267 if (i != 0)
2268 return 1;
2269
2270 /*
2271 * Check the destination address.
2272 */
2273 lip++, lm++, ld++;
2274 if (fr->fr_datype == FRI_LOOKUP) {
2275 i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2276 fi->fi_v, lip, fin->fin_plen);
2277 if (i == -1)
2278 return 1;
2279 lip += 3;
2280 lm += 3;
2281 ld += 3;
2282 } else {
2283 i = ((*lip & *lm) != *ld);
2284 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2285 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2286 if (fi->fi_v == 6) {
2287 lip++, lm++, ld++;
2288 i |= ((*lip & *lm) != *ld);
2289 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2290 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2291 lip++, lm++, ld++;
2292 i |= ((*lip & *lm) != *ld);
2293 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2294 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2295 lip++, lm++, ld++;
2296 i |= ((*lip & *lm) != *ld);
2297 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2298 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2299 } else {
2300 lip += 3;
2301 lm += 3;
2302 ld += 3;
2303 }
2304 }
2305 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2306 if (i != 0)
2307 return 1;
2308 /*
2309 * IP addresses matched. The next 32bits contains:
2310 * mast of old IP header security & authentication bits.
2311 */
2312 lip++, lm++, ld++;
2313 i = (*ld - (*lip & *lm));
2314 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2315
2316 /*
2317 * Next we have 32 bits of packet flags.
2318 */
2319 lip++, lm++, ld++;
2320 i |= (*ld - (*lip & *lm));
2321 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2322
2323 if (i == 0) {
2324 /*
2325 * If a fragment, then only the first has what we're
2326 * looking for here...
2327 */
2328 if (portcmp) {
2329 if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2330 i = 1;
2331 } else {
2332 if (fr->fr_dcmp || fr->fr_scmp ||
2333 fr->fr_tcpf || fr->fr_tcpfm)
2334 i = 1;
2335 if (fr->fr_icmpm || fr->fr_icmp) {
2336 if (((fi->fi_p != IPPROTO_ICMP) &&
2337 (fi->fi_p != IPPROTO_ICMPV6)) ||
2338 fin->fin_off || (fin->fin_dlen < 2))
2339 i = 1;
2340 else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2341 fr->fr_icmp) {
2342 FR_DEBUG(("i. %#x & %#x != %#x\n",
2343 fin->fin_data[0],
2344 fr->fr_icmpm, fr->fr_icmp));
2345 i = 1;
2346 }
2347 }
2348 }
2349 }
2350 return i;
2351 }
2352
2353
2354 /* ------------------------------------------------------------------------ */
2355 /* Function: ipf_scanlist */
2356 /* Returns: int - result flags of scanning filter list */
2357 /* Parameters: fin(I) - pointer to packet information */
2358 /* pass(I) - default result to return for filtering */
2359 /* */
2360 /* Check the input/output list of rules for a match to the current packet. */
2361 /* If a match is found, the value of fr_flags from the rule becomes the */
2362 /* return value and fin->fin_fr points to the matched rule. */
2363 /* */
2364 /* This function may be called recusively upto 16 times (limit inbuilt.) */
2365 /* When unwinding, it should finish up with fin_depth as 0. */
2366 /* */
2367 /* Could be per interface, but this gets real nasty when you don't have, */
2368 /* or can't easily change, the kernel source code to . */
2369 /* ------------------------------------------------------------------------ */
2370 int
2371 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2372 {
2373 ipf_main_softc_t *softc = fin->fin_main_soft;
2374 int rulen, portcmp, off, skip;
2375 struct frentry *fr, *fnext;
2376 u_32_t passt, passo;
2377
2378 /*
2379 * Do not allow nesting deeper than 16 levels.
2380 */
2381 if (fin->fin_depth >= 16)
2382 return pass;
2383
2384 fr = fin->fin_fr;
2385
2386 /*
2387 * If there are no rules in this list, return now.
2388 */
2389 if (fr == NULL)
2390 return pass;
2391
2392 skip = 0;
2393 portcmp = 0;
2394 fin->fin_depth++;
2395 fin->fin_fr = NULL;
2396 off = fin->fin_off;
2397
2398 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2399 portcmp = 1;
2400
2401 for (rulen = 0; fr; fr = fnext, rulen++) {
2402 fnext = fr->fr_next;
2403 if (skip != 0) {
2404 FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2405 skip--;
2406 continue;
2407 }
2408
2409 /*
2410 * In all checks below, a null (zero) value in the
2411 * filter struture is taken to mean a wildcard.
2412 *
2413 * check that we are working for the right interface
2414 */
2415 #ifdef _KERNEL
2416 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2417 continue;
2418 #else
2419 if (opts & (OPT_VERBOSE|OPT_DEBUG))
2420 printf("\n");
2421 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2422 FR_ISPASS(pass) ? 'p' :
2423 FR_ISACCOUNT(pass) ? 'A' :
2424 FR_ISAUTH(pass) ? 'a' :
2425 (pass & FR_NOMATCH) ? 'n' :'b'));
2426 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2427 continue;
2428 FR_VERBOSE((":i"));
2429 #endif
2430
2431 switch (fr->fr_type)
2432 {
2433 case FR_T_IPF :
2434 case FR_T_IPF_BUILTIN :
2435 if (ipf_check_ipf(fin, fr, portcmp))
2436 continue;
2437 break;
2438 #if defined(IPFILTER_BPF)
2439 case FR_T_BPFOPC :
2440 case FR_T_BPFOPC_BUILTIN :
2441 {
2442 u_char *mc;
2443 int wlen;
2444
2445 if (*fin->fin_mp == NULL)
2446 continue;
2447 if (fin->fin_family != fr->fr_family)
2448 continue;
2449 mc = (u_char *)fin->fin_m;
2450 wlen = fin->fin_dlen + fin->fin_hlen;
2451 if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2452 continue;
2453 break;
2454 }
2455 #endif
2456 case FR_T_CALLFUNC_BUILTIN :
2457 {
2458 frentry_t *f;
2459
2460 f = (*fr->fr_func)(fin, &pass);
2461 if (f != NULL)
2462 fr = f;
2463 else
2464 continue;
2465 break;
2466 }
2467
2468 case FR_T_IPFEXPR :
2469 case FR_T_IPFEXPR_BUILTIN :
2470 if (fin->fin_family != fr->fr_family)
2471 continue;
2472 if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2473 continue;
2474 break;
2475
2476 default :
2477 break;
2478 }
2479
2480 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2481 if (fin->fin_nattag == NULL)
2482 continue;
2483 if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2484 continue;
2485 }
2486 FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2487
2488 passt = fr->fr_flags;
2489
2490 /*
2491 * If the rule is a "call now" rule, then call the function
2492 * in the rule, if it exists and use the results from that.
2493 * If the function pointer is bad, just make like we ignore
2494 * it, except for increasing the hit counter.
2495 */
2496 if ((passt & FR_CALLNOW) != 0) {
2497 frentry_t *frs;
2498
2499 ATOMIC_INC64(fr->fr_hits);
2500 if ((fr->fr_func == NULL) ||
2501 (fr->fr_func == (ipfunc_t)-1))
2502 continue;
2503
2504 frs = fin->fin_fr;
2505 fin->fin_fr = fr;
2506 fr = (*fr->fr_func)(fin, &passt);
2507 if (fr == NULL) {
2508 fin->fin_fr = frs;
2509 continue;
2510 }
2511 passt = fr->fr_flags;
2512 }
2513 fin->fin_fr = fr;
2514
2515 #ifdef IPFILTER_LOG
2516 /*
2517 * Just log this packet...
2518 */
2519 if ((passt & FR_LOGMASK) == FR_LOG) {
2520 if (ipf_log_pkt(fin, passt) == -1) {
2521 if (passt & FR_LOGORBLOCK) {
2522 DT(frb_logfail);
2523 passt &= ~FR_CMDMASK;
2524 passt |= FR_BLOCK|FR_QUICK;
2525 fin->fin_reason = FRB_LOGFAIL;
2526 }
2527 }
2528 }
2529 #endif /* IPFILTER_LOG */
2530
2531 MUTEX_ENTER(&fr->fr_lock);
2532 fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2533 fr->fr_hits++;
2534 MUTEX_EXIT(&fr->fr_lock);
2535 fin->fin_rule = rulen;
2536
2537 passo = pass;
2538 if (FR_ISSKIP(passt)) {
2539 skip = fr->fr_arg;
2540 continue;
2541 } else if (((passt & FR_LOGMASK) != FR_LOG) &&
2542 ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2543 pass = passt;
2544 }
2545
2546 if (passt & (FR_RETICMP|FR_FAKEICMP))
2547 fin->fin_icode = fr->fr_icode;
2548
2549 if (fr->fr_group != -1) {
2550 (void) strncpy(fin->fin_group,
2551 FR_NAME(fr, fr_group),
2552 strlen(FR_NAME(fr, fr_group)));
2553 } else {
2554 fin->fin_group[0] = '\0';
2555 }
2556
2557 FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2558
2559 if (fr->fr_grphead != NULL) {
2560 fin->fin_fr = fr->fr_grphead->fg_start;
2561 FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2562
2563 if (FR_ISDECAPS(passt))
2564 passt = ipf_decaps(fin, pass, fr->fr_icode);
2565 else
2566 passt = ipf_scanlist(fin, pass);
2567
2568 if (fin->fin_fr == NULL) {
2569 fin->fin_rule = rulen;
2570 if (fr->fr_group != -1)
2571 (void) strncpy(fin->fin_group,
2572 fr->fr_names +
2573 fr->fr_group,
2574 strlen(fr->fr_names +
2575 fr->fr_group));
2576 fin->fin_fr = fr;
2577 passt = pass;
2578 }
2579 pass = passt;
2580 }
2581
2582 if (pass & FR_QUICK) {
2583 /*
2584 * Finally, if we've asked to track state for this
2585 * packet, set it up. Add state for "quick" rules
2586 * here so that if the action fails we can consider
2587 * the rule to "not match" and keep on processing
2588 * filter rules.
2589 */
2590 if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2591 !(fin->fin_flx & FI_STATE)) {
2592 int out = fin->fin_out;
2593
2594 fin->fin_fr = fr;
2595 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2596 LBUMPD(ipf_stats[out], fr_ads);
2597 } else {
2598 LBUMPD(ipf_stats[out], fr_bads);
2599 pass = passo;
2600 continue;
2601 }
2602 }
2603 break;
2604 }
2605 }
2606 fin->fin_depth--;
2607 return pass;
2608 }
2609
2610
2611 /* ------------------------------------------------------------------------ */
2612 /* Function: ipf_acctpkt */
2613 /* Returns: frentry_t* - always returns NULL */
2614 /* Parameters: fin(I) - pointer to packet information */
2615 /* passp(IO) - pointer to current/new filter decision (unused) */
2616 /* */
2617 /* Checks a packet against accounting rules, if there are any for the given */
2618 /* IP protocol version. */
2619 /* */
2620 /* N.B.: this function returns NULL to match the prototype used by other */
2621 /* functions called from the IPFilter "mainline" in ipf_check(). */
2622 /* ------------------------------------------------------------------------ */
2623 frentry_t *
2624 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2625 {
2626 ipf_main_softc_t *softc = fin->fin_main_soft;
2627 char group[FR_GROUPLEN];
2628 frentry_t *fr, *frsave;
2629 u_32_t pass, rulen;
2630
2631 passp = passp;
2632 fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2633
2634 if (fr != NULL) {
2635 frsave = fin->fin_fr;
2636 bcopy(fin->fin_group, group, FR_GROUPLEN);
2637 rulen = fin->fin_rule;
2638 fin->fin_fr = fr;
2639 pass = ipf_scanlist(fin, FR_NOMATCH);
2640 if (FR_ISACCOUNT(pass)) {
2641 LBUMPD(ipf_stats[0], fr_acct);
2642 }
2643 fin->fin_fr = frsave;
2644 bcopy(group, fin->fin_group, FR_GROUPLEN);
2645 fin->fin_rule = rulen;
2646 }
2647 return NULL;
2648 }
2649
2650
2651 /* ------------------------------------------------------------------------ */
2652 /* Function: ipf_firewall */
2653 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */
2654 /* were found, returns NULL. */
2655 /* Parameters: fin(I) - pointer to packet information */
2656 /* passp(IO) - pointer to current/new filter decision (unused) */
2657 /* */
2658 /* Applies an appropriate set of firewall rules to the packet, to see if */
2659 /* there are any matches. The first check is to see if a match can be seen */
2660 /* in the cache. If not, then search an appropriate list of rules. Once a */
2661 /* matching rule is found, take any appropriate actions as defined by the */
2662 /* rule - except logging. */
2663 /* ------------------------------------------------------------------------ */
2664 static frentry_t *
2665 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2666 {
2667 ipf_main_softc_t *softc = fin->fin_main_soft;
2668 frentry_t *fr;
2669 u_32_t pass;
2670 int out;
2671
2672 out = fin->fin_out;
2673 pass = *passp;
2674
2675 /*
2676 * This rule cache will only affect packets that are not being
2677 * statefully filtered.
2678 */
2679 fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2680 if (fin->fin_fr != NULL)
2681 pass = ipf_scanlist(fin, softc->ipf_pass);
2682
2683 if ((pass & FR_NOMATCH)) {
2684 LBUMPD(ipf_stats[out], fr_nom);
2685 }
2686 fr = fin->fin_fr;
2687
2688 /*
2689 * Apply packets per second rate-limiting to a rule as required.
2690 */
2691 if ((fr != NULL) && (fr->fr_pps != 0) &&
2692 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2693 DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2694 pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2695 pass |= FR_BLOCK;
2696 LBUMPD(ipf_stats[out], fr_ppshit);
2697 fin->fin_reason = FRB_PPSRATE;
2698 }
2699
2700 /*
2701 * If we fail to add a packet to the authorization queue, then we
2702 * drop the packet later. However, if it was added then pretend
2703 * we've dropped it already.
2704 */
2705 if (FR_ISAUTH(pass)) {
2706 if (ipf_auth_new(fin->fin_m, fin) != 0) {
2707 DT1(frb_authnew, fr_info_t *, fin);
2708 fin->fin_m = *fin->fin_mp = NULL;
2709 fin->fin_reason = FRB_AUTHNEW;
2710 fin->fin_error = 0;
2711 } else {
2712 IPFERROR(1);
2713 fin->fin_error = ENOSPC;
2714 }
2715 }
2716
2717 if ((fr != NULL) && (fr->fr_func != NULL) &&
2718 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2719 (void) (*fr->fr_func)(fin, &pass);
2720
2721 /*
2722 * If a rule is a pre-auth rule, check again in the list of rules
2723 * loaded for authenticated use. It does not particulary matter
2724 * if this search fails because a "preauth" result, from a rule,
2725 * is treated as "not a pass", hence the packet is blocked.
2726 */
2727 if (FR_ISPREAUTH(pass)) {
2728 pass = ipf_auth_pre_scanlist(softc, fin, pass);
2729 }
2730
2731 /*
2732 * If the rule has "keep frag" and the packet is actually a fragment,
2733 * then create a fragment state entry.
2734 */
2735 if (pass & FR_KEEPFRAG) {
2736 if (fin->fin_flx & FI_FRAG) {
2737 if (ipf_frag_new(softc, fin, pass) == -1) {
2738 LBUMP(ipf_stats[out].fr_bnfr);
2739 } else {
2740 LBUMP(ipf_stats[out].fr_nfr);
2741 }
2742 } else {
2743 LBUMP(ipf_stats[out].fr_cfr);
2744 }
2745 }
2746
2747 fr = fin->fin_fr;
2748 *passp = pass;
2749
2750 return fr;
2751 }
2752
2753
2754 /* ------------------------------------------------------------------------ */
2755 /* Function: ipf_check */
2756 /* Returns: int - 0 == packet allowed through, */
2757 /* User space: */
2758 /* -1 == packet blocked */
2759 /* 1 == packet not matched */
2760 /* -2 == requires authentication */
2761 /* Kernel: */
2762 /* > 0 == filter error # for packet */
2763 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */
2764 /* hlen(I) - length of header */
2765 /* ifp(I) - pointer to interface this packet is on */
2766 /* out(I) - 0 == packet going in, 1 == packet going out */
2767 /* mp(IO) - pointer to caller's buffer pointer that holds this */
2768 /* IP packet. */
2769 /* Solaris & HP-UX ONLY : */
2770 /* qpi(I) - pointer to STREAMS queue information for this */
2771 /* interface & direction. */
2772 /* */
2773 /* ipf_check() is the master function for all IPFilter packet processing. */
2774 /* It orchestrates: Network Address Translation (NAT), checking for packet */
2775 /* authorisation (or pre-authorisation), presence of related state info., */
2776 /* generating log entries, IP packet accounting, routing of packets as */
2777 /* directed by firewall rules and of course whether or not to allow the */
2778 /* packet to be further processed by the kernel. */
2779 /* */
2780 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */
2781 /* freed. Packets passed may be returned with the pointer pointed to by */
2782 /* by "mp" changed to a new buffer. */
2783 /* ------------------------------------------------------------------------ */
2784 int
2785 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out,
2786 #if defined(_KERNEL) && defined(MENTAT)
2787 void *qif,
2788 #endif
2789 mb_t **mp)
2790 {
2791 /*
2792 * The above really sucks, but short of writing a diff
2793 */
2794 ipf_main_softc_t *softc = ctx;
2795 fr_info_t frinfo;
2796 fr_info_t *fin = &frinfo;
2797 u_32_t pass = softc->ipf_pass;
2798 frentry_t *fr = NULL;
2799 int v = IP_V(ip);
2800 mb_t *mc = NULL;
2801 mb_t *m;
2802 /*
2803 * The first part of ipf_check() deals with making sure that what goes
2804 * into the filtering engine makes some sense. Information about the
2805 * the packet is distilled, collected into a fr_info_t structure and
2806 * the an attempt to ensure the buffer the packet is in is big enough
2807 * to hold all the required packet headers.
2808 */
2809 #ifdef _KERNEL
2810 # ifdef MENTAT
2811 qpktinfo_t *qpi = qif;
2812
2813 # ifdef __sparc
2814 if ((u_int)ip & 0x3)
2815 return 2;
2816 # endif
2817 # else
2818 SPL_INT(s);
2819 # endif
2820
2821 if (softc->ipf_running <= 0) {
2822 return 0;
2823 }
2824
2825 bzero((char *)fin, sizeof(*fin));
2826
2827 # ifdef MENTAT
2828 if (qpi->qpi_flags & QF_BROADCAST)
2829 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2830 if (qpi->qpi_flags & QF_MULTICAST)
2831 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2832 m = qpi->qpi_m;
2833 fin->fin_qfm = m;
2834 fin->fin_qpi = qpi;
2835 # else /* MENTAT */
2836
2837 m = *mp;
2838
2839 # if defined(M_MCAST)
2840 if ((m->m_flags & M_MCAST) != 0)
2841 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2842 # endif
2843 # if defined(M_MLOOP)
2844 if ((m->m_flags & M_MLOOP) != 0)
2845 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2846 # endif
2847 # if defined(M_BCAST)
2848 if ((m->m_flags & M_BCAST) != 0)
2849 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2850 # endif
2851 # ifdef M_CANFASTFWD
2852 /*
2853 * XXX For now, IP Filter and fast-forwarding of cached flows
2854 * XXX are mutually exclusive. Eventually, IP Filter should
2855 * XXX get a "can-fast-forward" filter rule.
2856 */
2857 m->m_flags &= ~M_CANFASTFWD;
2858 # endif /* M_CANFASTFWD */
2859 # if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2860 (__FreeBSD_version < 501108))
2861 /*
2862 * disable delayed checksums.
2863 */
2864 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2865 in_undefer_cksum_tcpudp(m);
2866 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2867 }
2868 # endif /* CSUM_DELAY_DATA */
2869 # endif /* MENTAT */
2870 #else
2871 bzero((char *)fin, sizeof(*fin));
2872 m = *mp;
2873 # if defined(M_MCAST)
2874 if ((m->m_flags & M_MCAST) != 0)
2875 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2876 # endif
2877 # if defined(M_MLOOP)
2878 if ((m->m_flags & M_MLOOP) != 0)
2879 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2880 # endif
2881 # if defined(M_BCAST)
2882 if ((m->m_flags & M_BCAST) != 0)
2883 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2884 # endif
2885 #endif /* _KERNEL */
2886
2887 fin->fin_v = v;
2888 fin->fin_m = m;
2889 fin->fin_ip = ip;
2890 fin->fin_mp = mp;
2891 fin->fin_out = out;
2892 fin->fin_ifp = ifp;
2893 fin->fin_error = ENETUNREACH;
2894 fin->fin_hlen = (u_short)hlen;
2895 fin->fin_dp = (char *)ip + hlen;
2896 fin->fin_main_soft = softc;
2897
2898 fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2899
2900 SPL_NET(s);
2901
2902 #ifdef USE_INET6
2903 if (v == 6) {
2904 LBUMP(ipf_stats[out].fr_ipv6);
2905 /*
2906 * Jumbo grams are quite likely too big for internal buffer
2907 * structures to handle comfortably, for now, so just drop
2908 * them.
2909 */
2910 if (((ip6_t *)ip)->ip6_plen == 0) {
2911 DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2912 pass = FR_BLOCK|FR_NOMATCH;
2913 fin->fin_reason = FRB_JUMBO;
2914 goto finished;
2915 }
2916 fin->fin_family = AF_INET6;
2917 } else
2918 #endif
2919 {
2920 fin->fin_family = AF_INET;
2921 }
2922
2923 if (ipf_makefrip(hlen, ip, fin) == -1) {
2924 DT1(frb_makefrip, fr_info_t *, fin);
2925 pass = FR_BLOCK|FR_NOMATCH;
2926 fin->fin_reason = FRB_MAKEFRIP;
2927 goto finished;
2928 }
2929
2930 /*
2931 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2932 * becomes NULL and so we have no packet to free.
2933 */
2934 if (*fin->fin_mp == NULL)
2935 goto finished;
2936
2937 if (!out) {
2938 if (v == 4) {
2939 if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2940 LBUMPD(ipf_stats[0], fr_v4_badsrc);
2941 fin->fin_flx |= FI_BADSRC;
2942 }
2943 if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2944 LBUMPD(ipf_stats[0], fr_v4_badttl);
2945 fin->fin_flx |= FI_LOWTTL;
2946 }
2947 }
2948 #ifdef USE_INET6
2949 else if (v == 6) {
2950 if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2951 LBUMPD(ipf_stats[0], fr_v6_badttl);
2952 fin->fin_flx |= FI_LOWTTL;
2953 }
2954 }
2955 #endif
2956 }
2957
2958 if (fin->fin_flx & FI_SHORT) {
2959 LBUMPD(ipf_stats[out], fr_short);
2960 }
2961
2962 READ_ENTER(&softc->ipf_mutex);
2963
2964 if (!out) {
2965 switch (fin->fin_v)
2966 {
2967 case 4 :
2968 if (ipf_nat_checkin(fin, &pass) == -1) {
2969 goto filterdone;
2970 }
2971 break;
2972 #ifdef USE_INET6
2973 case 6 :
2974 if (ipf_nat6_checkin(fin, &pass) == -1) {
2975 goto filterdone;
2976 }
2977 break;
2978 #endif
2979 default :
2980 break;
2981 }
2982 }
2983 /*
2984 * Check auth now.
2985 * If a packet is found in the auth table, then skip checking
2986 * the access lists for permission but we do need to consider
2987 * the result as if it were from the ACL's. In addition, being
2988 * found in the auth table means it has been seen before, so do
2989 * not pass it through accounting (again), lest it be counted twice.
2990 */
2991 fr = ipf_auth_check(fin, &pass);
2992 if (!out && (fr == NULL))
2993 (void) ipf_acctpkt(fin, NULL);
2994
2995 if (fr == NULL) {
2996 if ((fin->fin_flx & FI_FRAG) != 0)
2997 fr = ipf_frag_known(fin, &pass);
2998
2999 if (fr == NULL)
3000 fr = ipf_state_check(fin, &pass);
3001 }
3002
3003 if ((pass & FR_NOMATCH) || (fr == NULL))
3004 fr = ipf_firewall(fin, &pass);
3005
3006 /*
3007 * If we've asked to track state for this packet, set it up.
3008 * Here rather than ipf_firewall because ipf_checkauth may decide
3009 * to return a packet for "keep state"
3010 */
3011 if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3012 !(fin->fin_flx & FI_STATE)) {
3013 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3014 LBUMP(ipf_stats[out].fr_ads);
3015 } else {
3016 LBUMP(ipf_stats[out].fr_bads);
3017 if (FR_ISPASS(pass)) {
3018 DT(frb_stateadd);
3019 pass &= ~FR_CMDMASK;
3020 pass |= FR_BLOCK;
3021 fin->fin_reason = FRB_STATEADD;
3022 }
3023 }
3024 }
3025
3026 fin->fin_fr = fr;
3027 if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3028 fin->fin_dif = &fr->fr_dif;
3029 fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3030 }
3031
3032 /*
3033 * Only count/translate packets which will be passed on, out the
3034 * interface.
3035 */
3036 if (out && FR_ISPASS(pass)) {
3037 (void) ipf_acctpkt(fin, NULL);
3038
3039 switch (fin->fin_v)
3040 {
3041 case 4 :
3042 if (ipf_nat_checkout(fin, &pass) == -1) {
3043 ;
3044 } else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3045 if (ipf_updateipid(fin) == -1) {
3046 DT(frb_updateipid);
3047 LBUMP(ipf_stats[1].fr_ipud);
3048 pass &= ~FR_CMDMASK;
3049 pass |= FR_BLOCK;
3050 fin->fin_reason = FRB_UPDATEIPID;
3051 } else {
3052 LBUMP(ipf_stats[0].fr_ipud);
3053 }
3054 }
3055 break;
3056 #ifdef USE_INET6
3057 case 6 :
3058 (void) ipf_nat6_checkout(fin, &pass);
3059 break;
3060 #endif
3061 default :
3062 break;
3063 }
3064 }
3065
3066 filterdone:
3067 #ifdef IPFILTER_LOG
3068 if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3069 (void) ipf_dolog(fin, &pass);
3070 }
3071 #endif
3072
3073 /*
3074 * The FI_STATE flag is cleared here so that calling ipf_state_check
3075 * will work when called from inside of fr_fastroute. Although
3076 * there is a similar flag, FI_NATED, for NAT, it does have the same
3077 * impact on code execution.
3078 */
3079 fin->fin_flx &= ~FI_STATE;
3080
3081 #if defined(FASTROUTE_RECURSION)
3082 /*
3083 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3084 * a packet below can sometimes cause a recursive call into IPFilter.
3085 * On those platforms where that does happen, we need to hang onto
3086 * the filter rule just in case someone decides to remove or flush it
3087 * in the meantime.
3088 */
3089 if (fr != NULL) {
3090 MUTEX_ENTER(&fr->fr_lock);
3091 fr->fr_ref++;
3092 MUTEX_EXIT(&fr->fr_lock);
3093 }
3094
3095 RWLOCK_EXIT(&softc->ipf_mutex);
3096 #endif
3097
3098 if ((pass & FR_RETMASK) != 0) {
3099 /*
3100 * Should we return an ICMP packet to indicate error
3101 * status passing through the packet filter ?
3102 * WARNING: ICMP error packets AND TCP RST packets should
3103 * ONLY be sent in repsonse to incoming packets. Sending
3104 * them in response to outbound packets can result in a
3105 * panic on some operating systems.
3106 */
3107 if (!out) {
3108 if (pass & FR_RETICMP) {
3109 int dst;
3110
3111 if ((pass & FR_RETMASK) == FR_FAKEICMP)
3112 dst = 1;
3113 else
3114 dst = 0;
3115 (void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3116 dst);
3117 LBUMP(ipf_stats[0].fr_ret);
3118 } else if (((pass & FR_RETMASK) == FR_RETRST) &&
3119 !(fin->fin_flx & FI_SHORT)) {
3120 if (((fin->fin_flx & FI_OOW) != 0) ||
3121 (ipf_send_reset(fin) == 0)) {
3122 LBUMP(ipf_stats[1].fr_ret);
3123 }
3124 }
3125
3126 /*
3127 * When using return-* with auth rules, the auth code
3128 * takes over disposing of this packet.
3129 */
3130 if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3131 DT1(frb_authcapture, fr_info_t *, fin);
3132 fin->fin_m = *fin->fin_mp = NULL;
3133 fin->fin_reason = FRB_AUTHCAPTURE;
3134 m = NULL;
3135 }
3136 } else {
3137 if (pass & FR_RETRST) {
3138 fin->fin_error = ECONNRESET;
3139 }
3140 }
3141 }
3142
3143 /*
3144 * After the above so that ICMP unreachables and TCP RSTs get
3145 * created properly.
3146 */
3147 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3148 ipf_nat_uncreate(fin);
3149
3150 /*
3151 * If we didn't drop off the bottom of the list of rules (and thus
3152 * the 'current' rule fr is not NULL), then we may have some extra
3153 * instructions about what to do with a packet.
3154 * Once we're finished return to our caller, freeing the packet if
3155 * we are dropping it.
3156 */
3157 if (fr != NULL) {
3158 frdest_t *fdp;
3159
3160 /*
3161 * Generate a duplicated packet first because ipf_fastroute
3162 * can lead to fin_m being free'd... not good.
3163 */
3164 fdp = fin->fin_dif;
3165 if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3166 (fdp->fd_ptr != (void *)-1) && (fin->fin_m != NULL)) {
3167 mc = M_COPY(fin->fin_m);
3168 if (mc != NULL)
3169 ipf_fastroute(mc, &mc, fin, fdp);
3170 }
3171
3172 fdp = fin->fin_tif;
3173 if (!out && (pass & FR_FASTROUTE)) {
3174 /*
3175 * For fastroute rule, no destination interface defined
3176 * so pass NULL as the frdest_t parameter
3177 */
3178 (void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3179 m = *mp = NULL;
3180 } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3181 (fdp->fd_ptr != (struct ifnet *)-1)) {
3182 /* this is for to rules: */
3183 ipf_fastroute(fin->fin_m, mp, fin, fdp);
3184 m = *mp = NULL;
3185 }
3186
3187 #if defined(FASTROUTE_RECURSION)
3188 (void) ipf_derefrule(softc, &fr);
3189 #endif
3190 }
3191 #if !defined(FASTROUTE_RECURSION)
3192 RWLOCK_EXIT(&softc->ipf_mutex);
3193 #endif
3194
3195 finished:
3196 if (!FR_ISPASS(pass)) {
3197 LBUMP(ipf_stats[out].fr_block);
3198 if (*mp != NULL) {
3199 #ifdef _KERNEL
3200 FREE_MB_T(*mp);
3201 #endif
3202 m = *mp = NULL;
3203 }
3204 } else {
3205 LBUMP(ipf_stats[out].fr_pass);
3206 #if defined(_KERNEL) && defined(__sgi)
3207 if ((fin->fin_hbuf != NULL) &&
3208 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3209 COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3210 }
3211 #endif
3212 }
3213
3214 SPL_X(s);
3215
3216 #ifdef _KERNEL
3217 if (FR_ISPASS(pass))
3218 return 0;
3219 LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3220 return fin->fin_error;
3221 #else /* _KERNEL */
3222 if (*mp != NULL)
3223 (*mp)->mb_ifp = fin->fin_ifp;
3224 blockreason = fin->fin_reason;
3225 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3226 /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3227 if ((pass & FR_NOMATCH) != 0)
3228 return 1;
3229
3230 if ((pass & FR_RETMASK) != 0)
3231 switch (pass & FR_RETMASK)
3232 {
3233 case FR_RETRST :
3234 return 3;
3235 case FR_RETICMP :
3236 return 4;
3237 case FR_FAKEICMP :
3238 return 5;
3239 }
3240
3241 switch (pass & FR_CMDMASK)
3242 {
3243 case FR_PASS :
3244 return 0;
3245 case FR_BLOCK :
3246 return -1;
3247 case FR_AUTH :
3248 return -2;
3249 case FR_ACCOUNT :
3250 return -3;
3251 case FR_PREAUTH :
3252 return -4;
3253 }
3254 return 2;
3255 #endif /* _KERNEL */
3256 }
3257
3258
3259 #ifdef IPFILTER_LOG
3260 /* ------------------------------------------------------------------------ */
3261 /* Function: ipf_dolog */
3262 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */
3263 /* Parameters: fin(I) - pointer to packet information */
3264 /* passp(IO) - pointer to current/new filter decision (unused) */
3265 /* */
3266 /* Checks flags set to see how a packet should be logged, if it is to be */
3267 /* logged. Adjust statistics based on its success or not. */
3268 /* ------------------------------------------------------------------------ */
3269 frentry_t *
3270 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3271 {
3272 ipf_main_softc_t *softc = fin->fin_main_soft;
3273 u_32_t pass;
3274 int out;
3275
3276 out = fin->fin_out;
3277 pass = *passp;
3278
3279 if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3280 pass |= FF_LOGNOMATCH;
3281 LBUMPD(ipf_stats[out], fr_npkl);
3282 goto logit;
3283
3284 } else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3285 (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3286 if ((pass & FR_LOGMASK) != FR_LOGP)
3287 pass |= FF_LOGPASS;
3288 LBUMPD(ipf_stats[out], fr_ppkl);
3289 goto logit;
3290
3291 } else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3292 (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3293 if ((pass & FR_LOGMASK) != FR_LOGB)
3294 pass |= FF_LOGBLOCK;
3295 LBUMPD(ipf_stats[out], fr_bpkl);
3296
3297 logit:
3298 if (ipf_log_pkt(fin, pass) == -1) {
3299 /*
3300 * If the "or-block" option has been used then
3301 * block the packet if we failed to log it.
3302 */
3303 if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3304 DT1(frb_logfail2, u_int, pass);
3305 pass &= ~FR_CMDMASK;
3306 pass |= FR_BLOCK;
3307 fin->fin_reason = FRB_LOGFAIL2;
3308 }
3309 }
3310 *passp = pass;
3311 }
3312
3313 return fin->fin_fr;
3314 }
3315 #endif /* IPFILTER_LOG */
3316
3317
3318 /* ------------------------------------------------------------------------ */
3319 /* Function: ipf_cksum */
3320 /* Returns: u_short - IP header checksum */
3321 /* Parameters: addr(I) - pointer to start of buffer to checksum */
3322 /* len(I) - length of buffer in bytes */
3323 /* */
3324 /* Calculate the two's complement 16 bit checksum of the buffer passed. */
3325 /* */
3326 /* N.B.: addr should be 16bit aligned. */
3327 /* ------------------------------------------------------------------------ */
3328 u_short
3329 ipf_cksum(u_short *addr, int len)
3330 {
3331 u_32_t sum = 0;
3332
3333 for (sum = 0; len > 1; len -= 2)
3334 sum += *addr++;
3335
3336 /* mop up an odd byte, if necessary */
3337 if (len == 1)
3338 sum += *(u_char *)addr;
3339
3340 /*
3341 * add back carry outs from top 16 bits to low 16 bits
3342 */
3343 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
3344 sum += (sum >> 16); /* add carry */
3345 return (u_short)(~sum);
3346 }
3347
3348
3349 /* ------------------------------------------------------------------------ */
3350 /* Function: fr_cksum */
3351 /* Returns: u_short - layer 4 checksum */
3352 /* Parameters: fin(I) - pointer to packet information */
3353 /* ip(I) - pointer to IP header */
3354 /* l4proto(I) - protocol to caclulate checksum for */
3355 /* l4hdr(I) - pointer to layer 4 header */
3356 /* */
3357 /* Calculates the TCP checksum for the packet held in "m", using the data */
3358 /* in the IP header "ip" to seed it. */
3359 /* */
3360 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3361 /* and the TCP header. We also assume that data blocks aren't allocated in */
3362 /* odd sizes. */
3363 /* */
3364 /* Expects ip_len and ip_off to be in network byte order when called. */
3365 /* ------------------------------------------------------------------------ */
3366 u_short
3367 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3368 {
3369 u_short *sp, slen, sumsave, *csump;
3370 u_int sum, sum2;
3371 int hlen;
3372 int off;
3373 #ifdef USE_INET6
3374 ip6_t *ip6;
3375 #endif
3376
3377 csump = NULL;
3378 sumsave = 0;
3379 sp = NULL;
3380 slen = 0;
3381 hlen = 0;
3382 sum = 0;
3383
3384 sum = htons((u_short)l4proto);
3385 /*
3386 * Add up IP Header portion
3387 */
3388 #ifdef USE_INET6
3389 if (IP_V(ip) == 4) {
3390 #endif
3391 hlen = IP_HL(ip) << 2;
3392 off = hlen;
3393 sp = (u_short *)&ip->ip_src;
3394 sum += *sp++; /* ip_src */
3395 sum += *sp++;
3396 sum += *sp++; /* ip_dst */
3397 sum += *sp++;
3398 #ifdef USE_INET6
3399 } else if (IP_V(ip) == 6) {
3400 ip6 = (ip6_t *)ip;
3401 hlen = sizeof(*ip6);
3402 off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3403 sp = (u_short *)&ip6->ip6_src;
3404 sum += *sp++; /* ip6_src */
3405 sum += *sp++;
3406 sum += *sp++;
3407 sum += *sp++;
3408 sum += *sp++;
3409 sum += *sp++;
3410 sum += *sp++;
3411 sum += *sp++;
3412 /* This needs to be routing header aware. */
3413 sum += *sp++; /* ip6_dst */
3414 sum += *sp++;
3415 sum += *sp++;
3416 sum += *sp++;
3417 sum += *sp++;
3418 sum += *sp++;
3419 sum += *sp++;
3420 sum += *sp++;
3421 } else {
3422 return 0xffff;
3423 }
3424 #endif
3425 slen = fin->fin_plen - off;
3426 sum += htons(slen);
3427
3428 switch (l4proto)
3429 {
3430 case IPPROTO_UDP :
3431 csump = &((udphdr_t *)l4hdr)->uh_sum;
3432 break;
3433
3434 case IPPROTO_TCP :
3435 csump = &((tcphdr_t *)l4hdr)->th_sum;
3436 break;
3437 case IPPROTO_ICMP :
3438 csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3439 sum = 0; /* Pseudo-checksum is not included */
3440 break;
3441 #ifdef USE_INET6
3442 case IPPROTO_ICMPV6 :
3443 csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3444 break;
3445 #endif
3446 default :
3447 break;
3448 }
3449
3450 if (csump != NULL) {
3451 sumsave = *csump;
3452 *csump = 0;
3453 }
3454
3455 sum2 = ipf_pcksum(fin, off, sum);
3456 if (csump != NULL)
3457 *csump = sumsave;
3458 return sum2;
3459 }
3460
3461
3462 /* ------------------------------------------------------------------------ */
3463 /* Function: ipf_findgroup */
3464 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */
3465 /* Parameters: softc(I) - pointer to soft context main structure */
3466 /* group(I) - group name to search for */
3467 /* unit(I) - device to which this group belongs */
3468 /* set(I) - which set of rules (inactive/inactive) this is */
3469 /* fgpp(O) - pointer to place to store pointer to the pointer */
3470 /* to where to add the next (last) group or where */
3471 /* to delete group from. */
3472 /* */
3473 /* Search amongst the defined groups for a particular group number. */
3474 /* ------------------------------------------------------------------------ */
3475 frgroup_t *
3476 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3477 frgroup_t ***fgpp)
3478 {
3479 frgroup_t *fg, **fgp;
3480
3481 /*
3482 * Which list of groups to search in is dependent on which list of
3483 * rules are being operated on.
3484 */
3485 fgp = &softc->ipf_groups[unit][set];
3486
3487 while ((fg = *fgp) != NULL) {
3488 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3489 break;
3490 else
3491 fgp = &fg->fg_next;
3492 }
3493 if (fgpp != NULL)
3494 *fgpp = fgp;
3495 return fg;
3496 }
3497
3498
3499 /* ------------------------------------------------------------------------ */
3500 /* Function: ipf_group_add */
3501 /* Returns: frgroup_t * - NULL == did not create group, */
3502 /* != NULL == pointer to the group */
3503 /* Parameters: softc(I) - pointer to soft context main structure */
3504 /* num(I) - group number to add */
3505 /* head(I) - rule pointer that is using this as the head */
3506 /* flags(I) - rule flags which describe the type of rule it is */
3507 /* unit(I) - device to which this group will belong to */
3508 /* set(I) - which set of rules (inactive/inactive) this is */
3509 /* Write Locks: ipf_mutex */
3510 /* */
3511 /* Add a new group head, or if it already exists, increase the reference */
3512 /* count to it. */
3513 /* ------------------------------------------------------------------------ */
3514 frgroup_t *
3515 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3516 minor_t unit, int set)
3517 {
3518 frgroup_t *fg, **fgp;
3519 u_32_t gflags;
3520
3521 if (group == NULL)
3522 return NULL;
3523
3524 if (unit == IPL_LOGIPF && *group == '\0')
3525 return NULL;
3526
3527 fgp = NULL;
3528 gflags = flags & FR_INOUT;
3529
3530 fg = ipf_findgroup(softc, group, unit, set, &fgp);
3531 if (fg != NULL) {
3532 if (fg->fg_head == NULL && head != NULL)
3533 fg->fg_head = head;
3534 if (fg->fg_flags == 0)
3535 fg->fg_flags = gflags;
3536 else if (gflags != fg->fg_flags)
3537 return NULL;
3538 fg->fg_ref++;
3539 return fg;
3540 }
3541
3542 KMALLOC(fg, frgroup_t *);
3543 if (fg != NULL) {
3544 fg->fg_head = head;
3545 fg->fg_start = NULL;
3546 fg->fg_next = *fgp;
3547 bcopy(group, fg->fg_name, strlen(group) + 1);
3548 fg->fg_flags = gflags;
3549 fg->fg_ref = 1;
3550 fg->fg_set = &softc->ipf_groups[unit][set];
3551 *fgp = fg;
3552 }
3553 return fg;
3554 }
3555
3556
3557 /* ------------------------------------------------------------------------ */
3558 /* Function: ipf_group_del */
3559 /* Returns: int - number of rules deleted */
3560 /* Parameters: softc(I) - pointer to soft context main structure */
3561 /* group(I) - group name to delete */
3562 /* fr(I) - filter rule from which group is referenced */
3563 /* Write Locks: ipf_mutex */
3564 /* */
3565 /* This function is called whenever a reference to a group is to be dropped */
3566 /* and thus its reference count needs to be lowered and the group free'd if */
3567 /* the reference count reaches zero. Passing in fr is really for the sole */
3568 /* purpose of knowing when the head rule is being deleted. */
3569 /* ------------------------------------------------------------------------ */
3570 void
3571 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3572 {
3573
3574 if (group->fg_head == fr)
3575 group->fg_head = NULL;
3576
3577 group->fg_ref--;
3578 if ((group->fg_ref == 0) && (group->fg_start == NULL))
3579 ipf_group_free(group);
3580 }
3581
3582
3583 /* ------------------------------------------------------------------------ */
3584 /* Function: ipf_group_free */
3585 /* Returns: Nil */
3586 /* Parameters: group(I) - pointer to filter rule group */
3587 /* */
3588 /* Remove the group from the list of groups and free it. */
3589 /* ------------------------------------------------------------------------ */
3590 static void
3591 ipf_group_free(frgroup_t *group)
3592 {
3593 frgroup_t **gp;
3594
3595 for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3596 if (*gp == group) {
3597 *gp = group->fg_next;
3598 break;
3599 }
3600 }
3601 KFREE(group);
3602 }
3603
3604
3605 /* ------------------------------------------------------------------------ */
3606 /* Function: ipf_group_flush */
3607 /* Returns: int - number of rules flush from group */
3608 /* Parameters: softc(I) - pointer to soft context main structure */
3609 /* Parameters: group(I) - pointer to filter rule group */
3610 /* */
3611 /* Remove all of the rules that currently are listed under the given group. */
3612 /* ------------------------------------------------------------------------ */
3613 static int
3614 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3615 {
3616 int gone = 0;
3617
3618 (void) ipf_flushlist(softc, &gone, &group->fg_start);
3619
3620 return gone;
3621 }
3622
3623
3624 /* ------------------------------------------------------------------------ */
3625 /* Function: ipf_getrulen */
3626 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */
3627 /* Parameters: softc(I) - pointer to soft context main structure */
3628 /* Parameters: unit(I) - device for which to count the rule's number */
3629 /* flags(I) - which set of rules to find the rule in */
3630 /* group(I) - group name */
3631 /* n(I) - rule number to find */
3632 /* */
3633 /* Find rule # n in group # g and return a pointer to it. Return NULl if */
3634 /* group # g doesn't exist or there are less than n rules in the group. */
3635 /* ------------------------------------------------------------------------ */
3636 frentry_t *
3637 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3638 {
3639 frentry_t *fr;
3640 frgroup_t *fg;
3641
3642 fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3643 if (fg == NULL)
3644 return NULL;
3645 for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3646 ;
3647 if (n != 0)
3648 return NULL;
3649 return fr;
3650 }
3651
3652
3653 /* ------------------------------------------------------------------------ */
3654 /* Function: ipf_flushlist */
3655 /* Returns: int - >= 0 - number of flushed rules */
3656 /* Parameters: softc(I) - pointer to soft context main structure */
3657 /* nfreedp(O) - pointer to int where flush count is stored */
3658 /* listp(I) - pointer to list to flush pointer */
3659 /* Write Locks: ipf_mutex */
3660 /* */
3661 /* Recursively flush rules from the list, descending groups as they are */
3662 /* encountered. if a rule is the head of a group and it has lost all its */
3663 /* group members, then also delete the group reference. nfreedp is needed */
3664 /* to store the accumulating count of rules removed, whereas the returned */
3665 /* value is just the number removed from the current list. The latter is */
3666 /* needed to correctly adjust reference counts on rules that define groups. */
3667 /* */
3668 /* NOTE: Rules not loaded from user space cannot be flushed. */
3669 /* ------------------------------------------------------------------------ */
3670 static int
3671 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3672 {
3673 int freed = 0;
3674 frentry_t *fp;
3675
3676 while ((fp = *listp) != NULL) {
3677 if ((fp->fr_type & FR_T_BUILTIN) ||
3678 !(fp->fr_flags & FR_COPIED)) {
3679 listp = &fp->fr_next;
3680 continue;
3681 }
3682 *listp = fp->fr_next;
3683 if (fp->fr_next != NULL)
3684 fp->fr_next->fr_pnext = fp->fr_pnext;
3685 fp->fr_pnext = NULL;
3686
3687 if (fp->fr_grphead != NULL) {
3688 freed += ipf_group_flush(softc, fp->fr_grphead);
3689 fp->fr_names[fp->fr_grhead] = '\0';
3690 }
3691
3692 if (fp->fr_icmpgrp != NULL) {
3693 freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3694 fp->fr_names[fp->fr_icmphead] = '\0';
3695 }
3696
3697 if (fp->fr_srctrack.ht_max_nodes)
3698 ipf_rb_ht_flush(&fp->fr_srctrack);
3699
3700 fp->fr_next = NULL;
3701
3702 ASSERT(fp->fr_ref > 0);
3703 if (ipf_derefrule(softc, &fp) == 0)
3704 freed++;
3705 }
3706 *nfreedp += freed;
3707 return freed;
3708 }
3709
3710
3711 /* ------------------------------------------------------------------------ */
3712 /* Function: ipf_flush */
3713 /* Returns: int - >= 0 - number of flushed rules */
3714 /* Parameters: softc(I) - pointer to soft context main structure */
3715 /* unit(I) - device for which to flush rules */
3716 /* flags(I) - which set of rules to flush */
3717 /* */
3718 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3719 /* and IPv6) as defined by the value of flags. */
3720 /* ------------------------------------------------------------------------ */
3721 int
3722 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3723 {
3724 int flushed = 0, set;
3725
3726 WRITE_ENTER(&softc->ipf_mutex);
3727
3728 set = softc->ipf_active;
3729 if ((flags & FR_INACTIVE) == FR_INACTIVE)
3730 set = 1 - set;
3731
3732 if (flags & FR_OUTQUE) {
3733 ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3734 ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3735 }
3736 if (flags & FR_INQUE) {
3737 ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3738 ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3739 }
3740
3741 flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3742 flags & (FR_INQUE|FR_OUTQUE));
3743
3744 RWLOCK_EXIT(&softc->ipf_mutex);
3745
3746 if (unit == IPL_LOGIPF) {
3747 int tmp;
3748
3749 tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3750 if (tmp >= 0)
3751 flushed += tmp;
3752 }
3753 return flushed;
3754 }
3755
3756
3757 /* ------------------------------------------------------------------------ */
3758 /* Function: ipf_flush_groups */
3759 /* Returns: int - >= 0 - number of flushed rules */
3760 /* Parameters: softc(I) - soft context pointerto work with */
3761 /* grhead(I) - pointer to the start of the group list to flush */
3762 /* flags(I) - which set of rules to flush */
3763 /* */
3764 /* Walk through all of the groups under the given group head and remove all */
3765 /* of those that match the flags passed in. The for loop here is bit more */
3766 /* complicated than usual because the removal of a rule with ipf_derefrule */
3767 /* may end up removing not only the structure pointed to by "fg" but also */
3768 /* what is fg_next and fg_next after that. So if a filter rule is actually */
3769 /* removed from the group then it is necessary to start again. */
3770 /* ------------------------------------------------------------------------ */
3771 static int
3772 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3773 {
3774 frentry_t *fr, **frp;
3775 frgroup_t *fg, **fgp;
3776 int flushed = 0;
3777 int removed = 0;
3778
3779 for (fgp = grhead; (fg = *fgp) != NULL; ) {
3780 while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3781 fg = fg->fg_next;
3782 if (fg == NULL)
3783 break;
3784 removed = 0;
3785 frp = &fg->fg_start;
3786 while ((removed == 0) && ((fr = *frp) != NULL)) {
3787 if ((fr->fr_flags & flags) == 0) {
3788 frp = &fr->fr_next;
3789 } else {
3790 if (fr->fr_next != NULL)
3791 fr->fr_next->fr_pnext = fr->fr_pnext;
3792 *frp = fr->fr_next;
3793 fr->fr_pnext = NULL;
3794 fr->fr_next = NULL;
3795 (void) ipf_derefrule(softc, &fr);
3796 flushed++;
3797 removed++;
3798 }
3799 }
3800 if (removed == 0)
3801 fgp = &fg->fg_next;
3802 }
3803 return flushed;
3804 }
3805
3806
3807 /* ------------------------------------------------------------------------ */
3808 /* Function: memstr */
3809 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */
3810 /* Parameters: src(I) - pointer to byte sequence to match */
3811 /* dst(I) - pointer to byte sequence to search */
3812 /* slen(I) - match length */
3813 /* dlen(I) - length available to search in */
3814 /* */
3815 /* Search dst for a sequence of bytes matching those at src and extend for */
3816 /* slen bytes. */
3817 /* ------------------------------------------------------------------------ */
3818 char *
3819 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3820 {
3821 char *s = NULL;
3822
3823 while (dlen >= slen) {
3824 if (memcmp(src, dst, slen) == 0) {
3825 s = dst;
3826 break;
3827 }
3828 dst++;
3829 dlen--;
3830 }
3831 return s;
3832 }
3833
3834
3835 /* ------------------------------------------------------------------------ */
3836 /* Function: ipf_fixskip */
3837 /* Returns: Nil */
3838 /* Parameters: listp(IO) - pointer to start of list with skip rule */
3839 /* rp(I) - rule added/removed with skip in it. */
3840 /* addremove(I) - adjustment (-1/+1) to make to skip count, */
3841 /* depending on whether a rule was just added */
3842 /* or removed. */
3843 /* */
3844 /* Adjust all the rules in a list which would have skip'd past the position */
3845 /* where we are inserting to skip to the right place given the change. */
3846 /* ------------------------------------------------------------------------ */
3847 void
3848 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3849 {
3850 int rules, rn;
3851 frentry_t *fp;
3852
3853 rules = 0;
3854 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3855 rules++;
3856
3857 if (!fp)
3858 return;
3859
3860 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3861 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3862 fp->fr_arg += addremove;
3863 }
3864
3865
3866 #ifdef _KERNEL
3867 /* ------------------------------------------------------------------------ */
3868 /* Function: count4bits */
3869 /* Returns: int - >= 0 - number of consecutive bits in input */
3870 /* Parameters: ip(I) - 32bit IP address */
3871 /* */
3872 /* IPv4 ONLY */
3873 /* count consecutive 1's in bit mask. If the mask generated by counting */
3874 /* consecutive 1's is different to that passed, return -1, else return # */
3875 /* of bits. */
3876 /* ------------------------------------------------------------------------ */
3877 int
3878 count4bits(u_32_t ip)
3879 {
3880 u_32_t ipn;
3881 int cnt = 0, i, j;
3882
3883 ip = ipn = ntohl(ip);
3884 for (i = 32; i; i--, ipn *= 2)
3885 if (ipn & 0x80000000)
3886 cnt++;
3887 else
3888 break;
3889 ipn = 0;
3890 for (i = 32, j = cnt; i; i--, j--) {
3891 ipn *= 2;
3892 if (j > 0)
3893 ipn++;
3894 }
3895 if (ipn == ip)
3896 return cnt;
3897 return -1;
3898 }
3899
3900
3901 /* ------------------------------------------------------------------------ */
3902 /* Function: count6bits */
3903 /* Returns: int - >= 0 - number of consecutive bits in input */
3904 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */
3905 /* */
3906 /* IPv6 ONLY */
3907 /* count consecutive 1's in bit mask. */
3908 /* ------------------------------------------------------------------------ */
3909 # ifdef USE_INET6
3910 int
3911 count6bits(u_32_t *msk)
3912 {
3913 int i = 0, k;
3914 u_32_t j;
3915
3916 for (k = 3; k >= 0; k--)
3917 if (msk[k] == 0xffffffff)
3918 i += 32;
3919 else {
3920 for (j = msk[k]; j; j <<= 1)
3921 if (j & 0x80000000)
3922 i++;
3923 }
3924 return i;
3925 }
3926 # endif
3927 #endif /* _KERNEL */
3928
3929
3930 /* ------------------------------------------------------------------------ */
3931 /* Function: ipf_synclist */
3932 /* Returns: int - 0 = no failures, else indication of first failure */
3933 /* Parameters: fr(I) - start of filter list to sync interface names for */
3934 /* ifp(I) - interface pointer for limiting sync lookups */
3935 /* Write Locks: ipf_mutex */
3936 /* */
3937 /* Walk through a list of filter rules and resolve any interface names into */
3938 /* pointers. Where dynamic addresses are used, also update the IP address */
3939 /* used in the rule. The interface pointer is used to limit the lookups to */
3940 /* a specific set of matching names if it is non-NULL. */
3941 /* Errors can occur when resolving the destination name of to/dup-to fields */
3942 /* when the name points to a pool and that pool doest not exist. If this */
3943 /* does happen then it is necessary to check if there are any lookup refs */
3944 /* that need to be dropped before returning with an error. */
3945 /* ------------------------------------------------------------------------ */
3946 static int
3947 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3948 {
3949 frentry_t *frt, *start = fr;
3950 frdest_t *fdp;
3951 char *name;
3952 int error;
3953 void *ifa;
3954 int v, i;
3955
3956 error = 0;
3957
3958 for (; fr; fr = fr->fr_next) {
3959 if (fr->fr_family == AF_INET)
3960 v = 4;
3961 else if (fr->fr_family == AF_INET6)
3962 v = 6;
3963 else
3964 v = 0;
3965
3966 /*
3967 * Lookup all the interface names that are part of the rule.
3968 */
3969 for (i = 0; i < 4; i++) {
3970 if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3971 continue;
3972 if (fr->fr_ifnames[i] == -1)
3973 continue;
3974 name = FR_NAME(fr, fr_ifnames[i]);
3975 fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3976 }
3977
3978 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3979 if (fr->fr_satype != FRI_NORMAL &&
3980 fr->fr_satype != FRI_LOOKUP) {
3981 ifa = ipf_resolvenic(softc, fr->fr_names +
3982 fr->fr_sifpidx, v);
3983 ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3984 &fr->fr_src6, &fr->fr_smsk6);
3985 }
3986 if (fr->fr_datype != FRI_NORMAL &&
3987 fr->fr_datype != FRI_LOOKUP) {
3988 ifa = ipf_resolvenic(softc, fr->fr_names +
3989 fr->fr_sifpidx, v);
3990 ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3991 &fr->fr_dst6, &fr->fr_dmsk6);
3992 }
3993 }
3994
3995 fdp = &fr->fr_tifs[0];
3996 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3997 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3998 if (error != 0)
3999 goto unwind;
4000 }
4001
4002 fdp = &fr->fr_tifs[1];
4003 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4004 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4005 if (error != 0)
4006 goto unwind;
4007 }
4008
4009 fdp = &fr->fr_dif;
4010 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4011 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4012 if (error != 0)
4013 goto unwind;
4014 }
4015
4016 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4017 (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4018 fr->fr_srcptr = ipf_lookup_res_num(softc,
4019 fr->fr_srctype,
4020 IPL_LOGIPF,
4021 fr->fr_srcnum,
4022 &fr->fr_srcfunc);
4023 }
4024 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4025 (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4026 fr->fr_dstptr = ipf_lookup_res_num(softc,
4027 fr->fr_dsttype,
4028 IPL_LOGIPF,
4029 fr->fr_dstnum,
4030 &fr->fr_dstfunc);
4031 }
4032 }
4033 return 0;
4034
4035 unwind:
4036 for (frt = start; frt != fr; fr = fr->fr_next) {
4037 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4038 (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4039 ipf_lookup_deref(softc, frt->fr_srctype,
4040 frt->fr_srcptr);
4041 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4042 (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4043 ipf_lookup_deref(softc, frt->fr_dsttype,
4044 frt->fr_dstptr);
4045 }
4046 return error;
4047 }
4048
4049
4050 /* ------------------------------------------------------------------------ */
4051 /* Function: ipf_sync */
4052 /* Returns: void */
4053 /* Parameters: Nil */
4054 /* */
4055 /* ipf_sync() is called when we suspect that the interface list or */
4056 /* information about interfaces (like IP#) has changed. Go through all */
4057 /* filter rules, NAT entries and the state table and check if anything */
4058 /* needs to be changed/updated. */
4059 /* ------------------------------------------------------------------------ */
4060 int
4061 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4062 {
4063 int i;
4064
4065 # if !SOLARIS
4066 ipf_nat_sync(softc, ifp);
4067 ipf_state_sync(softc, ifp);
4068 ipf_lookup_sync(softc, ifp);
4069 # endif
4070
4071 WRITE_ENTER(&softc->ipf_mutex);
4072 (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4073 (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4074 (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4075 (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4076
4077 for (i = 0; i < IPL_LOGSIZE; i++) {
4078 frgroup_t *g;
4079
4080 for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4081 (void) ipf_synclist(softc, g->fg_start, ifp);
4082 for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4083 (void) ipf_synclist(softc, g->fg_start, ifp);
4084 }
4085 RWLOCK_EXIT(&softc->ipf_mutex);
4086
4087 return 0;
4088 }
4089
4090
4091 /*
4092 * In the functions below, bcopy() is called because the pointer being
4093 * copied _from_ in this instance is a pointer to a char buf (which could
4094 * end up being unaligned) and on the kernel's local stack.
4095 */
4096 /* ------------------------------------------------------------------------ */
4097 /* Function: copyinptr */
4098 /* Returns: int - 0 = success, else failure */
4099 /* Parameters: src(I) - pointer to the source address */
4100 /* dst(I) - destination address */
4101 /* size(I) - number of bytes to copy */
4102 /* */
4103 /* Copy a block of data in from user space, given a pointer to the pointer */
4104 /* to start copying from (src) and a pointer to where to store it (dst). */
4105 /* NB: src - pointer to user space pointer, dst - kernel space pointer */
4106 /* ------------------------------------------------------------------------ */
4107 int
4108 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4109 {
4110 void *ca;
4111 int error;
4112
4113 # if SOLARIS
4114 error = COPYIN(src, &ca, sizeof(ca));
4115 if (error != 0)
4116 return error;
4117 # else
4118 bcopy(src, (void *)&ca, sizeof(ca));
4119 # endif
4120 error = COPYIN(ca, dst, size);
4121 if (error != 0) {
4122 IPFERROR(3);
4123 error = EFAULT;
4124 }
4125 return error;
4126 }
4127
4128
4129 /* ------------------------------------------------------------------------ */
4130 /* Function: copyoutptr */
4131 /* Returns: int - 0 = success, else failure */
4132 /* Parameters: src(I) - pointer to the source address */
4133 /* dst(I) - destination address */
4134 /* size(I) - number of bytes to copy */
4135 /* */
4136 /* Copy a block of data out to user space, given a pointer to the pointer */
4137 /* to start copying from (src) and a pointer to where to store it (dst). */
4138 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */
4139 /* ------------------------------------------------------------------------ */
4140 int
4141 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4142 {
4143 void *ca;
4144 int error;
4145
4146 bcopy(dst, &ca, sizeof(ca));
4147 error = COPYOUT(src, ca, size);
4148 if (error != 0) {
4149 IPFERROR(4);
4150 error = EFAULT;
4151 }
4152 return error;
4153 }
4154 #ifdef _KERNEL
4155 #endif
4156
4157
4158 /* ------------------------------------------------------------------------ */
4159 /* Function: ipf_lock */
4160 /* Returns: int - 0 = success, else error */
4161 /* Parameters: data(I) - pointer to lock value to set */
4162 /* lockp(O) - pointer to location to store old lock value */
4163 /* */
4164 /* Get the new value for the lock integer, set it and return the old value */
4165 /* in *lockp. */
4166 /* ------------------------------------------------------------------------ */
4167 int
4168 ipf_lock(void *data, int *lockp)
4169 {
4170 int arg, err;
4171
4172 err = BCOPYIN(data, &arg, sizeof(arg));
4173 if (err != 0)
4174 return EFAULT;
4175 err = BCOPYOUT(lockp, data, sizeof(*lockp));
4176 if (err != 0)
4177 return EFAULT;
4178 *lockp = arg;
4179 return 0;
4180 }
4181
4182
4183 /* ------------------------------------------------------------------------ */
4184 /* Function: ipf_getstat */
4185 /* Returns: Nil */
4186 /* Parameters: softc(I) - pointer to soft context main structure */
4187 /* fiop(I) - pointer to ipfilter stats structure */
4188 /* rev(I) - version claim by program doing ioctl */
4189 /* */
4190 /* Stores a copy of current pointers, counters, etc, in the friostat */
4191 /* structure. */
4192 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */
4193 /* program is looking for. This ensure that validation of the version it */
4194 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */
4195 /* allow older binaries to work but kernels without it will not. */
4196 /* ------------------------------------------------------------------------ */
4197 /*ARGSUSED*/
4198 static void
4199 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4200 {
4201 int i;
4202
4203 bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4204 sizeof(ipf_statistics_t) * 2);
4205 fiop->f_locks[IPL_LOGSTATE] = -1;
4206 fiop->f_locks[IPL_LOGNAT] = -1;
4207 fiop->f_locks[IPL_LOGIPF] = -1;
4208 fiop->f_locks[IPL_LOGAUTH] = -1;
4209
4210 fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4211 fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4212 fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4213 fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4214 fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4215 fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4216 fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4217 fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4218
4219 fiop->f_ticks = softc->ipf_ticks;
4220 fiop->f_active = softc->ipf_active;
4221 fiop->f_froute[0] = softc->ipf_frouteok[0];
4222 fiop->f_froute[1] = softc->ipf_frouteok[1];
4223 fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4224 fiop->f_rb_node_max = softc->ipf_rb_node_max;
4225
4226 fiop->f_running = softc->ipf_running;
4227 for (i = 0; i < IPL_LOGSIZE; i++) {
4228 fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4229 fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4230 }
4231 #ifdef IPFILTER_LOG
4232 fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4233 fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4234 fiop->f_logging = 1;
4235 #else
4236 fiop->f_log_ok = 0;
4237 fiop->f_log_fail = 0;
4238 fiop->f_logging = 0;
4239 #endif
4240 fiop->f_defpass = softc->ipf_pass;
4241 fiop->f_features = ipf_features;
4242
4243 #ifdef IPFILTER_COMPAT
4244 snprintf(fiop->f_version, sizeof(fiop->f_version),
4245 "IP Filter: v%d.%d.%d", (rev / 1000000) % 100,
4246 (rev / 10000) % 100, (rev / 100) % 100);
4247 #else
4248 rev = rev;
4249 (void) strncpy(fiop->f_version, ipfilter_version,
4250 sizeof(fiop->f_version));
4251 fiop->f_version[sizeof(fiop->f_version) - 1] = '\0';
4252 #endif
4253 }
4254
4255
4256 #ifdef USE_INET6
4257 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4258 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */
4259 -1, /* 1: UNUSED */
4260 -1, /* 2: UNUSED */
4261 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */
4262 -1, /* 4: ICMP_SOURCEQUENCH */
4263 ND_REDIRECT, /* 5: ICMP_REDIRECT */
4264 -1, /* 6: UNUSED */
4265 -1, /* 7: UNUSED */
4266 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */
4267 -1, /* 9: UNUSED */
4268 -1, /* 10: UNUSED */
4269 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */
4270 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */
4271 -1, /* 13: ICMP_TSTAMP */
4272 -1, /* 14: ICMP_TSTAMPREPLY */
4273 -1, /* 15: ICMP_IREQ */
4274 -1, /* 16: ICMP_IREQREPLY */
4275 -1, /* 17: ICMP_MASKREQ */
4276 -1, /* 18: ICMP_MASKREPLY */
4277 };
4278
4279
4280 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4281 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */
4282 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */
4283 -1, /* 2: ICMP_UNREACH_PROTOCOL */
4284 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */
4285 -1, /* 4: ICMP_UNREACH_NEEDFRAG */
4286 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */
4287 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */
4288 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */
4289 -1, /* 8: ICMP_UNREACH_ISOLATED */
4290 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */
4291 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */
4292 -1, /* 11: ICMP_UNREACH_TOSNET */
4293 -1, /* 12: ICMP_UNREACH_TOSHOST */
4294 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4295 };
4296 int icmpreplytype6[ICMP6_MAXTYPE + 1];
4297 #endif
4298
4299 int icmpreplytype4[ICMP_MAXTYPE + 1];
4300
4301
4302 /* ------------------------------------------------------------------------ */
4303 /* Function: ipf_matchicmpqueryreply */
4304 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */
4305 /* Parameters: v(I) - IP protocol version (4 or 6) */
4306 /* ic(I) - ICMP information */
4307 /* icmp(I) - ICMP packet header */
4308 /* rev(I) - direction (0 = forward/1 = reverse) of packet */
4309 /* */
4310 /* Check if the ICMP packet defined by the header pointed to by icmp is a */
4311 /* reply to one as described by what's in ic. If it is a match, return 1, */
4312 /* else return 0 for no match. */
4313 /* ------------------------------------------------------------------------ */
4314 int
4315 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4316 {
4317 int ictype;
4318
4319 ictype = ic->ici_type;
4320
4321 if (v == 4) {
4322 /*
4323 * If we matched its type on the way in, then when going out
4324 * it will still be the same type.
4325 */
4326 if ((!rev && (icmp->icmp_type == ictype)) ||
4327 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4328 if (icmp->icmp_type != ICMP_ECHOREPLY)
4329 return 1;
4330 if (icmp->icmp_id == ic->ici_id)
4331 return 1;
4332 }
4333 }
4334 #ifdef USE_INET6
4335 else if (v == 6) {
4336 if ((!rev && (icmp->icmp_type == ictype)) ||
4337 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4338 if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4339 return 1;
4340 if (icmp->icmp_id == ic->ici_id)
4341 return 1;
4342 }
4343 }
4344 #endif
4345 return 0;
4346 }
4347
4348 /* ------------------------------------------------------------------------ */
4349 /* Function: ipf_rule_compare */
4350 /* Parameters: fr1(I) - first rule structure to compare */
4351 /* fr2(I) - second rule structure to compare */
4352 /* Returns: int - 0 == rules are the same, else mismatch */
4353 /* */
4354 /* Compare two rules and return 0 if they match or a number indicating */
4355 /* which of the individual checks failed. */
4356 /* ------------------------------------------------------------------------ */
4357 static int
4358 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4359 {
4360 if (fr1->fr_cksum != fr2->fr_cksum)
4361 return 1;
4362 if (fr1->fr_size != fr2->fr_size)
4363 return 2;
4364 if (fr1->fr_dsize != fr2->fr_dsize)
4365 return 3;
4366 if (memcmp(&fr1->fr_func, &fr2->fr_func,
4367 fr1->fr_size - offsetof(struct frentry, fr_func)) != 0)
4368 return 4;
4369 if (fr1->fr_data && !fr2->fr_data)
4370 return 5;
4371 if (!fr1->fr_data && fr2->fr_data)
4372 return 6;
4373 if (fr1->fr_data) {
4374 if (memcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize))
4375 return 7;
4376 }
4377 return 0;
4378 }
4379
4380
4381 /* ------------------------------------------------------------------------ */
4382 /* Function: frrequest */
4383 /* Returns: int - 0 == success, > 0 == errno value */
4384 /* Parameters: unit(I) - device for which this is for */
4385 /* req(I) - ioctl command (SIOC*) */
4386 /* data(I) - pointr to ioctl data */
4387 /* set(I) - 1 or 0 (filter set) */
4388 /* makecopy(I) - flag indicating whether data points to a rule */
4389 /* in kernel space & hence doesn't need copying. */
4390 /* */
4391 /* This function handles all the requests which operate on the list of */
4392 /* filter rules. This includes adding, deleting, insertion. It is also */
4393 /* responsible for creating groups when a "head" rule is loaded. Interface */
4394 /* names are resolved here and other sanity checks are made on the content */
4395 /* of the rule structure being loaded. If a rule has user defined timeouts */
4396 /* then make sure they are created and initialised before exiting. */
4397 /* ------------------------------------------------------------------------ */
4398 int
4399 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data,
4400 int set, int makecopy)
4401 {
4402 int error = 0, in, family, addrem, need_free = 0;
4403 frentry_t frd, *fp, *f, **fprev, **ftail;
4404 void *ptr, *uptr;
4405 u_int *p, *pp;
4406 frgroup_t *fg;
4407 char *group;
4408
4409 ptr = NULL;
4410 fg = NULL;
4411 fp = &frd;
4412 if (makecopy != 0) {
4413 bzero(fp, sizeof(frd));
4414 error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4415 if (error) {
4416 return error;
4417 }
4418 if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4419 IPFERROR(6);
4420 return EINVAL;
4421 }
4422 KMALLOCS(f, frentry_t *, fp->fr_size);
4423 if (f == NULL) {
4424 IPFERROR(131);
4425 return ENOMEM;
4426 }
4427 bzero(f, fp->fr_size);
4428 error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4429 fp->fr_size);
4430 if (error) {
4431 KFREES(f, fp->fr_size);
4432 return error;
4433 }
4434
4435 fp = f;
4436 f = NULL;
4437 fp->fr_next = NULL;
4438 fp->fr_dnext = NULL;
4439 fp->fr_pnext = NULL;
4440 fp->fr_pdnext = NULL;
4441 fp->fr_grp = NULL;
4442 fp->fr_grphead = NULL;
4443 fp->fr_icmpgrp = NULL;
4444 fp->fr_isc = (void *)-1;
4445 fp->fr_ptr = NULL;
4446 fp->fr_ref = 0;
4447 fp->fr_flags |= FR_COPIED;
4448 } else {
4449 fp = (frentry_t *)data;
4450 if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4451 IPFERROR(7);
4452 return EINVAL;
4453 }
4454 fp->fr_flags &= ~FR_COPIED;
4455 }
4456
4457 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4458 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4459 IPFERROR(8);
4460 error = EINVAL;
4461 goto donenolock;
4462 }
4463
4464 family = fp->fr_family;
4465 uptr = fp->fr_data;
4466
4467 if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4468 req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4469 addrem = 0;
4470 else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4471 addrem = 1;
4472 else if (req == (ioctlcmd_t)SIOCZRLST)
4473 addrem = 2;
4474 else {
4475 IPFERROR(9);
4476 error = EINVAL;
4477 goto donenolock;
4478 }
4479
4480 /*
4481 * Only filter rules for IPv4 or IPv6 are accepted.
4482 */
4483 if (family == AF_INET) {
4484 /*EMPTY*/;
4485 #ifdef USE_INET6
4486 } else if (family == AF_INET6) {
4487 /*EMPTY*/;
4488 #endif
4489 } else if (family != 0) {
4490 IPFERROR(10);
4491 error = EINVAL;
4492 goto donenolock;
4493 }
4494
4495 /*
4496 * If the rule is being loaded from user space, i.e. we had to copy it
4497 * into kernel space, then do not trust the function pointer in the
4498 * rule.
4499 */
4500 if ((makecopy == 1) && (fp->fr_func != NULL)) {
4501 if (ipf_findfunc(fp->fr_func) == NULL) {
4502 IPFERROR(11);
4503 error = ESRCH;
4504 goto donenolock;
4505 }
4506
4507 if (addrem == 0) {
4508 error = ipf_funcinit(softc, fp);
4509 if (error != 0)
4510 goto donenolock;
4511 }
4512 }
4513 if ((fp->fr_flags & FR_CALLNOW) &&
4514 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4515 IPFERROR(142);
4516 error = ESRCH;
4517 goto donenolock;
4518 }
4519 if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4520 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4521 IPFERROR(143);
4522 error = ESRCH;
4523 goto donenolock;
4524 }
4525
4526 ptr = NULL;
4527
4528 if (FR_ISACCOUNT(fp->fr_flags))
4529 unit = IPL_LOGCOUNT;
4530
4531 /*
4532 * Check that each group name in the rule has a start index that
4533 * is valid.
4534 */
4535 if (fp->fr_icmphead != -1) {
4536 if ((fp->fr_icmphead < 0) ||
4537 (fp->fr_icmphead >= fp->fr_namelen)) {
4538 IPFERROR(136);
4539 error = EINVAL;
4540 goto donenolock;
4541 }
4542 if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4543 fp->fr_names[fp->fr_icmphead] = '\0';
4544 }
4545
4546 if (fp->fr_grhead != -1) {
4547 if ((fp->fr_grhead < 0) ||
4548 (fp->fr_grhead >= fp->fr_namelen)) {
4549 IPFERROR(137);
4550 error = EINVAL;
4551 goto donenolock;
4552 }
4553 if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4554 fp->fr_names[fp->fr_grhead] = '\0';
4555 }
4556
4557 if (fp->fr_group != -1) {
4558 if ((fp->fr_group < 0) ||
4559 (fp->fr_group >= fp->fr_namelen)) {
4560 IPFERROR(138);
4561 error = EINVAL;
4562 goto donenolock;
4563 }
4564 if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4565 /*
4566 * Allow loading rules that are in groups to cause
4567 * them to be created if they don't already exit.
4568 */
4569 group = FR_NAME(fp, fr_group);
4570 if (addrem == 0) {
4571 fg = ipf_group_add(softc, group, NULL,
4572 fp->fr_flags, unit, set);
4573 if (fg == NULL) {
4574 IPFERROR(152);
4575 error = ESRCH;
4576 goto donenolock;
4577 }
4578 fp->fr_grp = fg;
4579 } else {
4580 fg = ipf_findgroup(softc, group, unit,
4581 set, NULL);
4582 if (fg == NULL) {
4583 IPFERROR(12);
4584 error = ESRCH;
4585 goto donenolock;
4586 }
4587 }
4588
4589 if (fg->fg_flags == 0) {
4590 fg->fg_flags = fp->fr_flags & FR_INOUT;
4591 } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4592 IPFERROR(13);
4593 error = ESRCH;
4594 goto donenolock;
4595 }
4596 }
4597 } else {
4598 /*
4599 * If a rule is going to be part of a group then it does
4600 * not matter whether it is an in or out rule, but if it
4601 * isn't in a group, then it does...
4602 */
4603 if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4604 IPFERROR(14);
4605 error = EINVAL;
4606 goto donenolock;
4607 }
4608 }
4609 in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4610
4611 /*
4612 * Work out which rule list this change is being applied to.
4613 */
4614 ftail = NULL;
4615 fprev = NULL;
4616 if (unit == IPL_LOGAUTH) {
4617 if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4618 (fp->fr_tifs[1].fd_ptr != NULL) ||
4619 (fp->fr_dif.fd_ptr != NULL) ||
4620 (fp->fr_flags & FR_FASTROUTE)) {
4621 IPFERROR(145);
4622 error = EINVAL;
4623 goto donenolock;
4624 }
4625 fprev = ipf_auth_rulehead(softc);
4626 } else {
4627 if (FR_ISACCOUNT(fp->fr_flags))
4628 fprev = &softc->ipf_acct[in][set];
4629 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4630 fprev = &softc->ipf_rules[in][set];
4631 }
4632 if (fprev == NULL) {
4633 IPFERROR(15);
4634 error = ESRCH;
4635 goto donenolock;
4636 }
4637
4638 if (fg != NULL)
4639 fprev = &fg->fg_start;
4640
4641 /*
4642 * Copy in extra data for the rule.
4643 */
4644 if (fp->fr_dsize != 0) {
4645 if (makecopy != 0) {
4646 KMALLOCS(ptr, void *, fp->fr_dsize);
4647 if (ptr == NULL) {
4648 IPFERROR(16);
4649 error = ENOMEM;
4650 goto donenolock;
4651 }
4652
4653 /*
4654 * The bcopy case is for when the data is appended
4655 * to the rule by ipf_in_compat().
4656 */
4657 if (uptr >= (void *)fp &&
4658 uptr < (void *)((char *)fp + fp->fr_size)) {
4659 bcopy(uptr, ptr, fp->fr_dsize);
4660 error = 0;
4661 } else {
4662 error = COPYIN(uptr, ptr, fp->fr_dsize);
4663 if (error != 0) {
4664 IPFERROR(17);
4665 error = EFAULT;
4666 goto donenolock;
4667 }
4668 }
4669 } else {
4670 ptr = uptr;
4671 }
4672 fp->fr_data = ptr;
4673 } else {
4674 fp->fr_data = NULL;
4675 }
4676
4677 /*
4678 * Perform per-rule type sanity checks of their members.
4679 * All code after this needs to be aware that allocated memory
4680 * may need to be free'd before exiting.
4681 */
4682 switch (fp->fr_type & ~FR_T_BUILTIN)
4683 {
4684 #if defined(IPFILTER_BPF)
4685 case FR_T_BPFOPC :
4686 if (fp->fr_dsize == 0) {
4687 IPFERROR(19);
4688 error = EINVAL;
4689 break;
4690 }
4691 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4692 IPFERROR(20);
4693 error = EINVAL;
4694 break;
4695 }
4696 break;
4697 #endif
4698 case FR_T_IPF :
4699 /*
4700 * Preparation for error case at the bottom of this function.
4701 */
4702 if (fp->fr_datype == FRI_LOOKUP)
4703 fp->fr_dstptr = NULL;
4704 if (fp->fr_satype == FRI_LOOKUP)
4705 fp->fr_srcptr = NULL;
4706
4707 if (fp->fr_dsize != sizeof(fripf_t)) {
4708 IPFERROR(21);
4709 error = EINVAL;
4710 break;
4711 }
4712
4713 /*
4714 * Allowing a rule with both "keep state" and "with oow" is
4715 * pointless because adding a state entry to the table will
4716 * fail with the out of window (oow) flag set.
4717 */
4718 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4719 IPFERROR(22);
4720 error = EINVAL;
4721 break;
4722 }
4723
4724 switch (fp->fr_satype)
4725 {
4726 case FRI_BROADCAST :
4727 case FRI_DYNAMIC :
4728 case FRI_NETWORK :
4729 case FRI_NETMASKED :
4730 case FRI_PEERADDR :
4731 if (fp->fr_sifpidx < 0) {
4732 IPFERROR(23);
4733 error = EINVAL;
4734 }
4735 break;
4736 case FRI_LOOKUP :
4737 fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4738 &fp->fr_src6,
4739 &fp->fr_smsk6);
4740 if (fp->fr_srcfunc == NULL) {
4741 IPFERROR(132);
4742 error = ESRCH;
4743 break;
4744 }
4745 break;
4746 case FRI_NORMAL :
4747 break;
4748 default :
4749 IPFERROR(133);
4750 error = EINVAL;
4751 break;
4752 }
4753 if (error != 0)
4754 break;
4755
4756 switch (fp->fr_datype)
4757 {
4758 case FRI_BROADCAST :
4759 case FRI_DYNAMIC :
4760 case FRI_NETWORK :
4761 case FRI_NETMASKED :
4762 case FRI_PEERADDR :
4763 if (fp->fr_difpidx < 0) {
4764 IPFERROR(24);
4765 error = EINVAL;
4766 }
4767 break;
4768 case FRI_LOOKUP :
4769 fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4770 &fp->fr_dst6,
4771 &fp->fr_dmsk6);
4772 if (fp->fr_dstfunc == NULL) {
4773 IPFERROR(134);
4774 error = ESRCH;
4775 }
4776 break;
4777 case FRI_NORMAL :
4778 break;
4779 default :
4780 IPFERROR(135);
4781 error = EINVAL;
4782 }
4783 break;
4784
4785 case FR_T_NONE :
4786 case FR_T_CALLFUNC :
4787 case FR_T_COMPIPF :
4788 break;
4789
4790 case FR_T_IPFEXPR :
4791 if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4792 IPFERROR(25);
4793 error = EINVAL;
4794 }
4795 break;
4796
4797 default :
4798 IPFERROR(26);
4799 error = EINVAL;
4800 break;
4801 }
4802 if (error != 0)
4803 goto donenolock;
4804
4805 if (fp->fr_tif.fd_name != -1) {
4806 if ((fp->fr_tif.fd_name < 0) ||
4807 (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4808 IPFERROR(139);
4809 error = EINVAL;
4810 goto donenolock;
4811 }
4812 }
4813
4814 if (fp->fr_dif.fd_name != -1) {
4815 if ((fp->fr_dif.fd_name < 0) ||
4816 (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4817 IPFERROR(140);
4818 error = EINVAL;
4819 goto donenolock;
4820 }
4821 }
4822
4823 if (fp->fr_rif.fd_name != -1) {
4824 if ((fp->fr_rif.fd_name < 0) ||
4825 (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4826 IPFERROR(141);
4827 error = EINVAL;
4828 goto donenolock;
4829 }
4830 }
4831
4832 /*
4833 * Lookup all the interface names that are part of the rule.
4834 */
4835 error = ipf_synclist(softc, fp, NULL);
4836 if (error != 0)
4837 goto donenolock;
4838 fp->fr_statecnt = 0;
4839 if (fp->fr_srctrack.ht_max_nodes != 0)
4840 ipf_rb_ht_init(&fp->fr_srctrack);
4841
4842 /*
4843 * Look for an existing matching filter rule, but don't include the
4844 * next or interface pointer in the comparison (fr_next, fr_ifa).
4845 * This elminates rules which are indentical being loaded. Checksum
4846 * the constant part of the filter rule to make comparisons quicker
4847 * (this meaning no pointers are included).
4848 */
4849 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4850 p < pp; p++)
4851 fp->fr_cksum += *p;
4852 pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize);
4853 for (p = (u_int *)fp->fr_data; p < pp; p++)
4854 fp->fr_cksum += *p;
4855
4856 WRITE_ENTER(&softc->ipf_mutex);
4857
4858 /*
4859 * Now that the filter rule lists are locked, we can walk the
4860 * chain of them without fear.
4861 */
4862 ftail = fprev;
4863 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4864 if (fp->fr_collect <= f->fr_collect) {
4865 ftail = fprev;
4866 f = NULL;
4867 break;
4868 }
4869 fprev = ftail;
4870 }
4871
4872 for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4873 DT2(rule_cmp, frentry_t *, fp, frentry_t *, f);
4874 if (ipf_rule_compare(fp, f) == 0)
4875 break;
4876 }
4877
4878 /*
4879 * If zero'ing statistics, copy current to caller and zero.
4880 */
4881 if (addrem == 2) {
4882 if (f == NULL) {
4883 IPFERROR(27);
4884 error = ESRCH;
4885 } else {
4886 /*
4887 * Copy and reduce lock because of impending copyout.
4888 * Well we should, but if we do then the atomicity of
4889 * this call and the correctness of fr_hits and
4890 * fr_bytes cannot be guaranteed. As it is, this code
4891 * only resets them to 0 if they are successfully
4892 * copied out into user space.
4893 */
4894 bcopy((char *)f, (char *)fp, f->fr_size);
4895 /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4896
4897 /*
4898 * When we copy this rule back out, set the data
4899 * pointer to be what it was in user space.
4900 */
4901 fp->fr_data = uptr;
4902 error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4903
4904 if (error == 0) {
4905 if ((f->fr_dsize != 0) && (uptr != NULL)) {
4906 error = COPYOUT(f->fr_data, uptr,
4907 f->fr_dsize);
4908 if (error != 0) {
4909 IPFERROR(28);
4910 error = EFAULT;
4911 }
4912 }
4913 if (error == 0) {
4914 f->fr_hits = 0;
4915 f->fr_bytes = 0;
4916 }
4917 }
4918 }
4919
4920 if (makecopy != 0) {
4921 if (ptr != NULL) {
4922 KFREES(ptr, fp->fr_dsize);
4923 }
4924 KFREES(fp, fp->fr_size);
4925 }
4926 RWLOCK_EXIT(&softc->ipf_mutex);
4927 return error;
4928 }
4929
4930 if (!f) {
4931 /*
4932 * At the end of this, ftail must point to the place where the
4933 * new rule is to be saved/inserted/added.
4934 * For SIOCAD*FR, this should be the last rule in the group of
4935 * rules that have equal fr_collect fields.
4936 * For SIOCIN*FR, ...
4937 */
4938 if (req == (ioctlcmd_t)SIOCADAFR ||
4939 req == (ioctlcmd_t)SIOCADIFR) {
4940
4941 for (ftail = fprev; (f = *ftail) != NULL; ) {
4942 if (f->fr_collect > fp->fr_collect)
4943 break;
4944 ftail = &f->fr_next;
4945 fprev = ftail;
4946 }
4947 ftail = fprev;
4948 f = NULL;
4949 ptr = NULL;
4950 } else if (req == (ioctlcmd_t)SIOCINAFR ||
4951 req == (ioctlcmd_t)SIOCINIFR) {
4952 while ((f = *fprev) != NULL) {
4953 if (f->fr_collect >= fp->fr_collect)
4954 break;
4955 fprev = &f->fr_next;
4956 }
4957 ftail = fprev;
4958 if (fp->fr_hits != 0) {
4959 while (fp->fr_hits && (f = *ftail)) {
4960 if (f->fr_collect != fp->fr_collect)
4961 break;
4962 fprev = ftail;
4963 ftail = &f->fr_next;
4964 fp->fr_hits--;
4965 }
4966 }
4967 f = NULL;
4968 ptr = NULL;
4969 }
4970 }
4971
4972 /*
4973 * Request to remove a rule.
4974 */
4975 if (addrem == 1) {
4976 if (!f) {
4977 IPFERROR(29);
4978 error = ESRCH;
4979 } else {
4980 /*
4981 * Do not allow activity from user space to interfere
4982 * with rules not loaded that way.
4983 */
4984 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4985 IPFERROR(30);
4986 error = EPERM;
4987 goto done;
4988 }
4989
4990 /*
4991 * Return EBUSY if the rule is being reference by
4992 * something else (eg state information.)
4993 */
4994 if (f->fr_ref > 1) {
4995 IPFERROR(31);
4996 error = EBUSY;
4997 goto done;
4998 }
4999 #ifdef IPFILTER_SCAN
5000 if (f->fr_isctag != -1 &&
5001 (f->fr_isc != (struct ipscan *)-1))
5002 ipf_scan_detachfr(f);
5003 #endif
5004
5005 if (unit == IPL_LOGAUTH) {
5006 error = ipf_auth_precmd(softc, req, f, ftail);
5007 goto done;
5008 }
5009
5010 ipf_rule_delete(softc, f, unit, set);
5011
5012 need_free = makecopy;
5013 }
5014 } else {
5015 /*
5016 * Not removing, so we must be adding/inserting a rule.
5017 */
5018 if (f != NULL) {
5019 IPFERROR(32);
5020 error = EEXIST;
5021 goto done;
5022 }
5023 if (unit == IPL_LOGAUTH) {
5024 error = ipf_auth_precmd(softc, req, fp, ftail);
5025 goto done;
5026 }
5027
5028 MUTEX_NUKE(&fp->fr_lock);
5029 MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5030 if (fp->fr_die != 0)
5031 ipf_rule_expire_insert(softc, fp, set);
5032
5033 fp->fr_hits = 0;
5034 if (makecopy != 0)
5035 fp->fr_ref = 1;
5036 fp->fr_pnext = ftail;
5037 fp->fr_next = *ftail;
5038 if (fp->fr_next != NULL)
5039 fp->fr_next->fr_pnext = &fp->fr_next;
5040 *ftail = fp;
5041 if (addrem == 0)
5042 ipf_fixskip(ftail, fp, 1);
5043
5044 fp->fr_icmpgrp = NULL;
5045 if (fp->fr_icmphead != -1) {
5046 group = FR_NAME(fp, fr_icmphead);
5047 fg = ipf_group_add(softc, group, fp, 0, unit, set);
5048 fp->fr_icmpgrp = fg;
5049 }
5050
5051 fp->fr_grphead = NULL;
5052 if (fp->fr_grhead != -1) {
5053 group = FR_NAME(fp, fr_grhead);
5054 fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5055 unit, set);
5056 fp->fr_grphead = fg;
5057 }
5058 }
5059 done:
5060 RWLOCK_EXIT(&softc->ipf_mutex);
5061 donenolock:
5062 if (need_free || (error != 0)) {
5063 if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5064 if ((fp->fr_satype == FRI_LOOKUP) &&
5065 (fp->fr_srcptr != NULL))
5066 ipf_lookup_deref(softc, fp->fr_srctype,
5067 fp->fr_srcptr);
5068 if ((fp->fr_datype == FRI_LOOKUP) &&
5069 (fp->fr_dstptr != NULL))
5070 ipf_lookup_deref(softc, fp->fr_dsttype,
5071 fp->fr_dstptr);
5072 }
5073 if (fp->fr_grp != NULL) {
5074 WRITE_ENTER(&softc->ipf_mutex);
5075 ipf_group_del(softc, fp->fr_grp, fp);
5076 RWLOCK_EXIT(&softc->ipf_mutex);
5077 }
5078 if ((ptr != NULL) && (makecopy != 0)) {
5079 KFREES(ptr, fp->fr_dsize);
5080 }
5081 KFREES(fp, fp->fr_size);
5082 }
5083 return (error);
5084 }
5085
5086
5087 /* ------------------------------------------------------------------------ */
5088 /* Function: ipf_rule_delete */
5089 /* Returns: Nil */
5090 /* Parameters: softc(I) - pointer to soft context main structure */
5091 /* f(I) - pointer to the rule being deleted */
5092 /* ftail(I) - pointer to the pointer to f */
5093 /* unit(I) - device for which this is for */
5094 /* set(I) - 1 or 0 (filter set) */
5095 /* */
5096 /* This function attempts to do what it can to delete a filter rule: remove */
5097 /* it from any linked lists and remove any groups it is responsible for. */
5098 /* But in the end, removing a rule can only drop the reference count - we */
5099 /* must use that as the guide for whether or not it can be freed. */
5100 /* ------------------------------------------------------------------------ */
5101 static void
5102 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5103 {
5104
5105 /*
5106 * If fr_pdnext is set, then the rule is on the expire list, so
5107 * remove it from there.
5108 */
5109 if (f->fr_pdnext != NULL) {
5110 *f->fr_pdnext = f->fr_dnext;
5111 if (f->fr_dnext != NULL)
5112 f->fr_dnext->fr_pdnext = f->fr_pdnext;
5113 f->fr_pdnext = NULL;
5114 f->fr_dnext = NULL;
5115 }
5116
5117 ipf_fixskip(f->fr_pnext, f, -1);
5118 if (f->fr_pnext != NULL)
5119 *f->fr_pnext = f->fr_next;
5120 if (f->fr_next != NULL)
5121 f->fr_next->fr_pnext = f->fr_pnext;
5122 f->fr_pnext = NULL;
5123 f->fr_next = NULL;
5124
5125 (void) ipf_derefrule(softc, &f);
5126 }
5127
5128 /* ------------------------------------------------------------------------ */
5129 /* Function: ipf_rule_expire_insert */
5130 /* Returns: Nil */
5131 /* Parameters: softc(I) - pointer to soft context main structure */
5132 /* f(I) - pointer to rule to be added to expire list */
5133 /* set(I) - 1 or 0 (filter set) */
5134 /* */
5135 /* If the new rule has a given expiration time, insert it into the list of */
5136 /* expiring rules with the ones to be removed first added to the front of */
5137 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5138 /* expiration interval checks. */
5139 /* ------------------------------------------------------------------------ */
5140 static void
5141 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5142 {
5143 frentry_t *fr;
5144
5145 /*
5146 */
5147
5148 f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5149 for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5150 fr = fr->fr_dnext) {
5151 if (f->fr_die < fr->fr_die)
5152 break;
5153 if (fr->fr_dnext == NULL) {
5154 /*
5155 * We've got to the last rule and everything
5156 * wanted to be expired before this new node,
5157 * so we have to tack it on the end...
5158 */
5159 fr->fr_dnext = f;
5160 f->fr_pdnext = &fr->fr_dnext;
5161 fr = NULL;
5162 break;
5163 }
5164 }
5165
5166 if (softc->ipf_rule_explist[set] == NULL) {
5167 softc->ipf_rule_explist[set] = f;
5168 f->fr_pdnext = &softc->ipf_rule_explist[set];
5169 } else if (fr != NULL) {
5170 f->fr_dnext = fr;
5171 f->fr_pdnext = fr->fr_pdnext;
5172 fr->fr_pdnext = &f->fr_dnext;
5173 }
5174 }
5175
5176
5177 /* ------------------------------------------------------------------------ */
5178 /* Function: ipf_findlookup */
5179 /* Returns: NULL = failure, else success */
5180 /* Parameters: softc(I) - pointer to soft context main structure */
5181 /* unit(I) - ipf device we want to find match for */
5182 /* fp(I) - rule for which lookup is for */
5183 /* addrp(I) - pointer to lookup information in address struct */
5184 /* maskp(O) - pointer to lookup information for storage */
5185 /* */
5186 /* When using pools and hash tables to store addresses for matching in */
5187 /* rules, it is necessary to resolve both the object referred to by the */
5188 /* name or address (and return that pointer) and also provide the means by */
5189 /* which to determine if an address belongs to that object to make the */
5190 /* packet matching quicker. */
5191 /* ------------------------------------------------------------------------ */
5192 static void *
5193 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5194 i6addr_t *addrp, i6addr_t *maskp)
5195 {
5196 void *ptr = NULL;
5197
5198 switch (addrp->iplookupsubtype)
5199 {
5200 case 0 :
5201 ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5202 addrp->iplookupnum,
5203 &maskp->iplookupfunc);
5204 break;
5205 case 1 :
5206 if (addrp->iplookupname < 0)
5207 break;
5208 if (addrp->iplookupname >= fr->fr_namelen)
5209 break;
5210 ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5211 fr->fr_names + addrp->iplookupname,
5212 &maskp->iplookupfunc);
5213 break;
5214 default :
5215 break;
5216 }
5217
5218 return ptr;
5219 }
5220
5221
5222 /* ------------------------------------------------------------------------ */
5223 /* Function: ipf_funcinit */
5224 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */
5225 /* Parameters: softc(I) - pointer to soft context main structure */
5226 /* fr(I) - pointer to filter rule */
5227 /* */
5228 /* If a rule is a call rule, then check if the function it points to needs */
5229 /* an init function to be called now the rule has been loaded. */
5230 /* ------------------------------------------------------------------------ */
5231 static int
5232 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5233 {
5234 ipfunc_resolve_t *ft;
5235 int err;
5236
5237 IPFERROR(34);
5238 err = ESRCH;
5239
5240 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5241 if (ft->ipfu_addr == fr->fr_func) {
5242 err = 0;
5243 if (ft->ipfu_init != NULL)
5244 err = (*ft->ipfu_init)(softc, fr);
5245 break;
5246 }
5247 return err;
5248 }
5249
5250
5251 /* ------------------------------------------------------------------------ */
5252 /* Function: ipf_funcfini */
5253 /* Returns: Nil */
5254 /* Parameters: softc(I) - pointer to soft context main structure */
5255 /* fr(I) - pointer to filter rule */
5256 /* */
5257 /* For a given filter rule, call the matching "fini" function if the rule */
5258 /* is using a known function that would have resulted in the "init" being */
5259 /* called for ealier. */
5260 /* ------------------------------------------------------------------------ */
5261 static void
5262 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5263 {
5264 ipfunc_resolve_t *ft;
5265
5266 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5267 if (ft->ipfu_addr == fr->fr_func) {
5268 if (ft->ipfu_fini != NULL)
5269 (void) (*ft->ipfu_fini)(softc, fr);
5270 break;
5271 }
5272 }
5273
5274
5275 /* ------------------------------------------------------------------------ */
5276 /* Function: ipf_findfunc */
5277 /* Returns: ipfunc_t - pointer to function if found, else NULL */
5278 /* Parameters: funcptr(I) - function pointer to lookup */
5279 /* */
5280 /* Look for a function in the table of known functions. */
5281 /* ------------------------------------------------------------------------ */
5282 static ipfunc_t
5283 ipf_findfunc(ipfunc_t funcptr)
5284 {
5285 ipfunc_resolve_t *ft;
5286
5287 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5288 if (ft->ipfu_addr == funcptr)
5289 return funcptr;
5290 return NULL;
5291 }
5292
5293
5294 /* ------------------------------------------------------------------------ */
5295 /* Function: ipf_resolvefunc */
5296 /* Returns: int - 0 == success, else error */
5297 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */
5298 /* */
5299 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5300 /* This will either be the function name (if the pointer is set) or the */
5301 /* function pointer if the name is set. When found, fill in the other one */
5302 /* so that the entire, complete, structure can be copied back to user space.*/
5303 /* ------------------------------------------------------------------------ */
5304 int
5305 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5306 {
5307 ipfunc_resolve_t res, *ft;
5308 int error;
5309
5310 error = BCOPYIN(data, &res, sizeof(res));
5311 if (error != 0) {
5312 IPFERROR(123);
5313 return EFAULT;
5314 }
5315
5316 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5317 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5318 if (strncmp(res.ipfu_name, ft->ipfu_name,
5319 sizeof(res.ipfu_name)) == 0) {
5320 res.ipfu_addr = ft->ipfu_addr;
5321 res.ipfu_init = ft->ipfu_init;
5322 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5323 IPFERROR(35);
5324 return EFAULT;
5325 }
5326 return 0;
5327 }
5328 }
5329 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5330 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5331 if (ft->ipfu_addr == res.ipfu_addr) {
5332 (void) strncpy(res.ipfu_name, ft->ipfu_name,
5333 sizeof(res.ipfu_name));
5334 res.ipfu_init = ft->ipfu_init;
5335 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5336 IPFERROR(36);
5337 return EFAULT;
5338 }
5339 return 0;
5340 }
5341 }
5342 IPFERROR(37);
5343 return ESRCH;
5344 }
5345
5346
5347 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5348 !defined(__FreeBSD__)) || \
5349 FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5350 OPENBSD_LT_REV(200006)
5351 /*
5352 * From: NetBSD
5353 * ppsratecheck(): packets (or events) per second limitation.
5354 */
5355 int
5356 ppsratecheck(lasttime, curpps, maxpps)
5357 struct timeval *lasttime;
5358 int *curpps;
5359 int maxpps; /* maximum pps allowed */
5360 {
5361 struct timeval tv, delta;
5362 int rv;
5363
5364 GETKTIME(&tv);
5365
5366 delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5367 delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5368 if (delta.tv_usec < 0) {
5369 delta.tv_sec--;
5370 delta.tv_usec += 1000000;
5371 }
5372
5373 /*
5374 * check for 0,0 is so that the message will be seen at least once.
5375 * if more than one second have passed since the last update of
5376 * lasttime, reset the counter.
5377 *
5378 * we do increment *curpps even in *curpps < maxpps case, as some may
5379 * try to use *curpps for stat purposes as well.
5380 */
5381 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5382 delta.tv_sec >= 1) {
5383 *lasttime = tv;
5384 *curpps = 0;
5385 rv = 1;
5386 } else if (maxpps < 0)
5387 rv = 1;
5388 else if (*curpps < maxpps)
5389 rv = 1;
5390 else
5391 rv = 0;
5392 *curpps = *curpps + 1;
5393
5394 return (rv);
5395 }
5396 #endif
5397
5398
5399 /* ------------------------------------------------------------------------ */
5400 /* Function: ipf_derefrule */
5401 /* Returns: int - 0 == rule freed up, else rule not freed */
5402 /* Parameters: fr(I) - pointer to filter rule */
5403 /* */
5404 /* Decrement the reference counter to a rule by one. If it reaches zero, */
5405 /* free it and any associated storage space being used by it. */
5406 /* ------------------------------------------------------------------------ */
5407 int
5408 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5409 {
5410 frentry_t *fr;
5411 frdest_t *fdp;
5412
5413 fr = *frp;
5414 *frp = NULL;
5415
5416 MUTEX_ENTER(&fr->fr_lock);
5417 fr->fr_ref--;
5418 if (fr->fr_ref == 0) {
5419 MUTEX_EXIT(&fr->fr_lock);
5420 MUTEX_DESTROY(&fr->fr_lock);
5421
5422 ipf_funcfini(softc, fr);
5423
5424 fdp = &fr->fr_tif;
5425 if (fdp->fd_type == FRD_DSTLIST)
5426 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5427
5428 fdp = &fr->fr_rif;
5429 if (fdp->fd_type == FRD_DSTLIST)
5430 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5431
5432 fdp = &fr->fr_dif;
5433 if (fdp->fd_type == FRD_DSTLIST)
5434 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5435
5436 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5437 fr->fr_satype == FRI_LOOKUP)
5438 ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5439 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5440 fr->fr_datype == FRI_LOOKUP)
5441 ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5442
5443 if (fr->fr_grp != NULL)
5444 ipf_group_del(softc, fr->fr_grp, fr);
5445
5446 if (fr->fr_grphead != NULL)
5447 ipf_group_del(softc, fr->fr_grphead, fr);
5448
5449 if (fr->fr_icmpgrp != NULL)
5450 ipf_group_del(softc, fr->fr_icmpgrp, fr);
5451
5452 if ((fr->fr_flags & FR_COPIED) != 0) {
5453 if (fr->fr_dsize) {
5454 KFREES(fr->fr_data, fr->fr_dsize);
5455 }
5456 KFREES(fr, fr->fr_size);
5457 return 0;
5458 }
5459 return 1;
5460 } else {
5461 MUTEX_EXIT(&fr->fr_lock);
5462 }
5463 return -1;
5464 }
5465
5466
5467 /* ------------------------------------------------------------------------ */
5468 /* Function: ipf_grpmapinit */
5469 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5470 /* Parameters: fr(I) - pointer to rule to find hash table for */
5471 /* */
5472 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */
5473 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */
5474 /* ------------------------------------------------------------------------ */
5475 static int
5476 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5477 {
5478 char name[FR_GROUPLEN];
5479 iphtable_t *iph;
5480
5481 (void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5482 iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5483 if (iph == NULL) {
5484 IPFERROR(38);
5485 return ESRCH;
5486 }
5487 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5488 IPFERROR(39);
5489 return ESRCH;
5490 }
5491 iph->iph_ref++;
5492 fr->fr_ptr = iph;
5493 return 0;
5494 }
5495
5496
5497 /* ------------------------------------------------------------------------ */
5498 /* Function: ipf_grpmapfini */
5499 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5500 /* Parameters: softc(I) - pointer to soft context main structure */
5501 /* fr(I) - pointer to rule to release hash table for */
5502 /* */
5503 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5504 /* be called to undo what ipf_grpmapinit caused to be done. */
5505 /* ------------------------------------------------------------------------ */
5506 static int
5507 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5508 {
5509 iphtable_t *iph;
5510 iph = fr->fr_ptr;
5511 if (iph != NULL)
5512 ipf_lookup_deref(softc, IPLT_HASH, iph);
5513 return 0;
5514 }
5515
5516
5517 /* ------------------------------------------------------------------------ */
5518 /* Function: ipf_srcgrpmap */
5519 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5520 /* Parameters: fin(I) - pointer to packet information */
5521 /* passp(IO) - pointer to current/new filter decision (unused) */
5522 /* */
5523 /* Look for a rule group head in a hash table, using the source address as */
5524 /* the key, and descend into that group and continue matching rules against */
5525 /* the packet. */
5526 /* ------------------------------------------------------------------------ */
5527 frentry_t *
5528 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5529 {
5530 frgroup_t *fg;
5531 void *rval;
5532
5533 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5534 &fin->fin_src);
5535 if (rval == NULL)
5536 return NULL;
5537
5538 fg = rval;
5539 fin->fin_fr = fg->fg_start;
5540 (void) ipf_scanlist(fin, *passp);
5541 return fin->fin_fr;
5542 }
5543
5544
5545 /* ------------------------------------------------------------------------ */
5546 /* Function: ipf_dstgrpmap */
5547 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5548 /* Parameters: fin(I) - pointer to packet information */
5549 /* passp(IO) - pointer to current/new filter decision (unused) */
5550 /* */
5551 /* Look for a rule group head in a hash table, using the destination */
5552 /* address as the key, and descend into that group and continue matching */
5553 /* rules against the packet. */
5554 /* ------------------------------------------------------------------------ */
5555 frentry_t *
5556 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5557 {
5558 frgroup_t *fg;
5559 void *rval;
5560
5561 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5562 &fin->fin_dst);
5563 if (rval == NULL)
5564 return NULL;
5565
5566 fg = rval;
5567 fin->fin_fr = fg->fg_start;
5568 (void) ipf_scanlist(fin, *passp);
5569 return fin->fin_fr;
5570 }
5571
5572 /*
5573 * Queue functions
5574 * ===============
5575 * These functions manage objects on queues for efficient timeouts. There
5576 * are a number of system defined queues as well as user defined timeouts.
5577 * It is expected that a lock is held in the domain in which the queue
5578 * belongs (i.e. either state or NAT) when calling any of these functions
5579 * that prevents ipf_freetimeoutqueue() from being called at the same time
5580 * as any other.
5581 */
5582
5583
5584 /* ------------------------------------------------------------------------ */
5585 /* Function: ipf_addtimeoutqueue */
5586 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */
5587 /* timeout queue with given interval. */
5588 /* Parameters: parent(I) - pointer to pointer to parent node of this list */
5589 /* of interface queues. */
5590 /* seconds(I) - timeout value in seconds for this queue. */
5591 /* */
5592 /* This routine first looks for a timeout queue that matches the interval */
5593 /* being requested. If it finds one, increments the reference counter and */
5594 /* returns a pointer to it. If none are found, it allocates a new one and */
5595 /* inserts it at the top of the list. */
5596 /* */
5597 /* Locking. */
5598 /* It is assumed that the caller of this function has an appropriate lock */
5599 /* held (exclusively) in the domain that encompases 'parent'. */
5600 /* ------------------------------------------------------------------------ */
5601 ipftq_t *
5602 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5603 {
5604 ipftq_t *ifq;
5605 u_int period;
5606
5607 period = seconds * IPF_HZ_DIVIDE;
5608
5609 MUTEX_ENTER(&softc->ipf_timeoutlock);
5610 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5611 if (ifq->ifq_ttl == period) {
5612 /*
5613 * Reset the delete flag, if set, so the structure
5614 * gets reused rather than freed and reallocated.
5615 */
5616 MUTEX_ENTER(&ifq->ifq_lock);
5617 ifq->ifq_flags &= ~IFQF_DELETE;
5618 ifq->ifq_ref++;
5619 MUTEX_EXIT(&ifq->ifq_lock);
5620 MUTEX_EXIT(&softc->ipf_timeoutlock);
5621
5622 return ifq;
5623 }
5624 }
5625
5626 KMALLOC(ifq, ipftq_t *);
5627 if (ifq != NULL) {
5628 MUTEX_NUKE(&ifq->ifq_lock);
5629 IPFTQ_INIT(ifq, period, "ipftq mutex");
5630 ifq->ifq_next = *parent;
5631 ifq->ifq_pnext = parent;
5632 ifq->ifq_flags = IFQF_USER;
5633 ifq->ifq_ref++;
5634 *parent = ifq;
5635 softc->ipf_userifqs++;
5636 }
5637 MUTEX_EXIT(&softc->ipf_timeoutlock);
5638 return ifq;
5639 }
5640
5641
5642 /* ------------------------------------------------------------------------ */
5643 /* Function: ipf_deletetimeoutqueue */
5644 /* Returns: int - new reference count value of the timeout queue */
5645 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5646 /* Locks: ifq->ifq_lock */
5647 /* */
5648 /* This routine must be called when we're discarding a pointer to a timeout */
5649 /* queue object, taking care of the reference counter. */
5650 /* */
5651 /* Now that this just sets a DELETE flag, it requires the expire code to */
5652 /* check the list of user defined timeout queues and call the free function */
5653 /* below (currently commented out) to stop memory leaking. It is done this */
5654 /* way because the locking may not be sufficient to safely do a free when */
5655 /* this function is called. */
5656 /* ------------------------------------------------------------------------ */
5657 int
5658 ipf_deletetimeoutqueue(ipftq_t *ifq)
5659 {
5660
5661 ifq->ifq_ref--;
5662 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5663 ifq->ifq_flags |= IFQF_DELETE;
5664 }
5665
5666 return ifq->ifq_ref;
5667 }
5668
5669
5670 /* ------------------------------------------------------------------------ */
5671 /* Function: ipf_freetimeoutqueue */
5672 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5673 /* Returns: Nil */
5674 /* */
5675 /* Locking: */
5676 /* It is assumed that the caller of this function has an appropriate lock */
5677 /* held (exclusively) in the domain that encompases the callers "domain". */
5678 /* The ifq_lock for this structure should not be held. */
5679 /* */
5680 /* Remove a user defined timeout queue from the list of queues it is in and */
5681 /* tidy up after this is done. */
5682 /* ------------------------------------------------------------------------ */
5683 void
5684 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5685 {
5686
5687 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5688 ((ifq->ifq_flags & IFQF_USER) == 0)) {
5689 printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5690 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5691 ifq->ifq_ref);
5692 return;
5693 }
5694
5695 /*
5696 * Remove from its position in the list.
5697 */
5698 *ifq->ifq_pnext = ifq->ifq_next;
5699 if (ifq->ifq_next != NULL)
5700 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5701 ifq->ifq_next = NULL;
5702 ifq->ifq_pnext = NULL;
5703
5704 MUTEX_DESTROY(&ifq->ifq_lock);
5705 ATOMIC_DEC(softc->ipf_userifqs);
5706 KFREE(ifq);
5707 }
5708
5709
5710 /* ------------------------------------------------------------------------ */
5711 /* Function: ipf_deletequeueentry */
5712 /* Returns: Nil */
5713 /* Parameters: tqe(I) - timeout queue entry to delete */
5714 /* */
5715 /* Remove a tail queue entry from its queue and make it an orphan. */
5716 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5717 /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */
5718 /* the correct lock(s) may not be held that would make it safe to do so. */
5719 /* ------------------------------------------------------------------------ */
5720 void
5721 ipf_deletequeueentry(ipftqent_t *tqe)
5722 {
5723 ipftq_t *ifq;
5724
5725 ifq = tqe->tqe_ifq;
5726
5727 MUTEX_ENTER(&ifq->ifq_lock);
5728
5729 if (tqe->tqe_pnext != NULL) {
5730 *tqe->tqe_pnext = tqe->tqe_next;
5731 if (tqe->tqe_next != NULL)
5732 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5733 else /* we must be the tail anyway */
5734 ifq->ifq_tail = tqe->tqe_pnext;
5735
5736 tqe->tqe_pnext = NULL;
5737 tqe->tqe_ifq = NULL;
5738 }
5739
5740 (void) ipf_deletetimeoutqueue(ifq);
5741 ASSERT(ifq->ifq_ref > 0);
5742
5743 MUTEX_EXIT(&ifq->ifq_lock);
5744 }
5745
5746
5747 /* ------------------------------------------------------------------------ */
5748 /* Function: ipf_queuefront */
5749 /* Returns: Nil */
5750 /* Parameters: tqe(I) - pointer to timeout queue entry */
5751 /* */
5752 /* Move a queue entry to the front of the queue, if it isn't already there. */
5753 /* ------------------------------------------------------------------------ */
5754 void
5755 ipf_queuefront(ipftqent_t *tqe)
5756 {
5757 ipftq_t *ifq;
5758
5759 ifq = tqe->tqe_ifq;
5760 if (ifq == NULL)
5761 return;
5762
5763 MUTEX_ENTER(&ifq->ifq_lock);
5764 if (ifq->ifq_head != tqe) {
5765 *tqe->tqe_pnext = tqe->tqe_next;
5766 if (tqe->tqe_next)
5767 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5768 else
5769 ifq->ifq_tail = tqe->tqe_pnext;
5770
5771 tqe->tqe_next = ifq->ifq_head;
5772 ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5773 ifq->ifq_head = tqe;
5774 tqe->tqe_pnext = &ifq->ifq_head;
5775 }
5776 MUTEX_EXIT(&ifq->ifq_lock);
5777 }
5778
5779
5780 /* ------------------------------------------------------------------------ */
5781 /* Function: ipf_queueback */
5782 /* Returns: Nil */
5783 /* Parameters: ticks(I) - ipf tick time to use with this call */
5784 /* tqe(I) - pointer to timeout queue entry */
5785 /* */
5786 /* Move a queue entry to the back of the queue, if it isn't already there. */
5787 /* We use use ticks to calculate the expiration and mark for when we last */
5788 /* touched the structure. */
5789 /* ------------------------------------------------------------------------ */
5790 void
5791 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5792 {
5793 ipftq_t *ifq;
5794
5795 ifq = tqe->tqe_ifq;
5796 if (ifq == NULL)
5797 return;
5798 tqe->tqe_die = ticks + ifq->ifq_ttl;
5799 tqe->tqe_touched = ticks;
5800
5801 MUTEX_ENTER(&ifq->ifq_lock);
5802 if (tqe->tqe_next != NULL) { /* at the end already ? */
5803 /*
5804 * Remove from list
5805 */
5806 *tqe->tqe_pnext = tqe->tqe_next;
5807 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5808
5809 /*
5810 * Make it the last entry.
5811 */
5812 tqe->tqe_next = NULL;
5813 tqe->tqe_pnext = ifq->ifq_tail;
5814 *ifq->ifq_tail = tqe;
5815 ifq->ifq_tail = &tqe->tqe_next;
5816 }
5817 MUTEX_EXIT(&ifq->ifq_lock);
5818 }
5819
5820
5821 /* ------------------------------------------------------------------------ */
5822 /* Function: ipf_queueappend */
5823 /* Returns: Nil */
5824 /* Parameters: ticks(I) - ipf tick time to use with this call */
5825 /* tqe(I) - pointer to timeout queue entry */
5826 /* ifq(I) - pointer to timeout queue */
5827 /* parent(I) - owing object pointer */
5828 /* */
5829 /* Add a new item to this queue and put it on the very end. */
5830 /* We use use ticks to calculate the expiration and mark for when we last */
5831 /* touched the structure. */
5832 /* ------------------------------------------------------------------------ */
5833 void
5834 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5835 {
5836
5837 MUTEX_ENTER(&ifq->ifq_lock);
5838 tqe->tqe_parent = parent;
5839 tqe->tqe_pnext = ifq->ifq_tail;
5840 *ifq->ifq_tail = tqe;
5841 ifq->ifq_tail = &tqe->tqe_next;
5842 tqe->tqe_next = NULL;
5843 tqe->tqe_ifq = ifq;
5844 tqe->tqe_die = ticks + ifq->ifq_ttl;
5845 tqe->tqe_touched = ticks;
5846 ifq->ifq_ref++;
5847 MUTEX_EXIT(&ifq->ifq_lock);
5848 }
5849
5850
5851 /* ------------------------------------------------------------------------ */
5852 /* Function: ipf_movequeue */
5853 /* Returns: Nil */
5854 /* Parameters: tq(I) - pointer to timeout queue information */
5855 /* oifp(I) - old timeout queue entry was on */
5856 /* nifp(I) - new timeout queue to put entry on */
5857 /* */
5858 /* Move a queue entry from one timeout queue to another timeout queue. */
5859 /* If it notices that the current entry is already last and does not need */
5860 /* to move queue, the return. */
5861 /* ------------------------------------------------------------------------ */
5862 void
5863 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5864 {
5865
5866 /*
5867 * If the queue hasn't changed and we last touched this entry at the
5868 * same ipf time, then we're not going to achieve anything by either
5869 * changing the ttl or moving it on the queue.
5870 */
5871 if (oifq == nifq && tqe->tqe_touched == ticks)
5872 return;
5873
5874 /*
5875 * For any of this to be outside the lock, there is a risk that two
5876 * packets entering simultaneously, with one changing to a different
5877 * queue and one not, could end up with things in a bizarre state.
5878 */
5879 MUTEX_ENTER(&oifq->ifq_lock);
5880
5881 tqe->tqe_touched = ticks;
5882 tqe->tqe_die = ticks + nifq->ifq_ttl;
5883 /*
5884 * Is the operation here going to be a no-op ?
5885 */
5886 if (oifq == nifq) {
5887 if ((tqe->tqe_next == NULL) ||
5888 (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5889 MUTEX_EXIT(&oifq->ifq_lock);
5890 return;
5891 }
5892 }
5893
5894 /*
5895 * Remove from the old queue
5896 */
5897 *tqe->tqe_pnext = tqe->tqe_next;
5898 if (tqe->tqe_next)
5899 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5900 else
5901 oifq->ifq_tail = tqe->tqe_pnext;
5902 tqe->tqe_next = NULL;
5903
5904 /*
5905 * If we're moving from one queue to another, release the
5906 * lock on the old queue and get a lock on the new queue.
5907 * For user defined queues, if we're moving off it, call
5908 * delete in case it can now be freed.
5909 */
5910 if (oifq != nifq) {
5911 tqe->tqe_ifq = NULL;
5912
5913 (void) ipf_deletetimeoutqueue(oifq);
5914
5915 MUTEX_EXIT(&oifq->ifq_lock);
5916
5917 MUTEX_ENTER(&nifq->ifq_lock);
5918
5919 tqe->tqe_ifq = nifq;
5920 nifq->ifq_ref++;
5921 }
5922
5923 /*
5924 * Add to the bottom of the new queue
5925 */
5926 tqe->tqe_pnext = nifq->ifq_tail;
5927 *nifq->ifq_tail = tqe;
5928 nifq->ifq_tail = &tqe->tqe_next;
5929 MUTEX_EXIT(&nifq->ifq_lock);
5930 }
5931
5932
5933 /* ------------------------------------------------------------------------ */
5934 /* Function: ipf_updateipid */
5935 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */
5936 /* Parameters: fin(I) - pointer to packet information */
5937 /* */
5938 /* When we are doing NAT, change the IP of every packet to represent a */
5939 /* single sequence of packets coming from the host, hiding any host */
5940 /* specific sequencing that might otherwise be revealed. If the packet is */
5941 /* a fragment, then store the 'new' IPid in the fragment cache and look up */
5942 /* the fragment cache for non-leading fragments. If a non-leading fragment */
5943 /* has no match in the cache, return an error. */
5944 /* ------------------------------------------------------------------------ */
5945 static int
5946 ipf_updateipid(fr_info_t *fin)
5947 {
5948 u_short id, ido, sums;
5949 u_32_t sumd, sum;
5950 ip_t *ip;
5951
5952 if (fin->fin_off != 0) {
5953 sum = ipf_frag_ipidknown(fin);
5954 if (sum == 0xffffffff)
5955 return -1;
5956 sum &= 0xffff;
5957 id = (u_short)sum;
5958 } else {
5959 id = ipf_nextipid(fin);
5960 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5961 (void) ipf_frag_ipidnew(fin, (u_32_t)id);
5962 }
5963
5964 ip = fin->fin_ip;
5965 ido = ntohs(ip->ip_id);
5966 if (id == ido)
5967 return 0;
5968 ip->ip_id = htons(id);
5969 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */
5970 sum = (~ntohs(ip->ip_sum)) & 0xffff;
5971 sum += sumd;
5972 sum = (sum >> 16) + (sum & 0xffff);
5973 sum = (sum >> 16) + (sum & 0xffff);
5974 sums = ~(u_short)sum;
5975 ip->ip_sum = htons(sums);
5976 return 0;
5977 }
5978
5979
5980 #ifdef NEED_FRGETIFNAME
5981 /* ------------------------------------------------------------------------ */
5982 /* Function: ipf_getifname */
5983 /* Returns: char * - pointer to interface name */
5984 /* Parameters: ifp(I) - pointer to network interface */
5985 /* buffer(O) - pointer to where to store interface name */
5986 /* */
5987 /* Constructs an interface name in the buffer passed. The buffer passed is */
5988 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */
5989 /* as a NULL pointer then return a pointer to a static array. */
5990 /* ------------------------------------------------------------------------ */
5991 char *
5992 ipf_getifname(ifp, buffer)
5993 struct ifnet *ifp;
5994 char *buffer;
5995 {
5996 static char namebuf[LIFNAMSIZ];
5997 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5998 defined(__sgi) || defined(linux) || defined(_AIX51) || \
5999 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6000 int unit, space;
6001 char temp[20];
6002 char *s;
6003 # endif
6004
6005 if (buffer == NULL)
6006 buffer = namebuf;
6007 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6008 buffer[LIFNAMSIZ - 1] = '\0';
6009 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6010 defined(__sgi) || defined(_AIX51) || \
6011 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6012 for (s = buffer; *s; s++)
6013 ;
6014 unit = ifp->if_unit;
6015 space = LIFNAMSIZ - (s - buffer);
6016 if ((space > 0) && (unit >= 0)) {
6017 snprintf(temp, sizeof(temp), "%d", unit);
6018 (void) strncpy(s, temp, space);
6019 s[space - 1] = '\0';
6020 }
6021 # endif
6022 return buffer;
6023 }
6024 #endif
6025
6026
6027 /* ------------------------------------------------------------------------ */
6028 /* Function: ipf_ioctlswitch */
6029 /* Returns: int - -1 continue processing, else ioctl return value */
6030 /* Parameters: unit(I) - device unit opened */
6031 /* data(I) - pointer to ioctl data */
6032 /* cmd(I) - ioctl command */
6033 /* mode(I) - mode value */
6034 /* uid(I) - uid making the ioctl call */
6035 /* ctx(I) - pointer to context data */
6036 /* */
6037 /* Based on the value of unit, call the appropriate ioctl handler or return */
6038 /* EIO if ipfilter is not running. Also checks if write perms are req'd */
6039 /* for the device in order to execute the ioctl. A special case is made */
6040 /* SIOCIPFINTERROR so that the same code isn't required in every handler. */
6041 /* The context data pointer is passed through as this is used as the key */
6042 /* for locating a matching token for continued access for walking lists, */
6043 /* etc. */
6044 /* ------------------------------------------------------------------------ */
6045 int
6046 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
6047 int mode, int uid, void *ctx)
6048 {
6049 int error = 0;
6050
6051 switch (cmd)
6052 {
6053 case SIOCIPFINTERROR :
6054 error = BCOPYOUT(&softc->ipf_interror, data,
6055 sizeof(softc->ipf_interror));
6056 if (error != 0) {
6057 IPFERROR(40);
6058 error = EFAULT;
6059 }
6060 return error;
6061 default :
6062 break;
6063 }
6064
6065 switch (unit)
6066 {
6067 case IPL_LOGIPF :
6068 error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6069 break;
6070 case IPL_LOGNAT :
6071 if (softc->ipf_running > 0) {
6072 error = ipf_nat_ioctl(softc, data, cmd, mode,
6073 uid, ctx);
6074 } else {
6075 IPFERROR(42);
6076 error = EIO;
6077 }
6078 break;
6079 case IPL_LOGSTATE :
6080 if (softc->ipf_running > 0) {
6081 error = ipf_state_ioctl(softc, data, cmd, mode,
6082 uid, ctx);
6083 } else {
6084 IPFERROR(43);
6085 error = EIO;
6086 }
6087 break;
6088 case IPL_LOGAUTH :
6089 if (softc->ipf_running > 0) {
6090 error = ipf_auth_ioctl(softc, data, cmd, mode,
6091 uid, ctx);
6092 } else {
6093 IPFERROR(44);
6094 error = EIO;
6095 }
6096 break;
6097 case IPL_LOGSYNC :
6098 if (softc->ipf_running > 0) {
6099 error = ipf_sync_ioctl(softc, data, cmd, mode,
6100 uid, ctx);
6101 } else {
6102 error = EIO;
6103 IPFERROR(45);
6104 }
6105 break;
6106 case IPL_LOGSCAN :
6107 #ifdef IPFILTER_SCAN
6108 if (softc->ipf_running > 0)
6109 error = ipf_scan_ioctl(softc, data, cmd, mode,
6110 uid, ctx);
6111 else
6112 #endif
6113 {
6114 error = EIO;
6115 IPFERROR(46);
6116 }
6117 break;
6118 case IPL_LOGLOOKUP :
6119 if (softc->ipf_running > 0) {
6120 error = ipf_lookup_ioctl(softc, data, cmd, mode,
6121 uid, ctx);
6122 } else {
6123 error = EIO;
6124 IPFERROR(47);
6125 }
6126 break;
6127 default :
6128 IPFERROR(48);
6129 error = EIO;
6130 break;
6131 }
6132
6133 return error;
6134 }
6135
6136
6137 /*
6138 * This array defines the expected size of objects coming into the kernel
6139 * for the various recognised object types. The first column is flags (see
6140 * below), 2nd column is current size, 3rd column is the version number of
6141 * when the current size became current.
6142 * Flags:
6143 * 1 = minimum size, not absolute size
6144 */
6145 static int ipf_objbytes[IPFOBJ_COUNT][3] = {
6146 { 1, sizeof(struct frentry), 5010000 }, /* 0 */
6147 { 1, sizeof(struct friostat), 5010000 },
6148 { 0, sizeof(struct fr_info), 5010000 },
6149 { 0, sizeof(struct ipf_authstat), 4010100 },
6150 { 0, sizeof(struct ipfrstat), 5010000 },
6151 { 1, sizeof(struct ipnat), 5010000 }, /* 5 */
6152 { 0, sizeof(struct natstat), 5010000 },
6153 { 0, sizeof(struct ipstate_save), 5010000 },
6154 { 1, sizeof(struct nat_save), 5010000 },
6155 { 0, sizeof(struct natlookup), 5010000 },
6156 { 1, sizeof(struct ipstate), 5010000 }, /* 10 */
6157 { 0, sizeof(struct ips_stat), 5010000 },
6158 { 0, sizeof(struct frauth), 5010000 },
6159 { 0, sizeof(struct ipftune), 4010100 },
6160 { 0, sizeof(struct nat), 5010000 },
6161 { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */
6162 { 0, sizeof(struct ipfgeniter), 4011400 },
6163 { 0, sizeof(struct ipftable), 4011400 },
6164 { 0, sizeof(struct ipflookupiter), 4011400 },
6165 { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES },
6166 { 1, 0, 0 }, /* IPFEXPR */
6167 { 0, 0, 0 }, /* PROXYCTL */
6168 { 0, sizeof (struct fripf), 5010000 }
6169 };
6170
6171
6172 /* ------------------------------------------------------------------------ */
6173 /* Function: ipf_inobj */
6174 /* Returns: int - 0 = success, else failure */
6175 /* Parameters: softc(I) - soft context pointerto work with */
6176 /* data(I) - pointer to ioctl data */
6177 /* objp(O) - where to store ipfobj structure */
6178 /* ptr(I) - pointer to data to copy out */
6179 /* type(I) - type of structure being moved */
6180 /* */
6181 /* Copy in the contents of what the ipfobj_t points to. In future, we */
6182 /* add things to check for version numbers, sizes, etc, to make it backward */
6183 /* compatible at the ABI for user land. */
6184 /* If objp is not NULL then we assume that the caller wants to see what is */
6185 /* in the ipfobj_t structure being copied in. As an example, this can tell */
6186 /* the caller what version of ipfilter the ioctl program was written to. */
6187 /* ------------------------------------------------------------------------ */
6188 int
6189 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6190 int type)
6191 {
6192 ipfobj_t obj;
6193 int error;
6194 int size;
6195
6196 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6197 IPFERROR(49);
6198 return EINVAL;
6199 }
6200
6201 if (objp == NULL)
6202 objp = &obj;
6203 error = BCOPYIN(data, objp, sizeof(*objp));
6204 if (error != 0) {
6205 IPFERROR(124);
6206 return EFAULT;
6207 }
6208
6209 if (objp->ipfo_type != type) {
6210 IPFERROR(50);
6211 return EINVAL;
6212 }
6213
6214 if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6215 if ((ipf_objbytes[type][0] & 1) != 0) {
6216 if (objp->ipfo_size < ipf_objbytes[type][1]) {
6217 IPFERROR(51);
6218 return EINVAL;
6219 }
6220 size = ipf_objbytes[type][1];
6221 } else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6222 size = objp->ipfo_size;
6223 } else {
6224 IPFERROR(52);
6225 return EINVAL;
6226 }
6227 error = COPYIN(objp->ipfo_ptr, ptr, size);
6228 if (error != 0) {
6229 IPFERROR(55);
6230 error = EFAULT;
6231 }
6232 } else {
6233 #ifdef IPFILTER_COMPAT
6234 error = ipf_in_compat(softc, objp, ptr, 0);
6235 #else
6236 IPFERROR(54);
6237 error = EINVAL;
6238 #endif
6239 }
6240 return error;
6241 }
6242
6243
6244 /* ------------------------------------------------------------------------ */
6245 /* Function: ipf_inobjsz */
6246 /* Returns: int - 0 = success, else failure */
6247 /* Parameters: softc(I) - soft context pointerto work with */
6248 /* data(I) - pointer to ioctl data */
6249 /* ptr(I) - pointer to store real data in */
6250 /* type(I) - type of structure being moved */
6251 /* sz(I) - size of data to copy */
6252 /* */
6253 /* As per ipf_inobj, except the size of the object to copy in is passed in */
6254 /* but it must not be smaller than the size defined for the type and the */
6255 /* type must allow for varied sized objects. The extra requirement here is */
6256 /* that sz must match the size of the object being passed in - this is not */
6257 /* not possible nor required in ipf_inobj(). */
6258 /* ------------------------------------------------------------------------ */
6259 int
6260 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6261 {
6262 ipfobj_t obj;
6263 int error;
6264
6265 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6266 IPFERROR(56);
6267 return EINVAL;
6268 }
6269
6270 error = BCOPYIN(data, &obj, sizeof(obj));
6271 if (error != 0) {
6272 IPFERROR(125);
6273 return EFAULT;
6274 }
6275
6276 if (obj.ipfo_type != type) {
6277 IPFERROR(58);
6278 return EINVAL;
6279 }
6280
6281 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6282 if (((ipf_objbytes[type][0] & 1) == 0) ||
6283 (sz < ipf_objbytes[type][1])) {
6284 IPFERROR(57);
6285 return EINVAL;
6286 }
6287 error = COPYIN(obj.ipfo_ptr, ptr, sz);
6288 if (error != 0) {
6289 IPFERROR(61);
6290 error = EFAULT;
6291 }
6292 } else {
6293 #ifdef IPFILTER_COMPAT
6294 error = ipf_in_compat(softc, &obj, ptr, sz);
6295 #else
6296 IPFERROR(60);
6297 error = EINVAL;
6298 #endif
6299 }
6300 return error;
6301 }
6302
6303
6304 /* ------------------------------------------------------------------------ */
6305 /* Function: ipf_outobjsz */
6306 /* Returns: int - 0 = success, else failure */
6307 /* Parameters: data(I) - pointer to ioctl data */
6308 /* ptr(I) - pointer to store real data in */
6309 /* type(I) - type of structure being moved */
6310 /* sz(I) - size of data to copy */
6311 /* */
6312 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6313 /* but it must not be smaller than the size defined for the type and the */
6314 /* type must allow for varied sized objects. The extra requirement here is */
6315 /* that sz must match the size of the object being passed in - this is not */
6316 /* not possible nor required in ipf_outobj(). */
6317 /* ------------------------------------------------------------------------ */
6318 int
6319 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6320 {
6321 ipfobj_t obj;
6322 int error;
6323
6324 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6325 IPFERROR(62);
6326 return EINVAL;
6327 }
6328
6329 error = BCOPYIN(data, &obj, sizeof(obj));
6330 if (error != 0) {
6331 IPFERROR(127);
6332 return EFAULT;
6333 }
6334
6335 if (obj.ipfo_type != type) {
6336 IPFERROR(63);
6337 return EINVAL;
6338 }
6339
6340 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6341 if (((ipf_objbytes[type][0] & 1) == 0) ||
6342 (sz < ipf_objbytes[type][1])) {
6343 IPFERROR(146);
6344 return EINVAL;
6345 }
6346 error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6347 if (error != 0) {
6348 IPFERROR(66);
6349 error = EFAULT;
6350 }
6351 } else {
6352 #ifdef IPFILTER_COMPAT
6353 error = ipf_out_compat(softc, &obj, ptr);
6354 #else
6355 IPFERROR(65);
6356 error = EINVAL;
6357 #endif
6358 }
6359 return error;
6360 }
6361
6362
6363 /* ------------------------------------------------------------------------ */
6364 /* Function: ipf_outobj */
6365 /* Returns: int - 0 = success, else failure */
6366 /* Parameters: data(I) - pointer to ioctl data */
6367 /* ptr(I) - pointer to store real data in */
6368 /* type(I) - type of structure being moved */
6369 /* */
6370 /* Copy out the contents of what ptr is to where ipfobj points to. In */
6371 /* future, we add things to check for version numbers, sizes, etc, to make */
6372 /* it backward compatible at the ABI for user land. */
6373 /* ------------------------------------------------------------------------ */
6374 int
6375 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6376 {
6377 ipfobj_t obj;
6378 int error;
6379
6380 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6381 IPFERROR(67);
6382 return EINVAL;
6383 }
6384
6385 error = BCOPYIN(data, &obj, sizeof(obj));
6386 if (error != 0) {
6387 IPFERROR(126);
6388 return EFAULT;
6389 }
6390
6391 if (obj.ipfo_type != type) {
6392 IPFERROR(68);
6393 return EINVAL;
6394 }
6395
6396 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6397 if ((ipf_objbytes[type][0] & 1) != 0) {
6398 if (obj.ipfo_size < ipf_objbytes[type][1]) {
6399 IPFERROR(69);
6400 return EINVAL;
6401 }
6402 } else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6403 IPFERROR(70);
6404 return EINVAL;
6405 }
6406
6407 error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6408 if (error != 0) {
6409 IPFERROR(73);
6410 error = EFAULT;
6411 }
6412 } else {
6413 #ifdef IPFILTER_COMPAT
6414 error = ipf_out_compat(softc, &obj, ptr);
6415 #else
6416 IPFERROR(72);
6417 error = EINVAL;
6418 #endif
6419 }
6420 return error;
6421 }
6422
6423
6424 /* ------------------------------------------------------------------------ */
6425 /* Function: ipf_outobjk */
6426 /* Returns: int - 0 = success, else failure */
6427 /* Parameters: obj(I) - pointer to data description structure */
6428 /* ptr(I) - pointer to kernel data to copy out */
6429 /* */
6430 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6431 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6432 /* already populated with information and now we just need to use it. */
6433 /* There is no need for this function to have a "type" parameter as there */
6434 /* is no point in validating information that comes from the kernel with */
6435 /* itself. */
6436 /* ------------------------------------------------------------------------ */
6437 int
6438 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6439 {
6440 int type = obj->ipfo_type;
6441 int error;
6442
6443 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6444 IPFERROR(147);
6445 return EINVAL;
6446 }
6447
6448 if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6449 if ((ipf_objbytes[type][0] & 1) != 0) {
6450 if (obj->ipfo_size < ipf_objbytes[type][1]) {
6451 IPFERROR(148);
6452 return EINVAL;
6453 }
6454
6455 } else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6456 IPFERROR(149);
6457 return EINVAL;
6458 }
6459
6460 error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6461 if (error != 0) {
6462 IPFERROR(150);
6463 error = EFAULT;
6464 }
6465 } else {
6466 #ifdef IPFILTER_COMPAT
6467 error = ipf_out_compat(softc, obj, ptr);
6468 #else
6469 IPFERROR(151);
6470 error = EINVAL;
6471 #endif
6472 }
6473 return error;
6474 }
6475
6476
6477 /* ------------------------------------------------------------------------ */
6478 /* Function: ipf_checkl4sum */
6479 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */
6480 /* Parameters: fin(I) - pointer to packet information */
6481 /* */
6482 /* If possible, calculate the layer 4 checksum for the packet. If this is */
6483 /* not possible, return without indicating a failure or success but in a */
6484 /* way that is ditinguishable. This function should only be called by the */
6485 /* ipf_checkv6sum() for each platform. */
6486 /* ------------------------------------------------------------------------ */
6487 int
6488 ipf_checkl4sum(fr_info_t *fin)
6489 {
6490 u_short sum, hdrsum, *csump;
6491 udphdr_t *udp;
6492 int dosum;
6493
6494 /*
6495 * If the TCP packet isn't a fragment, isn't too short and otherwise
6496 * isn't already considered "bad", then validate the checksum. If
6497 * this check fails then considered the packet to be "bad".
6498 */
6499 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6500 return 1;
6501
6502 csump = NULL;
6503 hdrsum = 0;
6504 dosum = 0;
6505 sum = 0;
6506
6507 switch (fin->fin_p)
6508 {
6509 case IPPROTO_TCP :
6510 csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6511 dosum = 1;
6512 break;
6513
6514 case IPPROTO_UDP :
6515 udp = fin->fin_dp;
6516 if (udp->uh_sum != 0) {
6517 csump = &udp->uh_sum;
6518 dosum = 1;
6519 }
6520 break;
6521
6522 #ifdef USE_INET6
6523 case IPPROTO_ICMPV6 :
6524 csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6525 dosum = 1;
6526 break;
6527 #endif
6528
6529 case IPPROTO_ICMP :
6530 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6531 dosum = 1;
6532 break;
6533
6534 default :
6535 return 1;
6536 /*NOTREACHED*/
6537 }
6538
6539 if (csump != NULL) {
6540 hdrsum = *csump;
6541 if (fin->fin_p == IPPROTO_UDP && hdrsum == 0xffff)
6542 hdrsum = 0x0000;
6543 }
6544
6545 if (dosum) {
6546 sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6547 }
6548 #if !defined(_KERNEL)
6549 if (sum == hdrsum) {
6550 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6551 } else {
6552 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6553 }
6554 #endif
6555 DT2(l4sums, u_short, hdrsum, u_short, sum);
6556 if (hdrsum == sum) {
6557 fin->fin_cksum = FI_CK_SUMOK;
6558 return 0;
6559 }
6560 fin->fin_cksum = FI_CK_BAD;
6561 return -1;
6562 }
6563
6564
6565 /* ------------------------------------------------------------------------ */
6566 /* Function: ipf_ifpfillv4addr */
6567 /* Returns: int - 0 = address update, -1 = address not updated */
6568 /* Parameters: atype(I) - type of network address update to perform */
6569 /* sin(I) - pointer to source of address information */
6570 /* mask(I) - pointer to source of netmask information */
6571 /* inp(I) - pointer to destination address store */
6572 /* inpmask(I) - pointer to destination netmask store */
6573 /* */
6574 /* Given a type of network address update (atype) to perform, copy */
6575 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6576 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6577 /* which case the operation fails. For all values of atype other than */
6578 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6579 /* value. */
6580 /* ------------------------------------------------------------------------ */
6581 int
6582 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6583 struct in_addr *inp, struct in_addr *inpmask)
6584 {
6585 if (inpmask != NULL && atype != FRI_NETMASKED)
6586 inpmask->s_addr = 0xffffffff;
6587
6588 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6589 if (atype == FRI_NETMASKED) {
6590 if (inpmask == NULL)
6591 return -1;
6592 inpmask->s_addr = mask->sin_addr.s_addr;
6593 }
6594 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6595 } else {
6596 inp->s_addr = sin->sin_addr.s_addr;
6597 }
6598 return 0;
6599 }
6600
6601
6602 #ifdef USE_INET6
6603 /* ------------------------------------------------------------------------ */
6604 /* Function: ipf_ifpfillv6addr */
6605 /* Returns: int - 0 = address update, -1 = address not updated */
6606 /* Parameters: atype(I) - type of network address update to perform */
6607 /* sin(I) - pointer to source of address information */
6608 /* mask(I) - pointer to source of netmask information */
6609 /* inp(I) - pointer to destination address store */
6610 /* inpmask(I) - pointer to destination netmask store */
6611 /* */
6612 /* Given a type of network address update (atype) to perform, copy */
6613 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6614 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6615 /* which case the operation fails. For all values of atype other than */
6616 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6617 /* value. */
6618 /* ------------------------------------------------------------------------ */
6619 int
6620 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6621 struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6622 {
6623 i6addr_t *src, *and;
6624
6625 src = (i6addr_t *)&sin->sin6_addr;
6626 and = (i6addr_t *)&mask->sin6_addr;
6627
6628 if (inpmask != NULL && atype != FRI_NETMASKED) {
6629 inpmask->i6[0] = 0xffffffff;
6630 inpmask->i6[1] = 0xffffffff;
6631 inpmask->i6[2] = 0xffffffff;
6632 inpmask->i6[3] = 0xffffffff;
6633 }
6634
6635 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6636 if (atype == FRI_NETMASKED) {
6637 if (inpmask == NULL)
6638 return -1;
6639 inpmask->i6[0] = and->i6[0];
6640 inpmask->i6[1] = and->i6[1];
6641 inpmask->i6[2] = and->i6[2];
6642 inpmask->i6[3] = and->i6[3];
6643 }
6644
6645 inp->i6[0] = src->i6[0] & and->i6[0];
6646 inp->i6[1] = src->i6[1] & and->i6[1];
6647 inp->i6[2] = src->i6[2] & and->i6[2];
6648 inp->i6[3] = src->i6[3] & and->i6[3];
6649 } else {
6650 inp->i6[0] = src->i6[0];
6651 inp->i6[1] = src->i6[1];
6652 inp->i6[2] = src->i6[2];
6653 inp->i6[3] = src->i6[3];
6654 }
6655 return 0;
6656 }
6657 #endif
6658
6659
6660 /* ------------------------------------------------------------------------ */
6661 /* Function: ipf_matchtag */
6662 /* Returns: 0 == mismatch, 1 == match. */
6663 /* Parameters: tag1(I) - pointer to first tag to compare */
6664 /* tag2(I) - pointer to second tag to compare */
6665 /* */
6666 /* Returns true (non-zero) or false(0) if the two tag structures can be */
6667 /* considered to be a match or not match, respectively. The tag is 16 */
6668 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */
6669 /* compare the ints instead, for speed. tag1 is the master of the */
6670 /* comparison. This function should only be called with both tag1 and tag2 */
6671 /* as non-NULL pointers. */
6672 /* ------------------------------------------------------------------------ */
6673 int
6674 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6675 {
6676 if (tag1 == tag2)
6677 return 1;
6678
6679 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6680 return 1;
6681
6682 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6683 (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6684 (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6685 (tag1->ipt_num[3] == tag2->ipt_num[3]))
6686 return 1;
6687 return 0;
6688 }
6689
6690
6691 /* ------------------------------------------------------------------------ */
6692 /* Function: ipf_coalesce */
6693 /* Returns: 1 == success, -1 == failure, 0 == no change */
6694 /* Parameters: fin(I) - pointer to packet information */
6695 /* */
6696 /* Attempt to get all of the packet data into a single, contiguous buffer. */
6697 /* If this call returns a failure then the buffers have also been freed. */
6698 /* ------------------------------------------------------------------------ */
6699 int
6700 ipf_coalesce(fr_info_t *fin)
6701 {
6702
6703 if ((fin->fin_flx & FI_COALESCE) != 0)
6704 return 1;
6705
6706 /*
6707 * If the mbuf pointers indicate that there is no mbuf to work with,
6708 * return but do not indicate success or failure.
6709 */
6710 if (fin->fin_m == NULL || fin->fin_mp == NULL)
6711 return 0;
6712
6713 #if defined(_KERNEL)
6714 if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6715 ipf_main_softc_t *softc = fin->fin_main_soft;
6716
6717 DT1(frb_coalesce, fr_info_t *, fin);
6718 LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6719 # ifdef MENTAT
6720 FREE_MB_T(*fin->fin_mp);
6721 # endif
6722 fin->fin_reason = FRB_COALESCE;
6723 *fin->fin_mp = NULL;
6724 fin->fin_m = NULL;
6725 return -1;
6726 }
6727 #else
6728 fin = fin; /* LINT */
6729 #endif
6730 return 1;
6731 }
6732
6733
6734 /*
6735 * The following table lists all of the tunable variables that can be
6736 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row
6737 * in the table below is as follows:
6738 *
6739 * pointer to value, name of value, minimum, maximum, size of the value's
6740 * container, value attribute flags
6741 *
6742 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6743 * means the value can only be written to when IPFilter is loaded but disabled.
6744 * The obvious implication is if neither of these are set then the value can be
6745 * changed at any time without harm.
6746 */
6747
6748
6749 /* ------------------------------------------------------------------------ */
6750 /* Function: ipf_tune_findbycookie */
6751 /* Returns: NULL = search failed, else pointer to tune struct */
6752 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */
6753 /* next(O) - pointer to place to store the cookie for the */
6754 /* "next" tuneable, if it is desired. */
6755 /* */
6756 /* This function is used to walk through all of the existing tunables with */
6757 /* successive calls. It searches the known tunables for the one which has */
6758 /* a matching value for "cookie" - ie its address. When returning a match, */
6759 /* the next one to be found may be returned inside next. */
6760 /* ------------------------------------------------------------------------ */
6761 static ipftuneable_t *
6762 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6763 {
6764 ipftuneable_t *ta, **tap;
6765
6766 for (ta = *ptop; ta->ipft_name != NULL; ta++)
6767 if (ta == cookie) {
6768 if (next != NULL) {
6769 /*
6770 * If the next entry in the array has a name
6771 * present, then return a pointer to it for
6772 * where to go next, else return a pointer to
6773 * the dynaminc list as a key to search there
6774 * next. This facilitates a weak linking of
6775 * the two "lists" together.
6776 */
6777 if ((ta + 1)->ipft_name != NULL)
6778 *next = ta + 1;
6779 else
6780 *next = ptop;
6781 }
6782 return ta;
6783 }
6784
6785 for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6786 if (tap == cookie) {
6787 if (next != NULL)
6788 *next = &ta->ipft_next;
6789 return ta;
6790 }
6791
6792 if (next != NULL)
6793 *next = NULL;
6794 return NULL;
6795 }
6796
6797
6798 /* ------------------------------------------------------------------------ */
6799 /* Function: ipf_tune_findbyname */
6800 /* Returns: NULL = search failed, else pointer to tune struct */
6801 /* Parameters: name(I) - name of the tuneable entry to find. */
6802 /* */
6803 /* Search the static array of tuneables and the list of dynamic tuneables */
6804 /* for an entry with a matching name. If we can find one, return a pointer */
6805 /* to the matching structure. */
6806 /* ------------------------------------------------------------------------ */
6807 static ipftuneable_t *
6808 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6809 {
6810 ipftuneable_t *ta;
6811
6812 for (ta = top; ta != NULL; ta = ta->ipft_next)
6813 if (!strcmp(ta->ipft_name, name)) {
6814 return ta;
6815 }
6816
6817 return NULL;
6818 }
6819
6820
6821 /* ------------------------------------------------------------------------ */
6822 /* Function: ipf_tune_add_array */
6823 /* Returns: int - 0 == success, else failure */
6824 /* Parameters: newtune - pointer to new tune array to add to tuneables */
6825 /* */
6826 /* Appends tune structures from the array passed in (newtune) to the end of */
6827 /* the current list of "dynamic" tuneable parameters. */
6828 /* If any entry to be added is already present (by name) then the operation */
6829 /* is aborted - entries that have been added are removed before returning. */
6830 /* An entry with no name (NULL) is used as the indication that the end of */
6831 /* the array has been reached. */
6832 /* ------------------------------------------------------------------------ */
6833 int
6834 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6835 {
6836 ipftuneable_t *nt, *dt;
6837 int error = 0;
6838
6839 for (nt = newtune; nt->ipft_name != NULL; nt++) {
6840 error = ipf_tune_add(softc, nt);
6841 if (error != 0) {
6842 for (dt = newtune; dt != nt; dt++) {
6843 (void) ipf_tune_del(softc, dt);
6844 }
6845 }
6846 }
6847
6848 return error;
6849 }
6850
6851
6852 /* ------------------------------------------------------------------------ */
6853 /* Function: ipf_tune_array_link */
6854 /* Returns: 0 == success, -1 == failure */
6855 /* Parameters: softc(I) - soft context pointerto work with */
6856 /* array(I) - pointer to an array of tuneables */
6857 /* */
6858 /* Given an array of tunables (array), append them to the current list of */
6859 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */
6860 /* the array for being appended to the list, initialise all of the next */
6861 /* pointers so we don't need to walk parts of it with ++ and others with */
6862 /* next. The array is expected to have an entry with a NULL name as the */
6863 /* terminator. Trying to add an array with no non-NULL names will return as */
6864 /* a failure. */
6865 /* ------------------------------------------------------------------------ */
6866 int
6867 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6868 {
6869 ipftuneable_t *t, **p;
6870
6871 t = array;
6872 if (t->ipft_name == NULL)
6873 return -1;
6874
6875 for (; t[1].ipft_name != NULL; t++)
6876 t[0].ipft_next = &t[1];
6877 t->ipft_next = NULL;
6878
6879 /*
6880 * Since a pointer to the last entry isn't kept, we need to find it
6881 * each time we want to add new variables to the list.
6882 */
6883 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6884 if (t->ipft_name == NULL)
6885 break;
6886 *p = array;
6887
6888 return 0;
6889 }
6890
6891
6892 /* ------------------------------------------------------------------------ */
6893 /* Function: ipf_tune_array_unlink */
6894 /* Returns: 0 == success, -1 == failure */
6895 /* Parameters: softc(I) - soft context pointerto work with */
6896 /* array(I) - pointer to an array of tuneables */
6897 /* */
6898 /* ------------------------------------------------------------------------ */
6899 int
6900 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6901 {
6902 ipftuneable_t *t, **p;
6903
6904 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6905 if (t == array)
6906 break;
6907 if (t == NULL)
6908 return -1;
6909
6910 for (; t[1].ipft_name != NULL; t++)
6911 ;
6912
6913 *p = t->ipft_next;
6914
6915 return 0;
6916 }
6917
6918
6919 /* ------------------------------------------------------------------------ */
6920 /* Function: ipf_tune_array_copy */
6921 /* Returns: NULL = failure, else pointer to new array */
6922 /* Parameters: base(I) - pointer to structure base */
6923 /* size(I) - size of the array at template */
6924 /* template(I) - original array to copy */
6925 /* */
6926 /* Allocate memory for a new set of tuneable values and copy everything */
6927 /* from template into the new region of memory. The new region is full of */
6928 /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */
6929 /* */
6930 /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */
6931 /* In the array template, ipftp_offset is the offset (in bytes) of the */
6932 /* location of the tuneable value inside the structure pointed to by base. */
6933 /* As ipftp_offset is a union over the pointers to the tuneable values, if */
6934 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */
6935 /* ipftp_void that points to the stored value. */
6936 /* ------------------------------------------------------------------------ */
6937 ipftuneable_t *
6938 ipf_tune_array_copy(void *base, size_t size, const ipftuneable_t *template)
6939 {
6940 ipftuneable_t *copy;
6941 int i;
6942
6943
6944 KMALLOCS(copy, ipftuneable_t *, size);
6945 if (copy == NULL) {
6946 return NULL;
6947 }
6948 bcopy(template, copy, size);
6949
6950 for (i = 0; copy[i].ipft_name; i++) {
6951 copy[i].ipft_una.ipftp_offset += (u_long)base;
6952 copy[i].ipft_next = copy + i + 1;
6953 }
6954
6955 return copy;
6956 }
6957
6958
6959 /* ------------------------------------------------------------------------ */
6960 /* Function: ipf_tune_add */
6961 /* Returns: int - 0 == success, else failure */
6962 /* Parameters: newtune - pointer to new tune entry to add to tuneables */
6963 /* */
6964 /* Appends tune structures from the array passed in (newtune) to the end of */
6965 /* the current list of "dynamic" tuneable parameters. Once added, the */
6966 /* owner of the object is not expected to ever change "ipft_next". */
6967 /* ------------------------------------------------------------------------ */
6968 int
6969 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6970 {
6971 ipftuneable_t *ta, **tap;
6972
6973 ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6974 if (ta != NULL) {
6975 IPFERROR(74);
6976 return EEXIST;
6977 }
6978
6979 for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6980 ;
6981
6982 newtune->ipft_next = NULL;
6983 *tap = newtune;
6984 return 0;
6985 }
6986
6987
6988 /* ------------------------------------------------------------------------ */
6989 /* Function: ipf_tune_del */
6990 /* Returns: int - 0 == success, else failure */
6991 /* Parameters: oldtune - pointer to tune entry to remove from the list of */
6992 /* current dynamic tuneables */
6993 /* */
6994 /* Search for the tune structure, by pointer, in the list of those that are */
6995 /* dynamically added at run time. If found, adjust the list so that this */
6996 /* structure is no longer part of it. */
6997 /* ------------------------------------------------------------------------ */
6998 int
6999 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7000 {
7001 ipftuneable_t *ta, **tap;
7002 int error = 0;
7003
7004 for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7005 tap = &ta->ipft_next) {
7006 if (ta == oldtune) {
7007 *tap = oldtune->ipft_next;
7008 oldtune->ipft_next = NULL;
7009 break;
7010 }
7011 }
7012
7013 if (ta == NULL) {
7014 error = ESRCH;
7015 IPFERROR(75);
7016 }
7017 return error;
7018 }
7019
7020
7021 /* ------------------------------------------------------------------------ */
7022 /* Function: ipf_tune_del_array */
7023 /* Returns: int - 0 == success, else failure */
7024 /* Parameters: oldtune - pointer to tuneables array */
7025 /* */
7026 /* Remove each tuneable entry in the array from the list of "dynamic" */
7027 /* tunables. If one entry should fail to be found, an error will be */
7028 /* returned and no further ones removed. */
7029 /* An entry with a NULL name is used as the indicator of the last entry in */
7030 /* the array. */
7031 /* ------------------------------------------------------------------------ */
7032 int
7033 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7034 {
7035 ipftuneable_t *ot;
7036 int error = 0;
7037
7038 for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7039 error = ipf_tune_del(softc, ot);
7040 if (error != 0)
7041 break;
7042 }
7043
7044 return error;
7045
7046 }
7047
7048
7049 /* ------------------------------------------------------------------------ */
7050 /* Function: ipf_tune */
7051 /* Returns: int - 0 == success, else failure */
7052 /* Parameters: cmd(I) - ioctl command number */
7053 /* data(I) - pointer to ioctl data structure */
7054 /* */
7055 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */
7056 /* three ioctls provide the means to access and control global variables */
7057 /* within IPFilter, allowing (for example) timeouts and table sizes to be */
7058 /* changed without rebooting, reloading or recompiling. The initialisation */
7059 /* and 'destruction' routines of the various components of ipfilter are all */
7060 /* each responsible for handling their own values being too big. */
7061 /* ------------------------------------------------------------------------ */
7062 int
7063 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
7064 {
7065 ipftuneable_t *ta;
7066 ipftune_t tu;
7067 void *cookie;
7068 int error;
7069
7070 error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7071 if (error != 0)
7072 return error;
7073
7074 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7075 cookie = tu.ipft_cookie;
7076 ta = NULL;
7077
7078 switch (cmd)
7079 {
7080 case SIOCIPFGETNEXT :
7081 /*
7082 * If cookie is non-NULL, assume it to be a pointer to the last
7083 * entry we looked at, so find it (if possible) and return a
7084 * pointer to the next one after it. The last entry in the
7085 * the table is a NULL entry, so when we get to it, set cookie
7086 * to NULL and return that, indicating end of list, erstwhile
7087 * if we come in with cookie set to NULL, we are starting anew
7088 * at the front of the list.
7089 */
7090 if (cookie != NULL) {
7091 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7092 cookie, &tu.ipft_cookie);
7093 } else {
7094 ta = softc->ipf_tuners;
7095 tu.ipft_cookie = ta + 1;
7096 }
7097 if (ta != NULL) {
7098 /*
7099 * Entry found, but does the data pointed to by that
7100 * row fit in what we can return?
7101 */
7102 if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7103 IPFERROR(76);
7104 return EINVAL;
7105 }
7106
7107 tu.ipft_vlong = 0;
7108 if (ta->ipft_sz == sizeof(u_long))
7109 tu.ipft_vlong = *ta->ipft_plong;
7110 else if (ta->ipft_sz == sizeof(u_int))
7111 tu.ipft_vint = *ta->ipft_pint;
7112 else if (ta->ipft_sz == sizeof(u_short))
7113 tu.ipft_vshort = *ta->ipft_pshort;
7114 else if (ta->ipft_sz == sizeof(u_char))
7115 tu.ipft_vchar = *ta->ipft_pchar;
7116
7117 tu.ipft_sz = ta->ipft_sz;
7118 tu.ipft_min = ta->ipft_min;
7119 tu.ipft_max = ta->ipft_max;
7120 tu.ipft_flags = ta->ipft_flags;
7121 bcopy(ta->ipft_name, tu.ipft_name,
7122 MIN(sizeof(tu.ipft_name),
7123 strlen(ta->ipft_name) + 1));
7124 }
7125 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7126 break;
7127
7128 case SIOCIPFGET :
7129 case SIOCIPFSET :
7130 /*
7131 * Search by name or by cookie value for a particular entry
7132 * in the tuning paramter table.
7133 */
7134 IPFERROR(77);
7135 error = ESRCH;
7136 if (cookie != NULL) {
7137 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7138 cookie, NULL);
7139 if (ta != NULL)
7140 error = 0;
7141 } else if (tu.ipft_name[0] != '\0') {
7142 ta = ipf_tune_findbyname(softc->ipf_tuners,
7143 tu.ipft_name);
7144 if (ta != NULL)
7145 error = 0;
7146 }
7147 if (error != 0)
7148 break;
7149
7150 if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7151 /*
7152 * Fetch the tuning parameters for a particular value
7153 */
7154 tu.ipft_vlong = 0;
7155 if (ta->ipft_sz == sizeof(u_long))
7156 tu.ipft_vlong = *ta->ipft_plong;
7157 else if (ta->ipft_sz == sizeof(u_int))
7158 tu.ipft_vint = *ta->ipft_pint;
7159 else if (ta->ipft_sz == sizeof(u_short))
7160 tu.ipft_vshort = *ta->ipft_pshort;
7161 else if (ta->ipft_sz == sizeof(u_char))
7162 tu.ipft_vchar = *ta->ipft_pchar;
7163 tu.ipft_cookie = ta;
7164 tu.ipft_sz = ta->ipft_sz;
7165 tu.ipft_min = ta->ipft_min;
7166 tu.ipft_max = ta->ipft_max;
7167 tu.ipft_flags = ta->ipft_flags;
7168 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7169
7170 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7171 /*
7172 * Set an internal parameter. The hard part here is
7173 * getting the new value safely and correctly out of
7174 * the kernel (given we only know its size, not type.)
7175 */
7176 u_long in;
7177
7178 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7179 (softc->ipf_running > 0)) {
7180 IPFERROR(78);
7181 error = EBUSY;
7182 break;
7183 }
7184
7185 in = tu.ipft_vlong;
7186 if (in < ta->ipft_min || in > ta->ipft_max) {
7187 IPFERROR(79);
7188 error = EINVAL;
7189 break;
7190 }
7191
7192 if (ta->ipft_func != NULL) {
7193 SPL_INT(s);
7194
7195 SPL_NET(s);
7196 error = (*ta->ipft_func)(softc, ta,
7197 &tu.ipft_un);
7198 SPL_X(s);
7199
7200 } else if (ta->ipft_sz == sizeof(u_long)) {
7201 tu.ipft_vlong = *ta->ipft_plong;
7202 *ta->ipft_plong = in;
7203
7204 } else if (ta->ipft_sz == sizeof(u_int)) {
7205 tu.ipft_vint = *ta->ipft_pint;
7206 *ta->ipft_pint = (u_int)(in & 0xffffffff);
7207
7208 } else if (ta->ipft_sz == sizeof(u_short)) {
7209 tu.ipft_vshort = *ta->ipft_pshort;
7210 *ta->ipft_pshort = (u_short)(in & 0xffff);
7211
7212 } else if (ta->ipft_sz == sizeof(u_char)) {
7213 tu.ipft_vchar = *ta->ipft_pchar;
7214 *ta->ipft_pchar = (u_char)(in & 0xff);
7215 }
7216 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7217 }
7218 break;
7219
7220 default :
7221 IPFERROR(80);
7222 error = EINVAL;
7223 break;
7224 }
7225
7226 return error;
7227 }
7228
7229
7230 /* ------------------------------------------------------------------------ */
7231 /* Function: ipf_zerostats */
7232 /* Returns: int - 0 = success, else failure */
7233 /* Parameters: data(O) - pointer to pointer for copying data back to */
7234 /* */
7235 /* Copies the current statistics out to userspace and then zero's the */
7236 /* current ones in the kernel. The lock is only held across the bzero() as */
7237 /* the copyout may result in paging (ie network activity.) */
7238 /* ------------------------------------------------------------------------ */
7239 int
7240 ipf_zerostats(ipf_main_softc_t *softc, void *data)
7241 {
7242 friostat_t fio;
7243 ipfobj_t obj;
7244 int error;
7245
7246 error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7247 if (error != 0)
7248 return error;
7249 ipf_getstat(softc, &fio, obj.ipfo_rev);
7250 error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7251 if (error != 0)
7252 return error;
7253
7254 WRITE_ENTER(&softc->ipf_mutex);
7255 bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7256 RWLOCK_EXIT(&softc->ipf_mutex);
7257
7258 return 0;
7259 }
7260
7261
7262 /* ------------------------------------------------------------------------ */
7263 /* Function: ipf_resolvedest */
7264 /* Returns: Nil */
7265 /* Parameters: softc(I) - pointer to soft context main structure */
7266 /* base(I) - where strings are stored */
7267 /* fdp(IO) - pointer to destination information to resolve */
7268 /* v(I) - IP protocol version to match */
7269 /* */
7270 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7271 /* if a matching name can be found for the particular IP protocol version */
7272 /* then store the interface pointer in the frdest struct. If no match is */
7273 /* found, then set the interface pointer to be -1 as NULL is considered to */
7274 /* indicate there is no information at all in the structure. */
7275 /* ------------------------------------------------------------------------ */
7276 int
7277 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7278 {
7279 int errval = 0;
7280 void *ifp;
7281
7282 ifp = NULL;
7283
7284 if (fdp->fd_name != -1) {
7285 if (fdp->fd_type == FRD_DSTLIST) {
7286 ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7287 IPLT_DSTLIST,
7288 base + fdp->fd_name,
7289 NULL);
7290 if (ifp == NULL) {
7291 IPFERROR(144);
7292 errval = ESRCH;
7293 }
7294 } else {
7295 ifp = GETIFP(base + fdp->fd_name, v);
7296 }
7297 }
7298 fdp->fd_ptr = ifp;
7299
7300 return errval;
7301 }
7302
7303
7304 /* ------------------------------------------------------------------------ */
7305 /* Function: ipf_resolvenic */
7306 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */
7307 /* pointer to interface structure for NIC */
7308 /* Parameters: softc(I)- pointer to soft context main structure */
7309 /* name(I) - complete interface name */
7310 /* v(I) - IP protocol version */
7311 /* */
7312 /* Look for a network interface structure that firstly has a matching name */
7313 /* to that passed in and that is also being used for that IP protocol */
7314 /* version (necessary on some platforms where there are separate listings */
7315 /* for both IPv4 and IPv6 on the same physical NIC. */
7316 /* */
7317 /* ------------------------------------------------------------------------ */
7318 void *
7319 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7320 {
7321 void *nic;
7322
7323 softc = softc; /* gcc -Wextra */
7324 if (name[0] == '\0')
7325 return NULL;
7326
7327 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7328 return NULL;
7329 }
7330
7331 nic = GETIFP(name, v);
7332 if (nic == NULL)
7333 nic = (void *)-1;
7334 return nic;
7335 }
7336
7337
7338 /* ------------------------------------------------------------------------ */
7339 /* Function: ipf_token_expire */
7340 /* Returns: None. */
7341 /* Parameters: softc(I) - pointer to soft context main structure */
7342 /* */
7343 /* This function is run every ipf tick to see if there are any tokens that */
7344 /* have been held for too long and need to be freed up. */
7345 /* ------------------------------------------------------------------------ */
7346 void
7347 ipf_token_expire(ipf_main_softc_t *softc)
7348 {
7349 ipftoken_t *it;
7350
7351 WRITE_ENTER(&softc->ipf_tokens);
7352 while ((it = softc->ipf_token_head) != NULL) {
7353 if (it->ipt_die > softc->ipf_ticks)
7354 break;
7355
7356 ipf_token_deref(softc, it);
7357 }
7358 RWLOCK_EXIT(&softc->ipf_tokens);
7359 }
7360
7361
7362 /* ------------------------------------------------------------------------ */
7363 /* Function: ipf_token_flush */
7364 /* Returns: None. */
7365 /* Parameters: softc(I) - pointer to soft context main structure */
7366 /* */
7367 /* Loop through all of the existing tokens and call deref to see if they */
7368 /* can be freed. Normally a function like this might just loop on */
7369 /* ipf_token_head but there is a chance that a token might have a ref count */
7370 /* of greater than one and in that case the the reference would drop twice */
7371 /* by code that is only entitled to drop it once. */
7372 /* ------------------------------------------------------------------------ */
7373 static void
7374 ipf_token_flush(ipf_main_softc_t *softc)
7375 {
7376 ipftoken_t *it, *next;
7377
7378 WRITE_ENTER(&softc->ipf_tokens);
7379 for (it = softc->ipf_token_head; it != NULL; it = next) {
7380 next = it->ipt_next;
7381 (void) ipf_token_deref(softc, it);
7382 }
7383 RWLOCK_EXIT(&softc->ipf_tokens);
7384 }
7385
7386
7387 /* ------------------------------------------------------------------------ */
7388 /* Function: ipf_token_del */
7389 /* Returns: int - 0 = success, else error */
7390 /* Parameters: softc(I)- pointer to soft context main structure */
7391 /* type(I) - the token type to match */
7392 /* uid(I) - uid owning the token */
7393 /* ptr(I) - context pointer for the token */
7394 /* */
7395 /* This function looks for a a token in the current list that matches up */
7396 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */
7397 /* call ipf_token_dewref() to remove it from the list. In the event that */
7398 /* the token has a reference held elsewhere, setting ipt_complete to 2 */
7399 /* enables debugging to distinguish between the two paths that ultimately */
7400 /* lead to a token to be deleted. */
7401 /* ------------------------------------------------------------------------ */
7402 int
7403 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7404 {
7405 ipftoken_t *it;
7406 int error;
7407
7408 IPFERROR(82);
7409 error = ESRCH;
7410
7411 WRITE_ENTER(&softc->ipf_tokens);
7412 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7413 if (ptr == it->ipt_ctx && type == it->ipt_type &&
7414 uid == it->ipt_uid) {
7415 it->ipt_complete = 2;
7416 ipf_token_deref(softc, it);
7417 error = 0;
7418 break;
7419 }
7420 }
7421 RWLOCK_EXIT(&softc->ipf_tokens);
7422
7423 return error;
7424 }
7425
7426
7427 /* ------------------------------------------------------------------------ */
7428 /* Function: ipf_token_mark_complete */
7429 /* Returns: None. */
7430 /* Parameters: token(I) - pointer to token structure */
7431 /* */
7432 /* Mark a token as being ineligable for being found with ipf_token_find. */
7433 /* ------------------------------------------------------------------------ */
7434 void
7435 ipf_token_mark_complete(ipftoken_t *token)
7436 {
7437 if (token->ipt_complete == 0)
7438 token->ipt_complete = 1;
7439 }
7440
7441
7442 /* ------------------------------------------------------------------------ */
7443 /* Function: ipf_token_find */
7444 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */
7445 /* Parameters: softc(I)- pointer to soft context main structure */
7446 /* type(I) - the token type to match */
7447 /* uid(I) - uid owning the token */
7448 /* ptr(I) - context pointer for the token */
7449 /* */
7450 /* This function looks for a live token in the list of current tokens that */
7451 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */
7452 /* allocated. If one is found then it is moved to the top of the list of */
7453 /* currently active tokens. */
7454 /* ------------------------------------------------------------------------ */
7455 ipftoken_t *
7456 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7457 {
7458 ipftoken_t *it, *new;
7459
7460 KMALLOC(new, ipftoken_t *);
7461 if (new != NULL)
7462 bzero((char *)new, sizeof(*new));
7463
7464 WRITE_ENTER(&softc->ipf_tokens);
7465 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7466 if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7467 (uid == it->ipt_uid) && (it->ipt_complete < 2))
7468 break;
7469 }
7470
7471 if (it == NULL) {
7472 it = new;
7473 new = NULL;
7474 if (it == NULL) {
7475 RWLOCK_EXIT(&softc->ipf_tokens);
7476 return NULL;
7477 }
7478 it->ipt_ctx = ptr;
7479 it->ipt_uid = uid;
7480 it->ipt_type = type;
7481 it->ipt_ref = 1;
7482 } else {
7483 if (new != NULL) {
7484 KFREE(new);
7485 new = NULL;
7486 }
7487
7488 if (it->ipt_complete > 0)
7489 it = NULL;
7490 else
7491 ipf_token_unlink(softc, it);
7492 }
7493
7494 if (it != NULL) {
7495 it->ipt_pnext = softc->ipf_token_tail;
7496 *softc->ipf_token_tail = it;
7497 softc->ipf_token_tail = &it->ipt_next;
7498 it->ipt_next = NULL;
7499 it->ipt_ref++;
7500
7501 it->ipt_die = softc->ipf_ticks + 20;
7502 }
7503
7504 RWLOCK_EXIT(&softc->ipf_tokens);
7505
7506 return it;
7507 }
7508
7509
7510 /* ------------------------------------------------------------------------ */
7511 /* Function: ipf_token_unlink */
7512 /* Returns: None. */
7513 /* Parameters: softc(I) - pointer to soft context main structure */
7514 /* token(I) - pointer to token structure */
7515 /* Write Locks: ipf_tokens */
7516 /* */
7517 /* This function unlinks a token structure from the linked list of tokens */
7518 /* that "own" it. The head pointer never needs to be explicitly adjusted */
7519 /* but the tail does due to the linked list implementation. */
7520 /* ------------------------------------------------------------------------ */
7521 static void
7522 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7523 {
7524
7525 if (softc->ipf_token_tail == &token->ipt_next)
7526 softc->ipf_token_tail = token->ipt_pnext;
7527
7528 *token->ipt_pnext = token->ipt_next;
7529 if (token->ipt_next != NULL)
7530 token->ipt_next->ipt_pnext = token->ipt_pnext;
7531 token->ipt_next = NULL;
7532 token->ipt_pnext = NULL;
7533 }
7534
7535
7536 /* ------------------------------------------------------------------------ */
7537 /* Function: ipf_token_deref */
7538 /* Returns: int - 0 == token freed, else reference count */
7539 /* Parameters: softc(I) - pointer to soft context main structure */
7540 /* token(I) - pointer to token structure */
7541 /* Write Locks: ipf_tokens */
7542 /* */
7543 /* Drop the reference count on the token structure and if it drops to zero, */
7544 /* call the dereference function for the token type because it is then */
7545 /* possible to free the token data structure. */
7546 /* ------------------------------------------------------------------------ */
7547 int
7548 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7549 {
7550 void *data, **datap;
7551
7552 ASSERT(token->ipt_ref > 0);
7553 token->ipt_ref--;
7554 if (token->ipt_ref > 0)
7555 return token->ipt_ref;
7556
7557 data = token->ipt_data;
7558 datap = &data;
7559
7560 if ((data != NULL) && (data != (void *)-1)) {
7561 switch (token->ipt_type)
7562 {
7563 case IPFGENITER_IPF :
7564 (void) ipf_derefrule(softc, (frentry_t **)datap);
7565 break;
7566 case IPFGENITER_IPNAT :
7567 WRITE_ENTER(&softc->ipf_nat);
7568 ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7569 RWLOCK_EXIT(&softc->ipf_nat);
7570 break;
7571 case IPFGENITER_NAT :
7572 ipf_nat_deref(softc, (nat_t **)datap);
7573 break;
7574 case IPFGENITER_STATE :
7575 ipf_state_deref(softc, (ipstate_t **)datap);
7576 break;
7577 case IPFGENITER_FRAG :
7578 ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7579 break;
7580 case IPFGENITER_NATFRAG :
7581 ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7582 break;
7583 case IPFGENITER_HOSTMAP :
7584 WRITE_ENTER(&softc->ipf_nat);
7585 ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7586 RWLOCK_EXIT(&softc->ipf_nat);
7587 break;
7588 default :
7589 ipf_lookup_iterderef(softc, token->ipt_type, data);
7590 break;
7591 }
7592 }
7593
7594 ipf_token_unlink(softc, token);
7595 KFREE(token);
7596 return 0;
7597 }
7598
7599
7600 /* ------------------------------------------------------------------------ */
7601 /* Function: ipf_nextrule */
7602 /* Returns: frentry_t * - NULL == no more rules, else pointer to next */
7603 /* Parameters: softc(I) - pointer to soft context main structure */
7604 /* fr(I) - pointer to filter rule */
7605 /* out(I) - 1 == out rules, 0 == input rules */
7606 /* */
7607 /* Starting with "fr", find the next rule to visit. This includes visiting */
7608 /* the list of rule groups if either fr is NULL (empty list) or it is the */
7609 /* last rule in the list. When walking rule lists, it is either input or */
7610 /* output rules that are returned, never both. */
7611 /* ------------------------------------------------------------------------ */
7612 static frentry_t *
7613 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit,
7614 frentry_t *fr, int out)
7615 {
7616 frentry_t *next;
7617 frgroup_t *fg;
7618
7619 if (fr != NULL && fr->fr_group != -1) {
7620 fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7621 unit, active, NULL);
7622 if (fg != NULL)
7623 fg = fg->fg_next;
7624 } else {
7625 fg = softc->ipf_groups[unit][active];
7626 }
7627
7628 while (fg != NULL) {
7629 next = fg->fg_start;
7630 while (next != NULL) {
7631 if (out) {
7632 if (next->fr_flags & FR_OUTQUE)
7633 return next;
7634 } else if (next->fr_flags & FR_INQUE) {
7635 return next;
7636 }
7637 next = next->fr_next;
7638 }
7639 if (next == NULL)
7640 fg = fg->fg_next;
7641 }
7642
7643 return NULL;
7644 }
7645
7646 /* ------------------------------------------------------------------------ */
7647 /* Function: ipf_getnextrule */
7648 /* Returns: int - 0 = success, else error */
7649 /* Parameters: softc(I)- pointer to soft context main structure */
7650 /* t(I) - pointer to destination information to resolve */
7651 /* ptr(I) - pointer to ipfobj_t to copyin from user space */
7652 /* */
7653 /* This function's first job is to bring in the ipfruleiter_t structure via */
7654 /* the ipfobj_t structure to determine what should be the next rule to */
7655 /* return. Once the ipfruleiter_t has been brought in, it then tries to */
7656 /* find the 'next rule'. This may include searching rule group lists or */
7657 /* just be as simple as looking at the 'next' field in the rule structure. */
7658 /* When we have found the rule to return, increase its reference count and */
7659 /* if we used an existing rule to get here, decrease its reference count. */
7660 /* ------------------------------------------------------------------------ */
7661 int
7662 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7663 {
7664 frentry_t *fr, *next, zero;
7665 ipfruleiter_t it;
7666 int error, out;
7667 frgroup_t *fg;
7668 ipfobj_t obj;
7669 int predict;
7670 char *dst;
7671 int unit;
7672
7673 if (t == NULL || ptr == NULL) {
7674 IPFERROR(84);
7675 return EFAULT;
7676 }
7677
7678 error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7679 if (error != 0)
7680 return error;
7681
7682 if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7683 IPFERROR(85);
7684 return EINVAL;
7685 }
7686 if ((it.iri_active != 0) && (it.iri_active != 1)) {
7687 IPFERROR(86);
7688 return EINVAL;
7689 }
7690 if (it.iri_nrules == 0) {
7691 IPFERROR(87);
7692 return ENOSPC;
7693 }
7694 if (it.iri_rule == NULL) {
7695 IPFERROR(88);
7696 return EFAULT;
7697 }
7698
7699 fg = NULL;
7700 fr = t->ipt_data;
7701 if ((it.iri_inout & F_OUT) != 0)
7702 out = 1;
7703 else
7704 out = 0;
7705 if ((it.iri_inout & F_ACIN) != 0)
7706 unit = IPL_LOGCOUNT;
7707 else
7708 unit = IPL_LOGIPF;
7709
7710 READ_ENTER(&softc->ipf_mutex);
7711 if (fr == NULL) {
7712 if (*it.iri_group == '\0') {
7713 if (unit == IPL_LOGCOUNT) {
7714 next = softc->ipf_acct[out][it.iri_active];
7715 } else {
7716 next = softc->ipf_rules[out][it.iri_active];
7717 }
7718 if (next == NULL)
7719 next = ipf_nextrule(softc, it.iri_active,
7720 unit, NULL, out);
7721 } else {
7722 fg = ipf_findgroup(softc, it.iri_group, unit,
7723 it.iri_active, NULL);
7724 if (fg != NULL)
7725 next = fg->fg_start;
7726 else
7727 next = NULL;
7728 }
7729 } else {
7730 next = fr->fr_next;
7731 if (next == NULL)
7732 next = ipf_nextrule(softc, it.iri_active, unit,
7733 fr, out);
7734 }
7735
7736 if (next != NULL && next->fr_next != NULL)
7737 predict = 1;
7738 else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7739 predict = 1;
7740 else
7741 predict = 0;
7742
7743 if (fr != NULL)
7744 (void) ipf_derefrule(softc, &fr);
7745
7746 obj.ipfo_type = IPFOBJ_FRENTRY;
7747 dst = (char *)it.iri_rule;
7748
7749 if (next != NULL) {
7750 obj.ipfo_size = next->fr_size;
7751 MUTEX_ENTER(&next->fr_lock);
7752 next->fr_ref++;
7753 MUTEX_EXIT(&next->fr_lock);
7754 t->ipt_data = next;
7755 } else {
7756 obj.ipfo_size = sizeof(frentry_t);
7757 bzero(&zero, sizeof(zero));
7758 next = &zero;
7759 t->ipt_data = NULL;
7760 }
7761 it.iri_rule = predict ? next : NULL;
7762 if (predict == 0)
7763 ipf_token_mark_complete(t);
7764
7765 RWLOCK_EXIT(&softc->ipf_mutex);
7766
7767 obj.ipfo_ptr = dst;
7768 error = ipf_outobjk(softc, &obj, next);
7769 if (error == 0 && t->ipt_data != NULL) {
7770 dst += obj.ipfo_size;
7771 if (next->fr_data != NULL) {
7772 ipfobj_t dobj;
7773
7774 if (next->fr_type == FR_T_IPFEXPR)
7775 dobj.ipfo_type = IPFOBJ_IPFEXPR;
7776 else
7777 dobj.ipfo_type = IPFOBJ_FRIPF;
7778 dobj.ipfo_size = next->fr_dsize;
7779 dobj.ipfo_rev = obj.ipfo_rev;
7780 dobj.ipfo_ptr = dst;
7781 error = ipf_outobjk(softc, &dobj, next->fr_data);
7782 }
7783 }
7784
7785 if ((fr != NULL) && (next == &zero))
7786 (void) ipf_derefrule(softc, &fr);
7787
7788 return error;
7789 }
7790
7791
7792 /* ------------------------------------------------------------------------ */
7793 /* Function: ipf_frruleiter */
7794 /* Returns: int - 0 = success, else error */
7795 /* Parameters: softc(I)- pointer to soft context main structure */
7796 /* data(I) - the token type to match */
7797 /* uid(I) - uid owning the token */
7798 /* ptr(I) - context pointer for the token */
7799 /* */
7800 /* This function serves as a stepping stone between ipf_ipf_ioctl and */
7801 /* ipf_getnextrule. It's role is to find the right token in the kernel for */
7802 /* the process doing the ioctl and use that to ask for the next rule. */
7803 /* ------------------------------------------------------------------------ */
7804 static int
7805 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7806 {
7807 ipftoken_t *token;
7808 ipfruleiter_t it;
7809 ipfobj_t obj;
7810 int error;
7811
7812 token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7813 if (token != NULL) {
7814 error = ipf_getnextrule(softc, token, data);
7815 WRITE_ENTER(&softc->ipf_tokens);
7816 ipf_token_deref(softc, token);
7817 RWLOCK_EXIT(&softc->ipf_tokens);
7818 } else {
7819 error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7820 if (error != 0)
7821 return error;
7822 it.iri_rule = NULL;
7823 error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7824 }
7825
7826 return error;
7827 }
7828
7829
7830 /* ------------------------------------------------------------------------ */
7831 /* Function: ipf_geniter */
7832 /* Returns: int - 0 = success, else error */
7833 /* Parameters: softc(I) - pointer to soft context main structure */
7834 /* token(I) - pointer to ipftoken_t structure */
7835 /* itp(I) - pointer to iterator data */
7836 /* */
7837 /* Decide which iterator function to call using information passed through */
7838 /* the ipfgeniter_t structure at itp. */
7839 /* ------------------------------------------------------------------------ */
7840 static int
7841 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7842 {
7843 int error;
7844
7845 switch (itp->igi_type)
7846 {
7847 case IPFGENITER_FRAG :
7848 error = ipf_frag_pkt_next(softc, token, itp);
7849 break;
7850 default :
7851 IPFERROR(92);
7852 error = EINVAL;
7853 break;
7854 }
7855
7856 return error;
7857 }
7858
7859
7860 /* ------------------------------------------------------------------------ */
7861 /* Function: ipf_genericiter */
7862 /* Returns: int - 0 = success, else error */
7863 /* Parameters: softc(I)- pointer to soft context main structure */
7864 /* data(I) - the token type to match */
7865 /* uid(I) - uid owning the token */
7866 /* ptr(I) - context pointer for the token */
7867 /* */
7868 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */
7869 /* ------------------------------------------------------------------------ */
7870 int
7871 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7872 {
7873 ipftoken_t *token;
7874 ipfgeniter_t iter;
7875 int error;
7876
7877 error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7878 if (error != 0)
7879 return error;
7880
7881 token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7882 if (token != NULL) {
7883 token->ipt_subtype = iter.igi_type;
7884 error = ipf_geniter(softc, token, &iter);
7885 WRITE_ENTER(&softc->ipf_tokens);
7886 ipf_token_deref(softc, token);
7887 RWLOCK_EXIT(&softc->ipf_tokens);
7888 } else {
7889 IPFERROR(93);
7890 error = 0;
7891 }
7892
7893 return error;
7894 }
7895
7896
7897 /* ------------------------------------------------------------------------ */
7898 /* Function: ipf_ipf_ioctl */
7899 /* Returns: int - 0 = success, else error */
7900 /* Parameters: softc(I)- pointer to soft context main structure */
7901 /* data(I) - the token type to match */
7902 /* cmd(I) - the ioctl command number */
7903 /* mode(I) - mode flags for the ioctl */
7904 /* uid(I) - uid owning the token */
7905 /* ptr(I) - context pointer for the token */
7906 /* */
7907 /* This function handles all of the ioctl command that are actually isssued */
7908 /* to the /dev/ipl device. */
7909 /* ------------------------------------------------------------------------ */
7910 int
7911 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode,
7912 int uid, void *ctx)
7913 {
7914 friostat_t fio;
7915 int error, tmp;
7916 ipfobj_t obj;
7917 SPL_INT(s);
7918
7919 switch (cmd)
7920 {
7921 case SIOCFRENB :
7922 if (!(mode & FWRITE)) {
7923 IPFERROR(94);
7924 error = EPERM;
7925 } else {
7926 error = BCOPYIN(data, &tmp, sizeof(tmp));
7927 if (error != 0) {
7928 IPFERROR(95);
7929 error = EFAULT;
7930 break;
7931 }
7932
7933 WRITE_ENTER(&softc->ipf_global);
7934 if (tmp) {
7935 if (softc->ipf_running > 0)
7936 error = 0;
7937 else
7938 error = ipfattach(softc);
7939 if (error == 0)
7940 softc->ipf_running = 1;
7941 else
7942 (void) ipfdetach(softc);
7943 } else {
7944 if (softc->ipf_running == 1)
7945 error = ipfdetach(softc);
7946 else
7947 error = 0;
7948 if (error == 0)
7949 softc->ipf_running = -1;
7950 }
7951 RWLOCK_EXIT(&softc->ipf_global);
7952 }
7953 break;
7954
7955 case SIOCIPFSET :
7956 if (!(mode & FWRITE)) {
7957 IPFERROR(96);
7958 error = EPERM;
7959 break;
7960 }
7961 /* FALLTHRU */
7962 case SIOCIPFGETNEXT :
7963 case SIOCIPFGET :
7964 error = ipf_ipftune(softc, cmd, (void *)data);
7965 break;
7966
7967 case SIOCSETFF :
7968 if (!(mode & FWRITE)) {
7969 IPFERROR(97);
7970 error = EPERM;
7971 } else {
7972 error = BCOPYIN(data, &softc->ipf_flags,
7973 sizeof(softc->ipf_flags));
7974 if (error != 0) {
7975 IPFERROR(98);
7976 error = EFAULT;
7977 }
7978 }
7979 break;
7980
7981 case SIOCGETFF :
7982 error = BCOPYOUT(&softc->ipf_flags, data,
7983 sizeof(softc->ipf_flags));
7984 if (error != 0) {
7985 IPFERROR(99);
7986 error = EFAULT;
7987 }
7988 break;
7989
7990 case SIOCFUNCL :
7991 error = ipf_resolvefunc(softc, (void *)data);
7992 break;
7993
7994 case SIOCINAFR :
7995 case SIOCRMAFR :
7996 case SIOCADAFR :
7997 case SIOCZRLST :
7998 if (!(mode & FWRITE)) {
7999 IPFERROR(100);
8000 error = EPERM;
8001 } else {
8002 error = frrequest(softc, IPL_LOGIPF, cmd, data,
8003 softc->ipf_active, 1);
8004 }
8005 break;
8006
8007 case SIOCINIFR :
8008 case SIOCRMIFR :
8009 case SIOCADIFR :
8010 if (!(mode & FWRITE)) {
8011 IPFERROR(101);
8012 error = EPERM;
8013 } else {
8014 error = frrequest(softc, IPL_LOGIPF, cmd, data,
8015 1 - softc->ipf_active, 1);
8016 }
8017 break;
8018
8019 case SIOCSWAPA :
8020 if (!(mode & FWRITE)) {
8021 IPFERROR(102);
8022 error = EPERM;
8023 } else {
8024 WRITE_ENTER(&softc->ipf_mutex);
8025 error = BCOPYOUT(&softc->ipf_active, data,
8026 sizeof(softc->ipf_active));
8027 if (error != 0) {
8028 IPFERROR(103);
8029 error = EFAULT;
8030 } else {
8031 softc->ipf_active = 1 - softc->ipf_active;
8032 }
8033 RWLOCK_EXIT(&softc->ipf_mutex);
8034 }
8035 break;
8036
8037 case SIOCGETFS :
8038 error = ipf_inobj(softc, (void *)data, &obj, &fio,
8039 IPFOBJ_IPFSTAT);
8040 if (error != 0)
8041 break;
8042 ipf_getstat(softc, &fio, obj.ipfo_rev);
8043 error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8044 break;
8045
8046 case SIOCFRZST :
8047 if (!(mode & FWRITE)) {
8048 IPFERROR(104);
8049 error = EPERM;
8050 } else
8051 error = ipf_zerostats(softc, data);
8052 break;
8053
8054 case SIOCIPFFL :
8055 if (!(mode & FWRITE)) {
8056 IPFERROR(105);
8057 error = EPERM;
8058 } else {
8059 error = BCOPYIN(data, &tmp, sizeof(tmp));
8060 if (!error) {
8061 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8062 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8063 if (error != 0) {
8064 IPFERROR(106);
8065 error = EFAULT;
8066 }
8067 } else {
8068 IPFERROR(107);
8069 error = EFAULT;
8070 }
8071 }
8072 break;
8073
8074 #ifdef USE_INET6
8075 case SIOCIPFL6 :
8076 if (!(mode & FWRITE)) {
8077 IPFERROR(108);
8078 error = EPERM;
8079 } else {
8080 error = BCOPYIN(data, &tmp, sizeof(tmp));
8081 if (!error) {
8082 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8083 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8084 if (error != 0) {
8085 IPFERROR(109);
8086 error = EFAULT;
8087 }
8088 } else {
8089 IPFERROR(110);
8090 error = EFAULT;
8091 }
8092 }
8093 break;
8094 #endif
8095
8096 case SIOCSTLCK :
8097 if (!(mode & FWRITE)) {
8098 IPFERROR(122);
8099 error = EPERM;
8100 } else {
8101 error = BCOPYIN(data, &tmp, sizeof(tmp));
8102 if (error == 0) {
8103 ipf_state_setlock(softc->ipf_state_soft, tmp);
8104 ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8105 ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8106 ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8107 } else {
8108 IPFERROR(111);
8109 error = EFAULT;
8110 }
8111 }
8112 break;
8113
8114 #ifdef IPFILTER_LOG
8115 case SIOCIPFFB :
8116 if (!(mode & FWRITE)) {
8117 IPFERROR(112);
8118 error = EPERM;
8119 } else {
8120 tmp = ipf_log_clear(softc, IPL_LOGIPF);
8121 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8122 if (error) {
8123 IPFERROR(113);
8124 error = EFAULT;
8125 }
8126 }
8127 break;
8128 #endif /* IPFILTER_LOG */
8129
8130 case SIOCFRSYN :
8131 if (!(mode & FWRITE)) {
8132 IPFERROR(114);
8133 error = EPERM;
8134 } else {
8135 WRITE_ENTER(&softc->ipf_global);
8136 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8137 error = ipfsync();
8138 #else
8139 ipf_sync(softc, NULL);
8140 error = 0;
8141 #endif
8142 RWLOCK_EXIT(&softc->ipf_global);
8143
8144 }
8145 break;
8146
8147 case SIOCGFRST :
8148 error = ipf_outobj(softc, (void *)data,
8149 ipf_frag_stats(softc->ipf_frag_soft),
8150 IPFOBJ_FRAGSTAT);
8151 break;
8152
8153 #ifdef IPFILTER_LOG
8154 case FIONREAD :
8155 tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8156 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8157 break;
8158 #endif
8159
8160 case SIOCIPFITER :
8161 SPL_SCHED(s);
8162 error = ipf_frruleiter(softc, data, uid, ctx);
8163 SPL_X(s);
8164 break;
8165
8166 case SIOCGENITER :
8167 SPL_SCHED(s);
8168 error = ipf_genericiter(softc, data, uid, ctx);
8169 SPL_X(s);
8170 break;
8171
8172 case SIOCIPFDELTOK :
8173 error = BCOPYIN(data, &tmp, sizeof(tmp));
8174 if (error == 0) {
8175 SPL_SCHED(s);
8176 error = ipf_token_del(softc, tmp, uid, ctx);
8177 SPL_X(s);
8178 }
8179 break;
8180
8181 default :
8182 IPFERROR(115);
8183 error = EINVAL;
8184 break;
8185 }
8186
8187 return error;
8188 }
8189
8190
8191 /* ------------------------------------------------------------------------ */
8192 /* Function: ipf_decaps */
8193 /* Returns: int - -1 == decapsulation failed, else bit mask of */
8194 /* flags indicating packet filtering decision. */
8195 /* Parameters: fin(I) - pointer to packet information */
8196 /* pass(I) - IP protocol version to match */
8197 /* l5proto(I) - layer 5 protocol to decode UDP data as. */
8198 /* */
8199 /* This function is called for packets that are wrapt up in other packets, */
8200 /* for example, an IP packet that is the entire data segment for another IP */
8201 /* packet. If the basic constraints for this are satisfied, change the */
8202 /* buffer to point to the start of the inner packet and start processing */
8203 /* rules belonging to the head group this rule specifies. */
8204 /* ------------------------------------------------------------------------ */
8205 u_32_t
8206 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8207 {
8208 fr_info_t fin2, *fino = NULL;
8209 int elen, hlen, nh;
8210 grehdr_t gre;
8211 ip_t *ip;
8212 mb_t *m;
8213
8214 if ((fin->fin_flx & FI_COALESCE) == 0)
8215 if (ipf_coalesce(fin) == -1)
8216 goto cantdecaps;
8217
8218 m = fin->fin_m;
8219 hlen = fin->fin_hlen;
8220
8221 switch (fin->fin_p)
8222 {
8223 case IPPROTO_UDP :
8224 /*
8225 * In this case, the specific protocol being decapsulated
8226 * inside UDP frames comes from the rule.
8227 */
8228 nh = fin->fin_fr->fr_icode;
8229 break;
8230
8231 case IPPROTO_GRE : /* 47 */
8232 bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8233 hlen += sizeof(grehdr_t);
8234 if (gre.gr_R|gre.gr_s)
8235 goto cantdecaps;
8236 if (gre.gr_C)
8237 hlen += 4;
8238 if (gre.gr_K)
8239 hlen += 4;
8240 if (gre.gr_S)
8241 hlen += 4;
8242
8243 nh = IPPROTO_IP;
8244
8245 /*
8246 * If the routing options flag is set, validate that it is
8247 * there and bounce over it.
8248 */
8249 #if 0
8250 /* This is really heavy weight and lots of room for error, */
8251 /* so for now, put it off and get the simple stuff right. */
8252 if (gre.gr_R) {
8253 u_char off, len, *s;
8254 u_short af;
8255 int end;
8256
8257 end = 0;
8258 s = fin->fin_dp;
8259 s += hlen;
8260 aplen = fin->fin_plen - hlen;
8261 while (aplen > 3) {
8262 af = (s[0] << 8) | s[1];
8263 off = s[2];
8264 len = s[3];
8265 aplen -= 4;
8266 s += 4;
8267 if (af == 0 && len == 0) {
8268 end = 1;
8269 break;
8270 }
8271 if (aplen < len)
8272 break;
8273 s += len;
8274 aplen -= len;
8275 }
8276 if (end != 1)
8277 goto cantdecaps;
8278 hlen = s - (u_char *)fin->fin_dp;
8279 }
8280 #endif
8281 break;
8282
8283 #ifdef IPPROTO_IPIP
8284 case IPPROTO_IPIP : /* 4 */
8285 #endif
8286 nh = IPPROTO_IP;
8287 break;
8288
8289 default : /* Includes ESP, AH is special for IPv4 */
8290 goto cantdecaps;
8291 }
8292
8293 switch (nh)
8294 {
8295 case IPPROTO_IP :
8296 case IPPROTO_IPV6 :
8297 break;
8298 default :
8299 goto cantdecaps;
8300 }
8301
8302 bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8303 fino = fin;
8304 fin = &fin2;
8305 elen = hlen;
8306 #if defined(MENTAT) && defined(_KERNEL)
8307 m->b_rptr += elen;
8308 #else
8309 m->m_data += elen;
8310 m->m_len -= elen;
8311 #endif
8312 fin->fin_plen -= elen;
8313
8314 ip = (ip_t *)((char *)fin->fin_ip + elen);
8315
8316 /*
8317 * Make sure we have at least enough data for the network layer
8318 * header.
8319 */
8320 if (IP_V(ip) == 4)
8321 hlen = IP_HL(ip) << 2;
8322 #ifdef USE_INET6
8323 else if (IP_V(ip) == 6)
8324 hlen = sizeof(ip6_t);
8325 #endif
8326 else
8327 goto cantdecaps2;
8328
8329 if (fin->fin_plen < hlen)
8330 goto cantdecaps2;
8331
8332 fin->fin_dp = (char *)ip + hlen;
8333
8334 if (IP_V(ip) == 4) {
8335 /*
8336 * Perform IPv4 header checksum validation.
8337 */
8338 if (ipf_cksum((u_short *)ip, hlen))
8339 goto cantdecaps2;
8340 }
8341
8342 if (ipf_makefrip(hlen, ip, fin) == -1) {
8343 cantdecaps2:
8344 if (m != NULL) {
8345 #if defined(MENTAT) && defined(_KERNEL)
8346 m->b_rptr -= elen;
8347 #else
8348 m->m_data -= elen;
8349 m->m_len += elen;
8350 #endif
8351 }
8352 cantdecaps:
8353 DT1(frb_decapfrip, fr_info_t *, fin);
8354 pass &= ~FR_CMDMASK;
8355 pass |= FR_BLOCK|FR_QUICK;
8356 fin->fin_reason = FRB_DECAPFRIP;
8357 return -1;
8358 }
8359
8360 pass = ipf_scanlist(fin, pass);
8361
8362 /*
8363 * Copy the packet filter "result" fields out of the fr_info_t struct
8364 * that is local to the decapsulation processing and back into the
8365 * one we were called with.
8366 */
8367 fino->fin_flx = fin->fin_flx;
8368 fino->fin_rev = fin->fin_rev;
8369 fino->fin_icode = fin->fin_icode;
8370 fino->fin_rule = fin->fin_rule;
8371 (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8372 fino->fin_fr = fin->fin_fr;
8373 fino->fin_error = fin->fin_error;
8374 fino->fin_mp = fin->fin_mp;
8375 fino->fin_m = fin->fin_m;
8376 m = fin->fin_m;
8377 if (m != NULL) {
8378 #if defined(MENTAT) && defined(_KERNEL)
8379 m->b_rptr -= elen;
8380 #else
8381 m->m_data -= elen;
8382 m->m_len += elen;
8383 #endif
8384 }
8385 return pass;
8386 }
8387
8388
8389 /* ------------------------------------------------------------------------ */
8390 /* Function: ipf_matcharray_load */
8391 /* Returns: int - 0 = success, else error */
8392 /* Parameters: softc(I) - pointer to soft context main structure */
8393 /* data(I) - pointer to ioctl data */
8394 /* objp(I) - ipfobj_t structure to load data into */
8395 /* arrayptr(I) - pointer to location to store array pointer */
8396 /* */
8397 /* This function loads in a mathing array through the ipfobj_t struct that */
8398 /* describes it. Sanity checking and array size limitations are enforced */
8399 /* in this function to prevent userspace from trying to load in something */
8400 /* that is insanely big. Once the size of the array is known, the memory */
8401 /* required is malloc'd and returned through changing *arrayptr. The */
8402 /* contents of the array are verified before returning. Only in the event */
8403 /* of a successful call is the caller required to free up the malloc area. */
8404 /* ------------------------------------------------------------------------ */
8405 int
8406 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp,
8407 int **arrayptr)
8408 {
8409 int arraysize, *array, error;
8410
8411 *arrayptr = NULL;
8412
8413 error = BCOPYIN(data, objp, sizeof(*objp));
8414 if (error != 0) {
8415 IPFERROR(116);
8416 return EFAULT;
8417 }
8418
8419 if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8420 IPFERROR(117);
8421 return EINVAL;
8422 }
8423
8424 if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8425 (objp->ipfo_size > 1024)) {
8426 IPFERROR(118);
8427 return EINVAL;
8428 }
8429
8430 arraysize = objp->ipfo_size * sizeof(*array);
8431 KMALLOCS(array, int *, arraysize);
8432 if (array == NULL) {
8433 IPFERROR(119);
8434 return ENOMEM;
8435 }
8436
8437 error = COPYIN(objp->ipfo_ptr, array, arraysize);
8438 if (error != 0) {
8439 KFREES(array, arraysize);
8440 IPFERROR(120);
8441 return EFAULT;
8442 }
8443
8444 if (ipf_matcharray_verify(array, arraysize) != 0) {
8445 KFREES(array, arraysize);
8446 IPFERROR(121);
8447 return EINVAL;
8448 }
8449
8450 *arrayptr = array;
8451 return 0;
8452 }
8453
8454
8455 /* ------------------------------------------------------------------------ */
8456 /* Function: ipf_matcharray_verify */
8457 /* Returns: Nil */
8458 /* Parameters: array(I) - pointer to matching array */
8459 /* arraysize(I) - number of elements in the array */
8460 /* */
8461 /* Verify the contents of a matching array by stepping through each element */
8462 /* in it. The actual commands in the array are not verified for */
8463 /* correctness, only that all of the sizes are correctly within limits. */
8464 /* ------------------------------------------------------------------------ */
8465 int
8466 ipf_matcharray_verify(int *array, int arraysize)
8467 {
8468 int i, nelem, maxidx;
8469 ipfexp_t *e;
8470
8471 nelem = arraysize / sizeof(*array);
8472
8473 /*
8474 * Currently, it makes no sense to have an array less than 6
8475 * elements long - the initial size at the from, a single operation
8476 * (minimum 4 in length) and a trailer, for a total of 6.
8477 */
8478 if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8479 return -1;
8480 }
8481
8482 /*
8483 * Verify the size of data pointed to by array with how long
8484 * the array claims to be itself.
8485 */
8486 if (array[0] * sizeof(*array) != arraysize) {
8487 return -1;
8488 }
8489
8490 maxidx = nelem - 1;
8491 /*
8492 * The last opcode in this array should be an IPF_EXP_END.
8493 */
8494 if (array[maxidx] != IPF_EXP_END) {
8495 return -1;
8496 }
8497
8498 for (i = 1; i < maxidx; ) {
8499 e = (ipfexp_t *)(array + i);
8500
8501 /*
8502 * The length of the bits to check must be at least 1
8503 * (or else there is nothing to comapre with!) and it
8504 * cannot exceed the length of the data present.
8505 */
8506 if ((e->ipfe_size < 1 ) ||
8507 (e->ipfe_size + i > maxidx)) {
8508 return -1;
8509 }
8510 i += e->ipfe_size;
8511 }
8512 return 0;
8513 }
8514
8515
8516 /* ------------------------------------------------------------------------ */
8517 /* Function: ipf_fr_matcharray */
8518 /* Returns: int - 0 = match failed, else positive match */
8519 /* Parameters: fin(I) - pointer to packet information */
8520 /* array(I) - pointer to matching array */
8521 /* */
8522 /* This function is used to apply a matching array against a packet and */
8523 /* return an indication of whether or not the packet successfully matches */
8524 /* all of the commands in it. */
8525 /* ------------------------------------------------------------------------ */
8526 static int
8527 ipf_fr_matcharray(fr_info_t *fin, int *array)
8528 {
8529 int i, n, *x, rv, p;
8530 ipfexp_t *e;
8531
8532 rv = 0;
8533 n = array[0];
8534 x = array + 1;
8535
8536 for (; n > 0; x += 3 + x[3], rv = 0) {
8537 e = (ipfexp_t *)x;
8538 if (e->ipfe_cmd == IPF_EXP_END)
8539 break;
8540 n -= e->ipfe_size;
8541
8542 /*
8543 * The upper 16 bits currently store the protocol value.
8544 * This is currently used with TCP and UDP port compares and
8545 * allows "tcp.port = 80" without requiring an explicit
8546 " "ip.pr = tcp" first.
8547 */
8548 p = e->ipfe_cmd >> 16;
8549 if ((p != 0) && (p != fin->fin_p))
8550 break;
8551
8552 switch (e->ipfe_cmd)
8553 {
8554 case IPF_EXP_IP_PR :
8555 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8556 rv |= (fin->fin_p == e->ipfe_arg0[i]);
8557 }
8558 break;
8559
8560 case IPF_EXP_IP_SRCADDR :
8561 if (fin->fin_v != 4)
8562 break;
8563 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8564 rv |= ((fin->fin_saddr &
8565 e->ipfe_arg0[i * 2 + 1]) ==
8566 e->ipfe_arg0[i * 2]);
8567 }
8568 break;
8569
8570 case IPF_EXP_IP_DSTADDR :
8571 if (fin->fin_v != 4)
8572 break;
8573 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8574 rv |= ((fin->fin_daddr &
8575 e->ipfe_arg0[i * 2 + 1]) ==
8576 e->ipfe_arg0[i * 2]);
8577 }
8578 break;
8579
8580 case IPF_EXP_IP_ADDR :
8581 if (fin->fin_v != 4)
8582 break;
8583 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8584 rv |= ((fin->fin_saddr &
8585 e->ipfe_arg0[i * 2 + 1]) ==
8586 e->ipfe_arg0[i * 2]) ||
8587 ((fin->fin_daddr &
8588 e->ipfe_arg0[i * 2 + 1]) ==
8589 e->ipfe_arg0[i * 2]);
8590 }
8591 break;
8592
8593 #ifdef USE_INET6
8594 case IPF_EXP_IP6_SRCADDR :
8595 if (fin->fin_v != 6)
8596 break;
8597 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8598 rv |= IP6_MASKEQ(&fin->fin_src6,
8599 &e->ipfe_arg0[i * 8 + 4],
8600 &e->ipfe_arg0[i * 8]);
8601 }
8602 break;
8603
8604 case IPF_EXP_IP6_DSTADDR :
8605 if (fin->fin_v != 6)
8606 break;
8607 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8608 rv |= IP6_MASKEQ(&fin->fin_dst6,
8609 &e->ipfe_arg0[i * 8 + 4],
8610 &e->ipfe_arg0[i * 8]);
8611 }
8612 break;
8613
8614 case IPF_EXP_IP6_ADDR :
8615 if (fin->fin_v != 6)
8616 break;
8617 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8618 rv |= IP6_MASKEQ(&fin->fin_src6,
8619 &e->ipfe_arg0[i * 8 + 4],
8620 &e->ipfe_arg0[i * 8]) ||
8621 IP6_MASKEQ(&fin->fin_dst6,
8622 &e->ipfe_arg0[i * 8 + 4],
8623 &e->ipfe_arg0[i * 8]);
8624 }
8625 break;
8626 #endif
8627
8628 case IPF_EXP_UDP_PORT :
8629 case IPF_EXP_TCP_PORT :
8630 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8631 rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8632 (fin->fin_dport == e->ipfe_arg0[i]);
8633 }
8634 break;
8635
8636 case IPF_EXP_UDP_SPORT :
8637 case IPF_EXP_TCP_SPORT :
8638 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8639 rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8640 }
8641 break;
8642
8643 case IPF_EXP_UDP_DPORT :
8644 case IPF_EXP_TCP_DPORT :
8645 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8646 rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8647 }
8648 break;
8649
8650 case IPF_EXP_TCP_FLAGS :
8651 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8652 rv |= ((fin->fin_tcpf &
8653 e->ipfe_arg0[i * 2 + 1]) ==
8654 e->ipfe_arg0[i * 2]);
8655 }
8656 break;
8657 }
8658 rv ^= e->ipfe_not;
8659
8660 if (rv == 0)
8661 break;
8662 }
8663
8664 return rv;
8665 }
8666
8667
8668 /* ------------------------------------------------------------------------ */
8669 /* Function: ipf_queueflush */
8670 /* Returns: int - number of entries flushed (0 = none) */
8671 /* Parameters: softc(I) - pointer to soft context main structure */
8672 /* deletefn(I) - function to call to delete entry */
8673 /* ipfqs(I) - top of the list of ipf internal queues */
8674 /* userqs(I) - top of the list of user defined timeouts */
8675 /* */
8676 /* This fucntion gets called when the state/NAT hash tables fill up and we */
8677 /* need to try a bit harder to free up some space. The algorithm used here */
8678 /* split into two parts but both halves have the same goal: to reduce the */
8679 /* number of connections considered to be "active" to the low watermark. */
8680 /* There are two steps in doing this: */
8681 /* 1) Remove any TCP connections that are already considered to be "closed" */
8682 /* but have not yet been removed from the state table. The two states */
8683 /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */
8684 /* candidates for this style of removal. If freeing up entries in */
8685 /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */
8686 /* we do not go on to step 2. */
8687 /* */
8688 /* 2) Look for the oldest entries on each timeout queue and free them if */
8689 /* they are within the given window we are considering. Where the */
8690 /* window starts and the steps taken to increase its size depend upon */
8691 /* how long ipf has been running (ipf_ticks.) Anything modified in the */
8692 /* last 30 seconds is not touched. */
8693 /* touched */
8694 /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */
8695 /* | | | | | | */
8696 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8697 /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */
8698 /* */
8699 /* Points to note: */
8700 /* - tqe_die is the time, in the future, when entries die. */
8701 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8702 /* ticks. */
8703 /* - tqe_touched is when the entry was last used by NAT/state */
8704 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */
8705 /* ipf_ticks any given timeout queue and vice versa. */
8706 /* - both tqe_die and tqe_touched increase over time */
8707 /* - timeout queues are sorted with the highest value of tqe_die at the */
8708 /* bottom and therefore the smallest values of each are at the top */
8709 /* - the pointer passed in as ipfqs should point to an array of timeout */
8710 /* queues representing each of the TCP states */
8711 /* */
8712 /* We start by setting up a maximum range to scan for things to move of */
8713 /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */
8714 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8715 /* we start again with a new value for "iend" and "istart". This is */
8716 /* continued until we either finish the scan of 30 second intervals or the */
8717 /* low water mark is reached. */
8718 /* ------------------------------------------------------------------------ */
8719 int
8720 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8721 ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8722 {
8723 u_long interval, istart, iend;
8724 ipftq_t *ifq, *ifqnext;
8725 ipftqent_t *tqe, *tqn;
8726 int removed = 0;
8727
8728 for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8729 tqn = tqe->tqe_next;
8730 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8731 removed++;
8732 }
8733 if ((*activep * 100 / size) > low) {
8734 for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8735 ((tqe = tqn) != NULL); ) {
8736 tqn = tqe->tqe_next;
8737 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8738 removed++;
8739 }
8740 }
8741
8742 if ((*activep * 100 / size) <= low) {
8743 return removed;
8744 }
8745
8746 /*
8747 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8748 * used then the operations are upgraded to floating point
8749 * and kernels don't like floating point...
8750 */
8751 if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8752 istart = IPF_TTLVAL(86400 * 4);
8753 interval = IPF_TTLVAL(43200);
8754 } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8755 istart = IPF_TTLVAL(43200);
8756 interval = IPF_TTLVAL(1800);
8757 } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8758 istart = IPF_TTLVAL(1800);
8759 interval = IPF_TTLVAL(30);
8760 } else {
8761 return 0;
8762 }
8763 if (istart > softc->ipf_ticks) {
8764 if (softc->ipf_ticks - interval < interval)
8765 istart = interval;
8766 else
8767 istart = (softc->ipf_ticks / interval) * interval;
8768 }
8769
8770 iend = softc->ipf_ticks - interval;
8771
8772 while ((*activep * 100 / size) > low) {
8773 u_long try;
8774
8775 try = softc->ipf_ticks - istart;
8776
8777 for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8778 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8779 if (try < tqe->tqe_touched)
8780 break;
8781 tqn = tqe->tqe_next;
8782 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8783 removed++;
8784 }
8785 }
8786
8787 for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8788 ifqnext = ifq->ifq_next;
8789
8790 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8791 if (try < tqe->tqe_touched)
8792 break;
8793 tqn = tqe->tqe_next;
8794 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8795 removed++;
8796 }
8797 }
8798
8799 if (try >= iend) {
8800 if (interval == IPF_TTLVAL(43200)) {
8801 interval = IPF_TTLVAL(1800);
8802 } else if (interval == IPF_TTLVAL(1800)) {
8803 interval = IPF_TTLVAL(30);
8804 } else {
8805 break;
8806 }
8807 if (interval >= softc->ipf_ticks)
8808 break;
8809
8810 iend = softc->ipf_ticks - interval;
8811 }
8812 istart -= interval;
8813 }
8814
8815 return removed;
8816 }
8817
8818
8819 /* ------------------------------------------------------------------------ */
8820 /* Function: ipf_deliverlocal */
8821 /* Returns: int - 1 = local address, 0 = non-local address */
8822 /* Parameters: softc(I) - pointer to soft context main structure */
8823 /* ipversion(I) - IP protocol version (4 or 6) */
8824 /* ifp(I) - network interface pointer */
8825 /* ipaddr(I) - IPv4/6 destination address */
8826 /* */
8827 /* This fucntion is used to determine in the address "ipaddr" belongs to */
8828 /* the network interface represented by ifp. */
8829 /* ------------------------------------------------------------------------ */
8830 int
8831 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8832 i6addr_t *ipaddr)
8833 {
8834 i6addr_t addr;
8835 int islocal = 0;
8836
8837 if (ipversion == 4) {
8838 if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8839 if (addr.in4.s_addr == ipaddr->in4.s_addr)
8840 islocal = 1;
8841 }
8842
8843 #ifdef USE_INET6
8844 } else if (ipversion == 6) {
8845 if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8846 if (IP6_EQ(&addr, ipaddr))
8847 islocal = 1;
8848 }
8849 #endif
8850 }
8851
8852 return islocal;
8853 }
8854
8855
8856 /* ------------------------------------------------------------------------ */
8857 /* Function: ipf_settimeout */
8858 /* Returns: int - 0 = success, -1 = failure */
8859 /* Parameters: softc(I) - pointer to soft context main structure */
8860 /* t(I) - pointer to tuneable array entry */
8861 /* p(I) - pointer to values passed in to apply */
8862 /* */
8863 /* This function is called to set the timeout values for each distinct */
8864 /* queue timeout that is available. When called, it calls into both the */
8865 /* state and NAT code, telling them to update their timeout queues. */
8866 /* ------------------------------------------------------------------------ */
8867 static int
8868 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8869 ipftuneval_t *p)
8870 {
8871
8872 /*
8873 * ipf_interror should be set by the functions called here, not
8874 * by this function - it's just a middle man.
8875 */
8876 if (ipf_state_settimeout(softc, t, p) == -1)
8877 return -1;
8878 if (ipf_nat_settimeout(softc, t, p) == -1)
8879 return -1;
8880 return 0;
8881 }
8882
8883
8884 /* ------------------------------------------------------------------------ */
8885 /* Function: ipf_apply_timeout */
8886 /* Returns: int - 0 = success, -1 = failure */
8887 /* Parameters: head(I) - pointer to tuneable array entry */
8888 /* seconds(I) - pointer to values passed in to apply */
8889 /* */
8890 /* This function applies a timeout of "seconds" to the timeout queue that */
8891 /* is pointed to by "head". All entries on this list have an expiration */
8892 /* set to be the current tick value of ipf plus the ttl. Given that this */
8893 /* function should only be called when the delta is non-zero, the task is */
8894 /* to walk the entire list and apply the change. The sort order will not */
8895 /* change. The only catch is that this is O(n) across the list, so if the */
8896 /* queue has lots of entries (10s of thousands or 100s of thousands), it */
8897 /* could take a relatively long time to work through them all. */
8898 /* ------------------------------------------------------------------------ */
8899 void
8900 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8901 {
8902 u_int oldtimeout, newtimeout;
8903 ipftqent_t *tqe;
8904 int delta;
8905
8906 MUTEX_ENTER(&head->ifq_lock);
8907 oldtimeout = head->ifq_ttl;
8908 newtimeout = IPF_TTLVAL(seconds);
8909 delta = oldtimeout - newtimeout;
8910
8911 head->ifq_ttl = newtimeout;
8912
8913 for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8914 tqe->tqe_die += delta;
8915 }
8916 MUTEX_EXIT(&head->ifq_lock);
8917 }
8918
8919
8920 /* ------------------------------------------------------------------------ */
8921 /* Function: ipf_settimeout_tcp */
8922 /* Returns: int - 0 = successfully applied, -1 = failed */
8923 /* Parameters: t(I) - pointer to tuneable to change */
8924 /* p(I) - pointer to new timeout information */
8925 /* tab(I) - pointer to table of TCP queues */
8926 /* */
8927 /* This function applies the new timeout (p) to the TCP tunable (t) and */
8928 /* updates all of the entries on the relevant timeout queue by calling */
8929 /* ipf_apply_timeout(). */
8930 /* ------------------------------------------------------------------------ */
8931 int
8932 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8933 {
8934 if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8935 !strcmp(t->ipft_name, "tcp_established")) {
8936 ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8937 } else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8938 ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8939 } else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8940 ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8941 } else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8942 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8943 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8944 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8945 } else if (!strcmp(t->ipft_name, "tcp_listen")) {
8946 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8947 } else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8948 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8949 } else if (!strcmp(t->ipft_name, "tcp_closing")) {
8950 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8951 } else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8952 ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8953 } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8954 ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8955 } else if (!strcmp(t->ipft_name, "tcp_closed")) {
8956 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8957 } else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8958 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8959 } else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8960 ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8961 } else {
8962 /*
8963 * ipf_interror isn't set here because it should be set
8964 * by whatever called this function.
8965 */
8966 return -1;
8967 }
8968 return 0;
8969 }
8970
8971
8972 /* ------------------------------------------------------------------------ */
8973 /* Function: ipf_main_soft_create */
8974 /* Returns: NULL = failure, else success */
8975 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8976 /* */
8977 /* Create the foundation soft context structure. In circumstances where it */
8978 /* is not required to dynamically allocate the context, a pointer can be */
8979 /* passed in (rather than NULL) to a structure to be initialised. */
8980 /* The main thing of interest is that a number of locks are initialised */
8981 /* here instead of in the where might be expected - in the relevant create */
8982 /* function elsewhere. This is done because the current locking design has */
8983 /* some areas where these locks are used outside of their module. */
8984 /* Possibly the most important exercise that is done here is setting of all */
8985 /* the timeout values, allowing them to be changed before init(). */
8986 /* ------------------------------------------------------------------------ */
8987 void *
8988 ipf_main_soft_create(void *arg)
8989 {
8990 ipf_main_softc_t *softc;
8991
8992 if (arg == NULL) {
8993 KMALLOC(softc, ipf_main_softc_t *);
8994 if (softc == NULL)
8995 return NULL;
8996 } else {
8997 softc = arg;
8998 }
8999
9000 bzero((char *)softc, sizeof(*softc));
9001
9002 /*
9003 * This serves as a flag as to whether or not the softc should be
9004 * free'd when _destroy is called.
9005 */
9006 softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9007
9008 softc->ipf_tuners = ipf_tune_array_copy(softc,
9009 sizeof(ipf_main_tuneables),
9010 ipf_main_tuneables);
9011 if (softc->ipf_tuners == NULL) {
9012 ipf_main_soft_destroy(softc);
9013 return NULL;
9014 }
9015
9016 MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9017 MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9018 RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9019 RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9020 RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9021 RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9022 RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9023 RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9024 RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9025
9026 softc->ipf_token_head = NULL;
9027 softc->ipf_token_tail = &softc->ipf_token_head;
9028
9029 softc->ipf_tcpidletimeout = FIVE_DAYS;
9030 softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9031 softc->ipf_tcplastack = IPF_TTLVAL(30);
9032 softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9033 softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9034 softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9035 softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9036 softc->ipf_tcpclosed = IPF_TTLVAL(30);
9037 softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9038 softc->ipf_udptimeout = IPF_TTLVAL(120);
9039 softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9040 softc->ipf_icmptimeout = IPF_TTLVAL(60);
9041 softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9042 softc->ipf_iptimeout = IPF_TTLVAL(60);
9043
9044 #if defined(IPFILTER_DEFAULT_BLOCK)
9045 softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9046 #else
9047 softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9048 #endif
9049 softc->ipf_minttl = 4;
9050 softc->ipf_icmpminfragmtu = 68;
9051 softc->ipf_flags = IPF_LOGGING;
9052
9053 return softc;
9054 }
9055
9056 /* ------------------------------------------------------------------------ */
9057 /* Function: ipf_main_soft_init */
9058 /* Returns: 0 = success, -1 = failure */
9059 /* Parameters: softc(I) - pointer to soft context main structure */
9060 /* */
9061 /* A null-op function that exists as a placeholder so that the flow in */
9062 /* other functions is obvious. */
9063 /* ------------------------------------------------------------------------ */
9064 /*ARGSUSED*/
9065 int
9066 ipf_main_soft_init(ipf_main_softc_t *softc)
9067 {
9068 return 0;
9069 }
9070
9071
9072 /* ------------------------------------------------------------------------ */
9073 /* Function: ipf_main_soft_destroy */
9074 /* Returns: void */
9075 /* Parameters: softc(I) - pointer to soft context main structure */
9076 /* */
9077 /* Undo everything that we did in ipf_main_soft_create. */
9078 /* */
9079 /* The most important check that needs to be made here is whether or not */
9080 /* the structure was allocated by ipf_main_soft_create() by checking what */
9081 /* value is stored in ipf_dynamic_main. */
9082 /* ------------------------------------------------------------------------ */
9083 /*ARGSUSED*/
9084 void
9085 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9086 {
9087
9088 RW_DESTROY(&softc->ipf_frag);
9089 RW_DESTROY(&softc->ipf_poolrw);
9090 RW_DESTROY(&softc->ipf_nat);
9091 RW_DESTROY(&softc->ipf_state);
9092 RW_DESTROY(&softc->ipf_tokens);
9093 RW_DESTROY(&softc->ipf_mutex);
9094 RW_DESTROY(&softc->ipf_global);
9095 MUTEX_DESTROY(&softc->ipf_timeoutlock);
9096 MUTEX_DESTROY(&softc->ipf_rw);
9097
9098 if (softc->ipf_tuners != NULL) {
9099 KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9100 }
9101 if (softc->ipf_dynamic_softc == 1) {
9102 KFREE(softc);
9103 }
9104 }
9105
9106
9107 /* ------------------------------------------------------------------------ */
9108 /* Function: ipf_main_soft_fini */
9109 /* Returns: 0 = success, -1 = failure */
9110 /* Parameters: softc(I) - pointer to soft context main structure */
9111 /* */
9112 /* Clean out the rules which have been added since _init was last called, */
9113 /* the only dynamic part of the mainline. */
9114 /* ------------------------------------------------------------------------ */
9115 int
9116 ipf_main_soft_fini(ipf_main_softc_t *softc)
9117 {
9118 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9119 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9120 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9121 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9122
9123 return 0;
9124 }
9125
9126
9127 /* ------------------------------------------------------------------------ */
9128 /* Function: ipf_main_load */
9129 /* Returns: 0 = success, -1 = failure */
9130 /* Parameters: none */
9131 /* */
9132 /* Handle global initialisation that needs to be done for the base part of */
9133 /* IPFilter. At present this just amounts to initialising some ICMP lookup */
9134 /* arrays that get used by the state/NAT code. */
9135 /* ------------------------------------------------------------------------ */
9136 int
9137 ipf_main_load(void)
9138 {
9139 int i;
9140
9141 /* fill icmp reply type table */
9142 for (i = 0; i <= ICMP_MAXTYPE; i++)
9143 icmpreplytype4[i] = -1;
9144 icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9145 icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9146 icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9147 icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9148
9149 #ifdef USE_INET6
9150 /* fill icmp reply type table */
9151 for (i = 0; i <= ICMP6_MAXTYPE; i++)
9152 icmpreplytype6[i] = -1;
9153 icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9154 icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9155 icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9156 icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9157 icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9158 #endif
9159
9160 return 0;
9161 }
9162
9163
9164 /* ------------------------------------------------------------------------ */
9165 /* Function: ipf_main_unload */
9166 /* Returns: 0 = success, -1 = failure */
9167 /* Parameters: none */
9168 /* */
9169 /* A null-op function that exists as a placeholder so that the flow in */
9170 /* other functions is obvious. */
9171 /* ------------------------------------------------------------------------ */
9172 int
9173 ipf_main_unload(void)
9174 {
9175 return 0;
9176 }
9177
9178
9179 /* ------------------------------------------------------------------------ */
9180 /* Function: ipf_load_all */
9181 /* Returns: 0 = success, -1 = failure */
9182 /* Parameters: none */
9183 /* */
9184 /* Work through all of the subsystems inside IPFilter and call the load */
9185 /* function for each in an order that won't lead to a crash :) */
9186 /* ------------------------------------------------------------------------ */
9187 int
9188 ipf_load_all(void)
9189 {
9190 if (ipf_main_load() == -1)
9191 return -1;
9192
9193 if (ipf_state_main_load() == -1)
9194 return -1;
9195
9196 if (ipf_nat_main_load() == -1)
9197 return -1;
9198
9199 if (ipf_frag_main_load() == -1)
9200 return -1;
9201
9202 if (ipf_auth_main_load() == -1)
9203 return -1;
9204
9205 if (ipf_proxy_main_load() == -1)
9206 return -1;
9207
9208 return 0;
9209 }
9210
9211
9212 /* ------------------------------------------------------------------------ */
9213 /* Function: ipf_unload_all */
9214 /* Returns: 0 = success, -1 = failure */
9215 /* Parameters: none */
9216 /* */
9217 /* Work through all of the subsystems inside IPFilter and call the unload */
9218 /* function for each in an order that won't lead to a crash :) */
9219 /* ------------------------------------------------------------------------ */
9220 int
9221 ipf_unload_all(void)
9222 {
9223 if (ipf_proxy_main_unload() == -1)
9224 return -1;
9225
9226 if (ipf_auth_main_unload() == -1)
9227 return -1;
9228
9229 if (ipf_frag_main_unload() == -1)
9230 return -1;
9231
9232 if (ipf_nat_main_unload() == -1)
9233 return -1;
9234
9235 if (ipf_state_main_unload() == -1)
9236 return -1;
9237
9238 if (ipf_main_unload() == -1)
9239 return -1;
9240
9241 return 0;
9242 }
9243
9244
9245 /* ------------------------------------------------------------------------ */
9246 /* Function: ipf_create_all */
9247 /* Returns: NULL = failure, else success */
9248 /* Parameters: arg(I) - pointer to soft context main structure */
9249 /* */
9250 /* Work through all of the subsystems inside IPFilter and call the create */
9251 /* function for each in an order that won't lead to a crash :) */
9252 /* ------------------------------------------------------------------------ */
9253 ipf_main_softc_t *
9254 ipf_create_all(void *arg)
9255 {
9256 ipf_main_softc_t *softc;
9257
9258 softc = ipf_main_soft_create(arg);
9259 if (softc == NULL)
9260 return NULL;
9261
9262 #ifdef IPFILTER_LOG
9263 softc->ipf_log_soft = ipf_log_soft_create(softc);
9264 if (softc->ipf_log_soft == NULL) {
9265 ipf_destroy_all(softc);
9266 return NULL;
9267 }
9268 #endif
9269
9270 softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9271 if (softc->ipf_lookup_soft == NULL) {
9272 ipf_destroy_all(softc);
9273 return NULL;
9274 }
9275
9276 softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9277 if (softc->ipf_sync_soft == NULL) {
9278 ipf_destroy_all(softc);
9279 return NULL;
9280 }
9281
9282 softc->ipf_state_soft = ipf_state_soft_create(softc);
9283 if (softc->ipf_state_soft == NULL) {
9284 ipf_destroy_all(softc);
9285 return NULL;
9286 }
9287
9288 softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9289 if (softc->ipf_nat_soft == NULL) {
9290 ipf_destroy_all(softc);
9291 return NULL;
9292 }
9293
9294 softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9295 if (softc->ipf_frag_soft == NULL) {
9296 ipf_destroy_all(softc);
9297 return NULL;
9298 }
9299
9300 softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9301 if (softc->ipf_auth_soft == NULL) {
9302 ipf_destroy_all(softc);
9303 return NULL;
9304 }
9305
9306 softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9307 if (softc->ipf_proxy_soft == NULL) {
9308 ipf_destroy_all(softc);
9309 return NULL;
9310 }
9311
9312 return softc;
9313 }
9314
9315
9316 /* ------------------------------------------------------------------------ */
9317 /* Function: ipf_destroy_all */
9318 /* Returns: void */
9319 /* Parameters: softc(I) - pointer to soft context main structure */
9320 /* */
9321 /* Work through all of the subsystems inside IPFilter and call the destroy */
9322 /* function for each in an order that won't lead to a crash :) */
9323 /* */
9324 /* Every one of these functions is expected to succeed, so there is no */
9325 /* checking of return values. */
9326 /* ------------------------------------------------------------------------ */
9327 void
9328 ipf_destroy_all(ipf_main_softc_t *softc)
9329 {
9330
9331 if (softc->ipf_state_soft != NULL) {
9332 ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9333 softc->ipf_state_soft = NULL;
9334 }
9335
9336 if (softc->ipf_nat_soft != NULL) {
9337 ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9338 softc->ipf_nat_soft = NULL;
9339 }
9340
9341 if (softc->ipf_frag_soft != NULL) {
9342 ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9343 softc->ipf_frag_soft = NULL;
9344 }
9345
9346 if (softc->ipf_auth_soft != NULL) {
9347 ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9348 softc->ipf_auth_soft = NULL;
9349 }
9350
9351 if (softc->ipf_proxy_soft != NULL) {
9352 ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9353 softc->ipf_proxy_soft = NULL;
9354 }
9355
9356 if (softc->ipf_sync_soft != NULL) {
9357 ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9358 softc->ipf_sync_soft = NULL;
9359 }
9360
9361 if (softc->ipf_lookup_soft != NULL) {
9362 ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9363 softc->ipf_lookup_soft = NULL;
9364 }
9365
9366 #ifdef IPFILTER_LOG
9367 if (softc->ipf_log_soft != NULL) {
9368 ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9369 softc->ipf_log_soft = NULL;
9370 }
9371 #endif
9372
9373 ipf_main_soft_destroy(softc);
9374 }
9375
9376
9377 /* ------------------------------------------------------------------------ */
9378 /* Function: ipf_init_all */
9379 /* Returns: 0 = success, -1 = failure */
9380 /* Parameters: softc(I) - pointer to soft context main structure */
9381 /* */
9382 /* Work through all of the subsystems inside IPFilter and call the init */
9383 /* function for each in an order that won't lead to a crash :) */
9384 /* ------------------------------------------------------------------------ */
9385 int
9386 ipf_init_all(ipf_main_softc_t *softc)
9387 {
9388
9389 if (ipf_main_soft_init(softc) == -1)
9390 return -1;
9391
9392 #ifdef IPFILTER_LOG
9393 if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9394 return -1;
9395 #endif
9396
9397 if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9398 return -1;
9399
9400 if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9401 return -1;
9402
9403 if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9404 return -1;
9405
9406 if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9407 return -1;
9408
9409 if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9410 return -1;
9411
9412 if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9413 return -1;
9414
9415 if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9416 return -1;
9417
9418 return 0;
9419 }
9420
9421
9422 /* ------------------------------------------------------------------------ */
9423 /* Function: ipf_fini_all */
9424 /* Returns: 0 = success, -1 = failure */
9425 /* Parameters: softc(I) - pointer to soft context main structure */
9426 /* */
9427 /* Work through all of the subsystems inside IPFilter and call the fini */
9428 /* function for each in an order that won't lead to a crash :) */
9429 /* ------------------------------------------------------------------------ */
9430 int
9431 ipf_fini_all(ipf_main_softc_t *softc)
9432 {
9433
9434 ipf_token_flush(softc);
9435
9436 if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9437 return -1;
9438
9439 if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9440 return -1;
9441
9442 if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9443 return -1;
9444
9445 if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9446 return -1;
9447
9448 if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9449 return -1;
9450
9451 if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9452 return -1;
9453
9454 if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9455 return -1;
9456
9457 #ifdef IPFILTER_LOG
9458 if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9459 return -1;
9460 #endif
9461
9462 if (ipf_main_soft_fini(softc) == -1)
9463 return -1;
9464
9465 return 0;
9466 }
9467
9468
9469 /* ------------------------------------------------------------------------ */
9470 /* Function: ipf_rule_expire */
9471 /* Returns: Nil */
9472 /* Parameters: softc(I) - pointer to soft context main structure */
9473 /* */
9474 /* At present this function exists just to support temporary addition of */
9475 /* firewall rules. Both inactive and active lists are scanned for items to */
9476 /* purge, as by rights, the expiration is computed as soon as the rule is */
9477 /* loaded in. */
9478 /* ------------------------------------------------------------------------ */
9479 void
9480 ipf_rule_expire(ipf_main_softc_t *softc)
9481 {
9482 frentry_t *fr;
9483
9484 if ((softc->ipf_rule_explist[0] == NULL) &&
9485 (softc->ipf_rule_explist[1] == NULL))
9486 return;
9487
9488 WRITE_ENTER(&softc->ipf_mutex);
9489
9490 while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9491 /*
9492 * Because the list is kept sorted on insertion, the fist
9493 * one that dies in the future means no more work to do.
9494 */
9495 if (fr->fr_die > softc->ipf_ticks)
9496 break;
9497 ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9498 }
9499
9500 while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9501 /*
9502 * Because the list is kept sorted on insertion, the fist
9503 * one that dies in the future means no more work to do.
9504 */
9505 if (fr->fr_die > softc->ipf_ticks)
9506 break;
9507 ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9508 }
9509
9510 RWLOCK_EXIT(&softc->ipf_mutex);
9511 }
9512
9513
9514 static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *);
9515 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9516 i6addr_t *);
9517
9518 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9519
9520
9521 /* ------------------------------------------------------------------------ */
9522 /* Function: ipf_ht_node_cmp */
9523 /* Returns: int - 0 == nodes are the same, .. */
9524 /* Parameters: k1(I) - pointer to first key to compare */
9525 /* k2(I) - pointer to second key to compare */
9526 /* */
9527 /* The "key" for the node is a combination of two fields: the address */
9528 /* family and the address itself. */
9529 /* */
9530 /* Because we're not actually interpreting the address data, it isn't */
9531 /* necessary to convert them to/from network/host byte order. The mask is */
9532 /* just used to remove bits that aren't significant - it doesn't matter */
9533 /* where they are, as long as they're always in the same place. */
9534 /* */
9535 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */
9536 /* this is where individual ones will differ the most - but not true for */
9537 /* for /48's, etc. */
9538 /* ------------------------------------------------------------------------ */
9539 static int
9540 ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2)
9541 {
9542 int i;
9543
9544 i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9545 if (i != 0)
9546 return i;
9547
9548 if (k1->hn_addr.adf_family == AF_INET)
9549 return (k2->hn_addr.adf_addr.in4.s_addr -
9550 k1->hn_addr.adf_addr.in4.s_addr);
9551
9552 i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9553 if (i != 0)
9554 return i;
9555 i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9556 if (i != 0)
9557 return i;
9558 i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9559 if (i != 0)
9560 return i;
9561 i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9562 return i;
9563 }
9564
9565
9566 /* ------------------------------------------------------------------------ */
9567 /* Function: ipf_ht_node_make_key */
9568 /* Returns: Nil */
9569 /* parameters: htp(I) - pointer to address tracking structure */
9570 /* key(I) - where to store masked address for lookup */
9571 /* family(I) - protocol family of address */
9572 /* addr(I) - pointer to network address */
9573 /* */
9574 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9575 /* copy the address passed in into the key structure whilst masking out the */
9576 /* bits that we don't want. */
9577 /* */
9578 /* Because the parser will set ht_netmask to 128 if there is no protocol */
9579 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */
9580 /* have to be wary of that and not allow 32-128 to happen. */
9581 /* ------------------------------------------------------------------------ */
9582 static void
9583 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9584 i6addr_t *addr)
9585 {
9586 key->hn_addr.adf_family = family;
9587 if (family == AF_INET) {
9588 u_32_t mask;
9589 int bits;
9590
9591 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9592 bits = htp->ht_netmask;
9593 if (bits >= 32) {
9594 mask = 0xffffffff;
9595 } else {
9596 mask = htonl(0xffffffff << (32 - bits));
9597 }
9598 key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9599 #ifdef USE_INET6
9600 } else {
9601 int bits = htp->ht_netmask;
9602
9603 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9604 if (bits > 96) {
9605 key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9606 htonl(0xffffffff << (128 - bits));
9607 key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9608 key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9609 key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9610 } else if (bits > 64) {
9611 key->hn_addr.adf_addr.i6[3] = 0;
9612 key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9613 htonl(0xffffffff << (96 - bits));
9614 key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9615 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9616 } else if (bits > 32) {
9617 key->hn_addr.adf_addr.i6[3] = 0;
9618 key->hn_addr.adf_addr.i6[2] = 0;
9619 key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9620 htonl(0xffffffff << (64 - bits));
9621 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9622 } else {
9623 key->hn_addr.adf_addr.i6[3] = 0;
9624 key->hn_addr.adf_addr.i6[2] = 0;
9625 key->hn_addr.adf_addr.i6[1] = 0;
9626 key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9627 htonl(0xffffffff << (32 - bits));
9628 }
9629 #endif
9630 }
9631 }
9632
9633
9634 /* ------------------------------------------------------------------------ */
9635 /* Function: ipf_ht_node_add */
9636 /* Returns: int - 0 == success, -1 == failure */
9637 /* Parameters: softc(I) - pointer to soft context main structure */
9638 /* htp(I) - pointer to address tracking structure */
9639 /* family(I) - protocol family of address */
9640 /* addr(I) - pointer to network address */
9641 /* */
9642 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9643 /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9644 /* */
9645 /* After preparing the key with the address information to find, look in */
9646 /* the red-black tree to see if the address is known. A successful call to */
9647 /* this function can mean one of two things: a new node was added to the */
9648 /* tree or a matching node exists and we're able to bump up its activity. */
9649 /* ------------------------------------------------------------------------ */
9650 int
9651 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9652 i6addr_t *addr)
9653 {
9654 host_node_t *h;
9655 host_node_t k;
9656
9657 ipf_ht_node_make_key(htp, &k, family, addr);
9658
9659 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9660 if (h == NULL) {
9661 if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9662 return -1;
9663 KMALLOC(h, host_node_t *);
9664 if (h == NULL) {
9665 DT(ipf_rb_no_mem);
9666 LBUMP(ipf_rb_no_mem);
9667 return -1;
9668 }
9669
9670 /*
9671 * If there was a macro to initialise the RB node then that
9672 * would get used here, but there isn't...
9673 */
9674 bzero((char *)h, sizeof(*h));
9675 h->hn_addr = k.hn_addr;
9676 h->hn_addr.adf_family = k.hn_addr.adf_family;
9677 RBI_INSERT(ipf_rb, &htp->ht_root, h);
9678 htp->ht_cur_nodes++;
9679 } else {
9680 if ((htp->ht_max_per_node != 0) &&
9681 (h->hn_active >= htp->ht_max_per_node)) {
9682 DT(ipf_rb_node_max);
9683 LBUMP(ipf_rb_node_max);
9684 return -1;
9685 }
9686 }
9687
9688 h->hn_active++;
9689
9690 return 0;
9691 }
9692
9693
9694 /* ------------------------------------------------------------------------ */
9695 /* Function: ipf_ht_node_del */
9696 /* Returns: int - 0 == success, -1 == failure */
9697 /* parameters: htp(I) - pointer to address tracking structure */
9698 /* family(I) - protocol family of address */
9699 /* addr(I) - pointer to network address */
9700 /* */
9701 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9702 /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9703 /* */
9704 /* Try and find the address passed in amongst the leaves on this tree to */
9705 /* be friend. If found then drop the active account for that node drops by */
9706 /* one. If that count reaches 0, it is time to free it all up. */
9707 /* ------------------------------------------------------------------------ */
9708 int
9709 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9710 {
9711 host_node_t *h;
9712 host_node_t k;
9713
9714 ipf_ht_node_make_key(htp, &k, family, addr);
9715
9716 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9717 if (h == NULL) {
9718 return -1;
9719 } else {
9720 h->hn_active--;
9721 if (h->hn_active == 0) {
9722 (void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9723 htp->ht_cur_nodes--;
9724 KFREE(h);
9725 }
9726 }
9727
9728 return 0;
9729 }
9730
9731
9732 /* ------------------------------------------------------------------------ */
9733 /* Function: ipf_rb_ht_init */
9734 /* Returns: Nil */
9735 /* Parameters: head(I) - pointer to host tracking structure */
9736 /* */
9737 /* Initialise the host tracking structure to be ready for use above. */
9738 /* ------------------------------------------------------------------------ */
9739 void
9740 ipf_rb_ht_init(host_track_t *head)
9741 {
9742 memset(head, 0, sizeof(*head));
9743 RBI_INIT(ipf_rb, &head->ht_root);
9744 }
9745
9746
9747 /* ------------------------------------------------------------------------ */
9748 /* Function: ipf_rb_ht_freenode */
9749 /* Returns: Nil */
9750 /* Parameters: head(I) - pointer to host tracking structure */
9751 /* arg(I) - additional argument from walk caller */
9752 /* */
9753 /* Free an actual host_node_t structure. */
9754 /* ------------------------------------------------------------------------ */
9755 void
9756 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9757 {
9758 KFREE(node);
9759 }
9760
9761
9762 /* ------------------------------------------------------------------------ */
9763 /* Function: ipf_rb_ht_flush */
9764 /* Returns: Nil */
9765 /* Parameters: head(I) - pointer to host tracking structure */
9766 /* */
9767 /* Remove all of the nodes in the tree tracking hosts by calling a walker */
9768 /* and free'ing each one. */
9769 /* ------------------------------------------------------------------------ */
9770 void
9771 ipf_rb_ht_flush(host_track_t *head)
9772 {
9773 /* XXX - May use node members after freeing the node. */
9774 RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9775 }
9776
9777
9778 /* ------------------------------------------------------------------------ */
9779 /* Function: ipf_slowtimer */
9780 /* Returns: Nil */
9781 /* Parameters: ptr(I) - pointer to main ipf soft context structure */
9782 /* */
9783 /* Slowly expire held state for fragments. Timeouts are set * in */
9784 /* expectation of this being called twice per second. */
9785 /* ------------------------------------------------------------------------ */
9786 void
9787 ipf_slowtimer(ipf_main_softc_t *softc)
9788 {
9789
9790 ipf_token_expire(softc);
9791 ipf_frag_expire(softc);
9792 ipf_state_expire(softc);
9793 ipf_nat_expire(softc);
9794 ipf_auth_expire(softc);
9795 ipf_lookup_expire(softc);
9796 ipf_rule_expire(softc);
9797 ipf_sync_expire(softc);
9798 softc->ipf_ticks++;
9799 # if defined(__OpenBSD__)
9800 timeout_add(&ipf_slowtimer_ch, hz/2);
9801 # endif
9802 }
9803
9804
9805 /* ------------------------------------------------------------------------ */
9806 /* Function: ipf_inet_mask_add */
9807 /* Returns: Nil */
9808 /* Parameters: bits(I) - pointer to nat context information */
9809 /* mtab(I) - pointer to mask hash table structure */
9810 /* */
9811 /* When called, bits represents the mask of a new NAT rule that has just */
9812 /* been added. This function inserts a bitmask into the array of masks to */
9813 /* search when searching for a matching NAT rule for a packet. */
9814 /* Prevention of duplicate masks is achieved by checking the use count for */
9815 /* a given netmask. */
9816 /* ------------------------------------------------------------------------ */
9817 void
9818 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9819 {
9820 u_32_t mask;
9821 int i, j;
9822
9823 mtab->imt4_masks[bits]++;
9824 if (mtab->imt4_masks[bits] > 1)
9825 return;
9826
9827 if (bits == 0)
9828 mask = 0;
9829 else
9830 mask = 0xffffffff << (32 - bits);
9831
9832 for (i = 0; i < 33; i++) {
9833 if (ntohl(mtab->imt4_active[i]) < mask) {
9834 for (j = 32; j > i; j--)
9835 mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9836 mtab->imt4_active[i] = htonl(mask);
9837 break;
9838 }
9839 }
9840 mtab->imt4_max++;
9841 }
9842
9843
9844 /* ------------------------------------------------------------------------ */
9845 /* Function: ipf_inet_mask_del */
9846 /* Returns: Nil */
9847 /* Parameters: bits(I) - number of bits set in the netmask */
9848 /* mtab(I) - pointer to mask hash table structure */
9849 /* */
9850 /* Remove the 32bit bitmask represented by "bits" from the collection of */
9851 /* netmasks stored inside of mtab. */
9852 /* ------------------------------------------------------------------------ */
9853 void
9854 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9855 {
9856 u_32_t mask;
9857 int i, j;
9858
9859 mtab->imt4_masks[bits]--;
9860 if (mtab->imt4_masks[bits] > 0)
9861 return;
9862
9863 mask = htonl(0xffffffff << (32 - bits));
9864 for (i = 0; i < 33; i++) {
9865 if (mtab->imt4_active[i] == mask) {
9866 for (j = i + 1; j < 33; j++)
9867 mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9868 break;
9869 }
9870 }
9871 mtab->imt4_max--;
9872 ASSERT(mtab->imt4_max >= 0);
9873 }
9874
9875
9876 #ifdef USE_INET6
9877 /* ------------------------------------------------------------------------ */
9878 /* Function: ipf_inet6_mask_add */
9879 /* Returns: Nil */
9880 /* Parameters: bits(I) - number of bits set in mask */
9881 /* mask(I) - pointer to mask to add */
9882 /* mtab(I) - pointer to mask hash table structure */
9883 /* */
9884 /* When called, bitcount represents the mask of a IPv6 NAT map rule that */
9885 /* has just been added. This function inserts a bitmask into the array of */
9886 /* masks to search when searching for a matching NAT rule for a packet. */
9887 /* Prevention of duplicate masks is achieved by checking the use count for */
9888 /* a given netmask. */
9889 /* ------------------------------------------------------------------------ */
9890 void
9891 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9892 {
9893 i6addr_t zero;
9894 int i, j;
9895
9896 mtab->imt6_masks[bits]++;
9897 if (mtab->imt6_masks[bits] > 1)
9898 return;
9899
9900 if (bits == 0) {
9901 mask = &zero;
9902 zero.i6[0] = 0;
9903 zero.i6[1] = 0;
9904 zero.i6[2] = 0;
9905 zero.i6[3] = 0;
9906 }
9907
9908 for (i = 0; i < 129; i++) {
9909 if (IP6_LT(&mtab->imt6_active[i], mask)) {
9910 for (j = 128; j > i; j--)
9911 mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9912 mtab->imt6_active[i] = *mask;
9913 break;
9914 }
9915 }
9916 mtab->imt6_max++;
9917 }
9918
9919
9920 /* ------------------------------------------------------------------------ */
9921 /* Function: ipf_inet6_mask_del */
9922 /* Returns: Nil */
9923 /* Parameters: bits(I) - number of bits set in mask */
9924 /* mask(I) - pointer to mask to remove */
9925 /* mtab(I) - pointer to mask hash table structure */
9926 /* */
9927 /* Remove the 128bit bitmask represented by "bits" from the collection of */
9928 /* netmasks stored inside of mtab. */
9929 /* ------------------------------------------------------------------------ */
9930 void
9931 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9932 {
9933 i6addr_t zero;
9934 int i, j;
9935
9936 mtab->imt6_masks[bits]--;
9937 if (mtab->imt6_masks[bits] > 0)
9938 return;
9939
9940 if (bits == 0)
9941 mask = &zero;
9942 zero.i6[0] = 0;
9943 zero.i6[1] = 0;
9944 zero.i6[2] = 0;
9945 zero.i6[3] = 0;
9946
9947 for (i = 0; i < 129; i++) {
9948 if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9949 for (j = i + 1; j < 129; j++) {
9950 mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9951 if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9952 break;
9953 }
9954 break;
9955 }
9956 }
9957 mtab->imt6_max--;
9958 ASSERT(mtab->imt6_max >= 0);
9959 }
9960 #endif
9961