fil.c revision 1.35 1 /* $NetBSD: fil.c,v 1.35 2021/12/05 07:28:20 msaitoh Exp $ */
2
3 /*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $
9 *
10 */
11 #if defined(KERNEL) || defined(_KERNEL)
12 # undef KERNEL
13 # undef _KERNEL
14 # define KERNEL 1
15 # define _KERNEL 1
16 #endif
17 #include <sys/errno.h>
18 #include <sys/types.h>
19 #include <sys/param.h>
20 #include <sys/time.h>
21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
22 (__FreeBSD_version >= 220000)
23 # if (__FreeBSD_version >= 400000)
24 # if !defined(IPFILTER_LKM)
25 # include "opt_inet6.h"
26 # endif
27 # if (__FreeBSD_version == 400019)
28 # define CSUM_DELAY_DATA
29 # endif
30 # endif
31 # include <sys/filio.h>
32 #else
33 # include <sys/ioctl.h>
34 #endif
35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
36 # include <sys/filio.h>
37 #endif
38 #if !defined(_AIX51)
39 # include <sys/fcntl.h>
40 #endif
41 #if defined(_KERNEL)
42 # include <sys/systm.h>
43 # include <sys/file.h>
44 #else
45 # include <stdio.h>
46 # include <string.h>
47 # include <stdlib.h>
48 # include <stddef.h>
49 # include <sys/file.h>
50 # define _KERNEL
51 # ifdef __OpenBSD__
52 struct file;
53 # endif
54 # include <sys/uio.h>
55 # undef _KERNEL
56 #endif
57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
58 !defined(linux)
59 # include <sys/mbuf.h>
60 #else
61 # if !defined(linux)
62 # include <sys/byteorder.h>
63 # endif
64 # if (SOLARIS2 < 5) && defined(sun)
65 # include <sys/dditypes.h>
66 # endif
67 #endif
68 #ifdef __hpux
69 # define _NET_ROUTE_INCLUDED
70 #endif
71 #if !defined(linux)
72 # include <sys/protosw.h>
73 #endif
74 #include <sys/socket.h>
75 #include <net/if.h>
76 #ifdef sun
77 # include <net/af.h>
78 #endif
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
83 # include <sys/hashing.h>
84 # include <netinet/in_var.h>
85 #endif
86 #include <netinet/tcp.h>
87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
88 # include <netinet/udp.h>
89 # include <netinet/ip_icmp.h>
90 #endif
91 #ifdef __hpux
92 # undef _NET_ROUTE_INCLUDED
93 #endif
94 #ifdef __osf__
95 # undef _RADIX_H_
96 #endif
97 #include "netinet/ip_compat.h"
98 #ifdef USE_INET6
99 # include <netinet/icmp6.h>
100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
101 # include <netinet6/in6_var.h>
102 # endif
103 #endif
104 #include "netinet/ip_fil.h"
105 #include "netinet/ip_nat.h"
106 #include "netinet/ip_frag.h"
107 #include "netinet/ip_state.h"
108 #include "netinet/ip_proxy.h"
109 #include "netinet/ip_auth.h"
110 #ifdef IPFILTER_SCAN
111 # include "netinet/ip_scan.h"
112 #endif
113 #include "netinet/ip_sync.h"
114 #include "netinet/ip_lookup.h"
115 #include "netinet/ip_pool.h"
116 #include "netinet/ip_htable.h"
117 #ifdef IPFILTER_COMPILED
118 # include "netinet/ip_rules.h"
119 #endif
120 #if defined(IPFILTER_BPF) && defined(_KERNEL)
121 # include <net/bpf.h>
122 #endif
123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
124 # include <sys/malloc.h>
125 #endif
126 #include "netinet/ipl.h"
127
128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
129 # include <sys/callout.h>
130 extern struct callout ipf_slowtimer_ch;
131 #endif
132 #if defined(__OpenBSD__)
133 # include <sys/timeout.h>
134 extern struct timeout ipf_slowtimer_ch;
135 #endif
136 #if defined(__NetBSD__)
137 #include <netinet/in_offload.h>
138 #endif
139 /* END OF INCLUDES */
140
141 #if !defined(lint)
142 #if defined(__NetBSD__)
143 #include <sys/cdefs.h>
144 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.35 2021/12/05 07:28:20 msaitoh Exp $");
145 #else
146 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed";
147 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $";
148 #endif
149 #endif
150
151 #ifndef _KERNEL
152 # include "ipf.h"
153 # include "ipt.h"
154 extern int opts;
155 extern int blockreason;
156 #endif /* _KERNEL */
157
158 #define FASTROUTE_RECURSION
159
160 #define LBUMP(x) softc->x++
161 #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0)
162
163 static INLINE int ipf_check_ipf(fr_info_t *, frentry_t *, int);
164 static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int);
165 static u_32_t ipf_checkripso(u_char *);
166 static u_32_t ipf_decaps(fr_info_t *, u_32_t, int);
167 #ifdef IPFILTER_LOG
168 static frentry_t *ipf_dolog(fr_info_t *, u_32_t *);
169 #endif
170 static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
171 static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int);
172 static ipfunc_t ipf_findfunc(ipfunc_t);
173 static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
174 i6addr_t *, i6addr_t *);
175 static frentry_t *ipf_firewall(fr_info_t *, u_32_t *);
176 static int ipf_fr_matcharray(fr_info_t *, int *);
177 static int ipf_frruleiter(ipf_main_softc_t *, void *, int, void *);
178 static void ipf_funcfini(ipf_main_softc_t *, frentry_t *);;
179 static int ipf_funcinit(ipf_main_softc_t *, frentry_t *);
180 static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
181 ipfgeniter_t *);
182 static void ipf_getstat(ipf_main_softc_t *,
183 struct friostat *, int);
184 static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
185 static void ipf_group_free(frgroup_t *);
186 static int ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *);
187 static int ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *);
188 static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int,
189 frentry_t *, int);
190 static int ipf_portcheck(frpcmp_t *, u_32_t);
191 static INLINE int ipf_pr_ah(fr_info_t *);
192 static INLINE void ipf_pr_esp(fr_info_t *);
193 static INLINE void ipf_pr_gre(fr_info_t *);
194 static INLINE void ipf_pr_udp(fr_info_t *);
195 static INLINE void ipf_pr_tcp(fr_info_t *);
196 static INLINE void ipf_pr_icmp(fr_info_t *);
197 static INLINE void ipf_pr_ipv4hdr(fr_info_t *);
198 static INLINE void ipf_pr_short(fr_info_t *, int);
199 static INLINE int ipf_pr_tcpcommon(fr_info_t *);
200 static INLINE int ipf_pr_udpcommon(fr_info_t *);
201 static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
202 int, int);
203 static void ipf_rule_expire_insert(ipf_main_softc_t *,
204 frentry_t *, int);
205 static int ipf_synclist(ipf_main_softc_t *, frentry_t *, void *);
206 static void ipf_token_flush(ipf_main_softc_t *);
207 static void ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *);
208 static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *, const char *);
209 static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *,
210 void **);
211 static int ipf_updateipid(fr_info_t *);
212 static int ipf_settimeout(struct ipf_main_softc_s *,
213 struct ipftuneable *, ipftuneval_t *);
214
215
216 /*
217 * bit values for identifying presence of individual IP options
218 * All of these tables should be ordered by increasing key value on the left
219 * hand side to allow for binary searching of the array and include a trailer
220 * with a 0 for the bitmask for linear searches to easily find the end with.
221 */
222 static const struct optlist ipopts[20] = {
223 { IPOPT_NOP, 0x000001 },
224 { IPOPT_RR, 0x000002 },
225 { IPOPT_ZSU, 0x000004 },
226 { IPOPT_MTUP, 0x000008 },
227 { IPOPT_MTUR, 0x000010 },
228 { IPOPT_ENCODE, 0x000020 },
229 { IPOPT_TS, 0x000040 },
230 { IPOPT_TR, 0x000080 },
231 { IPOPT_SECURITY, 0x000100 },
232 { IPOPT_LSRR, 0x000200 },
233 { IPOPT_E_SEC, 0x000400 },
234 { IPOPT_CIPSO, 0x000800 },
235 { IPOPT_SATID, 0x001000 },
236 { IPOPT_SSRR, 0x002000 },
237 { IPOPT_ADDEXT, 0x004000 },
238 { IPOPT_VISA, 0x008000 },
239 { IPOPT_IMITD, 0x010000 },
240 { IPOPT_EIP, 0x020000 },
241 { IPOPT_FINN, 0x040000 },
242 { 0, 0x000000 }
243 };
244
245 #ifdef USE_INET6
246 static const struct optlist ip6exthdr[] = {
247 { IPPROTO_HOPOPTS, 0x000001 },
248 { IPPROTO_IPV6, 0x000002 },
249 { IPPROTO_ROUTING, 0x000004 },
250 { IPPROTO_FRAGMENT, 0x000008 },
251 { IPPROTO_ESP, 0x000010 },
252 { IPPROTO_AH, 0x000020 },
253 { IPPROTO_NONE, 0x000040 },
254 { IPPROTO_DSTOPTS, 0x000080 },
255 { IPPROTO_MOBILITY, 0x000100 },
256 { 0, 0 }
257 };
258 #endif
259
260 /*
261 * bit values for identifying presence of individual IP security options
262 */
263 static const struct optlist secopt[8] = {
264 { IPSO_CLASS_RES4, 0x01 },
265 { IPSO_CLASS_TOPS, 0x02 },
266 { IPSO_CLASS_SECR, 0x04 },
267 { IPSO_CLASS_RES3, 0x08 },
268 { IPSO_CLASS_CONF, 0x10 },
269 { IPSO_CLASS_UNCL, 0x20 },
270 { IPSO_CLASS_RES2, 0x40 },
271 { IPSO_CLASS_RES1, 0x80 }
272 };
273
274 char ipfilter_version[] = IPL_VERSION;
275
276 int ipf_features = 0
277 #ifdef IPFILTER_LKM
278 | IPF_FEAT_LKM
279 #endif
280 #ifdef IPFILTER_LOG
281 | IPF_FEAT_LOG
282 #endif
283 | IPF_FEAT_LOOKUP
284 #ifdef IPFILTER_BPF
285 | IPF_FEAT_BPF
286 #endif
287 #ifdef IPFILTER_COMPILED
288 | IPF_FEAT_COMPILED
289 #endif
290 #ifdef IPFILTER_CKSUM
291 | IPF_FEAT_CKSUM
292 #endif
293 | IPF_FEAT_SYNC
294 #ifdef IPFILTER_SCAN
295 | IPF_FEAT_SCAN
296 #endif
297 #ifdef USE_INET6
298 | IPF_FEAT_IPV6
299 #endif
300 ;
301
302
303 /*
304 * Table of functions available for use with call rules.
305 */
306 static ipfunc_resolve_t ipf_availfuncs[] = {
307 { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
308 { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
309 { "", NULL, NULL, NULL }
310 };
311
312 static const ipftuneable_t ipf_main_tuneables[] = {
313 { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
314 "ipf_flags", 0, 0xffffffff,
315 stsizeof(ipf_main_softc_t, ipf_flags),
316 0, NULL, NULL },
317 { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
318 "active", 0, 0,
319 stsizeof(ipf_main_softc_t, ipf_active),
320 IPFT_RDONLY, NULL, NULL },
321 { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
322 "control_forwarding", 0, 1,
323 stsizeof(ipf_main_softc_t, ipf_control_forwarding),
324 0, NULL, NULL },
325 { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
326 "update_ipid", 0, 1,
327 stsizeof(ipf_main_softc_t, ipf_update_ipid),
328 0, NULL, NULL },
329 { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
330 "chksrc", 0, 1,
331 stsizeof(ipf_main_softc_t, ipf_chksrc),
332 0, NULL, NULL },
333 { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
334 "min_ttl", 0, 1,
335 stsizeof(ipf_main_softc_t, ipf_minttl),
336 0, NULL, NULL },
337 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
338 "icmp_minfragmtu", 0, 1,
339 stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
340 0, NULL, NULL },
341 { { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
342 "default_pass", 0, 0xffffffff,
343 stsizeof(ipf_main_softc_t, ipf_pass),
344 0, NULL, NULL },
345 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
346 "tcp_idle_timeout", 1, 0x7fffffff,
347 stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
348 0, NULL, ipf_settimeout },
349 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
350 "tcp_close_wait", 1, 0x7fffffff,
351 stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
352 0, NULL, ipf_settimeout },
353 { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
354 "tcp_last_ack", 1, 0x7fffffff,
355 stsizeof(ipf_main_softc_t, ipf_tcplastack),
356 0, NULL, ipf_settimeout },
357 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
358 "tcp_timeout", 1, 0x7fffffff,
359 stsizeof(ipf_main_softc_t, ipf_tcptimeout),
360 0, NULL, ipf_settimeout },
361 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
362 "tcp_syn_sent", 1, 0x7fffffff,
363 stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
364 0, NULL, ipf_settimeout },
365 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
366 "tcp_syn_received", 1, 0x7fffffff,
367 stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
368 0, NULL, ipf_settimeout },
369 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
370 "tcp_closed", 1, 0x7fffffff,
371 stsizeof(ipf_main_softc_t, ipf_tcpclosed),
372 0, NULL, ipf_settimeout },
373 { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
374 "tcp_half_closed", 1, 0x7fffffff,
375 stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
376 0, NULL, ipf_settimeout },
377 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
378 "tcp_time_wait", 1, 0x7fffffff,
379 stsizeof(ipf_main_softc_t, ipf_tcptimewait),
380 0, NULL, ipf_settimeout },
381 { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
382 "udp_timeout", 1, 0x7fffffff,
383 stsizeof(ipf_main_softc_t, ipf_udptimeout),
384 0, NULL, ipf_settimeout },
385 { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
386 "udp_ack_timeout", 1, 0x7fffffff,
387 stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
388 0, NULL, ipf_settimeout },
389 { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
390 "icmp_timeout", 1, 0x7fffffff,
391 stsizeof(ipf_main_softc_t, ipf_icmptimeout),
392 0, NULL, ipf_settimeout },
393 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
394 "icmp_ack_timeout", 1, 0x7fffffff,
395 stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
396 0, NULL, ipf_settimeout },
397 { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
398 "ip_timeout", 1, 0x7fffffff,
399 stsizeof(ipf_main_softc_t, ipf_iptimeout),
400 0, NULL, ipf_settimeout },
401 #if defined(INSTANCES) && defined(_KERNEL)
402 { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
403 "intercept_loopback", 0, 1,
404 stsizeof(ipf_main_softc_t, ipf_get_loopback),
405 0, NULL, ipf_set_loopback },
406 #endif
407 { { 0 },
408 NULL, 0, 0,
409 0,
410 0, NULL, NULL }
411 };
412
413
414 /*
415 * The next section of code is a a collection of small routines that set
416 * fields in the fr_info_t structure passed based on properties of the
417 * current packet. There are different routines for the same protocol
418 * for each of IPv4 and IPv6. Adding a new protocol, for which there
419 * will "special" inspection for setup, is now more easily done by adding
420 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
421 * adding more code to a growing switch statement.
422 */
423 #ifdef USE_INET6
424 static INLINE int ipf_pr_ah6(fr_info_t *);
425 static INLINE void ipf_pr_esp6(fr_info_t *);
426 static INLINE void ipf_pr_gre6(fr_info_t *);
427 static INLINE void ipf_pr_udp6(fr_info_t *);
428 static INLINE void ipf_pr_tcp6(fr_info_t *);
429 static INLINE void ipf_pr_icmp6(fr_info_t *);
430 static INLINE void ipf_pr_ipv6hdr(fr_info_t *);
431 static INLINE void ipf_pr_short6(fr_info_t *, int);
432 static INLINE int ipf_pr_hopopts6(fr_info_t *);
433 static INLINE int ipf_pr_mobility6(fr_info_t *);
434 static INLINE int ipf_pr_routing6(fr_info_t *);
435 static INLINE int ipf_pr_dstopts6(fr_info_t *);
436 static INLINE int ipf_pr_fragment6(fr_info_t *);
437 static INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
438
439
440 /* ------------------------------------------------------------------------ */
441 /* Function: ipf_pr_short6 */
442 /* Returns: void */
443 /* Parameters: fin(I) - pointer to packet information */
444 /* xmin(I) - minimum header size */
445 /* */
446 /* IPv6 Only */
447 /* This is function enforces the 'is a packet too short to be legit' rule */
448 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */
449 /* for ipf_pr_short() for more details. */
450 /* ------------------------------------------------------------------------ */
451 static INLINE void
452 ipf_pr_short6(fr_info_t *fin, int xmin)
453 {
454
455 if (fin->fin_dlen < xmin)
456 fin->fin_flx |= FI_SHORT;
457 }
458
459
460 /* ------------------------------------------------------------------------ */
461 /* Function: ipf_pr_ipv6hdr */
462 /* Returns: void */
463 /* Parameters: fin(I) - pointer to packet information */
464 /* */
465 /* IPv6 Only */
466 /* Copy values from the IPv6 header into the fr_info_t struct and call the */
467 /* per-protocol analyzer if it exists. In validating the packet, a protocol*/
468 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
469 /* of that possibility arising. */
470 /* ------------------------------------------------------------------------ */
471 static INLINE void
472 ipf_pr_ipv6hdr(fr_info_t *fin)
473 {
474 ip6_t *ip6 = (ip6_t *)fin->fin_ip;
475 int p, go = 1, i, hdrcount;
476 fr_ip_t *fi = &fin->fin_fi;
477
478 fin->fin_off = 0;
479
480 fi->fi_tos = 0;
481 fi->fi_optmsk = 0;
482 fi->fi_secmsk = 0;
483 fi->fi_auth = 0;
484
485 p = ip6->ip6_nxt;
486 fin->fin_crc = p;
487 fi->fi_ttl = ip6->ip6_hlim;
488 fi->fi_src.in6 = ip6->ip6_src;
489 fin->fin_crc += fi->fi_src.i6[0];
490 fin->fin_crc += fi->fi_src.i6[1];
491 fin->fin_crc += fi->fi_src.i6[2];
492 fin->fin_crc += fi->fi_src.i6[3];
493 fi->fi_dst.in6 = ip6->ip6_dst;
494 fin->fin_crc += fi->fi_dst.i6[0];
495 fin->fin_crc += fi->fi_dst.i6[1];
496 fin->fin_crc += fi->fi_dst.i6[2];
497 fin->fin_crc += fi->fi_dst.i6[3];
498 fin->fin_id = 0;
499 if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
500 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
501
502 hdrcount = 0;
503 while (go && !(fin->fin_flx & FI_SHORT)) {
504 switch (p)
505 {
506 case IPPROTO_UDP :
507 ipf_pr_udp6(fin);
508 go = 0;
509 break;
510
511 case IPPROTO_TCP :
512 ipf_pr_tcp6(fin);
513 go = 0;
514 break;
515
516 case IPPROTO_ICMPV6 :
517 ipf_pr_icmp6(fin);
518 go = 0;
519 break;
520
521 case IPPROTO_GRE :
522 ipf_pr_gre6(fin);
523 go = 0;
524 break;
525
526 case IPPROTO_HOPOPTS :
527 p = ipf_pr_hopopts6(fin);
528 break;
529
530 case IPPROTO_MOBILITY :
531 p = ipf_pr_mobility6(fin);
532 break;
533
534 case IPPROTO_DSTOPTS :
535 p = ipf_pr_dstopts6(fin);
536 break;
537
538 case IPPROTO_ROUTING :
539 p = ipf_pr_routing6(fin);
540 break;
541
542 case IPPROTO_AH :
543 p = ipf_pr_ah6(fin);
544 break;
545
546 case IPPROTO_ESP :
547 ipf_pr_esp6(fin);
548 go = 0;
549 break;
550
551 case IPPROTO_IPV6 :
552 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
553 if (ip6exthdr[i].ol_val == p) {
554 fin->fin_flx |= ip6exthdr[i].ol_bit;
555 break;
556 }
557 go = 0;
558 break;
559
560 case IPPROTO_NONE :
561 go = 0;
562 break;
563
564 case IPPROTO_FRAGMENT :
565 p = ipf_pr_fragment6(fin);
566 /*
567 * Given that the only fragments we want to let through
568 * (where fin_off != 0) are those where the non-first
569 * fragments only have data, we can safely stop looking
570 * at headers if this is a non-leading fragment.
571 */
572 if (fin->fin_off != 0)
573 go = 0;
574 break;
575
576 default :
577 go = 0;
578 break;
579 }
580 hdrcount++;
581
582 /*
583 * It is important to note that at this point, for the
584 * extension headers (go != 0), the entire header may not have
585 * been pulled up when the code gets to this point. This is
586 * only done for "go != 0" because the other header handlers
587 * will all pullup their complete header. The other indicator
588 * of an incomplete packet is that this was just an extension
589 * header.
590 */
591 if ((go != 0) && (p != IPPROTO_NONE) &&
592 (ipf_pr_pullup(fin, 0) == -1)) {
593 p = IPPROTO_NONE;
594 break;
595 }
596 }
597
598 /*
599 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
600 * and destroy whatever packet was here. The caller of this function
601 * expects us to return if there is a problem with ipf_pullup.
602 */
603 if (fin->fin_m == NULL) {
604 ipf_main_softc_t *softc = fin->fin_main_soft;
605
606 LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
607 return;
608 }
609
610 fi->fi_p = p;
611
612 /*
613 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
614 * "go != 0" implies the above loop hasn't arrived at a layer 4 header.
615 */
616 if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
617 ipf_main_softc_t *softc = fin->fin_main_soft;
618
619 fin->fin_flx |= FI_BAD;
620 DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
621 LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
622 LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
623 }
624 }
625
626
627 /* ------------------------------------------------------------------------ */
628 /* Function: ipf_pr_ipv6exthdr */
629 /* Returns: struct ip6_ext * - pointer to the start of the next header */
630 /* or NULL if there is a prolblem. */
631 /* Parameters: fin(I) - pointer to packet information */
632 /* multiple(I) - flag indicating yes/no if multiple occurances */
633 /* of this extension header are allowed. */
634 /* proto(I) - protocol number for this extension header */
635 /* */
636 /* IPv6 Only */
637 /* This function embodies a number of common checks that all IPv6 extension */
638 /* headers must be subjected to. For example, making sure the packet is */
639 /* big enough for it to be in, checking if it is repeated and setting a */
640 /* flag to indicate its presence. */
641 /* ------------------------------------------------------------------------ */
642 static INLINE struct ip6_ext *
643 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
644 {
645 ipf_main_softc_t *softc = fin->fin_main_soft;
646 struct ip6_ext *hdr;
647 u_short shift;
648 int i;
649
650 fin->fin_flx |= FI_V6EXTHDR;
651
652 /* 8 is default length of extension hdr */
653 if ((fin->fin_dlen - 8) < 0) {
654 fin->fin_flx |= FI_SHORT;
655 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
656 return NULL;
657 }
658
659 if (ipf_pr_pullup(fin, 8) == -1) {
660 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
661 return NULL;
662 }
663
664 hdr = fin->fin_dp;
665 switch (proto)
666 {
667 case IPPROTO_FRAGMENT :
668 shift = 8;
669 break;
670 default :
671 shift = 8 + (hdr->ip6e_len << 3);
672 break;
673 }
674
675 if (shift > fin->fin_dlen) { /* Nasty extension header length? */
676 fin->fin_flx |= FI_BAD;
677 DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
678 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
679 return NULL;
680 }
681
682 fin->fin_dp = (char *)fin->fin_dp + shift;
683 fin->fin_dlen -= shift;
684
685 /*
686 * If we have seen a fragment header, do not set any flags to indicate
687 * the presence of this extension header as it has no impact on the
688 * end result until after it has been defragmented.
689 */
690 if (fin->fin_flx & FI_FRAG)
691 return hdr;
692
693 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
694 if (ip6exthdr[i].ol_val == proto) {
695 /*
696 * Most IPv6 extension headers are only allowed once.
697 */
698 if ((multiple == 0) &&
699 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
700 fin->fin_flx |= FI_BAD;
701 DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
702 } else
703 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
704 break;
705 }
706
707 return hdr;
708 }
709
710
711 /* ------------------------------------------------------------------------ */
712 /* Function: ipf_pr_hopopts6 */
713 /* Returns: int - value of the next header or IPPROTO_NONE if error */
714 /* Parameters: fin(I) - pointer to packet information */
715 /* */
716 /* IPv6 Only */
717 /* This is function checks pending hop by hop options extension header */
718 /* ------------------------------------------------------------------------ */
719 static INLINE int
720 ipf_pr_hopopts6(fr_info_t *fin)
721 {
722 struct ip6_ext *hdr;
723
724 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
725 if (hdr == NULL)
726 return IPPROTO_NONE;
727 return hdr->ip6e_nxt;
728 }
729
730
731 /* ------------------------------------------------------------------------ */
732 /* Function: ipf_pr_mobility6 */
733 /* Returns: int - value of the next header or IPPROTO_NONE if error */
734 /* Parameters: fin(I) - pointer to packet information */
735 /* */
736 /* IPv6 Only */
737 /* This is function checks the IPv6 mobility extension header */
738 /* ------------------------------------------------------------------------ */
739 static INLINE int
740 ipf_pr_mobility6(fr_info_t *fin)
741 {
742 struct ip6_ext *hdr;
743
744 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
745 if (hdr == NULL)
746 return IPPROTO_NONE;
747 return hdr->ip6e_nxt;
748 }
749
750
751 /* ------------------------------------------------------------------------ */
752 /* Function: ipf_pr_routing6 */
753 /* Returns: int - value of the next header or IPPROTO_NONE if error */
754 /* Parameters: fin(I) - pointer to packet information */
755 /* */
756 /* IPv6 Only */
757 /* This is function checks pending routing extension header */
758 /* ------------------------------------------------------------------------ */
759 static INLINE int
760 ipf_pr_routing6(fr_info_t *fin)
761 {
762 struct ip6_routing *hdr;
763
764 hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
765 if (hdr == NULL)
766 return IPPROTO_NONE;
767
768 switch (hdr->ip6r_type)
769 {
770 case 0 :
771 /*
772 * Nasty extension header length?
773 */
774 if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
775 (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
776 ipf_main_softc_t *softc = fin->fin_main_soft;
777
778 fin->fin_flx |= FI_BAD;
779 DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
780 LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
781 return IPPROTO_NONE;
782 }
783 break;
784
785 default :
786 break;
787 }
788
789 return hdr->ip6r_nxt;
790 }
791
792
793 /* ------------------------------------------------------------------------ */
794 /* Function: ipf_pr_fragment6 */
795 /* Returns: int - value of the next header or IPPROTO_NONE if error */
796 /* Parameters: fin(I) - pointer to packet information */
797 /* */
798 /* IPv6 Only */
799 /* Examine the IPv6 fragment header and extract fragment offset information.*/
800 /* */
801 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
802 /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */
803 /* packets with a fragment header can fit into. They are as follows: */
804 /* */
805 /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */
806 /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */
807 /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */
808 /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */
809 /* 5. [IPV6][0-n EH][FH][data] */
810 /* */
811 /* IPV6 = IPv6 header, FH = Fragment Header, */
812 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
813 /* */
814 /* Packets that match 1, 2, 3 will be dropped as the only reasonable */
815 /* scenario in which they happen is in extreme circumstances that are most */
816 /* likely to be an indication of an attack rather than normal traffic. */
817 /* A type 3 packet may be sent by an attacked after a type 4 packet. There */
818 /* are two rules that can be used to guard against type 3 packets: L4 */
819 /* headers must always be in a packet that has the offset field set to 0 */
820 /* and no packet is allowed to overlay that where offset = 0. */
821 /* ------------------------------------------------------------------------ */
822 static INLINE int
823 ipf_pr_fragment6(fr_info_t *fin)
824 {
825 ipf_main_softc_t *softc = fin->fin_main_soft;
826 struct ip6_frag *frag;
827
828 fin->fin_flx |= FI_FRAG;
829
830 frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
831 if (frag == NULL) {
832 LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
833 return IPPROTO_NONE;
834 }
835
836 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
837 /*
838 * Any fragment that isn't the last fragment must have its
839 * length as a multiple of 8.
840 */
841 if ((fin->fin_plen & 7) != 0) {
842 fin->fin_flx |= FI_BAD;
843 DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
844 }
845 }
846
847 fin->fin_fraghdr = frag;
848 fin->fin_id = frag->ip6f_ident;
849 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
850 if (fin->fin_off != 0)
851 fin->fin_flx |= FI_FRAGBODY;
852
853 /*
854 * Jumbograms aren't handled, so the max. length is 64k
855 */
856 if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
857 fin->fin_flx |= FI_BAD;
858 DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
859 }
860
861 /*
862 * We don't know where the transport layer header (or whatever is next
863 * is), as it could be behind destination options (amongst others) so
864 * return the fragment header as the type of packet this is. Note that
865 * this effectively disables the fragment cache for > 1 protocol at a
866 * time.
867 */
868 return frag->ip6f_nxt;
869 }
870
871
872 /* ------------------------------------------------------------------------ */
873 /* Function: ipf_pr_dstopts6 */
874 /* Returns: int - value of the next header or IPPROTO_NONE if error */
875 /* Parameters: fin(I) - pointer to packet information */
876 /* */
877 /* IPv6 Only */
878 /* This is function checks pending destination options extension header */
879 /* ------------------------------------------------------------------------ */
880 static INLINE int
881 ipf_pr_dstopts6(fr_info_t *fin)
882 {
883 ipf_main_softc_t *softc = fin->fin_main_soft;
884 struct ip6_ext *hdr;
885
886 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
887 if (hdr == NULL) {
888 LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
889 return IPPROTO_NONE;
890 }
891 return hdr->ip6e_nxt;
892 }
893
894
895 /* ------------------------------------------------------------------------ */
896 /* Function: ipf_pr_icmp6 */
897 /* Returns: void */
898 /* Parameters: fin(I) - pointer to packet information */
899 /* */
900 /* IPv6 Only */
901 /* This routine is mainly concerned with determining the minimum valid size */
902 /* for an ICMPv6 packet. */
903 /* ------------------------------------------------------------------------ */
904 static INLINE void
905 ipf_pr_icmp6(fr_info_t *fin)
906 {
907 int minicmpsz = sizeof(struct icmp6_hdr);
908 struct icmp6_hdr *icmp6;
909
910 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
911 ipf_main_softc_t *softc = fin->fin_main_soft;
912
913 LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
914 return;
915 }
916
917 if (fin->fin_dlen > 1) {
918 ip6_t *ip6;
919
920 icmp6 = fin->fin_dp;
921
922 fin->fin_data[0] = *(u_short *)icmp6;
923
924 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
925 fin->fin_flx |= FI_ICMPQUERY;
926
927 switch (icmp6->icmp6_type)
928 {
929 case ICMP6_ECHO_REPLY :
930 case ICMP6_ECHO_REQUEST :
931 if (fin->fin_dlen >= 6)
932 fin->fin_data[1] = icmp6->icmp6_id;
933 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
934 break;
935
936 case ICMP6_DST_UNREACH :
937 case ICMP6_PACKET_TOO_BIG :
938 case ICMP6_TIME_EXCEEDED :
939 case ICMP6_PARAM_PROB :
940 fin->fin_flx |= FI_ICMPERR;
941 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
942 if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
943 break;
944
945 if (M_LEN(fin->fin_m) < fin->fin_plen) {
946 if (ipf_coalesce(fin) != 1)
947 return;
948 }
949
950 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
951 return;
952
953 /*
954 * If the destination of this packet doesn't match the
955 * source of the original packet then this packet is
956 * not correct.
957 */
958 icmp6 = fin->fin_dp;
959 ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
960 if (IP6_NEQ(&fin->fin_fi.fi_dst,
961 &ip6->ip6_src)) {
962 fin->fin_flx |= FI_BAD;
963 DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
964 }
965 break;
966 default :
967 break;
968 }
969 }
970
971 ipf_pr_short6(fin, minicmpsz);
972 if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
973 u_char p = fin->fin_p;
974
975 fin->fin_p = IPPROTO_ICMPV6;
976 ipf_checkv6sum(fin);
977 fin->fin_p = p;
978 }
979 }
980
981
982 /* ------------------------------------------------------------------------ */
983 /* Function: ipf_pr_udp6 */
984 /* Returns: void */
985 /* Parameters: fin(I) - pointer to packet information */
986 /* */
987 /* IPv6 Only */
988 /* Analyse the packet for IPv6/UDP properties. */
989 /* Is not expected to be called for fragmented packets. */
990 /* ------------------------------------------------------------------------ */
991 static INLINE void
992 ipf_pr_udp6(fr_info_t *fin)
993 {
994
995 if (ipf_pr_udpcommon(fin) == 0) {
996 u_char p = fin->fin_p;
997
998 fin->fin_p = IPPROTO_UDP;
999 ipf_checkv6sum(fin);
1000 fin->fin_p = p;
1001 }
1002 }
1003
1004
1005 /* ------------------------------------------------------------------------ */
1006 /* Function: ipf_pr_tcp6 */
1007 /* Returns: void */
1008 /* Parameters: fin(I) - pointer to packet information */
1009 /* */
1010 /* IPv6 Only */
1011 /* Analyse the packet for IPv6/TCP properties. */
1012 /* Is not expected to be called for fragmented packets. */
1013 /* ------------------------------------------------------------------------ */
1014 static INLINE void
1015 ipf_pr_tcp6(fr_info_t *fin)
1016 {
1017
1018 if (ipf_pr_tcpcommon(fin) == 0) {
1019 u_char p = fin->fin_p;
1020
1021 fin->fin_p = IPPROTO_TCP;
1022 ipf_checkv6sum(fin);
1023 fin->fin_p = p;
1024 }
1025 }
1026
1027
1028 /* ------------------------------------------------------------------------ */
1029 /* Function: ipf_pr_esp6 */
1030 /* Returns: void */
1031 /* Parameters: fin(I) - pointer to packet information */
1032 /* */
1033 /* IPv6 Only */
1034 /* Analyse the packet for ESP properties. */
1035 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1036 /* even though the newer ESP packets must also have a sequence number that */
1037 /* is 32bits as well, it is not possible(?) to determine the version from a */
1038 /* simple packet header. */
1039 /* ------------------------------------------------------------------------ */
1040 static INLINE void
1041 ipf_pr_esp6(fr_info_t *fin)
1042 {
1043
1044 if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1045 ipf_main_softc_t *softc = fin->fin_main_soft;
1046
1047 LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1048 return;
1049 }
1050 }
1051
1052
1053 /* ------------------------------------------------------------------------ */
1054 /* Function: ipf_pr_ah6 */
1055 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1056 /* Parameters: fin(I) - pointer to packet information */
1057 /* */
1058 /* IPv6 Only */
1059 /* Analyse the packet for AH properties. */
1060 /* The minimum length is taken to be the combination of all fields in the */
1061 /* header being present and no authentication data (null algorithm used.) */
1062 /* ------------------------------------------------------------------------ */
1063 static INLINE int
1064 ipf_pr_ah6(fr_info_t *fin)
1065 {
1066 authhdr_t *ah;
1067
1068 fin->fin_flx |= FI_AH;
1069
1070 ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1071 if (ah == NULL) {
1072 ipf_main_softc_t *softc = fin->fin_main_soft;
1073
1074 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1075 return IPPROTO_NONE;
1076 }
1077
1078 ipf_pr_short6(fin, sizeof(*ah));
1079
1080 /*
1081 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1082 * enough data to satisfy ah_next (the very first one.)
1083 */
1084 return ah->ah_next;
1085 }
1086
1087
1088 /* ------------------------------------------------------------------------ */
1089 /* Function: ipf_pr_gre6 */
1090 /* Returns: void */
1091 /* Parameters: fin(I) - pointer to packet information */
1092 /* */
1093 /* Analyse the packet for GRE properties. */
1094 /* ------------------------------------------------------------------------ */
1095 static INLINE void
1096 ipf_pr_gre6(fr_info_t *fin)
1097 {
1098 grehdr_t *gre;
1099
1100 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1101 ipf_main_softc_t *softc = fin->fin_main_soft;
1102
1103 LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1104 return;
1105 }
1106
1107 gre = fin->fin_dp;
1108 if (GRE_REV(gre->gr_flags) == 1)
1109 fin->fin_data[0] = gre->gr_call;
1110 }
1111 #endif /* USE_INET6 */
1112
1113
1114 /* ------------------------------------------------------------------------ */
1115 /* Function: ipf_pr_pullup */
1116 /* Returns: int - 0 == pullup succeeded, -1 == failure */
1117 /* Parameters: fin(I) - pointer to packet information */
1118 /* plen(I) - length (excluding L3 header) to pullup */
1119 /* */
1120 /* Short inline function to cut down on code duplication to perform a call */
1121 /* to ipf_pullup to ensure there is the required amount of data, */
1122 /* consecutively in the packet buffer. */
1123 /* */
1124 /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */
1125 /* points to the first byte after the complete layer 3 header, which will */
1126 /* include all of the known extension headers for IPv6 or options for IPv4. */
1127 /* */
1128 /* Since fr_pullup() expects the total length of bytes to be pulled up, it */
1129 /* is necessary to add those we can already assume to be pulled up (fin_dp */
1130 /* - fin_ip) to what is passed through. */
1131 /* ------------------------------------------------------------------------ */
1132 int
1133 ipf_pr_pullup(fr_info_t *fin, int plen)
1134 {
1135 ipf_main_softc_t *softc = fin->fin_main_soft;
1136
1137 if (fin->fin_m != NULL) {
1138 if (fin->fin_dp != NULL)
1139 plen += (char *)fin->fin_dp -
1140 ((char *)fin->fin_ip + fin->fin_hlen);
1141 plen += fin->fin_hlen;
1142 if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1143 #if defined(_KERNEL)
1144 if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1145 DT(ipf_pullup_fail);
1146 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1147 return -1;
1148 }
1149 LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1150 #else
1151 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1152 /*
1153 * Fake ipf_pullup failing
1154 */
1155 fin->fin_reason = FRB_PULLUP;
1156 *fin->fin_mp = NULL;
1157 fin->fin_m = NULL;
1158 fin->fin_ip = NULL;
1159 return -1;
1160 #endif
1161 }
1162 }
1163 return 0;
1164 }
1165
1166
1167 /* ------------------------------------------------------------------------ */
1168 /* Function: ipf_pr_short */
1169 /* Returns: void */
1170 /* Parameters: fin(I) - pointer to packet information */
1171 /* xmin(I) - minimum header size */
1172 /* */
1173 /* Check if a packet is "short" as defined by xmin. The rule we are */
1174 /* applying here is that the packet must not be fragmented within the layer */
1175 /* 4 header. That is, it must not be a fragment that has its offset set to */
1176 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */
1177 /* entire layer 4 header must be present (min). */
1178 /* ------------------------------------------------------------------------ */
1179 static INLINE void
1180 ipf_pr_short(fr_info_t *fin, int xmin)
1181 {
1182
1183 if (fin->fin_off == 0) {
1184 if (fin->fin_dlen < xmin)
1185 fin->fin_flx |= FI_SHORT;
1186 } else if (fin->fin_off < xmin) {
1187 fin->fin_flx |= FI_SHORT;
1188 }
1189 }
1190
1191
1192 /* ------------------------------------------------------------------------ */
1193 /* Function: ipf_pr_icmp */
1194 /* Returns: void */
1195 /* Parameters: fin(I) - pointer to packet information */
1196 /* */
1197 /* IPv4 Only */
1198 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */
1199 /* except extrememly bad packets, both type and code will be present. */
1200 /* The expected minimum size of an ICMP packet is very much dependent on */
1201 /* the type of it. */
1202 /* */
1203 /* XXX - other ICMP sanity checks? */
1204 /* ------------------------------------------------------------------------ */
1205 static INLINE void
1206 ipf_pr_icmp(fr_info_t *fin)
1207 {
1208 ipf_main_softc_t *softc = fin->fin_main_soft;
1209 int minicmpsz = sizeof(struct icmp);
1210 icmphdr_t *icmp;
1211 ip_t *oip;
1212
1213 ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1214
1215 if (fin->fin_off != 0) {
1216 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1217 return;
1218 }
1219
1220 if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1221 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1222 return;
1223 }
1224
1225 icmp = fin->fin_dp;
1226
1227 fin->fin_data[0] = *(u_short *)icmp;
1228 fin->fin_data[1] = icmp->icmp_id;
1229
1230 switch (icmp->icmp_type)
1231 {
1232 case ICMP_ECHOREPLY :
1233 case ICMP_ECHO :
1234 /* Router discovery messaes - RFC 1256 */
1235 case ICMP_ROUTERADVERT :
1236 case ICMP_ROUTERSOLICIT :
1237 fin->fin_flx |= FI_ICMPQUERY;
1238 minicmpsz = ICMP_MINLEN;
1239 break;
1240 /*
1241 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1242 * 3 * timestamp(3 * 4)
1243 */
1244 case ICMP_TSTAMP :
1245 case ICMP_TSTAMPREPLY :
1246 fin->fin_flx |= FI_ICMPQUERY;
1247 minicmpsz = 20;
1248 break;
1249 /*
1250 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1251 * mask(4)
1252 */
1253 case ICMP_IREQ :
1254 case ICMP_IREQREPLY :
1255 case ICMP_MASKREQ :
1256 case ICMP_MASKREPLY :
1257 fin->fin_flx |= FI_ICMPQUERY;
1258 minicmpsz = 12;
1259 break;
1260 /*
1261 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1262 */
1263 case ICMP_UNREACH :
1264 #ifdef icmp_nextmtu
1265 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1266 if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1267 fin->fin_flx |= FI_BAD;
1268 DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1269 }
1270 }
1271 #endif
1272 /* FALLTHROUGH */
1273 case ICMP_SOURCEQUENCH :
1274 case ICMP_REDIRECT :
1275 case ICMP_TIMXCEED :
1276 case ICMP_PARAMPROB :
1277 fin->fin_flx |= FI_ICMPERR;
1278 if (ipf_coalesce(fin) != 1) {
1279 LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1280 return;
1281 }
1282
1283 /*
1284 * ICMP error packets should not be generated for IP
1285 * packets that are a fragment that isn't the first
1286 * fragment.
1287 */
1288 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1289 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1290 fin->fin_flx |= FI_BAD;
1291 DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1292 }
1293
1294 /*
1295 * If the destination of this packet doesn't match the
1296 * source of the original packet then this packet is
1297 * not correct.
1298 */
1299 if (oip->ip_src.s_addr != fin->fin_daddr) {
1300 fin->fin_flx |= FI_BAD;
1301 DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1302 }
1303 break;
1304 default :
1305 break;
1306 }
1307
1308 ipf_pr_short(fin, minicmpsz);
1309
1310 ipf_checkv4sum(fin);
1311 }
1312
1313
1314 /* ------------------------------------------------------------------------ */
1315 /* Function: ipf_pr_tcpcommon */
1316 /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */
1317 /* Parameters: fin(I) - pointer to packet information */
1318 /* */
1319 /* TCP header sanity checking. Look for bad combinations of TCP flags, */
1320 /* and make some checks with how they interact with other fields. */
1321 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */
1322 /* valid and mark the packet as bad if not. */
1323 /* ------------------------------------------------------------------------ */
1324 static INLINE int
1325 ipf_pr_tcpcommon(fr_info_t *fin)
1326 {
1327 ipf_main_softc_t *softc = fin->fin_main_soft;
1328 int flags, tlen;
1329 tcphdr_t *tcp;
1330
1331 fin->fin_flx |= FI_TCPUDP;
1332 if (fin->fin_off != 0) {
1333 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1334 return 0;
1335 }
1336
1337 if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1338 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1339 return -1;
1340 }
1341
1342 tcp = fin->fin_dp;
1343 if (fin->fin_dlen > 3) {
1344 fin->fin_sport = ntohs(tcp->th_sport);
1345 fin->fin_dport = ntohs(tcp->th_dport);
1346 }
1347
1348 if ((fin->fin_flx & FI_SHORT) != 0) {
1349 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1350 return 1;
1351 }
1352
1353 /*
1354 * Use of the TCP data offset *must* result in a value that is at
1355 * least the same size as the TCP header.
1356 */
1357 tlen = TCP_OFF(tcp) << 2;
1358 if (tlen < sizeof(tcphdr_t)) {
1359 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1360 fin->fin_flx |= FI_BAD;
1361 DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1362 return 1;
1363 }
1364
1365 flags = tcp->th_flags;
1366 fin->fin_tcpf = tcp->th_flags;
1367
1368 /*
1369 * If the urgent flag is set, then the urgent pointer must
1370 * also be set and vice versa. Good TCP packets do not have
1371 * just one of these set.
1372 */
1373 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1374 fin->fin_flx |= FI_BAD;
1375 DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1376 #if 0
1377 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1378 /*
1379 * Ignore this case (#if 0) as it shows up in "real"
1380 * traffic with bogus values in the urgent pointer field.
1381 */
1382 fin->fin_flx |= FI_BAD;
1383 DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1384 #endif
1385 } else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1386 ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1387 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1388 fin->fin_flx |= FI_BAD;
1389 DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1390 #if 1
1391 } else if (((flags & TH_SYN) != 0) &&
1392 ((flags & (TH_URG|TH_PUSH)) != 0)) {
1393 /*
1394 * SYN with URG and PUSH set is not for normal TCP but it is
1395 * possible(?) with T/TCP...but who uses T/TCP?
1396 */
1397 fin->fin_flx |= FI_BAD;
1398 DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1399 #endif
1400 } else if (!(flags & TH_ACK)) {
1401 /*
1402 * If the ack bit isn't set, then either the SYN or
1403 * RST bit must be set. If the SYN bit is set, then
1404 * we expect the ACK field to be 0. If the ACK is
1405 * not set and if URG, PSH or FIN are set, consdier
1406 * that to indicate a bad TCP packet.
1407 */
1408 if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1409 /*
1410 * Cisco PIX sets the ACK field to a random value.
1411 * In light of this, do not set FI_BAD until a patch
1412 * is available from Cisco to ensure that
1413 * interoperability between existing systems is
1414 * achieved.
1415 */
1416 /*fin->fin_flx |= FI_BAD*/;
1417 /*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1418 } else if (!(flags & (TH_RST|TH_SYN))) {
1419 fin->fin_flx |= FI_BAD;
1420 DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1421 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1422 fin->fin_flx |= FI_BAD;
1423 DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1424 }
1425 }
1426 if (fin->fin_flx & FI_BAD) {
1427 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1428 return 1;
1429 }
1430
1431 /*
1432 * At this point, it's not exactly clear what is to be gained by
1433 * marking up which TCP options are and are not present. The one we
1434 * are most interested in is the TCP window scale. This is only in
1435 * a SYN packet [RFC1323] so we don't need this here...?
1436 * Now if we were to analyse the header for passive fingerprinting,
1437 * then that might add some weight to adding this...
1438 */
1439 if (tlen == sizeof(tcphdr_t)) {
1440 return 0;
1441 }
1442
1443 if (ipf_pr_pullup(fin, tlen) == -1) {
1444 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1445 return -1;
1446 }
1447
1448 #if 0
1449 tcp = fin->fin_dp;
1450 ip = fin->fin_ip;
1451 s = (u_char *)(tcp + 1);
1452 off = IP_HL(ip) << 2;
1453 # ifdef _KERNEL
1454 if (fin->fin_mp != NULL) {
1455 mb_t *m = *fin->fin_mp;
1456
1457 if (off + tlen > M_LEN(m))
1458 return;
1459 }
1460 # endif
1461 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1462 opt = *s;
1463 if (opt == '\0')
1464 break;
1465 else if (opt == TCPOPT_NOP)
1466 ol = 1;
1467 else {
1468 if (tlen < 2)
1469 break;
1470 ol = (int)*(s + 1);
1471 if (ol < 2 || ol > tlen)
1472 break;
1473 }
1474
1475 for (i = 9, mv = 4; mv >= 0; ) {
1476 op = ipopts + i;
1477 if (opt == (u_char)op->ol_val) {
1478 optmsk |= op->ol_bit;
1479 break;
1480 }
1481 }
1482 tlen -= ol;
1483 s += ol;
1484 }
1485 #endif /* 0 */
1486
1487 return 0;
1488 }
1489
1490
1491
1492 /* ------------------------------------------------------------------------ */
1493 /* Function: ipf_pr_udpcommon */
1494 /* Returns: int - 0 = header ok, 1 = bad packet */
1495 /* Parameters: fin(I) - pointer to packet information */
1496 /* */
1497 /* Extract the UDP source and destination ports, if present. If compiled */
1498 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */
1499 /* ------------------------------------------------------------------------ */
1500 static INLINE int
1501 ipf_pr_udpcommon(fr_info_t *fin)
1502 {
1503 udphdr_t *udp;
1504
1505 fin->fin_flx |= FI_TCPUDP;
1506
1507 if (!fin->fin_off && (fin->fin_dlen > 3)) {
1508 if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1509 ipf_main_softc_t *softc = fin->fin_main_soft;
1510
1511 fin->fin_flx |= FI_SHORT;
1512 LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1513 return 1;
1514 }
1515
1516 udp = fin->fin_dp;
1517
1518 fin->fin_sport = ntohs(udp->uh_sport);
1519 fin->fin_dport = ntohs(udp->uh_dport);
1520 }
1521
1522 return 0;
1523 }
1524
1525
1526 /* ------------------------------------------------------------------------ */
1527 /* Function: ipf_pr_tcp */
1528 /* Returns: void */
1529 /* Parameters: fin(I) - pointer to packet information */
1530 /* */
1531 /* IPv4 Only */
1532 /* Analyse the packet for IPv4/TCP properties. */
1533 /* ------------------------------------------------------------------------ */
1534 static INLINE void
1535 ipf_pr_tcp(fr_info_t *fin)
1536 {
1537
1538 ipf_pr_short(fin, sizeof(tcphdr_t));
1539
1540 if (ipf_pr_tcpcommon(fin) == 0)
1541 ipf_checkv4sum(fin);
1542 }
1543
1544
1545 /* ------------------------------------------------------------------------ */
1546 /* Function: ipf_pr_udp */
1547 /* Returns: void */
1548 /* Parameters: fin(I) - pointer to packet information */
1549 /* */
1550 /* IPv4 Only */
1551 /* Analyse the packet for IPv4/UDP properties. */
1552 /* ------------------------------------------------------------------------ */
1553 static INLINE void
1554 ipf_pr_udp(fr_info_t *fin)
1555 {
1556
1557 ipf_pr_short(fin, sizeof(udphdr_t));
1558
1559 if (ipf_pr_udpcommon(fin) == 0)
1560 ipf_checkv4sum(fin);
1561 }
1562
1563
1564 /* ------------------------------------------------------------------------ */
1565 /* Function: ipf_pr_esp */
1566 /* Returns: void */
1567 /* Parameters: fin(I) - pointer to packet information */
1568 /* */
1569 /* Analyse the packet for ESP properties. */
1570 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1571 /* even though the newer ESP packets must also have a sequence number that */
1572 /* is 32bits as well, it is not possible(?) to determine the version from a */
1573 /* simple packet header. */
1574 /* ------------------------------------------------------------------------ */
1575 static INLINE void
1576 ipf_pr_esp(fr_info_t *fin)
1577 {
1578
1579 if (fin->fin_off == 0) {
1580 ipf_pr_short(fin, 8);
1581 if (ipf_pr_pullup(fin, 8) == -1) {
1582 ipf_main_softc_t *softc = fin->fin_main_soft;
1583
1584 LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1585 }
1586 }
1587 }
1588
1589
1590 /* ------------------------------------------------------------------------ */
1591 /* Function: ipf_pr_ah */
1592 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1593 /* Parameters: fin(I) - pointer to packet information */
1594 /* */
1595 /* Analyse the packet for AH properties. */
1596 /* The minimum length is taken to be the combination of all fields in the */
1597 /* header being present and no authentication data (null algorithm used.) */
1598 /* ------------------------------------------------------------------------ */
1599 static INLINE int
1600 ipf_pr_ah(fr_info_t *fin)
1601 {
1602 ipf_main_softc_t *softc = fin->fin_main_soft;
1603 authhdr_t *ah;
1604 int len;
1605
1606 fin->fin_flx |= FI_AH;
1607 ipf_pr_short(fin, sizeof(*ah));
1608
1609 if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1610 LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1611 return IPPROTO_NONE;
1612 }
1613
1614 if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1615 DT(fr_v4_ah_pullup_1);
1616 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1617 return IPPROTO_NONE;
1618 }
1619
1620 ah = (authhdr_t *)fin->fin_dp;
1621
1622 len = (ah->ah_plen + 2) << 2;
1623 ipf_pr_short(fin, len);
1624 if (ipf_pr_pullup(fin, len) == -1) {
1625 DT(fr_v4_ah_pullup_2);
1626 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1627 return IPPROTO_NONE;
1628 }
1629
1630 /*
1631 * Adjust fin_dp and fin_dlen for skipping over the authentication
1632 * header.
1633 */
1634 fin->fin_dp = (char *)fin->fin_dp + len;
1635 fin->fin_dlen -= len;
1636 return ah->ah_next;
1637 }
1638
1639
1640 /* ------------------------------------------------------------------------ */
1641 /* Function: ipf_pr_gre */
1642 /* Returns: void */
1643 /* Parameters: fin(I) - pointer to packet information */
1644 /* */
1645 /* Analyse the packet for GRE properties. */
1646 /* ------------------------------------------------------------------------ */
1647 static INLINE void
1648 ipf_pr_gre(fr_info_t *fin)
1649 {
1650 ipf_main_softc_t *softc = fin->fin_main_soft;
1651 grehdr_t *gre;
1652
1653 ipf_pr_short(fin, sizeof(grehdr_t));
1654
1655 if (fin->fin_off != 0) {
1656 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1657 return;
1658 }
1659
1660 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1661 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1662 return;
1663 }
1664
1665 gre = fin->fin_dp;
1666 if (GRE_REV(gre->gr_flags) == 1)
1667 fin->fin_data[0] = gre->gr_call;
1668 }
1669
1670
1671 /* ------------------------------------------------------------------------ */
1672 /* Function: ipf_pr_ipv4hdr */
1673 /* Returns: void */
1674 /* Parameters: fin(I) - pointer to packet information */
1675 /* */
1676 /* IPv4 Only */
1677 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */
1678 /* Check all options present and flag their presence if any exist. */
1679 /* ------------------------------------------------------------------------ */
1680 static INLINE void
1681 ipf_pr_ipv4hdr(fr_info_t *fin)
1682 {
1683 u_short optmsk = 0, secmsk = 0, auth = 0;
1684 int hlen, ol, mv, p, i;
1685 const struct optlist *op;
1686 u_char *s, opt;
1687 u_short off;
1688 fr_ip_t *fi;
1689 ip_t *ip;
1690
1691 fi = &fin->fin_fi;
1692 hlen = fin->fin_hlen;
1693
1694 ip = fin->fin_ip;
1695 p = ip->ip_p;
1696 fi->fi_p = p;
1697 fin->fin_crc = p;
1698 fi->fi_tos = ip->ip_tos;
1699 fin->fin_id = ntohs(ip->ip_id);
1700 off = ntohs(ip->ip_off);
1701
1702 /* Get both TTL and protocol */
1703 fi->fi_p = ip->ip_p;
1704 fi->fi_ttl = ip->ip_ttl;
1705
1706 /* Zero out bits not used in IPv6 address */
1707 fi->fi_src.i6[1] = 0;
1708 fi->fi_src.i6[2] = 0;
1709 fi->fi_src.i6[3] = 0;
1710 fi->fi_dst.i6[1] = 0;
1711 fi->fi_dst.i6[2] = 0;
1712 fi->fi_dst.i6[3] = 0;
1713
1714 fi->fi_saddr = ip->ip_src.s_addr;
1715 fin->fin_crc += fi->fi_saddr;
1716 fi->fi_daddr = ip->ip_dst.s_addr;
1717 fin->fin_crc += fi->fi_daddr;
1718 if (IN_CLASSD(fi->fi_daddr))
1719 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1720
1721 /*
1722 * set packet attribute flags based on the offset and
1723 * calculate the byte offset that it represents.
1724 */
1725 off &= IP_MF|IP_OFFMASK;
1726 if (off != 0) {
1727 int morefrag = off & IP_MF;
1728 fi->fi_flx |= FI_FRAG;
1729 off &= IP_OFFMASK;
1730 if (off != 0) {
1731 if (off == 1 && p == IPPROTO_TCP) {
1732 fin->fin_flx |= FI_SHORT; /* RFC 3128 */
1733 DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin);
1734 }
1735
1736 fin->fin_flx |= FI_FRAGBODY;
1737 off <<= 3;
1738 if ((off + fin->fin_dlen > 65535) ||
1739 (fin->fin_dlen == 0) ||
1740 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1741 /*
1742 * The length of the packet, starting at its
1743 * offset cannot exceed 65535 (0xffff) as the
1744 * length of an IP packet is only 16 bits.
1745 *
1746 * Any fragment that isn't the last fragment
1747 * must have a length greater than 0 and it
1748 * must be an even multiple of 8.
1749 */
1750 fi->fi_flx |= FI_BAD;
1751 DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1752 }
1753 }
1754 }
1755 fin->fin_off = off;
1756
1757 /*
1758 * Call per-protocol setup and checking
1759 */
1760 if (p == IPPROTO_AH) {
1761 /*
1762 * Treat AH differently because we expect there to be another
1763 * layer 4 header after it.
1764 */
1765 p = ipf_pr_ah(fin);
1766 }
1767
1768 switch (p)
1769 {
1770 case IPPROTO_UDP :
1771 ipf_pr_udp(fin);
1772 break;
1773 case IPPROTO_TCP :
1774 ipf_pr_tcp(fin);
1775 break;
1776 case IPPROTO_ICMP :
1777 ipf_pr_icmp(fin);
1778 break;
1779 case IPPROTO_ESP :
1780 ipf_pr_esp(fin);
1781 break;
1782 case IPPROTO_GRE :
1783 ipf_pr_gre(fin);
1784 break;
1785 }
1786
1787 ip = fin->fin_ip;
1788 if (ip == NULL)
1789 return;
1790
1791 /*
1792 * If it is a standard IP header (no options), set the flag fields
1793 * which relate to options to 0.
1794 */
1795 if (hlen == sizeof(*ip)) {
1796 fi->fi_optmsk = 0;
1797 fi->fi_secmsk = 0;
1798 fi->fi_auth = 0;
1799 return;
1800 }
1801
1802 /*
1803 * So the IP header has some IP options attached. Walk the entire
1804 * list of options present with this packet and set flags to indicate
1805 * which ones are here and which ones are not. For the somewhat out
1806 * of date and obscure security classification options, set a flag to
1807 * represent which classification is present.
1808 */
1809 fi->fi_flx |= FI_OPTIONS;
1810
1811 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1812 opt = *s;
1813 if (opt == '\0')
1814 break;
1815 else if (opt == IPOPT_NOP)
1816 ol = 1;
1817 else {
1818 if (hlen < 2)
1819 break;
1820 ol = (int)*(s + 1);
1821 if (ol < 2 || ol > hlen)
1822 break;
1823 }
1824 for (i = 9, mv = 4; mv >= 0; ) {
1825 op = ipopts + i;
1826
1827 if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1828 u_32_t doi;
1829
1830 switch (opt)
1831 {
1832 case IPOPT_SECURITY :
1833 if (optmsk & op->ol_bit) {
1834 fin->fin_flx |= FI_BAD;
1835 DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1836 } else {
1837 doi = ipf_checkripso(s);
1838 secmsk = doi >> 16;
1839 auth = doi & 0xffff;
1840 }
1841 break;
1842
1843 case IPOPT_CIPSO :
1844
1845 if (optmsk & op->ol_bit) {
1846 fin->fin_flx |= FI_BAD;
1847 DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1848 } else {
1849 doi = ipf_checkcipso(fin,
1850 s, ol);
1851 secmsk = doi >> 16;
1852 auth = doi & 0xffff;
1853 }
1854 break;
1855 }
1856 optmsk |= op->ol_bit;
1857 }
1858
1859 if (opt < op->ol_val)
1860 i -= mv;
1861 else
1862 i += mv;
1863 mv--;
1864 }
1865 hlen -= ol;
1866 s += ol;
1867 }
1868
1869 /*
1870 *
1871 */
1872 if (auth && !(auth & 0x0100))
1873 auth &= 0xff00;
1874 fi->fi_optmsk = optmsk;
1875 fi->fi_secmsk = secmsk;
1876 fi->fi_auth = auth;
1877 }
1878
1879
1880 /* ------------------------------------------------------------------------ */
1881 /* Function: ipf_checkripso */
1882 /* Returns: void */
1883 /* Parameters: s(I) - pointer to start of RIPSO option */
1884 /* */
1885 /* ------------------------------------------------------------------------ */
1886 static u_32_t
1887 ipf_checkripso(u_char *s)
1888 {
1889 const struct optlist *sp;
1890 u_short secmsk = 0, auth = 0;
1891 u_char sec;
1892 int j, m;
1893
1894 sec = *(s + 2); /* classification */
1895 for (j = 3, m = 2; m >= 0; ) {
1896 sp = secopt + j;
1897 if (sec == sp->ol_val) {
1898 secmsk |= sp->ol_bit;
1899 auth = *(s + 3);
1900 auth *= 256;
1901 auth += *(s + 4);
1902 break;
1903 }
1904 if (sec < sp->ol_val)
1905 j -= m;
1906 else
1907 j += m;
1908 m--;
1909 }
1910
1911 return (secmsk << 16) | auth;
1912 }
1913
1914
1915 /* ------------------------------------------------------------------------ */
1916 /* Function: ipf_checkcipso */
1917 /* Returns: u_32_t - 0 = failure, else the doi from the header */
1918 /* Parameters: fin(IO) - pointer to packet information */
1919 /* s(I) - pointer to start of CIPSO option */
1920 /* ol(I) - length of CIPSO option field */
1921 /* */
1922 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1923 /* header and returns that whilst also storing the highest sensitivity */
1924 /* value found in the fr_info_t structure. */
1925 /* */
1926 /* No attempt is made to extract the category bitmaps as these are defined */
1927 /* by the user (rather than the protocol) and can be rather numerous on the */
1928 /* end nodes. */
1929 /* ------------------------------------------------------------------------ */
1930 static u_32_t
1931 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1932 {
1933 ipf_main_softc_t *softc = fin->fin_main_soft;
1934 fr_ip_t *fi;
1935 u_32_t doi;
1936 u_char *t, tag, tlen, sensitivity;
1937 int len;
1938
1939 if (ol < 6 || ol > 40) {
1940 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1941 fin->fin_flx |= FI_BAD;
1942 DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1943 return 0;
1944 }
1945
1946 fi = &fin->fin_fi;
1947 fi->fi_sensitivity = 0;
1948 /*
1949 * The DOI field MUST be there.
1950 */
1951 bcopy(s + 2, &doi, sizeof(doi));
1952
1953 t = (u_char *)s + 6;
1954 for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1955 tag = *t;
1956 tlen = *(t + 1);
1957 if (tlen > len || tlen < 4 || tlen > 34) {
1958 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1959 fin->fin_flx |= FI_BAD;
1960 DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1961 return 0;
1962 }
1963
1964 sensitivity = 0;
1965 /*
1966 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1967 * draft (16 July 1992) that has expired.
1968 */
1969 if (tag == 0) {
1970 fin->fin_flx |= FI_BAD;
1971 DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1972 continue;
1973 } else if (tag == 1) {
1974 if (*(t + 2) != 0) {
1975 fin->fin_flx |= FI_BAD;
1976 DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1977 continue;
1978 }
1979 sensitivity = *(t + 3);
1980 /* Category bitmap for categories 0-239 */
1981
1982 } else if (tag == 4) {
1983 if (*(t + 2) != 0) {
1984 fin->fin_flx |= FI_BAD;
1985 DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1986 continue;
1987 }
1988 sensitivity = *(t + 3);
1989 /* Enumerated categories, 16bits each, upto 15 */
1990
1991 } else if (tag == 5) {
1992 if (*(t + 2) != 0) {
1993 fin->fin_flx |= FI_BAD;
1994 DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
1995 continue;
1996 }
1997 sensitivity = *(t + 3);
1998 /* Range of categories (2*16bits), up to 7 pairs */
1999
2000 } else if (tag > 127) {
2001 /* Custom defined DOI */
2002 ;
2003 } else {
2004 DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
2005 fin->fin_flx |= FI_BAD;
2006 continue;
2007 }
2008
2009 if (sensitivity > fi->fi_sensitivity)
2010 fi->fi_sensitivity = sensitivity;
2011 }
2012
2013 return doi;
2014 }
2015
2016
2017 /* ------------------------------------------------------------------------ */
2018 /* Function: ipf_makefrip */
2019 /* Returns: int - 0 == packet ok, -1 == packet freed */
2020 /* Parameters: hlen(I) - length of IP packet header */
2021 /* ip(I) - pointer to the IP header */
2022 /* fin(IO) - pointer to packet information */
2023 /* */
2024 /* Compact the IP header into a structure which contains just the info. */
2025 /* which is useful for comparing IP headers with and store this information */
2026 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */
2027 /* this function will be called with either an IPv4 or IPv6 packet. */
2028 /* ------------------------------------------------------------------------ */
2029 int
2030 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
2031 {
2032 ipf_main_softc_t *softc = fin->fin_main_soft;
2033 int v;
2034
2035 fin->fin_depth = 0;
2036 fin->fin_hlen = (u_short)hlen;
2037 fin->fin_ip = ip;
2038 fin->fin_rule = 0xffffffff;
2039 fin->fin_group[0] = -1;
2040 fin->fin_group[1] = '\0';
2041 fin->fin_dp = (char *)ip + hlen;
2042
2043 v = fin->fin_v;
2044 if (v == 4) {
2045 fin->fin_plen = ntohs(ip->ip_len);
2046 fin->fin_dlen = fin->fin_plen - hlen;
2047 ipf_pr_ipv4hdr(fin);
2048 #ifdef USE_INET6
2049 } else if (v == 6) {
2050 fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2051 fin->fin_dlen = fin->fin_plen;
2052 fin->fin_plen += hlen;
2053
2054 ipf_pr_ipv6hdr(fin);
2055 #endif
2056 }
2057 if (fin->fin_ip == NULL) {
2058 LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2059 return -1;
2060 }
2061 return 0;
2062 }
2063
2064
2065 /* ------------------------------------------------------------------------ */
2066 /* Function: ipf_portcheck */
2067 /* Returns: int - 1 == port matched, 0 == port match failed */
2068 /* Parameters: frp(I) - pointer to port check `expression' */
2069 /* pop(I) - port number to evaluate */
2070 /* */
2071 /* Perform a comparison of a port number against some other(s), using a */
2072 /* structure with compare information stored in it. */
2073 /* ------------------------------------------------------------------------ */
2074 static INLINE int
2075 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2076 {
2077 int err = 1;
2078 u_32_t po;
2079
2080 po = frp->frp_port;
2081
2082 /*
2083 * Do opposite test to that required and continue if that succeeds.
2084 */
2085 switch (frp->frp_cmp)
2086 {
2087 case FR_EQUAL :
2088 if (pop != po) /* EQUAL */
2089 err = 0;
2090 break;
2091 case FR_NEQUAL :
2092 if (pop == po) /* NOTEQUAL */
2093 err = 0;
2094 break;
2095 case FR_LESST :
2096 if (pop >= po) /* LESSTHAN */
2097 err = 0;
2098 break;
2099 case FR_GREATERT :
2100 if (pop <= po) /* GREATERTHAN */
2101 err = 0;
2102 break;
2103 case FR_LESSTE :
2104 if (pop > po) /* LT or EQ */
2105 err = 0;
2106 break;
2107 case FR_GREATERTE :
2108 if (pop < po) /* GT or EQ */
2109 err = 0;
2110 break;
2111 case FR_OUTRANGE :
2112 if (pop >= po && pop <= frp->frp_top) /* Out of range */
2113 err = 0;
2114 break;
2115 case FR_INRANGE :
2116 if (pop <= po || pop >= frp->frp_top) /* In range */
2117 err = 0;
2118 break;
2119 case FR_INCRANGE :
2120 if (pop < po || pop > frp->frp_top) /* Inclusive range */
2121 err = 0;
2122 break;
2123 default :
2124 break;
2125 }
2126 return err;
2127 }
2128
2129
2130 /* ------------------------------------------------------------------------ */
2131 /* Function: ipf_tcpudpchk */
2132 /* Returns: int - 1 == protocol matched, 0 == check failed */
2133 /* Parameters: fda(I) - pointer to packet information */
2134 /* ft(I) - pointer to structure with comparison data */
2135 /* */
2136 /* Compares the current pcket (assuming it is TCP/UDP) information with a */
2137 /* structure containing information that we want to match against. */
2138 /* ------------------------------------------------------------------------ */
2139 int
2140 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2141 {
2142 int err = 1;
2143
2144 /*
2145 * Both ports should *always* be in the first fragment.
2146 * So far, I cannot find any cases where they can not be.
2147 *
2148 * compare destination ports
2149 */
2150 if (ft->ftu_dcmp)
2151 err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2152
2153 /*
2154 * compare source ports
2155 */
2156 if (err && ft->ftu_scmp)
2157 err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2158
2159 /*
2160 * If we don't have all the TCP/UDP header, then how can we
2161 * expect to do any sort of match on it ? If we were looking for
2162 * TCP flags, then NO match. If not, then match (which should
2163 * satisfy the "short" class too).
2164 */
2165 if (err && (fi->fi_p == IPPROTO_TCP)) {
2166 if (fi->fi_flx & FI_SHORT)
2167 return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2168 /*
2169 * Match the flags ? If not, abort this match.
2170 */
2171 if (ft->ftu_tcpfm &&
2172 ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2173 FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2174 ft->ftu_tcpfm, ft->ftu_tcpf));
2175 err = 0;
2176 }
2177 }
2178 return err;
2179 }
2180
2181
2182 /* ------------------------------------------------------------------------ */
2183 /* Function: ipf_check_ipf */
2184 /* Returns: int - 0 == match, else no match */
2185 /* Parameters: fin(I) - pointer to packet information */
2186 /* fr(I) - pointer to filter rule */
2187 /* portcmp(I) - flag indicating whether to attempt matching on */
2188 /* TCP/UDP port data. */
2189 /* */
2190 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */
2191 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2192 /* this function. */
2193 /* ------------------------------------------------------------------------ */
2194 static INLINE int
2195 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2196 {
2197 u_32_t *ld, *lm, *lip;
2198 fripf_t *fri;
2199 fr_ip_t *fi;
2200 int i;
2201
2202 fi = &fin->fin_fi;
2203 fri = fr->fr_ipf;
2204 lip = (u_32_t *)fi;
2205 lm = (u_32_t *)&fri->fri_mip;
2206 ld = (u_32_t *)&fri->fri_ip;
2207
2208 /*
2209 * first 32 bits to check coversion:
2210 * IP version, TOS, TTL, protocol
2211 */
2212 i = ((*lip & *lm) != *ld);
2213 FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2214 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2215 if (i)
2216 return 1;
2217
2218 /*
2219 * Next 32 bits is a constructed bitmask indicating which IP options
2220 * are present (if any) in this packet.
2221 */
2222 lip++, lm++, ld++;
2223 i = ((*lip & *lm) != *ld);
2224 FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2225 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2226 if (i != 0)
2227 return 1;
2228
2229 lip++, lm++, ld++;
2230 /*
2231 * Unrolled loops (4 each, for 32 bits) for address checks.
2232 */
2233 /*
2234 * Check the source address.
2235 */
2236 if (fr->fr_satype == FRI_LOOKUP) {
2237 i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2238 fi->fi_v, lip, fin->fin_plen);
2239 if (i == -1)
2240 return 1;
2241 lip += 3;
2242 lm += 3;
2243 ld += 3;
2244 } else {
2245 i = ((*lip & *lm) != *ld);
2246 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2247 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2248 if (fi->fi_v == 6) {
2249 lip++, lm++, ld++;
2250 i |= ((*lip & *lm) != *ld);
2251 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2252 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2253 lip++, lm++, ld++;
2254 i |= ((*lip & *lm) != *ld);
2255 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2256 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2257 lip++, lm++, ld++;
2258 i |= ((*lip & *lm) != *ld);
2259 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2260 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2261 } else {
2262 lip += 3;
2263 lm += 3;
2264 ld += 3;
2265 }
2266 }
2267 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2268 if (i != 0)
2269 return 1;
2270
2271 /*
2272 * Check the destination address.
2273 */
2274 lip++, lm++, ld++;
2275 if (fr->fr_datype == FRI_LOOKUP) {
2276 i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2277 fi->fi_v, lip, fin->fin_plen);
2278 if (i == -1)
2279 return 1;
2280 lip += 3;
2281 lm += 3;
2282 ld += 3;
2283 } else {
2284 i = ((*lip & *lm) != *ld);
2285 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2286 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2287 if (fi->fi_v == 6) {
2288 lip++, lm++, ld++;
2289 i |= ((*lip & *lm) != *ld);
2290 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2291 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2292 lip++, lm++, ld++;
2293 i |= ((*lip & *lm) != *ld);
2294 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2295 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2296 lip++, lm++, ld++;
2297 i |= ((*lip & *lm) != *ld);
2298 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2299 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2300 } else {
2301 lip += 3;
2302 lm += 3;
2303 ld += 3;
2304 }
2305 }
2306 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2307 if (i != 0)
2308 return 1;
2309 /*
2310 * IP addresses matched. The next 32bits contains:
2311 * mast of old IP header security & authentication bits.
2312 */
2313 lip++, lm++, ld++;
2314 i = (*ld - (*lip & *lm));
2315 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2316
2317 /*
2318 * Next we have 32 bits of packet flags.
2319 */
2320 lip++, lm++, ld++;
2321 i |= (*ld - (*lip & *lm));
2322 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2323
2324 if (i == 0) {
2325 /*
2326 * If a fragment, then only the first has what we're
2327 * looking for here...
2328 */
2329 if (portcmp) {
2330 if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2331 i = 1;
2332 } else {
2333 if (fr->fr_dcmp || fr->fr_scmp ||
2334 fr->fr_tcpf || fr->fr_tcpfm)
2335 i = 1;
2336 if (fr->fr_icmpm || fr->fr_icmp) {
2337 if (((fi->fi_p != IPPROTO_ICMP) &&
2338 (fi->fi_p != IPPROTO_ICMPV6)) ||
2339 fin->fin_off || (fin->fin_dlen < 2))
2340 i = 1;
2341 else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2342 fr->fr_icmp) {
2343 FR_DEBUG(("i. %#x & %#x != %#x\n",
2344 fin->fin_data[0],
2345 fr->fr_icmpm, fr->fr_icmp));
2346 i = 1;
2347 }
2348 }
2349 }
2350 }
2351 return i;
2352 }
2353
2354
2355 /* ------------------------------------------------------------------------ */
2356 /* Function: ipf_scanlist */
2357 /* Returns: int - result flags of scanning filter list */
2358 /* Parameters: fin(I) - pointer to packet information */
2359 /* pass(I) - default result to return for filtering */
2360 /* */
2361 /* Check the input/output list of rules for a match to the current packet. */
2362 /* If a match is found, the value of fr_flags from the rule becomes the */
2363 /* return value and fin->fin_fr points to the matched rule. */
2364 /* */
2365 /* This function may be called recursively upto 16 times (limit inbuilt.) */
2366 /* When unwinding, it should finish up with fin_depth as 0. */
2367 /* */
2368 /* Could be per interface, but this gets real nasty when you don't have, */
2369 /* or can't easily change, the kernel source code to . */
2370 /* ------------------------------------------------------------------------ */
2371 int
2372 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2373 {
2374 ipf_main_softc_t *softc = fin->fin_main_soft;
2375 int rulen, portcmp, off, skip;
2376 struct frentry *fr, *fnext;
2377 u_32_t passt, passo;
2378
2379 /*
2380 * Do not allow nesting deeper than 16 levels.
2381 */
2382 if (fin->fin_depth >= 16)
2383 return pass;
2384
2385 fr = fin->fin_fr;
2386
2387 /*
2388 * If there are no rules in this list, return now.
2389 */
2390 if (fr == NULL)
2391 return pass;
2392
2393 skip = 0;
2394 portcmp = 0;
2395 fin->fin_depth++;
2396 fin->fin_fr = NULL;
2397 off = fin->fin_off;
2398
2399 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2400 portcmp = 1;
2401
2402 for (rulen = 0; fr; fr = fnext, rulen++) {
2403 fnext = fr->fr_next;
2404 if (skip != 0) {
2405 FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2406 skip--;
2407 continue;
2408 }
2409
2410 /*
2411 * In all checks below, a null (zero) value in the
2412 * filter struture is taken to mean a wildcard.
2413 *
2414 * check that we are working for the right interface
2415 */
2416 #ifdef _KERNEL
2417 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2418 continue;
2419 #else
2420 if (opts & (OPT_VERBOSE|OPT_DEBUG))
2421 printf("\n");
2422 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2423 FR_ISPASS(pass) ? 'p' :
2424 FR_ISACCOUNT(pass) ? 'A' :
2425 FR_ISAUTH(pass) ? 'a' :
2426 (pass & FR_NOMATCH) ? 'n' :'b'));
2427 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2428 continue;
2429 FR_VERBOSE((":i"));
2430 #endif
2431
2432 switch (fr->fr_type)
2433 {
2434 case FR_T_IPF :
2435 case FR_T_IPF_BUILTIN :
2436 if (ipf_check_ipf(fin, fr, portcmp))
2437 continue;
2438 break;
2439 #if defined(IPFILTER_BPF)
2440 case FR_T_BPFOPC :
2441 case FR_T_BPFOPC_BUILTIN :
2442 {
2443 u_char *mc;
2444 int wlen;
2445
2446 if (*fin->fin_mp == NULL)
2447 continue;
2448 if (fin->fin_family != fr->fr_family)
2449 continue;
2450 mc = (u_char *)fin->fin_m;
2451 wlen = fin->fin_dlen + fin->fin_hlen;
2452 if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2453 continue;
2454 break;
2455 }
2456 #endif
2457 case FR_T_CALLFUNC_BUILTIN :
2458 {
2459 frentry_t *f;
2460
2461 f = (*fr->fr_func)(fin, &pass);
2462 if (f != NULL)
2463 fr = f;
2464 else
2465 continue;
2466 break;
2467 }
2468
2469 case FR_T_IPFEXPR :
2470 case FR_T_IPFEXPR_BUILTIN :
2471 if (fin->fin_family != fr->fr_family)
2472 continue;
2473 if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2474 continue;
2475 break;
2476
2477 default :
2478 break;
2479 }
2480
2481 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2482 if (fin->fin_nattag == NULL)
2483 continue;
2484 if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2485 continue;
2486 }
2487 FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2488
2489 passt = fr->fr_flags;
2490
2491 /*
2492 * If the rule is a "call now" rule, then call the function
2493 * in the rule, if it exists and use the results from that.
2494 * If the function pointer is bad, just make like we ignore
2495 * it, except for increasing the hit counter.
2496 */
2497 if ((passt & FR_CALLNOW) != 0) {
2498 frentry_t *frs;
2499
2500 ATOMIC_INC64(fr->fr_hits);
2501 if ((fr->fr_func == NULL) ||
2502 (fr->fr_func == (ipfunc_t)-1))
2503 continue;
2504
2505 frs = fin->fin_fr;
2506 fin->fin_fr = fr;
2507 fr = (*fr->fr_func)(fin, &passt);
2508 if (fr == NULL) {
2509 fin->fin_fr = frs;
2510 continue;
2511 }
2512 passt = fr->fr_flags;
2513 }
2514 fin->fin_fr = fr;
2515
2516 #ifdef IPFILTER_LOG
2517 /*
2518 * Just log this packet...
2519 */
2520 if ((passt & FR_LOGMASK) == FR_LOG) {
2521 if (ipf_log_pkt(fin, passt) == -1) {
2522 if (passt & FR_LOGORBLOCK) {
2523 DT(frb_logfail);
2524 passt &= ~FR_CMDMASK;
2525 passt |= FR_BLOCK|FR_QUICK;
2526 fin->fin_reason = FRB_LOGFAIL;
2527 }
2528 }
2529 }
2530 #endif /* IPFILTER_LOG */
2531
2532 MUTEX_ENTER(&fr->fr_lock);
2533 fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2534 fr->fr_hits++;
2535 MUTEX_EXIT(&fr->fr_lock);
2536 fin->fin_rule = rulen;
2537
2538 passo = pass;
2539 if (FR_ISSKIP(passt)) {
2540 skip = fr->fr_arg;
2541 continue;
2542 } else if (((passt & FR_LOGMASK) != FR_LOG) &&
2543 ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2544 pass = passt;
2545 }
2546
2547 if (passt & (FR_RETICMP|FR_FAKEICMP))
2548 fin->fin_icode = fr->fr_icode;
2549
2550 if (fr->fr_group != -1) {
2551 (void) strncpy(fin->fin_group,
2552 FR_NAME(fr, fr_group),
2553 strlen(FR_NAME(fr, fr_group)));
2554 } else {
2555 fin->fin_group[0] = '\0';
2556 }
2557
2558 FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2559
2560 if (fr->fr_grphead != NULL) {
2561 fin->fin_fr = fr->fr_grphead->fg_start;
2562 FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2563
2564 if (FR_ISDECAPS(passt))
2565 passt = ipf_decaps(fin, pass, fr->fr_icode);
2566 else
2567 passt = ipf_scanlist(fin, pass);
2568
2569 if (fin->fin_fr == NULL) {
2570 fin->fin_rule = rulen;
2571 if (fr->fr_group != -1)
2572 (void) strncpy(fin->fin_group,
2573 fr->fr_names +
2574 fr->fr_group,
2575 strlen(fr->fr_names +
2576 fr->fr_group));
2577 fin->fin_fr = fr;
2578 passt = pass;
2579 }
2580 pass = passt;
2581 }
2582
2583 if (pass & FR_QUICK) {
2584 /*
2585 * Finally, if we've asked to track state for this
2586 * packet, set it up. Add state for "quick" rules
2587 * here so that if the action fails we can consider
2588 * the rule to "not match" and keep on processing
2589 * filter rules.
2590 */
2591 if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2592 !(fin->fin_flx & FI_STATE)) {
2593 int out = fin->fin_out;
2594
2595 fin->fin_fr = fr;
2596 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2597 LBUMPD(ipf_stats[out], fr_ads);
2598 } else {
2599 LBUMPD(ipf_stats[out], fr_bads);
2600 pass = passo;
2601 continue;
2602 }
2603 }
2604 break;
2605 }
2606 }
2607 fin->fin_depth--;
2608 return pass;
2609 }
2610
2611
2612 /* ------------------------------------------------------------------------ */
2613 /* Function: ipf_acctpkt */
2614 /* Returns: frentry_t* - always returns NULL */
2615 /* Parameters: fin(I) - pointer to packet information */
2616 /* passp(IO) - pointer to current/new filter decision (unused) */
2617 /* */
2618 /* Checks a packet against accounting rules, if there are any for the given */
2619 /* IP protocol version. */
2620 /* */
2621 /* N.B.: this function returns NULL to match the prototype used by other */
2622 /* functions called from the IPFilter "mainline" in ipf_check(). */
2623 /* ------------------------------------------------------------------------ */
2624 frentry_t *
2625 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2626 {
2627 ipf_main_softc_t *softc = fin->fin_main_soft;
2628 char group[FR_GROUPLEN];
2629 frentry_t *fr, *frsave;
2630 u_32_t pass, rulen;
2631
2632 passp = passp;
2633 fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2634
2635 if (fr != NULL) {
2636 frsave = fin->fin_fr;
2637 bcopy(fin->fin_group, group, FR_GROUPLEN);
2638 rulen = fin->fin_rule;
2639 fin->fin_fr = fr;
2640 pass = ipf_scanlist(fin, FR_NOMATCH);
2641 if (FR_ISACCOUNT(pass)) {
2642 LBUMPD(ipf_stats[0], fr_acct);
2643 }
2644 fin->fin_fr = frsave;
2645 bcopy(group, fin->fin_group, FR_GROUPLEN);
2646 fin->fin_rule = rulen;
2647 }
2648 return NULL;
2649 }
2650
2651
2652 /* ------------------------------------------------------------------------ */
2653 /* Function: ipf_firewall */
2654 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */
2655 /* were found, returns NULL. */
2656 /* Parameters: fin(I) - pointer to packet information */
2657 /* passp(IO) - pointer to current/new filter decision (unused) */
2658 /* */
2659 /* Applies an appropriate set of firewall rules to the packet, to see if */
2660 /* there are any matches. The first check is to see if a match can be seen */
2661 /* in the cache. If not, then search an appropriate list of rules. Once a */
2662 /* matching rule is found, take any appropriate actions as defined by the */
2663 /* rule - except logging. */
2664 /* ------------------------------------------------------------------------ */
2665 static frentry_t *
2666 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2667 {
2668 ipf_main_softc_t *softc = fin->fin_main_soft;
2669 frentry_t *fr;
2670 u_32_t pass;
2671 int out;
2672
2673 out = fin->fin_out;
2674 pass = *passp;
2675
2676 /*
2677 * This rule cache will only affect packets that are not being
2678 * statefully filtered.
2679 */
2680 fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2681 if (fin->fin_fr != NULL)
2682 pass = ipf_scanlist(fin, softc->ipf_pass);
2683
2684 if ((pass & FR_NOMATCH)) {
2685 LBUMPD(ipf_stats[out], fr_nom);
2686 }
2687 fr = fin->fin_fr;
2688
2689 /*
2690 * Apply packets per second rate-limiting to a rule as required.
2691 */
2692 if ((fr != NULL) && (fr->fr_pps != 0) &&
2693 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2694 DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2695 pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2696 pass |= FR_BLOCK;
2697 LBUMPD(ipf_stats[out], fr_ppshit);
2698 fin->fin_reason = FRB_PPSRATE;
2699 }
2700
2701 /*
2702 * If we fail to add a packet to the authorization queue, then we
2703 * drop the packet later. However, if it was added then pretend
2704 * we've dropped it already.
2705 */
2706 if (FR_ISAUTH(pass)) {
2707 if (ipf_auth_new(fin->fin_m, fin) != 0) {
2708 DT1(frb_authnew, fr_info_t *, fin);
2709 fin->fin_m = *fin->fin_mp = NULL;
2710 fin->fin_reason = FRB_AUTHNEW;
2711 fin->fin_error = 0;
2712 } else {
2713 IPFERROR(1);
2714 fin->fin_error = ENOSPC;
2715 }
2716 }
2717
2718 if ((fr != NULL) && (fr->fr_func != NULL) &&
2719 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2720 (void) (*fr->fr_func)(fin, &pass);
2721
2722 /*
2723 * If a rule is a pre-auth rule, check again in the list of rules
2724 * loaded for authenticated use. It does not particulary matter
2725 * if this search fails because a "preauth" result, from a rule,
2726 * is treated as "not a pass", hence the packet is blocked.
2727 */
2728 if (FR_ISPREAUTH(pass)) {
2729 pass = ipf_auth_pre_scanlist(softc, fin, pass);
2730 }
2731
2732 /*
2733 * If the rule has "keep frag" and the packet is actually a fragment,
2734 * then create a fragment state entry.
2735 */
2736 if (pass & FR_KEEPFRAG) {
2737 if (fin->fin_flx & FI_FRAG) {
2738 if (ipf_frag_new(softc, fin, pass) == -1) {
2739 LBUMP(ipf_stats[out].fr_bnfr);
2740 } else {
2741 LBUMP(ipf_stats[out].fr_nfr);
2742 }
2743 } else {
2744 LBUMP(ipf_stats[out].fr_cfr);
2745 }
2746 }
2747
2748 fr = fin->fin_fr;
2749 *passp = pass;
2750
2751 return fr;
2752 }
2753
2754
2755 /* ------------------------------------------------------------------------ */
2756 /* Function: ipf_check */
2757 /* Returns: int - 0 == packet allowed through, */
2758 /* User space: */
2759 /* -1 == packet blocked */
2760 /* 1 == packet not matched */
2761 /* -2 == requires authentication */
2762 /* Kernel: */
2763 /* > 0 == filter error # for packet */
2764 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */
2765 /* hlen(I) - length of header */
2766 /* ifp(I) - pointer to interface this packet is on */
2767 /* out(I) - 0 == packet going in, 1 == packet going out */
2768 /* mp(IO) - pointer to caller's buffer pointer that holds this */
2769 /* IP packet. */
2770 /* Solaris & HP-UX ONLY : */
2771 /* qpi(I) - pointer to STREAMS queue information for this */
2772 /* interface & direction. */
2773 /* */
2774 /* ipf_check() is the master function for all IPFilter packet processing. */
2775 /* It orchestrates: Network Address Translation (NAT), checking for packet */
2776 /* authorisation (or pre-authorisation), presence of related state info., */
2777 /* generating log entries, IP packet accounting, routing of packets as */
2778 /* directed by firewall rules and of course whether or not to allow the */
2779 /* packet to be further processed by the kernel. */
2780 /* */
2781 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */
2782 /* freed. Packets passed may be returned with the pointer pointed to by */
2783 /* by "mp" changed to a new buffer. */
2784 /* ------------------------------------------------------------------------ */
2785 int
2786 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out,
2787 #if defined(_KERNEL) && defined(MENTAT)
2788 void *qif,
2789 #endif
2790 mb_t **mp)
2791 {
2792 /*
2793 * The above really sucks, but short of writing a diff
2794 */
2795 ipf_main_softc_t *softc = ctx;
2796 fr_info_t frinfo;
2797 fr_info_t *fin = &frinfo;
2798 u_32_t pass = softc->ipf_pass;
2799 frentry_t *fr = NULL;
2800 int v = IP_V(ip);
2801 mb_t *mc = NULL;
2802 mb_t *m;
2803 /*
2804 * The first part of ipf_check() deals with making sure that what goes
2805 * into the filtering engine makes some sense. Information about the
2806 * the packet is distilled, collected into a fr_info_t structure and
2807 * the an attempt to ensure the buffer the packet is in is big enough
2808 * to hold all the required packet headers.
2809 */
2810 #ifdef _KERNEL
2811 # ifdef MENTAT
2812 qpktinfo_t *qpi = qif;
2813
2814 # ifdef __sparc
2815 if ((u_int)ip & 0x3)
2816 return 2;
2817 # endif
2818 # else
2819 SPL_INT(s);
2820 # endif
2821
2822 if (softc->ipf_running <= 0) {
2823 return 0;
2824 }
2825
2826 bzero((char *)fin, sizeof(*fin));
2827
2828 # ifdef MENTAT
2829 if (qpi->qpi_flags & QF_BROADCAST)
2830 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2831 if (qpi->qpi_flags & QF_MULTICAST)
2832 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2833 m = qpi->qpi_m;
2834 fin->fin_qfm = m;
2835 fin->fin_qpi = qpi;
2836 # else /* MENTAT */
2837
2838 m = *mp;
2839
2840 # if defined(M_MCAST)
2841 if ((m->m_flags & M_MCAST) != 0)
2842 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2843 # endif
2844 # if defined(M_MLOOP)
2845 if ((m->m_flags & M_MLOOP) != 0)
2846 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2847 # endif
2848 # if defined(M_BCAST)
2849 if ((m->m_flags & M_BCAST) != 0)
2850 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2851 # endif
2852 # ifdef M_CANFASTFWD
2853 /*
2854 * XXX For now, IP Filter and fast-forwarding of cached flows
2855 * XXX are mutually exclusive. Eventually, IP Filter should
2856 * XXX get a "can-fast-forward" filter rule.
2857 */
2858 m->m_flags &= ~M_CANFASTFWD;
2859 # endif /* M_CANFASTFWD */
2860 # if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2861 (__FreeBSD_version < 501108))
2862 /*
2863 * disable delayed checksums.
2864 */
2865 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2866 in_undefer_cksum_tcpudp(m);
2867 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2868 }
2869 # endif /* CSUM_DELAY_DATA */
2870 # endif /* MENTAT */
2871 #else
2872 bzero((char *)fin, sizeof(*fin));
2873 m = *mp;
2874 # if defined(M_MCAST)
2875 if ((m->m_flags & M_MCAST) != 0)
2876 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2877 # endif
2878 # if defined(M_MLOOP)
2879 if ((m->m_flags & M_MLOOP) != 0)
2880 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2881 # endif
2882 # if defined(M_BCAST)
2883 if ((m->m_flags & M_BCAST) != 0)
2884 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2885 # endif
2886 #endif /* _KERNEL */
2887
2888 fin->fin_v = v;
2889 fin->fin_m = m;
2890 fin->fin_ip = ip;
2891 fin->fin_mp = mp;
2892 fin->fin_out = out;
2893 fin->fin_ifp = ifp;
2894 fin->fin_error = ENETUNREACH;
2895 fin->fin_hlen = (u_short)hlen;
2896 fin->fin_dp = (char *)ip + hlen;
2897 fin->fin_main_soft = softc;
2898
2899 fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2900
2901 SPL_NET(s);
2902
2903 #ifdef USE_INET6
2904 if (v == 6) {
2905 LBUMP(ipf_stats[out].fr_ipv6);
2906 /*
2907 * Jumbo grams are quite likely too big for internal buffer
2908 * structures to handle comfortably, for now, so just drop
2909 * them.
2910 */
2911 if (((ip6_t *)ip)->ip6_plen == 0) {
2912 DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2913 pass = FR_BLOCK|FR_NOMATCH;
2914 fin->fin_reason = FRB_JUMBO;
2915 goto finished;
2916 }
2917 fin->fin_family = AF_INET6;
2918 } else
2919 #endif
2920 {
2921 fin->fin_family = AF_INET;
2922 }
2923
2924 if (ipf_makefrip(hlen, ip, fin) == -1) {
2925 DT1(frb_makefrip, fr_info_t *, fin);
2926 pass = FR_BLOCK|FR_NOMATCH;
2927 fin->fin_reason = FRB_MAKEFRIP;
2928 goto finished;
2929 }
2930
2931 /*
2932 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2933 * becomes NULL and so we have no packet to free.
2934 */
2935 if (*fin->fin_mp == NULL)
2936 goto finished;
2937
2938 if (!out) {
2939 if (v == 4) {
2940 if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2941 LBUMPD(ipf_stats[0], fr_v4_badsrc);
2942 fin->fin_flx |= FI_BADSRC;
2943 }
2944 if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2945 LBUMPD(ipf_stats[0], fr_v4_badttl);
2946 fin->fin_flx |= FI_LOWTTL;
2947 }
2948 }
2949 #ifdef USE_INET6
2950 else if (v == 6) {
2951 if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2952 LBUMPD(ipf_stats[0], fr_v6_badttl);
2953 fin->fin_flx |= FI_LOWTTL;
2954 }
2955 }
2956 #endif
2957 }
2958
2959 if (fin->fin_flx & FI_SHORT) {
2960 LBUMPD(ipf_stats[out], fr_short);
2961 }
2962
2963 READ_ENTER(&softc->ipf_mutex);
2964
2965 if (!out) {
2966 switch (fin->fin_v)
2967 {
2968 case 4 :
2969 if (ipf_nat_checkin(fin, &pass) == -1) {
2970 goto filterdone;
2971 }
2972 break;
2973 #ifdef USE_INET6
2974 case 6 :
2975 if (ipf_nat6_checkin(fin, &pass) == -1) {
2976 goto filterdone;
2977 }
2978 break;
2979 #endif
2980 default :
2981 break;
2982 }
2983 }
2984 /*
2985 * Check auth now.
2986 * If a packet is found in the auth table, then skip checking
2987 * the access lists for permission but we do need to consider
2988 * the result as if it were from the ACL's. In addition, being
2989 * found in the auth table means it has been seen before, so do
2990 * not pass it through accounting (again), lest it be counted twice.
2991 */
2992 fr = ipf_auth_check(fin, &pass);
2993 if (!out && (fr == NULL))
2994 (void) ipf_acctpkt(fin, NULL);
2995
2996 if (fr == NULL) {
2997 if ((fin->fin_flx & FI_FRAG) != 0)
2998 fr = ipf_frag_known(fin, &pass);
2999
3000 if (fr == NULL)
3001 fr = ipf_state_check(fin, &pass);
3002 }
3003
3004 if ((pass & FR_NOMATCH) || (fr == NULL))
3005 fr = ipf_firewall(fin, &pass);
3006
3007 /*
3008 * If we've asked to track state for this packet, set it up.
3009 * Here rather than ipf_firewall because ipf_checkauth may decide
3010 * to return a packet for "keep state"
3011 */
3012 if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3013 !(fin->fin_flx & FI_STATE)) {
3014 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3015 LBUMP(ipf_stats[out].fr_ads);
3016 } else {
3017 LBUMP(ipf_stats[out].fr_bads);
3018 if (FR_ISPASS(pass)) {
3019 DT(frb_stateadd);
3020 pass &= ~FR_CMDMASK;
3021 pass |= FR_BLOCK;
3022 fin->fin_reason = FRB_STATEADD;
3023 }
3024 }
3025 }
3026
3027 fin->fin_fr = fr;
3028 if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3029 fin->fin_dif = &fr->fr_dif;
3030 fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3031 }
3032
3033 /*
3034 * Only count/translate packets which will be passed on, out the
3035 * interface.
3036 */
3037 if (out && FR_ISPASS(pass)) {
3038 (void) ipf_acctpkt(fin, NULL);
3039
3040 switch (fin->fin_v)
3041 {
3042 case 4 :
3043 if (ipf_nat_checkout(fin, &pass) == -1) {
3044 ;
3045 } else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3046 if (ipf_updateipid(fin) == -1) {
3047 DT(frb_updateipid);
3048 LBUMP(ipf_stats[1].fr_ipud);
3049 pass &= ~FR_CMDMASK;
3050 pass |= FR_BLOCK;
3051 fin->fin_reason = FRB_UPDATEIPID;
3052 } else {
3053 LBUMP(ipf_stats[0].fr_ipud);
3054 }
3055 }
3056 break;
3057 #ifdef USE_INET6
3058 case 6 :
3059 (void) ipf_nat6_checkout(fin, &pass);
3060 break;
3061 #endif
3062 default :
3063 break;
3064 }
3065 }
3066
3067 filterdone:
3068 #ifdef IPFILTER_LOG
3069 if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3070 (void) ipf_dolog(fin, &pass);
3071 }
3072 #endif
3073
3074 /*
3075 * The FI_STATE flag is cleared here so that calling ipf_state_check
3076 * will work when called from inside of fr_fastroute. Although
3077 * there is a similar flag, FI_NATED, for NAT, it does have the same
3078 * impact on code execution.
3079 */
3080 fin->fin_flx &= ~FI_STATE;
3081
3082 #if defined(FASTROUTE_RECURSION)
3083 /*
3084 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3085 * a packet below can sometimes cause a recursive call into IPFilter.
3086 * On those platforms where that does happen, we need to hang onto
3087 * the filter rule just in case someone decides to remove or flush it
3088 * in the meantime.
3089 */
3090 if (fr != NULL) {
3091 MUTEX_ENTER(&fr->fr_lock);
3092 fr->fr_ref++;
3093 MUTEX_EXIT(&fr->fr_lock);
3094 }
3095
3096 RWLOCK_EXIT(&softc->ipf_mutex);
3097 #endif
3098
3099 if ((pass & FR_RETMASK) != 0) {
3100 /*
3101 * Should we return an ICMP packet to indicate error
3102 * status passing through the packet filter ?
3103 * WARNING: ICMP error packets AND TCP RST packets should
3104 * ONLY be sent in repsonse to incoming packets. Sending
3105 * them in response to outbound packets can result in a
3106 * panic on some operating systems.
3107 */
3108 if (!out) {
3109 if (pass & FR_RETICMP) {
3110 int dst;
3111
3112 if ((pass & FR_RETMASK) == FR_FAKEICMP)
3113 dst = 1;
3114 else
3115 dst = 0;
3116 (void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3117 dst);
3118 LBUMP(ipf_stats[0].fr_ret);
3119 } else if (((pass & FR_RETMASK) == FR_RETRST) &&
3120 !(fin->fin_flx & FI_SHORT)) {
3121 if (((fin->fin_flx & FI_OOW) != 0) ||
3122 (ipf_send_reset(fin) == 0)) {
3123 LBUMP(ipf_stats[1].fr_ret);
3124 }
3125 }
3126
3127 /*
3128 * When using return-* with auth rules, the auth code
3129 * takes over disposing of this packet.
3130 */
3131 if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3132 DT1(frb_authcapture, fr_info_t *, fin);
3133 fin->fin_m = *fin->fin_mp = NULL;
3134 fin->fin_reason = FRB_AUTHCAPTURE;
3135 m = NULL;
3136 }
3137 } else {
3138 if (pass & FR_RETRST) {
3139 fin->fin_error = ECONNRESET;
3140 }
3141 }
3142 }
3143
3144 /*
3145 * After the above so that ICMP unreachables and TCP RSTs get
3146 * created properly.
3147 */
3148 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3149 ipf_nat_uncreate(fin);
3150
3151 /*
3152 * If we didn't drop off the bottom of the list of rules (and thus
3153 * the 'current' rule fr is not NULL), then we may have some extra
3154 * instructions about what to do with a packet.
3155 * Once we're finished return to our caller, freeing the packet if
3156 * we are dropping it.
3157 */
3158 if (fr != NULL) {
3159 frdest_t *fdp;
3160
3161 /*
3162 * Generate a duplicated packet first because ipf_fastroute
3163 * can lead to fin_m being free'd... not good.
3164 */
3165 fdp = fin->fin_dif;
3166 if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3167 (fdp->fd_ptr != (void *)-1) && (fin->fin_m != NULL)) {
3168 mc = M_COPY(fin->fin_m);
3169 if (mc != NULL)
3170 ipf_fastroute(mc, &mc, fin, fdp);
3171 }
3172
3173 fdp = fin->fin_tif;
3174 if (!out && (pass & FR_FASTROUTE)) {
3175 /*
3176 * For fastroute rule, no destination interface defined
3177 * so pass NULL as the frdest_t parameter
3178 */
3179 (void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3180 m = *mp = NULL;
3181 } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3182 (fdp->fd_ptr != (struct ifnet *)-1)) {
3183 /* this is for to rules: */
3184 ipf_fastroute(fin->fin_m, mp, fin, fdp);
3185 m = *mp = NULL;
3186 }
3187
3188 #if defined(FASTROUTE_RECURSION)
3189 (void) ipf_derefrule(softc, &fr);
3190 #endif
3191 }
3192 #if !defined(FASTROUTE_RECURSION)
3193 RWLOCK_EXIT(&softc->ipf_mutex);
3194 #endif
3195
3196 finished:
3197 if (!FR_ISPASS(pass)) {
3198 LBUMP(ipf_stats[out].fr_block);
3199 if (*mp != NULL) {
3200 #ifdef _KERNEL
3201 FREE_MB_T(*mp);
3202 #endif
3203 m = *mp = NULL;
3204 }
3205 } else {
3206 LBUMP(ipf_stats[out].fr_pass);
3207 #if defined(_KERNEL) && defined(__sgi)
3208 if ((fin->fin_hbuf != NULL) &&
3209 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3210 COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3211 }
3212 #endif
3213 }
3214
3215 SPL_X(s);
3216
3217 #ifdef _KERNEL
3218 if (FR_ISPASS(pass))
3219 return 0;
3220 LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3221 return fin->fin_error;
3222 #else /* _KERNEL */
3223 if (*mp != NULL)
3224 (*mp)->mb_ifp = fin->fin_ifp;
3225 blockreason = fin->fin_reason;
3226 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3227 /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3228 if ((pass & FR_NOMATCH) != 0)
3229 return 1;
3230
3231 if ((pass & FR_RETMASK) != 0)
3232 switch (pass & FR_RETMASK)
3233 {
3234 case FR_RETRST :
3235 return 3;
3236 case FR_RETICMP :
3237 return 4;
3238 case FR_FAKEICMP :
3239 return 5;
3240 }
3241
3242 switch (pass & FR_CMDMASK)
3243 {
3244 case FR_PASS :
3245 return 0;
3246 case FR_BLOCK :
3247 return -1;
3248 case FR_AUTH :
3249 return -2;
3250 case FR_ACCOUNT :
3251 return -3;
3252 case FR_PREAUTH :
3253 return -4;
3254 }
3255 return 2;
3256 #endif /* _KERNEL */
3257 }
3258
3259
3260 #ifdef IPFILTER_LOG
3261 /* ------------------------------------------------------------------------ */
3262 /* Function: ipf_dolog */
3263 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */
3264 /* Parameters: fin(I) - pointer to packet information */
3265 /* passp(IO) - pointer to current/new filter decision (unused) */
3266 /* */
3267 /* Checks flags set to see how a packet should be logged, if it is to be */
3268 /* logged. Adjust statistics based on its success or not. */
3269 /* ------------------------------------------------------------------------ */
3270 frentry_t *
3271 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3272 {
3273 ipf_main_softc_t *softc = fin->fin_main_soft;
3274 u_32_t pass;
3275 int out;
3276
3277 out = fin->fin_out;
3278 pass = *passp;
3279
3280 if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3281 pass |= FF_LOGNOMATCH;
3282 LBUMPD(ipf_stats[out], fr_npkl);
3283 goto logit;
3284
3285 } else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3286 (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3287 if ((pass & FR_LOGMASK) != FR_LOGP)
3288 pass |= FF_LOGPASS;
3289 LBUMPD(ipf_stats[out], fr_ppkl);
3290 goto logit;
3291
3292 } else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3293 (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3294 if ((pass & FR_LOGMASK) != FR_LOGB)
3295 pass |= FF_LOGBLOCK;
3296 LBUMPD(ipf_stats[out], fr_bpkl);
3297
3298 logit:
3299 if (ipf_log_pkt(fin, pass) == -1) {
3300 /*
3301 * If the "or-block" option has been used then
3302 * block the packet if we failed to log it.
3303 */
3304 if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3305 DT1(frb_logfail2, u_int, pass);
3306 pass &= ~FR_CMDMASK;
3307 pass |= FR_BLOCK;
3308 fin->fin_reason = FRB_LOGFAIL2;
3309 }
3310 }
3311 *passp = pass;
3312 }
3313
3314 return fin->fin_fr;
3315 }
3316 #endif /* IPFILTER_LOG */
3317
3318
3319 /* ------------------------------------------------------------------------ */
3320 /* Function: ipf_cksum */
3321 /* Returns: u_short - IP header checksum */
3322 /* Parameters: addr(I) - pointer to start of buffer to checksum */
3323 /* len(I) - length of buffer in bytes */
3324 /* */
3325 /* Calculate the two's complement 16 bit checksum of the buffer passed. */
3326 /* */
3327 /* N.B.: addr should be 16bit aligned. */
3328 /* ------------------------------------------------------------------------ */
3329 u_short
3330 ipf_cksum(u_short *addr, int len)
3331 {
3332 u_32_t sum = 0;
3333
3334 for (sum = 0; len > 1; len -= 2)
3335 sum += *addr++;
3336
3337 /* mop up an odd byte, if necessary */
3338 if (len == 1)
3339 sum += *(u_char *)addr;
3340
3341 /*
3342 * add back carry outs from top 16 bits to low 16 bits
3343 */
3344 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
3345 sum += (sum >> 16); /* add carry */
3346 return (u_short)(~sum);
3347 }
3348
3349
3350 /* ------------------------------------------------------------------------ */
3351 /* Function: fr_cksum */
3352 /* Returns: u_short - layer 4 checksum */
3353 /* Parameters: fin(I) - pointer to packet information */
3354 /* ip(I) - pointer to IP header */
3355 /* l4proto(I) - protocol to caclulate checksum for */
3356 /* l4hdr(I) - pointer to layer 4 header */
3357 /* */
3358 /* Calculates the TCP checksum for the packet held in "m", using the data */
3359 /* in the IP header "ip" to seed it. */
3360 /* */
3361 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3362 /* and the TCP header. We also assume that data blocks aren't allocated in */
3363 /* odd sizes. */
3364 /* */
3365 /* Expects ip_len and ip_off to be in network byte order when called. */
3366 /* ------------------------------------------------------------------------ */
3367 u_short
3368 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3369 {
3370 u_short *sp, slen, sumsave, *csump;
3371 u_int sum, sum2;
3372 int hlen;
3373 int off;
3374 #ifdef USE_INET6
3375 ip6_t *ip6;
3376 #endif
3377
3378 csump = NULL;
3379 sumsave = 0;
3380 sp = NULL;
3381 slen = 0;
3382 hlen = 0;
3383 sum = 0;
3384
3385 sum = htons((u_short)l4proto);
3386 /*
3387 * Add up IP Header portion
3388 */
3389 #ifdef USE_INET6
3390 if (IP_V(ip) == 4) {
3391 #endif
3392 hlen = IP_HL(ip) << 2;
3393 off = hlen;
3394 sp = (u_short *)&ip->ip_src;
3395 sum += *sp++; /* ip_src */
3396 sum += *sp++;
3397 sum += *sp++; /* ip_dst */
3398 sum += *sp++;
3399 #ifdef USE_INET6
3400 } else if (IP_V(ip) == 6) {
3401 ip6 = (ip6_t *)ip;
3402 hlen = sizeof(*ip6);
3403 off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3404 sp = (u_short *)&ip6->ip6_src;
3405 sum += *sp++; /* ip6_src */
3406 sum += *sp++;
3407 sum += *sp++;
3408 sum += *sp++;
3409 sum += *sp++;
3410 sum += *sp++;
3411 sum += *sp++;
3412 sum += *sp++;
3413 /* This needs to be routing header aware. */
3414 sum += *sp++; /* ip6_dst */
3415 sum += *sp++;
3416 sum += *sp++;
3417 sum += *sp++;
3418 sum += *sp++;
3419 sum += *sp++;
3420 sum += *sp++;
3421 sum += *sp++;
3422 } else {
3423 return 0xffff;
3424 }
3425 #endif
3426 slen = fin->fin_plen - off;
3427 sum += htons(slen);
3428
3429 switch (l4proto)
3430 {
3431 case IPPROTO_UDP :
3432 csump = &((udphdr_t *)l4hdr)->uh_sum;
3433 break;
3434
3435 case IPPROTO_TCP :
3436 csump = &((tcphdr_t *)l4hdr)->th_sum;
3437 break;
3438 case IPPROTO_ICMP :
3439 csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3440 sum = 0; /* Pseudo-checksum is not included */
3441 break;
3442 #ifdef USE_INET6
3443 case IPPROTO_ICMPV6 :
3444 csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3445 break;
3446 #endif
3447 default :
3448 break;
3449 }
3450
3451 if (csump != NULL) {
3452 sumsave = *csump;
3453 *csump = 0;
3454 }
3455
3456 sum2 = ipf_pcksum(fin, off, sum);
3457 if (csump != NULL)
3458 *csump = sumsave;
3459 return sum2;
3460 }
3461
3462
3463 /* ------------------------------------------------------------------------ */
3464 /* Function: ipf_findgroup */
3465 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */
3466 /* Parameters: softc(I) - pointer to soft context main structure */
3467 /* group(I) - group name to search for */
3468 /* unit(I) - device to which this group belongs */
3469 /* set(I) - which set of rules (inactive/inactive) this is */
3470 /* fgpp(O) - pointer to place to store pointer to the pointer */
3471 /* to where to add the next (last) group or where */
3472 /* to delete group from. */
3473 /* */
3474 /* Search amongst the defined groups for a particular group number. */
3475 /* ------------------------------------------------------------------------ */
3476 frgroup_t *
3477 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3478 frgroup_t ***fgpp)
3479 {
3480 frgroup_t *fg, **fgp;
3481
3482 /*
3483 * Which list of groups to search in is dependent on which list of
3484 * rules are being operated on.
3485 */
3486 fgp = &softc->ipf_groups[unit][set];
3487
3488 while ((fg = *fgp) != NULL) {
3489 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3490 break;
3491 else
3492 fgp = &fg->fg_next;
3493 }
3494 if (fgpp != NULL)
3495 *fgpp = fgp;
3496 return fg;
3497 }
3498
3499
3500 /* ------------------------------------------------------------------------ */
3501 /* Function: ipf_group_add */
3502 /* Returns: frgroup_t * - NULL == did not create group, */
3503 /* != NULL == pointer to the group */
3504 /* Parameters: softc(I) - pointer to soft context main structure */
3505 /* num(I) - group number to add */
3506 /* head(I) - rule pointer that is using this as the head */
3507 /* flags(I) - rule flags which describe the type of rule it is */
3508 /* unit(I) - device to which this group will belong to */
3509 /* set(I) - which set of rules (inactive/inactive) this is */
3510 /* Write Locks: ipf_mutex */
3511 /* */
3512 /* Add a new group head, or if it already exists, increase the reference */
3513 /* count to it. */
3514 /* ------------------------------------------------------------------------ */
3515 frgroup_t *
3516 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3517 minor_t unit, int set)
3518 {
3519 frgroup_t *fg, **fgp;
3520 u_32_t gflags;
3521
3522 if (group == NULL)
3523 return NULL;
3524
3525 if (unit == IPL_LOGIPF && *group == '\0')
3526 return NULL;
3527
3528 fgp = NULL;
3529 gflags = flags & FR_INOUT;
3530
3531 fg = ipf_findgroup(softc, group, unit, set, &fgp);
3532 if (fg != NULL) {
3533 if (fg->fg_head == NULL && head != NULL)
3534 fg->fg_head = head;
3535 if (fg->fg_flags == 0)
3536 fg->fg_flags = gflags;
3537 else if (gflags != fg->fg_flags)
3538 return NULL;
3539 fg->fg_ref++;
3540 return fg;
3541 }
3542
3543 KMALLOC(fg, frgroup_t *);
3544 if (fg != NULL) {
3545 fg->fg_head = head;
3546 fg->fg_start = NULL;
3547 fg->fg_next = *fgp;
3548 bcopy(group, fg->fg_name, strlen(group) + 1);
3549 fg->fg_flags = gflags;
3550 fg->fg_ref = 1;
3551 fg->fg_set = &softc->ipf_groups[unit][set];
3552 *fgp = fg;
3553 }
3554 return fg;
3555 }
3556
3557
3558 /* ------------------------------------------------------------------------ */
3559 /* Function: ipf_group_del */
3560 /* Returns: int - number of rules deleted */
3561 /* Parameters: softc(I) - pointer to soft context main structure */
3562 /* group(I) - group name to delete */
3563 /* fr(I) - filter rule from which group is referenced */
3564 /* Write Locks: ipf_mutex */
3565 /* */
3566 /* This function is called whenever a reference to a group is to be dropped */
3567 /* and thus its reference count needs to be lowered and the group free'd if */
3568 /* the reference count reaches zero. Passing in fr is really for the sole */
3569 /* purpose of knowing when the head rule is being deleted. */
3570 /* ------------------------------------------------------------------------ */
3571 void
3572 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3573 {
3574
3575 if (group->fg_head == fr)
3576 group->fg_head = NULL;
3577
3578 group->fg_ref--;
3579 if ((group->fg_ref == 0) && (group->fg_start == NULL))
3580 ipf_group_free(group);
3581 }
3582
3583
3584 /* ------------------------------------------------------------------------ */
3585 /* Function: ipf_group_free */
3586 /* Returns: Nil */
3587 /* Parameters: group(I) - pointer to filter rule group */
3588 /* */
3589 /* Remove the group from the list of groups and free it. */
3590 /* ------------------------------------------------------------------------ */
3591 static void
3592 ipf_group_free(frgroup_t *group)
3593 {
3594 frgroup_t **gp;
3595
3596 for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3597 if (*gp == group) {
3598 *gp = group->fg_next;
3599 break;
3600 }
3601 }
3602 KFREE(group);
3603 }
3604
3605
3606 /* ------------------------------------------------------------------------ */
3607 /* Function: ipf_group_flush */
3608 /* Returns: int - number of rules flush from group */
3609 /* Parameters: softc(I) - pointer to soft context main structure */
3610 /* Parameters: group(I) - pointer to filter rule group */
3611 /* */
3612 /* Remove all of the rules that currently are listed under the given group. */
3613 /* ------------------------------------------------------------------------ */
3614 static int
3615 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3616 {
3617 int gone = 0;
3618
3619 (void) ipf_flushlist(softc, &gone, &group->fg_start);
3620
3621 return gone;
3622 }
3623
3624
3625 /* ------------------------------------------------------------------------ */
3626 /* Function: ipf_getrulen */
3627 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */
3628 /* Parameters: softc(I) - pointer to soft context main structure */
3629 /* Parameters: unit(I) - device for which to count the rule's number */
3630 /* flags(I) - which set of rules to find the rule in */
3631 /* group(I) - group name */
3632 /* n(I) - rule number to find */
3633 /* */
3634 /* Find rule # n in group # g and return a pointer to it. Return NULl if */
3635 /* group # g doesn't exist or there are less than n rules in the group. */
3636 /* ------------------------------------------------------------------------ */
3637 frentry_t *
3638 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3639 {
3640 frentry_t *fr;
3641 frgroup_t *fg;
3642
3643 fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3644 if (fg == NULL)
3645 return NULL;
3646 for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3647 ;
3648 if (n != 0)
3649 return NULL;
3650 return fr;
3651 }
3652
3653
3654 /* ------------------------------------------------------------------------ */
3655 /* Function: ipf_flushlist */
3656 /* Returns: int - >= 0 - number of flushed rules */
3657 /* Parameters: softc(I) - pointer to soft context main structure */
3658 /* nfreedp(O) - pointer to int where flush count is stored */
3659 /* listp(I) - pointer to list to flush pointer */
3660 /* Write Locks: ipf_mutex */
3661 /* */
3662 /* Recursively flush rules from the list, descending groups as they are */
3663 /* encountered. if a rule is the head of a group and it has lost all its */
3664 /* group members, then also delete the group reference. nfreedp is needed */
3665 /* to store the accumulating count of rules removed, whereas the returned */
3666 /* value is just the number removed from the current list. The latter is */
3667 /* needed to correctly adjust reference counts on rules that define groups. */
3668 /* */
3669 /* NOTE: Rules not loaded from user space cannot be flushed. */
3670 /* ------------------------------------------------------------------------ */
3671 static int
3672 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3673 {
3674 int freed = 0;
3675 frentry_t *fp;
3676
3677 while ((fp = *listp) != NULL) {
3678 if ((fp->fr_type & FR_T_BUILTIN) ||
3679 !(fp->fr_flags & FR_COPIED)) {
3680 listp = &fp->fr_next;
3681 continue;
3682 }
3683 *listp = fp->fr_next;
3684 if (fp->fr_next != NULL)
3685 fp->fr_next->fr_pnext = fp->fr_pnext;
3686 fp->fr_pnext = NULL;
3687
3688 if (fp->fr_grphead != NULL) {
3689 freed += ipf_group_flush(softc, fp->fr_grphead);
3690 fp->fr_names[fp->fr_grhead] = '\0';
3691 }
3692
3693 if (fp->fr_icmpgrp != NULL) {
3694 freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3695 fp->fr_names[fp->fr_icmphead] = '\0';
3696 }
3697
3698 if (fp->fr_srctrack.ht_max_nodes)
3699 ipf_rb_ht_flush(&fp->fr_srctrack);
3700
3701 fp->fr_next = NULL;
3702
3703 ASSERT(fp->fr_ref > 0);
3704 if (ipf_derefrule(softc, &fp) == 0)
3705 freed++;
3706 }
3707 *nfreedp += freed;
3708 return freed;
3709 }
3710
3711
3712 /* ------------------------------------------------------------------------ */
3713 /* Function: ipf_flush */
3714 /* Returns: int - >= 0 - number of flushed rules */
3715 /* Parameters: softc(I) - pointer to soft context main structure */
3716 /* unit(I) - device for which to flush rules */
3717 /* flags(I) - which set of rules to flush */
3718 /* */
3719 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3720 /* and IPv6) as defined by the value of flags. */
3721 /* ------------------------------------------------------------------------ */
3722 int
3723 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3724 {
3725 int flushed = 0, set;
3726
3727 WRITE_ENTER(&softc->ipf_mutex);
3728
3729 set = softc->ipf_active;
3730 if ((flags & FR_INACTIVE) == FR_INACTIVE)
3731 set = 1 - set;
3732
3733 if (flags & FR_OUTQUE) {
3734 ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3735 ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3736 }
3737 if (flags & FR_INQUE) {
3738 ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3739 ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3740 }
3741
3742 flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3743 flags & (FR_INQUE|FR_OUTQUE));
3744
3745 RWLOCK_EXIT(&softc->ipf_mutex);
3746
3747 if (unit == IPL_LOGIPF) {
3748 int tmp;
3749
3750 tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3751 if (tmp >= 0)
3752 flushed += tmp;
3753 }
3754 return flushed;
3755 }
3756
3757
3758 /* ------------------------------------------------------------------------ */
3759 /* Function: ipf_flush_groups */
3760 /* Returns: int - >= 0 - number of flushed rules */
3761 /* Parameters: softc(I) - soft context pointerto work with */
3762 /* grhead(I) - pointer to the start of the group list to flush */
3763 /* flags(I) - which set of rules to flush */
3764 /* */
3765 /* Walk through all of the groups under the given group head and remove all */
3766 /* of those that match the flags passed in. The for loop here is bit more */
3767 /* complicated than usual because the removal of a rule with ipf_derefrule */
3768 /* may end up removing not only the structure pointed to by "fg" but also */
3769 /* what is fg_next and fg_next after that. So if a filter rule is actually */
3770 /* removed from the group then it is necessary to start again. */
3771 /* ------------------------------------------------------------------------ */
3772 static int
3773 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3774 {
3775 frentry_t *fr, **frp;
3776 frgroup_t *fg, **fgp;
3777 int flushed = 0;
3778 int removed = 0;
3779
3780 for (fgp = grhead; (fg = *fgp) != NULL; ) {
3781 while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3782 fg = fg->fg_next;
3783 if (fg == NULL)
3784 break;
3785 removed = 0;
3786 frp = &fg->fg_start;
3787 while ((removed == 0) && ((fr = *frp) != NULL)) {
3788 if ((fr->fr_flags & flags) == 0) {
3789 frp = &fr->fr_next;
3790 } else {
3791 if (fr->fr_next != NULL)
3792 fr->fr_next->fr_pnext = fr->fr_pnext;
3793 *frp = fr->fr_next;
3794 fr->fr_pnext = NULL;
3795 fr->fr_next = NULL;
3796 (void) ipf_derefrule(softc, &fr);
3797 flushed++;
3798 removed++;
3799 }
3800 }
3801 if (removed == 0)
3802 fgp = &fg->fg_next;
3803 }
3804 return flushed;
3805 }
3806
3807
3808 /* ------------------------------------------------------------------------ */
3809 /* Function: memstr */
3810 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */
3811 /* Parameters: src(I) - pointer to byte sequence to match */
3812 /* dst(I) - pointer to byte sequence to search */
3813 /* slen(I) - match length */
3814 /* dlen(I) - length available to search in */
3815 /* */
3816 /* Search dst for a sequence of bytes matching those at src and extend for */
3817 /* slen bytes. */
3818 /* ------------------------------------------------------------------------ */
3819 char *
3820 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3821 {
3822 char *s = NULL;
3823
3824 while (dlen >= slen) {
3825 if (memcmp(src, dst, slen) == 0) {
3826 s = dst;
3827 break;
3828 }
3829 dst++;
3830 dlen--;
3831 }
3832 return s;
3833 }
3834
3835
3836 /* ------------------------------------------------------------------------ */
3837 /* Function: ipf_fixskip */
3838 /* Returns: Nil */
3839 /* Parameters: listp(IO) - pointer to start of list with skip rule */
3840 /* rp(I) - rule added/removed with skip in it. */
3841 /* addremove(I) - adjustment (-1/+1) to make to skip count, */
3842 /* depending on whether a rule was just added */
3843 /* or removed. */
3844 /* */
3845 /* Adjust all the rules in a list which would have skip'd past the position */
3846 /* where we are inserting to skip to the right place given the change. */
3847 /* ------------------------------------------------------------------------ */
3848 void
3849 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3850 {
3851 int rules, rn;
3852 frentry_t *fp;
3853
3854 rules = 0;
3855 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3856 rules++;
3857
3858 if (!fp)
3859 return;
3860
3861 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3862 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3863 fp->fr_arg += addremove;
3864 }
3865
3866
3867 #ifdef _KERNEL
3868 /* ------------------------------------------------------------------------ */
3869 /* Function: count4bits */
3870 /* Returns: int - >= 0 - number of consecutive bits in input */
3871 /* Parameters: ip(I) - 32bit IP address */
3872 /* */
3873 /* IPv4 ONLY */
3874 /* count consecutive 1's in bit mask. If the mask generated by counting */
3875 /* consecutive 1's is different to that passed, return -1, else return # */
3876 /* of bits. */
3877 /* ------------------------------------------------------------------------ */
3878 int
3879 count4bits(u_32_t ip)
3880 {
3881 u_32_t ipn;
3882 int cnt = 0, i, j;
3883
3884 ip = ipn = ntohl(ip);
3885 for (i = 32; i; i--, ipn *= 2)
3886 if (ipn & 0x80000000)
3887 cnt++;
3888 else
3889 break;
3890 ipn = 0;
3891 for (i = 32, j = cnt; i; i--, j--) {
3892 ipn *= 2;
3893 if (j > 0)
3894 ipn++;
3895 }
3896 if (ipn == ip)
3897 return cnt;
3898 return -1;
3899 }
3900
3901
3902 /* ------------------------------------------------------------------------ */
3903 /* Function: count6bits */
3904 /* Returns: int - >= 0 - number of consecutive bits in input */
3905 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */
3906 /* */
3907 /* IPv6 ONLY */
3908 /* count consecutive 1's in bit mask. */
3909 /* ------------------------------------------------------------------------ */
3910 # ifdef USE_INET6
3911 int
3912 count6bits(u_32_t *msk)
3913 {
3914 int i = 0, k;
3915 u_32_t j;
3916
3917 for (k = 3; k >= 0; k--)
3918 if (msk[k] == 0xffffffff)
3919 i += 32;
3920 else {
3921 for (j = msk[k]; j; j <<= 1)
3922 if (j & 0x80000000)
3923 i++;
3924 }
3925 return i;
3926 }
3927 # endif
3928 #endif /* _KERNEL */
3929
3930
3931 /* ------------------------------------------------------------------------ */
3932 /* Function: ipf_synclist */
3933 /* Returns: int - 0 = no failures, else indication of first failure */
3934 /* Parameters: fr(I) - start of filter list to sync interface names for */
3935 /* ifp(I) - interface pointer for limiting sync lookups */
3936 /* Write Locks: ipf_mutex */
3937 /* */
3938 /* Walk through a list of filter rules and resolve any interface names into */
3939 /* pointers. Where dynamic addresses are used, also update the IP address */
3940 /* used in the rule. The interface pointer is used to limit the lookups to */
3941 /* a specific set of matching names if it is non-NULL. */
3942 /* Errors can occur when resolving the destination name of to/dup-to fields */
3943 /* when the name points to a pool and that pool doest not exist. If this */
3944 /* does happen then it is necessary to check if there are any lookup refs */
3945 /* that need to be dropped before returning with an error. */
3946 /* ------------------------------------------------------------------------ */
3947 static int
3948 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3949 {
3950 frentry_t *frt, *start = fr;
3951 frdest_t *fdp;
3952 char *name;
3953 int error;
3954 void *ifa;
3955 int v, i;
3956
3957 error = 0;
3958
3959 for (; fr; fr = fr->fr_next) {
3960 if (fr->fr_family == AF_INET)
3961 v = 4;
3962 else if (fr->fr_family == AF_INET6)
3963 v = 6;
3964 else
3965 v = 0;
3966
3967 /*
3968 * Lookup all the interface names that are part of the rule.
3969 */
3970 for (i = 0; i < 4; i++) {
3971 if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3972 continue;
3973 if (fr->fr_ifnames[i] == -1)
3974 continue;
3975 name = FR_NAME(fr, fr_ifnames[i]);
3976 fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3977 }
3978
3979 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3980 if (fr->fr_satype != FRI_NORMAL &&
3981 fr->fr_satype != FRI_LOOKUP) {
3982 ifa = ipf_resolvenic(softc, fr->fr_names +
3983 fr->fr_sifpidx, v);
3984 ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3985 &fr->fr_src6, &fr->fr_smsk6);
3986 }
3987 if (fr->fr_datype != FRI_NORMAL &&
3988 fr->fr_datype != FRI_LOOKUP) {
3989 ifa = ipf_resolvenic(softc, fr->fr_names +
3990 fr->fr_sifpidx, v);
3991 ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3992 &fr->fr_dst6, &fr->fr_dmsk6);
3993 }
3994 }
3995
3996 fdp = &fr->fr_tifs[0];
3997 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3998 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3999 if (error != 0)
4000 goto unwind;
4001 }
4002
4003 fdp = &fr->fr_tifs[1];
4004 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4005 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4006 if (error != 0)
4007 goto unwind;
4008 }
4009
4010 fdp = &fr->fr_dif;
4011 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4012 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4013 if (error != 0)
4014 goto unwind;
4015 }
4016
4017 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4018 (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4019 fr->fr_srcptr = ipf_lookup_res_num(softc,
4020 fr->fr_srctype,
4021 IPL_LOGIPF,
4022 fr->fr_srcnum,
4023 &fr->fr_srcfunc);
4024 }
4025 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4026 (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4027 fr->fr_dstptr = ipf_lookup_res_num(softc,
4028 fr->fr_dsttype,
4029 IPL_LOGIPF,
4030 fr->fr_dstnum,
4031 &fr->fr_dstfunc);
4032 }
4033 }
4034 return 0;
4035
4036 unwind:
4037 for (frt = start; frt != fr; fr = fr->fr_next) {
4038 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4039 (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4040 ipf_lookup_deref(softc, frt->fr_srctype,
4041 frt->fr_srcptr);
4042 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4043 (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4044 ipf_lookup_deref(softc, frt->fr_dsttype,
4045 frt->fr_dstptr);
4046 }
4047 return error;
4048 }
4049
4050
4051 /* ------------------------------------------------------------------------ */
4052 /* Function: ipf_sync */
4053 /* Returns: void */
4054 /* Parameters: Nil */
4055 /* */
4056 /* ipf_sync() is called when we suspect that the interface list or */
4057 /* information about interfaces (like IP#) has changed. Go through all */
4058 /* filter rules, NAT entries and the state table and check if anything */
4059 /* needs to be changed/updated. */
4060 /* ------------------------------------------------------------------------ */
4061 int
4062 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4063 {
4064 int i;
4065
4066 # if !SOLARIS
4067 ipf_nat_sync(softc, ifp);
4068 ipf_state_sync(softc, ifp);
4069 ipf_lookup_sync(softc, ifp);
4070 # endif
4071
4072 WRITE_ENTER(&softc->ipf_mutex);
4073 (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4074 (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4075 (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4076 (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4077
4078 for (i = 0; i < IPL_LOGSIZE; i++) {
4079 frgroup_t *g;
4080
4081 for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4082 (void) ipf_synclist(softc, g->fg_start, ifp);
4083 for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4084 (void) ipf_synclist(softc, g->fg_start, ifp);
4085 }
4086 RWLOCK_EXIT(&softc->ipf_mutex);
4087
4088 return 0;
4089 }
4090
4091
4092 /*
4093 * In the functions below, bcopy() is called because the pointer being
4094 * copied _from_ in this instance is a pointer to a char buf (which could
4095 * end up being unaligned) and on the kernel's local stack.
4096 */
4097 /* ------------------------------------------------------------------------ */
4098 /* Function: copyinptr */
4099 /* Returns: int - 0 = success, else failure */
4100 /* Parameters: src(I) - pointer to the source address */
4101 /* dst(I) - destination address */
4102 /* size(I) - number of bytes to copy */
4103 /* */
4104 /* Copy a block of data in from user space, given a pointer to the pointer */
4105 /* to start copying from (src) and a pointer to where to store it (dst). */
4106 /* NB: src - pointer to user space pointer, dst - kernel space pointer */
4107 /* ------------------------------------------------------------------------ */
4108 int
4109 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4110 {
4111 void *ca;
4112 int error;
4113
4114 # if SOLARIS
4115 error = COPYIN(src, &ca, sizeof(ca));
4116 if (error != 0)
4117 return error;
4118 # else
4119 bcopy(src, (void *)&ca, sizeof(ca));
4120 # endif
4121 error = COPYIN(ca, dst, size);
4122 if (error != 0) {
4123 IPFERROR(3);
4124 error = EFAULT;
4125 }
4126 return error;
4127 }
4128
4129
4130 /* ------------------------------------------------------------------------ */
4131 /* Function: copyoutptr */
4132 /* Returns: int - 0 = success, else failure */
4133 /* Parameters: src(I) - pointer to the source address */
4134 /* dst(I) - destination address */
4135 /* size(I) - number of bytes to copy */
4136 /* */
4137 /* Copy a block of data out to user space, given a pointer to the pointer */
4138 /* to start copying from (src) and a pointer to where to store it (dst). */
4139 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */
4140 /* ------------------------------------------------------------------------ */
4141 int
4142 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4143 {
4144 void *ca;
4145 int error;
4146
4147 bcopy(dst, &ca, sizeof(ca));
4148 error = COPYOUT(src, ca, size);
4149 if (error != 0) {
4150 IPFERROR(4);
4151 error = EFAULT;
4152 }
4153 return error;
4154 }
4155 #ifdef _KERNEL
4156 #endif
4157
4158
4159 /* ------------------------------------------------------------------------ */
4160 /* Function: ipf_lock */
4161 /* Returns: int - 0 = success, else error */
4162 /* Parameters: data(I) - pointer to lock value to set */
4163 /* lockp(O) - pointer to location to store old lock value */
4164 /* */
4165 /* Get the new value for the lock integer, set it and return the old value */
4166 /* in *lockp. */
4167 /* ------------------------------------------------------------------------ */
4168 int
4169 ipf_lock(void *data, int *lockp)
4170 {
4171 int arg, err;
4172
4173 err = BCOPYIN(data, &arg, sizeof(arg));
4174 if (err != 0)
4175 return EFAULT;
4176 err = BCOPYOUT(lockp, data, sizeof(*lockp));
4177 if (err != 0)
4178 return EFAULT;
4179 *lockp = arg;
4180 return 0;
4181 }
4182
4183
4184 /* ------------------------------------------------------------------------ */
4185 /* Function: ipf_getstat */
4186 /* Returns: Nil */
4187 /* Parameters: softc(I) - pointer to soft context main structure */
4188 /* fiop(I) - pointer to ipfilter stats structure */
4189 /* rev(I) - version claim by program doing ioctl */
4190 /* */
4191 /* Stores a copy of current pointers, counters, etc, in the friostat */
4192 /* structure. */
4193 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */
4194 /* program is looking for. This ensure that validation of the version it */
4195 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */
4196 /* allow older binaries to work but kernels without it will not. */
4197 /* ------------------------------------------------------------------------ */
4198 /*ARGSUSED*/
4199 static void
4200 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4201 {
4202 int i;
4203
4204 bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4205 sizeof(ipf_statistics_t) * 2);
4206 fiop->f_locks[IPL_LOGSTATE] = -1;
4207 fiop->f_locks[IPL_LOGNAT] = -1;
4208 fiop->f_locks[IPL_LOGIPF] = -1;
4209 fiop->f_locks[IPL_LOGAUTH] = -1;
4210
4211 fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4212 fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4213 fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4214 fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4215 fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4216 fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4217 fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4218 fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4219
4220 fiop->f_ticks = softc->ipf_ticks;
4221 fiop->f_active = softc->ipf_active;
4222 fiop->f_froute[0] = softc->ipf_frouteok[0];
4223 fiop->f_froute[1] = softc->ipf_frouteok[1];
4224 fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4225 fiop->f_rb_node_max = softc->ipf_rb_node_max;
4226
4227 fiop->f_running = softc->ipf_running;
4228 for (i = 0; i < IPL_LOGSIZE; i++) {
4229 fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4230 fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4231 }
4232 #ifdef IPFILTER_LOG
4233 fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4234 fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4235 fiop->f_logging = 1;
4236 #else
4237 fiop->f_log_ok = 0;
4238 fiop->f_log_fail = 0;
4239 fiop->f_logging = 0;
4240 #endif
4241 fiop->f_defpass = softc->ipf_pass;
4242 fiop->f_features = ipf_features;
4243
4244 #ifdef IPFILTER_COMPAT
4245 snprintf(fiop->f_version, sizeof(fiop->f_version),
4246 "IP Filter: v%d.%d.%d", (rev / 1000000) % 100,
4247 (rev / 10000) % 100, (rev / 100) % 100);
4248 #else
4249 rev = rev;
4250 (void) strncpy(fiop->f_version, ipfilter_version,
4251 sizeof(fiop->f_version));
4252 fiop->f_version[sizeof(fiop->f_version) - 1] = '\0';
4253 #endif
4254 }
4255
4256
4257 #ifdef USE_INET6
4258 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4259 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */
4260 -1, /* 1: UNUSED */
4261 -1, /* 2: UNUSED */
4262 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */
4263 -1, /* 4: ICMP_SOURCEQUENCH */
4264 ND_REDIRECT, /* 5: ICMP_REDIRECT */
4265 -1, /* 6: UNUSED */
4266 -1, /* 7: UNUSED */
4267 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */
4268 -1, /* 9: UNUSED */
4269 -1, /* 10: UNUSED */
4270 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */
4271 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */
4272 -1, /* 13: ICMP_TSTAMP */
4273 -1, /* 14: ICMP_TSTAMPREPLY */
4274 -1, /* 15: ICMP_IREQ */
4275 -1, /* 16: ICMP_IREQREPLY */
4276 -1, /* 17: ICMP_MASKREQ */
4277 -1, /* 18: ICMP_MASKREPLY */
4278 };
4279
4280
4281 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4282 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */
4283 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */
4284 -1, /* 2: ICMP_UNREACH_PROTOCOL */
4285 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */
4286 -1, /* 4: ICMP_UNREACH_NEEDFRAG */
4287 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */
4288 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */
4289 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */
4290 -1, /* 8: ICMP_UNREACH_ISOLATED */
4291 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */
4292 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */
4293 -1, /* 11: ICMP_UNREACH_TOSNET */
4294 -1, /* 12: ICMP_UNREACH_TOSHOST */
4295 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4296 };
4297 int icmpreplytype6[ICMP6_MAXTYPE + 1];
4298 #endif
4299
4300 int icmpreplytype4[ICMP_MAXTYPE + 1];
4301
4302
4303 /* ------------------------------------------------------------------------ */
4304 /* Function: ipf_matchicmpqueryreply */
4305 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */
4306 /* Parameters: v(I) - IP protocol version (4 or 6) */
4307 /* ic(I) - ICMP information */
4308 /* icmp(I) - ICMP packet header */
4309 /* rev(I) - direction (0 = forward/1 = reverse) of packet */
4310 /* */
4311 /* Check if the ICMP packet defined by the header pointed to by icmp is a */
4312 /* reply to one as described by what's in ic. If it is a match, return 1, */
4313 /* else return 0 for no match. */
4314 /* ------------------------------------------------------------------------ */
4315 int
4316 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4317 {
4318 int ictype;
4319
4320 ictype = ic->ici_type;
4321
4322 if (v == 4) {
4323 /*
4324 * If we matched its type on the way in, then when going out
4325 * it will still be the same type.
4326 */
4327 if ((!rev && (icmp->icmp_type == ictype)) ||
4328 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4329 if (icmp->icmp_type != ICMP_ECHOREPLY)
4330 return 1;
4331 if (icmp->icmp_id == ic->ici_id)
4332 return 1;
4333 }
4334 }
4335 #ifdef USE_INET6
4336 else if (v == 6) {
4337 if ((!rev && (icmp->icmp_type == ictype)) ||
4338 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4339 if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4340 return 1;
4341 if (icmp->icmp_id == ic->ici_id)
4342 return 1;
4343 }
4344 }
4345 #endif
4346 return 0;
4347 }
4348
4349 /* ------------------------------------------------------------------------ */
4350 /* Function: ipf_rule_compare */
4351 /* Parameters: fr1(I) - first rule structure to compare */
4352 /* fr2(I) - second rule structure to compare */
4353 /* Returns: int - 0 == rules are the same, else mismatch */
4354 /* */
4355 /* Compare two rules and return 0 if they match or a number indicating */
4356 /* which of the individual checks failed. */
4357 /* ------------------------------------------------------------------------ */
4358 static int
4359 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4360 {
4361 if (fr1->fr_cksum != fr2->fr_cksum)
4362 return 1;
4363 if (fr1->fr_size != fr2->fr_size)
4364 return 2;
4365 if (fr1->fr_dsize != fr2->fr_dsize)
4366 return 3;
4367 if (memcmp(&fr1->fr_func, &fr2->fr_func,
4368 fr1->fr_size - offsetof(struct frentry, fr_func)) != 0)
4369 return 4;
4370 if (fr1->fr_data && !fr2->fr_data)
4371 return 5;
4372 if (!fr1->fr_data && fr2->fr_data)
4373 return 6;
4374 if (fr1->fr_data) {
4375 if (memcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize))
4376 return 7;
4377 }
4378 return 0;
4379 }
4380
4381
4382 /* ------------------------------------------------------------------------ */
4383 /* Function: frrequest */
4384 /* Returns: int - 0 == success, > 0 == errno value */
4385 /* Parameters: unit(I) - device for which this is for */
4386 /* req(I) - ioctl command (SIOC*) */
4387 /* data(I) - pointr to ioctl data */
4388 /* set(I) - 1 or 0 (filter set) */
4389 /* makecopy(I) - flag indicating whether data points to a rule */
4390 /* in kernel space & hence doesn't need copying. */
4391 /* */
4392 /* This function handles all the requests which operate on the list of */
4393 /* filter rules. This includes adding, deleting, insertion. It is also */
4394 /* responsible for creating groups when a "head" rule is loaded. Interface */
4395 /* names are resolved here and other sanity checks are made on the content */
4396 /* of the rule structure being loaded. If a rule has user defined timeouts */
4397 /* then make sure they are created and initialised before exiting. */
4398 /* ------------------------------------------------------------------------ */
4399 int
4400 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data,
4401 int set, int makecopy)
4402 {
4403 int error = 0, in, family, addrem, need_free = 0;
4404 frentry_t frd, *fp, *f, **fprev, **ftail;
4405 void *ptr, *uptr;
4406 u_int *p, *pp;
4407 frgroup_t *fg;
4408 char *group;
4409
4410 ptr = NULL;
4411 fg = NULL;
4412 fp = &frd;
4413 if (makecopy != 0) {
4414 bzero(fp, sizeof(frd));
4415 error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4416 if (error) {
4417 return error;
4418 }
4419 if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4420 IPFERROR(6);
4421 return EINVAL;
4422 }
4423 KMALLOCS(f, frentry_t *, fp->fr_size);
4424 if (f == NULL) {
4425 IPFERROR(131);
4426 return ENOMEM;
4427 }
4428 bzero(f, fp->fr_size);
4429 error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4430 fp->fr_size);
4431 if (error) {
4432 KFREES(f, fp->fr_size);
4433 return error;
4434 }
4435
4436 fp = f;
4437 f = NULL;
4438 fp->fr_next = NULL;
4439 fp->fr_dnext = NULL;
4440 fp->fr_pnext = NULL;
4441 fp->fr_pdnext = NULL;
4442 fp->fr_grp = NULL;
4443 fp->fr_grphead = NULL;
4444 fp->fr_icmpgrp = NULL;
4445 fp->fr_isc = (void *)-1;
4446 fp->fr_ptr = NULL;
4447 fp->fr_ref = 0;
4448 fp->fr_flags |= FR_COPIED;
4449 } else {
4450 fp = (frentry_t *)data;
4451 if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4452 IPFERROR(7);
4453 return EINVAL;
4454 }
4455 fp->fr_flags &= ~FR_COPIED;
4456 }
4457
4458 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4459 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4460 IPFERROR(8);
4461 error = EINVAL;
4462 goto donenolock;
4463 }
4464
4465 family = fp->fr_family;
4466 uptr = fp->fr_data;
4467
4468 if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4469 req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4470 addrem = 0;
4471 else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4472 addrem = 1;
4473 else if (req == (ioctlcmd_t)SIOCZRLST)
4474 addrem = 2;
4475 else {
4476 IPFERROR(9);
4477 error = EINVAL;
4478 goto donenolock;
4479 }
4480
4481 /*
4482 * Only filter rules for IPv4 or IPv6 are accepted.
4483 */
4484 if (family == AF_INET) {
4485 /*EMPTY*/;
4486 #ifdef USE_INET6
4487 } else if (family == AF_INET6) {
4488 /*EMPTY*/;
4489 #endif
4490 } else if (family != 0) {
4491 IPFERROR(10);
4492 error = EINVAL;
4493 goto donenolock;
4494 }
4495
4496 /*
4497 * If the rule is being loaded from user space, i.e. we had to copy it
4498 * into kernel space, then do not trust the function pointer in the
4499 * rule.
4500 */
4501 if ((makecopy == 1) && (fp->fr_func != NULL)) {
4502 if (ipf_findfunc(fp->fr_func) == NULL) {
4503 IPFERROR(11);
4504 error = ESRCH;
4505 goto donenolock;
4506 }
4507
4508 if (addrem == 0) {
4509 error = ipf_funcinit(softc, fp);
4510 if (error != 0)
4511 goto donenolock;
4512 }
4513 }
4514 if ((fp->fr_flags & FR_CALLNOW) &&
4515 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4516 IPFERROR(142);
4517 error = ESRCH;
4518 goto donenolock;
4519 }
4520 if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4521 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4522 IPFERROR(143);
4523 error = ESRCH;
4524 goto donenolock;
4525 }
4526
4527 ptr = NULL;
4528
4529 if (FR_ISACCOUNT(fp->fr_flags))
4530 unit = IPL_LOGCOUNT;
4531
4532 /*
4533 * Check that each group name in the rule has a start index that
4534 * is valid.
4535 */
4536 if (fp->fr_icmphead != -1) {
4537 if ((fp->fr_icmphead < 0) ||
4538 (fp->fr_icmphead >= fp->fr_namelen)) {
4539 IPFERROR(136);
4540 error = EINVAL;
4541 goto donenolock;
4542 }
4543 if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4544 fp->fr_names[fp->fr_icmphead] = '\0';
4545 }
4546
4547 if (fp->fr_grhead != -1) {
4548 if ((fp->fr_grhead < 0) ||
4549 (fp->fr_grhead >= fp->fr_namelen)) {
4550 IPFERROR(137);
4551 error = EINVAL;
4552 goto donenolock;
4553 }
4554 if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4555 fp->fr_names[fp->fr_grhead] = '\0';
4556 }
4557
4558 if (fp->fr_group != -1) {
4559 if ((fp->fr_group < 0) ||
4560 (fp->fr_group >= fp->fr_namelen)) {
4561 IPFERROR(138);
4562 error = EINVAL;
4563 goto donenolock;
4564 }
4565 if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4566 /*
4567 * Allow loading rules that are in groups to cause
4568 * them to be created if they don't already exit.
4569 */
4570 group = FR_NAME(fp, fr_group);
4571 if (addrem == 0) {
4572 fg = ipf_group_add(softc, group, NULL,
4573 fp->fr_flags, unit, set);
4574 if (fg == NULL) {
4575 IPFERROR(152);
4576 error = ESRCH;
4577 goto donenolock;
4578 }
4579 fp->fr_grp = fg;
4580 } else {
4581 fg = ipf_findgroup(softc, group, unit,
4582 set, NULL);
4583 if (fg == NULL) {
4584 IPFERROR(12);
4585 error = ESRCH;
4586 goto donenolock;
4587 }
4588 }
4589
4590 if (fg->fg_flags == 0) {
4591 fg->fg_flags = fp->fr_flags & FR_INOUT;
4592 } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4593 IPFERROR(13);
4594 error = ESRCH;
4595 goto donenolock;
4596 }
4597 }
4598 } else {
4599 /*
4600 * If a rule is going to be part of a group then it does
4601 * not matter whether it is an in or out rule, but if it
4602 * isn't in a group, then it does...
4603 */
4604 if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4605 IPFERROR(14);
4606 error = EINVAL;
4607 goto donenolock;
4608 }
4609 }
4610 in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4611
4612 /*
4613 * Work out which rule list this change is being applied to.
4614 */
4615 ftail = NULL;
4616 fprev = NULL;
4617 if (unit == IPL_LOGAUTH) {
4618 if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4619 (fp->fr_tifs[1].fd_ptr != NULL) ||
4620 (fp->fr_dif.fd_ptr != NULL) ||
4621 (fp->fr_flags & FR_FASTROUTE)) {
4622 IPFERROR(145);
4623 error = EINVAL;
4624 goto donenolock;
4625 }
4626 fprev = ipf_auth_rulehead(softc);
4627 } else {
4628 if (FR_ISACCOUNT(fp->fr_flags))
4629 fprev = &softc->ipf_acct[in][set];
4630 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4631 fprev = &softc->ipf_rules[in][set];
4632 }
4633 if (fprev == NULL) {
4634 IPFERROR(15);
4635 error = ESRCH;
4636 goto donenolock;
4637 }
4638
4639 if (fg != NULL)
4640 fprev = &fg->fg_start;
4641
4642 /*
4643 * Copy in extra data for the rule.
4644 */
4645 if (fp->fr_dsize != 0) {
4646 if (makecopy != 0) {
4647 KMALLOCS(ptr, void *, fp->fr_dsize);
4648 if (ptr == NULL) {
4649 IPFERROR(16);
4650 error = ENOMEM;
4651 goto donenolock;
4652 }
4653
4654 /*
4655 * The bcopy case is for when the data is appended
4656 * to the rule by ipf_in_compat().
4657 */
4658 if (uptr >= (void *)fp &&
4659 uptr < (void *)((char *)fp + fp->fr_size)) {
4660 bcopy(uptr, ptr, fp->fr_dsize);
4661 error = 0;
4662 } else {
4663 error = COPYIN(uptr, ptr, fp->fr_dsize);
4664 if (error != 0) {
4665 IPFERROR(17);
4666 error = EFAULT;
4667 goto donenolock;
4668 }
4669 }
4670 } else {
4671 ptr = uptr;
4672 }
4673 fp->fr_data = ptr;
4674 } else {
4675 fp->fr_data = NULL;
4676 }
4677
4678 /*
4679 * Perform per-rule type sanity checks of their members.
4680 * All code after this needs to be aware that allocated memory
4681 * may need to be free'd before exiting.
4682 */
4683 switch (fp->fr_type & ~FR_T_BUILTIN)
4684 {
4685 #if defined(IPFILTER_BPF)
4686 case FR_T_BPFOPC :
4687 if (fp->fr_dsize == 0) {
4688 IPFERROR(19);
4689 error = EINVAL;
4690 break;
4691 }
4692 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4693 IPFERROR(20);
4694 error = EINVAL;
4695 break;
4696 }
4697 break;
4698 #endif
4699 case FR_T_IPF :
4700 /*
4701 * Preparation for error case at the bottom of this function.
4702 */
4703 if (fp->fr_datype == FRI_LOOKUP)
4704 fp->fr_dstptr = NULL;
4705 if (fp->fr_satype == FRI_LOOKUP)
4706 fp->fr_srcptr = NULL;
4707
4708 if (fp->fr_dsize != sizeof(fripf_t)) {
4709 IPFERROR(21);
4710 error = EINVAL;
4711 break;
4712 }
4713
4714 /*
4715 * Allowing a rule with both "keep state" and "with oow" is
4716 * pointless because adding a state entry to the table will
4717 * fail with the out of window (oow) flag set.
4718 */
4719 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4720 IPFERROR(22);
4721 error = EINVAL;
4722 break;
4723 }
4724
4725 switch (fp->fr_satype)
4726 {
4727 case FRI_BROADCAST :
4728 case FRI_DYNAMIC :
4729 case FRI_NETWORK :
4730 case FRI_NETMASKED :
4731 case FRI_PEERADDR :
4732 if (fp->fr_sifpidx < 0) {
4733 IPFERROR(23);
4734 error = EINVAL;
4735 }
4736 break;
4737 case FRI_LOOKUP :
4738 fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4739 &fp->fr_src6,
4740 &fp->fr_smsk6);
4741 if (fp->fr_srcfunc == NULL) {
4742 IPFERROR(132);
4743 error = ESRCH;
4744 break;
4745 }
4746 break;
4747 case FRI_NORMAL :
4748 break;
4749 default :
4750 IPFERROR(133);
4751 error = EINVAL;
4752 break;
4753 }
4754 if (error != 0)
4755 break;
4756
4757 switch (fp->fr_datype)
4758 {
4759 case FRI_BROADCAST :
4760 case FRI_DYNAMIC :
4761 case FRI_NETWORK :
4762 case FRI_NETMASKED :
4763 case FRI_PEERADDR :
4764 if (fp->fr_difpidx < 0) {
4765 IPFERROR(24);
4766 error = EINVAL;
4767 }
4768 break;
4769 case FRI_LOOKUP :
4770 fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4771 &fp->fr_dst6,
4772 &fp->fr_dmsk6);
4773 if (fp->fr_dstfunc == NULL) {
4774 IPFERROR(134);
4775 error = ESRCH;
4776 }
4777 break;
4778 case FRI_NORMAL :
4779 break;
4780 default :
4781 IPFERROR(135);
4782 error = EINVAL;
4783 }
4784 break;
4785
4786 case FR_T_NONE :
4787 case FR_T_CALLFUNC :
4788 case FR_T_COMPIPF :
4789 break;
4790
4791 case FR_T_IPFEXPR :
4792 if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4793 IPFERROR(25);
4794 error = EINVAL;
4795 }
4796 break;
4797
4798 default :
4799 IPFERROR(26);
4800 error = EINVAL;
4801 break;
4802 }
4803 if (error != 0)
4804 goto donenolock;
4805
4806 if (fp->fr_tif.fd_name != -1) {
4807 if ((fp->fr_tif.fd_name < 0) ||
4808 (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4809 IPFERROR(139);
4810 error = EINVAL;
4811 goto donenolock;
4812 }
4813 }
4814
4815 if (fp->fr_dif.fd_name != -1) {
4816 if ((fp->fr_dif.fd_name < 0) ||
4817 (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4818 IPFERROR(140);
4819 error = EINVAL;
4820 goto donenolock;
4821 }
4822 }
4823
4824 if (fp->fr_rif.fd_name != -1) {
4825 if ((fp->fr_rif.fd_name < 0) ||
4826 (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4827 IPFERROR(141);
4828 error = EINVAL;
4829 goto donenolock;
4830 }
4831 }
4832
4833 /*
4834 * Lookup all the interface names that are part of the rule.
4835 */
4836 error = ipf_synclist(softc, fp, NULL);
4837 if (error != 0)
4838 goto donenolock;
4839 fp->fr_statecnt = 0;
4840 if (fp->fr_srctrack.ht_max_nodes != 0)
4841 ipf_rb_ht_init(&fp->fr_srctrack);
4842
4843 /*
4844 * Look for an existing matching filter rule, but don't include the
4845 * next or interface pointer in the comparison (fr_next, fr_ifa).
4846 * This elminates rules which are indentical being loaded. Checksum
4847 * the constant part of the filter rule to make comparisons quicker
4848 * (this meaning no pointers are included).
4849 */
4850 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4851 p < pp; p++)
4852 fp->fr_cksum += *p;
4853 pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize);
4854 for (p = (u_int *)fp->fr_data; p < pp; p++)
4855 fp->fr_cksum += *p;
4856
4857 WRITE_ENTER(&softc->ipf_mutex);
4858
4859 /*
4860 * Now that the filter rule lists are locked, we can walk the
4861 * chain of them without fear.
4862 */
4863 ftail = fprev;
4864 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4865 if (fp->fr_collect <= f->fr_collect) {
4866 ftail = fprev;
4867 f = NULL;
4868 break;
4869 }
4870 fprev = ftail;
4871 }
4872
4873 for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4874 DT2(rule_cmp, frentry_t *, fp, frentry_t *, f);
4875 if (ipf_rule_compare(fp, f) == 0)
4876 break;
4877 }
4878
4879 /*
4880 * If zero'ing statistics, copy current to caller and zero.
4881 */
4882 if (addrem == 2) {
4883 if (f == NULL) {
4884 IPFERROR(27);
4885 error = ESRCH;
4886 } else {
4887 /*
4888 * Copy and reduce lock because of impending copyout.
4889 * Well we should, but if we do then the atomicity of
4890 * this call and the correctness of fr_hits and
4891 * fr_bytes cannot be guaranteed. As it is, this code
4892 * only resets them to 0 if they are successfully
4893 * copied out into user space.
4894 */
4895 bcopy((char *)f, (char *)fp, f->fr_size);
4896 /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4897
4898 /*
4899 * When we copy this rule back out, set the data
4900 * pointer to be what it was in user space.
4901 */
4902 fp->fr_data = uptr;
4903 error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4904
4905 if (error == 0) {
4906 if ((f->fr_dsize != 0) && (uptr != NULL)) {
4907 error = COPYOUT(f->fr_data, uptr,
4908 f->fr_dsize);
4909 if (error != 0) {
4910 IPFERROR(28);
4911 error = EFAULT;
4912 }
4913 }
4914 if (error == 0) {
4915 f->fr_hits = 0;
4916 f->fr_bytes = 0;
4917 }
4918 }
4919 }
4920
4921 if (makecopy != 0) {
4922 if (ptr != NULL) {
4923 KFREES(ptr, fp->fr_dsize);
4924 }
4925 KFREES(fp, fp->fr_size);
4926 }
4927 RWLOCK_EXIT(&softc->ipf_mutex);
4928 return error;
4929 }
4930
4931 if (!f) {
4932 /*
4933 * At the end of this, ftail must point to the place where the
4934 * new rule is to be saved/inserted/added.
4935 * For SIOCAD*FR, this should be the last rule in the group of
4936 * rules that have equal fr_collect fields.
4937 * For SIOCIN*FR, ...
4938 */
4939 if (req == (ioctlcmd_t)SIOCADAFR ||
4940 req == (ioctlcmd_t)SIOCADIFR) {
4941
4942 for (ftail = fprev; (f = *ftail) != NULL; ) {
4943 if (f->fr_collect > fp->fr_collect)
4944 break;
4945 ftail = &f->fr_next;
4946 fprev = ftail;
4947 }
4948 ftail = fprev;
4949 f = NULL;
4950 ptr = NULL;
4951 } else if (req == (ioctlcmd_t)SIOCINAFR ||
4952 req == (ioctlcmd_t)SIOCINIFR) {
4953 while ((f = *fprev) != NULL) {
4954 if (f->fr_collect >= fp->fr_collect)
4955 break;
4956 fprev = &f->fr_next;
4957 }
4958 ftail = fprev;
4959 if (fp->fr_hits != 0) {
4960 while (fp->fr_hits && (f = *ftail)) {
4961 if (f->fr_collect != fp->fr_collect)
4962 break;
4963 fprev = ftail;
4964 ftail = &f->fr_next;
4965 fp->fr_hits--;
4966 }
4967 }
4968 f = NULL;
4969 ptr = NULL;
4970 }
4971 }
4972
4973 /*
4974 * Request to remove a rule.
4975 */
4976 if (addrem == 1) {
4977 if (!f) {
4978 IPFERROR(29);
4979 error = ESRCH;
4980 } else {
4981 /*
4982 * Do not allow activity from user space to interfere
4983 * with rules not loaded that way.
4984 */
4985 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4986 IPFERROR(30);
4987 error = EPERM;
4988 goto done;
4989 }
4990
4991 /*
4992 * Return EBUSY if the rule is being reference by
4993 * something else (eg state information.)
4994 */
4995 if (f->fr_ref > 1) {
4996 IPFERROR(31);
4997 error = EBUSY;
4998 goto done;
4999 }
5000 #ifdef IPFILTER_SCAN
5001 if (f->fr_isctag != -1 &&
5002 (f->fr_isc != (struct ipscan *)-1))
5003 ipf_scan_detachfr(f);
5004 #endif
5005
5006 if (unit == IPL_LOGAUTH) {
5007 error = ipf_auth_precmd(softc, req, f, ftail);
5008 goto done;
5009 }
5010
5011 ipf_rule_delete(softc, f, unit, set);
5012
5013 need_free = makecopy;
5014 }
5015 } else {
5016 /*
5017 * Not removing, so we must be adding/inserting a rule.
5018 */
5019 if (f != NULL) {
5020 IPFERROR(32);
5021 error = EEXIST;
5022 goto done;
5023 }
5024 if (unit == IPL_LOGAUTH) {
5025 error = ipf_auth_precmd(softc, req, fp, ftail);
5026 goto done;
5027 }
5028
5029 MUTEX_NUKE(&fp->fr_lock);
5030 MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5031 if (fp->fr_die != 0)
5032 ipf_rule_expire_insert(softc, fp, set);
5033
5034 fp->fr_hits = 0;
5035 if (makecopy != 0)
5036 fp->fr_ref = 1;
5037 fp->fr_pnext = ftail;
5038 fp->fr_next = *ftail;
5039 if (fp->fr_next != NULL)
5040 fp->fr_next->fr_pnext = &fp->fr_next;
5041 *ftail = fp;
5042 if (addrem == 0)
5043 ipf_fixskip(ftail, fp, 1);
5044
5045 fp->fr_icmpgrp = NULL;
5046 if (fp->fr_icmphead != -1) {
5047 group = FR_NAME(fp, fr_icmphead);
5048 fg = ipf_group_add(softc, group, fp, 0, unit, set);
5049 fp->fr_icmpgrp = fg;
5050 }
5051
5052 fp->fr_grphead = NULL;
5053 if (fp->fr_grhead != -1) {
5054 group = FR_NAME(fp, fr_grhead);
5055 fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5056 unit, set);
5057 fp->fr_grphead = fg;
5058 }
5059 }
5060 done:
5061 RWLOCK_EXIT(&softc->ipf_mutex);
5062 donenolock:
5063 if (need_free || (error != 0)) {
5064 if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5065 if ((fp->fr_satype == FRI_LOOKUP) &&
5066 (fp->fr_srcptr != NULL))
5067 ipf_lookup_deref(softc, fp->fr_srctype,
5068 fp->fr_srcptr);
5069 if ((fp->fr_datype == FRI_LOOKUP) &&
5070 (fp->fr_dstptr != NULL))
5071 ipf_lookup_deref(softc, fp->fr_dsttype,
5072 fp->fr_dstptr);
5073 }
5074 if (fp->fr_grp != NULL) {
5075 WRITE_ENTER(&softc->ipf_mutex);
5076 ipf_group_del(softc, fp->fr_grp, fp);
5077 RWLOCK_EXIT(&softc->ipf_mutex);
5078 }
5079 if ((ptr != NULL) && (makecopy != 0)) {
5080 KFREES(ptr, fp->fr_dsize);
5081 }
5082 KFREES(fp, fp->fr_size);
5083 }
5084 return (error);
5085 }
5086
5087
5088 /* ------------------------------------------------------------------------ */
5089 /* Function: ipf_rule_delete */
5090 /* Returns: Nil */
5091 /* Parameters: softc(I) - pointer to soft context main structure */
5092 /* f(I) - pointer to the rule being deleted */
5093 /* ftail(I) - pointer to the pointer to f */
5094 /* unit(I) - device for which this is for */
5095 /* set(I) - 1 or 0 (filter set) */
5096 /* */
5097 /* This function attempts to do what it can to delete a filter rule: remove */
5098 /* it from any linked lists and remove any groups it is responsible for. */
5099 /* But in the end, removing a rule can only drop the reference count - we */
5100 /* must use that as the guide for whether or not it can be freed. */
5101 /* ------------------------------------------------------------------------ */
5102 static void
5103 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5104 {
5105
5106 /*
5107 * If fr_pdnext is set, then the rule is on the expire list, so
5108 * remove it from there.
5109 */
5110 if (f->fr_pdnext != NULL) {
5111 *f->fr_pdnext = f->fr_dnext;
5112 if (f->fr_dnext != NULL)
5113 f->fr_dnext->fr_pdnext = f->fr_pdnext;
5114 f->fr_pdnext = NULL;
5115 f->fr_dnext = NULL;
5116 }
5117
5118 ipf_fixskip(f->fr_pnext, f, -1);
5119 if (f->fr_pnext != NULL)
5120 *f->fr_pnext = f->fr_next;
5121 if (f->fr_next != NULL)
5122 f->fr_next->fr_pnext = f->fr_pnext;
5123 f->fr_pnext = NULL;
5124 f->fr_next = NULL;
5125
5126 (void) ipf_derefrule(softc, &f);
5127 }
5128
5129 /* ------------------------------------------------------------------------ */
5130 /* Function: ipf_rule_expire_insert */
5131 /* Returns: Nil */
5132 /* Parameters: softc(I) - pointer to soft context main structure */
5133 /* f(I) - pointer to rule to be added to expire list */
5134 /* set(I) - 1 or 0 (filter set) */
5135 /* */
5136 /* If the new rule has a given expiration time, insert it into the list of */
5137 /* expiring rules with the ones to be removed first added to the front of */
5138 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5139 /* expiration interval checks. */
5140 /* ------------------------------------------------------------------------ */
5141 static void
5142 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5143 {
5144 frentry_t *fr;
5145
5146 /*
5147 */
5148
5149 f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5150 for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5151 fr = fr->fr_dnext) {
5152 if (f->fr_die < fr->fr_die)
5153 break;
5154 if (fr->fr_dnext == NULL) {
5155 /*
5156 * We've got to the last rule and everything
5157 * wanted to be expired before this new node,
5158 * so we have to tack it on the end...
5159 */
5160 fr->fr_dnext = f;
5161 f->fr_pdnext = &fr->fr_dnext;
5162 fr = NULL;
5163 break;
5164 }
5165 }
5166
5167 if (softc->ipf_rule_explist[set] == NULL) {
5168 softc->ipf_rule_explist[set] = f;
5169 f->fr_pdnext = &softc->ipf_rule_explist[set];
5170 } else if (fr != NULL) {
5171 f->fr_dnext = fr;
5172 f->fr_pdnext = fr->fr_pdnext;
5173 fr->fr_pdnext = &f->fr_dnext;
5174 }
5175 }
5176
5177
5178 /* ------------------------------------------------------------------------ */
5179 /* Function: ipf_findlookup */
5180 /* Returns: NULL = failure, else success */
5181 /* Parameters: softc(I) - pointer to soft context main structure */
5182 /* unit(I) - ipf device we want to find match for */
5183 /* fp(I) - rule for which lookup is for */
5184 /* addrp(I) - pointer to lookup information in address struct */
5185 /* maskp(O) - pointer to lookup information for storage */
5186 /* */
5187 /* When using pools and hash tables to store addresses for matching in */
5188 /* rules, it is necessary to resolve both the object referred to by the */
5189 /* name or address (and return that pointer) and also provide the means by */
5190 /* which to determine if an address belongs to that object to make the */
5191 /* packet matching quicker. */
5192 /* ------------------------------------------------------------------------ */
5193 static void *
5194 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5195 i6addr_t *addrp, i6addr_t *maskp)
5196 {
5197 void *ptr = NULL;
5198
5199 switch (addrp->iplookupsubtype)
5200 {
5201 case 0 :
5202 ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5203 addrp->iplookupnum,
5204 &maskp->iplookupfunc);
5205 break;
5206 case 1 :
5207 if (addrp->iplookupname < 0)
5208 break;
5209 if (addrp->iplookupname >= fr->fr_namelen)
5210 break;
5211 ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5212 fr->fr_names + addrp->iplookupname,
5213 &maskp->iplookupfunc);
5214 break;
5215 default :
5216 break;
5217 }
5218
5219 return ptr;
5220 }
5221
5222
5223 /* ------------------------------------------------------------------------ */
5224 /* Function: ipf_funcinit */
5225 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */
5226 /* Parameters: softc(I) - pointer to soft context main structure */
5227 /* fr(I) - pointer to filter rule */
5228 /* */
5229 /* If a rule is a call rule, then check if the function it points to needs */
5230 /* an init function to be called now the rule has been loaded. */
5231 /* ------------------------------------------------------------------------ */
5232 static int
5233 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5234 {
5235 ipfunc_resolve_t *ft;
5236 int err;
5237
5238 IPFERROR(34);
5239 err = ESRCH;
5240
5241 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5242 if (ft->ipfu_addr == fr->fr_func) {
5243 err = 0;
5244 if (ft->ipfu_init != NULL)
5245 err = (*ft->ipfu_init)(softc, fr);
5246 break;
5247 }
5248 return err;
5249 }
5250
5251
5252 /* ------------------------------------------------------------------------ */
5253 /* Function: ipf_funcfini */
5254 /* Returns: Nil */
5255 /* Parameters: softc(I) - pointer to soft context main structure */
5256 /* fr(I) - pointer to filter rule */
5257 /* */
5258 /* For a given filter rule, call the matching "fini" function if the rule */
5259 /* is using a known function that would have resulted in the "init" being */
5260 /* called for ealier. */
5261 /* ------------------------------------------------------------------------ */
5262 static void
5263 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5264 {
5265 ipfunc_resolve_t *ft;
5266
5267 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5268 if (ft->ipfu_addr == fr->fr_func) {
5269 if (ft->ipfu_fini != NULL)
5270 (void) (*ft->ipfu_fini)(softc, fr);
5271 break;
5272 }
5273 }
5274
5275
5276 /* ------------------------------------------------------------------------ */
5277 /* Function: ipf_findfunc */
5278 /* Returns: ipfunc_t - pointer to function if found, else NULL */
5279 /* Parameters: funcptr(I) - function pointer to lookup */
5280 /* */
5281 /* Look for a function in the table of known functions. */
5282 /* ------------------------------------------------------------------------ */
5283 static ipfunc_t
5284 ipf_findfunc(ipfunc_t funcptr)
5285 {
5286 ipfunc_resolve_t *ft;
5287
5288 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5289 if (ft->ipfu_addr == funcptr)
5290 return funcptr;
5291 return NULL;
5292 }
5293
5294
5295 /* ------------------------------------------------------------------------ */
5296 /* Function: ipf_resolvefunc */
5297 /* Returns: int - 0 == success, else error */
5298 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */
5299 /* */
5300 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5301 /* This will either be the function name (if the pointer is set) or the */
5302 /* function pointer if the name is set. When found, fill in the other one */
5303 /* so that the entire, complete, structure can be copied back to user space.*/
5304 /* ------------------------------------------------------------------------ */
5305 int
5306 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5307 {
5308 ipfunc_resolve_t res, *ft;
5309 int error;
5310
5311 error = BCOPYIN(data, &res, sizeof(res));
5312 if (error != 0) {
5313 IPFERROR(123);
5314 return EFAULT;
5315 }
5316
5317 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5318 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5319 if (strncmp(res.ipfu_name, ft->ipfu_name,
5320 sizeof(res.ipfu_name)) == 0) {
5321 res.ipfu_addr = ft->ipfu_addr;
5322 res.ipfu_init = ft->ipfu_init;
5323 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5324 IPFERROR(35);
5325 return EFAULT;
5326 }
5327 return 0;
5328 }
5329 }
5330 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5331 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5332 if (ft->ipfu_addr == res.ipfu_addr) {
5333 (void) strncpy(res.ipfu_name, ft->ipfu_name,
5334 sizeof(res.ipfu_name));
5335 res.ipfu_init = ft->ipfu_init;
5336 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5337 IPFERROR(36);
5338 return EFAULT;
5339 }
5340 return 0;
5341 }
5342 }
5343 IPFERROR(37);
5344 return ESRCH;
5345 }
5346
5347
5348 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5349 !defined(__FreeBSD__)) || \
5350 FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5351 OPENBSD_LT_REV(200006)
5352 /*
5353 * From: NetBSD
5354 * ppsratecheck(): packets (or events) per second limitation.
5355 */
5356 int
5357 ppsratecheck(lasttime, curpps, maxpps)
5358 struct timeval *lasttime;
5359 int *curpps;
5360 int maxpps; /* maximum pps allowed */
5361 {
5362 struct timeval tv, delta;
5363 int rv;
5364
5365 GETKTIME(&tv);
5366
5367 delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5368 delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5369 if (delta.tv_usec < 0) {
5370 delta.tv_sec--;
5371 delta.tv_usec += 1000000;
5372 }
5373
5374 /*
5375 * check for 0,0 is so that the message will be seen at least once.
5376 * if more than one second have passed since the last update of
5377 * lasttime, reset the counter.
5378 *
5379 * we do increment *curpps even in *curpps < maxpps case, as some may
5380 * try to use *curpps for stat purposes as well.
5381 */
5382 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5383 delta.tv_sec >= 1) {
5384 *lasttime = tv;
5385 *curpps = 0;
5386 rv = 1;
5387 } else if (maxpps < 0)
5388 rv = 1;
5389 else if (*curpps < maxpps)
5390 rv = 1;
5391 else
5392 rv = 0;
5393 *curpps = *curpps + 1;
5394
5395 return (rv);
5396 }
5397 #endif
5398
5399
5400 /* ------------------------------------------------------------------------ */
5401 /* Function: ipf_derefrule */
5402 /* Returns: int - 0 == rule freed up, else rule not freed */
5403 /* Parameters: fr(I) - pointer to filter rule */
5404 /* */
5405 /* Decrement the reference counter to a rule by one. If it reaches zero, */
5406 /* free it and any associated storage space being used by it. */
5407 /* ------------------------------------------------------------------------ */
5408 int
5409 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5410 {
5411 frentry_t *fr;
5412 frdest_t *fdp;
5413
5414 fr = *frp;
5415 *frp = NULL;
5416
5417 MUTEX_ENTER(&fr->fr_lock);
5418 fr->fr_ref--;
5419 if (fr->fr_ref == 0) {
5420 MUTEX_EXIT(&fr->fr_lock);
5421 MUTEX_DESTROY(&fr->fr_lock);
5422
5423 ipf_funcfini(softc, fr);
5424
5425 fdp = &fr->fr_tif;
5426 if (fdp->fd_type == FRD_DSTLIST)
5427 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5428
5429 fdp = &fr->fr_rif;
5430 if (fdp->fd_type == FRD_DSTLIST)
5431 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5432
5433 fdp = &fr->fr_dif;
5434 if (fdp->fd_type == FRD_DSTLIST)
5435 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5436
5437 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5438 fr->fr_satype == FRI_LOOKUP)
5439 ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5440 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5441 fr->fr_datype == FRI_LOOKUP)
5442 ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5443
5444 if (fr->fr_grp != NULL)
5445 ipf_group_del(softc, fr->fr_grp, fr);
5446
5447 if (fr->fr_grphead != NULL)
5448 ipf_group_del(softc, fr->fr_grphead, fr);
5449
5450 if (fr->fr_icmpgrp != NULL)
5451 ipf_group_del(softc, fr->fr_icmpgrp, fr);
5452
5453 if ((fr->fr_flags & FR_COPIED) != 0) {
5454 if (fr->fr_dsize) {
5455 KFREES(fr->fr_data, fr->fr_dsize);
5456 }
5457 KFREES(fr, fr->fr_size);
5458 return 0;
5459 }
5460 return 1;
5461 } else {
5462 MUTEX_EXIT(&fr->fr_lock);
5463 }
5464 return -1;
5465 }
5466
5467
5468 /* ------------------------------------------------------------------------ */
5469 /* Function: ipf_grpmapinit */
5470 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5471 /* Parameters: fr(I) - pointer to rule to find hash table for */
5472 /* */
5473 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */
5474 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */
5475 /* ------------------------------------------------------------------------ */
5476 static int
5477 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5478 {
5479 char name[FR_GROUPLEN];
5480 iphtable_t *iph;
5481
5482 (void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5483 iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5484 if (iph == NULL) {
5485 IPFERROR(38);
5486 return ESRCH;
5487 }
5488 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5489 IPFERROR(39);
5490 return ESRCH;
5491 }
5492 iph->iph_ref++;
5493 fr->fr_ptr = iph;
5494 return 0;
5495 }
5496
5497
5498 /* ------------------------------------------------------------------------ */
5499 /* Function: ipf_grpmapfini */
5500 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5501 /* Parameters: softc(I) - pointer to soft context main structure */
5502 /* fr(I) - pointer to rule to release hash table for */
5503 /* */
5504 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5505 /* be called to undo what ipf_grpmapinit caused to be done. */
5506 /* ------------------------------------------------------------------------ */
5507 static int
5508 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5509 {
5510 iphtable_t *iph;
5511 iph = fr->fr_ptr;
5512 if (iph != NULL)
5513 ipf_lookup_deref(softc, IPLT_HASH, iph);
5514 return 0;
5515 }
5516
5517
5518 /* ------------------------------------------------------------------------ */
5519 /* Function: ipf_srcgrpmap */
5520 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5521 /* Parameters: fin(I) - pointer to packet information */
5522 /* passp(IO) - pointer to current/new filter decision (unused) */
5523 /* */
5524 /* Look for a rule group head in a hash table, using the source address as */
5525 /* the key, and descend into that group and continue matching rules against */
5526 /* the packet. */
5527 /* ------------------------------------------------------------------------ */
5528 frentry_t *
5529 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5530 {
5531 frgroup_t *fg;
5532 void *rval;
5533
5534 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5535 &fin->fin_src);
5536 if (rval == NULL)
5537 return NULL;
5538
5539 fg = rval;
5540 fin->fin_fr = fg->fg_start;
5541 (void) ipf_scanlist(fin, *passp);
5542 return fin->fin_fr;
5543 }
5544
5545
5546 /* ------------------------------------------------------------------------ */
5547 /* Function: ipf_dstgrpmap */
5548 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5549 /* Parameters: fin(I) - pointer to packet information */
5550 /* passp(IO) - pointer to current/new filter decision (unused) */
5551 /* */
5552 /* Look for a rule group head in a hash table, using the destination */
5553 /* address as the key, and descend into that group and continue matching */
5554 /* rules against the packet. */
5555 /* ------------------------------------------------------------------------ */
5556 frentry_t *
5557 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5558 {
5559 frgroup_t *fg;
5560 void *rval;
5561
5562 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5563 &fin->fin_dst);
5564 if (rval == NULL)
5565 return NULL;
5566
5567 fg = rval;
5568 fin->fin_fr = fg->fg_start;
5569 (void) ipf_scanlist(fin, *passp);
5570 return fin->fin_fr;
5571 }
5572
5573 /*
5574 * Queue functions
5575 * ===============
5576 * These functions manage objects on queues for efficient timeouts. There
5577 * are a number of system defined queues as well as user defined timeouts.
5578 * It is expected that a lock is held in the domain in which the queue
5579 * belongs (i.e. either state or NAT) when calling any of these functions
5580 * that prevents ipf_freetimeoutqueue() from being called at the same time
5581 * as any other.
5582 */
5583
5584
5585 /* ------------------------------------------------------------------------ */
5586 /* Function: ipf_addtimeoutqueue */
5587 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */
5588 /* timeout queue with given interval. */
5589 /* Parameters: parent(I) - pointer to pointer to parent node of this list */
5590 /* of interface queues. */
5591 /* seconds(I) - timeout value in seconds for this queue. */
5592 /* */
5593 /* This routine first looks for a timeout queue that matches the interval */
5594 /* being requested. If it finds one, increments the reference counter and */
5595 /* returns a pointer to it. If none are found, it allocates a new one and */
5596 /* inserts it at the top of the list. */
5597 /* */
5598 /* Locking. */
5599 /* It is assumed that the caller of this function has an appropriate lock */
5600 /* held (exclusively) in the domain that encompases 'parent'. */
5601 /* ------------------------------------------------------------------------ */
5602 ipftq_t *
5603 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5604 {
5605 ipftq_t *ifq;
5606 u_int period;
5607
5608 period = seconds * IPF_HZ_DIVIDE;
5609
5610 MUTEX_ENTER(&softc->ipf_timeoutlock);
5611 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5612 if (ifq->ifq_ttl == period) {
5613 /*
5614 * Reset the delete flag, if set, so the structure
5615 * gets reused rather than freed and reallocated.
5616 */
5617 MUTEX_ENTER(&ifq->ifq_lock);
5618 ifq->ifq_flags &= ~IFQF_DELETE;
5619 ifq->ifq_ref++;
5620 MUTEX_EXIT(&ifq->ifq_lock);
5621 MUTEX_EXIT(&softc->ipf_timeoutlock);
5622
5623 return ifq;
5624 }
5625 }
5626
5627 KMALLOC(ifq, ipftq_t *);
5628 if (ifq != NULL) {
5629 MUTEX_NUKE(&ifq->ifq_lock);
5630 IPFTQ_INIT(ifq, period, "ipftq mutex");
5631 ifq->ifq_next = *parent;
5632 ifq->ifq_pnext = parent;
5633 ifq->ifq_flags = IFQF_USER;
5634 ifq->ifq_ref++;
5635 *parent = ifq;
5636 softc->ipf_userifqs++;
5637 }
5638 MUTEX_EXIT(&softc->ipf_timeoutlock);
5639 return ifq;
5640 }
5641
5642
5643 /* ------------------------------------------------------------------------ */
5644 /* Function: ipf_deletetimeoutqueue */
5645 /* Returns: int - new reference count value of the timeout queue */
5646 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5647 /* Locks: ifq->ifq_lock */
5648 /* */
5649 /* This routine must be called when we're discarding a pointer to a timeout */
5650 /* queue object, taking care of the reference counter. */
5651 /* */
5652 /* Now that this just sets a DELETE flag, it requires the expire code to */
5653 /* check the list of user defined timeout queues and call the free function */
5654 /* below (currently commented out) to stop memory leaking. It is done this */
5655 /* way because the locking may not be sufficient to safely do a free when */
5656 /* this function is called. */
5657 /* ------------------------------------------------------------------------ */
5658 int
5659 ipf_deletetimeoutqueue(ipftq_t *ifq)
5660 {
5661
5662 ifq->ifq_ref--;
5663 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5664 ifq->ifq_flags |= IFQF_DELETE;
5665 }
5666
5667 return ifq->ifq_ref;
5668 }
5669
5670
5671 /* ------------------------------------------------------------------------ */
5672 /* Function: ipf_freetimeoutqueue */
5673 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5674 /* Returns: Nil */
5675 /* */
5676 /* Locking: */
5677 /* It is assumed that the caller of this function has an appropriate lock */
5678 /* held (exclusively) in the domain that encompases the callers "domain". */
5679 /* The ifq_lock for this structure should not be held. */
5680 /* */
5681 /* Remove a user defined timeout queue from the list of queues it is in and */
5682 /* tidy up after this is done. */
5683 /* ------------------------------------------------------------------------ */
5684 void
5685 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5686 {
5687
5688 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5689 ((ifq->ifq_flags & IFQF_USER) == 0)) {
5690 printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5691 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5692 ifq->ifq_ref);
5693 return;
5694 }
5695
5696 /*
5697 * Remove from its position in the list.
5698 */
5699 *ifq->ifq_pnext = ifq->ifq_next;
5700 if (ifq->ifq_next != NULL)
5701 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5702 ifq->ifq_next = NULL;
5703 ifq->ifq_pnext = NULL;
5704
5705 MUTEX_DESTROY(&ifq->ifq_lock);
5706 ATOMIC_DEC(softc->ipf_userifqs);
5707 KFREE(ifq);
5708 }
5709
5710
5711 /* ------------------------------------------------------------------------ */
5712 /* Function: ipf_deletequeueentry */
5713 /* Returns: Nil */
5714 /* Parameters: tqe(I) - timeout queue entry to delete */
5715 /* */
5716 /* Remove a tail queue entry from its queue and make it an orphan. */
5717 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5718 /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */
5719 /* the correct lock(s) may not be held that would make it safe to do so. */
5720 /* ------------------------------------------------------------------------ */
5721 void
5722 ipf_deletequeueentry(ipftqent_t *tqe)
5723 {
5724 ipftq_t *ifq;
5725
5726 ifq = tqe->tqe_ifq;
5727
5728 MUTEX_ENTER(&ifq->ifq_lock);
5729
5730 if (tqe->tqe_pnext != NULL) {
5731 *tqe->tqe_pnext = tqe->tqe_next;
5732 if (tqe->tqe_next != NULL)
5733 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5734 else /* we must be the tail anyway */
5735 ifq->ifq_tail = tqe->tqe_pnext;
5736
5737 tqe->tqe_pnext = NULL;
5738 tqe->tqe_ifq = NULL;
5739 }
5740
5741 (void) ipf_deletetimeoutqueue(ifq);
5742 ASSERT(ifq->ifq_ref > 0);
5743
5744 MUTEX_EXIT(&ifq->ifq_lock);
5745 }
5746
5747
5748 /* ------------------------------------------------------------------------ */
5749 /* Function: ipf_queuefront */
5750 /* Returns: Nil */
5751 /* Parameters: tqe(I) - pointer to timeout queue entry */
5752 /* */
5753 /* Move a queue entry to the front of the queue, if it isn't already there. */
5754 /* ------------------------------------------------------------------------ */
5755 void
5756 ipf_queuefront(ipftqent_t *tqe)
5757 {
5758 ipftq_t *ifq;
5759
5760 ifq = tqe->tqe_ifq;
5761 if (ifq == NULL)
5762 return;
5763
5764 MUTEX_ENTER(&ifq->ifq_lock);
5765 if (ifq->ifq_head != tqe) {
5766 *tqe->tqe_pnext = tqe->tqe_next;
5767 if (tqe->tqe_next)
5768 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5769 else
5770 ifq->ifq_tail = tqe->tqe_pnext;
5771
5772 tqe->tqe_next = ifq->ifq_head;
5773 ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5774 ifq->ifq_head = tqe;
5775 tqe->tqe_pnext = &ifq->ifq_head;
5776 }
5777 MUTEX_EXIT(&ifq->ifq_lock);
5778 }
5779
5780
5781 /* ------------------------------------------------------------------------ */
5782 /* Function: ipf_queueback */
5783 /* Returns: Nil */
5784 /* Parameters: ticks(I) - ipf tick time to use with this call */
5785 /* tqe(I) - pointer to timeout queue entry */
5786 /* */
5787 /* Move a queue entry to the back of the queue, if it isn't already there. */
5788 /* We use use ticks to calculate the expiration and mark for when we last */
5789 /* touched the structure. */
5790 /* ------------------------------------------------------------------------ */
5791 void
5792 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5793 {
5794 ipftq_t *ifq;
5795
5796 ifq = tqe->tqe_ifq;
5797 if (ifq == NULL)
5798 return;
5799 tqe->tqe_die = ticks + ifq->ifq_ttl;
5800 tqe->tqe_touched = ticks;
5801
5802 MUTEX_ENTER(&ifq->ifq_lock);
5803 if (tqe->tqe_next != NULL) { /* at the end already ? */
5804 /*
5805 * Remove from list
5806 */
5807 *tqe->tqe_pnext = tqe->tqe_next;
5808 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5809
5810 /*
5811 * Make it the last entry.
5812 */
5813 tqe->tqe_next = NULL;
5814 tqe->tqe_pnext = ifq->ifq_tail;
5815 *ifq->ifq_tail = tqe;
5816 ifq->ifq_tail = &tqe->tqe_next;
5817 }
5818 MUTEX_EXIT(&ifq->ifq_lock);
5819 }
5820
5821
5822 /* ------------------------------------------------------------------------ */
5823 /* Function: ipf_queueappend */
5824 /* Returns: Nil */
5825 /* Parameters: ticks(I) - ipf tick time to use with this call */
5826 /* tqe(I) - pointer to timeout queue entry */
5827 /* ifq(I) - pointer to timeout queue */
5828 /* parent(I) - owing object pointer */
5829 /* */
5830 /* Add a new item to this queue and put it on the very end. */
5831 /* We use use ticks to calculate the expiration and mark for when we last */
5832 /* touched the structure. */
5833 /* ------------------------------------------------------------------------ */
5834 void
5835 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5836 {
5837
5838 MUTEX_ENTER(&ifq->ifq_lock);
5839 tqe->tqe_parent = parent;
5840 tqe->tqe_pnext = ifq->ifq_tail;
5841 *ifq->ifq_tail = tqe;
5842 ifq->ifq_tail = &tqe->tqe_next;
5843 tqe->tqe_next = NULL;
5844 tqe->tqe_ifq = ifq;
5845 tqe->tqe_die = ticks + ifq->ifq_ttl;
5846 tqe->tqe_touched = ticks;
5847 ifq->ifq_ref++;
5848 MUTEX_EXIT(&ifq->ifq_lock);
5849 }
5850
5851
5852 /* ------------------------------------------------------------------------ */
5853 /* Function: ipf_movequeue */
5854 /* Returns: Nil */
5855 /* Parameters: tq(I) - pointer to timeout queue information */
5856 /* oifp(I) - old timeout queue entry was on */
5857 /* nifp(I) - new timeout queue to put entry on */
5858 /* */
5859 /* Move a queue entry from one timeout queue to another timeout queue. */
5860 /* If it notices that the current entry is already last and does not need */
5861 /* to move queue, the return. */
5862 /* ------------------------------------------------------------------------ */
5863 void
5864 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5865 {
5866
5867 /*
5868 * If the queue hasn't changed and we last touched this entry at the
5869 * same ipf time, then we're not going to achieve anything by either
5870 * changing the ttl or moving it on the queue.
5871 */
5872 if (oifq == nifq && tqe->tqe_touched == ticks)
5873 return;
5874
5875 /*
5876 * For any of this to be outside the lock, there is a risk that two
5877 * packets entering simultaneously, with one changing to a different
5878 * queue and one not, could end up with things in a bizarre state.
5879 */
5880 MUTEX_ENTER(&oifq->ifq_lock);
5881
5882 tqe->tqe_touched = ticks;
5883 tqe->tqe_die = ticks + nifq->ifq_ttl;
5884 /*
5885 * Is the operation here going to be a no-op ?
5886 */
5887 if (oifq == nifq) {
5888 if ((tqe->tqe_next == NULL) ||
5889 (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5890 MUTEX_EXIT(&oifq->ifq_lock);
5891 return;
5892 }
5893 }
5894
5895 /*
5896 * Remove from the old queue
5897 */
5898 *tqe->tqe_pnext = tqe->tqe_next;
5899 if (tqe->tqe_next)
5900 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5901 else
5902 oifq->ifq_tail = tqe->tqe_pnext;
5903 tqe->tqe_next = NULL;
5904
5905 /*
5906 * If we're moving from one queue to another, release the
5907 * lock on the old queue and get a lock on the new queue.
5908 * For user defined queues, if we're moving off it, call
5909 * delete in case it can now be freed.
5910 */
5911 if (oifq != nifq) {
5912 tqe->tqe_ifq = NULL;
5913
5914 (void) ipf_deletetimeoutqueue(oifq);
5915
5916 MUTEX_EXIT(&oifq->ifq_lock);
5917
5918 MUTEX_ENTER(&nifq->ifq_lock);
5919
5920 tqe->tqe_ifq = nifq;
5921 nifq->ifq_ref++;
5922 }
5923
5924 /*
5925 * Add to the bottom of the new queue
5926 */
5927 tqe->tqe_pnext = nifq->ifq_tail;
5928 *nifq->ifq_tail = tqe;
5929 nifq->ifq_tail = &tqe->tqe_next;
5930 MUTEX_EXIT(&nifq->ifq_lock);
5931 }
5932
5933
5934 /* ------------------------------------------------------------------------ */
5935 /* Function: ipf_updateipid */
5936 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */
5937 /* Parameters: fin(I) - pointer to packet information */
5938 /* */
5939 /* When we are doing NAT, change the IP of every packet to represent a */
5940 /* single sequence of packets coming from the host, hiding any host */
5941 /* specific sequencing that might otherwise be revealed. If the packet is */
5942 /* a fragment, then store the 'new' IPid in the fragment cache and look up */
5943 /* the fragment cache for non-leading fragments. If a non-leading fragment */
5944 /* has no match in the cache, return an error. */
5945 /* ------------------------------------------------------------------------ */
5946 static int
5947 ipf_updateipid(fr_info_t *fin)
5948 {
5949 u_short id, ido, sums;
5950 u_32_t sumd, sum;
5951 ip_t *ip;
5952
5953 if (fin->fin_off != 0) {
5954 sum = ipf_frag_ipidknown(fin);
5955 if (sum == 0xffffffff)
5956 return -1;
5957 sum &= 0xffff;
5958 id = (u_short)sum;
5959 } else {
5960 id = ipf_nextipid(fin);
5961 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5962 (void) ipf_frag_ipidnew(fin, (u_32_t)id);
5963 }
5964
5965 ip = fin->fin_ip;
5966 ido = ntohs(ip->ip_id);
5967 if (id == ido)
5968 return 0;
5969 ip->ip_id = htons(id);
5970 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */
5971 sum = (~ntohs(ip->ip_sum)) & 0xffff;
5972 sum += sumd;
5973 sum = (sum >> 16) + (sum & 0xffff);
5974 sum = (sum >> 16) + (sum & 0xffff);
5975 sums = ~(u_short)sum;
5976 ip->ip_sum = htons(sums);
5977 return 0;
5978 }
5979
5980
5981 #ifdef NEED_FRGETIFNAME
5982 /* ------------------------------------------------------------------------ */
5983 /* Function: ipf_getifname */
5984 /* Returns: char * - pointer to interface name */
5985 /* Parameters: ifp(I) - pointer to network interface */
5986 /* buffer(O) - pointer to where to store interface name */
5987 /* */
5988 /* Constructs an interface name in the buffer passed. The buffer passed is */
5989 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */
5990 /* as a NULL pointer then return a pointer to a static array. */
5991 /* ------------------------------------------------------------------------ */
5992 char *
5993 ipf_getifname(ifp, buffer)
5994 struct ifnet *ifp;
5995 char *buffer;
5996 {
5997 static char namebuf[LIFNAMSIZ];
5998 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5999 defined(__sgi) || defined(linux) || defined(_AIX51) || \
6000 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6001 int unit, space;
6002 char temp[20];
6003 char *s;
6004 # endif
6005
6006 if (buffer == NULL)
6007 buffer = namebuf;
6008 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6009 buffer[LIFNAMSIZ - 1] = '\0';
6010 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6011 defined(__sgi) || defined(_AIX51) || \
6012 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6013 for (s = buffer; *s; s++)
6014 ;
6015 unit = ifp->if_unit;
6016 space = LIFNAMSIZ - (s - buffer);
6017 if ((space > 0) && (unit >= 0)) {
6018 snprintf(temp, sizeof(temp), "%d", unit);
6019 (void) strncpy(s, temp, space);
6020 s[space - 1] = '\0';
6021 }
6022 # endif
6023 return buffer;
6024 }
6025 #endif
6026
6027
6028 /* ------------------------------------------------------------------------ */
6029 /* Function: ipf_ioctlswitch */
6030 /* Returns: int - -1 continue processing, else ioctl return value */
6031 /* Parameters: unit(I) - device unit opened */
6032 /* data(I) - pointer to ioctl data */
6033 /* cmd(I) - ioctl command */
6034 /* mode(I) - mode value */
6035 /* uid(I) - uid making the ioctl call */
6036 /* ctx(I) - pointer to context data */
6037 /* */
6038 /* Based on the value of unit, call the appropriate ioctl handler or return */
6039 /* EIO if ipfilter is not running. Also checks if write perms are req'd */
6040 /* for the device in order to execute the ioctl. A special case is made */
6041 /* SIOCIPFINTERROR so that the same code isn't required in every handler. */
6042 /* The context data pointer is passed through as this is used as the key */
6043 /* for locating a matching token for continued access for walking lists, */
6044 /* etc. */
6045 /* ------------------------------------------------------------------------ */
6046 int
6047 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
6048 int mode, int uid, void *ctx)
6049 {
6050 int error = 0;
6051
6052 switch (cmd)
6053 {
6054 case SIOCIPFINTERROR :
6055 error = BCOPYOUT(&softc->ipf_interror, data,
6056 sizeof(softc->ipf_interror));
6057 if (error != 0) {
6058 IPFERROR(40);
6059 error = EFAULT;
6060 }
6061 return error;
6062 default :
6063 break;
6064 }
6065
6066 switch (unit)
6067 {
6068 case IPL_LOGIPF :
6069 error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6070 break;
6071 case IPL_LOGNAT :
6072 if (softc->ipf_running > 0) {
6073 error = ipf_nat_ioctl(softc, data, cmd, mode,
6074 uid, ctx);
6075 } else {
6076 IPFERROR(42);
6077 error = EIO;
6078 }
6079 break;
6080 case IPL_LOGSTATE :
6081 if (softc->ipf_running > 0) {
6082 error = ipf_state_ioctl(softc, data, cmd, mode,
6083 uid, ctx);
6084 } else {
6085 IPFERROR(43);
6086 error = EIO;
6087 }
6088 break;
6089 case IPL_LOGAUTH :
6090 if (softc->ipf_running > 0) {
6091 error = ipf_auth_ioctl(softc, data, cmd, mode,
6092 uid, ctx);
6093 } else {
6094 IPFERROR(44);
6095 error = EIO;
6096 }
6097 break;
6098 case IPL_LOGSYNC :
6099 if (softc->ipf_running > 0) {
6100 error = ipf_sync_ioctl(softc, data, cmd, mode,
6101 uid, ctx);
6102 } else {
6103 error = EIO;
6104 IPFERROR(45);
6105 }
6106 break;
6107 case IPL_LOGSCAN :
6108 #ifdef IPFILTER_SCAN
6109 if (softc->ipf_running > 0)
6110 error = ipf_scan_ioctl(softc, data, cmd, mode,
6111 uid, ctx);
6112 else
6113 #endif
6114 {
6115 error = EIO;
6116 IPFERROR(46);
6117 }
6118 break;
6119 case IPL_LOGLOOKUP :
6120 if (softc->ipf_running > 0) {
6121 error = ipf_lookup_ioctl(softc, data, cmd, mode,
6122 uid, ctx);
6123 } else {
6124 error = EIO;
6125 IPFERROR(47);
6126 }
6127 break;
6128 default :
6129 IPFERROR(48);
6130 error = EIO;
6131 break;
6132 }
6133
6134 return error;
6135 }
6136
6137
6138 /*
6139 * This array defines the expected size of objects coming into the kernel
6140 * for the various recognised object types. The first column is flags (see
6141 * below), 2nd column is current size, 3rd column is the version number of
6142 * when the current size became current.
6143 * Flags:
6144 * 1 = minimum size, not absolute size
6145 */
6146 static int ipf_objbytes[IPFOBJ_COUNT][3] = {
6147 { 1, sizeof(struct frentry), 5010000 }, /* 0 */
6148 { 1, sizeof(struct friostat), 5010000 },
6149 { 0, sizeof(struct fr_info), 5010000 },
6150 { 0, sizeof(struct ipf_authstat), 4010100 },
6151 { 0, sizeof(struct ipfrstat), 5010000 },
6152 { 1, sizeof(struct ipnat), 5010000 }, /* 5 */
6153 { 0, sizeof(struct natstat), 5010000 },
6154 { 0, sizeof(struct ipstate_save), 5010000 },
6155 { 1, sizeof(struct nat_save), 5010000 },
6156 { 0, sizeof(struct natlookup), 5010000 },
6157 { 1, sizeof(struct ipstate), 5010000 }, /* 10 */
6158 { 0, sizeof(struct ips_stat), 5010000 },
6159 { 0, sizeof(struct frauth), 5010000 },
6160 { 0, sizeof(struct ipftune), 4010100 },
6161 { 0, sizeof(struct nat), 5010000 },
6162 { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */
6163 { 0, sizeof(struct ipfgeniter), 4011400 },
6164 { 0, sizeof(struct ipftable), 4011400 },
6165 { 0, sizeof(struct ipflookupiter), 4011400 },
6166 { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES },
6167 { 1, 0, 0 }, /* IPFEXPR */
6168 { 0, 0, 0 }, /* PROXYCTL */
6169 { 0, sizeof (struct fripf), 5010000 }
6170 };
6171
6172
6173 /* ------------------------------------------------------------------------ */
6174 /* Function: ipf_inobj */
6175 /* Returns: int - 0 = success, else failure */
6176 /* Parameters: softc(I) - soft context pointerto work with */
6177 /* data(I) - pointer to ioctl data */
6178 /* objp(O) - where to store ipfobj structure */
6179 /* ptr(I) - pointer to data to copy out */
6180 /* type(I) - type of structure being moved */
6181 /* */
6182 /* Copy in the contents of what the ipfobj_t points to. In future, we */
6183 /* add things to check for version numbers, sizes, etc, to make it backward */
6184 /* compatible at the ABI for user land. */
6185 /* If objp is not NULL then we assume that the caller wants to see what is */
6186 /* in the ipfobj_t structure being copied in. As an example, this can tell */
6187 /* the caller what version of ipfilter the ioctl program was written to. */
6188 /* ------------------------------------------------------------------------ */
6189 int
6190 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6191 int type)
6192 {
6193 ipfobj_t obj;
6194 int error;
6195 int size;
6196
6197 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6198 IPFERROR(49);
6199 return EINVAL;
6200 }
6201
6202 if (objp == NULL)
6203 objp = &obj;
6204 error = BCOPYIN(data, objp, sizeof(*objp));
6205 if (error != 0) {
6206 IPFERROR(124);
6207 return EFAULT;
6208 }
6209
6210 if (objp->ipfo_type != type) {
6211 IPFERROR(50);
6212 return EINVAL;
6213 }
6214
6215 if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6216 if ((ipf_objbytes[type][0] & 1) != 0) {
6217 if (objp->ipfo_size < ipf_objbytes[type][1]) {
6218 IPFERROR(51);
6219 return EINVAL;
6220 }
6221 size = ipf_objbytes[type][1];
6222 } else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6223 size = objp->ipfo_size;
6224 } else {
6225 IPFERROR(52);
6226 return EINVAL;
6227 }
6228 error = COPYIN(objp->ipfo_ptr, ptr, size);
6229 if (error != 0) {
6230 IPFERROR(55);
6231 error = EFAULT;
6232 }
6233 } else {
6234 #ifdef IPFILTER_COMPAT
6235 error = ipf_in_compat(softc, objp, ptr, 0);
6236 #else
6237 IPFERROR(54);
6238 error = EINVAL;
6239 #endif
6240 }
6241 return error;
6242 }
6243
6244
6245 /* ------------------------------------------------------------------------ */
6246 /* Function: ipf_inobjsz */
6247 /* Returns: int - 0 = success, else failure */
6248 /* Parameters: softc(I) - soft context pointerto work with */
6249 /* data(I) - pointer to ioctl data */
6250 /* ptr(I) - pointer to store real data in */
6251 /* type(I) - type of structure being moved */
6252 /* sz(I) - size of data to copy */
6253 /* */
6254 /* As per ipf_inobj, except the size of the object to copy in is passed in */
6255 /* but it must not be smaller than the size defined for the type and the */
6256 /* type must allow for varied sized objects. The extra requirement here is */
6257 /* that sz must match the size of the object being passed in - this is not */
6258 /* not possible nor required in ipf_inobj(). */
6259 /* ------------------------------------------------------------------------ */
6260 int
6261 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6262 {
6263 ipfobj_t obj;
6264 int error;
6265
6266 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6267 IPFERROR(56);
6268 return EINVAL;
6269 }
6270
6271 error = BCOPYIN(data, &obj, sizeof(obj));
6272 if (error != 0) {
6273 IPFERROR(125);
6274 return EFAULT;
6275 }
6276
6277 if (obj.ipfo_type != type) {
6278 IPFERROR(58);
6279 return EINVAL;
6280 }
6281
6282 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6283 if (((ipf_objbytes[type][0] & 1) == 0) ||
6284 (sz < ipf_objbytes[type][1])) {
6285 IPFERROR(57);
6286 return EINVAL;
6287 }
6288 error = COPYIN(obj.ipfo_ptr, ptr, sz);
6289 if (error != 0) {
6290 IPFERROR(61);
6291 error = EFAULT;
6292 }
6293 } else {
6294 #ifdef IPFILTER_COMPAT
6295 error = ipf_in_compat(softc, &obj, ptr, sz);
6296 #else
6297 IPFERROR(60);
6298 error = EINVAL;
6299 #endif
6300 }
6301 return error;
6302 }
6303
6304
6305 /* ------------------------------------------------------------------------ */
6306 /* Function: ipf_outobjsz */
6307 /* Returns: int - 0 = success, else failure */
6308 /* Parameters: data(I) - pointer to ioctl data */
6309 /* ptr(I) - pointer to store real data in */
6310 /* type(I) - type of structure being moved */
6311 /* sz(I) - size of data to copy */
6312 /* */
6313 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6314 /* but it must not be smaller than the size defined for the type and the */
6315 /* type must allow for varied sized objects. The extra requirement here is */
6316 /* that sz must match the size of the object being passed in - this is not */
6317 /* not possible nor required in ipf_outobj(). */
6318 /* ------------------------------------------------------------------------ */
6319 int
6320 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6321 {
6322 ipfobj_t obj;
6323 int error;
6324
6325 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6326 IPFERROR(62);
6327 return EINVAL;
6328 }
6329
6330 error = BCOPYIN(data, &obj, sizeof(obj));
6331 if (error != 0) {
6332 IPFERROR(127);
6333 return EFAULT;
6334 }
6335
6336 if (obj.ipfo_type != type) {
6337 IPFERROR(63);
6338 return EINVAL;
6339 }
6340
6341 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6342 if (((ipf_objbytes[type][0] & 1) == 0) ||
6343 (sz < ipf_objbytes[type][1])) {
6344 IPFERROR(146);
6345 return EINVAL;
6346 }
6347 error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6348 if (error != 0) {
6349 IPFERROR(66);
6350 error = EFAULT;
6351 }
6352 } else {
6353 #ifdef IPFILTER_COMPAT
6354 error = ipf_out_compat(softc, &obj, ptr);
6355 #else
6356 IPFERROR(65);
6357 error = EINVAL;
6358 #endif
6359 }
6360 return error;
6361 }
6362
6363
6364 /* ------------------------------------------------------------------------ */
6365 /* Function: ipf_outobj */
6366 /* Returns: int - 0 = success, else failure */
6367 /* Parameters: data(I) - pointer to ioctl data */
6368 /* ptr(I) - pointer to store real data in */
6369 /* type(I) - type of structure being moved */
6370 /* */
6371 /* Copy out the contents of what ptr is to where ipfobj points to. In */
6372 /* future, we add things to check for version numbers, sizes, etc, to make */
6373 /* it backward compatible at the ABI for user land. */
6374 /* ------------------------------------------------------------------------ */
6375 int
6376 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6377 {
6378 ipfobj_t obj;
6379 int error;
6380
6381 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6382 IPFERROR(67);
6383 return EINVAL;
6384 }
6385
6386 error = BCOPYIN(data, &obj, sizeof(obj));
6387 if (error != 0) {
6388 IPFERROR(126);
6389 return EFAULT;
6390 }
6391
6392 if (obj.ipfo_type != type) {
6393 IPFERROR(68);
6394 return EINVAL;
6395 }
6396
6397 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6398 if ((ipf_objbytes[type][0] & 1) != 0) {
6399 if (obj.ipfo_size < ipf_objbytes[type][1]) {
6400 IPFERROR(69);
6401 return EINVAL;
6402 }
6403 } else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6404 IPFERROR(70);
6405 return EINVAL;
6406 }
6407
6408 error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6409 if (error != 0) {
6410 IPFERROR(73);
6411 error = EFAULT;
6412 }
6413 } else {
6414 #ifdef IPFILTER_COMPAT
6415 error = ipf_out_compat(softc, &obj, ptr);
6416 #else
6417 IPFERROR(72);
6418 error = EINVAL;
6419 #endif
6420 }
6421 return error;
6422 }
6423
6424
6425 /* ------------------------------------------------------------------------ */
6426 /* Function: ipf_outobjk */
6427 /* Returns: int - 0 = success, else failure */
6428 /* Parameters: obj(I) - pointer to data description structure */
6429 /* ptr(I) - pointer to kernel data to copy out */
6430 /* */
6431 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6432 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6433 /* already populated with information and now we just need to use it. */
6434 /* There is no need for this function to have a "type" parameter as there */
6435 /* is no point in validating information that comes from the kernel with */
6436 /* itself. */
6437 /* ------------------------------------------------------------------------ */
6438 int
6439 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6440 {
6441 int type = obj->ipfo_type;
6442 int error;
6443
6444 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6445 IPFERROR(147);
6446 return EINVAL;
6447 }
6448
6449 if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6450 if ((ipf_objbytes[type][0] & 1) != 0) {
6451 if (obj->ipfo_size < ipf_objbytes[type][1]) {
6452 IPFERROR(148);
6453 return EINVAL;
6454 }
6455
6456 } else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6457 IPFERROR(149);
6458 return EINVAL;
6459 }
6460
6461 error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6462 if (error != 0) {
6463 IPFERROR(150);
6464 error = EFAULT;
6465 }
6466 } else {
6467 #ifdef IPFILTER_COMPAT
6468 error = ipf_out_compat(softc, obj, ptr);
6469 #else
6470 IPFERROR(151);
6471 error = EINVAL;
6472 #endif
6473 }
6474 return error;
6475 }
6476
6477
6478 /* ------------------------------------------------------------------------ */
6479 /* Function: ipf_checkl4sum */
6480 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */
6481 /* Parameters: fin(I) - pointer to packet information */
6482 /* */
6483 /* If possible, calculate the layer 4 checksum for the packet. If this is */
6484 /* not possible, return without indicating a failure or success but in a */
6485 /* way that is ditinguishable. This function should only be called by the */
6486 /* ipf_checkv6sum() for each platform. */
6487 /* ------------------------------------------------------------------------ */
6488 int
6489 ipf_checkl4sum(fr_info_t *fin)
6490 {
6491 u_short sum, hdrsum, *csump;
6492 udphdr_t *udp;
6493 int dosum;
6494
6495 /*
6496 * If the TCP packet isn't a fragment, isn't too short and otherwise
6497 * isn't already considered "bad", then validate the checksum. If
6498 * this check fails then considered the packet to be "bad".
6499 */
6500 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6501 return 1;
6502
6503 csump = NULL;
6504 hdrsum = 0;
6505 dosum = 0;
6506 sum = 0;
6507
6508 switch (fin->fin_p)
6509 {
6510 case IPPROTO_TCP :
6511 csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6512 dosum = 1;
6513 break;
6514
6515 case IPPROTO_UDP :
6516 udp = fin->fin_dp;
6517 if (udp->uh_sum != 0) {
6518 csump = &udp->uh_sum;
6519 dosum = 1;
6520 }
6521 break;
6522
6523 #ifdef USE_INET6
6524 case IPPROTO_ICMPV6 :
6525 csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6526 dosum = 1;
6527 break;
6528 #endif
6529
6530 case IPPROTO_ICMP :
6531 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6532 dosum = 1;
6533 break;
6534
6535 default :
6536 return 1;
6537 /*NOTREACHED*/
6538 }
6539
6540 if (csump != NULL) {
6541 hdrsum = *csump;
6542 if (fin->fin_p == IPPROTO_UDP && hdrsum == 0xffff)
6543 hdrsum = 0x0000;
6544 }
6545
6546 if (dosum) {
6547 sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6548 }
6549 #if !defined(_KERNEL)
6550 if (sum == hdrsum) {
6551 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6552 } else {
6553 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6554 }
6555 #endif
6556 DT2(l4sums, u_short, hdrsum, u_short, sum);
6557 if (hdrsum == sum) {
6558 fin->fin_cksum = FI_CK_SUMOK;
6559 return 0;
6560 }
6561 fin->fin_cksum = FI_CK_BAD;
6562 return -1;
6563 }
6564
6565
6566 /* ------------------------------------------------------------------------ */
6567 /* Function: ipf_ifpfillv4addr */
6568 /* Returns: int - 0 = address update, -1 = address not updated */
6569 /* Parameters: atype(I) - type of network address update to perform */
6570 /* sin(I) - pointer to source of address information */
6571 /* mask(I) - pointer to source of netmask information */
6572 /* inp(I) - pointer to destination address store */
6573 /* inpmask(I) - pointer to destination netmask store */
6574 /* */
6575 /* Given a type of network address update (atype) to perform, copy */
6576 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6577 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6578 /* which case the operation fails. For all values of atype other than */
6579 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6580 /* value. */
6581 /* ------------------------------------------------------------------------ */
6582 int
6583 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6584 struct in_addr *inp, struct in_addr *inpmask)
6585 {
6586 if (inpmask != NULL && atype != FRI_NETMASKED)
6587 inpmask->s_addr = 0xffffffff;
6588
6589 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6590 if (atype == FRI_NETMASKED) {
6591 if (inpmask == NULL)
6592 return -1;
6593 inpmask->s_addr = mask->sin_addr.s_addr;
6594 }
6595 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6596 } else {
6597 inp->s_addr = sin->sin_addr.s_addr;
6598 }
6599 return 0;
6600 }
6601
6602
6603 #ifdef USE_INET6
6604 /* ------------------------------------------------------------------------ */
6605 /* Function: ipf_ifpfillv6addr */
6606 /* Returns: int - 0 = address update, -1 = address not updated */
6607 /* Parameters: atype(I) - type of network address update to perform */
6608 /* sin(I) - pointer to source of address information */
6609 /* mask(I) - pointer to source of netmask information */
6610 /* inp(I) - pointer to destination address store */
6611 /* inpmask(I) - pointer to destination netmask store */
6612 /* */
6613 /* Given a type of network address update (atype) to perform, copy */
6614 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6615 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6616 /* which case the operation fails. For all values of atype other than */
6617 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6618 /* value. */
6619 /* ------------------------------------------------------------------------ */
6620 int
6621 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6622 struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6623 {
6624 i6addr_t *src, *and;
6625
6626 src = (i6addr_t *)&sin->sin6_addr;
6627 and = (i6addr_t *)&mask->sin6_addr;
6628
6629 if (inpmask != NULL && atype != FRI_NETMASKED) {
6630 inpmask->i6[0] = 0xffffffff;
6631 inpmask->i6[1] = 0xffffffff;
6632 inpmask->i6[2] = 0xffffffff;
6633 inpmask->i6[3] = 0xffffffff;
6634 }
6635
6636 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6637 if (atype == FRI_NETMASKED) {
6638 if (inpmask == NULL)
6639 return -1;
6640 inpmask->i6[0] = and->i6[0];
6641 inpmask->i6[1] = and->i6[1];
6642 inpmask->i6[2] = and->i6[2];
6643 inpmask->i6[3] = and->i6[3];
6644 }
6645
6646 inp->i6[0] = src->i6[0] & and->i6[0];
6647 inp->i6[1] = src->i6[1] & and->i6[1];
6648 inp->i6[2] = src->i6[2] & and->i6[2];
6649 inp->i6[3] = src->i6[3] & and->i6[3];
6650 } else {
6651 inp->i6[0] = src->i6[0];
6652 inp->i6[1] = src->i6[1];
6653 inp->i6[2] = src->i6[2];
6654 inp->i6[3] = src->i6[3];
6655 }
6656 return 0;
6657 }
6658 #endif
6659
6660
6661 /* ------------------------------------------------------------------------ */
6662 /* Function: ipf_matchtag */
6663 /* Returns: 0 == mismatch, 1 == match. */
6664 /* Parameters: tag1(I) - pointer to first tag to compare */
6665 /* tag2(I) - pointer to second tag to compare */
6666 /* */
6667 /* Returns true (non-zero) or false(0) if the two tag structures can be */
6668 /* considered to be a match or not match, respectively. The tag is 16 */
6669 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */
6670 /* compare the ints instead, for speed. tag1 is the master of the */
6671 /* comparison. This function should only be called with both tag1 and tag2 */
6672 /* as non-NULL pointers. */
6673 /* ------------------------------------------------------------------------ */
6674 int
6675 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6676 {
6677 if (tag1 == tag2)
6678 return 1;
6679
6680 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6681 return 1;
6682
6683 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6684 (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6685 (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6686 (tag1->ipt_num[3] == tag2->ipt_num[3]))
6687 return 1;
6688 return 0;
6689 }
6690
6691
6692 /* ------------------------------------------------------------------------ */
6693 /* Function: ipf_coalesce */
6694 /* Returns: 1 == success, -1 == failure, 0 == no change */
6695 /* Parameters: fin(I) - pointer to packet information */
6696 /* */
6697 /* Attempt to get all of the packet data into a single, contiguous buffer. */
6698 /* If this call returns a failure then the buffers have also been freed. */
6699 /* ------------------------------------------------------------------------ */
6700 int
6701 ipf_coalesce(fr_info_t *fin)
6702 {
6703
6704 if ((fin->fin_flx & FI_COALESCE) != 0)
6705 return 1;
6706
6707 /*
6708 * If the mbuf pointers indicate that there is no mbuf to work with,
6709 * return but do not indicate success or failure.
6710 */
6711 if (fin->fin_m == NULL || fin->fin_mp == NULL)
6712 return 0;
6713
6714 #if defined(_KERNEL)
6715 if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6716 ipf_main_softc_t *softc = fin->fin_main_soft;
6717
6718 DT1(frb_coalesce, fr_info_t *, fin);
6719 LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6720 # ifdef MENTAT
6721 FREE_MB_T(*fin->fin_mp);
6722 # endif
6723 fin->fin_reason = FRB_COALESCE;
6724 *fin->fin_mp = NULL;
6725 fin->fin_m = NULL;
6726 return -1;
6727 }
6728 #else
6729 fin = fin; /* LINT */
6730 #endif
6731 return 1;
6732 }
6733
6734
6735 /*
6736 * The following table lists all of the tunable variables that can be
6737 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row
6738 * in the table below is as follows:
6739 *
6740 * pointer to value, name of value, minimum, maximum, size of the value's
6741 * container, value attribute flags
6742 *
6743 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6744 * means the value can only be written to when IPFilter is loaded but disabled.
6745 * The obvious implication is if neither of these are set then the value can be
6746 * changed at any time without harm.
6747 */
6748
6749
6750 /* ------------------------------------------------------------------------ */
6751 /* Function: ipf_tune_findbycookie */
6752 /* Returns: NULL = search failed, else pointer to tune struct */
6753 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */
6754 /* next(O) - pointer to place to store the cookie for the */
6755 /* "next" tuneable, if it is desired. */
6756 /* */
6757 /* This function is used to walk through all of the existing tunables with */
6758 /* successive calls. It searches the known tunables for the one which has */
6759 /* a matching value for "cookie" - ie its address. When returning a match, */
6760 /* the next one to be found may be returned inside next. */
6761 /* ------------------------------------------------------------------------ */
6762 static ipftuneable_t *
6763 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6764 {
6765 ipftuneable_t *ta, **tap;
6766
6767 for (ta = *ptop; ta->ipft_name != NULL; ta++)
6768 if (ta == cookie) {
6769 if (next != NULL) {
6770 /*
6771 * If the next entry in the array has a name
6772 * present, then return a pointer to it for
6773 * where to go next, else return a pointer to
6774 * the dynaminc list as a key to search there
6775 * next. This facilitates a weak linking of
6776 * the two "lists" together.
6777 */
6778 if ((ta + 1)->ipft_name != NULL)
6779 *next = ta + 1;
6780 else
6781 *next = ptop;
6782 }
6783 return ta;
6784 }
6785
6786 for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6787 if (tap == cookie) {
6788 if (next != NULL)
6789 *next = &ta->ipft_next;
6790 return ta;
6791 }
6792
6793 if (next != NULL)
6794 *next = NULL;
6795 return NULL;
6796 }
6797
6798
6799 /* ------------------------------------------------------------------------ */
6800 /* Function: ipf_tune_findbyname */
6801 /* Returns: NULL = search failed, else pointer to tune struct */
6802 /* Parameters: name(I) - name of the tuneable entry to find. */
6803 /* */
6804 /* Search the static array of tuneables and the list of dynamic tuneables */
6805 /* for an entry with a matching name. If we can find one, return a pointer */
6806 /* to the matching structure. */
6807 /* ------------------------------------------------------------------------ */
6808 static ipftuneable_t *
6809 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6810 {
6811 ipftuneable_t *ta;
6812
6813 for (ta = top; ta != NULL; ta = ta->ipft_next)
6814 if (!strcmp(ta->ipft_name, name)) {
6815 return ta;
6816 }
6817
6818 return NULL;
6819 }
6820
6821
6822 /* ------------------------------------------------------------------------ */
6823 /* Function: ipf_tune_add_array */
6824 /* Returns: int - 0 == success, else failure */
6825 /* Parameters: newtune - pointer to new tune array to add to tuneables */
6826 /* */
6827 /* Appends tune structures from the array passed in (newtune) to the end of */
6828 /* the current list of "dynamic" tuneable parameters. */
6829 /* If any entry to be added is already present (by name) then the operation */
6830 /* is aborted - entries that have been added are removed before returning. */
6831 /* An entry with no name (NULL) is used as the indication that the end of */
6832 /* the array has been reached. */
6833 /* ------------------------------------------------------------------------ */
6834 int
6835 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6836 {
6837 ipftuneable_t *nt, *dt;
6838 int error = 0;
6839
6840 for (nt = newtune; nt->ipft_name != NULL; nt++) {
6841 error = ipf_tune_add(softc, nt);
6842 if (error != 0) {
6843 for (dt = newtune; dt != nt; dt++) {
6844 (void) ipf_tune_del(softc, dt);
6845 }
6846 }
6847 }
6848
6849 return error;
6850 }
6851
6852
6853 /* ------------------------------------------------------------------------ */
6854 /* Function: ipf_tune_array_link */
6855 /* Returns: 0 == success, -1 == failure */
6856 /* Parameters: softc(I) - soft context pointerto work with */
6857 /* array(I) - pointer to an array of tuneables */
6858 /* */
6859 /* Given an array of tunables (array), append them to the current list of */
6860 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */
6861 /* the array for being appended to the list, initialise all of the next */
6862 /* pointers so we don't need to walk parts of it with ++ and others with */
6863 /* next. The array is expected to have an entry with a NULL name as the */
6864 /* terminator. Trying to add an array with no non-NULL names will return as */
6865 /* a failure. */
6866 /* ------------------------------------------------------------------------ */
6867 int
6868 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6869 {
6870 ipftuneable_t *t, **p;
6871
6872 t = array;
6873 if (t->ipft_name == NULL)
6874 return -1;
6875
6876 for (; t[1].ipft_name != NULL; t++)
6877 t[0].ipft_next = &t[1];
6878 t->ipft_next = NULL;
6879
6880 /*
6881 * Since a pointer to the last entry isn't kept, we need to find it
6882 * each time we want to add new variables to the list.
6883 */
6884 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6885 if (t->ipft_name == NULL)
6886 break;
6887 *p = array;
6888
6889 return 0;
6890 }
6891
6892
6893 /* ------------------------------------------------------------------------ */
6894 /* Function: ipf_tune_array_unlink */
6895 /* Returns: 0 == success, -1 == failure */
6896 /* Parameters: softc(I) - soft context pointerto work with */
6897 /* array(I) - pointer to an array of tuneables */
6898 /* */
6899 /* ------------------------------------------------------------------------ */
6900 int
6901 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6902 {
6903 ipftuneable_t *t, **p;
6904
6905 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6906 if (t == array)
6907 break;
6908 if (t == NULL)
6909 return -1;
6910
6911 for (; t[1].ipft_name != NULL; t++)
6912 ;
6913
6914 *p = t->ipft_next;
6915
6916 return 0;
6917 }
6918
6919
6920 /* ------------------------------------------------------------------------ */
6921 /* Function: ipf_tune_array_copy */
6922 /* Returns: NULL = failure, else pointer to new array */
6923 /* Parameters: base(I) - pointer to structure base */
6924 /* size(I) - size of the array at template */
6925 /* template(I) - original array to copy */
6926 /* */
6927 /* Allocate memory for a new set of tuneable values and copy everything */
6928 /* from template into the new region of memory. The new region is full of */
6929 /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */
6930 /* */
6931 /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */
6932 /* In the array template, ipftp_offset is the offset (in bytes) of the */
6933 /* location of the tuneable value inside the structure pointed to by base. */
6934 /* As ipftp_offset is a union over the pointers to the tuneable values, if */
6935 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */
6936 /* ipftp_void that points to the stored value. */
6937 /* ------------------------------------------------------------------------ */
6938 ipftuneable_t *
6939 ipf_tune_array_copy(void *base, size_t size, const ipftuneable_t *template)
6940 {
6941 ipftuneable_t *copy;
6942 int i;
6943
6944
6945 KMALLOCS(copy, ipftuneable_t *, size);
6946 if (copy == NULL) {
6947 return NULL;
6948 }
6949 bcopy(template, copy, size);
6950
6951 for (i = 0; copy[i].ipft_name; i++) {
6952 copy[i].ipft_una.ipftp_offset += (u_long)base;
6953 copy[i].ipft_next = copy + i + 1;
6954 }
6955
6956 return copy;
6957 }
6958
6959
6960 /* ------------------------------------------------------------------------ */
6961 /* Function: ipf_tune_add */
6962 /* Returns: int - 0 == success, else failure */
6963 /* Parameters: newtune - pointer to new tune entry to add to tuneables */
6964 /* */
6965 /* Appends tune structures from the array passed in (newtune) to the end of */
6966 /* the current list of "dynamic" tuneable parameters. Once added, the */
6967 /* owner of the object is not expected to ever change "ipft_next". */
6968 /* ------------------------------------------------------------------------ */
6969 int
6970 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6971 {
6972 ipftuneable_t *ta, **tap;
6973
6974 ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6975 if (ta != NULL) {
6976 IPFERROR(74);
6977 return EEXIST;
6978 }
6979
6980 for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6981 ;
6982
6983 newtune->ipft_next = NULL;
6984 *tap = newtune;
6985 return 0;
6986 }
6987
6988
6989 /* ------------------------------------------------------------------------ */
6990 /* Function: ipf_tune_del */
6991 /* Returns: int - 0 == success, else failure */
6992 /* Parameters: oldtune - pointer to tune entry to remove from the list of */
6993 /* current dynamic tuneables */
6994 /* */
6995 /* Search for the tune structure, by pointer, in the list of those that are */
6996 /* dynamically added at run time. If found, adjust the list so that this */
6997 /* structure is no longer part of it. */
6998 /* ------------------------------------------------------------------------ */
6999 int
7000 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7001 {
7002 ipftuneable_t *ta, **tap;
7003 int error = 0;
7004
7005 for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7006 tap = &ta->ipft_next) {
7007 if (ta == oldtune) {
7008 *tap = oldtune->ipft_next;
7009 oldtune->ipft_next = NULL;
7010 break;
7011 }
7012 }
7013
7014 if (ta == NULL) {
7015 error = ESRCH;
7016 IPFERROR(75);
7017 }
7018 return error;
7019 }
7020
7021
7022 /* ------------------------------------------------------------------------ */
7023 /* Function: ipf_tune_del_array */
7024 /* Returns: int - 0 == success, else failure */
7025 /* Parameters: oldtune - pointer to tuneables array */
7026 /* */
7027 /* Remove each tuneable entry in the array from the list of "dynamic" */
7028 /* tunables. If one entry should fail to be found, an error will be */
7029 /* returned and no further ones removed. */
7030 /* An entry with a NULL name is used as the indicator of the last entry in */
7031 /* the array. */
7032 /* ------------------------------------------------------------------------ */
7033 int
7034 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7035 {
7036 ipftuneable_t *ot;
7037 int error = 0;
7038
7039 for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7040 error = ipf_tune_del(softc, ot);
7041 if (error != 0)
7042 break;
7043 }
7044
7045 return error;
7046
7047 }
7048
7049
7050 /* ------------------------------------------------------------------------ */
7051 /* Function: ipf_tune */
7052 /* Returns: int - 0 == success, else failure */
7053 /* Parameters: cmd(I) - ioctl command number */
7054 /* data(I) - pointer to ioctl data structure */
7055 /* */
7056 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */
7057 /* three ioctls provide the means to access and control global variables */
7058 /* within IPFilter, allowing (for example) timeouts and table sizes to be */
7059 /* changed without rebooting, reloading or recompiling. The initialisation */
7060 /* and 'destruction' routines of the various components of ipfilter are all */
7061 /* each responsible for handling their own values being too big. */
7062 /* ------------------------------------------------------------------------ */
7063 int
7064 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
7065 {
7066 ipftuneable_t *ta;
7067 ipftune_t tu;
7068 void *cookie;
7069 int error;
7070
7071 error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7072 if (error != 0)
7073 return error;
7074
7075 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7076 cookie = tu.ipft_cookie;
7077 ta = NULL;
7078
7079 switch (cmd)
7080 {
7081 case SIOCIPFGETNEXT :
7082 /*
7083 * If cookie is non-NULL, assume it to be a pointer to the last
7084 * entry we looked at, so find it (if possible) and return a
7085 * pointer to the next one after it. The last entry in the
7086 * the table is a NULL entry, so when we get to it, set cookie
7087 * to NULL and return that, indicating end of list, erstwhile
7088 * if we come in with cookie set to NULL, we are starting anew
7089 * at the front of the list.
7090 */
7091 if (cookie != NULL) {
7092 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7093 cookie, &tu.ipft_cookie);
7094 } else {
7095 ta = softc->ipf_tuners;
7096 tu.ipft_cookie = ta + 1;
7097 }
7098 if (ta != NULL) {
7099 /*
7100 * Entry found, but does the data pointed to by that
7101 * row fit in what we can return?
7102 */
7103 if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7104 IPFERROR(76);
7105 return EINVAL;
7106 }
7107
7108 tu.ipft_vlong = 0;
7109 if (ta->ipft_sz == sizeof(u_long))
7110 tu.ipft_vlong = *ta->ipft_plong;
7111 else if (ta->ipft_sz == sizeof(u_int))
7112 tu.ipft_vint = *ta->ipft_pint;
7113 else if (ta->ipft_sz == sizeof(u_short))
7114 tu.ipft_vshort = *ta->ipft_pshort;
7115 else if (ta->ipft_sz == sizeof(u_char))
7116 tu.ipft_vchar = *ta->ipft_pchar;
7117
7118 tu.ipft_sz = ta->ipft_sz;
7119 tu.ipft_min = ta->ipft_min;
7120 tu.ipft_max = ta->ipft_max;
7121 tu.ipft_flags = ta->ipft_flags;
7122 bcopy(ta->ipft_name, tu.ipft_name,
7123 MIN(sizeof(tu.ipft_name),
7124 strlen(ta->ipft_name) + 1));
7125 }
7126 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7127 break;
7128
7129 case SIOCIPFGET :
7130 case SIOCIPFSET :
7131 /*
7132 * Search by name or by cookie value for a particular entry
7133 * in the tuning paramter table.
7134 */
7135 IPFERROR(77);
7136 error = ESRCH;
7137 if (cookie != NULL) {
7138 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7139 cookie, NULL);
7140 if (ta != NULL)
7141 error = 0;
7142 } else if (tu.ipft_name[0] != '\0') {
7143 ta = ipf_tune_findbyname(softc->ipf_tuners,
7144 tu.ipft_name);
7145 if (ta != NULL)
7146 error = 0;
7147 }
7148 if (error != 0)
7149 break;
7150
7151 if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7152 /*
7153 * Fetch the tuning parameters for a particular value
7154 */
7155 tu.ipft_vlong = 0;
7156 if (ta->ipft_sz == sizeof(u_long))
7157 tu.ipft_vlong = *ta->ipft_plong;
7158 else if (ta->ipft_sz == sizeof(u_int))
7159 tu.ipft_vint = *ta->ipft_pint;
7160 else if (ta->ipft_sz == sizeof(u_short))
7161 tu.ipft_vshort = *ta->ipft_pshort;
7162 else if (ta->ipft_sz == sizeof(u_char))
7163 tu.ipft_vchar = *ta->ipft_pchar;
7164 tu.ipft_cookie = ta;
7165 tu.ipft_sz = ta->ipft_sz;
7166 tu.ipft_min = ta->ipft_min;
7167 tu.ipft_max = ta->ipft_max;
7168 tu.ipft_flags = ta->ipft_flags;
7169 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7170
7171 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7172 /*
7173 * Set an internal parameter. The hard part here is
7174 * getting the new value safely and correctly out of
7175 * the kernel (given we only know its size, not type.)
7176 */
7177 u_long in;
7178
7179 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7180 (softc->ipf_running > 0)) {
7181 IPFERROR(78);
7182 error = EBUSY;
7183 break;
7184 }
7185
7186 in = tu.ipft_vlong;
7187 if (in < ta->ipft_min || in > ta->ipft_max) {
7188 IPFERROR(79);
7189 error = EINVAL;
7190 break;
7191 }
7192
7193 if (ta->ipft_func != NULL) {
7194 SPL_INT(s);
7195
7196 SPL_NET(s);
7197 error = (*ta->ipft_func)(softc, ta,
7198 &tu.ipft_un);
7199 SPL_X(s);
7200
7201 } else if (ta->ipft_sz == sizeof(u_long)) {
7202 tu.ipft_vlong = *ta->ipft_plong;
7203 *ta->ipft_plong = in;
7204
7205 } else if (ta->ipft_sz == sizeof(u_int)) {
7206 tu.ipft_vint = *ta->ipft_pint;
7207 *ta->ipft_pint = (u_int)(in & 0xffffffff);
7208
7209 } else if (ta->ipft_sz == sizeof(u_short)) {
7210 tu.ipft_vshort = *ta->ipft_pshort;
7211 *ta->ipft_pshort = (u_short)(in & 0xffff);
7212
7213 } else if (ta->ipft_sz == sizeof(u_char)) {
7214 tu.ipft_vchar = *ta->ipft_pchar;
7215 *ta->ipft_pchar = (u_char)(in & 0xff);
7216 }
7217 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7218 }
7219 break;
7220
7221 default :
7222 IPFERROR(80);
7223 error = EINVAL;
7224 break;
7225 }
7226
7227 return error;
7228 }
7229
7230
7231 /* ------------------------------------------------------------------------ */
7232 /* Function: ipf_zerostats */
7233 /* Returns: int - 0 = success, else failure */
7234 /* Parameters: data(O) - pointer to pointer for copying data back to */
7235 /* */
7236 /* Copies the current statistics out to userspace and then zero's the */
7237 /* current ones in the kernel. The lock is only held across the bzero() as */
7238 /* the copyout may result in paging (ie network activity.) */
7239 /* ------------------------------------------------------------------------ */
7240 int
7241 ipf_zerostats(ipf_main_softc_t *softc, void *data)
7242 {
7243 friostat_t fio;
7244 ipfobj_t obj;
7245 int error;
7246
7247 error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7248 if (error != 0)
7249 return error;
7250 ipf_getstat(softc, &fio, obj.ipfo_rev);
7251 error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7252 if (error != 0)
7253 return error;
7254
7255 WRITE_ENTER(&softc->ipf_mutex);
7256 bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7257 RWLOCK_EXIT(&softc->ipf_mutex);
7258
7259 return 0;
7260 }
7261
7262
7263 /* ------------------------------------------------------------------------ */
7264 /* Function: ipf_resolvedest */
7265 /* Returns: Nil */
7266 /* Parameters: softc(I) - pointer to soft context main structure */
7267 /* base(I) - where strings are stored */
7268 /* fdp(IO) - pointer to destination information to resolve */
7269 /* v(I) - IP protocol version to match */
7270 /* */
7271 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7272 /* if a matching name can be found for the particular IP protocol version */
7273 /* then store the interface pointer in the frdest struct. If no match is */
7274 /* found, then set the interface pointer to be -1 as NULL is considered to */
7275 /* indicate there is no information at all in the structure. */
7276 /* ------------------------------------------------------------------------ */
7277 int
7278 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7279 {
7280 int errval = 0;
7281 void *ifp;
7282
7283 ifp = NULL;
7284
7285 if (fdp->fd_name != -1) {
7286 if (fdp->fd_type == FRD_DSTLIST) {
7287 ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7288 IPLT_DSTLIST,
7289 base + fdp->fd_name,
7290 NULL);
7291 if (ifp == NULL) {
7292 IPFERROR(144);
7293 errval = ESRCH;
7294 }
7295 } else {
7296 ifp = GETIFP(base + fdp->fd_name, v);
7297 }
7298 }
7299 fdp->fd_ptr = ifp;
7300
7301 return errval;
7302 }
7303
7304
7305 /* ------------------------------------------------------------------------ */
7306 /* Function: ipf_resolvenic */
7307 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */
7308 /* pointer to interface structure for NIC */
7309 /* Parameters: softc(I)- pointer to soft context main structure */
7310 /* name(I) - complete interface name */
7311 /* v(I) - IP protocol version */
7312 /* */
7313 /* Look for a network interface structure that firstly has a matching name */
7314 /* to that passed in and that is also being used for that IP protocol */
7315 /* version (necessary on some platforms where there are separate listings */
7316 /* for both IPv4 and IPv6 on the same physical NIC. */
7317 /* */
7318 /* ------------------------------------------------------------------------ */
7319 void *
7320 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7321 {
7322 void *nic;
7323
7324 softc = softc; /* gcc -Wextra */
7325 if (name[0] == '\0')
7326 return NULL;
7327
7328 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7329 return NULL;
7330 }
7331
7332 nic = GETIFP(name, v);
7333 if (nic == NULL)
7334 nic = (void *)-1;
7335 return nic;
7336 }
7337
7338
7339 /* ------------------------------------------------------------------------ */
7340 /* Function: ipf_token_expire */
7341 /* Returns: None. */
7342 /* Parameters: softc(I) - pointer to soft context main structure */
7343 /* */
7344 /* This function is run every ipf tick to see if there are any tokens that */
7345 /* have been held for too long and need to be freed up. */
7346 /* ------------------------------------------------------------------------ */
7347 void
7348 ipf_token_expire(ipf_main_softc_t *softc)
7349 {
7350 ipftoken_t *it;
7351
7352 WRITE_ENTER(&softc->ipf_tokens);
7353 while ((it = softc->ipf_token_head) != NULL) {
7354 if (it->ipt_die > softc->ipf_ticks)
7355 break;
7356
7357 ipf_token_deref(softc, it);
7358 }
7359 RWLOCK_EXIT(&softc->ipf_tokens);
7360 }
7361
7362
7363 /* ------------------------------------------------------------------------ */
7364 /* Function: ipf_token_flush */
7365 /* Returns: None. */
7366 /* Parameters: softc(I) - pointer to soft context main structure */
7367 /* */
7368 /* Loop through all of the existing tokens and call deref to see if they */
7369 /* can be freed. Normally a function like this might just loop on */
7370 /* ipf_token_head but there is a chance that a token might have a ref count */
7371 /* of greater than one and in that case the the reference would drop twice */
7372 /* by code that is only entitled to drop it once. */
7373 /* ------------------------------------------------------------------------ */
7374 static void
7375 ipf_token_flush(ipf_main_softc_t *softc)
7376 {
7377 ipftoken_t *it, *next;
7378
7379 WRITE_ENTER(&softc->ipf_tokens);
7380 for (it = softc->ipf_token_head; it != NULL; it = next) {
7381 next = it->ipt_next;
7382 (void) ipf_token_deref(softc, it);
7383 }
7384 RWLOCK_EXIT(&softc->ipf_tokens);
7385 }
7386
7387
7388 /* ------------------------------------------------------------------------ */
7389 /* Function: ipf_token_del */
7390 /* Returns: int - 0 = success, else error */
7391 /* Parameters: softc(I)- pointer to soft context main structure */
7392 /* type(I) - the token type to match */
7393 /* uid(I) - uid owning the token */
7394 /* ptr(I) - context pointer for the token */
7395 /* */
7396 /* This function looks for a a token in the current list that matches up */
7397 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */
7398 /* call ipf_token_dewref() to remove it from the list. In the event that */
7399 /* the token has a reference held elsewhere, setting ipt_complete to 2 */
7400 /* enables debugging to distinguish between the two paths that ultimately */
7401 /* lead to a token to be deleted. */
7402 /* ------------------------------------------------------------------------ */
7403 int
7404 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7405 {
7406 ipftoken_t *it;
7407 int error;
7408
7409 IPFERROR(82);
7410 error = ESRCH;
7411
7412 WRITE_ENTER(&softc->ipf_tokens);
7413 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7414 if (ptr == it->ipt_ctx && type == it->ipt_type &&
7415 uid == it->ipt_uid) {
7416 it->ipt_complete = 2;
7417 ipf_token_deref(softc, it);
7418 error = 0;
7419 break;
7420 }
7421 }
7422 RWLOCK_EXIT(&softc->ipf_tokens);
7423
7424 return error;
7425 }
7426
7427
7428 /* ------------------------------------------------------------------------ */
7429 /* Function: ipf_token_mark_complete */
7430 /* Returns: None. */
7431 /* Parameters: token(I) - pointer to token structure */
7432 /* */
7433 /* Mark a token as being ineligable for being found with ipf_token_find. */
7434 /* ------------------------------------------------------------------------ */
7435 void
7436 ipf_token_mark_complete(ipftoken_t *token)
7437 {
7438 if (token->ipt_complete == 0)
7439 token->ipt_complete = 1;
7440 }
7441
7442
7443 /* ------------------------------------------------------------------------ */
7444 /* Function: ipf_token_find */
7445 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */
7446 /* Parameters: softc(I)- pointer to soft context main structure */
7447 /* type(I) - the token type to match */
7448 /* uid(I) - uid owning the token */
7449 /* ptr(I) - context pointer for the token */
7450 /* */
7451 /* This function looks for a live token in the list of current tokens that */
7452 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */
7453 /* allocated. If one is found then it is moved to the top of the list of */
7454 /* currently active tokens. */
7455 /* ------------------------------------------------------------------------ */
7456 ipftoken_t *
7457 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7458 {
7459 ipftoken_t *it, *new;
7460
7461 KMALLOC(new, ipftoken_t *);
7462 if (new != NULL)
7463 bzero((char *)new, sizeof(*new));
7464
7465 WRITE_ENTER(&softc->ipf_tokens);
7466 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7467 if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7468 (uid == it->ipt_uid) && (it->ipt_complete < 2))
7469 break;
7470 }
7471
7472 if (it == NULL) {
7473 it = new;
7474 new = NULL;
7475 if (it == NULL) {
7476 RWLOCK_EXIT(&softc->ipf_tokens);
7477 return NULL;
7478 }
7479 it->ipt_ctx = ptr;
7480 it->ipt_uid = uid;
7481 it->ipt_type = type;
7482 it->ipt_ref = 1;
7483 } else {
7484 if (new != NULL) {
7485 KFREE(new);
7486 new = NULL;
7487 }
7488
7489 if (it->ipt_complete > 0)
7490 it = NULL;
7491 else
7492 ipf_token_unlink(softc, it);
7493 }
7494
7495 if (it != NULL) {
7496 it->ipt_pnext = softc->ipf_token_tail;
7497 *softc->ipf_token_tail = it;
7498 softc->ipf_token_tail = &it->ipt_next;
7499 it->ipt_next = NULL;
7500 it->ipt_ref++;
7501
7502 it->ipt_die = softc->ipf_ticks + 20;
7503 }
7504
7505 RWLOCK_EXIT(&softc->ipf_tokens);
7506
7507 return it;
7508 }
7509
7510
7511 /* ------------------------------------------------------------------------ */
7512 /* Function: ipf_token_unlink */
7513 /* Returns: None. */
7514 /* Parameters: softc(I) - pointer to soft context main structure */
7515 /* token(I) - pointer to token structure */
7516 /* Write Locks: ipf_tokens */
7517 /* */
7518 /* This function unlinks a token structure from the linked list of tokens */
7519 /* that "own" it. The head pointer never needs to be explicitly adjusted */
7520 /* but the tail does due to the linked list implementation. */
7521 /* ------------------------------------------------------------------------ */
7522 static void
7523 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7524 {
7525
7526 if (softc->ipf_token_tail == &token->ipt_next)
7527 softc->ipf_token_tail = token->ipt_pnext;
7528
7529 *token->ipt_pnext = token->ipt_next;
7530 if (token->ipt_next != NULL)
7531 token->ipt_next->ipt_pnext = token->ipt_pnext;
7532 token->ipt_next = NULL;
7533 token->ipt_pnext = NULL;
7534 }
7535
7536
7537 /* ------------------------------------------------------------------------ */
7538 /* Function: ipf_token_deref */
7539 /* Returns: int - 0 == token freed, else reference count */
7540 /* Parameters: softc(I) - pointer to soft context main structure */
7541 /* token(I) - pointer to token structure */
7542 /* Write Locks: ipf_tokens */
7543 /* */
7544 /* Drop the reference count on the token structure and if it drops to zero, */
7545 /* call the dereference function for the token type because it is then */
7546 /* possible to free the token data structure. */
7547 /* ------------------------------------------------------------------------ */
7548 int
7549 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7550 {
7551 void *data, **datap;
7552
7553 ASSERT(token->ipt_ref > 0);
7554 token->ipt_ref--;
7555 if (token->ipt_ref > 0)
7556 return token->ipt_ref;
7557
7558 data = token->ipt_data;
7559 datap = &data;
7560
7561 if ((data != NULL) && (data != (void *)-1)) {
7562 switch (token->ipt_type)
7563 {
7564 case IPFGENITER_IPF :
7565 (void) ipf_derefrule(softc, (frentry_t **)datap);
7566 break;
7567 case IPFGENITER_IPNAT :
7568 WRITE_ENTER(&softc->ipf_nat);
7569 ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7570 RWLOCK_EXIT(&softc->ipf_nat);
7571 break;
7572 case IPFGENITER_NAT :
7573 ipf_nat_deref(softc, (nat_t **)datap);
7574 break;
7575 case IPFGENITER_STATE :
7576 ipf_state_deref(softc, (ipstate_t **)datap);
7577 break;
7578 case IPFGENITER_FRAG :
7579 ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7580 break;
7581 case IPFGENITER_NATFRAG :
7582 ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7583 break;
7584 case IPFGENITER_HOSTMAP :
7585 WRITE_ENTER(&softc->ipf_nat);
7586 ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7587 RWLOCK_EXIT(&softc->ipf_nat);
7588 break;
7589 default :
7590 ipf_lookup_iterderef(softc, token->ipt_type, data);
7591 break;
7592 }
7593 }
7594
7595 ipf_token_unlink(softc, token);
7596 KFREE(token);
7597 return 0;
7598 }
7599
7600
7601 /* ------------------------------------------------------------------------ */
7602 /* Function: ipf_nextrule */
7603 /* Returns: frentry_t * - NULL == no more rules, else pointer to next */
7604 /* Parameters: softc(I) - pointer to soft context main structure */
7605 /* fr(I) - pointer to filter rule */
7606 /* out(I) - 1 == out rules, 0 == input rules */
7607 /* */
7608 /* Starting with "fr", find the next rule to visit. This includes visiting */
7609 /* the list of rule groups if either fr is NULL (empty list) or it is the */
7610 /* last rule in the list. When walking rule lists, it is either input or */
7611 /* output rules that are returned, never both. */
7612 /* ------------------------------------------------------------------------ */
7613 static frentry_t *
7614 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit,
7615 frentry_t *fr, int out)
7616 {
7617 frentry_t *next;
7618 frgroup_t *fg;
7619
7620 if (fr != NULL && fr->fr_group != -1) {
7621 fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7622 unit, active, NULL);
7623 if (fg != NULL)
7624 fg = fg->fg_next;
7625 } else {
7626 fg = softc->ipf_groups[unit][active];
7627 }
7628
7629 while (fg != NULL) {
7630 next = fg->fg_start;
7631 while (next != NULL) {
7632 if (out) {
7633 if (next->fr_flags & FR_OUTQUE)
7634 return next;
7635 } else if (next->fr_flags & FR_INQUE) {
7636 return next;
7637 }
7638 next = next->fr_next;
7639 }
7640 if (next == NULL)
7641 fg = fg->fg_next;
7642 }
7643
7644 return NULL;
7645 }
7646
7647 /* ------------------------------------------------------------------------ */
7648 /* Function: ipf_getnextrule */
7649 /* Returns: int - 0 = success, else error */
7650 /* Parameters: softc(I)- pointer to soft context main structure */
7651 /* t(I) - pointer to destination information to resolve */
7652 /* ptr(I) - pointer to ipfobj_t to copyin from user space */
7653 /* */
7654 /* This function's first job is to bring in the ipfruleiter_t structure via */
7655 /* the ipfobj_t structure to determine what should be the next rule to */
7656 /* return. Once the ipfruleiter_t has been brought in, it then tries to */
7657 /* find the 'next rule'. This may include searching rule group lists or */
7658 /* just be as simple as looking at the 'next' field in the rule structure. */
7659 /* When we have found the rule to return, increase its reference count and */
7660 /* if we used an existing rule to get here, decrease its reference count. */
7661 /* ------------------------------------------------------------------------ */
7662 int
7663 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7664 {
7665 frentry_t *fr, *next, zero;
7666 ipfruleiter_t it;
7667 int error, out;
7668 frgroup_t *fg;
7669 ipfobj_t obj;
7670 int predict;
7671 char *dst;
7672 int unit;
7673
7674 if (t == NULL || ptr == NULL) {
7675 IPFERROR(84);
7676 return EFAULT;
7677 }
7678
7679 error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7680 if (error != 0)
7681 return error;
7682
7683 if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7684 IPFERROR(85);
7685 return EINVAL;
7686 }
7687 if ((it.iri_active != 0) && (it.iri_active != 1)) {
7688 IPFERROR(86);
7689 return EINVAL;
7690 }
7691 if (it.iri_nrules == 0) {
7692 IPFERROR(87);
7693 return ENOSPC;
7694 }
7695 if (it.iri_rule == NULL) {
7696 IPFERROR(88);
7697 return EFAULT;
7698 }
7699
7700 fg = NULL;
7701 fr = t->ipt_data;
7702 if ((it.iri_inout & F_OUT) != 0)
7703 out = 1;
7704 else
7705 out = 0;
7706 if ((it.iri_inout & F_ACIN) != 0)
7707 unit = IPL_LOGCOUNT;
7708 else
7709 unit = IPL_LOGIPF;
7710
7711 READ_ENTER(&softc->ipf_mutex);
7712 if (fr == NULL) {
7713 if (*it.iri_group == '\0') {
7714 if (unit == IPL_LOGCOUNT) {
7715 next = softc->ipf_acct[out][it.iri_active];
7716 } else {
7717 next = softc->ipf_rules[out][it.iri_active];
7718 }
7719 if (next == NULL)
7720 next = ipf_nextrule(softc, it.iri_active,
7721 unit, NULL, out);
7722 } else {
7723 fg = ipf_findgroup(softc, it.iri_group, unit,
7724 it.iri_active, NULL);
7725 if (fg != NULL)
7726 next = fg->fg_start;
7727 else
7728 next = NULL;
7729 }
7730 } else {
7731 next = fr->fr_next;
7732 if (next == NULL)
7733 next = ipf_nextrule(softc, it.iri_active, unit,
7734 fr, out);
7735 }
7736
7737 if (next != NULL && next->fr_next != NULL)
7738 predict = 1;
7739 else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7740 predict = 1;
7741 else
7742 predict = 0;
7743
7744 if (fr != NULL)
7745 (void) ipf_derefrule(softc, &fr);
7746
7747 obj.ipfo_type = IPFOBJ_FRENTRY;
7748 dst = (char *)it.iri_rule;
7749
7750 if (next != NULL) {
7751 obj.ipfo_size = next->fr_size;
7752 MUTEX_ENTER(&next->fr_lock);
7753 next->fr_ref++;
7754 MUTEX_EXIT(&next->fr_lock);
7755 t->ipt_data = next;
7756 } else {
7757 obj.ipfo_size = sizeof(frentry_t);
7758 bzero(&zero, sizeof(zero));
7759 next = &zero;
7760 t->ipt_data = NULL;
7761 }
7762 it.iri_rule = predict ? next : NULL;
7763 if (predict == 0)
7764 ipf_token_mark_complete(t);
7765
7766 RWLOCK_EXIT(&softc->ipf_mutex);
7767
7768 obj.ipfo_ptr = dst;
7769 error = ipf_outobjk(softc, &obj, next);
7770 if (error == 0 && t->ipt_data != NULL) {
7771 dst += obj.ipfo_size;
7772 if (next->fr_data != NULL) {
7773 ipfobj_t dobj;
7774
7775 if (next->fr_type == FR_T_IPFEXPR)
7776 dobj.ipfo_type = IPFOBJ_IPFEXPR;
7777 else
7778 dobj.ipfo_type = IPFOBJ_FRIPF;
7779 dobj.ipfo_size = next->fr_dsize;
7780 dobj.ipfo_rev = obj.ipfo_rev;
7781 dobj.ipfo_ptr = dst;
7782 error = ipf_outobjk(softc, &dobj, next->fr_data);
7783 }
7784 }
7785
7786 if ((fr != NULL) && (next == &zero))
7787 (void) ipf_derefrule(softc, &fr);
7788
7789 return error;
7790 }
7791
7792
7793 /* ------------------------------------------------------------------------ */
7794 /* Function: ipf_frruleiter */
7795 /* Returns: int - 0 = success, else error */
7796 /* Parameters: softc(I)- pointer to soft context main structure */
7797 /* data(I) - the token type to match */
7798 /* uid(I) - uid owning the token */
7799 /* ptr(I) - context pointer for the token */
7800 /* */
7801 /* This function serves as a stepping stone between ipf_ipf_ioctl and */
7802 /* ipf_getnextrule. It's role is to find the right token in the kernel for */
7803 /* the process doing the ioctl and use that to ask for the next rule. */
7804 /* ------------------------------------------------------------------------ */
7805 static int
7806 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7807 {
7808 ipftoken_t *token;
7809 ipfruleiter_t it;
7810 ipfobj_t obj;
7811 int error;
7812
7813 token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7814 if (token != NULL) {
7815 error = ipf_getnextrule(softc, token, data);
7816 WRITE_ENTER(&softc->ipf_tokens);
7817 ipf_token_deref(softc, token);
7818 RWLOCK_EXIT(&softc->ipf_tokens);
7819 } else {
7820 error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7821 if (error != 0)
7822 return error;
7823 it.iri_rule = NULL;
7824 error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7825 }
7826
7827 return error;
7828 }
7829
7830
7831 /* ------------------------------------------------------------------------ */
7832 /* Function: ipf_geniter */
7833 /* Returns: int - 0 = success, else error */
7834 /* Parameters: softc(I) - pointer to soft context main structure */
7835 /* token(I) - pointer to ipftoken_t structure */
7836 /* itp(I) - pointer to iterator data */
7837 /* */
7838 /* Decide which iterator function to call using information passed through */
7839 /* the ipfgeniter_t structure at itp. */
7840 /* ------------------------------------------------------------------------ */
7841 static int
7842 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7843 {
7844 int error;
7845
7846 switch (itp->igi_type)
7847 {
7848 case IPFGENITER_FRAG :
7849 error = ipf_frag_pkt_next(softc, token, itp);
7850 break;
7851 default :
7852 IPFERROR(92);
7853 error = EINVAL;
7854 break;
7855 }
7856
7857 return error;
7858 }
7859
7860
7861 /* ------------------------------------------------------------------------ */
7862 /* Function: ipf_genericiter */
7863 /* Returns: int - 0 = success, else error */
7864 /* Parameters: softc(I)- pointer to soft context main structure */
7865 /* data(I) - the token type to match */
7866 /* uid(I) - uid owning the token */
7867 /* ptr(I) - context pointer for the token */
7868 /* */
7869 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */
7870 /* ------------------------------------------------------------------------ */
7871 int
7872 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7873 {
7874 ipftoken_t *token;
7875 ipfgeniter_t iter;
7876 int error;
7877
7878 error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7879 if (error != 0)
7880 return error;
7881
7882 token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7883 if (token != NULL) {
7884 token->ipt_subtype = iter.igi_type;
7885 error = ipf_geniter(softc, token, &iter);
7886 WRITE_ENTER(&softc->ipf_tokens);
7887 ipf_token_deref(softc, token);
7888 RWLOCK_EXIT(&softc->ipf_tokens);
7889 } else {
7890 IPFERROR(93);
7891 error = 0;
7892 }
7893
7894 return error;
7895 }
7896
7897
7898 /* ------------------------------------------------------------------------ */
7899 /* Function: ipf_ipf_ioctl */
7900 /* Returns: int - 0 = success, else error */
7901 /* Parameters: softc(I)- pointer to soft context main structure */
7902 /* data(I) - the token type to match */
7903 /* cmd(I) - the ioctl command number */
7904 /* mode(I) - mode flags for the ioctl */
7905 /* uid(I) - uid owning the token */
7906 /* ptr(I) - context pointer for the token */
7907 /* */
7908 /* This function handles all of the ioctl command that are actually isssued */
7909 /* to the /dev/ipl device. */
7910 /* ------------------------------------------------------------------------ */
7911 int
7912 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode,
7913 int uid, void *ctx)
7914 {
7915 friostat_t fio;
7916 int error, tmp;
7917 ipfobj_t obj;
7918 SPL_INT(s);
7919
7920 switch (cmd)
7921 {
7922 case SIOCFRENB :
7923 if (!(mode & FWRITE)) {
7924 IPFERROR(94);
7925 error = EPERM;
7926 } else {
7927 error = BCOPYIN(data, &tmp, sizeof(tmp));
7928 if (error != 0) {
7929 IPFERROR(95);
7930 error = EFAULT;
7931 break;
7932 }
7933
7934 WRITE_ENTER(&softc->ipf_global);
7935 if (tmp) {
7936 if (softc->ipf_running > 0)
7937 error = 0;
7938 else
7939 error = ipfattach(softc);
7940 if (error == 0)
7941 softc->ipf_running = 1;
7942 else
7943 (void) ipfdetach(softc);
7944 } else {
7945 if (softc->ipf_running == 1)
7946 error = ipfdetach(softc);
7947 else
7948 error = 0;
7949 if (error == 0)
7950 softc->ipf_running = -1;
7951 }
7952 RWLOCK_EXIT(&softc->ipf_global);
7953 }
7954 break;
7955
7956 case SIOCIPFSET :
7957 if (!(mode & FWRITE)) {
7958 IPFERROR(96);
7959 error = EPERM;
7960 break;
7961 }
7962 /* FALLTHRU */
7963 case SIOCIPFGETNEXT :
7964 case SIOCIPFGET :
7965 error = ipf_ipftune(softc, cmd, (void *)data);
7966 break;
7967
7968 case SIOCSETFF :
7969 if (!(mode & FWRITE)) {
7970 IPFERROR(97);
7971 error = EPERM;
7972 } else {
7973 error = BCOPYIN(data, &softc->ipf_flags,
7974 sizeof(softc->ipf_flags));
7975 if (error != 0) {
7976 IPFERROR(98);
7977 error = EFAULT;
7978 }
7979 }
7980 break;
7981
7982 case SIOCGETFF :
7983 error = BCOPYOUT(&softc->ipf_flags, data,
7984 sizeof(softc->ipf_flags));
7985 if (error != 0) {
7986 IPFERROR(99);
7987 error = EFAULT;
7988 }
7989 break;
7990
7991 case SIOCFUNCL :
7992 error = ipf_resolvefunc(softc, (void *)data);
7993 break;
7994
7995 case SIOCINAFR :
7996 case SIOCRMAFR :
7997 case SIOCADAFR :
7998 case SIOCZRLST :
7999 if (!(mode & FWRITE)) {
8000 IPFERROR(100);
8001 error = EPERM;
8002 } else {
8003 error = frrequest(softc, IPL_LOGIPF, cmd, data,
8004 softc->ipf_active, 1);
8005 }
8006 break;
8007
8008 case SIOCINIFR :
8009 case SIOCRMIFR :
8010 case SIOCADIFR :
8011 if (!(mode & FWRITE)) {
8012 IPFERROR(101);
8013 error = EPERM;
8014 } else {
8015 error = frrequest(softc, IPL_LOGIPF, cmd, data,
8016 1 - softc->ipf_active, 1);
8017 }
8018 break;
8019
8020 case SIOCSWAPA :
8021 if (!(mode & FWRITE)) {
8022 IPFERROR(102);
8023 error = EPERM;
8024 } else {
8025 WRITE_ENTER(&softc->ipf_mutex);
8026 error = BCOPYOUT(&softc->ipf_active, data,
8027 sizeof(softc->ipf_active));
8028 if (error != 0) {
8029 IPFERROR(103);
8030 error = EFAULT;
8031 } else {
8032 softc->ipf_active = 1 - softc->ipf_active;
8033 }
8034 RWLOCK_EXIT(&softc->ipf_mutex);
8035 }
8036 break;
8037
8038 case SIOCGETFS :
8039 error = ipf_inobj(softc, (void *)data, &obj, &fio,
8040 IPFOBJ_IPFSTAT);
8041 if (error != 0)
8042 break;
8043 ipf_getstat(softc, &fio, obj.ipfo_rev);
8044 error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8045 break;
8046
8047 case SIOCFRZST :
8048 if (!(mode & FWRITE)) {
8049 IPFERROR(104);
8050 error = EPERM;
8051 } else
8052 error = ipf_zerostats(softc, data);
8053 break;
8054
8055 case SIOCIPFFL :
8056 if (!(mode & FWRITE)) {
8057 IPFERROR(105);
8058 error = EPERM;
8059 } else {
8060 error = BCOPYIN(data, &tmp, sizeof(tmp));
8061 if (!error) {
8062 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8063 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8064 if (error != 0) {
8065 IPFERROR(106);
8066 error = EFAULT;
8067 }
8068 } else {
8069 IPFERROR(107);
8070 error = EFAULT;
8071 }
8072 }
8073 break;
8074
8075 #ifdef USE_INET6
8076 case SIOCIPFL6 :
8077 if (!(mode & FWRITE)) {
8078 IPFERROR(108);
8079 error = EPERM;
8080 } else {
8081 error = BCOPYIN(data, &tmp, sizeof(tmp));
8082 if (!error) {
8083 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8084 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8085 if (error != 0) {
8086 IPFERROR(109);
8087 error = EFAULT;
8088 }
8089 } else {
8090 IPFERROR(110);
8091 error = EFAULT;
8092 }
8093 }
8094 break;
8095 #endif
8096
8097 case SIOCSTLCK :
8098 if (!(mode & FWRITE)) {
8099 IPFERROR(122);
8100 error = EPERM;
8101 } else {
8102 error = BCOPYIN(data, &tmp, sizeof(tmp));
8103 if (error == 0) {
8104 ipf_state_setlock(softc->ipf_state_soft, tmp);
8105 ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8106 ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8107 ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8108 } else {
8109 IPFERROR(111);
8110 error = EFAULT;
8111 }
8112 }
8113 break;
8114
8115 #ifdef IPFILTER_LOG
8116 case SIOCIPFFB :
8117 if (!(mode & FWRITE)) {
8118 IPFERROR(112);
8119 error = EPERM;
8120 } else {
8121 tmp = ipf_log_clear(softc, IPL_LOGIPF);
8122 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8123 if (error) {
8124 IPFERROR(113);
8125 error = EFAULT;
8126 }
8127 }
8128 break;
8129 #endif /* IPFILTER_LOG */
8130
8131 case SIOCFRSYN :
8132 if (!(mode & FWRITE)) {
8133 IPFERROR(114);
8134 error = EPERM;
8135 } else {
8136 WRITE_ENTER(&softc->ipf_global);
8137 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8138 error = ipfsync();
8139 #else
8140 ipf_sync(softc, NULL);
8141 error = 0;
8142 #endif
8143 RWLOCK_EXIT(&softc->ipf_global);
8144
8145 }
8146 break;
8147
8148 case SIOCGFRST :
8149 error = ipf_outobj(softc, (void *)data,
8150 ipf_frag_stats(softc->ipf_frag_soft),
8151 IPFOBJ_FRAGSTAT);
8152 break;
8153
8154 #ifdef IPFILTER_LOG
8155 case FIONREAD :
8156 tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8157 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8158 break;
8159 #endif
8160
8161 case SIOCIPFITER :
8162 SPL_SCHED(s);
8163 error = ipf_frruleiter(softc, data, uid, ctx);
8164 SPL_X(s);
8165 break;
8166
8167 case SIOCGENITER :
8168 SPL_SCHED(s);
8169 error = ipf_genericiter(softc, data, uid, ctx);
8170 SPL_X(s);
8171 break;
8172
8173 case SIOCIPFDELTOK :
8174 error = BCOPYIN(data, &tmp, sizeof(tmp));
8175 if (error == 0) {
8176 SPL_SCHED(s);
8177 error = ipf_token_del(softc, tmp, uid, ctx);
8178 SPL_X(s);
8179 }
8180 break;
8181
8182 default :
8183 IPFERROR(115);
8184 error = EINVAL;
8185 break;
8186 }
8187
8188 return error;
8189 }
8190
8191
8192 /* ------------------------------------------------------------------------ */
8193 /* Function: ipf_decaps */
8194 /* Returns: int - -1 == decapsulation failed, else bit mask of */
8195 /* flags indicating packet filtering decision. */
8196 /* Parameters: fin(I) - pointer to packet information */
8197 /* pass(I) - IP protocol version to match */
8198 /* l5proto(I) - layer 5 protocol to decode UDP data as. */
8199 /* */
8200 /* This function is called for packets that are wrapt up in other packets, */
8201 /* for example, an IP packet that is the entire data segment for another IP */
8202 /* packet. If the basic constraints for this are satisfied, change the */
8203 /* buffer to point to the start of the inner packet and start processing */
8204 /* rules belonging to the head group this rule specifies. */
8205 /* ------------------------------------------------------------------------ */
8206 u_32_t
8207 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8208 {
8209 fr_info_t fin2, *fino = NULL;
8210 int elen, hlen, nh;
8211 grehdr_t gre;
8212 ip_t *ip;
8213 mb_t *m;
8214
8215 if ((fin->fin_flx & FI_COALESCE) == 0)
8216 if (ipf_coalesce(fin) == -1)
8217 goto cantdecaps;
8218
8219 m = fin->fin_m;
8220 hlen = fin->fin_hlen;
8221
8222 switch (fin->fin_p)
8223 {
8224 case IPPROTO_UDP :
8225 /*
8226 * In this case, the specific protocol being decapsulated
8227 * inside UDP frames comes from the rule.
8228 */
8229 nh = fin->fin_fr->fr_icode;
8230 break;
8231
8232 case IPPROTO_GRE : /* 47 */
8233 bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8234 hlen += sizeof(grehdr_t);
8235 if (gre.gr_R|gre.gr_s)
8236 goto cantdecaps;
8237 if (gre.gr_C)
8238 hlen += 4;
8239 if (gre.gr_K)
8240 hlen += 4;
8241 if (gre.gr_S)
8242 hlen += 4;
8243
8244 nh = IPPROTO_IP;
8245
8246 /*
8247 * If the routing options flag is set, validate that it is
8248 * there and bounce over it.
8249 */
8250 #if 0
8251 /* This is really heavy weight and lots of room for error, */
8252 /* so for now, put it off and get the simple stuff right. */
8253 if (gre.gr_R) {
8254 u_char off, len, *s;
8255 u_short af;
8256 int end;
8257
8258 end = 0;
8259 s = fin->fin_dp;
8260 s += hlen;
8261 aplen = fin->fin_plen - hlen;
8262 while (aplen > 3) {
8263 af = (s[0] << 8) | s[1];
8264 off = s[2];
8265 len = s[3];
8266 aplen -= 4;
8267 s += 4;
8268 if (af == 0 && len == 0) {
8269 end = 1;
8270 break;
8271 }
8272 if (aplen < len)
8273 break;
8274 s += len;
8275 aplen -= len;
8276 }
8277 if (end != 1)
8278 goto cantdecaps;
8279 hlen = s - (u_char *)fin->fin_dp;
8280 }
8281 #endif
8282 break;
8283
8284 #ifdef IPPROTO_IPIP
8285 case IPPROTO_IPIP : /* 4 */
8286 #endif
8287 nh = IPPROTO_IP;
8288 break;
8289
8290 default : /* Includes ESP, AH is special for IPv4 */
8291 goto cantdecaps;
8292 }
8293
8294 switch (nh)
8295 {
8296 case IPPROTO_IP :
8297 case IPPROTO_IPV6 :
8298 break;
8299 default :
8300 goto cantdecaps;
8301 }
8302
8303 bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8304 fino = fin;
8305 fin = &fin2;
8306 elen = hlen;
8307 #if defined(MENTAT) && defined(_KERNEL)
8308 m->b_rptr += elen;
8309 #else
8310 m->m_data += elen;
8311 m->m_len -= elen;
8312 #endif
8313 fin->fin_plen -= elen;
8314
8315 ip = (ip_t *)((char *)fin->fin_ip + elen);
8316
8317 /*
8318 * Make sure we have at least enough data for the network layer
8319 * header.
8320 */
8321 if (IP_V(ip) == 4)
8322 hlen = IP_HL(ip) << 2;
8323 #ifdef USE_INET6
8324 else if (IP_V(ip) == 6)
8325 hlen = sizeof(ip6_t);
8326 #endif
8327 else
8328 goto cantdecaps2;
8329
8330 if (fin->fin_plen < hlen)
8331 goto cantdecaps2;
8332
8333 fin->fin_dp = (char *)ip + hlen;
8334
8335 if (IP_V(ip) == 4) {
8336 /*
8337 * Perform IPv4 header checksum validation.
8338 */
8339 if (ipf_cksum((u_short *)ip, hlen))
8340 goto cantdecaps2;
8341 }
8342
8343 if (ipf_makefrip(hlen, ip, fin) == -1) {
8344 cantdecaps2:
8345 if (m != NULL) {
8346 #if defined(MENTAT) && defined(_KERNEL)
8347 m->b_rptr -= elen;
8348 #else
8349 m->m_data -= elen;
8350 m->m_len += elen;
8351 #endif
8352 }
8353 cantdecaps:
8354 DT1(frb_decapfrip, fr_info_t *, fin);
8355 pass &= ~FR_CMDMASK;
8356 pass |= FR_BLOCK|FR_QUICK;
8357 fin->fin_reason = FRB_DECAPFRIP;
8358 return -1;
8359 }
8360
8361 pass = ipf_scanlist(fin, pass);
8362
8363 /*
8364 * Copy the packet filter "result" fields out of the fr_info_t struct
8365 * that is local to the decapsulation processing and back into the
8366 * one we were called with.
8367 */
8368 fino->fin_flx = fin->fin_flx;
8369 fino->fin_rev = fin->fin_rev;
8370 fino->fin_icode = fin->fin_icode;
8371 fino->fin_rule = fin->fin_rule;
8372 (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8373 fino->fin_fr = fin->fin_fr;
8374 fino->fin_error = fin->fin_error;
8375 fino->fin_mp = fin->fin_mp;
8376 fino->fin_m = fin->fin_m;
8377 m = fin->fin_m;
8378 if (m != NULL) {
8379 #if defined(MENTAT) && defined(_KERNEL)
8380 m->b_rptr -= elen;
8381 #else
8382 m->m_data -= elen;
8383 m->m_len += elen;
8384 #endif
8385 }
8386 return pass;
8387 }
8388
8389
8390 /* ------------------------------------------------------------------------ */
8391 /* Function: ipf_matcharray_load */
8392 /* Returns: int - 0 = success, else error */
8393 /* Parameters: softc(I) - pointer to soft context main structure */
8394 /* data(I) - pointer to ioctl data */
8395 /* objp(I) - ipfobj_t structure to load data into */
8396 /* arrayptr(I) - pointer to location to store array pointer */
8397 /* */
8398 /* This function loads in a mathing array through the ipfobj_t struct that */
8399 /* describes it. Sanity checking and array size limitations are enforced */
8400 /* in this function to prevent userspace from trying to load in something */
8401 /* that is insanely big. Once the size of the array is known, the memory */
8402 /* required is malloc'd and returned through changing *arrayptr. The */
8403 /* contents of the array are verified before returning. Only in the event */
8404 /* of a successful call is the caller required to free up the malloc area. */
8405 /* ------------------------------------------------------------------------ */
8406 int
8407 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp,
8408 int **arrayptr)
8409 {
8410 int arraysize, *array, error;
8411
8412 *arrayptr = NULL;
8413
8414 error = BCOPYIN(data, objp, sizeof(*objp));
8415 if (error != 0) {
8416 IPFERROR(116);
8417 return EFAULT;
8418 }
8419
8420 if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8421 IPFERROR(117);
8422 return EINVAL;
8423 }
8424
8425 if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8426 (objp->ipfo_size > 1024)) {
8427 IPFERROR(118);
8428 return EINVAL;
8429 }
8430
8431 arraysize = objp->ipfo_size * sizeof(*array);
8432 KMALLOCS(array, int *, arraysize);
8433 if (array == NULL) {
8434 IPFERROR(119);
8435 return ENOMEM;
8436 }
8437
8438 error = COPYIN(objp->ipfo_ptr, array, arraysize);
8439 if (error != 0) {
8440 KFREES(array, arraysize);
8441 IPFERROR(120);
8442 return EFAULT;
8443 }
8444
8445 if (ipf_matcharray_verify(array, arraysize) != 0) {
8446 KFREES(array, arraysize);
8447 IPFERROR(121);
8448 return EINVAL;
8449 }
8450
8451 *arrayptr = array;
8452 return 0;
8453 }
8454
8455
8456 /* ------------------------------------------------------------------------ */
8457 /* Function: ipf_matcharray_verify */
8458 /* Returns: Nil */
8459 /* Parameters: array(I) - pointer to matching array */
8460 /* arraysize(I) - number of elements in the array */
8461 /* */
8462 /* Verify the contents of a matching array by stepping through each element */
8463 /* in it. The actual commands in the array are not verified for */
8464 /* correctness, only that all of the sizes are correctly within limits. */
8465 /* ------------------------------------------------------------------------ */
8466 int
8467 ipf_matcharray_verify(int *array, int arraysize)
8468 {
8469 int i, nelem, maxidx;
8470 ipfexp_t *e;
8471
8472 nelem = arraysize / sizeof(*array);
8473
8474 /*
8475 * Currently, it makes no sense to have an array less than 6
8476 * elements long - the initial size at the from, a single operation
8477 * (minimum 4 in length) and a trailer, for a total of 6.
8478 */
8479 if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8480 return -1;
8481 }
8482
8483 /*
8484 * Verify the size of data pointed to by array with how long
8485 * the array claims to be itself.
8486 */
8487 if (array[0] * sizeof(*array) != arraysize) {
8488 return -1;
8489 }
8490
8491 maxidx = nelem - 1;
8492 /*
8493 * The last opcode in this array should be an IPF_EXP_END.
8494 */
8495 if (array[maxidx] != IPF_EXP_END) {
8496 return -1;
8497 }
8498
8499 for (i = 1; i < maxidx; ) {
8500 e = (ipfexp_t *)(array + i);
8501
8502 /*
8503 * The length of the bits to check must be at least 1
8504 * (or else there is nothing to comapre with!) and it
8505 * cannot exceed the length of the data present.
8506 */
8507 if ((e->ipfe_size < 1 ) ||
8508 (e->ipfe_size + i > maxidx)) {
8509 return -1;
8510 }
8511 i += e->ipfe_size;
8512 }
8513 return 0;
8514 }
8515
8516
8517 /* ------------------------------------------------------------------------ */
8518 /* Function: ipf_fr_matcharray */
8519 /* Returns: int - 0 = match failed, else positive match */
8520 /* Parameters: fin(I) - pointer to packet information */
8521 /* array(I) - pointer to matching array */
8522 /* */
8523 /* This function is used to apply a matching array against a packet and */
8524 /* return an indication of whether or not the packet successfully matches */
8525 /* all of the commands in it. */
8526 /* ------------------------------------------------------------------------ */
8527 static int
8528 ipf_fr_matcharray(fr_info_t *fin, int *array)
8529 {
8530 int i, n, *x, rv, p;
8531 ipfexp_t *e;
8532
8533 rv = 0;
8534 n = array[0];
8535 x = array + 1;
8536
8537 for (; n > 0; x += 3 + x[3], rv = 0) {
8538 e = (ipfexp_t *)x;
8539 if (e->ipfe_cmd == IPF_EXP_END)
8540 break;
8541 n -= e->ipfe_size;
8542
8543 /*
8544 * The upper 16 bits currently store the protocol value.
8545 * This is currently used with TCP and UDP port compares and
8546 * allows "tcp.port = 80" without requiring an explicit
8547 " "ip.pr = tcp" first.
8548 */
8549 p = e->ipfe_cmd >> 16;
8550 if ((p != 0) && (p != fin->fin_p))
8551 break;
8552
8553 switch (e->ipfe_cmd)
8554 {
8555 case IPF_EXP_IP_PR :
8556 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8557 rv |= (fin->fin_p == e->ipfe_arg0[i]);
8558 }
8559 break;
8560
8561 case IPF_EXP_IP_SRCADDR :
8562 if (fin->fin_v != 4)
8563 break;
8564 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8565 rv |= ((fin->fin_saddr &
8566 e->ipfe_arg0[i * 2 + 1]) ==
8567 e->ipfe_arg0[i * 2]);
8568 }
8569 break;
8570
8571 case IPF_EXP_IP_DSTADDR :
8572 if (fin->fin_v != 4)
8573 break;
8574 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8575 rv |= ((fin->fin_daddr &
8576 e->ipfe_arg0[i * 2 + 1]) ==
8577 e->ipfe_arg0[i * 2]);
8578 }
8579 break;
8580
8581 case IPF_EXP_IP_ADDR :
8582 if (fin->fin_v != 4)
8583 break;
8584 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8585 rv |= ((fin->fin_saddr &
8586 e->ipfe_arg0[i * 2 + 1]) ==
8587 e->ipfe_arg0[i * 2]) ||
8588 ((fin->fin_daddr &
8589 e->ipfe_arg0[i * 2 + 1]) ==
8590 e->ipfe_arg0[i * 2]);
8591 }
8592 break;
8593
8594 #ifdef USE_INET6
8595 case IPF_EXP_IP6_SRCADDR :
8596 if (fin->fin_v != 6)
8597 break;
8598 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8599 rv |= IP6_MASKEQ(&fin->fin_src6,
8600 &e->ipfe_arg0[i * 8 + 4],
8601 &e->ipfe_arg0[i * 8]);
8602 }
8603 break;
8604
8605 case IPF_EXP_IP6_DSTADDR :
8606 if (fin->fin_v != 6)
8607 break;
8608 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8609 rv |= IP6_MASKEQ(&fin->fin_dst6,
8610 &e->ipfe_arg0[i * 8 + 4],
8611 &e->ipfe_arg0[i * 8]);
8612 }
8613 break;
8614
8615 case IPF_EXP_IP6_ADDR :
8616 if (fin->fin_v != 6)
8617 break;
8618 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8619 rv |= IP6_MASKEQ(&fin->fin_src6,
8620 &e->ipfe_arg0[i * 8 + 4],
8621 &e->ipfe_arg0[i * 8]) ||
8622 IP6_MASKEQ(&fin->fin_dst6,
8623 &e->ipfe_arg0[i * 8 + 4],
8624 &e->ipfe_arg0[i * 8]);
8625 }
8626 break;
8627 #endif
8628
8629 case IPF_EXP_UDP_PORT :
8630 case IPF_EXP_TCP_PORT :
8631 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8632 rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8633 (fin->fin_dport == e->ipfe_arg0[i]);
8634 }
8635 break;
8636
8637 case IPF_EXP_UDP_SPORT :
8638 case IPF_EXP_TCP_SPORT :
8639 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8640 rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8641 }
8642 break;
8643
8644 case IPF_EXP_UDP_DPORT :
8645 case IPF_EXP_TCP_DPORT :
8646 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8647 rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8648 }
8649 break;
8650
8651 case IPF_EXP_TCP_FLAGS :
8652 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8653 rv |= ((fin->fin_tcpf &
8654 e->ipfe_arg0[i * 2 + 1]) ==
8655 e->ipfe_arg0[i * 2]);
8656 }
8657 break;
8658 }
8659 rv ^= e->ipfe_not;
8660
8661 if (rv == 0)
8662 break;
8663 }
8664
8665 return rv;
8666 }
8667
8668
8669 /* ------------------------------------------------------------------------ */
8670 /* Function: ipf_queueflush */
8671 /* Returns: int - number of entries flushed (0 = none) */
8672 /* Parameters: softc(I) - pointer to soft context main structure */
8673 /* deletefn(I) - function to call to delete entry */
8674 /* ipfqs(I) - top of the list of ipf internal queues */
8675 /* userqs(I) - top of the list of user defined timeouts */
8676 /* */
8677 /* This fucntion gets called when the state/NAT hash tables fill up and we */
8678 /* need to try a bit harder to free up some space. The algorithm used here */
8679 /* split into two parts but both halves have the same goal: to reduce the */
8680 /* number of connections considered to be "active" to the low watermark. */
8681 /* There are two steps in doing this: */
8682 /* 1) Remove any TCP connections that are already considered to be "closed" */
8683 /* but have not yet been removed from the state table. The two states */
8684 /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */
8685 /* candidates for this style of removal. If freeing up entries in */
8686 /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */
8687 /* we do not go on to step 2. */
8688 /* */
8689 /* 2) Look for the oldest entries on each timeout queue and free them if */
8690 /* they are within the given window we are considering. Where the */
8691 /* window starts and the steps taken to increase its size depend upon */
8692 /* how long ipf has been running (ipf_ticks.) Anything modified in the */
8693 /* last 30 seconds is not touched. */
8694 /* touched */
8695 /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */
8696 /* | | | | | | */
8697 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8698 /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */
8699 /* */
8700 /* Points to note: */
8701 /* - tqe_die is the time, in the future, when entries die. */
8702 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8703 /* ticks. */
8704 /* - tqe_touched is when the entry was last used by NAT/state */
8705 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */
8706 /* ipf_ticks any given timeout queue and vice versa. */
8707 /* - both tqe_die and tqe_touched increase over time */
8708 /* - timeout queues are sorted with the highest value of tqe_die at the */
8709 /* bottom and therefore the smallest values of each are at the top */
8710 /* - the pointer passed in as ipfqs should point to an array of timeout */
8711 /* queues representing each of the TCP states */
8712 /* */
8713 /* We start by setting up a maximum range to scan for things to move of */
8714 /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */
8715 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8716 /* we start again with a new value for "iend" and "istart". This is */
8717 /* continued until we either finish the scan of 30 second intervals or the */
8718 /* low water mark is reached. */
8719 /* ------------------------------------------------------------------------ */
8720 int
8721 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8722 ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8723 {
8724 u_long interval, istart, iend;
8725 ipftq_t *ifq, *ifqnext;
8726 ipftqent_t *tqe, *tqn;
8727 int removed = 0;
8728
8729 for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8730 tqn = tqe->tqe_next;
8731 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8732 removed++;
8733 }
8734 if ((*activep * 100 / size) > low) {
8735 for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8736 ((tqe = tqn) != NULL); ) {
8737 tqn = tqe->tqe_next;
8738 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8739 removed++;
8740 }
8741 }
8742
8743 if ((*activep * 100 / size) <= low) {
8744 return removed;
8745 }
8746
8747 /*
8748 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8749 * used then the operations are upgraded to floating point
8750 * and kernels don't like floating point...
8751 */
8752 if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8753 istart = IPF_TTLVAL(86400 * 4);
8754 interval = IPF_TTLVAL(43200);
8755 } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8756 istart = IPF_TTLVAL(43200);
8757 interval = IPF_TTLVAL(1800);
8758 } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8759 istart = IPF_TTLVAL(1800);
8760 interval = IPF_TTLVAL(30);
8761 } else {
8762 return 0;
8763 }
8764 if (istart > softc->ipf_ticks) {
8765 if (softc->ipf_ticks - interval < interval)
8766 istart = interval;
8767 else
8768 istart = (softc->ipf_ticks / interval) * interval;
8769 }
8770
8771 iend = softc->ipf_ticks - interval;
8772
8773 while ((*activep * 100 / size) > low) {
8774 u_long try;
8775
8776 try = softc->ipf_ticks - istart;
8777
8778 for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8779 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8780 if (try < tqe->tqe_touched)
8781 break;
8782 tqn = tqe->tqe_next;
8783 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8784 removed++;
8785 }
8786 }
8787
8788 for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8789 ifqnext = ifq->ifq_next;
8790
8791 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8792 if (try < tqe->tqe_touched)
8793 break;
8794 tqn = tqe->tqe_next;
8795 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8796 removed++;
8797 }
8798 }
8799
8800 if (try >= iend) {
8801 if (interval == IPF_TTLVAL(43200)) {
8802 interval = IPF_TTLVAL(1800);
8803 } else if (interval == IPF_TTLVAL(1800)) {
8804 interval = IPF_TTLVAL(30);
8805 } else {
8806 break;
8807 }
8808 if (interval >= softc->ipf_ticks)
8809 break;
8810
8811 iend = softc->ipf_ticks - interval;
8812 }
8813 istart -= interval;
8814 }
8815
8816 return removed;
8817 }
8818
8819
8820 /* ------------------------------------------------------------------------ */
8821 /* Function: ipf_deliverlocal */
8822 /* Returns: int - 1 = local address, 0 = non-local address */
8823 /* Parameters: softc(I) - pointer to soft context main structure */
8824 /* ipversion(I) - IP protocol version (4 or 6) */
8825 /* ifp(I) - network interface pointer */
8826 /* ipaddr(I) - IPv4/6 destination address */
8827 /* */
8828 /* This fucntion is used to determine in the address "ipaddr" belongs to */
8829 /* the network interface represented by ifp. */
8830 /* ------------------------------------------------------------------------ */
8831 int
8832 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8833 i6addr_t *ipaddr)
8834 {
8835 i6addr_t addr;
8836 int islocal = 0;
8837
8838 if (ipversion == 4) {
8839 if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8840 if (addr.in4.s_addr == ipaddr->in4.s_addr)
8841 islocal = 1;
8842 }
8843
8844 #ifdef USE_INET6
8845 } else if (ipversion == 6) {
8846 if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8847 if (IP6_EQ(&addr, ipaddr))
8848 islocal = 1;
8849 }
8850 #endif
8851 }
8852
8853 return islocal;
8854 }
8855
8856
8857 /* ------------------------------------------------------------------------ */
8858 /* Function: ipf_settimeout */
8859 /* Returns: int - 0 = success, -1 = failure */
8860 /* Parameters: softc(I) - pointer to soft context main structure */
8861 /* t(I) - pointer to tuneable array entry */
8862 /* p(I) - pointer to values passed in to apply */
8863 /* */
8864 /* This function is called to set the timeout values for each distinct */
8865 /* queue timeout that is available. When called, it calls into both the */
8866 /* state and NAT code, telling them to update their timeout queues. */
8867 /* ------------------------------------------------------------------------ */
8868 static int
8869 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8870 ipftuneval_t *p)
8871 {
8872
8873 /*
8874 * ipf_interror should be set by the functions called here, not
8875 * by this function - it's just a middle man.
8876 */
8877 if (ipf_state_settimeout(softc, t, p) == -1)
8878 return -1;
8879 if (ipf_nat_settimeout(softc, t, p) == -1)
8880 return -1;
8881 return 0;
8882 }
8883
8884
8885 /* ------------------------------------------------------------------------ */
8886 /* Function: ipf_apply_timeout */
8887 /* Returns: int - 0 = success, -1 = failure */
8888 /* Parameters: head(I) - pointer to tuneable array entry */
8889 /* seconds(I) - pointer to values passed in to apply */
8890 /* */
8891 /* This function applies a timeout of "seconds" to the timeout queue that */
8892 /* is pointed to by "head". All entries on this list have an expiration */
8893 /* set to be the current tick value of ipf plus the ttl. Given that this */
8894 /* function should only be called when the delta is non-zero, the task is */
8895 /* to walk the entire list and apply the change. The sort order will not */
8896 /* change. The only catch is that this is O(n) across the list, so if the */
8897 /* queue has lots of entries (10s of thousands or 100s of thousands), it */
8898 /* could take a relatively long time to work through them all. */
8899 /* ------------------------------------------------------------------------ */
8900 void
8901 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8902 {
8903 u_int oldtimeout, newtimeout;
8904 ipftqent_t *tqe;
8905 int delta;
8906
8907 MUTEX_ENTER(&head->ifq_lock);
8908 oldtimeout = head->ifq_ttl;
8909 newtimeout = IPF_TTLVAL(seconds);
8910 delta = oldtimeout - newtimeout;
8911
8912 head->ifq_ttl = newtimeout;
8913
8914 for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8915 tqe->tqe_die += delta;
8916 }
8917 MUTEX_EXIT(&head->ifq_lock);
8918 }
8919
8920
8921 /* ------------------------------------------------------------------------ */
8922 /* Function: ipf_settimeout_tcp */
8923 /* Returns: int - 0 = successfully applied, -1 = failed */
8924 /* Parameters: t(I) - pointer to tuneable to change */
8925 /* p(I) - pointer to new timeout information */
8926 /* tab(I) - pointer to table of TCP queues */
8927 /* */
8928 /* This function applies the new timeout (p) to the TCP tunable (t) and */
8929 /* updates all of the entries on the relevant timeout queue by calling */
8930 /* ipf_apply_timeout(). */
8931 /* ------------------------------------------------------------------------ */
8932 int
8933 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8934 {
8935 if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8936 !strcmp(t->ipft_name, "tcp_established")) {
8937 ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8938 } else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8939 ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8940 } else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8941 ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8942 } else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8943 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8944 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8945 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8946 } else if (!strcmp(t->ipft_name, "tcp_listen")) {
8947 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8948 } else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8949 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8950 } else if (!strcmp(t->ipft_name, "tcp_closing")) {
8951 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8952 } else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8953 ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8954 } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8955 ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8956 } else if (!strcmp(t->ipft_name, "tcp_closed")) {
8957 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8958 } else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8959 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8960 } else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8961 ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8962 } else {
8963 /*
8964 * ipf_interror isn't set here because it should be set
8965 * by whatever called this function.
8966 */
8967 return -1;
8968 }
8969 return 0;
8970 }
8971
8972
8973 /* ------------------------------------------------------------------------ */
8974 /* Function: ipf_main_soft_create */
8975 /* Returns: NULL = failure, else success */
8976 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8977 /* */
8978 /* Create the foundation soft context structure. In circumstances where it */
8979 /* is not required to dynamically allocate the context, a pointer can be */
8980 /* passed in (rather than NULL) to a structure to be initialised. */
8981 /* The main thing of interest is that a number of locks are initialised */
8982 /* here instead of in the where might be expected - in the relevant create */
8983 /* function elsewhere. This is done because the current locking design has */
8984 /* some areas where these locks are used outside of their module. */
8985 /* Possibly the most important exercise that is done here is setting of all */
8986 /* the timeout values, allowing them to be changed before init(). */
8987 /* ------------------------------------------------------------------------ */
8988 void *
8989 ipf_main_soft_create(void *arg)
8990 {
8991 ipf_main_softc_t *softc;
8992
8993 if (arg == NULL) {
8994 KMALLOC(softc, ipf_main_softc_t *);
8995 if (softc == NULL)
8996 return NULL;
8997 } else {
8998 softc = arg;
8999 }
9000
9001 bzero((char *)softc, sizeof(*softc));
9002
9003 /*
9004 * This serves as a flag as to whether or not the softc should be
9005 * free'd when _destroy is called.
9006 */
9007 softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9008
9009 softc->ipf_tuners = ipf_tune_array_copy(softc,
9010 sizeof(ipf_main_tuneables),
9011 ipf_main_tuneables);
9012 if (softc->ipf_tuners == NULL) {
9013 ipf_main_soft_destroy(softc);
9014 return NULL;
9015 }
9016
9017 MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9018 MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9019 RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9020 RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9021 RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9022 RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9023 RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9024 RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9025 RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9026
9027 softc->ipf_token_head = NULL;
9028 softc->ipf_token_tail = &softc->ipf_token_head;
9029
9030 softc->ipf_tcpidletimeout = FIVE_DAYS;
9031 softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9032 softc->ipf_tcplastack = IPF_TTLVAL(30);
9033 softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9034 softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9035 softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9036 softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9037 softc->ipf_tcpclosed = IPF_TTLVAL(30);
9038 softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9039 softc->ipf_udptimeout = IPF_TTLVAL(120);
9040 softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9041 softc->ipf_icmptimeout = IPF_TTLVAL(60);
9042 softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9043 softc->ipf_iptimeout = IPF_TTLVAL(60);
9044
9045 #if defined(IPFILTER_DEFAULT_BLOCK)
9046 softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9047 #else
9048 softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9049 #endif
9050 softc->ipf_minttl = 4;
9051 softc->ipf_icmpminfragmtu = 68;
9052 softc->ipf_flags = IPF_LOGGING;
9053
9054 return softc;
9055 }
9056
9057 /* ------------------------------------------------------------------------ */
9058 /* Function: ipf_main_soft_init */
9059 /* Returns: 0 = success, -1 = failure */
9060 /* Parameters: softc(I) - pointer to soft context main structure */
9061 /* */
9062 /* A null-op function that exists as a placeholder so that the flow in */
9063 /* other functions is obvious. */
9064 /* ------------------------------------------------------------------------ */
9065 /*ARGSUSED*/
9066 int
9067 ipf_main_soft_init(ipf_main_softc_t *softc)
9068 {
9069 return 0;
9070 }
9071
9072
9073 /* ------------------------------------------------------------------------ */
9074 /* Function: ipf_main_soft_destroy */
9075 /* Returns: void */
9076 /* Parameters: softc(I) - pointer to soft context main structure */
9077 /* */
9078 /* Undo everything that we did in ipf_main_soft_create. */
9079 /* */
9080 /* The most important check that needs to be made here is whether or not */
9081 /* the structure was allocated by ipf_main_soft_create() by checking what */
9082 /* value is stored in ipf_dynamic_main. */
9083 /* ------------------------------------------------------------------------ */
9084 /*ARGSUSED*/
9085 void
9086 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9087 {
9088
9089 RW_DESTROY(&softc->ipf_frag);
9090 RW_DESTROY(&softc->ipf_poolrw);
9091 RW_DESTROY(&softc->ipf_nat);
9092 RW_DESTROY(&softc->ipf_state);
9093 RW_DESTROY(&softc->ipf_tokens);
9094 RW_DESTROY(&softc->ipf_mutex);
9095 RW_DESTROY(&softc->ipf_global);
9096 MUTEX_DESTROY(&softc->ipf_timeoutlock);
9097 MUTEX_DESTROY(&softc->ipf_rw);
9098
9099 if (softc->ipf_tuners != NULL) {
9100 KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9101 }
9102 if (softc->ipf_dynamic_softc == 1) {
9103 KFREE(softc);
9104 }
9105 }
9106
9107
9108 /* ------------------------------------------------------------------------ */
9109 /* Function: ipf_main_soft_fini */
9110 /* Returns: 0 = success, -1 = failure */
9111 /* Parameters: softc(I) - pointer to soft context main structure */
9112 /* */
9113 /* Clean out the rules which have been added since _init was last called, */
9114 /* the only dynamic part of the mainline. */
9115 /* ------------------------------------------------------------------------ */
9116 int
9117 ipf_main_soft_fini(ipf_main_softc_t *softc)
9118 {
9119 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9120 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9121 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9122 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9123
9124 return 0;
9125 }
9126
9127
9128 /* ------------------------------------------------------------------------ */
9129 /* Function: ipf_main_load */
9130 /* Returns: 0 = success, -1 = failure */
9131 /* Parameters: none */
9132 /* */
9133 /* Handle global initialisation that needs to be done for the base part of */
9134 /* IPFilter. At present this just amounts to initialising some ICMP lookup */
9135 /* arrays that get used by the state/NAT code. */
9136 /* ------------------------------------------------------------------------ */
9137 int
9138 ipf_main_load(void)
9139 {
9140 int i;
9141
9142 /* fill icmp reply type table */
9143 for (i = 0; i <= ICMP_MAXTYPE; i++)
9144 icmpreplytype4[i] = -1;
9145 icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9146 icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9147 icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9148 icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9149
9150 #ifdef USE_INET6
9151 /* fill icmp reply type table */
9152 for (i = 0; i <= ICMP6_MAXTYPE; i++)
9153 icmpreplytype6[i] = -1;
9154 icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9155 icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9156 icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9157 icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9158 icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9159 #endif
9160
9161 return 0;
9162 }
9163
9164
9165 /* ------------------------------------------------------------------------ */
9166 /* Function: ipf_main_unload */
9167 /* Returns: 0 = success, -1 = failure */
9168 /* Parameters: none */
9169 /* */
9170 /* A null-op function that exists as a placeholder so that the flow in */
9171 /* other functions is obvious. */
9172 /* ------------------------------------------------------------------------ */
9173 int
9174 ipf_main_unload(void)
9175 {
9176 return 0;
9177 }
9178
9179
9180 /* ------------------------------------------------------------------------ */
9181 /* Function: ipf_load_all */
9182 /* Returns: 0 = success, -1 = failure */
9183 /* Parameters: none */
9184 /* */
9185 /* Work through all of the subsystems inside IPFilter and call the load */
9186 /* function for each in an order that won't lead to a crash :) */
9187 /* ------------------------------------------------------------------------ */
9188 int
9189 ipf_load_all(void)
9190 {
9191 if (ipf_main_load() == -1)
9192 return -1;
9193
9194 if (ipf_state_main_load() == -1)
9195 return -1;
9196
9197 if (ipf_nat_main_load() == -1)
9198 return -1;
9199
9200 if (ipf_frag_main_load() == -1)
9201 return -1;
9202
9203 if (ipf_auth_main_load() == -1)
9204 return -1;
9205
9206 if (ipf_proxy_main_load() == -1)
9207 return -1;
9208
9209 return 0;
9210 }
9211
9212
9213 /* ------------------------------------------------------------------------ */
9214 /* Function: ipf_unload_all */
9215 /* Returns: 0 = success, -1 = failure */
9216 /* Parameters: none */
9217 /* */
9218 /* Work through all of the subsystems inside IPFilter and call the unload */
9219 /* function for each in an order that won't lead to a crash :) */
9220 /* ------------------------------------------------------------------------ */
9221 int
9222 ipf_unload_all(void)
9223 {
9224 if (ipf_proxy_main_unload() == -1)
9225 return -1;
9226
9227 if (ipf_auth_main_unload() == -1)
9228 return -1;
9229
9230 if (ipf_frag_main_unload() == -1)
9231 return -1;
9232
9233 if (ipf_nat_main_unload() == -1)
9234 return -1;
9235
9236 if (ipf_state_main_unload() == -1)
9237 return -1;
9238
9239 if (ipf_main_unload() == -1)
9240 return -1;
9241
9242 return 0;
9243 }
9244
9245
9246 /* ------------------------------------------------------------------------ */
9247 /* Function: ipf_create_all */
9248 /* Returns: NULL = failure, else success */
9249 /* Parameters: arg(I) - pointer to soft context main structure */
9250 /* */
9251 /* Work through all of the subsystems inside IPFilter and call the create */
9252 /* function for each in an order that won't lead to a crash :) */
9253 /* ------------------------------------------------------------------------ */
9254 ipf_main_softc_t *
9255 ipf_create_all(void *arg)
9256 {
9257 ipf_main_softc_t *softc;
9258
9259 softc = ipf_main_soft_create(arg);
9260 if (softc == NULL)
9261 return NULL;
9262
9263 #ifdef IPFILTER_LOG
9264 softc->ipf_log_soft = ipf_log_soft_create(softc);
9265 if (softc->ipf_log_soft == NULL) {
9266 ipf_destroy_all(softc);
9267 return NULL;
9268 }
9269 #endif
9270
9271 softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9272 if (softc->ipf_lookup_soft == NULL) {
9273 ipf_destroy_all(softc);
9274 return NULL;
9275 }
9276
9277 softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9278 if (softc->ipf_sync_soft == NULL) {
9279 ipf_destroy_all(softc);
9280 return NULL;
9281 }
9282
9283 softc->ipf_state_soft = ipf_state_soft_create(softc);
9284 if (softc->ipf_state_soft == NULL) {
9285 ipf_destroy_all(softc);
9286 return NULL;
9287 }
9288
9289 softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9290 if (softc->ipf_nat_soft == NULL) {
9291 ipf_destroy_all(softc);
9292 return NULL;
9293 }
9294
9295 softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9296 if (softc->ipf_frag_soft == NULL) {
9297 ipf_destroy_all(softc);
9298 return NULL;
9299 }
9300
9301 softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9302 if (softc->ipf_auth_soft == NULL) {
9303 ipf_destroy_all(softc);
9304 return NULL;
9305 }
9306
9307 softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9308 if (softc->ipf_proxy_soft == NULL) {
9309 ipf_destroy_all(softc);
9310 return NULL;
9311 }
9312
9313 return softc;
9314 }
9315
9316
9317 /* ------------------------------------------------------------------------ */
9318 /* Function: ipf_destroy_all */
9319 /* Returns: void */
9320 /* Parameters: softc(I) - pointer to soft context main structure */
9321 /* */
9322 /* Work through all of the subsystems inside IPFilter and call the destroy */
9323 /* function for each in an order that won't lead to a crash :) */
9324 /* */
9325 /* Every one of these functions is expected to succeed, so there is no */
9326 /* checking of return values. */
9327 /* ------------------------------------------------------------------------ */
9328 void
9329 ipf_destroy_all(ipf_main_softc_t *softc)
9330 {
9331
9332 if (softc->ipf_state_soft != NULL) {
9333 ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9334 softc->ipf_state_soft = NULL;
9335 }
9336
9337 if (softc->ipf_nat_soft != NULL) {
9338 ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9339 softc->ipf_nat_soft = NULL;
9340 }
9341
9342 if (softc->ipf_frag_soft != NULL) {
9343 ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9344 softc->ipf_frag_soft = NULL;
9345 }
9346
9347 if (softc->ipf_auth_soft != NULL) {
9348 ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9349 softc->ipf_auth_soft = NULL;
9350 }
9351
9352 if (softc->ipf_proxy_soft != NULL) {
9353 ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9354 softc->ipf_proxy_soft = NULL;
9355 }
9356
9357 if (softc->ipf_sync_soft != NULL) {
9358 ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9359 softc->ipf_sync_soft = NULL;
9360 }
9361
9362 if (softc->ipf_lookup_soft != NULL) {
9363 ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9364 softc->ipf_lookup_soft = NULL;
9365 }
9366
9367 #ifdef IPFILTER_LOG
9368 if (softc->ipf_log_soft != NULL) {
9369 ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9370 softc->ipf_log_soft = NULL;
9371 }
9372 #endif
9373
9374 ipf_main_soft_destroy(softc);
9375 }
9376
9377
9378 /* ------------------------------------------------------------------------ */
9379 /* Function: ipf_init_all */
9380 /* Returns: 0 = success, -1 = failure */
9381 /* Parameters: softc(I) - pointer to soft context main structure */
9382 /* */
9383 /* Work through all of the subsystems inside IPFilter and call the init */
9384 /* function for each in an order that won't lead to a crash :) */
9385 /* ------------------------------------------------------------------------ */
9386 int
9387 ipf_init_all(ipf_main_softc_t *softc)
9388 {
9389
9390 if (ipf_main_soft_init(softc) == -1)
9391 return -1;
9392
9393 #ifdef IPFILTER_LOG
9394 if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9395 return -1;
9396 #endif
9397
9398 if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9399 return -1;
9400
9401 if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9402 return -1;
9403
9404 if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9405 return -1;
9406
9407 if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9408 return -1;
9409
9410 if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9411 return -1;
9412
9413 if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9414 return -1;
9415
9416 if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9417 return -1;
9418
9419 return 0;
9420 }
9421
9422
9423 /* ------------------------------------------------------------------------ */
9424 /* Function: ipf_fini_all */
9425 /* Returns: 0 = success, -1 = failure */
9426 /* Parameters: softc(I) - pointer to soft context main structure */
9427 /* */
9428 /* Work through all of the subsystems inside IPFilter and call the fini */
9429 /* function for each in an order that won't lead to a crash :) */
9430 /* ------------------------------------------------------------------------ */
9431 int
9432 ipf_fini_all(ipf_main_softc_t *softc)
9433 {
9434
9435 ipf_token_flush(softc);
9436
9437 if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9438 return -1;
9439
9440 if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9441 return -1;
9442
9443 if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9444 return -1;
9445
9446 if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9447 return -1;
9448
9449 if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9450 return -1;
9451
9452 if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9453 return -1;
9454
9455 if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9456 return -1;
9457
9458 #ifdef IPFILTER_LOG
9459 if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9460 return -1;
9461 #endif
9462
9463 if (ipf_main_soft_fini(softc) == -1)
9464 return -1;
9465
9466 return 0;
9467 }
9468
9469
9470 /* ------------------------------------------------------------------------ */
9471 /* Function: ipf_rule_expire */
9472 /* Returns: Nil */
9473 /* Parameters: softc(I) - pointer to soft context main structure */
9474 /* */
9475 /* At present this function exists just to support temporary addition of */
9476 /* firewall rules. Both inactive and active lists are scanned for items to */
9477 /* purge, as by rights, the expiration is computed as soon as the rule is */
9478 /* loaded in. */
9479 /* ------------------------------------------------------------------------ */
9480 void
9481 ipf_rule_expire(ipf_main_softc_t *softc)
9482 {
9483 frentry_t *fr;
9484
9485 if ((softc->ipf_rule_explist[0] == NULL) &&
9486 (softc->ipf_rule_explist[1] == NULL))
9487 return;
9488
9489 WRITE_ENTER(&softc->ipf_mutex);
9490
9491 while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9492 /*
9493 * Because the list is kept sorted on insertion, the fist
9494 * one that dies in the future means no more work to do.
9495 */
9496 if (fr->fr_die > softc->ipf_ticks)
9497 break;
9498 ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9499 }
9500
9501 while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9502 /*
9503 * Because the list is kept sorted on insertion, the fist
9504 * one that dies in the future means no more work to do.
9505 */
9506 if (fr->fr_die > softc->ipf_ticks)
9507 break;
9508 ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9509 }
9510
9511 RWLOCK_EXIT(&softc->ipf_mutex);
9512 }
9513
9514
9515 static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *);
9516 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9517 i6addr_t *);
9518
9519 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9520
9521
9522 /* ------------------------------------------------------------------------ */
9523 /* Function: ipf_ht_node_cmp */
9524 /* Returns: int - 0 == nodes are the same, .. */
9525 /* Parameters: k1(I) - pointer to first key to compare */
9526 /* k2(I) - pointer to second key to compare */
9527 /* */
9528 /* The "key" for the node is a combination of two fields: the address */
9529 /* family and the address itself. */
9530 /* */
9531 /* Because we're not actually interpreting the address data, it isn't */
9532 /* necessary to convert them to/from network/host byte order. The mask is */
9533 /* just used to remove bits that aren't significant - it doesn't matter */
9534 /* where they are, as long as they're always in the same place. */
9535 /* */
9536 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */
9537 /* this is where individual ones will differ the most - but not true for */
9538 /* for /48's, etc. */
9539 /* ------------------------------------------------------------------------ */
9540 static int
9541 ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2)
9542 {
9543 int i;
9544
9545 i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9546 if (i != 0)
9547 return i;
9548
9549 if (k1->hn_addr.adf_family == AF_INET)
9550 return (k2->hn_addr.adf_addr.in4.s_addr -
9551 k1->hn_addr.adf_addr.in4.s_addr);
9552
9553 i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9554 if (i != 0)
9555 return i;
9556 i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9557 if (i != 0)
9558 return i;
9559 i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9560 if (i != 0)
9561 return i;
9562 i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9563 return i;
9564 }
9565
9566
9567 /* ------------------------------------------------------------------------ */
9568 /* Function: ipf_ht_node_make_key */
9569 /* Returns: Nil */
9570 /* parameters: htp(I) - pointer to address tracking structure */
9571 /* key(I) - where to store masked address for lookup */
9572 /* family(I) - protocol family of address */
9573 /* addr(I) - pointer to network address */
9574 /* */
9575 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9576 /* copy the address passed in into the key structure whilst masking out the */
9577 /* bits that we don't want. */
9578 /* */
9579 /* Because the parser will set ht_netmask to 128 if there is no protocol */
9580 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */
9581 /* have to be wary of that and not allow 32-128 to happen. */
9582 /* ------------------------------------------------------------------------ */
9583 static void
9584 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9585 i6addr_t *addr)
9586 {
9587 key->hn_addr.adf_family = family;
9588 if (family == AF_INET) {
9589 u_32_t mask;
9590 int bits;
9591
9592 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9593 bits = htp->ht_netmask;
9594 if (bits >= 32) {
9595 mask = 0xffffffff;
9596 } else {
9597 mask = htonl(0xffffffff << (32 - bits));
9598 }
9599 key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9600 #ifdef USE_INET6
9601 } else {
9602 int bits = htp->ht_netmask;
9603
9604 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9605 if (bits > 96) {
9606 key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9607 htonl(0xffffffff << (128 - bits));
9608 key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9609 key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9610 key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9611 } else if (bits > 64) {
9612 key->hn_addr.adf_addr.i6[3] = 0;
9613 key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9614 htonl(0xffffffff << (96 - bits));
9615 key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9616 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9617 } else if (bits > 32) {
9618 key->hn_addr.adf_addr.i6[3] = 0;
9619 key->hn_addr.adf_addr.i6[2] = 0;
9620 key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9621 htonl(0xffffffff << (64 - bits));
9622 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9623 } else {
9624 key->hn_addr.adf_addr.i6[3] = 0;
9625 key->hn_addr.adf_addr.i6[2] = 0;
9626 key->hn_addr.adf_addr.i6[1] = 0;
9627 key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9628 htonl(0xffffffff << (32 - bits));
9629 }
9630 #endif
9631 }
9632 }
9633
9634
9635 /* ------------------------------------------------------------------------ */
9636 /* Function: ipf_ht_node_add */
9637 /* Returns: int - 0 == success, -1 == failure */
9638 /* Parameters: softc(I) - pointer to soft context main structure */
9639 /* htp(I) - pointer to address tracking structure */
9640 /* family(I) - protocol family of address */
9641 /* addr(I) - pointer to network address */
9642 /* */
9643 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9644 /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9645 /* */
9646 /* After preparing the key with the address information to find, look in */
9647 /* the red-black tree to see if the address is known. A successful call to */
9648 /* this function can mean one of two things: a new node was added to the */
9649 /* tree or a matching node exists and we're able to bump up its activity. */
9650 /* ------------------------------------------------------------------------ */
9651 int
9652 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9653 i6addr_t *addr)
9654 {
9655 host_node_t *h;
9656 host_node_t k;
9657
9658 ipf_ht_node_make_key(htp, &k, family, addr);
9659
9660 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9661 if (h == NULL) {
9662 if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9663 return -1;
9664 KMALLOC(h, host_node_t *);
9665 if (h == NULL) {
9666 DT(ipf_rb_no_mem);
9667 LBUMP(ipf_rb_no_mem);
9668 return -1;
9669 }
9670
9671 /*
9672 * If there was a macro to initialise the RB node then that
9673 * would get used here, but there isn't...
9674 */
9675 bzero((char *)h, sizeof(*h));
9676 h->hn_addr = k.hn_addr;
9677 h->hn_addr.adf_family = k.hn_addr.adf_family;
9678 RBI_INSERT(ipf_rb, &htp->ht_root, h);
9679 htp->ht_cur_nodes++;
9680 } else {
9681 if ((htp->ht_max_per_node != 0) &&
9682 (h->hn_active >= htp->ht_max_per_node)) {
9683 DT(ipf_rb_node_max);
9684 LBUMP(ipf_rb_node_max);
9685 return -1;
9686 }
9687 }
9688
9689 h->hn_active++;
9690
9691 return 0;
9692 }
9693
9694
9695 /* ------------------------------------------------------------------------ */
9696 /* Function: ipf_ht_node_del */
9697 /* Returns: int - 0 == success, -1 == failure */
9698 /* parameters: htp(I) - pointer to address tracking structure */
9699 /* family(I) - protocol family of address */
9700 /* addr(I) - pointer to network address */
9701 /* */
9702 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9703 /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9704 /* */
9705 /* Try and find the address passed in amongst the leaves on this tree to */
9706 /* be friend. If found then drop the active account for that node drops by */
9707 /* one. If that count reaches 0, it is time to free it all up. */
9708 /* ------------------------------------------------------------------------ */
9709 int
9710 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9711 {
9712 host_node_t *h;
9713 host_node_t k;
9714
9715 ipf_ht_node_make_key(htp, &k, family, addr);
9716
9717 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9718 if (h == NULL) {
9719 return -1;
9720 } else {
9721 h->hn_active--;
9722 if (h->hn_active == 0) {
9723 (void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9724 htp->ht_cur_nodes--;
9725 KFREE(h);
9726 }
9727 }
9728
9729 return 0;
9730 }
9731
9732
9733 /* ------------------------------------------------------------------------ */
9734 /* Function: ipf_rb_ht_init */
9735 /* Returns: Nil */
9736 /* Parameters: head(I) - pointer to host tracking structure */
9737 /* */
9738 /* Initialise the host tracking structure to be ready for use above. */
9739 /* ------------------------------------------------------------------------ */
9740 void
9741 ipf_rb_ht_init(host_track_t *head)
9742 {
9743 memset(head, 0, sizeof(*head));
9744 RBI_INIT(ipf_rb, &head->ht_root);
9745 }
9746
9747
9748 /* ------------------------------------------------------------------------ */
9749 /* Function: ipf_rb_ht_freenode */
9750 /* Returns: Nil */
9751 /* Parameters: head(I) - pointer to host tracking structure */
9752 /* arg(I) - additional argument from walk caller */
9753 /* */
9754 /* Free an actual host_node_t structure. */
9755 /* ------------------------------------------------------------------------ */
9756 void
9757 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9758 {
9759 KFREE(node);
9760 }
9761
9762
9763 /* ------------------------------------------------------------------------ */
9764 /* Function: ipf_rb_ht_flush */
9765 /* Returns: Nil */
9766 /* Parameters: head(I) - pointer to host tracking structure */
9767 /* */
9768 /* Remove all of the nodes in the tree tracking hosts by calling a walker */
9769 /* and free'ing each one. */
9770 /* ------------------------------------------------------------------------ */
9771 void
9772 ipf_rb_ht_flush(host_track_t *head)
9773 {
9774 /* XXX - May use node members after freeing the node. */
9775 RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9776 }
9777
9778
9779 /* ------------------------------------------------------------------------ */
9780 /* Function: ipf_slowtimer */
9781 /* Returns: Nil */
9782 /* Parameters: ptr(I) - pointer to main ipf soft context structure */
9783 /* */
9784 /* Slowly expire held state for fragments. Timeouts are set * in */
9785 /* expectation of this being called twice per second. */
9786 /* ------------------------------------------------------------------------ */
9787 void
9788 ipf_slowtimer(ipf_main_softc_t *softc)
9789 {
9790
9791 ipf_token_expire(softc);
9792 ipf_frag_expire(softc);
9793 ipf_state_expire(softc);
9794 ipf_nat_expire(softc);
9795 ipf_auth_expire(softc);
9796 ipf_lookup_expire(softc);
9797 ipf_rule_expire(softc);
9798 ipf_sync_expire(softc);
9799 softc->ipf_ticks++;
9800 # if defined(__OpenBSD__)
9801 timeout_add(&ipf_slowtimer_ch, hz/2);
9802 # endif
9803 }
9804
9805
9806 /* ------------------------------------------------------------------------ */
9807 /* Function: ipf_inet_mask_add */
9808 /* Returns: Nil */
9809 /* Parameters: bits(I) - pointer to nat context information */
9810 /* mtab(I) - pointer to mask hash table structure */
9811 /* */
9812 /* When called, bits represents the mask of a new NAT rule that has just */
9813 /* been added. This function inserts a bitmask into the array of masks to */
9814 /* search when searching for a matching NAT rule for a packet. */
9815 /* Prevention of duplicate masks is achieved by checking the use count for */
9816 /* a given netmask. */
9817 /* ------------------------------------------------------------------------ */
9818 void
9819 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9820 {
9821 u_32_t mask;
9822 int i, j;
9823
9824 mtab->imt4_masks[bits]++;
9825 if (mtab->imt4_masks[bits] > 1)
9826 return;
9827
9828 if (bits == 0)
9829 mask = 0;
9830 else
9831 mask = 0xffffffff << (32 - bits);
9832
9833 for (i = 0; i < 33; i++) {
9834 if (ntohl(mtab->imt4_active[i]) < mask) {
9835 for (j = 32; j > i; j--)
9836 mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9837 mtab->imt4_active[i] = htonl(mask);
9838 break;
9839 }
9840 }
9841 mtab->imt4_max++;
9842 }
9843
9844
9845 /* ------------------------------------------------------------------------ */
9846 /* Function: ipf_inet_mask_del */
9847 /* Returns: Nil */
9848 /* Parameters: bits(I) - number of bits set in the netmask */
9849 /* mtab(I) - pointer to mask hash table structure */
9850 /* */
9851 /* Remove the 32bit bitmask represented by "bits" from the collection of */
9852 /* netmasks stored inside of mtab. */
9853 /* ------------------------------------------------------------------------ */
9854 void
9855 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9856 {
9857 u_32_t mask;
9858 int i, j;
9859
9860 mtab->imt4_masks[bits]--;
9861 if (mtab->imt4_masks[bits] > 0)
9862 return;
9863
9864 mask = htonl(0xffffffff << (32 - bits));
9865 for (i = 0; i < 33; i++) {
9866 if (mtab->imt4_active[i] == mask) {
9867 for (j = i + 1; j < 33; j++)
9868 mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9869 break;
9870 }
9871 }
9872 mtab->imt4_max--;
9873 ASSERT(mtab->imt4_max >= 0);
9874 }
9875
9876
9877 #ifdef USE_INET6
9878 /* ------------------------------------------------------------------------ */
9879 /* Function: ipf_inet6_mask_add */
9880 /* Returns: Nil */
9881 /* Parameters: bits(I) - number of bits set in mask */
9882 /* mask(I) - pointer to mask to add */
9883 /* mtab(I) - pointer to mask hash table structure */
9884 /* */
9885 /* When called, bitcount represents the mask of a IPv6 NAT map rule that */
9886 /* has just been added. This function inserts a bitmask into the array of */
9887 /* masks to search when searching for a matching NAT rule for a packet. */
9888 /* Prevention of duplicate masks is achieved by checking the use count for */
9889 /* a given netmask. */
9890 /* ------------------------------------------------------------------------ */
9891 void
9892 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9893 {
9894 i6addr_t zero;
9895 int i, j;
9896
9897 mtab->imt6_masks[bits]++;
9898 if (mtab->imt6_masks[bits] > 1)
9899 return;
9900
9901 if (bits == 0) {
9902 mask = &zero;
9903 zero.i6[0] = 0;
9904 zero.i6[1] = 0;
9905 zero.i6[2] = 0;
9906 zero.i6[3] = 0;
9907 }
9908
9909 for (i = 0; i < 129; i++) {
9910 if (IP6_LT(&mtab->imt6_active[i], mask)) {
9911 for (j = 128; j > i; j--)
9912 mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9913 mtab->imt6_active[i] = *mask;
9914 break;
9915 }
9916 }
9917 mtab->imt6_max++;
9918 }
9919
9920
9921 /* ------------------------------------------------------------------------ */
9922 /* Function: ipf_inet6_mask_del */
9923 /* Returns: Nil */
9924 /* Parameters: bits(I) - number of bits set in mask */
9925 /* mask(I) - pointer to mask to remove */
9926 /* mtab(I) - pointer to mask hash table structure */
9927 /* */
9928 /* Remove the 128bit bitmask represented by "bits" from the collection of */
9929 /* netmasks stored inside of mtab. */
9930 /* ------------------------------------------------------------------------ */
9931 void
9932 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9933 {
9934 i6addr_t zero;
9935 int i, j;
9936
9937 mtab->imt6_masks[bits]--;
9938 if (mtab->imt6_masks[bits] > 0)
9939 return;
9940
9941 if (bits == 0)
9942 mask = &zero;
9943 zero.i6[0] = 0;
9944 zero.i6[1] = 0;
9945 zero.i6[2] = 0;
9946 zero.i6[3] = 0;
9947
9948 for (i = 0; i < 129; i++) {
9949 if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9950 for (j = i + 1; j < 129; j++) {
9951 mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9952 if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9953 break;
9954 }
9955 break;
9956 }
9957 }
9958 mtab->imt6_max--;
9959 ASSERT(mtab->imt6_max >= 0);
9960 }
9961 #endif
9962