Home | History | Annotate | Line # | Download | only in sljit_src
      1  1.5  msaitoh /*	$NetBSD: sljitLir.h,v 1.5 2021/12/05 04:38:54 msaitoh Exp $	*/
      2  1.2    alnsn 
      3  1.1    alnsn /*
      4  1.1    alnsn  *    Stack-less Just-In-Time compiler
      5  1.1    alnsn  *
      6  1.4    alnsn  *    Copyright Zoltan Herczeg (hzmester (at) freemail.hu). All rights reserved.
      7  1.1    alnsn  *
      8  1.1    alnsn  * Redistribution and use in source and binary forms, with or without modification, are
      9  1.1    alnsn  * permitted provided that the following conditions are met:
     10  1.1    alnsn  *
     11  1.1    alnsn  *   1. Redistributions of source code must retain the above copyright notice, this list of
     12  1.1    alnsn  *      conditions and the following disclaimer.
     13  1.1    alnsn  *
     14  1.1    alnsn  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
     15  1.1    alnsn  *      of conditions and the following disclaimer in the documentation and/or other materials
     16  1.1    alnsn  *      provided with the distribution.
     17  1.1    alnsn  *
     18  1.1    alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
     19  1.1    alnsn  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  1.1    alnsn  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
     21  1.1    alnsn  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  1.1    alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     23  1.1    alnsn  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     24  1.1    alnsn  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  1.1    alnsn  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     26  1.1    alnsn  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  1.1    alnsn  */
     28  1.1    alnsn 
     29  1.1    alnsn #ifndef _SLJIT_LIR_H_
     30  1.1    alnsn #define _SLJIT_LIR_H_
     31  1.1    alnsn 
     32  1.1    alnsn /*
     33  1.1    alnsn    ------------------------------------------------------------------------
     34  1.1    alnsn     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
     35  1.1    alnsn    ------------------------------------------------------------------------
     36  1.1    alnsn 
     37  1.1    alnsn    Short description
     38  1.1    alnsn     Advantages:
     39  1.2    alnsn       - The execution can be continued from any LIR instruction. In other
     40  1.2    alnsn         words, it is possible to jump to any label from anywhere, even from
     41  1.2    alnsn         a code fragment, which is compiled later, if both compiled code
     42  1.2    alnsn         shares the same context. See sljit_emit_enter for more details
     43  1.2    alnsn       - Supports self modifying code: target of (conditional) jump and call
     44  1.2    alnsn         instructions and some constant values can be dynamically modified
     45  1.2    alnsn         during runtime
     46  1.1    alnsn         - although it is not suggested to do it frequently
     47  1.2    alnsn         - can be used for inline caching: save an important value once
     48  1.2    alnsn           in the instruction stream
     49  1.2    alnsn         - since this feature limits the optimization possibilities, a
     50  1.2    alnsn           special flag must be passed at compile time when these
     51  1.2    alnsn           instructions are emitted
     52  1.1    alnsn       - A fixed stack space can be allocated for local variables
     53  1.1    alnsn       - The compiler is thread-safe
     54  1.1    alnsn       - The compiler is highly configurable through preprocessor macros.
     55  1.1    alnsn         You can disable unneeded features (multithreading in single
     56  1.1    alnsn         threaded applications), and you can use your own system functions
     57  1.1    alnsn         (including memory allocators). See sljitConfig.h
     58  1.1    alnsn     Disadvantages:
     59  1.2    alnsn       - No automatic register allocation, and temporary results are
     60  1.2    alnsn         not stored on the stack. (hence the name comes)
     61  1.1    alnsn     In practice:
     62  1.1    alnsn       - This approach is very effective for interpreters
     63  1.1    alnsn         - One of the saved registers typically points to a stack interface
     64  1.2    alnsn         - It can jump to any exception handler anytime (even if it belongs
     65  1.2    alnsn           to another function)
     66  1.2    alnsn         - Hot paths can be modified during runtime reflecting the changes
     67  1.1    alnsn           of the fastest execution path of the dynamic language
     68  1.1    alnsn         - SLJIT supports complex memory addressing modes
     69  1.2    alnsn         - mainly position and context independent code (except some cases)
     70  1.1    alnsn 
     71  1.1    alnsn     For valgrind users:
     72  1.1    alnsn       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
     73  1.1    alnsn */
     74  1.1    alnsn 
     75  1.1    alnsn #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
     76  1.1    alnsn #include "sljitConfig.h"
     77  1.1    alnsn #endif
     78  1.1    alnsn 
     79  1.1    alnsn /* The following header file defines useful macros for fine tuning
     80  1.2    alnsn sljit based code generators. They are listed in the beginning
     81  1.1    alnsn of sljitConfigInternal.h */
     82  1.1    alnsn 
     83  1.1    alnsn #include "sljitConfigInternal.h"
     84  1.1    alnsn 
     85  1.1    alnsn /* --------------------------------------------------------------------- */
     86  1.1    alnsn /*  Error codes                                                          */
     87  1.1    alnsn /* --------------------------------------------------------------------- */
     88  1.1    alnsn 
     89  1.1    alnsn /* Indicates no error. */
     90  1.1    alnsn #define SLJIT_SUCCESS			0
     91  1.1    alnsn /* After the call of sljit_generate_code(), the error code of the compiler
     92  1.1    alnsn    is set to this value to avoid future sljit calls (in debug mode at least).
     93  1.1    alnsn    The complier should be freed after sljit_generate_code(). */
     94  1.1    alnsn #define SLJIT_ERR_COMPILED		1
     95  1.1    alnsn /* Cannot allocate non executable memory. */
     96  1.1    alnsn #define SLJIT_ERR_ALLOC_FAILED		2
     97  1.1    alnsn /* Cannot allocate executable memory.
     98  1.1    alnsn    Only for sljit_generate_code() */
     99  1.1    alnsn #define SLJIT_ERR_EX_ALLOC_FAILED	3
    100  1.3    alnsn /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
    101  1.1    alnsn #define SLJIT_ERR_UNSUPPORTED		4
    102  1.3    alnsn /* An ivalid argument is passed to any SLJIT function. */
    103  1.3    alnsn #define SLJIT_ERR_BAD_ARGUMENT		5
    104  1.4    alnsn /* Dynamic code modification is not enabled. */
    105  1.4    alnsn #define SLJIT_ERR_DYN_CODE_MOD		6
    106  1.1    alnsn 
    107  1.1    alnsn /* --------------------------------------------------------------------- */
    108  1.1    alnsn /*  Registers                                                            */
    109  1.1    alnsn /* --------------------------------------------------------------------- */
    110  1.1    alnsn 
    111  1.3    alnsn /*
    112  1.3    alnsn   Scratch (R) registers: registers whose may not preserve their values
    113  1.3    alnsn   across function calls.
    114  1.3    alnsn 
    115  1.3    alnsn   Saved (S) registers: registers whose preserve their values across
    116  1.3    alnsn   function calls.
    117  1.3    alnsn 
    118  1.3    alnsn   The scratch and saved register sets are overlap. The last scratch register
    119  1.3    alnsn   is the first saved register, the one before the last is the second saved
    120  1.3    alnsn   register, and so on.
    121  1.3    alnsn 
    122  1.3    alnsn   If an architecture provides two scratch and three saved registers,
    123  1.3    alnsn   its scratch and saved register sets are the following:
    124  1.3    alnsn 
    125  1.3    alnsn      R0   |  [S4]  |   R0 and S4 represent the same physical register
    126  1.3    alnsn      R1   |  [S3]  |   R1 and S3 represent the same physical register
    127  1.3    alnsn     [R2]  |   S2   |   R2 and S2 represent the same physical register
    128  1.3    alnsn     [R3]  |   S1   |   R3 and S1 represent the same physical register
    129  1.3    alnsn     [R4]  |   S0   |   R4 and S0 represent the same physical register
    130  1.3    alnsn 
    131  1.3    alnsn   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
    132  1.3    alnsn         SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
    133  1.3    alnsn 
    134  1.3    alnsn   Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
    135  1.3    alnsn         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
    136  1.3    alnsn         are virtual on x86-32. See below.
    137  1.3    alnsn 
    138  1.3    alnsn   The purpose of this definition is convenience. Although a register
    139  1.3    alnsn   is either scratch register or saved register, SLJIT allows accessing
    140  1.3    alnsn   them from the other set. For example, four registers can be used as
    141  1.3    alnsn   scratch registers and the fifth one as saved register on the architecture
    142  1.3    alnsn   above. Of course the last two scratch registers (R2 and R3) from this
    143  1.3    alnsn   four will be saved on the stack, because they are defined as saved
    144  1.3    alnsn   registers in the application binary interface. Still R2 and R3 can be
    145  1.3    alnsn   used for referencing to these registers instead of S2 and S1, which
    146  1.3    alnsn   makes easier to write platform independent code. Scratch registers
    147  1.3    alnsn   can be saved registers in a similar way, but these extra saved
    148  1.3    alnsn   registers will not be preserved across function calls! Hence the
    149  1.3    alnsn   application must save them on those platforms, where the number of
    150  1.3    alnsn   saved registers is too low. This can be done by copy them onto
    151  1.3    alnsn   the stack and restore them after a function call.
    152  1.3    alnsn 
    153  1.3    alnsn   Note: To emphasize that registers assigned to R2-R4 are saved
    154  1.3    alnsn         registers, they are enclosed by square brackets. S3-S4
    155  1.3    alnsn         are marked in a similar way.
    156  1.3    alnsn 
    157  1.3    alnsn   Note: sljit_emit_enter and sljit_set_context defines whether a register
    158  1.3    alnsn         is S or R register. E.g: when 3 scratches and 1 saved is mapped
    159  1.3    alnsn         by sljit_emit_enter, the allowed register set will be: R0-R2 and
    160  1.3    alnsn         S0. Although S2 is mapped to the same position as R2, it does not
    161  1.3    alnsn         available in the current configuration. Furthermore the R3 (S1)
    162  1.3    alnsn         register does not available as well.
    163  1.3    alnsn */
    164  1.3    alnsn 
    165  1.3    alnsn /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
    166  1.1    alnsn #define SLJIT_UNUSED		0
    167  1.1    alnsn 
    168  1.3    alnsn /* Scratch registers. */
    169  1.3    alnsn #define SLJIT_R0	1
    170  1.3    alnsn #define SLJIT_R1	2
    171  1.3    alnsn #define SLJIT_R2	3
    172  1.3    alnsn /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
    173  1.3    alnsn    are allocated on the stack). These registers are called virtual
    174  1.3    alnsn    and cannot be used for memory addressing (cannot be part of
    175  1.3    alnsn    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
    176  1.3    alnsn    limitation on other CPUs. See sljit_get_register_index(). */
    177  1.3    alnsn #define SLJIT_R3	4
    178  1.3    alnsn #define SLJIT_R4	5
    179  1.3    alnsn #define SLJIT_R5	6
    180  1.3    alnsn #define SLJIT_R6	7
    181  1.3    alnsn #define SLJIT_R7	8
    182  1.3    alnsn #define SLJIT_R8	9
    183  1.3    alnsn #define SLJIT_R9	10
    184  1.3    alnsn /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
    185  1.3    alnsn    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
    186  1.3    alnsn #define SLJIT_R(i)	(1 + (i))
    187  1.3    alnsn 
    188  1.3    alnsn /* Saved registers. */
    189  1.3    alnsn #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
    190  1.3    alnsn #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
    191  1.3    alnsn #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
    192  1.3    alnsn /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
    193  1.3    alnsn    are allocated on the stack). These registers are called virtual
    194  1.3    alnsn    and cannot be used for memory addressing (cannot be part of
    195  1.3    alnsn    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
    196  1.3    alnsn    limitation on other CPUs. See sljit_get_register_index(). */
    197  1.3    alnsn #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
    198  1.3    alnsn #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
    199  1.3    alnsn #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
    200  1.3    alnsn #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
    201  1.3    alnsn #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
    202  1.3    alnsn #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
    203  1.3    alnsn #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
    204  1.3    alnsn /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
    205  1.3    alnsn    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
    206  1.3    alnsn #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
    207  1.3    alnsn 
    208  1.3    alnsn /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
    209  1.3    alnsn #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
    210  1.3    alnsn 
    211  1.3    alnsn /* The SLJIT_SP provides direct access to the linear stack space allocated by
    212  1.3    alnsn    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
    213  1.3    alnsn    The immediate offset is extended by the relative stack offset automatically.
    214  1.3    alnsn    The sljit_get_local_base can be used to obtain the absolute offset. */
    215  1.3    alnsn #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
    216  1.1    alnsn 
    217  1.1    alnsn /* Return with machine word. */
    218  1.1    alnsn 
    219  1.3    alnsn #define SLJIT_RETURN_REG	SLJIT_R0
    220  1.1    alnsn 
    221  1.1    alnsn /* x86 prefers specific registers for special purposes. In case of shift
    222  1.3    alnsn    by register it supports only SLJIT_R2 for shift argument
    223  1.1    alnsn    (which is the src2 argument of sljit_emit_op2). If another register is
    224  1.1    alnsn    used, sljit must exchange data between registers which cause a minor
    225  1.1    alnsn    slowdown. Other architectures has no such limitation. */
    226  1.1    alnsn 
    227  1.3    alnsn #define SLJIT_PREF_SHIFT_REG	SLJIT_R2
    228  1.1    alnsn 
    229  1.1    alnsn /* --------------------------------------------------------------------- */
    230  1.1    alnsn /*  Floating point registers                                             */
    231  1.1    alnsn /* --------------------------------------------------------------------- */
    232  1.1    alnsn 
    233  1.3    alnsn /* Each floating point register can store a 32 or a 64 bit precision
    234  1.3    alnsn    value. The FR and FS register sets are overlap in the same way as R
    235  1.3    alnsn    and S register sets. See above. */
    236  1.3    alnsn 
    237  1.1    alnsn /* Note: SLJIT_UNUSED as destination is not valid for floating point
    238  1.3    alnsn    operations, since they cannot be used for setting flags. */
    239  1.1    alnsn 
    240  1.3    alnsn /* Floating point scratch registers. */
    241  1.3    alnsn #define SLJIT_FR0	1
    242  1.3    alnsn #define SLJIT_FR1	2
    243  1.3    alnsn #define SLJIT_FR2	3
    244  1.3    alnsn #define SLJIT_FR3	4
    245  1.3    alnsn #define SLJIT_FR4	5
    246  1.3    alnsn #define SLJIT_FR5	6
    247  1.3    alnsn /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
    248  1.3    alnsn    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
    249  1.3    alnsn #define SLJIT_FR(i)	(1 + (i))
    250  1.3    alnsn 
    251  1.3    alnsn /* Floating point saved registers. */
    252  1.3    alnsn #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
    253  1.3    alnsn #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
    254  1.3    alnsn #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
    255  1.3    alnsn #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
    256  1.3    alnsn #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
    257  1.3    alnsn #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
    258  1.3    alnsn /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
    259  1.3    alnsn    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
    260  1.3    alnsn #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
    261  1.2    alnsn 
    262  1.3    alnsn /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
    263  1.3    alnsn #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
    264  1.1    alnsn 
    265  1.1    alnsn /* --------------------------------------------------------------------- */
    266  1.1    alnsn /*  Main structures and functions                                        */
    267  1.1    alnsn /* --------------------------------------------------------------------- */
    268  1.1    alnsn 
    269  1.3    alnsn /*
    270  1.3    alnsn 	The following structures are private, and can be changed in the
    271  1.3    alnsn 	future. Keeping them here allows code inlining.
    272  1.3    alnsn */
    273  1.3    alnsn 
    274  1.1    alnsn struct sljit_memory_fragment {
    275  1.1    alnsn 	struct sljit_memory_fragment *next;
    276  1.1    alnsn 	sljit_uw used_size;
    277  1.2    alnsn 	/* Must be aligned to sljit_sw. */
    278  1.3    alnsn 	sljit_u8 memory[1];
    279  1.1    alnsn };
    280  1.1    alnsn 
    281  1.1    alnsn struct sljit_label {
    282  1.1    alnsn 	struct sljit_label *next;
    283  1.1    alnsn 	sljit_uw addr;
    284  1.1    alnsn 	/* The maximum size difference. */
    285  1.1    alnsn 	sljit_uw size;
    286  1.1    alnsn };
    287  1.1    alnsn 
    288  1.1    alnsn struct sljit_jump {
    289  1.1    alnsn 	struct sljit_jump *next;
    290  1.1    alnsn 	sljit_uw addr;
    291  1.2    alnsn 	sljit_sw flags;
    292  1.1    alnsn 	union {
    293  1.1    alnsn 		sljit_uw target;
    294  1.1    alnsn 		struct sljit_label* label;
    295  1.1    alnsn 	} u;
    296  1.1    alnsn };
    297  1.1    alnsn 
    298  1.1    alnsn struct sljit_const {
    299  1.1    alnsn 	struct sljit_const *next;
    300  1.1    alnsn 	sljit_uw addr;
    301  1.1    alnsn };
    302  1.1    alnsn 
    303  1.1    alnsn struct sljit_compiler {
    304  1.3    alnsn 	sljit_s32 error;
    305  1.3    alnsn 	sljit_s32 options;
    306  1.1    alnsn 
    307  1.1    alnsn 	struct sljit_label *labels;
    308  1.1    alnsn 	struct sljit_jump *jumps;
    309  1.1    alnsn 	struct sljit_const *consts;
    310  1.1    alnsn 	struct sljit_label *last_label;
    311  1.1    alnsn 	struct sljit_jump *last_jump;
    312  1.1    alnsn 	struct sljit_const *last_const;
    313  1.1    alnsn 
    314  1.3    alnsn 	void *allocator_data;
    315  1.1    alnsn 	struct sljit_memory_fragment *buf;
    316  1.1    alnsn 	struct sljit_memory_fragment *abuf;
    317  1.1    alnsn 
    318  1.3    alnsn 	/* Used scratch registers. */
    319  1.3    alnsn 	sljit_s32 scratches;
    320  1.1    alnsn 	/* Used saved registers. */
    321  1.3    alnsn 	sljit_s32 saveds;
    322  1.3    alnsn 	/* Used float scratch registers. */
    323  1.3    alnsn 	sljit_s32 fscratches;
    324  1.3    alnsn 	/* Used float saved registers. */
    325  1.3    alnsn 	sljit_s32 fsaveds;
    326  1.1    alnsn 	/* Local stack size. */
    327  1.3    alnsn 	sljit_s32 local_size;
    328  1.1    alnsn 	/* Code size. */
    329  1.1    alnsn 	sljit_uw size;
    330  1.4    alnsn 	/* Relative offset of the executable mapping from the writable mapping. */
    331  1.4    alnsn 	sljit_uw executable_offset;
    332  1.4    alnsn 	/* Executable size for statistical purposes. */
    333  1.1    alnsn 	sljit_uw executable_size;
    334  1.1    alnsn 
    335  1.1    alnsn #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
    336  1.3    alnsn 	sljit_s32 args;
    337  1.4    alnsn 	sljit_s32 locals_offset;
    338  1.4    alnsn 	sljit_s32 saveds_offset;
    339  1.1    alnsn #endif
    340  1.1    alnsn 
    341  1.1    alnsn #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
    342  1.3    alnsn 	sljit_s32 mode32;
    343  1.4    alnsn #ifdef _WIN64
    344  1.4    alnsn 	sljit_s32 locals_offset;
    345  1.1    alnsn #endif
    346  1.1    alnsn #endif
    347  1.1    alnsn 
    348  1.1    alnsn #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
    349  1.1    alnsn 	/* Constant pool handling. */
    350  1.1    alnsn 	sljit_uw *cpool;
    351  1.3    alnsn 	sljit_u8 *cpool_unique;
    352  1.1    alnsn 	sljit_uw cpool_diff;
    353  1.1    alnsn 	sljit_uw cpool_fill;
    354  1.1    alnsn 	/* Other members. */
    355  1.1    alnsn 	/* Contains pointer, "ldr pc, [...]" pairs. */
    356  1.1    alnsn 	sljit_uw patches;
    357  1.1    alnsn #endif
    358  1.1    alnsn 
    359  1.1    alnsn #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
    360  1.1    alnsn 	/* Temporary fields. */
    361  1.1    alnsn 	sljit_uw shift_imm;
    362  1.2    alnsn #endif
    363  1.2    alnsn 
    364  1.2    alnsn #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
    365  1.3    alnsn 	sljit_s32 cache_arg;
    366  1.2    alnsn 	sljit_sw cache_argw;
    367  1.1    alnsn #endif
    368  1.1    alnsn 
    369  1.3    alnsn #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
    370  1.2    alnsn 	sljit_sw imm;
    371  1.3    alnsn 	sljit_s32 cache_arg;
    372  1.2    alnsn 	sljit_sw cache_argw;
    373  1.2    alnsn #endif
    374  1.2    alnsn 
    375  1.3    alnsn #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
    376  1.3    alnsn 	sljit_s32 delay_slot;
    377  1.3    alnsn 	sljit_s32 cache_arg;
    378  1.2    alnsn 	sljit_sw cache_argw;
    379  1.2    alnsn #endif
    380  1.2    alnsn 
    381  1.2    alnsn #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
    382  1.3    alnsn 	sljit_s32 delay_slot;
    383  1.3    alnsn 	sljit_s32 cache_arg;
    384  1.2    alnsn 	sljit_sw cache_argw;
    385  1.1    alnsn #endif
    386  1.1    alnsn 
    387  1.2    alnsn #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
    388  1.3    alnsn 	sljit_s32 cache_arg;
    389  1.2    alnsn 	sljit_sw cache_argw;
    390  1.1    alnsn #endif
    391  1.1    alnsn 
    392  1.1    alnsn #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    393  1.1    alnsn 	FILE* verbose;
    394  1.1    alnsn #endif
    395  1.1    alnsn 
    396  1.3    alnsn #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
    397  1.3    alnsn 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
    398  1.4    alnsn 	/* Flags specified by the last arithmetic instruction.
    399  1.4    alnsn 	   It contains the type of the variable flag. */
    400  1.4    alnsn 	sljit_s32 last_flags;
    401  1.1    alnsn 	/* Local size passed to the functions. */
    402  1.3    alnsn 	sljit_s32 logical_local_size;
    403  1.1    alnsn #endif
    404  1.1    alnsn 
    405  1.3    alnsn #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
    406  1.3    alnsn 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
    407  1.3    alnsn 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    408  1.4    alnsn 	/* Trust arguments when the API function is called. */
    409  1.3    alnsn 	sljit_s32 skip_checks;
    410  1.1    alnsn #endif
    411  1.1    alnsn };
    412  1.1    alnsn 
    413  1.1    alnsn /* --------------------------------------------------------------------- */
    414  1.1    alnsn /*  Main functions                                                       */
    415  1.1    alnsn /* --------------------------------------------------------------------- */
    416  1.1    alnsn 
    417  1.3    alnsn /* Creates an sljit compiler. The allocator_data is required by some
    418  1.3    alnsn    custom memory managers. This pointer is passed to SLJIT_MALLOC
    419  1.3    alnsn    and SLJIT_FREE macros. Most allocators (including the default
    420  1.3    alnsn    one) ignores this value, and it is recommended to pass NULL
    421  1.3    alnsn    as a dummy value for allocator_data.
    422  1.3    alnsn 
    423  1.1    alnsn    Returns NULL if failed. */
    424  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
    425  1.2    alnsn 
    426  1.3    alnsn /* Frees everything except the compiled machine code. */
    427  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
    428  1.1    alnsn 
    429  1.2    alnsn /* Returns the current error code. If an error is occurred, future sljit
    430  1.2    alnsn    calls which uses the same compiler argument returns early with the same
    431  1.2    alnsn    error code. Thus there is no need for checking the error after every
    432  1.2    alnsn    call, it is enough to do it before the code is compiled. Removing
    433  1.2    alnsn    these checks increases the performance of the compiling process. */
    434  1.3    alnsn static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
    435  1.3    alnsn 
    436  1.3    alnsn /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
    437  1.3    alnsn    if an error was detected before. After the error code is set
    438  1.3    alnsn    the compiler behaves as if the allocation failure happened
    439  1.3    alnsn    during an sljit function call. This can greatly simplify error
    440  1.3    alnsn    checking, since only the compiler status needs to be checked
    441  1.3    alnsn    after the compilation. */
    442  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
    443  1.1    alnsn 
    444  1.1    alnsn /*
    445  1.1    alnsn    Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
    446  1.2    alnsn    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
    447  1.2    alnsn    compiler, and freed by sljit_free_compiler. The returned pointer is
    448  1.2    alnsn    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
    449  1.2    alnsn    the compiling, and no need to worry about freeing them. The size is
    450  1.2    alnsn    enough to contain at most 16 pointers. If the size is outside of the range,
    451  1.2    alnsn    the function will return with NULL. However, this return value does not
    452  1.2    alnsn    indicate that there is no more memory (does not set the current error code
    453  1.2    alnsn    of the compiler to out-of-memory status).
    454  1.1    alnsn */
    455  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
    456  1.1    alnsn 
    457  1.1    alnsn #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    458  1.1    alnsn /* Passing NULL disables verbose. */
    459  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
    460  1.1    alnsn #endif
    461  1.1    alnsn 
    462  1.4    alnsn /*
    463  1.4    alnsn    Create executable code from the sljit instruction stream. This is the final step
    464  1.4    alnsn    of the code generation so no more instructions can be added after this call.
    465  1.4    alnsn */
    466  1.4    alnsn 
    467  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
    468  1.4    alnsn 
    469  1.4    alnsn /* Free executable code. */
    470  1.4    alnsn 
    471  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
    472  1.1    alnsn 
    473  1.1    alnsn /*
    474  1.4    alnsn    When the protected executable allocator is used the JIT code is mapped
    475  1.4    alnsn    twice. The first mapping has read/write and the second mapping has read/exec
    476  1.4    alnsn    permissions. This function returns with the relative offset of the executable
    477  1.4    alnsn    mapping using the writable mapping as the base after the machine code is
    478  1.4    alnsn    successfully generated. The returned value is always 0 for the normal executable
    479  1.4    alnsn    allocator, since it uses only one mapping with read/write/exec permissions.
    480  1.4    alnsn    Dynamic code modifications requires this value.
    481  1.4    alnsn 
    482  1.4    alnsn    Before a successful code generation, this function returns with 0.
    483  1.4    alnsn */
    484  1.4    alnsn static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
    485  1.4    alnsn 
    486  1.4    alnsn /*
    487  1.4    alnsn    The executable memory consumption of the generated code can be retrieved by
    488  1.4    alnsn    this function. The returned value can be used for statistical purposes.
    489  1.1    alnsn 
    490  1.1    alnsn    Before a successful code generation, this function returns with 0.
    491  1.1    alnsn */
    492  1.1    alnsn static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
    493  1.1    alnsn 
    494  1.2    alnsn /* Instruction generation. Returns with any error code. If there is no
    495  1.2    alnsn    error, they return with SLJIT_SUCCESS. */
    496  1.1    alnsn 
    497  1.1    alnsn /*
    498  1.3    alnsn    The executable code is a function call from the viewpoint of the C
    499  1.3    alnsn    language. The function calls must obey to the ABI (Application
    500  1.3    alnsn    Binary Interface) of the platform, which specify the purpose of
    501  1.3    alnsn    all machine registers and stack handling among other things. The
    502  1.3    alnsn    sljit_emit_enter function emits the necessary instructions for
    503  1.3    alnsn    setting up a new context for the executable code and moves function
    504  1.3    alnsn    arguments to the saved registers. Furthermore the options argument
    505  1.3    alnsn    can be used to pass configuration options to the compiler. The
    506  1.3    alnsn    available options are listed before sljit_emit_enter.
    507  1.3    alnsn 
    508  1.3    alnsn    The number of sljit_sw arguments passed to the generated function
    509  1.3    alnsn    are specified in the "args" parameter. The number of arguments must
    510  1.3    alnsn    be less than or equal to 3. The first argument goes to SLJIT_S0,
    511  1.3    alnsn    the second goes to SLJIT_S1 and so on. The register set used by
    512  1.3    alnsn    the function must be declared as well. The number of scratch and
    513  1.3    alnsn    saved registers used by the function must be passed to sljit_emit_enter.
    514  1.3    alnsn    Only R registers between R0 and "scratches" argument can be used
    515  1.3    alnsn    later. E.g. if "scratches" is set to 2, the register set will be
    516  1.3    alnsn    limited to R0 and R1. The S registers and the floating point
    517  1.3    alnsn    registers ("fscratches" and "fsaveds") are specified in a similar
    518  1.3    alnsn    way. The sljit_emit_enter is also capable of allocating a stack
    519  1.3    alnsn    space for local variables. The "local_size" argument contains the
    520  1.3    alnsn    size in bytes of this local area and its staring address is stored
    521  1.3    alnsn    in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
    522  1.3    alnsn    SLJIT_SP + local_size (exclusive) can be modified freely until
    523  1.3    alnsn    the function returns. The stack space is not initialized.
    524  1.3    alnsn 
    525  1.3    alnsn    Note: the following conditions must met:
    526  1.3    alnsn          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
    527  1.3    alnsn          0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
    528  1.3    alnsn          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
    529  1.3    alnsn          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    530  1.3    alnsn          0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    531  1.3    alnsn          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    532  1.1    alnsn 
    533  1.2    alnsn    Note: every call of sljit_emit_enter and sljit_set_context
    534  1.3    alnsn          overwrites the previous context.
    535  1.3    alnsn */
    536  1.3    alnsn 
    537  1.3    alnsn /* The absolute address returned by sljit_get_local_base with
    538  1.4    alnsn offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
    539  1.4    alnsn #define SLJIT_F64_ALIGNMENT 0x00000001
    540  1.1    alnsn 
    541  1.3    alnsn /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
    542  1.1    alnsn #define SLJIT_MAX_LOCAL_SIZE	65536
    543  1.1    alnsn 
    544  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
    545  1.3    alnsn 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
    546  1.3    alnsn 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
    547  1.1    alnsn 
    548  1.1    alnsn /* The machine code has a context (which contains the local stack space size,
    549  1.1    alnsn    number of used registers, etc.) which initialized by sljit_emit_enter. Several
    550  1.1    alnsn    functions (like sljit_emit_return) requres this context to be able to generate
    551  1.1    alnsn    the appropriate code. However, some code fragments (like inline cache) may have
    552  1.3    alnsn    no normal entry point so their context is unknown for the compiler. Their context
    553  1.3    alnsn    can be provided to the compiler by the sljit_set_context function.
    554  1.1    alnsn 
    555  1.1    alnsn    Note: every call of sljit_emit_enter and sljit_set_context overwrites
    556  1.1    alnsn          the previous context. */
    557  1.1    alnsn 
    558  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
    559  1.3    alnsn 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
    560  1.3    alnsn 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
    561  1.1    alnsn 
    562  1.1    alnsn /* Return from machine code.  The op argument can be SLJIT_UNUSED which means the
    563  1.1    alnsn    function does not return with anything or any opcode between SLJIT_MOV and
    564  1.2    alnsn    SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
    565  1.1    alnsn    is SLJIT_UNUSED, otherwise see below the description about source and
    566  1.1    alnsn    destination arguments. */
    567  1.1    alnsn 
    568  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
    569  1.3    alnsn 	sljit_s32 src, sljit_sw srcw);
    570  1.2    alnsn 
    571  1.2    alnsn /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
    572  1.2    alnsn    even the stack frame is passed to the callee. The return address is preserved in
    573  1.2    alnsn    dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
    574  1.2    alnsn    is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
    575  1.2    alnsn 
    576  1.2    alnsn /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
    577  1.2    alnsn    instructions are needed. Excellent for small uility functions, where saving registers
    578  1.2    alnsn    and setting up a new stack frame would cost too much performance. However, it is still
    579  1.2    alnsn    possible to return to the address of the caller (or anywhere else). */
    580  1.1    alnsn 
    581  1.4    alnsn /* Note: may destroy flags. */
    582  1.1    alnsn 
    583  1.1    alnsn /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
    584  1.1    alnsn    since many architectures do clever branch prediction on call / return instruction pairs. */
    585  1.1    alnsn 
    586  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
    587  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw);
    588  1.1    alnsn 
    589  1.1    alnsn /*
    590  1.1    alnsn    Source and destination values for arithmetical instructions
    591  1.1    alnsn     imm              - a simple immediate value (cannot be used as a destination)
    592  1.1    alnsn     reg              - any of the registers (immediate argument must be 0)
    593  1.1    alnsn     [imm]            - absolute immediate memory address
    594  1.1    alnsn     [reg+imm]        - indirect memory address
    595  1.1    alnsn     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
    596  1.2    alnsn                        useful for (byte, half, int, sljit_sw) array access
    597  1.1    alnsn                        (fully supported by both x86 and ARM architectures, and cheap operation on others)
    598  1.1    alnsn */
    599  1.1    alnsn 
    600  1.1    alnsn /*
    601  1.1    alnsn    IMPORATNT NOTE: memory access MUST be naturally aligned except
    602  1.1    alnsn                    SLJIT_UNALIGNED macro is defined and its value is 1.
    603  1.1    alnsn 
    604  1.1    alnsn      length | alignment
    605  1.1    alnsn    ---------+-----------
    606  1.2    alnsn      byte   | 1 byte (any physical_address is accepted)
    607  1.2    alnsn      half   | 2 byte (physical_address & 0x1 == 0)
    608  1.2    alnsn      int    | 4 byte (physical_address & 0x3 == 0)
    609  1.2    alnsn      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
    610  1.1    alnsn             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
    611  1.2    alnsn     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
    612  1.2    alnsn             | on 64 bit machines)
    613  1.1    alnsn 
    614  1.2    alnsn    Note:   Different architectures have different addressing limitations.
    615  1.2    alnsn            A single instruction is enough for the following addressing
    616  1.2    alnsn            modes. Other adrressing modes are emulated by instruction
    617  1.2    alnsn            sequences. This information could help to improve those code
    618  1.2    alnsn            generators which focuses only a few architectures.
    619  1.2    alnsn 
    620  1.2    alnsn    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
    621  1.2    alnsn            [reg+(reg<<imm)] is supported
    622  1.2    alnsn            [imm], -2^32+1 <= imm <= 2^32-1 is supported
    623  1.2    alnsn            Write-back is not supported
    624  1.2    alnsn    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
    625  1.2    alnsn                 bytes, any halfs or floating point values)
    626  1.2    alnsn            [reg+(reg<<imm)] is supported
    627  1.2    alnsn            Write-back is supported
    628  1.2    alnsn    arm-t2: [reg+imm], -255 <= imm <= 4095
    629  1.2    alnsn            [reg+(reg<<imm)] is supported
    630  1.2    alnsn            Write back is supported only for [reg+imm], where -255 <= imm <= 255
    631  1.2    alnsn    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
    632  1.2    alnsn                 signed load on 64 bit requires immediates divisible by 4.
    633  1.2    alnsn                 [reg+imm] is not supported for signed 8 bit values.
    634  1.2    alnsn            [reg+reg] is supported
    635  1.2    alnsn            Write-back is supported except for one instruction: 32 bit signed
    636  1.2    alnsn                 load with [reg+imm] addressing mode on 64 bit.
    637  1.2    alnsn    mips:   [reg+imm], -65536 <= imm <= 65535
    638  1.2    alnsn    sparc:  [reg+imm], -4096 <= imm <= 4095
    639  1.2    alnsn            [reg+reg] is supported
    640  1.1    alnsn */
    641  1.1    alnsn 
    642  1.1    alnsn /* Register output: simply the name of the register.
    643  1.1    alnsn    For destination, you can use SLJIT_UNUSED as well. */
    644  1.2    alnsn #define SLJIT_MEM		0x80
    645  1.1    alnsn #define SLJIT_MEM0()		(SLJIT_MEM)
    646  1.1    alnsn #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
    647  1.2    alnsn #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
    648  1.2    alnsn #define SLJIT_IMM		0x40
    649  1.1    alnsn 
    650  1.4    alnsn /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
    651  1.4    alnsn    32 bit CPUs. When this option is set for an arithmetic operation, only
    652  1.4    alnsn    the lower 32 bit of the input registers are used, and the CPU status
    653  1.4    alnsn    flags are set according to the 32 bit result. Although the higher 32 bit
    654  1.4    alnsn    of the input and the result registers are not defined by SLJIT, it might
    655  1.4    alnsn    be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
    656  1.4    alnsn    requirements all source registers must be the result of those operations
    657  1.4    alnsn    where this option was also set. Memory loads read 32 bit values rather
    658  1.4    alnsn    than 64 bit ones. In other words 32 bit and 64 bit operations cannot
    659  1.4    alnsn    be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
    660  1.4    alnsn    register can hold any 32 or 64 bit value, and it is converted to a 32 bit
    661  1.4    alnsn    compatible format first. This conversion is free (no instructions are
    662  1.5  msaitoh    emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
    663  1.4    alnsn    value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
    664  1.4    alnsn 
    665  1.4    alnsn    Note: memory addressing always uses 64 bit values on 64 bit systems so
    666  1.4    alnsn          the result of a 32 bit operation must not be used with SLJIT_MEMx
    667  1.4    alnsn          macros.
    668  1.4    alnsn 
    669  1.4    alnsn    This option is part of the instruction name, so there is no need to
    670  1.4    alnsn    manually set it. E.g:
    671  1.4    alnsn 
    672  1.4    alnsn      SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
    673  1.3    alnsn #define SLJIT_I32_OP		0x100
    674  1.1    alnsn 
    675  1.4    alnsn /* Set F32 (single) precision mode for floating-point computation. This
    676  1.4    alnsn    option is similar to SLJIT_I32_OP, it just applies to floating point
    677  1.4    alnsn    registers. When this option is passed, the CPU performs 32 bit floating
    678  1.4    alnsn    point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
    679  1.4    alnsn    register arguments must be the result of those operations where this
    680  1.4    alnsn    option was also set.
    681  1.4    alnsn 
    682  1.4    alnsn    This option is part of the instruction name, so there is no need to
    683  1.4    alnsn    manually set it. E.g:
    684  1.4    alnsn 
    685  1.4    alnsn      SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
    686  1.4    alnsn  */
    687  1.4    alnsn #define SLJIT_F32_OP		SLJIT_I32_OP
    688  1.4    alnsn 
    689  1.4    alnsn /* Many CPUs (x86, ARM, PPC) has status flags which can be set according
    690  1.4    alnsn    to the result of an operation. Other CPUs (MIPS) does not have status
    691  1.4    alnsn    flags, and results must be stored in registers. To cover both architecture
    692  1.4    alnsn    types efficiently only two flags are defined by SLJIT:
    693  1.4    alnsn 
    694  1.4    alnsn     * Zero (equal) flag: it is set if the result is zero
    695  1.4    alnsn     * Variable flag: its value is defined by the last arithmetic operation
    696  1.4    alnsn 
    697  1.4    alnsn    SLJIT instructions can set any or both of these flags. The value of
    698  1.4    alnsn    these flags is undefined if the instruction does not specify their value.
    699  1.4    alnsn    The description of each instruction contains the list of allowed flag
    700  1.4    alnsn    types.
    701  1.4    alnsn 
    702  1.4    alnsn    Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
    703  1.4    alnsn 
    704  1.4    alnsn      sljit_op2(..., SLJIT_ADD, ...)
    705  1.4    alnsn        Both the zero and variable flags are undefined so their
    706  1.4    alnsn        they hold a random value after the operation is completed.
    707  1.4    alnsn 
    708  1.4    alnsn      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
    709  1.4    alnsn        Sets the zero flag if the result is zero, clears it otherwise.
    710  1.4    alnsn        The variable flag is undefined.
    711  1.4    alnsn 
    712  1.4    alnsn      sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
    713  1.4    alnsn        Sets the variable flag if an integer overflow occurs, clears
    714  1.4    alnsn        it otherwise. The zero flag is undefined.
    715  1.4    alnsn 
    716  1.4    alnsn      sljit_op2(..., SLJIT_ADD | SLJIT_SET_NOT_OVERFLOW, ...)
    717  1.4    alnsn        Sets the variable flag if an integer overflow does NOT occur,
    718  1.4    alnsn        clears it otherwise. The zero flag is undefined.
    719  1.4    alnsn 
    720  1.4    alnsn      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
    721  1.4    alnsn        Sets the zero flag if the result is zero, clears it otherwise.
    722  1.4    alnsn        Sets the variable flag if unsigned overflow (carry) occurs,
    723  1.4    alnsn        clears it otherwise.
    724  1.4    alnsn 
    725  1.4    alnsn    If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
    726  1.4    alnsn    unchanged.
    727  1.4    alnsn 
    728  1.4    alnsn    Using these flags can reduce the number of emitted instructions. E.g. a
    729  1.4    alnsn    fast loop can be implemented by decreasing a counter register and set the
    730  1.4    alnsn    zero flag to jump back if the counter register is not reached zero.
    731  1.4    alnsn 
    732  1.4    alnsn    Motivation: although CPUs can set a large number of flags, usually their
    733  1.4    alnsn    values are ignored or only one of them is used. Emulating a large number
    734  1.4    alnsn    of flags on systems without flag register is complicated so SLJIT
    735  1.4    alnsn    instructions must specify the flag they want to use and only that flag
    736  1.4    alnsn    will be emulated. The last arithmetic instruction can be repeated if
    737  1.4    alnsn    multiple flags needs to be checked.
    738  1.4    alnsn */
    739  1.4    alnsn 
    740  1.4    alnsn /* Set Zero status flag. */
    741  1.4    alnsn #define SLJIT_SET_Z			0x0200
    742  1.4    alnsn /* Set the variable status flag if condition is true.
    743  1.4    alnsn    See comparison types. */
    744  1.4    alnsn #define SLJIT_SET(condition)			((condition) << 10)
    745  1.1    alnsn 
    746  1.1    alnsn /* Notes:
    747  1.1    alnsn      - you cannot postpone conditional jump instructions except if noted that
    748  1.1    alnsn        the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
    749  1.1    alnsn      - flag combinations: '|' means 'logical or'. */
    750  1.1    alnsn 
    751  1.3    alnsn /* Starting index of opcodes for sljit_emit_op0. */
    752  1.3    alnsn #define SLJIT_OP0_BASE			0
    753  1.3    alnsn 
    754  1.4    alnsn /* Flags: - (does not modify flags)
    755  1.3    alnsn    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
    756  1.1    alnsn          It falls back to SLJIT_NOP in those cases. */
    757  1.3    alnsn #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
    758  1.4    alnsn /* Flags: - (does not modify flags)
    759  1.1    alnsn    Note: may or may not cause an extra cycle wait
    760  1.1    alnsn          it can even decrease the runtime in a few cases. */
    761  1.3    alnsn #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
    762  1.2    alnsn /* Flags: - (may destroy flags)
    763  1.3    alnsn    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
    764  1.3    alnsn    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
    765  1.3    alnsn #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
    766  1.2    alnsn /* Flags: - (may destroy flags)
    767  1.3    alnsn    Signed multiplication of SLJIT_R0 and SLJIT_R1.
    768  1.3    alnsn    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
    769  1.3    alnsn #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
    770  1.4    alnsn /* Flags: - (may destroy flags)
    771  1.3    alnsn    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    772  1.3    alnsn    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
    773  1.3    alnsn    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
    774  1.3    alnsn #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
    775  1.3    alnsn #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_I32_OP)
    776  1.4    alnsn /* Flags: - (may destroy flags)
    777  1.3    alnsn    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    778  1.3    alnsn    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
    779  1.3    alnsn    Note: if SLJIT_R1 is 0, the behaviour is undefined.
    780  1.3    alnsn    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
    781  1.3    alnsn          the behaviour is undefined. */
    782  1.3    alnsn #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
    783  1.3    alnsn #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_I32_OP)
    784  1.4    alnsn /* Flags: - (may destroy flags)
    785  1.3    alnsn    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    786  1.3    alnsn    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
    787  1.3    alnsn    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
    788  1.3    alnsn #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
    789  1.3    alnsn #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_I32_OP)
    790  1.4    alnsn /* Flags: - (may destroy flags)
    791  1.3    alnsn    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    792  1.3    alnsn    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
    793  1.3    alnsn    Note: if SLJIT_R1 is 0, the behaviour is undefined.
    794  1.3    alnsn    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
    795  1.3    alnsn          the behaviour is undefined. */
    796  1.3    alnsn #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
    797  1.3    alnsn #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_I32_OP)
    798  1.3    alnsn 
    799  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
    800  1.1    alnsn 
    801  1.3    alnsn /* Starting index of opcodes for sljit_emit_op1. */
    802  1.3    alnsn #define SLJIT_OP1_BASE			32
    803  1.1    alnsn 
    804  1.4    alnsn /* The MOV instruction transfer data from source to destination.
    805  1.4    alnsn 
    806  1.4    alnsn    MOV instruction suffixes:
    807  1.4    alnsn 
    808  1.4    alnsn    U8  - unsigned 8 bit data transfer
    809  1.4    alnsn    S8  - signed 8 bit data transfer
    810  1.4    alnsn    U16 - unsigned 16 bit data transfer
    811  1.4    alnsn    S16 - signed 16 bit data transfer
    812  1.4    alnsn    U32 - unsigned int (32 bit) data transfer
    813  1.4    alnsn    S32 - signed int (32 bit) data transfer
    814  1.4    alnsn    P   - pointer (sljit_p) data transfer
    815  1.4    alnsn 
    816  1.4    alnsn    U = move with update (pre form). If source or destination defined as
    817  1.4    alnsn        SLJIT_MEM1(r1) or SLJIT_MEM2(r1, r2), r1 is increased by the
    818  1.4    alnsn        offset part of the address.
    819  1.4    alnsn 
    820  1.4    alnsn    Register arguments and base registers can only be used once for move
    821  1.4    alnsn    with update instructions. The shift value of SLJIT_MEM2 addressing
    822  1.4    alnsn    mode must also be 0. Reason: SLJIT_MOVU instructions are expected to
    823  1.4    alnsn    be in high-performance loops where complex instruction emulation
    824  1.4    alnsn    would be too costly.
    825  1.4    alnsn 
    826  1.4    alnsn    Examples for invalid move with update instructions:
    827  1.4    alnsn 
    828  1.4    alnsn    sljit_emit_op1(..., SLJIT_MOVU_U8,
    829  1.4    alnsn        SLJIT_R0, 0, SLJIT_MEM1(SLJIT_R0), 8);
    830  1.4    alnsn    sljit_emit_op1(..., SLJIT_MOVU_U8,
    831  1.4    alnsn        SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_R0, 0);
    832  1.4    alnsn    sljit_emit_op1(..., SLJIT_MOVU_U8,
    833  1.4    alnsn        SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 0, SLJIT_MEM1(SLJIT_R0), 8);
    834  1.4    alnsn    sljit_emit_op1(..., SLJIT_MOVU_U8,
    835  1.4    alnsn        SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 0, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0);
    836  1.4    alnsn    sljit_emit_op1(..., SLJIT_MOVU_U8,
    837  1.4    alnsn        SLJIT_R2, 0, SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 1);
    838  1.4    alnsn 
    839  1.4    alnsn    The following example is valid, since only the offset register is
    840  1.4    alnsn    used multiple times:
    841  1.1    alnsn 
    842  1.4    alnsn    sljit_emit_op1(..., SLJIT_MOVU_U8,
    843  1.4    alnsn        SLJIT_MEM2(SLJIT_R0, SLJIT_R2), 0, SLJIT_MEM2(SLJIT_R1, SLJIT_R2), 0);
    844  1.4    alnsn */
    845  1.4    alnsn 
    846  1.4    alnsn /* Flags: - (does not modify flags) */
    847  1.3    alnsn #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
    848  1.4    alnsn /* Flags: - (does not modify flags) */
    849  1.3    alnsn #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
    850  1.3    alnsn #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_I32_OP)
    851  1.4    alnsn /* Flags: - (does not modify flags) */
    852  1.3    alnsn #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
    853  1.3    alnsn #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_I32_OP)
    854  1.4    alnsn /* Flags: - (does not modify flags) */
    855  1.3    alnsn #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
    856  1.3    alnsn #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_I32_OP)
    857  1.4    alnsn /* Flags: - (does not modify flags) */
    858  1.3    alnsn #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
    859  1.3    alnsn #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_I32_OP)
    860  1.4    alnsn /* Flags: - (does not modify flags)
    861  1.3    alnsn    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
    862  1.3    alnsn #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
    863  1.4    alnsn /* Flags: - (does not modify flags)
    864  1.3    alnsn    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
    865  1.3    alnsn #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
    866  1.4    alnsn /* Flags: - (does not modify flags) */
    867  1.3    alnsn #define SLJIT_MOV32			(SLJIT_MOV_S32 | SLJIT_I32_OP)
    868  1.4    alnsn /* Flags: - (does not modify flags) */
    869  1.3    alnsn #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 7)
    870  1.4    alnsn /* Flags: - (may destroy flags) */
    871  1.3    alnsn #define SLJIT_MOVU			(SLJIT_OP1_BASE + 8)
    872  1.4    alnsn /* Flags: - (may destroy flags) */
    873  1.3    alnsn #define SLJIT_MOVU_U8			(SLJIT_OP1_BASE + 9)
    874  1.3    alnsn #define SLJIT_MOVU32_U8			(SLJIT_MOVU_U8 | SLJIT_I32_OP)
    875  1.4    alnsn /* Flags: - (may destroy flags) */
    876  1.3    alnsn #define SLJIT_MOVU_S8			(SLJIT_OP1_BASE + 10)
    877  1.3    alnsn #define SLJIT_MOVU32_S8			(SLJIT_MOVU_S8 | SLJIT_I32_OP)
    878  1.4    alnsn /* Flags: - (may destroy flags) */
    879  1.3    alnsn #define SLJIT_MOVU_U16			(SLJIT_OP1_BASE + 11)
    880  1.3    alnsn #define SLJIT_MOVU32_U16			(SLJIT_MOVU_U16 | SLJIT_I32_OP)
    881  1.4    alnsn /* Flags: - (may destroy flags) */
    882  1.3    alnsn #define SLJIT_MOVU_S16			(SLJIT_OP1_BASE + 12)
    883  1.3    alnsn #define SLJIT_MOVU32_S16		(SLJIT_MOVU_S16 | SLJIT_I32_OP)
    884  1.4    alnsn /* Flags: - (may destroy flags)
    885  1.3    alnsn    Note: no SLJIT_MOVU32_U32 form, since it is the same as SLJIT_MOVU32 */
    886  1.3    alnsn #define SLJIT_MOVU_U32			(SLJIT_OP1_BASE + 13)
    887  1.4    alnsn /* Flags: - (may destroy flags)
    888  1.3    alnsn    Note: no SLJIT_MOVU32_S32 form, since it is the same as SLJIT_MOVU32 */
    889  1.3    alnsn #define SLJIT_MOVU_S32			(SLJIT_OP1_BASE + 14)
    890  1.4    alnsn /* Flags: - (may destroy flags) */
    891  1.3    alnsn #define SLJIT_MOVU32			(SLJIT_MOVU_S32 | SLJIT_I32_OP)
    892  1.4    alnsn /* Flags: - (may destroy flags) */
    893  1.3    alnsn #define SLJIT_MOVU_P			(SLJIT_OP1_BASE + 15)
    894  1.4    alnsn /* Flags: Z */
    895  1.3    alnsn #define SLJIT_NOT			(SLJIT_OP1_BASE + 16)
    896  1.3    alnsn #define SLJIT_NOT32			(SLJIT_NOT | SLJIT_I32_OP)
    897  1.4    alnsn /* Flags: Z | OVERFLOW */
    898  1.3    alnsn #define SLJIT_NEG			(SLJIT_OP1_BASE + 17)
    899  1.3    alnsn #define SLJIT_NEG32			(SLJIT_NEG | SLJIT_I32_OP)
    900  1.1    alnsn /* Count leading zeroes
    901  1.4    alnsn    Flags: Z */
    902  1.3    alnsn #define SLJIT_CLZ			(SLJIT_OP1_BASE + 18)
    903  1.3    alnsn #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_I32_OP)
    904  1.3    alnsn 
    905  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
    906  1.3    alnsn 	sljit_s32 dst, sljit_sw dstw,
    907  1.3    alnsn 	sljit_s32 src, sljit_sw srcw);
    908  1.2    alnsn 
    909  1.3    alnsn /* Starting index of opcodes for sljit_emit_op2. */
    910  1.3    alnsn #define SLJIT_OP2_BASE			96
    911  1.1    alnsn 
    912  1.4    alnsn /* Flags: Z | OVERFLOW | CARRY */
    913  1.3    alnsn #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
    914  1.3    alnsn #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_I32_OP)
    915  1.4    alnsn /* Flags: CARRY */
    916  1.3    alnsn #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
    917  1.3    alnsn #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_I32_OP)
    918  1.4    alnsn /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
    919  1.4    alnsn           SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
    920  1.4    alnsn           SIG_LESS_EQUAL | CARRY */
    921  1.3    alnsn #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
    922  1.3    alnsn #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_I32_OP)
    923  1.4    alnsn /* Flags: CARRY */
    924  1.3    alnsn #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
    925  1.3    alnsn #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_I32_OP)
    926  1.1    alnsn /* Note: integer mul
    927  1.4    alnsn    Flags: MUL_OVERFLOW */
    928  1.3    alnsn #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
    929  1.3    alnsn #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_I32_OP)
    930  1.4    alnsn /* Flags: Z */
    931  1.3    alnsn #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
    932  1.3    alnsn #define SLJIT_AND32			(SLJIT_AND | SLJIT_I32_OP)
    933  1.4    alnsn /* Flags: Z */
    934  1.3    alnsn #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
    935  1.3    alnsn #define SLJIT_OR32			(SLJIT_OR | SLJIT_I32_OP)
    936  1.4    alnsn /* Flags: Z */
    937  1.3    alnsn #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
    938  1.3    alnsn #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_I32_OP)
    939  1.4    alnsn /* Flags: Z
    940  1.1    alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    941  1.1    alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    942  1.1    alnsn    Otherwise, if the content of src2 is outside the range from 0
    943  1.3    alnsn    to bit_length - 1, the result is undefined. */
    944  1.3    alnsn #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
    945  1.3    alnsn #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_I32_OP)
    946  1.4    alnsn /* Flags: Z
    947  1.1    alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    948  1.1    alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    949  1.1    alnsn    Otherwise, if the content of src2 is outside the range from 0
    950  1.3    alnsn    to bit_length - 1, the result is undefined. */
    951  1.3    alnsn #define SLJIT_LSHR			(SLJIT_OP2_BASE + 9)
    952  1.3    alnsn #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_I32_OP)
    953  1.4    alnsn /* Flags: Z
    954  1.1    alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    955  1.1    alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    956  1.1    alnsn    Otherwise, if the content of src2 is outside the range from 0
    957  1.3    alnsn    to bit_length - 1, the result is undefined. */
    958  1.3    alnsn #define SLJIT_ASHR			(SLJIT_OP2_BASE + 10)
    959  1.3    alnsn #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_I32_OP)
    960  1.3    alnsn 
    961  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
    962  1.3    alnsn 	sljit_s32 dst, sljit_sw dstw,
    963  1.3    alnsn 	sljit_s32 src1, sljit_sw src1w,
    964  1.3    alnsn 	sljit_s32 src2, sljit_sw src2w);
    965  1.1    alnsn 
    966  1.3    alnsn /* Returns with non-zero if fpu is available. */
    967  1.1    alnsn 
    968  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void);
    969  1.2    alnsn 
    970  1.3    alnsn /* Starting index of opcodes for sljit_emit_fop1. */
    971  1.3    alnsn #define SLJIT_FOP1_BASE			128
    972  1.2    alnsn 
    973  1.4    alnsn /* Flags: - (does not modify flags) */
    974  1.3    alnsn #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
    975  1.3    alnsn #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_F32_OP)
    976  1.3    alnsn /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
    977  1.3    alnsn    SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
    978  1.3    alnsn    Rounding mode when the destination is W or I: round towards zero. */
    979  1.4    alnsn /* Flags: - (does not modify flags) */
    980  1.3    alnsn #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
    981  1.3    alnsn #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
    982  1.4    alnsn /* Flags: - (does not modify flags) */
    983  1.3    alnsn #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
    984  1.3    alnsn #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
    985  1.4    alnsn /* Flags: - (does not modify flags) */
    986  1.3    alnsn #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
    987  1.3    alnsn #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
    988  1.4    alnsn /* Flags: - (does not modify flags) */
    989  1.3    alnsn #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
    990  1.3    alnsn #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
    991  1.4    alnsn /* Flags: - (does not modify flags) */
    992  1.3    alnsn #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
    993  1.3    alnsn #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
    994  1.3    alnsn /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
    995  1.4    alnsn    Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
    996  1.3    alnsn #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
    997  1.3    alnsn #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_F32_OP)
    998  1.4    alnsn /* Flags: - (does not modify flags) */
    999  1.3    alnsn #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
   1000  1.3    alnsn #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_F32_OP)
   1001  1.4    alnsn /* Flags: - (does not modify flags) */
   1002  1.3    alnsn #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
   1003  1.3    alnsn #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_F32_OP)
   1004  1.3    alnsn 
   1005  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
   1006  1.3    alnsn 	sljit_s32 dst, sljit_sw dstw,
   1007  1.3    alnsn 	sljit_s32 src, sljit_sw srcw);
   1008  1.2    alnsn 
   1009  1.3    alnsn /* Starting index of opcodes for sljit_emit_fop2. */
   1010  1.3    alnsn #define SLJIT_FOP2_BASE			160
   1011  1.2    alnsn 
   1012  1.4    alnsn /* Flags: - (does not modify flags) */
   1013  1.3    alnsn #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
   1014  1.3    alnsn #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_F32_OP)
   1015  1.4    alnsn /* Flags: - (does not modify flags) */
   1016  1.3    alnsn #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
   1017  1.3    alnsn #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_F32_OP)
   1018  1.4    alnsn /* Flags: - (does not modify flags) */
   1019  1.3    alnsn #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
   1020  1.3    alnsn #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_F32_OP)
   1021  1.4    alnsn /* Flags: - (does not modify flags) */
   1022  1.3    alnsn #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
   1023  1.3    alnsn #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_F32_OP)
   1024  1.2    alnsn 
   1025  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
   1026  1.3    alnsn 	sljit_s32 dst, sljit_sw dstw,
   1027  1.3    alnsn 	sljit_s32 src1, sljit_sw src1w,
   1028  1.3    alnsn 	sljit_s32 src2, sljit_sw src2w);
   1029  1.1    alnsn 
   1030  1.1    alnsn /* Label and jump instructions. */
   1031  1.1    alnsn 
   1032  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
   1033  1.1    alnsn 
   1034  1.3    alnsn /* Invert (negate) conditional type: xor (^) with 0x1 */
   1035  1.1    alnsn 
   1036  1.3    alnsn /* Integer comparison types. */
   1037  1.3    alnsn #define SLJIT_EQUAL			0
   1038  1.3    alnsn #define SLJIT_EQUAL32			(SLJIT_EQUAL | SLJIT_I32_OP)
   1039  1.3    alnsn #define SLJIT_ZERO			0
   1040  1.3    alnsn #define SLJIT_ZERO32			(SLJIT_ZERO | SLJIT_I32_OP)
   1041  1.3    alnsn #define SLJIT_NOT_EQUAL			1
   1042  1.3    alnsn #define SLJIT_NOT_EQUAL32		(SLJIT_NOT_EQUAL | SLJIT_I32_OP)
   1043  1.3    alnsn #define SLJIT_NOT_ZERO			1
   1044  1.3    alnsn #define SLJIT_NOT_ZERO32		(SLJIT_NOT_ZERO | SLJIT_I32_OP)
   1045  1.3    alnsn 
   1046  1.3    alnsn #define SLJIT_LESS			2
   1047  1.3    alnsn #define SLJIT_LESS32			(SLJIT_LESS | SLJIT_I32_OP)
   1048  1.4    alnsn #define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
   1049  1.3    alnsn #define SLJIT_GREATER_EQUAL		3
   1050  1.3    alnsn #define SLJIT_GREATER_EQUAL32		(SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
   1051  1.4    alnsn #define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_GREATER_EQUAL)
   1052  1.3    alnsn #define SLJIT_GREATER			4
   1053  1.3    alnsn #define SLJIT_GREATER32			(SLJIT_GREATER | SLJIT_I32_OP)
   1054  1.4    alnsn #define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
   1055  1.3    alnsn #define SLJIT_LESS_EQUAL		5
   1056  1.3    alnsn #define SLJIT_LESS_EQUAL32		(SLJIT_LESS_EQUAL | SLJIT_I32_OP)
   1057  1.4    alnsn #define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_LESS_EQUAL)
   1058  1.3    alnsn #define SLJIT_SIG_LESS			6
   1059  1.3    alnsn #define SLJIT_SIG_LESS32		(SLJIT_SIG_LESS | SLJIT_I32_OP)
   1060  1.4    alnsn #define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
   1061  1.3    alnsn #define SLJIT_SIG_GREATER_EQUAL		7
   1062  1.3    alnsn #define SLJIT_SIG_GREATER_EQUAL32	(SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
   1063  1.4    alnsn #define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SET_SIG_GREATER_EQUAL)
   1064  1.3    alnsn #define SLJIT_SIG_GREATER		8
   1065  1.3    alnsn #define SLJIT_SIG_GREATER32		(SLJIT_SIG_GREATER | SLJIT_I32_OP)
   1066  1.4    alnsn #define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
   1067  1.3    alnsn #define SLJIT_SIG_LESS_EQUAL		9
   1068  1.3    alnsn #define SLJIT_SIG_LESS_EQUAL32		(SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
   1069  1.4    alnsn #define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
   1070  1.3    alnsn 
   1071  1.3    alnsn #define SLJIT_OVERFLOW			10
   1072  1.3    alnsn #define SLJIT_OVERFLOW32		(SLJIT_OVERFLOW | SLJIT_I32_OP)
   1073  1.4    alnsn #define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
   1074  1.3    alnsn #define SLJIT_NOT_OVERFLOW		11
   1075  1.3    alnsn #define SLJIT_NOT_OVERFLOW32		(SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
   1076  1.4    alnsn #define SLJIT_SET_NOT_OVERFLOW		SLJIT_SET(SLJIT_NOT_OVERFLOW)
   1077  1.3    alnsn 
   1078  1.3    alnsn #define SLJIT_MUL_OVERFLOW		12
   1079  1.3    alnsn #define SLJIT_MUL_OVERFLOW32		(SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
   1080  1.4    alnsn #define SLJIT_SET_MUL_OVERFLOW		SLJIT_SET(SLJIT_MUL_OVERFLOW)
   1081  1.3    alnsn #define SLJIT_MUL_NOT_OVERFLOW		13
   1082  1.3    alnsn #define SLJIT_MUL_NOT_OVERFLOW32	(SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
   1083  1.4    alnsn #define SLJIT_SET_MUL_NOT_OVERFLOW	SLJIT_SET(SLJIT_MUL_NOT_OVERFLOW)
   1084  1.4    alnsn 
   1085  1.4    alnsn /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
   1086  1.4    alnsn #define SLJIT_SET_CARRY			SLJIT_SET(14)
   1087  1.3    alnsn 
   1088  1.3    alnsn /* Floating point comparison types. */
   1089  1.4    alnsn #define SLJIT_EQUAL_F64			16
   1090  1.3    alnsn #define SLJIT_EQUAL_F32			(SLJIT_EQUAL_F64 | SLJIT_F32_OP)
   1091  1.4    alnsn #define SLJIT_SET_EQUAL_F		SLJIT_SET(SLJIT_EQUAL_F64)
   1092  1.4    alnsn #define SLJIT_NOT_EQUAL_F64		17
   1093  1.3    alnsn #define SLJIT_NOT_EQUAL_F32		(SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
   1094  1.4    alnsn #define SLJIT_SET_NOT_EQUAL_F		SLJIT_SET(SLJIT_NOT_EQUAL_F64)
   1095  1.4    alnsn #define SLJIT_LESS_F64			18
   1096  1.3    alnsn #define SLJIT_LESS_F32			(SLJIT_LESS_F64 | SLJIT_F32_OP)
   1097  1.4    alnsn #define SLJIT_SET_LESS_F		SLJIT_SET(SLJIT_LESS_F64)
   1098  1.4    alnsn #define SLJIT_GREATER_EQUAL_F64		19
   1099  1.3    alnsn #define SLJIT_GREATER_EQUAL_F32		(SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
   1100  1.4    alnsn #define SLJIT_SET_GREATER_EQUAL_F	SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
   1101  1.4    alnsn #define SLJIT_GREATER_F64		20
   1102  1.3    alnsn #define SLJIT_GREATER_F32		(SLJIT_GREATER_F64 | SLJIT_F32_OP)
   1103  1.4    alnsn #define SLJIT_SET_GREATER_F		SLJIT_SET(SLJIT_GREATER_F64)
   1104  1.4    alnsn #define SLJIT_LESS_EQUAL_F64		21
   1105  1.3    alnsn #define SLJIT_LESS_EQUAL_F32		(SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
   1106  1.4    alnsn #define SLJIT_SET_LESS_EQUAL_F		SLJIT_SET(SLJIT_LESS_EQUAL_F64)
   1107  1.4    alnsn #define SLJIT_UNORDERED_F64		22
   1108  1.3    alnsn #define SLJIT_UNORDERED_F32		(SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
   1109  1.4    alnsn #define SLJIT_SET_UNORDERED_F		SLJIT_SET(SLJIT_UNORDERED_F64)
   1110  1.4    alnsn #define SLJIT_ORDERED_F64		23
   1111  1.3    alnsn #define SLJIT_ORDERED_F32		(SLJIT_ORDERED_F64 | SLJIT_F32_OP)
   1112  1.4    alnsn #define SLJIT_SET_ORDERED_F		SLJIT_SET(SLJIT_ORDERED_F64)
   1113  1.3    alnsn 
   1114  1.3    alnsn /* Unconditional jump types. */
   1115  1.4    alnsn #define SLJIT_JUMP			24
   1116  1.4    alnsn #define SLJIT_FAST_CALL			25
   1117  1.4    alnsn #define SLJIT_CALL0			26
   1118  1.4    alnsn #define SLJIT_CALL1			27
   1119  1.4    alnsn #define SLJIT_CALL2			28
   1120  1.4    alnsn #define SLJIT_CALL3			29
   1121  1.1    alnsn 
   1122  1.1    alnsn /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
   1123  1.1    alnsn 
   1124  1.1    alnsn /* The target can be changed during runtime (see: sljit_set_jump_addr). */
   1125  1.1    alnsn #define SLJIT_REWRITABLE_JUMP		0x1000
   1126  1.1    alnsn 
   1127  1.1    alnsn /* Emit a jump instruction. The destination is not set, only the type of the jump.
   1128  1.3    alnsn     type must be between SLJIT_EQUAL and SLJIT_CALL3
   1129  1.1    alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1130  1.4    alnsn 
   1131  1.4    alnsn    Flags: does not modify flags for conditional and unconditional
   1132  1.4    alnsn           jumps but destroy all flags for calls. */
   1133  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
   1134  1.1    alnsn 
   1135  1.1    alnsn /* Basic arithmetic comparison. In most architectures it is implemented as
   1136  1.1    alnsn    an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
   1137  1.1    alnsn    appropriate flags) followed by a sljit_emit_jump. However some
   1138  1.3    alnsn    architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
   1139  1.3    alnsn    It is suggested to use this comparison form when appropriate.
   1140  1.3    alnsn     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
   1141  1.3    alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1142  1.4    alnsn    Flags: may destroy flags. */
   1143  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
   1144  1.3    alnsn 	sljit_s32 src1, sljit_sw src1w,
   1145  1.3    alnsn 	sljit_s32 src2, sljit_sw src2w);
   1146  1.1    alnsn 
   1147  1.1    alnsn /* Basic floating point comparison. In most architectures it is implemented as
   1148  1.1    alnsn    an SLJIT_FCMP operation (setting appropriate flags) followed by a
   1149  1.1    alnsn    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
   1150  1.1    alnsn    special optimizations here. It is suggested to use this comparison form
   1151  1.1    alnsn    when appropriate.
   1152  1.3    alnsn     type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
   1153  1.3    alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1154  1.1    alnsn    Flags: destroy flags.
   1155  1.1    alnsn    Note: if either operand is NaN, the behaviour is undefined for
   1156  1.3    alnsn          types up to SLJIT_S_LESS_EQUAL. */
   1157  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
   1158  1.3    alnsn 	sljit_s32 src1, sljit_sw src1w,
   1159  1.3    alnsn 	sljit_s32 src2, sljit_sw src2w);
   1160  1.1    alnsn 
   1161  1.1    alnsn /* Set the destination of the jump to this label. */
   1162  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
   1163  1.2    alnsn /* Set the destination address of the jump to this label. */
   1164  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
   1165  1.1    alnsn 
   1166  1.1    alnsn /* Call function or jump anywhere. Both direct and indirect form
   1167  1.1    alnsn     type must be between SLJIT_JUMP and SLJIT_CALL3
   1168  1.1    alnsn     Direct form: set src to SLJIT_IMM() and srcw to the address
   1169  1.1    alnsn     Indirect form: any other valid addressing mode
   1170  1.4    alnsn 
   1171  1.4    alnsn    Flags: does not modify flags for unconditional jumps but
   1172  1.4    alnsn           destroy all flags for calls. */
   1173  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
   1174  1.1    alnsn 
   1175  1.2    alnsn /* Perform the operation using the conditional flags as the second argument.
   1176  1.3    alnsn    Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
   1177  1.3    alnsn    represented by the type is 1, if the condition represented by the type
   1178  1.2    alnsn    is fulfilled, and 0 otherwise.
   1179  1.2    alnsn 
   1180  1.3    alnsn    If op == SLJIT_MOV, SLJIT_MOV_S32, SLJIT_MOV_U32:
   1181  1.2    alnsn      Set dst to the value represented by the type (0 or 1).
   1182  1.2    alnsn      Src must be SLJIT_UNUSED, and srcw must be 0
   1183  1.4    alnsn      Flags: - (does not modify flags)
   1184  1.2    alnsn    If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
   1185  1.2    alnsn      Performs the binary operation using src as the first, and the value
   1186  1.2    alnsn      represented by type as the second argument.
   1187  1.2    alnsn      Important note: only dst=src and dstw=srcw is supported at the moment!
   1188  1.4    alnsn      Flags: Z (may destroy flags)
   1189  1.2    alnsn    Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
   1190  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
   1191  1.3    alnsn 	sljit_s32 dst, sljit_sw dstw,
   1192  1.3    alnsn 	sljit_s32 src, sljit_sw srcw,
   1193  1.3    alnsn 	sljit_s32 type);
   1194  1.1    alnsn 
   1195  1.3    alnsn /* Copies the base address of SLJIT_SP + offset to dst.
   1196  1.4    alnsn    Flags: - (may destroy flags) */
   1197  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
   1198  1.1    alnsn 
   1199  1.1    alnsn /* The constant can be changed runtime (see: sljit_set_const)
   1200  1.4    alnsn    Flags: - (does not modify flags) */
   1201  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
   1202  1.1    alnsn 
   1203  1.1    alnsn /* After the code generation the address for label, jump and const instructions
   1204  1.2    alnsn    are computed. Since these structures are freed by sljit_free_compiler, the
   1205  1.1    alnsn    addresses must be preserved by the user program elsewere. */
   1206  1.1    alnsn static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
   1207  1.1    alnsn static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
   1208  1.1    alnsn static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
   1209  1.1    alnsn 
   1210  1.4    alnsn /* Only the address and executable offset are required to perform dynamic
   1211  1.4    alnsn    code modifications. See sljit_get_executable_offset function. */
   1212  1.4    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
   1213  1.4    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
   1214  1.1    alnsn 
   1215  1.1    alnsn /* --------------------------------------------------------------------- */
   1216  1.1    alnsn /*  Miscellaneous utility functions                                      */
   1217  1.1    alnsn /* --------------------------------------------------------------------- */
   1218  1.1    alnsn 
   1219  1.1    alnsn #define SLJIT_MAJOR_VERSION	0
   1220  1.3    alnsn #define SLJIT_MINOR_VERSION	93
   1221  1.1    alnsn 
   1222  1.2    alnsn /* Get the human readable name of the platform. Can be useful on platforms
   1223  1.2    alnsn    like ARM, where ARM and Thumb2 functions can be mixed, and
   1224  1.2    alnsn    it is useful to know the type of the code generator. */
   1225  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
   1226  1.1    alnsn 
   1227  1.2    alnsn /* Portable helper function to get an offset of a member. */
   1228  1.2    alnsn #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
   1229  1.1    alnsn 
   1230  1.1    alnsn #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
   1231  1.1    alnsn /* This global lock is useful to compile common functions. */
   1232  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
   1233  1.1    alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
   1234  1.1    alnsn #endif
   1235  1.1    alnsn 
   1236  1.1    alnsn #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
   1237  1.1    alnsn 
   1238  1.4    alnsn /* The sljit_stack is a utility extension of sljit, which provides
   1239  1.4    alnsn    a top-down stack. The stack starts at base and goes down to
   1240  1.4    alnsn    max_limit, so the memory region for this stack is between
   1241  1.4    alnsn    max_limit (inclusive) and base (exclusive). However the
   1242  1.4    alnsn    application can only use the region between limit (inclusive)
   1243  1.4    alnsn    and base (exclusive). The sljit_stack_resize can be used to
   1244  1.4    alnsn    extend this region up to max_limit.
   1245  1.4    alnsn 
   1246  1.4    alnsn    This feature uses the "address space reserve" feature of modern
   1247  1.4    alnsn    operating systems, so instead of allocating a huge memory block
   1248  1.4    alnsn    applications can allocate a small region and extend it later
   1249  1.4    alnsn    without moving the memory area. Hence pointers can be stored
   1250  1.4    alnsn    in this area. */
   1251  1.4    alnsn 
   1252  1.4    alnsn /* Note: base and max_limit fields are aligned to PAGE_SIZE bytes
   1253  1.4    alnsn      (usually 4 Kbyte or more).
   1254  1.4    alnsn    Note: stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more.
   1255  1.1    alnsn    Note: this structure may not be supported by all operating systems.
   1256  1.1    alnsn      Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
   1257  1.1    alnsn      is not defined. */
   1258  1.1    alnsn 
   1259  1.1    alnsn struct sljit_stack {
   1260  1.1    alnsn 	/* User data, anything can be stored here.
   1261  1.1    alnsn 	   Starting with the same value as base. */
   1262  1.4    alnsn 	sljit_u8 *top;
   1263  1.1    alnsn 	/* These members are read only. */
   1264  1.4    alnsn 	sljit_u8 *base;
   1265  1.4    alnsn 	sljit_u8 *limit;
   1266  1.4    alnsn 	sljit_u8 *max_limit;
   1267  1.1    alnsn };
   1268  1.1    alnsn 
   1269  1.1    alnsn /* Returns NULL if unsuccessful.
   1270  1.4    alnsn    Note: max_limit contains the maximum stack size in bytes.
   1271  1.4    alnsn    Note: limit contains the starting stack size in bytes.
   1272  1.3    alnsn    Note: the top field is initialized to base.
   1273  1.3    alnsn    Note: see sljit_create_compiler for the explanation of allocator_data. */
   1274  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
   1275  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
   1276  1.1    alnsn 
   1277  1.1    alnsn /* Can be used to increase (allocate) or decrease (free) the memory area.
   1278  1.1    alnsn    Returns with a non-zero value if unsuccessful. If new_limit is greater than
   1279  1.1    alnsn    max_limit, it will fail. It is very easy to implement a stack data structure,
   1280  1.1    alnsn    since the growth ratio can be added to the current limit, and sljit_stack_resize
   1281  1.1    alnsn    will do all the necessary checks. The fields of the stack are not changed if
   1282  1.1    alnsn    sljit_stack_resize fails. */
   1283  1.4    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_limit);
   1284  1.1    alnsn 
   1285  1.1    alnsn #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
   1286  1.1    alnsn 
   1287  1.1    alnsn #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
   1288  1.1    alnsn 
   1289  1.1    alnsn /* Get the entry address of a given function. */
   1290  1.2    alnsn #define SLJIT_FUNC_OFFSET(func_name)	((sljit_sw)func_name)
   1291  1.1    alnsn 
   1292  1.1    alnsn #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
   1293  1.1    alnsn 
   1294  1.1    alnsn /* All JIT related code should be placed in the same context (library, binary, etc.). */
   1295  1.1    alnsn 
   1296  1.2    alnsn #define SLJIT_FUNC_OFFSET(func_name)	(*(sljit_sw*)(void*)func_name)
   1297  1.1    alnsn 
   1298  1.1    alnsn /* For powerpc64, the function pointers point to a context descriptor. */
   1299  1.1    alnsn struct sljit_function_context {
   1300  1.2    alnsn 	sljit_sw addr;
   1301  1.2    alnsn 	sljit_sw r2;
   1302  1.2    alnsn 	sljit_sw r11;
   1303  1.1    alnsn };
   1304  1.1    alnsn 
   1305  1.1    alnsn /* Fill the context arguments using the addr and the function.
   1306  1.1    alnsn    If func_ptr is NULL, it will not be set to the address of context
   1307  1.1    alnsn    If addr is NULL, the function address also comes from the func pointer. */
   1308  1.2    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
   1309  1.1    alnsn 
   1310  1.1    alnsn #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
   1311  1.1    alnsn 
   1312  1.4    alnsn #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
   1313  1.4    alnsn /* Free unused executable memory. The allocator keeps some free memory
   1314  1.4    alnsn    around to reduce the number of OS executable memory allocations.
   1315  1.4    alnsn    This improves performance since these calls are costly. However
   1316  1.4    alnsn    it is sometimes desired to free all unused memory regions, e.g.
   1317  1.4    alnsn    before the application terminates. */
   1318  1.4    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
   1319  1.4    alnsn #endif
   1320  1.4    alnsn 
   1321  1.3    alnsn /* --------------------------------------------------------------------- */
   1322  1.3    alnsn /*  CPU specific functions                                               */
   1323  1.3    alnsn /* --------------------------------------------------------------------- */
   1324  1.3    alnsn 
   1325  1.3    alnsn /* The following function is a helper function for sljit_emit_op_custom.
   1326  1.3    alnsn    It returns with the real machine register index ( >=0 ) of any SLJIT_R,
   1327  1.3    alnsn    SLJIT_S and SLJIT_SP registers.
   1328  1.3    alnsn 
   1329  1.3    alnsn    Note: it returns with -1 for virtual registers (only on x86-32). */
   1330  1.3    alnsn 
   1331  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
   1332  1.3    alnsn 
   1333  1.3    alnsn /* The following function is a helper function for sljit_emit_op_custom.
   1334  1.3    alnsn    It returns with the real machine register index of any SLJIT_FLOAT register.
   1335  1.3    alnsn 
   1336  1.3    alnsn    Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
   1337  1.3    alnsn 
   1338  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
   1339  1.3    alnsn 
   1340  1.3    alnsn /* Any instruction can be inserted into the instruction stream by
   1341  1.3    alnsn    sljit_emit_op_custom. It has a similar purpose as inline assembly.
   1342  1.3    alnsn    The size parameter must match to the instruction size of the target
   1343  1.3    alnsn    architecture:
   1344  1.3    alnsn 
   1345  1.3    alnsn          x86: 0 < size <= 15. The instruction argument can be byte aligned.
   1346  1.3    alnsn       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
   1347  1.3    alnsn               if size == 4, the instruction argument must be 4 byte aligned.
   1348  1.3    alnsn    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
   1349  1.3    alnsn 
   1350  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
   1351  1.3    alnsn 	void *instruction, sljit_s32 size);
   1352  1.3    alnsn 
   1353  1.4    alnsn /* Define the currently available CPU status flags. It is usually used after an
   1354  1.4    alnsn    sljit_emit_op_custom call to define which flags are set. */
   1355  1.4    alnsn 
   1356  1.4    alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
   1357  1.4    alnsn 	sljit_s32 current_flags);
   1358  1.4    alnsn 
   1359  1.3    alnsn #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
   1360  1.3    alnsn 
   1361  1.3    alnsn /* Returns with non-zero if sse2 is available. */
   1362  1.3    alnsn 
   1363  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_sse2_available(void);
   1364  1.3    alnsn 
   1365  1.3    alnsn /* Returns with non-zero if cmov instruction is available. */
   1366  1.3    alnsn 
   1367  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_cmov_available(void);
   1368  1.3    alnsn 
   1369  1.3    alnsn /* Emit a conditional mov instruction on x86 CPUs. This instruction
   1370  1.3    alnsn    moves src to destination, if the condition is satisfied. Unlike
   1371  1.3    alnsn    other arithmetic instructions, destination must be a register.
   1372  1.3    alnsn    Before such instructions are emitted, cmov support should be
   1373  1.3    alnsn    checked by sljit_x86_is_cmov_available function.
   1374  1.3    alnsn     type must be between SLJIT_EQUAL and SLJIT_S_ORDERED
   1375  1.3    alnsn     dst_reg must be a valid register and it can be combined
   1376  1.3    alnsn       with SLJIT_I32_OP to perform 32 bit arithmetic
   1377  1.4    alnsn    Flags: - (does not modify flags)
   1378  1.3    alnsn  */
   1379  1.3    alnsn 
   1380  1.3    alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_emit_cmov(struct sljit_compiler *compiler,
   1381  1.3    alnsn 	sljit_s32 type,
   1382  1.3    alnsn 	sljit_s32 dst_reg,
   1383  1.3    alnsn 	sljit_s32 src, sljit_sw srcw);
   1384  1.3    alnsn 
   1385  1.3    alnsn #endif
   1386  1.3    alnsn 
   1387  1.1    alnsn #endif /* _SLJIT_LIR_H_ */
   1388