Home | History | Annotate | Line # | Download | only in sljit_src
sljitLir.h revision 1.2
      1  1.2  alnsn /*	$NetBSD: sljitLir.h,v 1.2 2014/06/17 19:36:45 alnsn Exp $	*/
      2  1.2  alnsn 
      3  1.1  alnsn /*
      4  1.1  alnsn  *    Stack-less Just-In-Time compiler
      5  1.1  alnsn  *
      6  1.1  alnsn  *    Copyright 2009-2012 Zoltan Herczeg (hzmester (at) freemail.hu). All rights reserved.
      7  1.1  alnsn  *
      8  1.1  alnsn  * Redistribution and use in source and binary forms, with or without modification, are
      9  1.1  alnsn  * permitted provided that the following conditions are met:
     10  1.1  alnsn  *
     11  1.1  alnsn  *   1. Redistributions of source code must retain the above copyright notice, this list of
     12  1.1  alnsn  *      conditions and the following disclaimer.
     13  1.1  alnsn  *
     14  1.1  alnsn  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
     15  1.1  alnsn  *      of conditions and the following disclaimer in the documentation and/or other materials
     16  1.1  alnsn  *      provided with the distribution.
     17  1.1  alnsn  *
     18  1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
     19  1.1  alnsn  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  1.1  alnsn  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
     21  1.1  alnsn  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     23  1.1  alnsn  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     24  1.1  alnsn  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  1.1  alnsn  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     26  1.1  alnsn  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  1.1  alnsn  */
     28  1.1  alnsn 
     29  1.1  alnsn #ifndef _SLJIT_LIR_H_
     30  1.1  alnsn #define _SLJIT_LIR_H_
     31  1.1  alnsn 
     32  1.1  alnsn /*
     33  1.1  alnsn    ------------------------------------------------------------------------
     34  1.1  alnsn     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
     35  1.1  alnsn    ------------------------------------------------------------------------
     36  1.1  alnsn 
     37  1.1  alnsn    Short description
     38  1.1  alnsn     Advantages:
     39  1.2  alnsn       - The execution can be continued from any LIR instruction. In other
     40  1.2  alnsn         words, it is possible to jump to any label from anywhere, even from
     41  1.2  alnsn         a code fragment, which is compiled later, if both compiled code
     42  1.2  alnsn         shares the same context. See sljit_emit_enter for more details
     43  1.2  alnsn       - Supports self modifying code: target of (conditional) jump and call
     44  1.2  alnsn         instructions and some constant values can be dynamically modified
     45  1.2  alnsn         during runtime
     46  1.1  alnsn         - although it is not suggested to do it frequently
     47  1.2  alnsn         - can be used for inline caching: save an important value once
     48  1.2  alnsn           in the instruction stream
     49  1.2  alnsn         - since this feature limits the optimization possibilities, a
     50  1.2  alnsn           special flag must be passed at compile time when these
     51  1.2  alnsn           instructions are emitted
     52  1.1  alnsn       - A fixed stack space can be allocated for local variables
     53  1.1  alnsn       - The compiler is thread-safe
     54  1.1  alnsn       - The compiler is highly configurable through preprocessor macros.
     55  1.1  alnsn         You can disable unneeded features (multithreading in single
     56  1.1  alnsn         threaded applications), and you can use your own system functions
     57  1.1  alnsn         (including memory allocators). See sljitConfig.h
     58  1.1  alnsn     Disadvantages:
     59  1.2  alnsn       - No automatic register allocation, and temporary results are
     60  1.2  alnsn         not stored on the stack. (hence the name comes)
     61  1.1  alnsn       - Limited number of registers (only 6+4 integer registers, max 3+2
     62  1.2  alnsn         scratch, max 3+2 saved and 6 floating point registers)
     63  1.1  alnsn     In practice:
     64  1.1  alnsn       - This approach is very effective for interpreters
     65  1.1  alnsn         - One of the saved registers typically points to a stack interface
     66  1.2  alnsn         - It can jump to any exception handler anytime (even if it belongs
     67  1.2  alnsn           to another function)
     68  1.2  alnsn         - Hot paths can be modified during runtime reflecting the changes
     69  1.1  alnsn           of the fastest execution path of the dynamic language
     70  1.1  alnsn         - SLJIT supports complex memory addressing modes
     71  1.2  alnsn         - mainly position and context independent code (except some cases)
     72  1.1  alnsn 
     73  1.1  alnsn     For valgrind users:
     74  1.1  alnsn       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
     75  1.1  alnsn */
     76  1.1  alnsn 
     77  1.1  alnsn #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
     78  1.1  alnsn #include "sljitConfig.h"
     79  1.1  alnsn #endif
     80  1.1  alnsn 
     81  1.1  alnsn /* The following header file defines useful macros for fine tuning
     82  1.2  alnsn sljit based code generators. They are listed in the beginning
     83  1.1  alnsn of sljitConfigInternal.h */
     84  1.1  alnsn 
     85  1.1  alnsn #include "sljitConfigInternal.h"
     86  1.1  alnsn 
     87  1.1  alnsn /* --------------------------------------------------------------------- */
     88  1.1  alnsn /*  Error codes                                                          */
     89  1.1  alnsn /* --------------------------------------------------------------------- */
     90  1.1  alnsn 
     91  1.1  alnsn /* Indicates no error. */
     92  1.1  alnsn #define SLJIT_SUCCESS			0
     93  1.1  alnsn /* After the call of sljit_generate_code(), the error code of the compiler
     94  1.1  alnsn    is set to this value to avoid future sljit calls (in debug mode at least).
     95  1.1  alnsn    The complier should be freed after sljit_generate_code(). */
     96  1.1  alnsn #define SLJIT_ERR_COMPILED		1
     97  1.1  alnsn /* Cannot allocate non executable memory. */
     98  1.1  alnsn #define SLJIT_ERR_ALLOC_FAILED		2
     99  1.1  alnsn /* Cannot allocate executable memory.
    100  1.1  alnsn    Only for sljit_generate_code() */
    101  1.1  alnsn #define SLJIT_ERR_EX_ALLOC_FAILED	3
    102  1.1  alnsn /* return value for SLJIT_CONFIG_UNSUPPORTED empty architecture. */
    103  1.1  alnsn #define SLJIT_ERR_UNSUPPORTED		4
    104  1.1  alnsn 
    105  1.1  alnsn /* --------------------------------------------------------------------- */
    106  1.1  alnsn /*  Registers                                                            */
    107  1.1  alnsn /* --------------------------------------------------------------------- */
    108  1.1  alnsn 
    109  1.1  alnsn #define SLJIT_UNUSED		0
    110  1.1  alnsn 
    111  1.2  alnsn /* Scratch (temporary) registers whose may not preserve their values
    112  1.2  alnsn    across function calls. */
    113  1.2  alnsn #define SLJIT_SCRATCH_REG1	1
    114  1.2  alnsn #define SLJIT_SCRATCH_REG2	2
    115  1.2  alnsn #define SLJIT_SCRATCH_REG3	3
    116  1.2  alnsn /* Note: extra registers cannot be used for memory addressing. */
    117  1.2  alnsn /* Note: on x86-32, these registers are emulated (using stack
    118  1.2  alnsn    loads & stores). */
    119  1.1  alnsn #define SLJIT_TEMPORARY_EREG1	4
    120  1.1  alnsn #define SLJIT_TEMPORARY_EREG2	5
    121  1.1  alnsn 
    122  1.1  alnsn /* Saved registers whose preserve their values across function calls. */
    123  1.1  alnsn #define SLJIT_SAVED_REG1	6
    124  1.1  alnsn #define SLJIT_SAVED_REG2	7
    125  1.1  alnsn #define SLJIT_SAVED_REG3	8
    126  1.2  alnsn /* Note: extra registers cannot be used for memory addressing. */
    127  1.2  alnsn /* Note: on x86-32, these registers are emulated (using stack
    128  1.2  alnsn    loads & stores). */
    129  1.1  alnsn #define SLJIT_SAVED_EREG1	9
    130  1.1  alnsn #define SLJIT_SAVED_EREG2	10
    131  1.1  alnsn 
    132  1.1  alnsn /* Read-only register (cannot be the destination of an operation).
    133  1.1  alnsn    Only SLJIT_MEM1(SLJIT_LOCALS_REG) addressing mode is allowed since
    134  1.1  alnsn    several ABIs has certain limitations about the stack layout. However
    135  1.2  alnsn    sljit_get_local_base() can be used to obtain the offset of a value
    136  1.2  alnsn    on the stack. */
    137  1.1  alnsn #define SLJIT_LOCALS_REG	11
    138  1.1  alnsn 
    139  1.1  alnsn /* Number of registers. */
    140  1.1  alnsn #define SLJIT_NO_TMP_REGISTERS	5
    141  1.1  alnsn #define SLJIT_NO_GEN_REGISTERS	5
    142  1.1  alnsn #define SLJIT_NO_REGISTERS	11
    143  1.1  alnsn 
    144  1.1  alnsn /* Return with machine word. */
    145  1.1  alnsn 
    146  1.2  alnsn #define SLJIT_RETURN_REG	SLJIT_SCRATCH_REG1
    147  1.1  alnsn 
    148  1.1  alnsn /* x86 prefers specific registers for special purposes. In case of shift
    149  1.2  alnsn    by register it supports only SLJIT_SCRATCH_REG3 for shift argument
    150  1.1  alnsn    (which is the src2 argument of sljit_emit_op2). If another register is
    151  1.1  alnsn    used, sljit must exchange data between registers which cause a minor
    152  1.1  alnsn    slowdown. Other architectures has no such limitation. */
    153  1.1  alnsn 
    154  1.2  alnsn #define SLJIT_PREF_SHIFT_REG	SLJIT_SCRATCH_REG3
    155  1.1  alnsn 
    156  1.1  alnsn /* --------------------------------------------------------------------- */
    157  1.1  alnsn /*  Floating point registers                                             */
    158  1.1  alnsn /* --------------------------------------------------------------------- */
    159  1.1  alnsn 
    160  1.1  alnsn /* Note: SLJIT_UNUSED as destination is not valid for floating point
    161  1.1  alnsn      operations, since they cannot be used for setting flags. */
    162  1.1  alnsn 
    163  1.2  alnsn /* Floating point operations are performed on double or
    164  1.2  alnsn    single precision values. */
    165  1.2  alnsn 
    166  1.2  alnsn #define SLJIT_FLOAT_REG1		1
    167  1.2  alnsn #define SLJIT_FLOAT_REG2		2
    168  1.2  alnsn #define SLJIT_FLOAT_REG3		3
    169  1.2  alnsn #define SLJIT_FLOAT_REG4		4
    170  1.2  alnsn #define SLJIT_FLOAT_REG5		5
    171  1.2  alnsn #define SLJIT_FLOAT_REG6		6
    172  1.1  alnsn 
    173  1.2  alnsn #define SLJIT_NO_FLOAT_REGISTERS	6
    174  1.1  alnsn 
    175  1.1  alnsn /* --------------------------------------------------------------------- */
    176  1.1  alnsn /*  Main structures and functions                                        */
    177  1.1  alnsn /* --------------------------------------------------------------------- */
    178  1.1  alnsn 
    179  1.1  alnsn struct sljit_memory_fragment {
    180  1.1  alnsn 	struct sljit_memory_fragment *next;
    181  1.1  alnsn 	sljit_uw used_size;
    182  1.2  alnsn 	/* Must be aligned to sljit_sw. */
    183  1.1  alnsn 	sljit_ub memory[1];
    184  1.1  alnsn };
    185  1.1  alnsn 
    186  1.1  alnsn struct sljit_label {
    187  1.1  alnsn 	struct sljit_label *next;
    188  1.1  alnsn 	sljit_uw addr;
    189  1.1  alnsn 	/* The maximum size difference. */
    190  1.1  alnsn 	sljit_uw size;
    191  1.1  alnsn };
    192  1.1  alnsn 
    193  1.1  alnsn struct sljit_jump {
    194  1.1  alnsn 	struct sljit_jump *next;
    195  1.1  alnsn 	sljit_uw addr;
    196  1.2  alnsn 	sljit_sw flags;
    197  1.1  alnsn 	union {
    198  1.1  alnsn 		sljit_uw target;
    199  1.1  alnsn 		struct sljit_label* label;
    200  1.1  alnsn 	} u;
    201  1.1  alnsn };
    202  1.1  alnsn 
    203  1.1  alnsn struct sljit_const {
    204  1.1  alnsn 	struct sljit_const *next;
    205  1.1  alnsn 	sljit_uw addr;
    206  1.1  alnsn };
    207  1.1  alnsn 
    208  1.1  alnsn struct sljit_compiler {
    209  1.2  alnsn 	sljit_si error;
    210  1.1  alnsn 
    211  1.1  alnsn 	struct sljit_label *labels;
    212  1.1  alnsn 	struct sljit_jump *jumps;
    213  1.1  alnsn 	struct sljit_const *consts;
    214  1.1  alnsn 	struct sljit_label *last_label;
    215  1.1  alnsn 	struct sljit_jump *last_jump;
    216  1.1  alnsn 	struct sljit_const *last_const;
    217  1.1  alnsn 
    218  1.1  alnsn 	struct sljit_memory_fragment *buf;
    219  1.1  alnsn 	struct sljit_memory_fragment *abuf;
    220  1.1  alnsn 
    221  1.1  alnsn 	/* Used local registers. */
    222  1.2  alnsn 	sljit_si scratches;
    223  1.1  alnsn 	/* Used saved registers. */
    224  1.2  alnsn 	sljit_si saveds;
    225  1.1  alnsn 	/* Local stack size. */
    226  1.2  alnsn 	sljit_si local_size;
    227  1.1  alnsn 	/* Code size. */
    228  1.1  alnsn 	sljit_uw size;
    229  1.1  alnsn 	/* For statistical purposes. */
    230  1.1  alnsn 	sljit_uw executable_size;
    231  1.1  alnsn 
    232  1.1  alnsn #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
    233  1.2  alnsn 	sljit_si args;
    234  1.2  alnsn 	sljit_si locals_offset;
    235  1.2  alnsn 	sljit_si scratches_start;
    236  1.2  alnsn 	sljit_si saveds_start;
    237  1.1  alnsn #endif
    238  1.1  alnsn 
    239  1.1  alnsn #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
    240  1.2  alnsn 	sljit_si mode32;
    241  1.1  alnsn #endif
    242  1.1  alnsn 
    243  1.1  alnsn #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
    244  1.2  alnsn 	sljit_si flags_saved;
    245  1.1  alnsn #endif
    246  1.1  alnsn 
    247  1.1  alnsn #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
    248  1.1  alnsn 	/* Constant pool handling. */
    249  1.1  alnsn 	sljit_uw *cpool;
    250  1.1  alnsn 	sljit_ub *cpool_unique;
    251  1.1  alnsn 	sljit_uw cpool_diff;
    252  1.1  alnsn 	sljit_uw cpool_fill;
    253  1.1  alnsn 	/* Other members. */
    254  1.1  alnsn 	/* Contains pointer, "ldr pc, [...]" pairs. */
    255  1.1  alnsn 	sljit_uw patches;
    256  1.1  alnsn #endif
    257  1.1  alnsn 
    258  1.1  alnsn #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
    259  1.1  alnsn 	/* Temporary fields. */
    260  1.1  alnsn 	sljit_uw shift_imm;
    261  1.2  alnsn 	sljit_si cache_arg;
    262  1.2  alnsn 	sljit_sw cache_argw;
    263  1.1  alnsn #endif
    264  1.1  alnsn 
    265  1.1  alnsn #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
    266  1.2  alnsn 	sljit_si cache_arg;
    267  1.2  alnsn 	sljit_sw cache_argw;
    268  1.2  alnsn #endif
    269  1.2  alnsn 
    270  1.2  alnsn #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
    271  1.2  alnsn 	sljit_si locals_offset;
    272  1.2  alnsn 	sljit_si cache_arg;
    273  1.2  alnsn 	sljit_sw cache_argw;
    274  1.1  alnsn #endif
    275  1.1  alnsn 
    276  1.1  alnsn #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) || (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
    277  1.2  alnsn 	sljit_sw imm;
    278  1.2  alnsn 	sljit_si cache_arg;
    279  1.2  alnsn 	sljit_sw cache_argw;
    280  1.2  alnsn #endif
    281  1.2  alnsn 
    282  1.2  alnsn #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) || (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
    283  1.2  alnsn 	sljit_si delay_slot;
    284  1.2  alnsn 	sljit_si cache_arg;
    285  1.2  alnsn 	sljit_sw cache_argw;
    286  1.2  alnsn #endif
    287  1.2  alnsn 
    288  1.2  alnsn #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
    289  1.2  alnsn 	sljit_si delay_slot;
    290  1.2  alnsn 	sljit_si cache_arg;
    291  1.2  alnsn 	sljit_sw cache_argw;
    292  1.1  alnsn #endif
    293  1.1  alnsn 
    294  1.2  alnsn #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
    295  1.2  alnsn 	sljit_si cache_arg;
    296  1.2  alnsn 	sljit_sw cache_argw;
    297  1.1  alnsn #endif
    298  1.1  alnsn 
    299  1.1  alnsn #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    300  1.1  alnsn 	FILE* verbose;
    301  1.1  alnsn #endif
    302  1.1  alnsn 
    303  1.1  alnsn #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
    304  1.1  alnsn 	/* Local size passed to the functions. */
    305  1.2  alnsn 	sljit_si logical_local_size;
    306  1.1  alnsn #endif
    307  1.1  alnsn 
    308  1.1  alnsn #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
    309  1.2  alnsn 	sljit_si skip_checks;
    310  1.1  alnsn #endif
    311  1.1  alnsn };
    312  1.1  alnsn 
    313  1.1  alnsn /* --------------------------------------------------------------------- */
    314  1.1  alnsn /*  Main functions                                                       */
    315  1.1  alnsn /* --------------------------------------------------------------------- */
    316  1.1  alnsn 
    317  1.1  alnsn /* Creates an sljit compiler.
    318  1.1  alnsn    Returns NULL if failed. */
    319  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void);
    320  1.2  alnsn 
    321  1.2  alnsn /* Free everything except the compiled machine code. */
    322  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
    323  1.1  alnsn 
    324  1.2  alnsn /* Returns the current error code. If an error is occurred, future sljit
    325  1.2  alnsn    calls which uses the same compiler argument returns early with the same
    326  1.2  alnsn    error code. Thus there is no need for checking the error after every
    327  1.2  alnsn    call, it is enough to do it before the code is compiled. Removing
    328  1.2  alnsn    these checks increases the performance of the compiling process. */
    329  1.2  alnsn static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
    330  1.1  alnsn 
    331  1.1  alnsn /*
    332  1.1  alnsn    Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
    333  1.2  alnsn    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
    334  1.2  alnsn    compiler, and freed by sljit_free_compiler. The returned pointer is
    335  1.2  alnsn    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
    336  1.2  alnsn    the compiling, and no need to worry about freeing them. The size is
    337  1.2  alnsn    enough to contain at most 16 pointers. If the size is outside of the range,
    338  1.2  alnsn    the function will return with NULL. However, this return value does not
    339  1.2  alnsn    indicate that there is no more memory (does not set the current error code
    340  1.2  alnsn    of the compiler to out-of-memory status).
    341  1.1  alnsn */
    342  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
    343  1.1  alnsn 
    344  1.1  alnsn #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    345  1.1  alnsn /* Passing NULL disables verbose. */
    346  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
    347  1.1  alnsn #endif
    348  1.1  alnsn 
    349  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
    350  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
    351  1.1  alnsn 
    352  1.1  alnsn /*
    353  1.2  alnsn    After the machine code generation is finished we can retrieve the allocated
    354  1.2  alnsn    executable memory size, although this area may not be fully filled with
    355  1.2  alnsn    instructions depending on some optimizations. This function is useful only
    356  1.2  alnsn    for statistical purposes.
    357  1.1  alnsn 
    358  1.1  alnsn    Before a successful code generation, this function returns with 0.
    359  1.1  alnsn */
    360  1.1  alnsn static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
    361  1.1  alnsn 
    362  1.2  alnsn /* Instruction generation. Returns with any error code. If there is no
    363  1.2  alnsn    error, they return with SLJIT_SUCCESS. */
    364  1.1  alnsn 
    365  1.1  alnsn /*
    366  1.1  alnsn    The executable code is basically a function call from the viewpoint of
    367  1.1  alnsn    the C language. The function calls must obey to the ABI (Application
    368  1.1  alnsn    Binary Interface) of the platform, which specify the purpose of machine
    369  1.1  alnsn    registers and stack handling among other things. The sljit_emit_enter
    370  1.1  alnsn    function emits the necessary instructions for setting up a new context
    371  1.1  alnsn    for the executable code and moves function arguments to the saved
    372  1.1  alnsn    registers. The number of arguments are specified in the "args"
    373  1.1  alnsn    parameter and the first argument goes to SLJIT_SAVED_REG1, the second
    374  1.2  alnsn    goes to SLJIT_SAVED_REG2 and so on. The number of scratch and
    375  1.2  alnsn    saved registers are passed in "scratches" and "saveds" arguments
    376  1.1  alnsn    respectively. Since the saved registers contains the arguments,
    377  1.1  alnsn    "args" must be less or equal than "saveds". The sljit_emit_enter
    378  1.1  alnsn    is also capable of allocating a stack space for local variables. The
    379  1.1  alnsn    "local_size" argument contains the size in bytes of this local area
    380  1.1  alnsn    and its staring address is stored in SLJIT_LOCALS_REG. However
    381  1.1  alnsn    the SLJIT_LOCALS_REG is not necessary the machine stack pointer.
    382  1.1  alnsn    The memory bytes between SLJIT_LOCALS_REG (inclusive) and
    383  1.1  alnsn    SLJIT_LOCALS_REG + local_size (exclusive) can be modified freely
    384  1.1  alnsn    until the function returns. The stack space is uninitialized.
    385  1.1  alnsn 
    386  1.2  alnsn    Note: every call of sljit_emit_enter and sljit_set_context
    387  1.2  alnsn          overwrites the previous context. */
    388  1.1  alnsn 
    389  1.1  alnsn #define SLJIT_MAX_LOCAL_SIZE	65536
    390  1.1  alnsn 
    391  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
    392  1.2  alnsn 	sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size);
    393  1.1  alnsn 
    394  1.1  alnsn /* The machine code has a context (which contains the local stack space size,
    395  1.1  alnsn    number of used registers, etc.) which initialized by sljit_emit_enter. Several
    396  1.1  alnsn    functions (like sljit_emit_return) requres this context to be able to generate
    397  1.1  alnsn    the appropriate code. However, some code fragments (like inline cache) may have
    398  1.1  alnsn    no normal entry point so their context is unknown for the compiler. Using the
    399  1.2  alnsn    function below we can specify their context.
    400  1.1  alnsn 
    401  1.1  alnsn    Note: every call of sljit_emit_enter and sljit_set_context overwrites
    402  1.1  alnsn          the previous context. */
    403  1.1  alnsn 
    404  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler,
    405  1.2  alnsn 	sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size);
    406  1.1  alnsn 
    407  1.1  alnsn /* Return from machine code.  The op argument can be SLJIT_UNUSED which means the
    408  1.1  alnsn    function does not return with anything or any opcode between SLJIT_MOV and
    409  1.2  alnsn    SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
    410  1.1  alnsn    is SLJIT_UNUSED, otherwise see below the description about source and
    411  1.1  alnsn    destination arguments. */
    412  1.1  alnsn 
    413  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
    414  1.2  alnsn 	sljit_si src, sljit_sw srcw);
    415  1.2  alnsn 
    416  1.2  alnsn /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
    417  1.2  alnsn    even the stack frame is passed to the callee. The return address is preserved in
    418  1.2  alnsn    dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
    419  1.2  alnsn    is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
    420  1.2  alnsn 
    421  1.2  alnsn /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
    422  1.2  alnsn    instructions are needed. Excellent for small uility functions, where saving registers
    423  1.2  alnsn    and setting up a new stack frame would cost too much performance. However, it is still
    424  1.2  alnsn    possible to return to the address of the caller (or anywhere else). */
    425  1.1  alnsn 
    426  1.1  alnsn /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
    427  1.1  alnsn 
    428  1.1  alnsn /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
    429  1.1  alnsn    since many architectures do clever branch prediction on call / return instruction pairs. */
    430  1.1  alnsn 
    431  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
    432  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
    433  1.1  alnsn 
    434  1.1  alnsn /*
    435  1.1  alnsn    Source and destination values for arithmetical instructions
    436  1.1  alnsn     imm              - a simple immediate value (cannot be used as a destination)
    437  1.1  alnsn     reg              - any of the registers (immediate argument must be 0)
    438  1.1  alnsn     [imm]            - absolute immediate memory address
    439  1.1  alnsn     [reg+imm]        - indirect memory address
    440  1.1  alnsn     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
    441  1.2  alnsn                        useful for (byte, half, int, sljit_sw) array access
    442  1.1  alnsn                        (fully supported by both x86 and ARM architectures, and cheap operation on others)
    443  1.1  alnsn */
    444  1.1  alnsn 
    445  1.1  alnsn /*
    446  1.1  alnsn    IMPORATNT NOTE: memory access MUST be naturally aligned except
    447  1.1  alnsn                    SLJIT_UNALIGNED macro is defined and its value is 1.
    448  1.1  alnsn 
    449  1.1  alnsn      length | alignment
    450  1.1  alnsn    ---------+-----------
    451  1.2  alnsn      byte   | 1 byte (any physical_address is accepted)
    452  1.2  alnsn      half   | 2 byte (physical_address & 0x1 == 0)
    453  1.2  alnsn      int    | 4 byte (physical_address & 0x3 == 0)
    454  1.2  alnsn      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
    455  1.1  alnsn             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
    456  1.2  alnsn     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
    457  1.2  alnsn             | on 64 bit machines)
    458  1.1  alnsn 
    459  1.2  alnsn    Note:   Different architectures have different addressing limitations.
    460  1.2  alnsn            A single instruction is enough for the following addressing
    461  1.2  alnsn            modes. Other adrressing modes are emulated by instruction
    462  1.2  alnsn            sequences. This information could help to improve those code
    463  1.2  alnsn            generators which focuses only a few architectures.
    464  1.2  alnsn 
    465  1.2  alnsn    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
    466  1.2  alnsn            [reg+(reg<<imm)] is supported
    467  1.2  alnsn            [imm], -2^32+1 <= imm <= 2^32-1 is supported
    468  1.2  alnsn            Write-back is not supported
    469  1.2  alnsn    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
    470  1.2  alnsn                 bytes, any halfs or floating point values)
    471  1.2  alnsn            [reg+(reg<<imm)] is supported
    472  1.2  alnsn            Write-back is supported
    473  1.2  alnsn    arm-t2: [reg+imm], -255 <= imm <= 4095
    474  1.2  alnsn            [reg+(reg<<imm)] is supported
    475  1.2  alnsn            Write back is supported only for [reg+imm], where -255 <= imm <= 255
    476  1.2  alnsn    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
    477  1.2  alnsn                 signed load on 64 bit requires immediates divisible by 4.
    478  1.2  alnsn                 [reg+imm] is not supported for signed 8 bit values.
    479  1.2  alnsn            [reg+reg] is supported
    480  1.2  alnsn            Write-back is supported except for one instruction: 32 bit signed
    481  1.2  alnsn                 load with [reg+imm] addressing mode on 64 bit.
    482  1.2  alnsn    mips:   [reg+imm], -65536 <= imm <= 65535
    483  1.2  alnsn    sparc:  [reg+imm], -4096 <= imm <= 4095
    484  1.2  alnsn            [reg+reg] is supported
    485  1.1  alnsn */
    486  1.1  alnsn 
    487  1.1  alnsn /* Register output: simply the name of the register.
    488  1.1  alnsn    For destination, you can use SLJIT_UNUSED as well. */
    489  1.2  alnsn #define SLJIT_MEM		0x80
    490  1.1  alnsn #define SLJIT_MEM0()		(SLJIT_MEM)
    491  1.1  alnsn #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
    492  1.2  alnsn #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
    493  1.2  alnsn #define SLJIT_IMM		0x40
    494  1.1  alnsn 
    495  1.1  alnsn /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
    496  1.2  alnsn    32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
    497  1.2  alnsn    lower 32 bit of the input register(s), and set the CPU status flags according
    498  1.2  alnsn    to the 32 bit result. The higher 32 bits are undefined for both the input and
    499  1.2  alnsn    output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
    500  1.2  alnsn    expects it to be the sign extension of the lower 32 bit. All 32 bit operations
    501  1.2  alnsn    are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
    502  1.2  alnsn    is specified, all register arguments must be the result of other operations with
    503  1.2  alnsn    the same SLJIT_INT_OP flag. In other words, although a register can hold either
    504  1.2  alnsn    a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
    505  1.2  alnsn    SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
    506  1.2  alnsn    which can convert any source argument to SLJIT_INT_OP compatible result. This
    507  1.2  alnsn    conversion might be unnecessary on some CPUs like x86-64, since the upper 32
    508  1.2  alnsn    bit is always ignored. In this case SLJIT is clever enough to not generate any
    509  1.2  alnsn    instructions if the source and destination operands are the same registers.
    510  1.2  alnsn    Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
    511  1.1  alnsn #define SLJIT_INT_OP		0x100
    512  1.1  alnsn 
    513  1.2  alnsn /* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
    514  1.2  alnsn    it applies to floating point registers (it is even the same bit). When
    515  1.2  alnsn    this flag is passed, the CPU performs single precision floating point
    516  1.2  alnsn    operations. Similar to SLJIT_INT_OP, all register arguments must be the
    517  1.2  alnsn    result of other floating point operations with this flag. Affects
    518  1.2  alnsn    sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
    519  1.2  alnsn #define SLJIT_SINGLE_OP		0x100
    520  1.2  alnsn 
    521  1.1  alnsn /* Common CPU status flags for all architectures (x86, ARM, PPC)
    522  1.1  alnsn     - carry flag
    523  1.1  alnsn     - overflow flag
    524  1.1  alnsn     - zero flag
    525  1.1  alnsn     - negative/positive flag (depends on arc)
    526  1.1  alnsn    On mips, these flags are emulated by software. */
    527  1.1  alnsn 
    528  1.1  alnsn /* By default, the instructions may, or may not set the CPU status flags.
    529  1.1  alnsn    Forcing to set or keep status flags can be done with the following flags: */
    530  1.1  alnsn 
    531  1.1  alnsn /* Note: sljit tries to emit the minimum number of instructions. Using these
    532  1.1  alnsn    flags can increase them, so use them wisely to avoid unnecessary code generation. */
    533  1.1  alnsn 
    534  1.1  alnsn /* Set Equal (Zero) status flag (E). */
    535  1.1  alnsn #define SLJIT_SET_E			0x0200
    536  1.2  alnsn /* Set unsigned status flag (U). */
    537  1.2  alnsn #define SLJIT_SET_U			0x0400
    538  1.1  alnsn /* Set signed status flag (S). */
    539  1.2  alnsn #define SLJIT_SET_S			0x0800
    540  1.1  alnsn /* Set signed overflow flag (O). */
    541  1.1  alnsn #define SLJIT_SET_O			0x1000
    542  1.1  alnsn /* Set carry flag (C).
    543  1.1  alnsn    Note: Kinda unsigned overflow, but behaves differently on various cpus. */
    544  1.1  alnsn #define SLJIT_SET_C			0x2000
    545  1.1  alnsn /* Do not modify the flags (K).
    546  1.1  alnsn    Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
    547  1.1  alnsn #define SLJIT_KEEP_FLAGS		0x4000
    548  1.1  alnsn 
    549  1.1  alnsn /* Notes:
    550  1.1  alnsn      - you cannot postpone conditional jump instructions except if noted that
    551  1.1  alnsn        the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
    552  1.1  alnsn      - flag combinations: '|' means 'logical or'. */
    553  1.1  alnsn 
    554  1.1  alnsn /* Flags: - (never set any flags)
    555  1.1  alnsn    Note: breakpoint instruction is not supported by all architectures (namely ppc)
    556  1.1  alnsn          It falls back to SLJIT_NOP in those cases. */
    557  1.1  alnsn #define SLJIT_BREAKPOINT		0
    558  1.1  alnsn /* Flags: - (never set any flags)
    559  1.1  alnsn    Note: may or may not cause an extra cycle wait
    560  1.1  alnsn          it can even decrease the runtime in a few cases. */
    561  1.1  alnsn #define SLJIT_NOP			1
    562  1.2  alnsn /* Flags: - (may destroy flags)
    563  1.2  alnsn    Unsigned multiplication of SLJIT_SCRATCH_REG1 and SLJIT_SCRATCH_REG2.
    564  1.2  alnsn    Result goes to SLJIT_SCRATCH_REG2:SLJIT_SCRATCH_REG1 (high:low) word */
    565  1.1  alnsn #define SLJIT_UMUL			2
    566  1.2  alnsn /* Flags: - (may destroy flags)
    567  1.2  alnsn    Signed multiplication of SLJIT_SCRATCH_REG1 and SLJIT_SCRATCH_REG2.
    568  1.2  alnsn    Result goes to SLJIT_SCRATCH_REG2:SLJIT_SCRATCH_REG1 (high:low) word */
    569  1.1  alnsn #define SLJIT_SMUL			3
    570  1.2  alnsn /* Flags: I - (may destroy flags)
    571  1.2  alnsn    Unsigned divide of the value in SLJIT_SCRATCH_REG1 by the value in SLJIT_SCRATCH_REG2.
    572  1.2  alnsn    The result is placed in SLJIT_SCRATCH_REG1 and the remainder goes to SLJIT_SCRATCH_REG2.
    573  1.2  alnsn    Note: if SLJIT_SCRATCH_REG2 contains 0, the behaviour is undefined. */
    574  1.1  alnsn #define SLJIT_UDIV			4
    575  1.2  alnsn #define SLJIT_IUDIV			(SLJIT_UDIV | SLJIT_INT_OP)
    576  1.2  alnsn /* Flags: I - (may destroy flags)
    577  1.2  alnsn    Signed divide of the value in SLJIT_SCRATCH_REG1 by the value in SLJIT_SCRATCH_REG2.
    578  1.2  alnsn    The result is placed in SLJIT_SCRATCH_REG1 and the remainder goes to SLJIT_SCRATCH_REG2.
    579  1.2  alnsn    Note: if SLJIT_SCRATCH_REG2 contains 0, the behaviour is undefined. */
    580  1.1  alnsn #define SLJIT_SDIV			5
    581  1.2  alnsn #define SLJIT_ISDIV			(SLJIT_SDIV | SLJIT_INT_OP)
    582  1.1  alnsn 
    583  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
    584  1.1  alnsn 
    585  1.1  alnsn /* Notes for MOV instructions:
    586  1.2  alnsn    U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
    587  1.1  alnsn        or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
    588  1.1  alnsn    UB = unsigned byte (8 bit)
    589  1.1  alnsn    SB = signed byte (8 bit)
    590  1.2  alnsn    UH = unsigned half (16 bit)
    591  1.2  alnsn    SH = signed half (16 bit)
    592  1.2  alnsn    UI = unsigned int (32 bit)
    593  1.2  alnsn    SI = signed int (32 bit)
    594  1.2  alnsn    P  = pointer (sljit_p) size */
    595  1.1  alnsn 
    596  1.1  alnsn /* Flags: - (never set any flags) */
    597  1.1  alnsn #define SLJIT_MOV			6
    598  1.2  alnsn /* Flags: I - (never set any flags) */
    599  1.1  alnsn #define SLJIT_MOV_UB			7
    600  1.2  alnsn #define SLJIT_IMOV_UB			(SLJIT_MOV_UB | SLJIT_INT_OP)
    601  1.2  alnsn /* Flags: I - (never set any flags) */
    602  1.1  alnsn #define SLJIT_MOV_SB			8
    603  1.2  alnsn #define SLJIT_IMOV_SB			(SLJIT_MOV_SB | SLJIT_INT_OP)
    604  1.2  alnsn /* Flags: I - (never set any flags) */
    605  1.1  alnsn #define SLJIT_MOV_UH			9
    606  1.2  alnsn #define SLJIT_IMOV_UH			(SLJIT_MOV_UH | SLJIT_INT_OP)
    607  1.2  alnsn /* Flags: I - (never set any flags) */
    608  1.1  alnsn #define SLJIT_MOV_SH			10
    609  1.2  alnsn #define SLJIT_IMOV_SH			(SLJIT_MOV_SH | SLJIT_INT_OP)
    610  1.2  alnsn /* Flags: I - (never set any flags)
    611  1.2  alnsn    Note: see SLJIT_INT_OP for further details. */
    612  1.1  alnsn #define SLJIT_MOV_UI			11
    613  1.2  alnsn /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
    614  1.2  alnsn /* Flags: I - (never set any flags)
    615  1.2  alnsn    Note: see SLJIT_INT_OP for further details. */
    616  1.1  alnsn #define SLJIT_MOV_SI			12
    617  1.2  alnsn #define SLJIT_IMOV			(SLJIT_MOV_SI | SLJIT_INT_OP)
    618  1.1  alnsn /* Flags: - (never set any flags) */
    619  1.2  alnsn #define SLJIT_MOV_P			13
    620  1.1  alnsn /* Flags: - (never set any flags) */
    621  1.2  alnsn #define SLJIT_MOVU			14
    622  1.2  alnsn /* Flags: I - (never set any flags) */
    623  1.2  alnsn #define SLJIT_MOVU_UB			15
    624  1.2  alnsn #define SLJIT_IMOVU_UB			(SLJIT_MOVU_UB | SLJIT_INT_OP)
    625  1.2  alnsn /* Flags: I - (never set any flags) */
    626  1.2  alnsn #define SLJIT_MOVU_SB			16
    627  1.2  alnsn #define SLJIT_IMOVU_SB			(SLJIT_MOVU_SB | SLJIT_INT_OP)
    628  1.2  alnsn /* Flags: I - (never set any flags) */
    629  1.2  alnsn #define SLJIT_MOVU_UH			17
    630  1.2  alnsn #define SLJIT_IMOVU_UH			(SLJIT_MOVU_UH | SLJIT_INT_OP)
    631  1.2  alnsn /* Flags: I - (never set any flags) */
    632  1.2  alnsn #define SLJIT_MOVU_SH			18
    633  1.2  alnsn #define SLJIT_IMOVU_SH			(SLJIT_MOVU_SH | SLJIT_INT_OP)
    634  1.2  alnsn /* Flags: I - (never set any flags)
    635  1.2  alnsn    Note: see SLJIT_INT_OP for further details. */
    636  1.2  alnsn #define SLJIT_MOVU_UI			19
    637  1.2  alnsn /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
    638  1.2  alnsn /* Flags: I - (never set any flags)
    639  1.2  alnsn    Note: see SLJIT_INT_OP for further details. */
    640  1.2  alnsn #define SLJIT_MOVU_SI			20
    641  1.2  alnsn #define SLJIT_IMOVU			(SLJIT_MOVU_SI | SLJIT_INT_OP)
    642  1.1  alnsn /* Flags: - (never set any flags) */
    643  1.2  alnsn #define SLJIT_MOVU_P			21
    644  1.1  alnsn /* Flags: I | E | K */
    645  1.2  alnsn #define SLJIT_NOT			22
    646  1.2  alnsn #define SLJIT_INOT			(SLJIT_NOT | SLJIT_INT_OP)
    647  1.1  alnsn /* Flags: I | E | O | K */
    648  1.2  alnsn #define SLJIT_NEG			23
    649  1.2  alnsn #define SLJIT_INEG			(SLJIT_NEG | SLJIT_INT_OP)
    650  1.1  alnsn /* Count leading zeroes
    651  1.2  alnsn    Flags: I | E | K
    652  1.2  alnsn    Important note! Sparc 32 does not support K flag, since
    653  1.2  alnsn    the required popc instruction is introduced only in sparc 64. */
    654  1.2  alnsn #define SLJIT_CLZ			24
    655  1.2  alnsn #define SLJIT_ICLZ			(SLJIT_CLZ | SLJIT_INT_OP)
    656  1.2  alnsn 
    657  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
    658  1.2  alnsn 	sljit_si dst, sljit_sw dstw,
    659  1.2  alnsn 	sljit_si src, sljit_sw srcw);
    660  1.1  alnsn 
    661  1.1  alnsn /* Flags: I | E | O | C | K */
    662  1.2  alnsn #define SLJIT_ADD			25
    663  1.2  alnsn #define SLJIT_IADD			(SLJIT_ADD | SLJIT_INT_OP)
    664  1.1  alnsn /* Flags: I | C | K */
    665  1.2  alnsn #define SLJIT_ADDC			26
    666  1.2  alnsn #define SLJIT_IADDC			(SLJIT_ADDC | SLJIT_INT_OP)
    667  1.2  alnsn /* Flags: I | E | U | S | O | C | K */
    668  1.2  alnsn #define SLJIT_SUB			27
    669  1.2  alnsn #define SLJIT_ISUB			(SLJIT_SUB | SLJIT_INT_OP)
    670  1.1  alnsn /* Flags: I | C | K */
    671  1.2  alnsn #define SLJIT_SUBC			28
    672  1.2  alnsn #define SLJIT_ISUBC			(SLJIT_SUBC | SLJIT_INT_OP)
    673  1.1  alnsn /* Note: integer mul
    674  1.1  alnsn    Flags: I | O (see SLJIT_C_MUL_*) | K */
    675  1.2  alnsn #define SLJIT_MUL			29
    676  1.2  alnsn #define SLJIT_IMUL			(SLJIT_MUL | SLJIT_INT_OP)
    677  1.1  alnsn /* Flags: I | E | K */
    678  1.2  alnsn #define SLJIT_AND			30
    679  1.2  alnsn #define SLJIT_IAND			(SLJIT_AND | SLJIT_INT_OP)
    680  1.1  alnsn /* Flags: I | E | K */
    681  1.2  alnsn #define SLJIT_OR			31
    682  1.2  alnsn #define SLJIT_IOR			(SLJIT_OR | SLJIT_INT_OP)
    683  1.1  alnsn /* Flags: I | E | K */
    684  1.2  alnsn #define SLJIT_XOR			32
    685  1.2  alnsn #define SLJIT_IXOR			(SLJIT_XOR | SLJIT_INT_OP)
    686  1.1  alnsn /* Flags: I | E | K
    687  1.1  alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    688  1.1  alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    689  1.1  alnsn    Otherwise, if the content of src2 is outside the range from 0
    690  1.1  alnsn    to bit_length - 1, the operation is undefined. */
    691  1.2  alnsn #define SLJIT_SHL			33
    692  1.2  alnsn #define SLJIT_ISHL			(SLJIT_SHL | SLJIT_INT_OP)
    693  1.1  alnsn /* Flags: I | E | K
    694  1.1  alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    695  1.1  alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    696  1.1  alnsn    Otherwise, if the content of src2 is outside the range from 0
    697  1.1  alnsn    to bit_length - 1, the operation is undefined. */
    698  1.2  alnsn #define SLJIT_LSHR			34
    699  1.2  alnsn #define SLJIT_ILSHR			(SLJIT_LSHR | SLJIT_INT_OP)
    700  1.1  alnsn /* Flags: I | E | K
    701  1.1  alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    702  1.1  alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    703  1.1  alnsn    Otherwise, if the content of src2 is outside the range from 0
    704  1.1  alnsn    to bit_length - 1, the operation is undefined. */
    705  1.2  alnsn #define SLJIT_ASHR			35
    706  1.2  alnsn #define SLJIT_IASHR			(SLJIT_ASHR | SLJIT_INT_OP)
    707  1.1  alnsn 
    708  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
    709  1.2  alnsn 	sljit_si dst, sljit_sw dstw,
    710  1.2  alnsn 	sljit_si src1, sljit_sw src1w,
    711  1.2  alnsn 	sljit_si src2, sljit_sw src2w);
    712  1.1  alnsn 
    713  1.1  alnsn /* The following function is a helper function for sljit_emit_op_custom.
    714  1.2  alnsn    It returns with the real machine register index of any SLJIT_SCRATCH
    715  1.1  alnsn    SLJIT_SAVED or SLJIT_LOCALS register.
    716  1.2  alnsn    Note: it returns with -1 for virtual registers (all EREGs on x86-32). */
    717  1.1  alnsn 
    718  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
    719  1.2  alnsn 
    720  1.2  alnsn /* The following function is a helper function for sljit_emit_op_custom.
    721  1.2  alnsn    It returns with the real machine register index of any SLJIT_FLOAT register.
    722  1.2  alnsn    Note: the index is divided by 2 on ARM 32 bit architectures. */
    723  1.2  alnsn 
    724  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
    725  1.1  alnsn 
    726  1.1  alnsn /* Any instruction can be inserted into the instruction stream by
    727  1.1  alnsn    sljit_emit_op_custom. It has a similar purpose as inline assembly.
    728  1.1  alnsn    The size parameter must match to the instruction size of the target
    729  1.1  alnsn    architecture:
    730  1.1  alnsn 
    731  1.1  alnsn          x86: 0 < size <= 15. The instruction argument can be byte aligned.
    732  1.1  alnsn       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
    733  1.1  alnsn               if size == 4, the instruction argument must be 4 byte aligned.
    734  1.1  alnsn    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
    735  1.1  alnsn 
    736  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
    737  1.2  alnsn 	void *instruction, sljit_si size);
    738  1.1  alnsn 
    739  1.1  alnsn /* Returns with non-zero if fpu is available. */
    740  1.1  alnsn 
    741  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
    742  1.1  alnsn 
    743  1.1  alnsn /* Note: dst is the left and src is the right operand for SLJIT_FCMP.
    744  1.2  alnsn    Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED is set,
    745  1.1  alnsn          the comparison result is unpredictable.
    746  1.2  alnsn    Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
    747  1.2  alnsn #define SLJIT_CMPD			36
    748  1.2  alnsn #define SLJIT_CMPS			(SLJIT_CMPD | SLJIT_SINGLE_OP)
    749  1.2  alnsn /* Flags: SP - (never set any flags) */
    750  1.2  alnsn #define SLJIT_MOVD			37
    751  1.2  alnsn #define SLJIT_MOVS			(SLJIT_MOVD | SLJIT_SINGLE_OP)
    752  1.2  alnsn /* Flags: SP - (never set any flags) */
    753  1.2  alnsn #define SLJIT_NEGD			38
    754  1.2  alnsn #define SLJIT_NEGS			(SLJIT_NEGD | SLJIT_SINGLE_OP)
    755  1.2  alnsn /* Flags: SP - (never set any flags) */
    756  1.2  alnsn #define SLJIT_ABSD			39
    757  1.2  alnsn #define SLJIT_ABSS			(SLJIT_ABSD | SLJIT_SINGLE_OP)
    758  1.2  alnsn 
    759  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
    760  1.2  alnsn 	sljit_si dst, sljit_sw dstw,
    761  1.2  alnsn 	sljit_si src, sljit_sw srcw);
    762  1.2  alnsn 
    763  1.2  alnsn /* Flags: SP - (never set any flags) */
    764  1.2  alnsn #define SLJIT_ADDD			40
    765  1.2  alnsn #define SLJIT_ADDS			(SLJIT_ADDD | SLJIT_SINGLE_OP)
    766  1.2  alnsn /* Flags: SP - (never set any flags) */
    767  1.2  alnsn #define SLJIT_SUBD			41
    768  1.2  alnsn #define SLJIT_SUBS			(SLJIT_SUBD | SLJIT_SINGLE_OP)
    769  1.2  alnsn /* Flags: SP - (never set any flags) */
    770  1.2  alnsn #define SLJIT_MULD			42
    771  1.2  alnsn #define SLJIT_MULS			(SLJIT_MULD | SLJIT_SINGLE_OP)
    772  1.2  alnsn /* Flags: SP - (never set any flags) */
    773  1.2  alnsn #define SLJIT_DIVD			43
    774  1.2  alnsn #define SLJIT_DIVS			(SLJIT_DIVD | SLJIT_SINGLE_OP)
    775  1.2  alnsn 
    776  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
    777  1.2  alnsn 	sljit_si dst, sljit_sw dstw,
    778  1.2  alnsn 	sljit_si src1, sljit_sw src1w,
    779  1.2  alnsn 	sljit_si src2, sljit_sw src2w);
    780  1.1  alnsn 
    781  1.1  alnsn /* Label and jump instructions. */
    782  1.1  alnsn 
    783  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
    784  1.1  alnsn 
    785  1.1  alnsn /* Invert conditional instruction: xor (^) with 0x1 */
    786  1.1  alnsn #define SLJIT_C_EQUAL			0
    787  1.1  alnsn #define SLJIT_C_ZERO			0
    788  1.1  alnsn #define SLJIT_C_NOT_EQUAL		1
    789  1.1  alnsn #define SLJIT_C_NOT_ZERO		1
    790  1.1  alnsn 
    791  1.1  alnsn #define SLJIT_C_LESS			2
    792  1.1  alnsn #define SLJIT_C_GREATER_EQUAL		3
    793  1.1  alnsn #define SLJIT_C_GREATER			4
    794  1.1  alnsn #define SLJIT_C_LESS_EQUAL		5
    795  1.1  alnsn #define SLJIT_C_SIG_LESS		6
    796  1.1  alnsn #define SLJIT_C_SIG_GREATER_EQUAL	7
    797  1.1  alnsn #define SLJIT_C_SIG_GREATER		8
    798  1.1  alnsn #define SLJIT_C_SIG_LESS_EQUAL		9
    799  1.1  alnsn 
    800  1.1  alnsn #define SLJIT_C_OVERFLOW		10
    801  1.1  alnsn #define SLJIT_C_NOT_OVERFLOW		11
    802  1.1  alnsn 
    803  1.1  alnsn #define SLJIT_C_MUL_OVERFLOW		12
    804  1.1  alnsn #define SLJIT_C_MUL_NOT_OVERFLOW	13
    805  1.1  alnsn 
    806  1.1  alnsn #define SLJIT_C_FLOAT_EQUAL		14
    807  1.1  alnsn #define SLJIT_C_FLOAT_NOT_EQUAL		15
    808  1.1  alnsn #define SLJIT_C_FLOAT_LESS		16
    809  1.1  alnsn #define SLJIT_C_FLOAT_GREATER_EQUAL	17
    810  1.1  alnsn #define SLJIT_C_FLOAT_GREATER		18
    811  1.1  alnsn #define SLJIT_C_FLOAT_LESS_EQUAL	19
    812  1.2  alnsn #define SLJIT_C_FLOAT_UNORDERED		20
    813  1.2  alnsn #define SLJIT_C_FLOAT_ORDERED		21
    814  1.1  alnsn 
    815  1.1  alnsn #define SLJIT_JUMP			22
    816  1.1  alnsn #define SLJIT_FAST_CALL			23
    817  1.1  alnsn #define SLJIT_CALL0			24
    818  1.1  alnsn #define SLJIT_CALL1			25
    819  1.1  alnsn #define SLJIT_CALL2			26
    820  1.1  alnsn #define SLJIT_CALL3			27
    821  1.1  alnsn 
    822  1.1  alnsn /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
    823  1.1  alnsn 
    824  1.1  alnsn /* The target can be changed during runtime (see: sljit_set_jump_addr). */
    825  1.1  alnsn #define SLJIT_REWRITABLE_JUMP		0x1000
    826  1.1  alnsn 
    827  1.1  alnsn /* Emit a jump instruction. The destination is not set, only the type of the jump.
    828  1.1  alnsn     type must be between SLJIT_C_EQUAL and SLJIT_CALL3
    829  1.1  alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
    830  1.1  alnsn    Flags: - (never set any flags) for both conditional and unconditional jumps.
    831  1.1  alnsn    Flags: destroy all flags for calls. */
    832  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
    833  1.1  alnsn 
    834  1.1  alnsn /* Basic arithmetic comparison. In most architectures it is implemented as
    835  1.1  alnsn    an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
    836  1.1  alnsn    appropriate flags) followed by a sljit_emit_jump. However some
    837  1.1  alnsn    architectures (i.e: MIPS) may employ special optimizations here. It is
    838  1.1  alnsn    suggested to use this comparison form when appropriate.
    839  1.1  alnsn     type must be between SLJIT_C_EQUAL and SLJIT_C_SIG_LESS_EQUAL
    840  1.1  alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP or SLJIT_INT_OP
    841  1.1  alnsn    Flags: destroy flags. */
    842  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
    843  1.2  alnsn 	sljit_si src1, sljit_sw src1w,
    844  1.2  alnsn 	sljit_si src2, sljit_sw src2w);
    845  1.1  alnsn 
    846  1.1  alnsn /* Basic floating point comparison. In most architectures it is implemented as
    847  1.1  alnsn    an SLJIT_FCMP operation (setting appropriate flags) followed by a
    848  1.1  alnsn    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
    849  1.1  alnsn    special optimizations here. It is suggested to use this comparison form
    850  1.1  alnsn    when appropriate.
    851  1.2  alnsn     type must be between SLJIT_C_FLOAT_EQUAL and SLJIT_C_FLOAT_ORDERED
    852  1.2  alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and SLJIT_SINGLE_OP
    853  1.1  alnsn    Flags: destroy flags.
    854  1.1  alnsn    Note: if either operand is NaN, the behaviour is undefined for
    855  1.1  alnsn          type <= SLJIT_C_FLOAT_LESS_EQUAL. */
    856  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
    857  1.2  alnsn 	sljit_si src1, sljit_sw src1w,
    858  1.2  alnsn 	sljit_si src2, sljit_sw src2w);
    859  1.1  alnsn 
    860  1.1  alnsn /* Set the destination of the jump to this label. */
    861  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
    862  1.2  alnsn /* Set the destination address of the jump to this label. */
    863  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
    864  1.1  alnsn 
    865  1.1  alnsn /* Call function or jump anywhere. Both direct and indirect form
    866  1.1  alnsn     type must be between SLJIT_JUMP and SLJIT_CALL3
    867  1.1  alnsn     Direct form: set src to SLJIT_IMM() and srcw to the address
    868  1.1  alnsn     Indirect form: any other valid addressing mode
    869  1.1  alnsn    Flags: - (never set any flags) for unconditional jumps.
    870  1.1  alnsn    Flags: destroy all flags for calls. */
    871  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
    872  1.1  alnsn 
    873  1.2  alnsn /* Perform the operation using the conditional flags as the second argument.
    874  1.2  alnsn    Type must always be between SLJIT_C_EQUAL and SLJIT_C_FLOAT_ORDERED. The
    875  1.2  alnsn    value represented by the type is 1, if the condition represented by the type
    876  1.2  alnsn    is fulfilled, and 0 otherwise.
    877  1.2  alnsn 
    878  1.2  alnsn    If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
    879  1.2  alnsn      Set dst to the value represented by the type (0 or 1).
    880  1.2  alnsn      Src must be SLJIT_UNUSED, and srcw must be 0
    881  1.1  alnsn      Flags: - (never set any flags)
    882  1.2  alnsn    If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
    883  1.2  alnsn      Performs the binary operation using src as the first, and the value
    884  1.2  alnsn      represented by type as the second argument.
    885  1.2  alnsn      Important note: only dst=src and dstw=srcw is supported at the moment!
    886  1.2  alnsn      Flags: I | E | K
    887  1.2  alnsn    Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
    888  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
    889  1.2  alnsn 	sljit_si dst, sljit_sw dstw,
    890  1.2  alnsn 	sljit_si src, sljit_sw srcw,
    891  1.2  alnsn 	sljit_si type);
    892  1.1  alnsn 
    893  1.2  alnsn /* Copies the base address of SLJIT_LOCALS_REG+offset to dst.
    894  1.1  alnsn    Flags: - (never set any flags) */
    895  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
    896  1.1  alnsn 
    897  1.1  alnsn /* The constant can be changed runtime (see: sljit_set_const)
    898  1.1  alnsn    Flags: - (never set any flags) */
    899  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
    900  1.1  alnsn 
    901  1.1  alnsn /* After the code generation the address for label, jump and const instructions
    902  1.2  alnsn    are computed. Since these structures are freed by sljit_free_compiler, the
    903  1.1  alnsn    addresses must be preserved by the user program elsewere. */
    904  1.1  alnsn static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
    905  1.1  alnsn static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
    906  1.1  alnsn static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
    907  1.1  alnsn 
    908  1.1  alnsn /* Only the address is required to rewrite the code. */
    909  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
    910  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
    911  1.1  alnsn 
    912  1.1  alnsn /* --------------------------------------------------------------------- */
    913  1.1  alnsn /*  Miscellaneous utility functions                                      */
    914  1.1  alnsn /* --------------------------------------------------------------------- */
    915  1.1  alnsn 
    916  1.1  alnsn #define SLJIT_MAJOR_VERSION	0
    917  1.2  alnsn #define SLJIT_MINOR_VERSION	91
    918  1.1  alnsn 
    919  1.2  alnsn /* Get the human readable name of the platform. Can be useful on platforms
    920  1.2  alnsn    like ARM, where ARM and Thumb2 functions can be mixed, and
    921  1.2  alnsn    it is useful to know the type of the code generator. */
    922  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
    923  1.1  alnsn 
    924  1.2  alnsn /* Portable helper function to get an offset of a member. */
    925  1.2  alnsn #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
    926  1.1  alnsn 
    927  1.1  alnsn #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
    928  1.1  alnsn /* This global lock is useful to compile common functions. */
    929  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
    930  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
    931  1.1  alnsn #endif
    932  1.1  alnsn 
    933  1.1  alnsn #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
    934  1.1  alnsn 
    935  1.1  alnsn /* The sljit_stack is a utiliy feature of sljit, which allocates a
    936  1.1  alnsn    writable memory region between base (inclusive) and limit (exclusive).
    937  1.1  alnsn    Both base and limit is a pointer, and base is always <= than limit.
    938  1.1  alnsn    This feature uses the "address space reserve" feature
    939  1.1  alnsn    of modern operating systems. Basically we don't need to allocate a
    940  1.1  alnsn    huge memory block in one step for the worst case, we can start with
    941  1.1  alnsn    a smaller chunk and extend it later. Since the address space is
    942  1.1  alnsn    reserved, the data never copied to other regions, thus it is safe
    943  1.1  alnsn    to store pointers here. */
    944  1.1  alnsn 
    945  1.1  alnsn /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
    946  1.1  alnsn    Note: stack growing should not happen in small steps: 4k, 16k or even
    947  1.1  alnsn      bigger growth is better.
    948  1.1  alnsn    Note: this structure may not be supported by all operating systems.
    949  1.1  alnsn      Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
    950  1.1  alnsn      is not defined. */
    951  1.1  alnsn 
    952  1.1  alnsn struct sljit_stack {
    953  1.1  alnsn 	/* User data, anything can be stored here.
    954  1.1  alnsn 	   Starting with the same value as base. */
    955  1.1  alnsn 	sljit_uw top;
    956  1.1  alnsn 	/* These members are read only. */
    957  1.1  alnsn 	sljit_uw base;
    958  1.1  alnsn 	sljit_uw limit;
    959  1.1  alnsn 	sljit_uw max_limit;
    960  1.1  alnsn };
    961  1.1  alnsn 
    962  1.1  alnsn /* Returns NULL if unsuccessful.
    963  1.1  alnsn    Note: limit and max_limit contains the size for stack allocation
    964  1.1  alnsn    Note: the top field is initialized to base. */
    965  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit);
    966  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack* stack);
    967  1.1  alnsn 
    968  1.1  alnsn /* Can be used to increase (allocate) or decrease (free) the memory area.
    969  1.1  alnsn    Returns with a non-zero value if unsuccessful. If new_limit is greater than
    970  1.1  alnsn    max_limit, it will fail. It is very easy to implement a stack data structure,
    971  1.1  alnsn    since the growth ratio can be added to the current limit, and sljit_stack_resize
    972  1.1  alnsn    will do all the necessary checks. The fields of the stack are not changed if
    973  1.1  alnsn    sljit_stack_resize fails. */
    974  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack* stack, sljit_uw new_limit);
    975  1.1  alnsn 
    976  1.1  alnsn #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
    977  1.1  alnsn 
    978  1.1  alnsn #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
    979  1.1  alnsn 
    980  1.1  alnsn /* Get the entry address of a given function. */
    981  1.2  alnsn #define SLJIT_FUNC_OFFSET(func_name)	((sljit_sw)func_name)
    982  1.1  alnsn 
    983  1.1  alnsn #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
    984  1.1  alnsn 
    985  1.1  alnsn /* All JIT related code should be placed in the same context (library, binary, etc.). */
    986  1.1  alnsn 
    987  1.2  alnsn #define SLJIT_FUNC_OFFSET(func_name)	(*(sljit_sw*)(void*)func_name)
    988  1.1  alnsn 
    989  1.1  alnsn /* For powerpc64, the function pointers point to a context descriptor. */
    990  1.1  alnsn struct sljit_function_context {
    991  1.2  alnsn 	sljit_sw addr;
    992  1.2  alnsn 	sljit_sw r2;
    993  1.2  alnsn 	sljit_sw r11;
    994  1.1  alnsn };
    995  1.1  alnsn 
    996  1.1  alnsn /* Fill the context arguments using the addr and the function.
    997  1.1  alnsn    If func_ptr is NULL, it will not be set to the address of context
    998  1.1  alnsn    If addr is NULL, the function address also comes from the func pointer. */
    999  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
   1000  1.1  alnsn 
   1001  1.1  alnsn #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
   1002  1.1  alnsn 
   1003  1.1  alnsn #endif /* _SLJIT_LIR_H_ */
   1004