Home | History | Annotate | Line # | Download | only in sljit_src
sljitLir.h revision 1.3
      1  1.3  alnsn /*	$NetBSD: sljitLir.h,v 1.3 2016/05/29 17:09:33 alnsn Exp $	*/
      2  1.2  alnsn 
      3  1.1  alnsn /*
      4  1.1  alnsn  *    Stack-less Just-In-Time compiler
      5  1.1  alnsn  *
      6  1.1  alnsn  *    Copyright 2009-2012 Zoltan Herczeg (hzmester (at) freemail.hu). All rights reserved.
      7  1.1  alnsn  *
      8  1.1  alnsn  * Redistribution and use in source and binary forms, with or without modification, are
      9  1.1  alnsn  * permitted provided that the following conditions are met:
     10  1.1  alnsn  *
     11  1.1  alnsn  *   1. Redistributions of source code must retain the above copyright notice, this list of
     12  1.1  alnsn  *      conditions and the following disclaimer.
     13  1.1  alnsn  *
     14  1.1  alnsn  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
     15  1.1  alnsn  *      of conditions and the following disclaimer in the documentation and/or other materials
     16  1.1  alnsn  *      provided with the distribution.
     17  1.1  alnsn  *
     18  1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
     19  1.1  alnsn  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  1.1  alnsn  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
     21  1.1  alnsn  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     23  1.1  alnsn  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     24  1.1  alnsn  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  1.1  alnsn  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     26  1.1  alnsn  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  1.1  alnsn  */
     28  1.1  alnsn 
     29  1.1  alnsn #ifndef _SLJIT_LIR_H_
     30  1.1  alnsn #define _SLJIT_LIR_H_
     31  1.1  alnsn 
     32  1.1  alnsn /*
     33  1.1  alnsn    ------------------------------------------------------------------------
     34  1.1  alnsn     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
     35  1.1  alnsn    ------------------------------------------------------------------------
     36  1.1  alnsn 
     37  1.1  alnsn    Short description
     38  1.1  alnsn     Advantages:
     39  1.2  alnsn       - The execution can be continued from any LIR instruction. In other
     40  1.2  alnsn         words, it is possible to jump to any label from anywhere, even from
     41  1.2  alnsn         a code fragment, which is compiled later, if both compiled code
     42  1.2  alnsn         shares the same context. See sljit_emit_enter for more details
     43  1.2  alnsn       - Supports self modifying code: target of (conditional) jump and call
     44  1.2  alnsn         instructions and some constant values can be dynamically modified
     45  1.2  alnsn         during runtime
     46  1.1  alnsn         - although it is not suggested to do it frequently
     47  1.2  alnsn         - can be used for inline caching: save an important value once
     48  1.2  alnsn           in the instruction stream
     49  1.2  alnsn         - since this feature limits the optimization possibilities, a
     50  1.2  alnsn           special flag must be passed at compile time when these
     51  1.2  alnsn           instructions are emitted
     52  1.1  alnsn       - A fixed stack space can be allocated for local variables
     53  1.1  alnsn       - The compiler is thread-safe
     54  1.1  alnsn       - The compiler is highly configurable through preprocessor macros.
     55  1.1  alnsn         You can disable unneeded features (multithreading in single
     56  1.1  alnsn         threaded applications), and you can use your own system functions
     57  1.1  alnsn         (including memory allocators). See sljitConfig.h
     58  1.1  alnsn     Disadvantages:
     59  1.2  alnsn       - No automatic register allocation, and temporary results are
     60  1.2  alnsn         not stored on the stack. (hence the name comes)
     61  1.1  alnsn     In practice:
     62  1.1  alnsn       - This approach is very effective for interpreters
     63  1.1  alnsn         - One of the saved registers typically points to a stack interface
     64  1.2  alnsn         - It can jump to any exception handler anytime (even if it belongs
     65  1.2  alnsn           to another function)
     66  1.2  alnsn         - Hot paths can be modified during runtime reflecting the changes
     67  1.1  alnsn           of the fastest execution path of the dynamic language
     68  1.1  alnsn         - SLJIT supports complex memory addressing modes
     69  1.2  alnsn         - mainly position and context independent code (except some cases)
     70  1.1  alnsn 
     71  1.1  alnsn     For valgrind users:
     72  1.1  alnsn       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
     73  1.1  alnsn */
     74  1.1  alnsn 
     75  1.1  alnsn #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
     76  1.1  alnsn #include "sljitConfig.h"
     77  1.1  alnsn #endif
     78  1.1  alnsn 
     79  1.1  alnsn /* The following header file defines useful macros for fine tuning
     80  1.2  alnsn sljit based code generators. They are listed in the beginning
     81  1.1  alnsn of sljitConfigInternal.h */
     82  1.1  alnsn 
     83  1.1  alnsn #include "sljitConfigInternal.h"
     84  1.1  alnsn 
     85  1.1  alnsn /* --------------------------------------------------------------------- */
     86  1.1  alnsn /*  Error codes                                                          */
     87  1.1  alnsn /* --------------------------------------------------------------------- */
     88  1.1  alnsn 
     89  1.1  alnsn /* Indicates no error. */
     90  1.1  alnsn #define SLJIT_SUCCESS			0
     91  1.1  alnsn /* After the call of sljit_generate_code(), the error code of the compiler
     92  1.1  alnsn    is set to this value to avoid future sljit calls (in debug mode at least).
     93  1.1  alnsn    The complier should be freed after sljit_generate_code(). */
     94  1.1  alnsn #define SLJIT_ERR_COMPILED		1
     95  1.1  alnsn /* Cannot allocate non executable memory. */
     96  1.1  alnsn #define SLJIT_ERR_ALLOC_FAILED		2
     97  1.1  alnsn /* Cannot allocate executable memory.
     98  1.1  alnsn    Only for sljit_generate_code() */
     99  1.1  alnsn #define SLJIT_ERR_EX_ALLOC_FAILED	3
    100  1.3  alnsn /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
    101  1.1  alnsn #define SLJIT_ERR_UNSUPPORTED		4
    102  1.3  alnsn /* An ivalid argument is passed to any SLJIT function. */
    103  1.3  alnsn #define SLJIT_ERR_BAD_ARGUMENT		5
    104  1.1  alnsn 
    105  1.1  alnsn /* --------------------------------------------------------------------- */
    106  1.1  alnsn /*  Registers                                                            */
    107  1.1  alnsn /* --------------------------------------------------------------------- */
    108  1.1  alnsn 
    109  1.3  alnsn /*
    110  1.3  alnsn   Scratch (R) registers: registers whose may not preserve their values
    111  1.3  alnsn   across function calls.
    112  1.3  alnsn 
    113  1.3  alnsn   Saved (S) registers: registers whose preserve their values across
    114  1.3  alnsn   function calls.
    115  1.3  alnsn 
    116  1.3  alnsn   The scratch and saved register sets are overlap. The last scratch register
    117  1.3  alnsn   is the first saved register, the one before the last is the second saved
    118  1.3  alnsn   register, and so on.
    119  1.3  alnsn 
    120  1.3  alnsn   If an architecture provides two scratch and three saved registers,
    121  1.3  alnsn   its scratch and saved register sets are the following:
    122  1.3  alnsn 
    123  1.3  alnsn      R0   |  [S4]  |   R0 and S4 represent the same physical register
    124  1.3  alnsn      R1   |  [S3]  |   R1 and S3 represent the same physical register
    125  1.3  alnsn     [R2]  |   S2   |   R2 and S2 represent the same physical register
    126  1.3  alnsn     [R3]  |   S1   |   R3 and S1 represent the same physical register
    127  1.3  alnsn     [R4]  |   S0   |   R4 and S0 represent the same physical register
    128  1.3  alnsn 
    129  1.3  alnsn   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
    130  1.3  alnsn         SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
    131  1.3  alnsn 
    132  1.3  alnsn   Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
    133  1.3  alnsn         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
    134  1.3  alnsn         are virtual on x86-32. See below.
    135  1.3  alnsn 
    136  1.3  alnsn   The purpose of this definition is convenience. Although a register
    137  1.3  alnsn   is either scratch register or saved register, SLJIT allows accessing
    138  1.3  alnsn   them from the other set. For example, four registers can be used as
    139  1.3  alnsn   scratch registers and the fifth one as saved register on the architecture
    140  1.3  alnsn   above. Of course the last two scratch registers (R2 and R3) from this
    141  1.3  alnsn   four will be saved on the stack, because they are defined as saved
    142  1.3  alnsn   registers in the application binary interface. Still R2 and R3 can be
    143  1.3  alnsn   used for referencing to these registers instead of S2 and S1, which
    144  1.3  alnsn   makes easier to write platform independent code. Scratch registers
    145  1.3  alnsn   can be saved registers in a similar way, but these extra saved
    146  1.3  alnsn   registers will not be preserved across function calls! Hence the
    147  1.3  alnsn   application must save them on those platforms, where the number of
    148  1.3  alnsn   saved registers is too low. This can be done by copy them onto
    149  1.3  alnsn   the stack and restore them after a function call.
    150  1.3  alnsn 
    151  1.3  alnsn   Note: To emphasize that registers assigned to R2-R4 are saved
    152  1.3  alnsn         registers, they are enclosed by square brackets. S3-S4
    153  1.3  alnsn         are marked in a similar way.
    154  1.3  alnsn 
    155  1.3  alnsn   Note: sljit_emit_enter and sljit_set_context defines whether a register
    156  1.3  alnsn         is S or R register. E.g: when 3 scratches and 1 saved is mapped
    157  1.3  alnsn         by sljit_emit_enter, the allowed register set will be: R0-R2 and
    158  1.3  alnsn         S0. Although S2 is mapped to the same position as R2, it does not
    159  1.3  alnsn         available in the current configuration. Furthermore the R3 (S1)
    160  1.3  alnsn         register does not available as well.
    161  1.3  alnsn */
    162  1.3  alnsn 
    163  1.3  alnsn /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
    164  1.1  alnsn #define SLJIT_UNUSED		0
    165  1.1  alnsn 
    166  1.3  alnsn /* Scratch registers. */
    167  1.3  alnsn #define SLJIT_R0	1
    168  1.3  alnsn #define SLJIT_R1	2
    169  1.3  alnsn #define SLJIT_R2	3
    170  1.3  alnsn /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
    171  1.3  alnsn    are allocated on the stack). These registers are called virtual
    172  1.3  alnsn    and cannot be used for memory addressing (cannot be part of
    173  1.3  alnsn    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
    174  1.3  alnsn    limitation on other CPUs. See sljit_get_register_index(). */
    175  1.3  alnsn #define SLJIT_R3	4
    176  1.3  alnsn #define SLJIT_R4	5
    177  1.3  alnsn #define SLJIT_R5	6
    178  1.3  alnsn #define SLJIT_R6	7
    179  1.3  alnsn #define SLJIT_R7	8
    180  1.3  alnsn #define SLJIT_R8	9
    181  1.3  alnsn #define SLJIT_R9	10
    182  1.3  alnsn /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
    183  1.3  alnsn    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
    184  1.3  alnsn #define SLJIT_R(i)	(1 + (i))
    185  1.3  alnsn 
    186  1.3  alnsn /* Saved registers. */
    187  1.3  alnsn #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
    188  1.3  alnsn #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
    189  1.3  alnsn #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
    190  1.3  alnsn /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
    191  1.3  alnsn    are allocated on the stack). These registers are called virtual
    192  1.3  alnsn    and cannot be used for memory addressing (cannot be part of
    193  1.3  alnsn    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
    194  1.3  alnsn    limitation on other CPUs. See sljit_get_register_index(). */
    195  1.3  alnsn #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
    196  1.3  alnsn #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
    197  1.3  alnsn #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
    198  1.3  alnsn #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
    199  1.3  alnsn #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
    200  1.3  alnsn #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
    201  1.3  alnsn #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
    202  1.3  alnsn /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
    203  1.3  alnsn    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
    204  1.3  alnsn #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
    205  1.3  alnsn 
    206  1.3  alnsn /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
    207  1.3  alnsn #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
    208  1.3  alnsn 
    209  1.3  alnsn /* The SLJIT_SP provides direct access to the linear stack space allocated by
    210  1.3  alnsn    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
    211  1.3  alnsn    The immediate offset is extended by the relative stack offset automatically.
    212  1.3  alnsn    The sljit_get_local_base can be used to obtain the absolute offset. */
    213  1.3  alnsn #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
    214  1.1  alnsn 
    215  1.1  alnsn /* Return with machine word. */
    216  1.1  alnsn 
    217  1.3  alnsn #define SLJIT_RETURN_REG	SLJIT_R0
    218  1.1  alnsn 
    219  1.1  alnsn /* x86 prefers specific registers for special purposes. In case of shift
    220  1.3  alnsn    by register it supports only SLJIT_R2 for shift argument
    221  1.1  alnsn    (which is the src2 argument of sljit_emit_op2). If another register is
    222  1.1  alnsn    used, sljit must exchange data between registers which cause a minor
    223  1.1  alnsn    slowdown. Other architectures has no such limitation. */
    224  1.1  alnsn 
    225  1.3  alnsn #define SLJIT_PREF_SHIFT_REG	SLJIT_R2
    226  1.1  alnsn 
    227  1.1  alnsn /* --------------------------------------------------------------------- */
    228  1.1  alnsn /*  Floating point registers                                             */
    229  1.1  alnsn /* --------------------------------------------------------------------- */
    230  1.1  alnsn 
    231  1.3  alnsn /* Each floating point register can store a 32 or a 64 bit precision
    232  1.3  alnsn    value. The FR and FS register sets are overlap in the same way as R
    233  1.3  alnsn    and S register sets. See above. */
    234  1.3  alnsn 
    235  1.1  alnsn /* Note: SLJIT_UNUSED as destination is not valid for floating point
    236  1.3  alnsn    operations, since they cannot be used for setting flags. */
    237  1.1  alnsn 
    238  1.3  alnsn /* Floating point scratch registers. */
    239  1.3  alnsn #define SLJIT_FR0	1
    240  1.3  alnsn #define SLJIT_FR1	2
    241  1.3  alnsn #define SLJIT_FR2	3
    242  1.3  alnsn #define SLJIT_FR3	4
    243  1.3  alnsn #define SLJIT_FR4	5
    244  1.3  alnsn #define SLJIT_FR5	6
    245  1.3  alnsn /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
    246  1.3  alnsn    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
    247  1.3  alnsn #define SLJIT_FR(i)	(1 + (i))
    248  1.3  alnsn 
    249  1.3  alnsn /* Floating point saved registers. */
    250  1.3  alnsn #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
    251  1.3  alnsn #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
    252  1.3  alnsn #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
    253  1.3  alnsn #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
    254  1.3  alnsn #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
    255  1.3  alnsn #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
    256  1.3  alnsn /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
    257  1.3  alnsn    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
    258  1.3  alnsn #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
    259  1.2  alnsn 
    260  1.3  alnsn /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
    261  1.3  alnsn #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
    262  1.1  alnsn 
    263  1.1  alnsn /* --------------------------------------------------------------------- */
    264  1.1  alnsn /*  Main structures and functions                                        */
    265  1.1  alnsn /* --------------------------------------------------------------------- */
    266  1.1  alnsn 
    267  1.3  alnsn /*
    268  1.3  alnsn 	The following structures are private, and can be changed in the
    269  1.3  alnsn 	future. Keeping them here allows code inlining.
    270  1.3  alnsn */
    271  1.3  alnsn 
    272  1.1  alnsn struct sljit_memory_fragment {
    273  1.1  alnsn 	struct sljit_memory_fragment *next;
    274  1.1  alnsn 	sljit_uw used_size;
    275  1.2  alnsn 	/* Must be aligned to sljit_sw. */
    276  1.3  alnsn 	sljit_u8 memory[1];
    277  1.1  alnsn };
    278  1.1  alnsn 
    279  1.1  alnsn struct sljit_label {
    280  1.1  alnsn 	struct sljit_label *next;
    281  1.1  alnsn 	sljit_uw addr;
    282  1.1  alnsn 	/* The maximum size difference. */
    283  1.1  alnsn 	sljit_uw size;
    284  1.1  alnsn };
    285  1.1  alnsn 
    286  1.1  alnsn struct sljit_jump {
    287  1.1  alnsn 	struct sljit_jump *next;
    288  1.1  alnsn 	sljit_uw addr;
    289  1.2  alnsn 	sljit_sw flags;
    290  1.1  alnsn 	union {
    291  1.1  alnsn 		sljit_uw target;
    292  1.1  alnsn 		struct sljit_label* label;
    293  1.1  alnsn 	} u;
    294  1.1  alnsn };
    295  1.1  alnsn 
    296  1.1  alnsn struct sljit_const {
    297  1.1  alnsn 	struct sljit_const *next;
    298  1.1  alnsn 	sljit_uw addr;
    299  1.1  alnsn };
    300  1.1  alnsn 
    301  1.1  alnsn struct sljit_compiler {
    302  1.3  alnsn 	sljit_s32 error;
    303  1.3  alnsn 	sljit_s32 options;
    304  1.1  alnsn 
    305  1.1  alnsn 	struct sljit_label *labels;
    306  1.1  alnsn 	struct sljit_jump *jumps;
    307  1.1  alnsn 	struct sljit_const *consts;
    308  1.1  alnsn 	struct sljit_label *last_label;
    309  1.1  alnsn 	struct sljit_jump *last_jump;
    310  1.1  alnsn 	struct sljit_const *last_const;
    311  1.1  alnsn 
    312  1.3  alnsn 	void *allocator_data;
    313  1.1  alnsn 	struct sljit_memory_fragment *buf;
    314  1.1  alnsn 	struct sljit_memory_fragment *abuf;
    315  1.1  alnsn 
    316  1.3  alnsn 	/* Used scratch registers. */
    317  1.3  alnsn 	sljit_s32 scratches;
    318  1.1  alnsn 	/* Used saved registers. */
    319  1.3  alnsn 	sljit_s32 saveds;
    320  1.3  alnsn 	/* Used float scratch registers. */
    321  1.3  alnsn 	sljit_s32 fscratches;
    322  1.3  alnsn 	/* Used float saved registers. */
    323  1.3  alnsn 	sljit_s32 fsaveds;
    324  1.1  alnsn 	/* Local stack size. */
    325  1.3  alnsn 	sljit_s32 local_size;
    326  1.1  alnsn 	/* Code size. */
    327  1.1  alnsn 	sljit_uw size;
    328  1.1  alnsn 	/* For statistical purposes. */
    329  1.1  alnsn 	sljit_uw executable_size;
    330  1.1  alnsn 
    331  1.1  alnsn #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
    332  1.3  alnsn 	sljit_s32 args;
    333  1.1  alnsn #endif
    334  1.1  alnsn 
    335  1.1  alnsn #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
    336  1.3  alnsn 	sljit_s32 mode32;
    337  1.1  alnsn #endif
    338  1.1  alnsn 
    339  1.3  alnsn #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
    340  1.3  alnsn 	sljit_s32 flags_saved;
    341  1.1  alnsn #endif
    342  1.1  alnsn 
    343  1.1  alnsn #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
    344  1.1  alnsn 	/* Constant pool handling. */
    345  1.1  alnsn 	sljit_uw *cpool;
    346  1.3  alnsn 	sljit_u8 *cpool_unique;
    347  1.1  alnsn 	sljit_uw cpool_diff;
    348  1.1  alnsn 	sljit_uw cpool_fill;
    349  1.1  alnsn 	/* Other members. */
    350  1.1  alnsn 	/* Contains pointer, "ldr pc, [...]" pairs. */
    351  1.1  alnsn 	sljit_uw patches;
    352  1.1  alnsn #endif
    353  1.1  alnsn 
    354  1.1  alnsn #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
    355  1.1  alnsn 	/* Temporary fields. */
    356  1.1  alnsn 	sljit_uw shift_imm;
    357  1.3  alnsn 	sljit_s32 cache_arg;
    358  1.2  alnsn 	sljit_sw cache_argw;
    359  1.1  alnsn #endif
    360  1.1  alnsn 
    361  1.1  alnsn #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
    362  1.3  alnsn 	sljit_s32 cache_arg;
    363  1.2  alnsn 	sljit_sw cache_argw;
    364  1.2  alnsn #endif
    365  1.2  alnsn 
    366  1.2  alnsn #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
    367  1.3  alnsn 	sljit_s32 cache_arg;
    368  1.2  alnsn 	sljit_sw cache_argw;
    369  1.1  alnsn #endif
    370  1.1  alnsn 
    371  1.3  alnsn #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
    372  1.2  alnsn 	sljit_sw imm;
    373  1.3  alnsn 	sljit_s32 cache_arg;
    374  1.2  alnsn 	sljit_sw cache_argw;
    375  1.2  alnsn #endif
    376  1.2  alnsn 
    377  1.3  alnsn #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
    378  1.3  alnsn 	sljit_s32 delay_slot;
    379  1.3  alnsn 	sljit_s32 cache_arg;
    380  1.2  alnsn 	sljit_sw cache_argw;
    381  1.2  alnsn #endif
    382  1.2  alnsn 
    383  1.2  alnsn #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
    384  1.3  alnsn 	sljit_s32 delay_slot;
    385  1.3  alnsn 	sljit_s32 cache_arg;
    386  1.2  alnsn 	sljit_sw cache_argw;
    387  1.1  alnsn #endif
    388  1.1  alnsn 
    389  1.2  alnsn #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
    390  1.3  alnsn 	sljit_s32 cache_arg;
    391  1.2  alnsn 	sljit_sw cache_argw;
    392  1.1  alnsn #endif
    393  1.1  alnsn 
    394  1.1  alnsn #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    395  1.1  alnsn 	FILE* verbose;
    396  1.1  alnsn #endif
    397  1.1  alnsn 
    398  1.3  alnsn #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
    399  1.3  alnsn 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
    400  1.1  alnsn 	/* Local size passed to the functions. */
    401  1.3  alnsn 	sljit_s32 logical_local_size;
    402  1.1  alnsn #endif
    403  1.1  alnsn 
    404  1.3  alnsn #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
    405  1.3  alnsn 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
    406  1.3  alnsn 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    407  1.3  alnsn 	sljit_s32 skip_checks;
    408  1.1  alnsn #endif
    409  1.1  alnsn };
    410  1.1  alnsn 
    411  1.1  alnsn /* --------------------------------------------------------------------- */
    412  1.1  alnsn /*  Main functions                                                       */
    413  1.1  alnsn /* --------------------------------------------------------------------- */
    414  1.1  alnsn 
    415  1.3  alnsn /* Creates an sljit compiler. The allocator_data is required by some
    416  1.3  alnsn    custom memory managers. This pointer is passed to SLJIT_MALLOC
    417  1.3  alnsn    and SLJIT_FREE macros. Most allocators (including the default
    418  1.3  alnsn    one) ignores this value, and it is recommended to pass NULL
    419  1.3  alnsn    as a dummy value for allocator_data.
    420  1.3  alnsn 
    421  1.1  alnsn    Returns NULL if failed. */
    422  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
    423  1.2  alnsn 
    424  1.3  alnsn /* Frees everything except the compiled machine code. */
    425  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
    426  1.1  alnsn 
    427  1.2  alnsn /* Returns the current error code. If an error is occurred, future sljit
    428  1.2  alnsn    calls which uses the same compiler argument returns early with the same
    429  1.2  alnsn    error code. Thus there is no need for checking the error after every
    430  1.2  alnsn    call, it is enough to do it before the code is compiled. Removing
    431  1.2  alnsn    these checks increases the performance of the compiling process. */
    432  1.3  alnsn static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
    433  1.3  alnsn 
    434  1.3  alnsn /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
    435  1.3  alnsn    if an error was detected before. After the error code is set
    436  1.3  alnsn    the compiler behaves as if the allocation failure happened
    437  1.3  alnsn    during an sljit function call. This can greatly simplify error
    438  1.3  alnsn    checking, since only the compiler status needs to be checked
    439  1.3  alnsn    after the compilation. */
    440  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
    441  1.1  alnsn 
    442  1.1  alnsn /*
    443  1.1  alnsn    Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
    444  1.2  alnsn    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
    445  1.2  alnsn    compiler, and freed by sljit_free_compiler. The returned pointer is
    446  1.2  alnsn    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
    447  1.2  alnsn    the compiling, and no need to worry about freeing them. The size is
    448  1.2  alnsn    enough to contain at most 16 pointers. If the size is outside of the range,
    449  1.2  alnsn    the function will return with NULL. However, this return value does not
    450  1.2  alnsn    indicate that there is no more memory (does not set the current error code
    451  1.2  alnsn    of the compiler to out-of-memory status).
    452  1.1  alnsn */
    453  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
    454  1.1  alnsn 
    455  1.1  alnsn #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    456  1.1  alnsn /* Passing NULL disables verbose. */
    457  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
    458  1.1  alnsn #endif
    459  1.1  alnsn 
    460  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
    461  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
    462  1.1  alnsn 
    463  1.1  alnsn /*
    464  1.2  alnsn    After the machine code generation is finished we can retrieve the allocated
    465  1.2  alnsn    executable memory size, although this area may not be fully filled with
    466  1.2  alnsn    instructions depending on some optimizations. This function is useful only
    467  1.2  alnsn    for statistical purposes.
    468  1.1  alnsn 
    469  1.1  alnsn    Before a successful code generation, this function returns with 0.
    470  1.1  alnsn */
    471  1.1  alnsn static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
    472  1.1  alnsn 
    473  1.2  alnsn /* Instruction generation. Returns with any error code. If there is no
    474  1.2  alnsn    error, they return with SLJIT_SUCCESS. */
    475  1.1  alnsn 
    476  1.1  alnsn /*
    477  1.3  alnsn    The executable code is a function call from the viewpoint of the C
    478  1.3  alnsn    language. The function calls must obey to the ABI (Application
    479  1.3  alnsn    Binary Interface) of the platform, which specify the purpose of
    480  1.3  alnsn    all machine registers and stack handling among other things. The
    481  1.3  alnsn    sljit_emit_enter function emits the necessary instructions for
    482  1.3  alnsn    setting up a new context for the executable code and moves function
    483  1.3  alnsn    arguments to the saved registers. Furthermore the options argument
    484  1.3  alnsn    can be used to pass configuration options to the compiler. The
    485  1.3  alnsn    available options are listed before sljit_emit_enter.
    486  1.3  alnsn 
    487  1.3  alnsn    The number of sljit_sw arguments passed to the generated function
    488  1.3  alnsn    are specified in the "args" parameter. The number of arguments must
    489  1.3  alnsn    be less than or equal to 3. The first argument goes to SLJIT_S0,
    490  1.3  alnsn    the second goes to SLJIT_S1 and so on. The register set used by
    491  1.3  alnsn    the function must be declared as well. The number of scratch and
    492  1.3  alnsn    saved registers used by the function must be passed to sljit_emit_enter.
    493  1.3  alnsn    Only R registers between R0 and "scratches" argument can be used
    494  1.3  alnsn    later. E.g. if "scratches" is set to 2, the register set will be
    495  1.3  alnsn    limited to R0 and R1. The S registers and the floating point
    496  1.3  alnsn    registers ("fscratches" and "fsaveds") are specified in a similar
    497  1.3  alnsn    way. The sljit_emit_enter is also capable of allocating a stack
    498  1.3  alnsn    space for local variables. The "local_size" argument contains the
    499  1.3  alnsn    size in bytes of this local area and its staring address is stored
    500  1.3  alnsn    in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
    501  1.3  alnsn    SLJIT_SP + local_size (exclusive) can be modified freely until
    502  1.3  alnsn    the function returns. The stack space is not initialized.
    503  1.3  alnsn 
    504  1.3  alnsn    Note: the following conditions must met:
    505  1.3  alnsn          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
    506  1.3  alnsn          0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
    507  1.3  alnsn          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
    508  1.3  alnsn          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    509  1.3  alnsn          0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    510  1.3  alnsn          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    511  1.1  alnsn 
    512  1.2  alnsn    Note: every call of sljit_emit_enter and sljit_set_context
    513  1.3  alnsn          overwrites the previous context.
    514  1.3  alnsn */
    515  1.3  alnsn 
    516  1.3  alnsn /* The absolute address returned by sljit_get_local_base with
    517  1.3  alnsn offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
    518  1.3  alnsn #define SLJIT_DOUBLE_ALIGNMENT 0x00000001
    519  1.1  alnsn 
    520  1.3  alnsn /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
    521  1.1  alnsn #define SLJIT_MAX_LOCAL_SIZE	65536
    522  1.1  alnsn 
    523  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
    524  1.3  alnsn 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
    525  1.3  alnsn 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
    526  1.1  alnsn 
    527  1.1  alnsn /* The machine code has a context (which contains the local stack space size,
    528  1.1  alnsn    number of used registers, etc.) which initialized by sljit_emit_enter. Several
    529  1.1  alnsn    functions (like sljit_emit_return) requres this context to be able to generate
    530  1.1  alnsn    the appropriate code. However, some code fragments (like inline cache) may have
    531  1.3  alnsn    no normal entry point so their context is unknown for the compiler. Their context
    532  1.3  alnsn    can be provided to the compiler by the sljit_set_context function.
    533  1.1  alnsn 
    534  1.1  alnsn    Note: every call of sljit_emit_enter and sljit_set_context overwrites
    535  1.1  alnsn          the previous context. */
    536  1.1  alnsn 
    537  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
    538  1.3  alnsn 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
    539  1.3  alnsn 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
    540  1.1  alnsn 
    541  1.1  alnsn /* Return from machine code.  The op argument can be SLJIT_UNUSED which means the
    542  1.1  alnsn    function does not return with anything or any opcode between SLJIT_MOV and
    543  1.2  alnsn    SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
    544  1.1  alnsn    is SLJIT_UNUSED, otherwise see below the description about source and
    545  1.1  alnsn    destination arguments. */
    546  1.1  alnsn 
    547  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
    548  1.3  alnsn 	sljit_s32 src, sljit_sw srcw);
    549  1.2  alnsn 
    550  1.2  alnsn /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
    551  1.2  alnsn    even the stack frame is passed to the callee. The return address is preserved in
    552  1.2  alnsn    dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
    553  1.2  alnsn    is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
    554  1.2  alnsn 
    555  1.2  alnsn /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
    556  1.2  alnsn    instructions are needed. Excellent for small uility functions, where saving registers
    557  1.2  alnsn    and setting up a new stack frame would cost too much performance. However, it is still
    558  1.2  alnsn    possible to return to the address of the caller (or anywhere else). */
    559  1.1  alnsn 
    560  1.1  alnsn /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
    561  1.1  alnsn 
    562  1.1  alnsn /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
    563  1.1  alnsn    since many architectures do clever branch prediction on call / return instruction pairs. */
    564  1.1  alnsn 
    565  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
    566  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw);
    567  1.1  alnsn 
    568  1.1  alnsn /*
    569  1.1  alnsn    Source and destination values for arithmetical instructions
    570  1.1  alnsn     imm              - a simple immediate value (cannot be used as a destination)
    571  1.1  alnsn     reg              - any of the registers (immediate argument must be 0)
    572  1.1  alnsn     [imm]            - absolute immediate memory address
    573  1.1  alnsn     [reg+imm]        - indirect memory address
    574  1.1  alnsn     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
    575  1.2  alnsn                        useful for (byte, half, int, sljit_sw) array access
    576  1.1  alnsn                        (fully supported by both x86 and ARM architectures, and cheap operation on others)
    577  1.1  alnsn */
    578  1.1  alnsn 
    579  1.1  alnsn /*
    580  1.1  alnsn    IMPORATNT NOTE: memory access MUST be naturally aligned except
    581  1.1  alnsn                    SLJIT_UNALIGNED macro is defined and its value is 1.
    582  1.1  alnsn 
    583  1.1  alnsn      length | alignment
    584  1.1  alnsn    ---------+-----------
    585  1.2  alnsn      byte   | 1 byte (any physical_address is accepted)
    586  1.2  alnsn      half   | 2 byte (physical_address & 0x1 == 0)
    587  1.2  alnsn      int    | 4 byte (physical_address & 0x3 == 0)
    588  1.2  alnsn      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
    589  1.1  alnsn             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
    590  1.2  alnsn     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
    591  1.2  alnsn             | on 64 bit machines)
    592  1.1  alnsn 
    593  1.2  alnsn    Note:   Different architectures have different addressing limitations.
    594  1.2  alnsn            A single instruction is enough for the following addressing
    595  1.2  alnsn            modes. Other adrressing modes are emulated by instruction
    596  1.2  alnsn            sequences. This information could help to improve those code
    597  1.2  alnsn            generators which focuses only a few architectures.
    598  1.2  alnsn 
    599  1.2  alnsn    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
    600  1.2  alnsn            [reg+(reg<<imm)] is supported
    601  1.2  alnsn            [imm], -2^32+1 <= imm <= 2^32-1 is supported
    602  1.2  alnsn            Write-back is not supported
    603  1.2  alnsn    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
    604  1.2  alnsn                 bytes, any halfs or floating point values)
    605  1.2  alnsn            [reg+(reg<<imm)] is supported
    606  1.2  alnsn            Write-back is supported
    607  1.2  alnsn    arm-t2: [reg+imm], -255 <= imm <= 4095
    608  1.2  alnsn            [reg+(reg<<imm)] is supported
    609  1.2  alnsn            Write back is supported only for [reg+imm], where -255 <= imm <= 255
    610  1.2  alnsn    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
    611  1.2  alnsn                 signed load on 64 bit requires immediates divisible by 4.
    612  1.2  alnsn                 [reg+imm] is not supported for signed 8 bit values.
    613  1.2  alnsn            [reg+reg] is supported
    614  1.2  alnsn            Write-back is supported except for one instruction: 32 bit signed
    615  1.2  alnsn                 load with [reg+imm] addressing mode on 64 bit.
    616  1.2  alnsn    mips:   [reg+imm], -65536 <= imm <= 65535
    617  1.2  alnsn    sparc:  [reg+imm], -4096 <= imm <= 4095
    618  1.2  alnsn            [reg+reg] is supported
    619  1.1  alnsn */
    620  1.1  alnsn 
    621  1.1  alnsn /* Register output: simply the name of the register.
    622  1.1  alnsn    For destination, you can use SLJIT_UNUSED as well. */
    623  1.2  alnsn #define SLJIT_MEM		0x80
    624  1.1  alnsn #define SLJIT_MEM0()		(SLJIT_MEM)
    625  1.1  alnsn #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
    626  1.2  alnsn #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
    627  1.2  alnsn #define SLJIT_IMM		0x40
    628  1.1  alnsn 
    629  1.3  alnsn /* Set 32 bit operation mode (I) on 64 bit CPUs. This flag is ignored on 32
    630  1.3  alnsn    bit CPUs. When this flag is set for an arithmetic operation, only the
    631  1.3  alnsn    lower 32 bit of the input register(s) are used, and the CPU status flags
    632  1.3  alnsn    are set according to the 32 bit result. Although the higher 32 bit of
    633  1.3  alnsn    the input and the result registers are not defined by SLJIT, it might be
    634  1.3  alnsn    defined by the CPU architecture (e.g. MIPS). To satisfy these requirements
    635  1.3  alnsn    all source registers must be computed by operations where this flag is
    636  1.3  alnsn    also set. In other words 32 and 64 bit arithmetic operations cannot be
    637  1.3  alnsn    mixed. The only exception is SLJIT_IMOV and SLJIT_IMOVU whose source
    638  1.3  alnsn    register can hold any 32 or 64 bit value. This source register is
    639  1.3  alnsn    converted to a 32 bit compatible format. SLJIT does not generate any
    640  1.3  alnsn    instructions on certain CPUs (e.g. on x86 and ARM) if the source and
    641  1.3  alnsn    destination operands are the same registers. Affects sljit_emit_op0,
    642  1.3  alnsn    sljit_emit_op1 and sljit_emit_op2. */
    643  1.3  alnsn #define SLJIT_I32_OP		0x100
    644  1.1  alnsn 
    645  1.3  alnsn /* F32 precision mode (SP). This flag is similar to SLJIT_I32_OP, just
    646  1.2  alnsn    it applies to floating point registers (it is even the same bit). When
    647  1.3  alnsn    this flag is passed, the CPU performs 32 bit floating point operations.
    648  1.3  alnsn    Similar to SLJIT_I32_OP, all register arguments must be computed by
    649  1.3  alnsn    floating point operations where this flag is also set. Affects
    650  1.2  alnsn    sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
    651  1.3  alnsn #define SLJIT_F32_OP		0x100
    652  1.2  alnsn 
    653  1.1  alnsn /* Common CPU status flags for all architectures (x86, ARM, PPC)
    654  1.1  alnsn     - carry flag
    655  1.1  alnsn     - overflow flag
    656  1.1  alnsn     - zero flag
    657  1.1  alnsn     - negative/positive flag (depends on arc)
    658  1.1  alnsn    On mips, these flags are emulated by software. */
    659  1.1  alnsn 
    660  1.1  alnsn /* By default, the instructions may, or may not set the CPU status flags.
    661  1.1  alnsn    Forcing to set or keep status flags can be done with the following flags: */
    662  1.1  alnsn 
    663  1.1  alnsn /* Note: sljit tries to emit the minimum number of instructions. Using these
    664  1.1  alnsn    flags can increase them, so use them wisely to avoid unnecessary code generation. */
    665  1.1  alnsn 
    666  1.1  alnsn /* Set Equal (Zero) status flag (E). */
    667  1.1  alnsn #define SLJIT_SET_E			0x0200
    668  1.2  alnsn /* Set unsigned status flag (U). */
    669  1.2  alnsn #define SLJIT_SET_U			0x0400
    670  1.1  alnsn /* Set signed status flag (S). */
    671  1.2  alnsn #define SLJIT_SET_S			0x0800
    672  1.1  alnsn /* Set signed overflow flag (O). */
    673  1.1  alnsn #define SLJIT_SET_O			0x1000
    674  1.1  alnsn /* Set carry flag (C).
    675  1.1  alnsn    Note: Kinda unsigned overflow, but behaves differently on various cpus. */
    676  1.1  alnsn #define SLJIT_SET_C			0x2000
    677  1.1  alnsn /* Do not modify the flags (K).
    678  1.1  alnsn    Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
    679  1.1  alnsn #define SLJIT_KEEP_FLAGS		0x4000
    680  1.1  alnsn 
    681  1.1  alnsn /* Notes:
    682  1.1  alnsn      - you cannot postpone conditional jump instructions except if noted that
    683  1.1  alnsn        the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
    684  1.1  alnsn      - flag combinations: '|' means 'logical or'. */
    685  1.1  alnsn 
    686  1.3  alnsn /* Starting index of opcodes for sljit_emit_op0. */
    687  1.3  alnsn #define SLJIT_OP0_BASE			0
    688  1.3  alnsn 
    689  1.1  alnsn /* Flags: - (never set any flags)
    690  1.3  alnsn    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
    691  1.1  alnsn          It falls back to SLJIT_NOP in those cases. */
    692  1.3  alnsn #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
    693  1.1  alnsn /* Flags: - (never set any flags)
    694  1.1  alnsn    Note: may or may not cause an extra cycle wait
    695  1.1  alnsn          it can even decrease the runtime in a few cases. */
    696  1.3  alnsn #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
    697  1.2  alnsn /* Flags: - (may destroy flags)
    698  1.3  alnsn    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
    699  1.3  alnsn    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
    700  1.3  alnsn #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
    701  1.2  alnsn /* Flags: - (may destroy flags)
    702  1.3  alnsn    Signed multiplication of SLJIT_R0 and SLJIT_R1.
    703  1.3  alnsn    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
    704  1.3  alnsn #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
    705  1.3  alnsn /* Flags: I - (may destroy flags)
    706  1.3  alnsn    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    707  1.3  alnsn    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
    708  1.3  alnsn    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
    709  1.3  alnsn #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
    710  1.3  alnsn #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_I32_OP)
    711  1.2  alnsn /* Flags: I - (may destroy flags)
    712  1.3  alnsn    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    713  1.3  alnsn    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
    714  1.3  alnsn    Note: if SLJIT_R1 is 0, the behaviour is undefined.
    715  1.3  alnsn    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
    716  1.3  alnsn          the behaviour is undefined. */
    717  1.3  alnsn #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
    718  1.3  alnsn #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_I32_OP)
    719  1.2  alnsn /* Flags: I - (may destroy flags)
    720  1.3  alnsn    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    721  1.3  alnsn    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
    722  1.3  alnsn    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
    723  1.3  alnsn #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
    724  1.3  alnsn #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_I32_OP)
    725  1.3  alnsn /* Flags: I - (may destroy flags)
    726  1.3  alnsn    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    727  1.3  alnsn    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
    728  1.3  alnsn    Note: if SLJIT_R1 is 0, the behaviour is undefined.
    729  1.3  alnsn    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
    730  1.3  alnsn          the behaviour is undefined. */
    731  1.3  alnsn #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
    732  1.3  alnsn #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_I32_OP)
    733  1.3  alnsn 
    734  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
    735  1.1  alnsn 
    736  1.3  alnsn /* Starting index of opcodes for sljit_emit_op1. */
    737  1.3  alnsn #define SLJIT_OP1_BASE			32
    738  1.1  alnsn 
    739  1.1  alnsn /* Notes for MOV instructions:
    740  1.2  alnsn    U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
    741  1.1  alnsn        or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
    742  1.1  alnsn    UB = unsigned byte (8 bit)
    743  1.1  alnsn    SB = signed byte (8 bit)
    744  1.2  alnsn    UH = unsigned half (16 bit)
    745  1.2  alnsn    SH = signed half (16 bit)
    746  1.2  alnsn    UI = unsigned int (32 bit)
    747  1.2  alnsn    SI = signed int (32 bit)
    748  1.2  alnsn    P  = pointer (sljit_p) size */
    749  1.1  alnsn 
    750  1.1  alnsn /* Flags: - (never set any flags) */
    751  1.3  alnsn #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
    752  1.2  alnsn /* Flags: I - (never set any flags) */
    753  1.3  alnsn #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
    754  1.3  alnsn #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_I32_OP)
    755  1.2  alnsn /* Flags: I - (never set any flags) */
    756  1.3  alnsn #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
    757  1.3  alnsn #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_I32_OP)
    758  1.2  alnsn /* Flags: I - (never set any flags) */
    759  1.3  alnsn #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
    760  1.3  alnsn #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_I32_OP)
    761  1.2  alnsn /* Flags: I - (never set any flags) */
    762  1.3  alnsn #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
    763  1.3  alnsn #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_I32_OP)
    764  1.2  alnsn /* Flags: I - (never set any flags)
    765  1.3  alnsn    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
    766  1.3  alnsn #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
    767  1.2  alnsn /* Flags: I - (never set any flags)
    768  1.3  alnsn    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
    769  1.3  alnsn #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
    770  1.3  alnsn /* Flags: I - (never set any flags) */
    771  1.3  alnsn #define SLJIT_MOV32			(SLJIT_MOV_S32 | SLJIT_I32_OP)
    772  1.1  alnsn /* Flags: - (never set any flags) */
    773  1.3  alnsn #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 7)
    774  1.1  alnsn /* Flags: - (never set any flags) */
    775  1.3  alnsn #define SLJIT_MOVU			(SLJIT_OP1_BASE + 8)
    776  1.2  alnsn /* Flags: I - (never set any flags) */
    777  1.3  alnsn #define SLJIT_MOVU_U8			(SLJIT_OP1_BASE + 9)
    778  1.3  alnsn #define SLJIT_MOVU32_U8			(SLJIT_MOVU_U8 | SLJIT_I32_OP)
    779  1.2  alnsn /* Flags: I - (never set any flags) */
    780  1.3  alnsn #define SLJIT_MOVU_S8			(SLJIT_OP1_BASE + 10)
    781  1.3  alnsn #define SLJIT_MOVU32_S8			(SLJIT_MOVU_S8 | SLJIT_I32_OP)
    782  1.2  alnsn /* Flags: I - (never set any flags) */
    783  1.3  alnsn #define SLJIT_MOVU_U16			(SLJIT_OP1_BASE + 11)
    784  1.3  alnsn #define SLJIT_MOVU32_U16			(SLJIT_MOVU_U16 | SLJIT_I32_OP)
    785  1.2  alnsn /* Flags: I - (never set any flags) */
    786  1.3  alnsn #define SLJIT_MOVU_S16			(SLJIT_OP1_BASE + 12)
    787  1.3  alnsn #define SLJIT_MOVU32_S16		(SLJIT_MOVU_S16 | SLJIT_I32_OP)
    788  1.2  alnsn /* Flags: I - (never set any flags)
    789  1.3  alnsn    Note: no SLJIT_MOVU32_U32 form, since it is the same as SLJIT_MOVU32 */
    790  1.3  alnsn #define SLJIT_MOVU_U32			(SLJIT_OP1_BASE + 13)
    791  1.2  alnsn /* Flags: I - (never set any flags)
    792  1.3  alnsn    Note: no SLJIT_MOVU32_S32 form, since it is the same as SLJIT_MOVU32 */
    793  1.3  alnsn #define SLJIT_MOVU_S32			(SLJIT_OP1_BASE + 14)
    794  1.3  alnsn /* Flags: I - (never set any flags) */
    795  1.3  alnsn #define SLJIT_MOVU32			(SLJIT_MOVU_S32 | SLJIT_I32_OP)
    796  1.1  alnsn /* Flags: - (never set any flags) */
    797  1.3  alnsn #define SLJIT_MOVU_P			(SLJIT_OP1_BASE + 15)
    798  1.1  alnsn /* Flags: I | E | K */
    799  1.3  alnsn #define SLJIT_NOT			(SLJIT_OP1_BASE + 16)
    800  1.3  alnsn #define SLJIT_NOT32			(SLJIT_NOT | SLJIT_I32_OP)
    801  1.1  alnsn /* Flags: I | E | O | K */
    802  1.3  alnsn #define SLJIT_NEG			(SLJIT_OP1_BASE + 17)
    803  1.3  alnsn #define SLJIT_NEG32			(SLJIT_NEG | SLJIT_I32_OP)
    804  1.1  alnsn /* Count leading zeroes
    805  1.2  alnsn    Flags: I | E | K
    806  1.2  alnsn    Important note! Sparc 32 does not support K flag, since
    807  1.2  alnsn    the required popc instruction is introduced only in sparc 64. */
    808  1.3  alnsn #define SLJIT_CLZ			(SLJIT_OP1_BASE + 18)
    809  1.3  alnsn #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_I32_OP)
    810  1.3  alnsn 
    811  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
    812  1.3  alnsn 	sljit_s32 dst, sljit_sw dstw,
    813  1.3  alnsn 	sljit_s32 src, sljit_sw srcw);
    814  1.2  alnsn 
    815  1.3  alnsn /* Starting index of opcodes for sljit_emit_op2. */
    816  1.3  alnsn #define SLJIT_OP2_BASE			96
    817  1.1  alnsn 
    818  1.1  alnsn /* Flags: I | E | O | C | K */
    819  1.3  alnsn #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
    820  1.3  alnsn #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_I32_OP)
    821  1.1  alnsn /* Flags: I | C | K */
    822  1.3  alnsn #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
    823  1.3  alnsn #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_I32_OP)
    824  1.2  alnsn /* Flags: I | E | U | S | O | C | K */
    825  1.3  alnsn #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
    826  1.3  alnsn #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_I32_OP)
    827  1.1  alnsn /* Flags: I | C | K */
    828  1.3  alnsn #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
    829  1.3  alnsn #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_I32_OP)
    830  1.1  alnsn /* Note: integer mul
    831  1.1  alnsn    Flags: I | O (see SLJIT_C_MUL_*) | K */
    832  1.3  alnsn #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
    833  1.3  alnsn #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_I32_OP)
    834  1.1  alnsn /* Flags: I | E | K */
    835  1.3  alnsn #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
    836  1.3  alnsn #define SLJIT_AND32			(SLJIT_AND | SLJIT_I32_OP)
    837  1.1  alnsn /* Flags: I | E | K */
    838  1.3  alnsn #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
    839  1.3  alnsn #define SLJIT_OR32			(SLJIT_OR | SLJIT_I32_OP)
    840  1.1  alnsn /* Flags: I | E | K */
    841  1.3  alnsn #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
    842  1.3  alnsn #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_I32_OP)
    843  1.1  alnsn /* Flags: I | E | K
    844  1.1  alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    845  1.1  alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    846  1.1  alnsn    Otherwise, if the content of src2 is outside the range from 0
    847  1.3  alnsn    to bit_length - 1, the result is undefined. */
    848  1.3  alnsn #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
    849  1.3  alnsn #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_I32_OP)
    850  1.1  alnsn /* Flags: I | E | K
    851  1.1  alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    852  1.1  alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    853  1.1  alnsn    Otherwise, if the content of src2 is outside the range from 0
    854  1.3  alnsn    to bit_length - 1, the result is undefined. */
    855  1.3  alnsn #define SLJIT_LSHR			(SLJIT_OP2_BASE + 9)
    856  1.3  alnsn #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_I32_OP)
    857  1.1  alnsn /* Flags: I | E | K
    858  1.1  alnsn    Let bit_length be the length of the shift operation: 32 or 64.
    859  1.1  alnsn    If src2 is immediate, src2w is masked by (bit_length - 1).
    860  1.1  alnsn    Otherwise, if the content of src2 is outside the range from 0
    861  1.3  alnsn    to bit_length - 1, the result is undefined. */
    862  1.3  alnsn #define SLJIT_ASHR			(SLJIT_OP2_BASE + 10)
    863  1.3  alnsn #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_I32_OP)
    864  1.3  alnsn 
    865  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
    866  1.3  alnsn 	sljit_s32 dst, sljit_sw dstw,
    867  1.3  alnsn 	sljit_s32 src1, sljit_sw src1w,
    868  1.3  alnsn 	sljit_s32 src2, sljit_sw src2w);
    869  1.1  alnsn 
    870  1.3  alnsn /* Returns with non-zero if fpu is available. */
    871  1.1  alnsn 
    872  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void);
    873  1.2  alnsn 
    874  1.3  alnsn /* Starting index of opcodes for sljit_emit_fop1. */
    875  1.3  alnsn #define SLJIT_FOP1_BASE			128
    876  1.2  alnsn 
    877  1.3  alnsn /* Flags: SP - (never set any flags) */
    878  1.3  alnsn #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
    879  1.3  alnsn #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_F32_OP)
    880  1.3  alnsn /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
    881  1.3  alnsn    SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
    882  1.3  alnsn    Rounding mode when the destination is W or I: round towards zero. */
    883  1.3  alnsn /* Flags: SP - (never set any flags) */
    884  1.3  alnsn #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
    885  1.3  alnsn #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
    886  1.3  alnsn /* Flags: SP - (never set any flags) */
    887  1.3  alnsn #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
    888  1.3  alnsn #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
    889  1.3  alnsn /* Flags: SP - (never set any flags) */
    890  1.3  alnsn #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
    891  1.3  alnsn #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
    892  1.3  alnsn /* Flags: SP - (never set any flags) */
    893  1.3  alnsn #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
    894  1.3  alnsn #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
    895  1.3  alnsn /* Flags: SP - (never set any flags) */
    896  1.3  alnsn #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
    897  1.3  alnsn #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
    898  1.3  alnsn /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
    899  1.3  alnsn    Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
    900  1.3  alnsn          is set, the comparison result is unpredictable.
    901  1.2  alnsn    Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
    902  1.3  alnsn #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
    903  1.3  alnsn #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_F32_OP)
    904  1.2  alnsn /* Flags: SP - (never set any flags) */
    905  1.3  alnsn #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
    906  1.3  alnsn #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_F32_OP)
    907  1.2  alnsn /* Flags: SP - (never set any flags) */
    908  1.3  alnsn #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
    909  1.3  alnsn #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_F32_OP)
    910  1.3  alnsn 
    911  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
    912  1.3  alnsn 	sljit_s32 dst, sljit_sw dstw,
    913  1.3  alnsn 	sljit_s32 src, sljit_sw srcw);
    914  1.2  alnsn 
    915  1.3  alnsn /* Starting index of opcodes for sljit_emit_fop2. */
    916  1.3  alnsn #define SLJIT_FOP2_BASE			160
    917  1.2  alnsn 
    918  1.2  alnsn /* Flags: SP - (never set any flags) */
    919  1.3  alnsn #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
    920  1.3  alnsn #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_F32_OP)
    921  1.2  alnsn /* Flags: SP - (never set any flags) */
    922  1.3  alnsn #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
    923  1.3  alnsn #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_F32_OP)
    924  1.2  alnsn /* Flags: SP - (never set any flags) */
    925  1.3  alnsn #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
    926  1.3  alnsn #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_F32_OP)
    927  1.2  alnsn /* Flags: SP - (never set any flags) */
    928  1.3  alnsn #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
    929  1.3  alnsn #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_F32_OP)
    930  1.2  alnsn 
    931  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
    932  1.3  alnsn 	sljit_s32 dst, sljit_sw dstw,
    933  1.3  alnsn 	sljit_s32 src1, sljit_sw src1w,
    934  1.3  alnsn 	sljit_s32 src2, sljit_sw src2w);
    935  1.1  alnsn 
    936  1.1  alnsn /* Label and jump instructions. */
    937  1.1  alnsn 
    938  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
    939  1.1  alnsn 
    940  1.3  alnsn /* Invert (negate) conditional type: xor (^) with 0x1 */
    941  1.1  alnsn 
    942  1.3  alnsn /* Integer comparison types. */
    943  1.3  alnsn #define SLJIT_EQUAL			0
    944  1.3  alnsn #define SLJIT_EQUAL32			(SLJIT_EQUAL | SLJIT_I32_OP)
    945  1.3  alnsn #define SLJIT_ZERO			0
    946  1.3  alnsn #define SLJIT_ZERO32			(SLJIT_ZERO | SLJIT_I32_OP)
    947  1.3  alnsn #define SLJIT_NOT_EQUAL			1
    948  1.3  alnsn #define SLJIT_NOT_EQUAL32		(SLJIT_NOT_EQUAL | SLJIT_I32_OP)
    949  1.3  alnsn #define SLJIT_NOT_ZERO			1
    950  1.3  alnsn #define SLJIT_NOT_ZERO32		(SLJIT_NOT_ZERO | SLJIT_I32_OP)
    951  1.3  alnsn 
    952  1.3  alnsn #define SLJIT_LESS			2
    953  1.3  alnsn #define SLJIT_LESS32			(SLJIT_LESS | SLJIT_I32_OP)
    954  1.3  alnsn #define SLJIT_GREATER_EQUAL		3
    955  1.3  alnsn #define SLJIT_GREATER_EQUAL32		(SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
    956  1.3  alnsn #define SLJIT_GREATER			4
    957  1.3  alnsn #define SLJIT_GREATER32			(SLJIT_GREATER | SLJIT_I32_OP)
    958  1.3  alnsn #define SLJIT_LESS_EQUAL		5
    959  1.3  alnsn #define SLJIT_LESS_EQUAL32		(SLJIT_LESS_EQUAL | SLJIT_I32_OP)
    960  1.3  alnsn #define SLJIT_SIG_LESS			6
    961  1.3  alnsn #define SLJIT_SIG_LESS32		(SLJIT_SIG_LESS | SLJIT_I32_OP)
    962  1.3  alnsn #define SLJIT_SIG_GREATER_EQUAL		7
    963  1.3  alnsn #define SLJIT_SIG_GREATER_EQUAL32	(SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
    964  1.3  alnsn #define SLJIT_SIG_GREATER		8
    965  1.3  alnsn #define SLJIT_SIG_GREATER32		(SLJIT_SIG_GREATER | SLJIT_I32_OP)
    966  1.3  alnsn #define SLJIT_SIG_LESS_EQUAL		9
    967  1.3  alnsn #define SLJIT_SIG_LESS_EQUAL32		(SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
    968  1.3  alnsn 
    969  1.3  alnsn #define SLJIT_OVERFLOW			10
    970  1.3  alnsn #define SLJIT_OVERFLOW32		(SLJIT_OVERFLOW | SLJIT_I32_OP)
    971  1.3  alnsn #define SLJIT_NOT_OVERFLOW		11
    972  1.3  alnsn #define SLJIT_NOT_OVERFLOW32		(SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
    973  1.3  alnsn 
    974  1.3  alnsn #define SLJIT_MUL_OVERFLOW		12
    975  1.3  alnsn #define SLJIT_MUL_OVERFLOW32		(SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
    976  1.3  alnsn #define SLJIT_MUL_NOT_OVERFLOW		13
    977  1.3  alnsn #define SLJIT_MUL_NOT_OVERFLOW32	(SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
    978  1.3  alnsn 
    979  1.3  alnsn /* Floating point comparison types. */
    980  1.3  alnsn #define SLJIT_EQUAL_F64			14
    981  1.3  alnsn #define SLJIT_EQUAL_F32			(SLJIT_EQUAL_F64 | SLJIT_F32_OP)
    982  1.3  alnsn #define SLJIT_NOT_EQUAL_F64		15
    983  1.3  alnsn #define SLJIT_NOT_EQUAL_F32		(SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
    984  1.3  alnsn #define SLJIT_LESS_F64			16
    985  1.3  alnsn #define SLJIT_LESS_F32			(SLJIT_LESS_F64 | SLJIT_F32_OP)
    986  1.3  alnsn #define SLJIT_GREATER_EQUAL_F64		17
    987  1.3  alnsn #define SLJIT_GREATER_EQUAL_F32		(SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
    988  1.3  alnsn #define SLJIT_GREATER_F64		18
    989  1.3  alnsn #define SLJIT_GREATER_F32		(SLJIT_GREATER_F64 | SLJIT_F32_OP)
    990  1.3  alnsn #define SLJIT_LESS_EQUAL_F64		19
    991  1.3  alnsn #define SLJIT_LESS_EQUAL_F32		(SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
    992  1.3  alnsn #define SLJIT_UNORDERED_F64		20
    993  1.3  alnsn #define SLJIT_UNORDERED_F32		(SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
    994  1.3  alnsn #define SLJIT_ORDERED_F64		21
    995  1.3  alnsn #define SLJIT_ORDERED_F32		(SLJIT_ORDERED_F64 | SLJIT_F32_OP)
    996  1.3  alnsn 
    997  1.3  alnsn /* Unconditional jump types. */
    998  1.1  alnsn #define SLJIT_JUMP			22
    999  1.1  alnsn #define SLJIT_FAST_CALL			23
   1000  1.1  alnsn #define SLJIT_CALL0			24
   1001  1.1  alnsn #define SLJIT_CALL1			25
   1002  1.1  alnsn #define SLJIT_CALL2			26
   1003  1.1  alnsn #define SLJIT_CALL3			27
   1004  1.1  alnsn 
   1005  1.1  alnsn /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
   1006  1.1  alnsn 
   1007  1.1  alnsn /* The target can be changed during runtime (see: sljit_set_jump_addr). */
   1008  1.1  alnsn #define SLJIT_REWRITABLE_JUMP		0x1000
   1009  1.1  alnsn 
   1010  1.1  alnsn /* Emit a jump instruction. The destination is not set, only the type of the jump.
   1011  1.3  alnsn     type must be between SLJIT_EQUAL and SLJIT_CALL3
   1012  1.1  alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1013  1.1  alnsn    Flags: - (never set any flags) for both conditional and unconditional jumps.
   1014  1.1  alnsn    Flags: destroy all flags for calls. */
   1015  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
   1016  1.1  alnsn 
   1017  1.1  alnsn /* Basic arithmetic comparison. In most architectures it is implemented as
   1018  1.1  alnsn    an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
   1019  1.1  alnsn    appropriate flags) followed by a sljit_emit_jump. However some
   1020  1.3  alnsn    architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
   1021  1.3  alnsn    It is suggested to use this comparison form when appropriate.
   1022  1.3  alnsn     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
   1023  1.3  alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1024  1.1  alnsn    Flags: destroy flags. */
   1025  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
   1026  1.3  alnsn 	sljit_s32 src1, sljit_sw src1w,
   1027  1.3  alnsn 	sljit_s32 src2, sljit_sw src2w);
   1028  1.1  alnsn 
   1029  1.1  alnsn /* Basic floating point comparison. In most architectures it is implemented as
   1030  1.1  alnsn    an SLJIT_FCMP operation (setting appropriate flags) followed by a
   1031  1.1  alnsn    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
   1032  1.1  alnsn    special optimizations here. It is suggested to use this comparison form
   1033  1.1  alnsn    when appropriate.
   1034  1.3  alnsn     type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
   1035  1.3  alnsn     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1036  1.1  alnsn    Flags: destroy flags.
   1037  1.1  alnsn    Note: if either operand is NaN, the behaviour is undefined for
   1038  1.3  alnsn          types up to SLJIT_S_LESS_EQUAL. */
   1039  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
   1040  1.3  alnsn 	sljit_s32 src1, sljit_sw src1w,
   1041  1.3  alnsn 	sljit_s32 src2, sljit_sw src2w);
   1042  1.1  alnsn 
   1043  1.1  alnsn /* Set the destination of the jump to this label. */
   1044  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
   1045  1.2  alnsn /* Set the destination address of the jump to this label. */
   1046  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
   1047  1.1  alnsn 
   1048  1.1  alnsn /* Call function or jump anywhere. Both direct and indirect form
   1049  1.1  alnsn     type must be between SLJIT_JUMP and SLJIT_CALL3
   1050  1.1  alnsn     Direct form: set src to SLJIT_IMM() and srcw to the address
   1051  1.1  alnsn     Indirect form: any other valid addressing mode
   1052  1.1  alnsn    Flags: - (never set any flags) for unconditional jumps.
   1053  1.1  alnsn    Flags: destroy all flags for calls. */
   1054  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
   1055  1.1  alnsn 
   1056  1.2  alnsn /* Perform the operation using the conditional flags as the second argument.
   1057  1.3  alnsn    Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
   1058  1.3  alnsn    represented by the type is 1, if the condition represented by the type
   1059  1.2  alnsn    is fulfilled, and 0 otherwise.
   1060  1.2  alnsn 
   1061  1.3  alnsn    If op == SLJIT_MOV, SLJIT_MOV_S32, SLJIT_MOV_U32:
   1062  1.2  alnsn      Set dst to the value represented by the type (0 or 1).
   1063  1.2  alnsn      Src must be SLJIT_UNUSED, and srcw must be 0
   1064  1.1  alnsn      Flags: - (never set any flags)
   1065  1.2  alnsn    If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
   1066  1.2  alnsn      Performs the binary operation using src as the first, and the value
   1067  1.2  alnsn      represented by type as the second argument.
   1068  1.2  alnsn      Important note: only dst=src and dstw=srcw is supported at the moment!
   1069  1.2  alnsn      Flags: I | E | K
   1070  1.2  alnsn    Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
   1071  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
   1072  1.3  alnsn 	sljit_s32 dst, sljit_sw dstw,
   1073  1.3  alnsn 	sljit_s32 src, sljit_sw srcw,
   1074  1.3  alnsn 	sljit_s32 type);
   1075  1.1  alnsn 
   1076  1.3  alnsn /* Copies the base address of SLJIT_SP + offset to dst.
   1077  1.1  alnsn    Flags: - (never set any flags) */
   1078  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
   1079  1.1  alnsn 
   1080  1.1  alnsn /* The constant can be changed runtime (see: sljit_set_const)
   1081  1.1  alnsn    Flags: - (never set any flags) */
   1082  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
   1083  1.1  alnsn 
   1084  1.1  alnsn /* After the code generation the address for label, jump and const instructions
   1085  1.2  alnsn    are computed. Since these structures are freed by sljit_free_compiler, the
   1086  1.1  alnsn    addresses must be preserved by the user program elsewere. */
   1087  1.1  alnsn static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
   1088  1.1  alnsn static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
   1089  1.1  alnsn static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
   1090  1.1  alnsn 
   1091  1.1  alnsn /* Only the address is required to rewrite the code. */
   1092  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
   1093  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
   1094  1.1  alnsn 
   1095  1.1  alnsn /* --------------------------------------------------------------------- */
   1096  1.1  alnsn /*  Miscellaneous utility functions                                      */
   1097  1.1  alnsn /* --------------------------------------------------------------------- */
   1098  1.1  alnsn 
   1099  1.1  alnsn #define SLJIT_MAJOR_VERSION	0
   1100  1.3  alnsn #define SLJIT_MINOR_VERSION	93
   1101  1.1  alnsn 
   1102  1.2  alnsn /* Get the human readable name of the platform. Can be useful on platforms
   1103  1.2  alnsn    like ARM, where ARM and Thumb2 functions can be mixed, and
   1104  1.2  alnsn    it is useful to know the type of the code generator. */
   1105  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
   1106  1.1  alnsn 
   1107  1.2  alnsn /* Portable helper function to get an offset of a member. */
   1108  1.2  alnsn #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
   1109  1.1  alnsn 
   1110  1.1  alnsn #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
   1111  1.1  alnsn /* This global lock is useful to compile common functions. */
   1112  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
   1113  1.1  alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
   1114  1.1  alnsn #endif
   1115  1.1  alnsn 
   1116  1.1  alnsn #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
   1117  1.1  alnsn 
   1118  1.1  alnsn /* The sljit_stack is a utiliy feature of sljit, which allocates a
   1119  1.1  alnsn    writable memory region between base (inclusive) and limit (exclusive).
   1120  1.1  alnsn    Both base and limit is a pointer, and base is always <= than limit.
   1121  1.1  alnsn    This feature uses the "address space reserve" feature
   1122  1.1  alnsn    of modern operating systems. Basically we don't need to allocate a
   1123  1.1  alnsn    huge memory block in one step for the worst case, we can start with
   1124  1.1  alnsn    a smaller chunk and extend it later. Since the address space is
   1125  1.1  alnsn    reserved, the data never copied to other regions, thus it is safe
   1126  1.1  alnsn    to store pointers here. */
   1127  1.1  alnsn 
   1128  1.1  alnsn /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
   1129  1.1  alnsn    Note: stack growing should not happen in small steps: 4k, 16k or even
   1130  1.1  alnsn      bigger growth is better.
   1131  1.1  alnsn    Note: this structure may not be supported by all operating systems.
   1132  1.1  alnsn      Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
   1133  1.1  alnsn      is not defined. */
   1134  1.1  alnsn 
   1135  1.1  alnsn struct sljit_stack {
   1136  1.1  alnsn 	/* User data, anything can be stored here.
   1137  1.1  alnsn 	   Starting with the same value as base. */
   1138  1.1  alnsn 	sljit_uw top;
   1139  1.1  alnsn 	/* These members are read only. */
   1140  1.1  alnsn 	sljit_uw base;
   1141  1.1  alnsn 	sljit_uw limit;
   1142  1.1  alnsn 	sljit_uw max_limit;
   1143  1.1  alnsn };
   1144  1.1  alnsn 
   1145  1.1  alnsn /* Returns NULL if unsuccessful.
   1146  1.3  alnsn    Note: limit and max_limit contains the size for stack allocation.
   1147  1.3  alnsn    Note: the top field is initialized to base.
   1148  1.3  alnsn    Note: see sljit_create_compiler for the explanation of allocator_data. */
   1149  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
   1150  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
   1151  1.1  alnsn 
   1152  1.1  alnsn /* Can be used to increase (allocate) or decrease (free) the memory area.
   1153  1.1  alnsn    Returns with a non-zero value if unsuccessful. If new_limit is greater than
   1154  1.1  alnsn    max_limit, it will fail. It is very easy to implement a stack data structure,
   1155  1.1  alnsn    since the growth ratio can be added to the current limit, and sljit_stack_resize
   1156  1.1  alnsn    will do all the necessary checks. The fields of the stack are not changed if
   1157  1.1  alnsn    sljit_stack_resize fails. */
   1158  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_uw new_limit);
   1159  1.1  alnsn 
   1160  1.1  alnsn #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
   1161  1.1  alnsn 
   1162  1.1  alnsn #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
   1163  1.1  alnsn 
   1164  1.1  alnsn /* Get the entry address of a given function. */
   1165  1.2  alnsn #define SLJIT_FUNC_OFFSET(func_name)	((sljit_sw)func_name)
   1166  1.1  alnsn 
   1167  1.1  alnsn #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
   1168  1.1  alnsn 
   1169  1.1  alnsn /* All JIT related code should be placed in the same context (library, binary, etc.). */
   1170  1.1  alnsn 
   1171  1.2  alnsn #define SLJIT_FUNC_OFFSET(func_name)	(*(sljit_sw*)(void*)func_name)
   1172  1.1  alnsn 
   1173  1.1  alnsn /* For powerpc64, the function pointers point to a context descriptor. */
   1174  1.1  alnsn struct sljit_function_context {
   1175  1.2  alnsn 	sljit_sw addr;
   1176  1.2  alnsn 	sljit_sw r2;
   1177  1.2  alnsn 	sljit_sw r11;
   1178  1.1  alnsn };
   1179  1.1  alnsn 
   1180  1.1  alnsn /* Fill the context arguments using the addr and the function.
   1181  1.1  alnsn    If func_ptr is NULL, it will not be set to the address of context
   1182  1.1  alnsn    If addr is NULL, the function address also comes from the func pointer. */
   1183  1.2  alnsn SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
   1184  1.1  alnsn 
   1185  1.1  alnsn #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
   1186  1.1  alnsn 
   1187  1.3  alnsn /* --------------------------------------------------------------------- */
   1188  1.3  alnsn /*  CPU specific functions                                               */
   1189  1.3  alnsn /* --------------------------------------------------------------------- */
   1190  1.3  alnsn 
   1191  1.3  alnsn /* The following function is a helper function for sljit_emit_op_custom.
   1192  1.3  alnsn    It returns with the real machine register index ( >=0 ) of any SLJIT_R,
   1193  1.3  alnsn    SLJIT_S and SLJIT_SP registers.
   1194  1.3  alnsn 
   1195  1.3  alnsn    Note: it returns with -1 for virtual registers (only on x86-32). */
   1196  1.3  alnsn 
   1197  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
   1198  1.3  alnsn 
   1199  1.3  alnsn /* The following function is a helper function for sljit_emit_op_custom.
   1200  1.3  alnsn    It returns with the real machine register index of any SLJIT_FLOAT register.
   1201  1.3  alnsn 
   1202  1.3  alnsn    Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
   1203  1.3  alnsn 
   1204  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
   1205  1.3  alnsn 
   1206  1.3  alnsn /* Any instruction can be inserted into the instruction stream by
   1207  1.3  alnsn    sljit_emit_op_custom. It has a similar purpose as inline assembly.
   1208  1.3  alnsn    The size parameter must match to the instruction size of the target
   1209  1.3  alnsn    architecture:
   1210  1.3  alnsn 
   1211  1.3  alnsn          x86: 0 < size <= 15. The instruction argument can be byte aligned.
   1212  1.3  alnsn       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
   1213  1.3  alnsn               if size == 4, the instruction argument must be 4 byte aligned.
   1214  1.3  alnsn    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
   1215  1.3  alnsn 
   1216  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
   1217  1.3  alnsn 	void *instruction, sljit_s32 size);
   1218  1.3  alnsn 
   1219  1.3  alnsn #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
   1220  1.3  alnsn 
   1221  1.3  alnsn /* Returns with non-zero if sse2 is available. */
   1222  1.3  alnsn 
   1223  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_sse2_available(void);
   1224  1.3  alnsn 
   1225  1.3  alnsn /* Returns with non-zero if cmov instruction is available. */
   1226  1.3  alnsn 
   1227  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_cmov_available(void);
   1228  1.3  alnsn 
   1229  1.3  alnsn /* Emit a conditional mov instruction on x86 CPUs. This instruction
   1230  1.3  alnsn    moves src to destination, if the condition is satisfied. Unlike
   1231  1.3  alnsn    other arithmetic instructions, destination must be a register.
   1232  1.3  alnsn    Before such instructions are emitted, cmov support should be
   1233  1.3  alnsn    checked by sljit_x86_is_cmov_available function.
   1234  1.3  alnsn     type must be between SLJIT_EQUAL and SLJIT_S_ORDERED
   1235  1.3  alnsn     dst_reg must be a valid register and it can be combined
   1236  1.3  alnsn       with SLJIT_I32_OP to perform 32 bit arithmetic
   1237  1.3  alnsn    Flags: I - (never set any flags)
   1238  1.3  alnsn  */
   1239  1.3  alnsn 
   1240  1.3  alnsn SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_emit_cmov(struct sljit_compiler *compiler,
   1241  1.3  alnsn 	sljit_s32 type,
   1242  1.3  alnsn 	sljit_s32 dst_reg,
   1243  1.3  alnsn 	sljit_s32 src, sljit_sw srcw);
   1244  1.3  alnsn 
   1245  1.3  alnsn #endif
   1246  1.3  alnsn 
   1247  1.1  alnsn #endif /* _SLJIT_LIR_H_ */
   1248