sljitNativePPC_64.c revision 1.1.1.5 1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright Zoltan Herczeg (hzmester (at) freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /* ppc 64-bit arch dependent functions. */
28
29 #if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
30 #define ASM_SLJIT_CLZ(src, dst) \
31 __asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) )
32 #elif defined(__xlc__)
33 #error "Please enable GCC syntax for inline assembly statements"
34 #else
35 #error "Must implement count leading zeroes"
36 #endif
37
38 #define RLDI(dst, src, sh, mb, type) \
39 (HI(30) | S(src) | A(dst) | ((type) << 2) | (((sh) & 0x1f) << 11) | (((sh) & 0x20) >> 4) | (((mb) & 0x1f) << 6) | ((mb) & 0x20))
40
41 #define PUSH_RLDICR(reg, shift) \
42 push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1))
43
44 static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm)
45 {
46 sljit_uw tmp;
47 sljit_uw shift;
48 sljit_uw tmp2;
49 sljit_uw shift2;
50
51 if (imm <= SIMM_MAX && imm >= SIMM_MIN)
52 return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));
53
54 if (!(imm & ~0xffff))
55 return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));
56
57 if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
58 FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
59 return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
60 }
61
62 /* Count leading zeroes. */
63 tmp = (imm >= 0) ? imm : ~imm;
64 ASM_SLJIT_CLZ(tmp, shift);
65 SLJIT_ASSERT(shift > 0);
66 shift--;
67 tmp = (imm << shift);
68
69 if ((tmp & ~0xffff000000000000ul) == 0) {
70 FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
71 shift += 15;
72 return PUSH_RLDICR(reg, shift);
73 }
74
75 if ((tmp & ~0xffffffff00000000ul) == 0) {
76 FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(tmp >> 48)));
77 FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32)));
78 shift += 31;
79 return PUSH_RLDICR(reg, shift);
80 }
81
82 /* Cut out the 16 bit from immediate. */
83 shift += 15;
84 tmp2 = imm & ((1ul << (63 - shift)) - 1);
85
86 if (tmp2 <= 0xffff) {
87 FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
88 FAIL_IF(PUSH_RLDICR(reg, shift));
89 return push_inst(compiler, ORI | S(reg) | A(reg) | tmp2);
90 }
91
92 if (tmp2 <= 0xffffffff) {
93 FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
94 FAIL_IF(PUSH_RLDICR(reg, shift));
95 FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (tmp2 >> 16)));
96 return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS;
97 }
98
99 ASM_SLJIT_CLZ(tmp2, shift2);
100 tmp2 <<= shift2;
101
102 if ((tmp2 & ~0xffff000000000000ul) == 0) {
103 FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
104 shift2 += 15;
105 shift += (63 - shift2);
106 FAIL_IF(PUSH_RLDICR(reg, shift));
107 FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (tmp2 >> 48)));
108 return PUSH_RLDICR(reg, shift2);
109 }
110
111 /* The general version. */
112 FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 48)));
113 FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32)));
114 FAIL_IF(PUSH_RLDICR(reg, 31));
115 FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16)));
116 return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm));
117 }
118
119 /* Simplified mnemonics: clrldi. */
120 #define INS_CLEAR_LEFT(dst, src, from) \
121 (RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5))
122
123 /* Sign extension for integer operations. */
124 #define UN_EXTS() \
125 if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \
126 FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
127 src2 = TMP_REG2; \
128 }
129
130 #define BIN_EXTS() \
131 if (flags & ALT_SIGN_EXT) { \
132 if (flags & REG1_SOURCE) { \
133 FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
134 src1 = TMP_REG1; \
135 } \
136 if (flags & REG2_SOURCE) { \
137 FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
138 src2 = TMP_REG2; \
139 } \
140 }
141
142 #define BIN_IMM_EXTS() \
143 if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \
144 FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
145 src1 = TMP_REG1; \
146 }
147
148 static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
149 sljit_s32 dst, sljit_s32 src1, sljit_s32 src2)
150 {
151 switch (op) {
152 case SLJIT_MOV:
153 case SLJIT_MOV_P:
154 SLJIT_ASSERT(src1 == TMP_REG1);
155 if (dst != src2)
156 return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
157 return SLJIT_SUCCESS;
158
159 case SLJIT_MOV_U32:
160 case SLJIT_MOV_S32:
161 SLJIT_ASSERT(src1 == TMP_REG1);
162 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
163 if (op == SLJIT_MOV_S32)
164 return push_inst(compiler, EXTSW | S(src2) | A(dst));
165 return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0));
166 }
167 else {
168 SLJIT_ASSERT(dst == src2);
169 }
170 return SLJIT_SUCCESS;
171
172 case SLJIT_MOV_U8:
173 case SLJIT_MOV_S8:
174 SLJIT_ASSERT(src1 == TMP_REG1);
175 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
176 if (op == SLJIT_MOV_S8)
177 return push_inst(compiler, EXTSB | S(src2) | A(dst));
178 return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
179 }
180 else if ((flags & REG_DEST) && op == SLJIT_MOV_S8)
181 return push_inst(compiler, EXTSB | S(src2) | A(dst));
182 else {
183 SLJIT_ASSERT(dst == src2);
184 }
185 return SLJIT_SUCCESS;
186
187 case SLJIT_MOV_U16:
188 case SLJIT_MOV_S16:
189 SLJIT_ASSERT(src1 == TMP_REG1);
190 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
191 if (op == SLJIT_MOV_S16)
192 return push_inst(compiler, EXTSH | S(src2) | A(dst));
193 return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
194 }
195 else {
196 SLJIT_ASSERT(dst == src2);
197 }
198 return SLJIT_SUCCESS;
199
200 case SLJIT_NOT:
201 SLJIT_ASSERT(src1 == TMP_REG1);
202 UN_EXTS();
203 return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
204
205 case SLJIT_NEG:
206 SLJIT_ASSERT(src1 == TMP_REG1);
207 UN_EXTS();
208 return push_inst(compiler, NEG | OERC(flags) | D(dst) | A(src2));
209
210 case SLJIT_CLZ:
211 SLJIT_ASSERT(src1 == TMP_REG1);
212 if (flags & ALT_FORM1)
213 return push_inst(compiler, CNTLZW | RC(flags) | S(src2) | A(dst));
214 return push_inst(compiler, CNTLZD | RC(flags) | S(src2) | A(dst));
215
216 case SLJIT_ADD:
217 if (flags & ALT_FORM1) {
218 /* Flags does not set: BIN_IMM_EXTS unnecessary. */
219 SLJIT_ASSERT(src2 == TMP_REG2);
220 return push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm);
221 }
222 if (flags & ALT_FORM2) {
223 /* Flags does not set: BIN_IMM_EXTS unnecessary. */
224 SLJIT_ASSERT(src2 == TMP_REG2);
225 return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
226 }
227 if (flags & ALT_FORM3) {
228 SLJIT_ASSERT(src2 == TMP_REG2);
229 BIN_IMM_EXTS();
230 return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
231 }
232 if (flags & ALT_FORM4) {
233 /* Flags does not set: BIN_IMM_EXTS unnecessary. */
234 FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff)));
235 return push_inst(compiler, ADDIS | D(dst) | A(dst) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1)));
236 }
237 if (!(flags & ALT_SET_FLAGS))
238 return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
239 BIN_EXTS();
240 return push_inst(compiler, ADDC | OERC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
241
242 case SLJIT_ADDC:
243 BIN_EXTS();
244 return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));
245
246 case SLJIT_SUB:
247 if (flags & ALT_FORM1) {
248 /* Flags does not set: BIN_IMM_EXTS unnecessary. */
249 SLJIT_ASSERT(src2 == TMP_REG2);
250 return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
251 }
252 if (flags & (ALT_FORM2 | ALT_FORM3)) {
253 SLJIT_ASSERT(src2 == TMP_REG2);
254 return push_inst(compiler, ((flags & ALT_FORM2) ? CMPI : CMPLI) | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm);
255 }
256 if (flags & (ALT_FORM4 | ALT_FORM5)) {
257 return push_inst(compiler, ((flags & ALT_FORM4) ? CMP : CMPL) | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2));
258 }
259 if (flags & ALT_FORM6) {
260 SLJIT_ASSERT(src2 == TMP_REG2);
261 FAIL_IF(push_inst(compiler, CMPLI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
262 return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
263 }
264 if (flags & ALT_FORM7) {
265 FAIL_IF(push_inst(compiler, CMPL | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
266 return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
267 }
268 if (!(flags & ALT_SET_FLAGS))
269 return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
270 BIN_EXTS();
271 return push_inst(compiler, SUBFC | OERC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
272
273 case SLJIT_SUBC:
274 BIN_EXTS();
275 return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));
276
277 case SLJIT_MUL:
278 if (flags & ALT_FORM1) {
279 SLJIT_ASSERT(src2 == TMP_REG2);
280 return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
281 }
282 BIN_EXTS();
283 if (flags & ALT_FORM2)
284 return push_inst(compiler, MULLW | OERC(flags) | D(dst) | A(src2) | B(src1));
285 return push_inst(compiler, MULLD | OERC(flags) | D(dst) | A(src2) | B(src1));
286
287 case SLJIT_AND:
288 if (flags & ALT_FORM1) {
289 SLJIT_ASSERT(src2 == TMP_REG2);
290 return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
291 }
292 if (flags & ALT_FORM2) {
293 SLJIT_ASSERT(src2 == TMP_REG2);
294 return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
295 }
296 return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));
297
298 case SLJIT_OR:
299 if (flags & ALT_FORM1) {
300 SLJIT_ASSERT(src2 == TMP_REG2);
301 return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
302 }
303 if (flags & ALT_FORM2) {
304 SLJIT_ASSERT(src2 == TMP_REG2);
305 return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
306 }
307 if (flags & ALT_FORM3) {
308 SLJIT_ASSERT(src2 == TMP_REG2);
309 FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm)));
310 return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
311 }
312 return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));
313
314 case SLJIT_XOR:
315 if (flags & ALT_FORM1) {
316 SLJIT_ASSERT(src2 == TMP_REG2);
317 return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
318 }
319 if (flags & ALT_FORM2) {
320 SLJIT_ASSERT(src2 == TMP_REG2);
321 return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
322 }
323 if (flags & ALT_FORM3) {
324 SLJIT_ASSERT(src2 == TMP_REG2);
325 FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm)));
326 return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
327 }
328 return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));
329
330 case SLJIT_SHL:
331 if (flags & ALT_FORM1) {
332 SLJIT_ASSERT(src2 == TMP_REG2);
333 if (flags & ALT_FORM2) {
334 compiler->imm &= 0x1f;
335 return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1));
336 }
337 compiler->imm &= 0x3f;
338 return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags));
339 }
340 return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2));
341
342 case SLJIT_LSHR:
343 if (flags & ALT_FORM1) {
344 SLJIT_ASSERT(src2 == TMP_REG2);
345 if (flags & ALT_FORM2) {
346 compiler->imm &= 0x1f;
347 return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1));
348 }
349 compiler->imm &= 0x3f;
350 return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags));
351 }
352 return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2));
353
354 case SLJIT_ASHR:
355 if (flags & ALT_FORM1) {
356 SLJIT_ASSERT(src2 == TMP_REG2);
357 if (flags & ALT_FORM2) {
358 compiler->imm &= 0x1f;
359 return push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11));
360 }
361 compiler->imm &= 0x3f;
362 return push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4));
363 }
364 return push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2));
365 }
366
367 SLJIT_UNREACHABLE();
368 return SLJIT_SUCCESS;
369 }
370
371 static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw init_value)
372 {
373 FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48)));
374 FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32)));
375 FAIL_IF(PUSH_RLDICR(reg, 31));
376 FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16)));
377 return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
378 }
379
380 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
381 {
382 sljit_ins *inst = (sljit_ins*)addr;
383
384 inst[0] = (inst[0] & 0xffff0000) | ((new_target >> 48) & 0xffff);
385 inst[1] = (inst[1] & 0xffff0000) | ((new_target >> 32) & 0xffff);
386 inst[3] = (inst[3] & 0xffff0000) | ((new_target >> 16) & 0xffff);
387 inst[4] = (inst[4] & 0xffff0000) | (new_target & 0xffff);
388 inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
389 SLJIT_CACHE_FLUSH(inst, inst + 5);
390 }
391
392 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
393 {
394 sljit_ins *inst = (sljit_ins*)addr;
395
396 inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
397 inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
398 inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
399 inst[4] = (inst[4] & 0xffff0000) | (new_constant & 0xffff);
400 inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
401 SLJIT_CACHE_FLUSH(inst, inst + 5);
402 }
403