Home | History | Annotate | Line # | Download | only in sljit_src
sljitNativeTILEGX_64.c revision 1.1.1.1
      1 /*
      2  *    Stack-less Just-In-Time compiler
      3  *
      4  *    Copyright 2013-2013 Tilera Corporation(jiwang (at) tilera.com). All rights reserved.
      5  *    Copyright 2009-2012 Zoltan Herczeg (hzmester (at) freemail.hu). All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without modification, are
      8  * permitted provided that the following conditions are met:
      9  *
     10  *   1. Redistributions of source code must retain the above copyright notice, this list of
     11  *      conditions and the following disclaimer.
     12  *
     13  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
     14  *      of conditions and the following disclaimer in the documentation and/or other materials
     15  *      provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
     18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
     20  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     23  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     25  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 /* TileGX architecture. */
     29 /* Contributed by Tilera Corporation. */
     30 #include "sljitNativeTILEGX-encoder.c"
     31 
     32 #define SIMM_8BIT_MAX (0x7f)
     33 #define SIMM_8BIT_MIN (-0x80)
     34 #define SIMM_16BIT_MAX (0x7fff)
     35 #define SIMM_16BIT_MIN (-0x8000)
     36 #define SIMM_17BIT_MAX (0xffff)
     37 #define SIMM_17BIT_MIN (-0x10000)
     38 #define SIMM_32BIT_MIN (-0x80000000)
     39 #define SIMM_32BIT_MAX (0x7fffffff)
     40 #define SIMM_48BIT_MIN (0x800000000000L)
     41 #define SIMM_48BIT_MAX (0x7fffffff0000L)
     42 #define IMM16(imm) ((imm) & 0xffff)
     43 
     44 #define UIMM_16BIT_MAX (0xffff)
     45 
     46 #define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
     47 #define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
     48 #define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
     49 #define ADDR_TMP (SLJIT_NO_REGISTERS + 4)
     50 #define PIC_ADDR_REG TMP_REG2
     51 
     52 static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
     53 	63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
     54 };
     55 
     56 #define SLJIT_LOCALS_REG_mapped 54
     57 #define TMP_REG1_mapped 5
     58 #define TMP_REG2_mapped 16
     59 #define TMP_REG3_mapped 6
     60 #define ADDR_TMP_mapped 7
     61 #define SLJIT_SAVED_REG1_mapped 30
     62 #define SLJIT_SAVED_REG2_mapped 31
     63 #define SLJIT_SAVED_REG3_mapped 32
     64 #define SLJIT_SAVED_EREG1_mapped 33
     65 #define SLJIT_SAVED_EREG2_mapped 34
     66 
     67 /* Flags are keept in volatile registers. */
     68 #define EQUAL_FLAG 8
     69 /* And carry flag as well. */
     70 #define ULESS_FLAG 9
     71 #define UGREATER_FLAG 10
     72 #define LESS_FLAG 11
     73 #define GREATER_FLAG 12
     74 #define OVERFLOW_FLAG 13
     75 
     76 #define ZERO 63
     77 #define RA 55
     78 #define TMP_EREG1 14
     79 #define TMP_EREG2 15
     80 
     81 #define LOAD_DATA 0x01
     82 #define WORD_DATA 0x00
     83 #define BYTE_DATA 0x02
     84 #define HALF_DATA 0x04
     85 #define INT_DATA 0x06
     86 #define SIGNED_DATA 0x08
     87 #define DOUBLE_DATA 0x10
     88 
     89 /* Separates integer and floating point registers */
     90 #define GPR_REG 0xf
     91 
     92 #define MEM_MASK 0x1f
     93 
     94 #define WRITE_BACK 0x00020
     95 #define ARG_TEST 0x00040
     96 #define ALT_KEEP_CACHE 0x00080
     97 #define CUMULATIVE_OP 0x00100
     98 #define LOGICAL_OP 0x00200
     99 #define IMM_OP 0x00400
    100 #define SRC2_IMM 0x00800
    101 
    102 #define UNUSED_DEST 0x01000
    103 #define REG_DEST 0x02000
    104 #define REG1_SOURCE 0x04000
    105 #define REG2_SOURCE 0x08000
    106 #define SLOW_SRC1 0x10000
    107 #define SLOW_SRC2 0x20000
    108 #define SLOW_DEST 0x40000
    109 
    110 /* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
    111  */
    112 #define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
    113 
    114 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char *sljit_get_platform_name(void)
    115 {
    116 	return "TileGX" SLJIT_CPUINFO;
    117 }
    118 
    119 /* Length of an instruction word */
    120 typedef sljit_uw sljit_ins;
    121 
    122 struct jit_instr {
    123 	const struct tilegx_opcode* opcode;
    124 	tilegx_pipeline pipe;
    125 	unsigned long input_registers;
    126 	unsigned long output_registers;
    127 	int operand_value[4];
    128 	int line;
    129 };
    130 
    131 /* Opcode Helper Macros */
    132 #define TILEGX_X_MODE 0
    133 
    134 #define X_MODE create_Mode(TILEGX_X_MODE)
    135 
    136 #define FNOP_X0 \
    137 	create_Opcode_X0(RRR_0_OPCODE_X0) | \
    138 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    139 	create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)
    140 
    141 #define FNOP_X1 \
    142 	create_Opcode_X1(RRR_0_OPCODE_X1) | \
    143 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    144 	create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)
    145 
    146 #define NOP \
    147 	create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1
    148 
    149 #define ANOP_X0 \
    150 	create_Opcode_X0(RRR_0_OPCODE_X0) | \
    151 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    152 	create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)
    153 
    154 #define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    155 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    156 	create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
    157 	create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0
    158 
    159 #define ADD_X1 \
    160 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    161 	create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0
    162 
    163 #define ADDI_X1 \
    164 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    165 	create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0
    166 
    167 #define SUB_X1 \
    168 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    169 	create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0
    170 
    171 #define NOR_X1 \
    172 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    173 	create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0
    174 
    175 #define OR_X1 \
    176 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    177 	create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0
    178 
    179 #define AND_X1 \
    180 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    181 	create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0
    182 
    183 #define XOR_X1 \
    184 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    185 	create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0
    186 
    187 #define CMOVNEZ_X0 \
    188 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    189 	create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1
    190 
    191 #define CMOVEQZ_X0 \
    192 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    193 	create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1
    194 
    195 #define ADDLI_X1 \
    196 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0
    197 
    198 #define V4INT_L_X1 \
    199 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    200 	create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0
    201 
    202 #define BFEXTU_X0 \
    203 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
    204 	create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1
    205 
    206 #define BFEXTS_X0 \
    207 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
    208 	create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1
    209 
    210 #define SHL16INSLI_X1 \
    211 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0
    212 
    213 #define ST_X1 \
    214 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    215 	create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0
    216 
    217 #define LD_X1 \
    218 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    219 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    220 	create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0
    221 
    222 #define JR_X1 \
    223 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    224 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    225 	create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0
    226 
    227 #define JALR_X1 \
    228 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    229 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    230 	create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0
    231 
    232 #define CLZ_X0 \
    233 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    234 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    235 	create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1
    236 
    237 #define CMPLTUI_X1 \
    238 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    239 	create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0
    240 
    241 #define CMPLTU_X1 \
    242 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    243 	create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0
    244 
    245 #define CMPLTS_X1 \
    246 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    247 	create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0
    248 
    249 #define XORI_X1 \
    250 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    251 	create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0
    252 
    253 #define ORI_X1 \
    254 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    255 	create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0
    256 
    257 #define ANDI_X1 \
    258 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    259 	create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0
    260 
    261 #define SHLI_X1 \
    262 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    263 	create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0
    264 
    265 #define SHL_X1 \
    266 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    267 	create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0
    268 
    269 #define SHRSI_X1 \
    270 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    271 	create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0
    272 
    273 #define SHRS_X1 \
    274 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    275 	create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0
    276 
    277 #define SHRUI_X1 \
    278 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    279 	create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0
    280 
    281 #define SHRU_X1 \
    282 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    283 	create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0
    284 
    285 #define BEQZ_X1 \
    286 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
    287 	create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0
    288 
    289 #define BNEZ_X1 \
    290 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
    291 	create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0
    292 
    293 #define J_X1 \
    294 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
    295 	create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0
    296 
    297 #define JAL_X1 \
    298 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
    299 	create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0
    300 
    301 #define DEST_X0(x) create_Dest_X0(x)
    302 #define SRCA_X0(x) create_SrcA_X0(x)
    303 #define SRCB_X0(x) create_SrcB_X0(x)
    304 #define DEST_X1(x) create_Dest_X1(x)
    305 #define SRCA_X1(x) create_SrcA_X1(x)
    306 #define SRCB_X1(x) create_SrcB_X1(x)
    307 #define IMM16_X1(x) create_Imm16_X1(x)
    308 #define IMM8_X1(x) create_Imm8_X1(x)
    309 #define BFSTART_X0(x) create_BFStart_X0(x)
    310 #define BFEND_X0(x) create_BFEnd_X0(x)
    311 #define SHIFTIMM_X1(x) create_ShAmt_X1(x)
    312 #define JOFF_X1(x) create_JumpOff_X1(x)
    313 #define BOFF_X1(x) create_BrOff_X1(x)
    314 
    315 static SLJIT_CONST tilegx_mnemonic data_transfer_insts[16] = {
    316 	/* u w s */ TILEGX_OPC_ST   /* st */,
    317 	/* u w l */ TILEGX_OPC_LD   /* ld */,
    318 	/* u b s */ TILEGX_OPC_ST1  /* st1 */,
    319 	/* u b l */ TILEGX_OPC_LD1U /* ld1u */,
    320 	/* u h s */ TILEGX_OPC_ST2  /* st2 */,
    321 	/* u h l */ TILEGX_OPC_LD2U /* ld2u */,
    322 	/* u i s */ TILEGX_OPC_ST4  /* st4 */,
    323 	/* u i l */ TILEGX_OPC_LD4U /* ld4u */,
    324 	/* s w s */ TILEGX_OPC_ST   /* st */,
    325 	/* s w l */ TILEGX_OPC_LD   /* ld */,
    326 	/* s b s */ TILEGX_OPC_ST1  /* st1 */,
    327 	/* s b l */ TILEGX_OPC_LD1S /* ld1s */,
    328 	/* s h s */ TILEGX_OPC_ST2  /* st2 */,
    329 	/* s h l */ TILEGX_OPC_LD2S /* ld2s */,
    330 	/* s i s */ TILEGX_OPC_ST4  /* st4 */,
    331 	/* s i l */ TILEGX_OPC_LD4S /* ld4s */,
    332 };
    333 
    334 #ifdef TILEGX_JIT_DEBUG
    335 static sljit_si push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
    336 {
    337 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    338 	FAIL_IF(!ptr);
    339 	*ptr = ins;
    340 	compiler->size++;
    341 	printf("|%04d|S0|:\t\t", line);
    342 	print_insn_tilegx(ptr);
    343 	return SLJIT_SUCCESS;
    344 }
    345 
    346 static sljit_si push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
    347 {
    348 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    349 	FAIL_IF(!ptr);
    350 	*ptr = ins;
    351 	compiler->size++;
    352 	return SLJIT_SUCCESS;
    353 }
    354 
    355 #define push_inst(a, b) push_inst_debug(a, b, __LINE__)
    356 #else
    357 static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
    358 {
    359 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    360 	FAIL_IF(!ptr);
    361 	*ptr = ins;
    362 	compiler->size++;
    363 	return SLJIT_SUCCESS;
    364 }
    365 #endif
    366 
    367 #define BUNDLE_FORMAT_MASK(p0, p1, p2) \
    368 	((p0) | ((p1) << 8) | ((p2) << 16))
    369 
    370 #define BUNDLE_FORMAT(p0, p1, p2) \
    371 	{ \
    372 		{ \
    373 			(tilegx_pipeline)(p0), \
    374 			(tilegx_pipeline)(p1), \
    375 			(tilegx_pipeline)(p2) \
    376 		}, \
    377 		BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
    378 	}
    379 
    380 #define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS
    381 
    382 #define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)
    383 
    384 #define PI(encoding) \
    385 	push_inst(compiler, encoding)
    386 
    387 #define PB3(opcode, dst, srca, srcb) \
    388 	push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)
    389 
    390 #define PB2(opcode, dst, src) \
    391 	push_2_buffer(compiler, opcode, dst, src, __LINE__)
    392 
    393 #define JR(reg) \
    394 	push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)
    395 
    396 #define ADD(dst, srca, srcb) \
    397 	push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)
    398 
    399 #define SUB(dst, srca, srcb) \
    400 	push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)
    401 
    402 #define NOR(dst, srca, srcb) \
    403 	push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)
    404 
    405 #define OR(dst, srca, srcb) \
    406 	push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)
    407 
    408 #define XOR(dst, srca, srcb) \
    409 	push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)
    410 
    411 #define AND(dst, srca, srcb) \
    412 	push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)
    413 
    414 #define CLZ(dst, src) \
    415 	push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)
    416 
    417 #define SHLI(dst, srca, srcb) \
    418 	push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)
    419 
    420 #define SHRUI(dst, srca, imm) \
    421 	push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)
    422 
    423 #define XORI(dst, srca, imm) \
    424 	push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)
    425 
    426 #define ORI(dst, srca, imm) \
    427 	push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)
    428 
    429 #define CMPLTU(dst, srca, srcb) \
    430 	push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)
    431 
    432 #define CMPLTS(dst, srca, srcb) \
    433 	push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)
    434 
    435 #define CMPLTUI(dst, srca, imm) \
    436 	push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)
    437 
    438 #define CMOVNEZ(dst, srca, srcb) \
    439 	push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)
    440 
    441 #define CMOVEQZ(dst, srca, srcb) \
    442 	push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)
    443 
    444 #define ADDLI(dst, srca, srcb) \
    445 	push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)
    446 
    447 #define SHL16INSLI(dst, srca, srcb) \
    448 	push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)
    449 
    450 #define LD_ADD(dst, addr, adjust) \
    451 	push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)
    452 
    453 #define ST_ADD(src, addr, adjust) \
    454 	push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)
    455 
    456 #define LD(dst, addr) \
    457 	push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)
    458 
    459 #define BFEXTU(dst, src, start, end) \
    460 	push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)
    461 
    462 #define BFEXTS(dst, src, start, end) \
    463 	push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)
    464 
    465 #define ADD_SOLO(dest, srca, srcb) \
    466 	push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))
    467 
    468 #define ADDI_SOLO(dest, srca, imm) \
    469 	push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))
    470 
    471 #define ADDLI_SOLO(dest, srca, imm) \
    472 	push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
    473 
    474 #define SHL16INSLI_SOLO(dest, srca, imm) \
    475 	push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
    476 
    477 #define JALR_SOLO(reg) \
    478 	push_inst(compiler, JALR_X1 | SRCA_X1(reg))
    479 
    480 #define JR_SOLO(reg) \
    481 	push_inst(compiler, JR_X1 | SRCA_X1(reg))
    482 
    483 struct Format {
    484 	/* Mapping of bundle issue slot to assigned pipe. */
    485 	tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
    486 
    487 	/* Mask of pipes used by this bundle. */
    488 	unsigned int pipe_mask;
    489 };
    490 
    491 const struct Format formats[] =
    492 {
    493 	/* In Y format we must always have something in Y2, since it has
    494 	* no fnop, so this conveys that Y2 must always be used. */
    495 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
    496 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
    497 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
    498 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),
    499 
    500 	/* Y format has three instructions. */
    501 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
    502 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
    503 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
    504 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
    505 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
    506 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),
    507 
    508 	/* X format has only two instructions. */
    509 	BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
    510 	BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
    511 };
    512 
    513 
    514 struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
    515 unsigned long inst_buf_index;
    516 
    517 tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
    518 {
    519 	/* FIXME: tile: we could pregenerate this. */
    520 	int pipe;
    521 	for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
    522 		;
    523 	return (tilegx_pipeline)(pipe);
    524 }
    525 
    526 void insert_nop(tilegx_mnemonic opc, int line)
    527 {
    528 	const struct tilegx_opcode* opcode = NULL;
    529 
    530 	memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);
    531 
    532 	opcode = &tilegx_opcodes[opc];
    533 	inst_buf[0].opcode = opcode;
    534 	inst_buf[0].pipe = get_any_valid_pipe(opcode);
    535 	inst_buf[0].input_registers = 0;
    536 	inst_buf[0].output_registers = 0;
    537 	inst_buf[0].line = line;
    538 	++inst_buf_index;
    539 }
    540 
    541 const struct Format* compute_format()
    542 {
    543 	unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
    544 		inst_buf[0].opcode->pipes,
    545 		inst_buf[1].opcode->pipes,
    546 		(inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));
    547 
    548 	const struct Format* match = NULL;
    549 	const struct Format *b = NULL;
    550 	unsigned int i = 0;
    551 	for (i; i < sizeof formats / sizeof formats[0]; i++) {
    552 		b = &formats[i];
    553 		if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
    554 			match = b;
    555 			break;
    556 		}
    557 	}
    558 
    559 	return match;
    560 }
    561 
    562 sljit_si assign_pipes()
    563 {
    564 	unsigned long output_registers = 0;
    565 	unsigned int i = 0;
    566 
    567 	if (inst_buf_index == 1) {
    568 		tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
    569 					? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
    570 		insert_nop(opc, __LINE__);
    571 	}
    572 
    573 	const struct Format* match = compute_format();
    574 
    575 	if (match == NULL)
    576 		return -1;
    577 
    578 	for (i = 0; i < inst_buf_index; i++) {
    579 
    580 		if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
    581 			return -1;
    582 
    583 		if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
    584 			return -1;
    585 
    586 		/* Don't include Rzero in the match set, to avoid triggering
    587 		   needlessly on 'prefetch' instrs. */
    588 
    589 		output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;
    590 
    591 		inst_buf[i].pipe = match->pipe[i];
    592 	}
    593 
    594 	/* If only 2 instrs, and in Y-mode, insert a nop. */
    595 	if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
    596 		insert_nop(TILEGX_OPC_FNOP, __LINE__);
    597 
    598 		/* Select the yet unassigned pipe. */
    599 		tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
    600 					+ TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
    601 					- (inst_buf[1].pipe + inst_buf[2].pipe)));
    602 
    603 		inst_buf[0].pipe = pipe;
    604 	}
    605 
    606 	return 0;
    607 }
    608 
    609 tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
    610 {
    611 	int i, val;
    612 	const struct tilegx_opcode* opcode = inst->opcode;
    613 	tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];
    614 
    615 	const struct tilegx_operand* operand = NULL;
    616 	for (i = 0; i < opcode->num_operands; i++) {
    617 		operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
    618 		val = inst->operand_value[i];
    619 
    620 		bits |= operand->insert(val);
    621 	}
    622 
    623 	return bits;
    624 }
    625 
    626 static sljit_si update_buffer(struct sljit_compiler *compiler)
    627 {
    628 	int count;
    629 	int i;
    630 	int orig_index = inst_buf_index;
    631 	struct jit_instr inst0 = inst_buf[0];
    632 	struct jit_instr inst1 = inst_buf[1];
    633 	struct jit_instr inst2 = inst_buf[2];
    634 	tilegx_bundle_bits bits = 0;
    635 
    636 	/* If the bundle is valid as is, perform the encoding and return 1. */
    637 	if (assign_pipes() == 0) {
    638 		for (i = 0; i < inst_buf_index; i++) {
    639 			bits |= get_bundle_bit(inst_buf + i);
    640 #ifdef TILEGX_JIT_DEBUG
    641 			printf("|%04d", inst_buf[i].line);
    642 #endif
    643 		}
    644 #ifdef TILEGX_JIT_DEBUG
    645 		if (inst_buf_index == 3)
    646 			printf("|M0|:\t");
    647 		else
    648 			printf("|M0|:\t\t");
    649 		print_insn_tilegx(&bits);
    650 #endif
    651 
    652 		inst_buf_index = 0;
    653 
    654 #ifdef TILEGX_JIT_DEBUG
    655 		return push_inst_nodebug(compiler, bits);
    656 #else
    657 		return push_inst(compiler, bits);
    658 #endif
    659 	}
    660 
    661 	/* If the bundle is invalid, split it in two. First encode the first two
    662 	   (or possibly 1) instructions, and then the last, separately. Note that
    663 	   assign_pipes may have re-ordered the instrs (by inserting no-ops in
    664 	   lower slots) so we need to reset them. */
    665 
    666 	inst_buf_index = orig_index - 1;
    667 	inst_buf[0] = inst0;
    668 	inst_buf[1] = inst1;
    669 	inst_buf[2] = inst2;
    670 	if (assign_pipes() == 0) {
    671 		for (i = 0; i < inst_buf_index; i++) {
    672 			bits |= get_bundle_bit(inst_buf + i);
    673 #ifdef TILEGX_JIT_DEBUG
    674 			printf("|%04d", inst_buf[i].line);
    675 #endif
    676 		}
    677 
    678 #ifdef TILEGX_JIT_DEBUG
    679 		if (inst_buf_index == 3)
    680 			printf("|M1|:\t");
    681 		else
    682 			printf("|M1|:\t\t");
    683 		print_insn_tilegx(&bits);
    684 #endif
    685 
    686 		if ((orig_index - 1) == 2) {
    687 			inst_buf[0] = inst2;
    688 			inst_buf_index = 1;
    689 		} else if ((orig_index - 1) == 1) {
    690 			inst_buf[0] = inst1;
    691 			inst_buf_index = 1;
    692 		} else
    693 			SLJIT_ASSERT_STOP();
    694 
    695 #ifdef TILEGX_JIT_DEBUG
    696 		return push_inst_nodebug(compiler, bits);
    697 #else
    698 		return push_inst(compiler, bits);
    699 #endif
    700 	} else {
    701 		/* We had 3 instrs of which the first 2 can't live in the same bundle.
    702 		   Split those two. Note that we don't try to then combine the second
    703 		   and third instr into a single bundle.  First instruction: */
    704 		inst_buf_index = 1;
    705 		inst_buf[0] = inst0;
    706 		inst_buf[1] = inst1;
    707 		inst_buf[2] = inst2;
    708 		if (assign_pipes() == 0) {
    709 			for (i = 0; i < inst_buf_index; i++) {
    710 				bits |= get_bundle_bit(inst_buf + i);
    711 #ifdef TILEGX_JIT_DEBUG
    712 				printf("|%04d", inst_buf[i].line);
    713 #endif
    714 			}
    715 
    716 #ifdef TILEGX_JIT_DEBUG
    717 			if (inst_buf_index == 3)
    718 				printf("|M2|:\t");
    719 			else
    720 				printf("|M2|:\t\t");
    721 			print_insn_tilegx(&bits);
    722 #endif
    723 
    724 			inst_buf[0] = inst1;
    725 			inst_buf[1] = inst2;
    726 			inst_buf_index = orig_index - 1;
    727 #ifdef TILEGX_JIT_DEBUG
    728 			return push_inst_nodebug(compiler, bits);
    729 #else
    730 			return push_inst(compiler, bits);
    731 #endif
    732 		} else
    733 			SLJIT_ASSERT_STOP();
    734 	}
    735 
    736 	SLJIT_ASSERT_STOP();
    737 }
    738 
    739 static sljit_si flush_buffer(struct sljit_compiler *compiler)
    740 {
    741 	while (inst_buf_index != 0)
    742 		update_buffer(compiler);
    743 }
    744 
    745 static sljit_si push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
    746 {
    747 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    748 		FAIL_IF(update_buffer(compiler));
    749 
    750 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    751 	inst_buf[inst_buf_index].opcode = opcode;
    752 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    753 	inst_buf[inst_buf_index].operand_value[0] = op0;
    754 	inst_buf[inst_buf_index].operand_value[1] = op1;
    755 	inst_buf[inst_buf_index].operand_value[2] = op2;
    756 	inst_buf[inst_buf_index].operand_value[3] = op3;
    757 	inst_buf[inst_buf_index].input_registers = 1L << op1;
    758 	inst_buf[inst_buf_index].output_registers = 1L << op0;
    759 	inst_buf[inst_buf_index].line = line;
    760 	inst_buf_index++;
    761 
    762 	return SLJIT_SUCCESS;
    763 }
    764 
    765 static sljit_si push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
    766 {
    767 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    768 		FAIL_IF(update_buffer(compiler));
    769 
    770 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    771 	inst_buf[inst_buf_index].opcode = opcode;
    772 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    773 	inst_buf[inst_buf_index].operand_value[0] = op0;
    774 	inst_buf[inst_buf_index].operand_value[1] = op1;
    775 	inst_buf[inst_buf_index].operand_value[2] = op2;
    776 	inst_buf[inst_buf_index].line = line;
    777 
    778 	switch (opc) {
    779 	case TILEGX_OPC_ST_ADD:
    780 		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
    781 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    782 		break;
    783 	case TILEGX_OPC_LD_ADD:
    784 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    785 		inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
    786 		break;
    787 	case TILEGX_OPC_ADD:
    788 	case TILEGX_OPC_AND:
    789 	case TILEGX_OPC_SUB:
    790 	case TILEGX_OPC_OR:
    791 	case TILEGX_OPC_XOR:
    792 	case TILEGX_OPC_NOR:
    793 	case TILEGX_OPC_SHL:
    794 	case TILEGX_OPC_SHRU:
    795 	case TILEGX_OPC_SHRS:
    796 	case TILEGX_OPC_CMPLTU:
    797 	case TILEGX_OPC_CMPLTS:
    798 	case TILEGX_OPC_CMOVEQZ:
    799 	case TILEGX_OPC_CMOVNEZ:
    800 		inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
    801 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    802 		break;
    803 	case TILEGX_OPC_ADDLI:
    804 	case TILEGX_OPC_XORI:
    805 	case TILEGX_OPC_ORI:
    806 	case TILEGX_OPC_SHLI:
    807 	case TILEGX_OPC_SHRUI:
    808 	case TILEGX_OPC_SHRSI:
    809 	case TILEGX_OPC_SHL16INSLI:
    810 	case TILEGX_OPC_CMPLTUI:
    811 	case TILEGX_OPC_CMPLTSI:
    812 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    813 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    814 		break;
    815 	default:
    816 		printf("unrecoginzed opc: %s\n", opcode->name);
    817 		SLJIT_ASSERT_STOP();
    818 	}
    819 
    820 	inst_buf_index++;
    821 
    822 	return SLJIT_SUCCESS;
    823 }
    824 
    825 static sljit_si push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
    826 {
    827 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    828 		FAIL_IF(update_buffer(compiler));
    829 
    830 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    831 	inst_buf[inst_buf_index].opcode = opcode;
    832 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    833 	inst_buf[inst_buf_index].operand_value[0] = op0;
    834 	inst_buf[inst_buf_index].operand_value[1] = op1;
    835 	inst_buf[inst_buf_index].line = line;
    836 
    837 	switch (opc) {
    838 	case TILEGX_OPC_BEQZ:
    839 	case TILEGX_OPC_BNEZ:
    840 		inst_buf[inst_buf_index].input_registers = 1L << op0;
    841 		break;
    842 	case TILEGX_OPC_ST:
    843 	case TILEGX_OPC_ST1:
    844 	case TILEGX_OPC_ST2:
    845 	case TILEGX_OPC_ST4:
    846 		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
    847 		inst_buf[inst_buf_index].output_registers = 0;
    848 		break;
    849 	case TILEGX_OPC_CLZ:
    850 	case TILEGX_OPC_LD:
    851 	case TILEGX_OPC_LD1U:
    852 	case TILEGX_OPC_LD1S:
    853 	case TILEGX_OPC_LD2U:
    854 	case TILEGX_OPC_LD2S:
    855 	case TILEGX_OPC_LD4U:
    856 	case TILEGX_OPC_LD4S:
    857 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    858 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    859 		break;
    860 	default:
    861 		printf("unrecoginzed opc: %s\n", opcode->name);
    862 		SLJIT_ASSERT_STOP();
    863 	}
    864 
    865 	inst_buf_index++;
    866 
    867 	return SLJIT_SUCCESS;
    868 }
    869 
    870 static sljit_si push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
    871 {
    872 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    873 		FAIL_IF(update_buffer(compiler));
    874 
    875 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    876 	inst_buf[inst_buf_index].opcode = opcode;
    877 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    878 	inst_buf[inst_buf_index].input_registers = 0;
    879 	inst_buf[inst_buf_index].output_registers = 0;
    880 	inst_buf[inst_buf_index].line = line;
    881 	inst_buf_index++;
    882 
    883 	return SLJIT_SUCCESS;
    884 }
    885 
    886 static sljit_si push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
    887 {
    888 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    889 		FAIL_IF(update_buffer(compiler));
    890 
    891 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    892 	inst_buf[inst_buf_index].opcode = opcode;
    893 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    894 	inst_buf[inst_buf_index].operand_value[0] = op0;
    895 	inst_buf[inst_buf_index].input_registers = 1L << op0;
    896 	inst_buf[inst_buf_index].output_registers = 0;
    897 	inst_buf[inst_buf_index].line = line;
    898 	inst_buf_index++;
    899 
    900 	return flush_buffer(compiler);
    901 }
    902 
    903 static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
    904 {
    905 	sljit_sw diff;
    906 	sljit_uw target_addr;
    907 	sljit_ins *inst;
    908 	sljit_ins saved_inst;
    909 
    910 	if (jump->flags & SLJIT_REWRITABLE_JUMP)
    911 		return code_ptr;
    912 
    913 	if (jump->flags & JUMP_ADDR)
    914 		target_addr = jump->u.target;
    915 	else {
    916 		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
    917 		target_addr = (sljit_uw)(code + jump->u.label->size);
    918 	}
    919 
    920 	inst = (sljit_ins *)jump->addr;
    921 	if (jump->flags & IS_COND)
    922 		inst--;
    923 
    924 	diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
    925 	if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
    926 		jump->flags |= PATCH_B;
    927 
    928 		if (!(jump->flags & IS_COND)) {
    929 			if (jump->flags & IS_JAL) {
    930 				jump->flags &= ~(PATCH_B);
    931 				jump->flags |= PATCH_J;
    932 				inst[0] = JAL_X1;
    933 
    934 #ifdef TILEGX_JIT_DEBUG
    935 				printf("[runtime relocate]%04d:\t", __LINE__);
    936 				print_insn_tilegx(inst);
    937 #endif
    938 			} else {
    939 				inst[0] = BEQZ_X1 | SRCA_X1(ZERO);
    940 
    941 #ifdef TILEGX_JIT_DEBUG
    942 				printf("[runtime relocate]%04d:\t", __LINE__);
    943 				print_insn_tilegx(inst);
    944 #endif
    945 			}
    946 
    947 			return inst;
    948 		}
    949 
    950 		inst[0] = inst[0] ^ (0x7L << 55);
    951 
    952 #ifdef TILEGX_JIT_DEBUG
    953 		printf("[runtime relocate]%04d:\t", __LINE__);
    954 		print_insn_tilegx(inst);
    955 #endif
    956 		jump->addr -= sizeof(sljit_ins);
    957 		return inst;
    958 	}
    959 
    960 	if (jump->flags & IS_COND) {
    961 		if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
    962 			jump->flags |= PATCH_J;
    963 			inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
    964 			inst[1] = J_X1;
    965 			return inst + 1;
    966 		}
    967 
    968 		return code_ptr;
    969 	}
    970 
    971 	if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
    972 		jump->flags |= PATCH_J;
    973 
    974 		if (jump->flags & IS_JAL) {
    975 			inst[0] = JAL_X1;
    976 
    977 #ifdef TILEGX_JIT_DEBUG
    978 			printf("[runtime relocate]%04d:\t", __LINE__);
    979 			print_insn_tilegx(inst);
    980 #endif
    981 
    982 		} else {
    983 			inst[0] = J_X1;
    984 
    985 #ifdef TILEGX_JIT_DEBUG
    986 			printf("[runtime relocate]%04d:\t", __LINE__);
    987 			print_insn_tilegx(inst);
    988 #endif
    989 		}
    990 
    991 		return inst;
    992 	}
    993 
    994 	return code_ptr;
    995 }
    996 
    997 SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
    998 {
    999 	struct sljit_memory_fragment *buf;
   1000 	sljit_ins *code;
   1001 	sljit_ins *code_ptr;
   1002 	sljit_ins *buf_ptr;
   1003 	sljit_ins *buf_end;
   1004 	sljit_uw word_count;
   1005 	sljit_uw addr;
   1006 
   1007 	struct sljit_label *label;
   1008 	struct sljit_jump *jump;
   1009 	struct sljit_const *const_;
   1010 
   1011 	CHECK_ERROR_PTR();
   1012 	check_sljit_generate_code(compiler);
   1013 	reverse_buf(compiler);
   1014 
   1015 	code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
   1016 	PTR_FAIL_WITH_EXEC_IF(code);
   1017 	buf = compiler->buf;
   1018 
   1019 	code_ptr = code;
   1020 	word_count = 0;
   1021 	label = compiler->labels;
   1022 	jump = compiler->jumps;
   1023 	const_ = compiler->consts;
   1024 	do {
   1025 		buf_ptr = (sljit_ins *)buf->memory;
   1026 		buf_end = buf_ptr + (buf->used_size >> 3);
   1027 		do {
   1028 			*code_ptr = *buf_ptr++;
   1029 			SLJIT_ASSERT(!label || label->size >= word_count);
   1030 			SLJIT_ASSERT(!jump || jump->addr >= word_count);
   1031 			SLJIT_ASSERT(!const_ || const_->addr >= word_count);
   1032 			/* These structures are ordered by their address. */
   1033 			if (label && label->size == word_count) {
   1034 				/* Just recording the address. */
   1035 				label->addr = (sljit_uw) code_ptr;
   1036 				label->size = code_ptr - code;
   1037 				label = label->next;
   1038 			}
   1039 
   1040 			if (jump && jump->addr == word_count) {
   1041 				if (jump->flags & IS_JAL)
   1042 					jump->addr = (sljit_uw)(code_ptr - 4);
   1043 				else
   1044 					jump->addr = (sljit_uw)(code_ptr - 3);
   1045 
   1046 				code_ptr = detect_jump_type(jump, code_ptr, code);
   1047 				jump = jump->next;
   1048 			}
   1049 
   1050 			if (const_ && const_->addr == word_count) {
   1051 				/* Just recording the address. */
   1052 				const_->addr = (sljit_uw) code_ptr;
   1053 				const_ = const_->next;
   1054 			}
   1055 
   1056 			code_ptr++;
   1057 			word_count++;
   1058 		} while (buf_ptr < buf_end);
   1059 
   1060 		buf = buf->next;
   1061 	} while (buf);
   1062 
   1063 	if (label && label->size == word_count) {
   1064 		label->addr = (sljit_uw) code_ptr;
   1065 		label->size = code_ptr - code;
   1066 		label = label->next;
   1067 	}
   1068 
   1069 	SLJIT_ASSERT(!label);
   1070 	SLJIT_ASSERT(!jump);
   1071 	SLJIT_ASSERT(!const_);
   1072 	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
   1073 
   1074 	jump = compiler->jumps;
   1075 	while (jump) {
   1076 		do {
   1077 			addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
   1078 			buf_ptr = (sljit_ins *)jump->addr;
   1079 
   1080 			if (jump->flags & PATCH_B) {
   1081 				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
   1082 				SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
   1083 				buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);
   1084 
   1085 #ifdef TILEGX_JIT_DEBUG
   1086 				printf("[runtime relocate]%04d:\t", __LINE__);
   1087 				print_insn_tilegx(buf_ptr);
   1088 #endif
   1089 				break;
   1090 			}
   1091 
   1092 			if (jump->flags & PATCH_J) {
   1093 				SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
   1094 				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
   1095 				buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);
   1096 
   1097 #ifdef TILEGX_JIT_DEBUG
   1098 				printf("[runtime relocate]%04d:\t", __LINE__);
   1099 				print_insn_tilegx(buf_ptr);
   1100 #endif
   1101 				break;
   1102 			}
   1103 
   1104 			SLJIT_ASSERT(!(jump->flags & IS_JAL));
   1105 
   1106 			/* Set the fields of immediate loads. */
   1107 			buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
   1108 			buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
   1109 			buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
   1110 		} while (0);
   1111 
   1112 		jump = jump->next;
   1113 	}
   1114 
   1115 	compiler->error = SLJIT_ERR_COMPILED;
   1116 	compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
   1117 	SLJIT_CACHE_FLUSH(code, code_ptr);
   1118 	return code;
   1119 }
   1120 
   1121 static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
   1122 {
   1123 
   1124 	if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
   1125 		return ADDLI(dst_ar, ZERO, imm);
   1126 
   1127 	if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
   1128 		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
   1129 		return SHL16INSLI(dst_ar, dst_ar, imm);
   1130 	}
   1131 
   1132 	if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
   1133 		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
   1134 		FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1135 		return SHL16INSLI(dst_ar, dst_ar, imm);
   1136 	}
   1137 
   1138 	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
   1139 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
   1140 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1141 	return SHL16INSLI(dst_ar, dst_ar, imm);
   1142 }
   1143 
   1144 static sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
   1145 {
   1146 	/* Should *not* be optimized as load_immediate, as pcre relocation
   1147 	   mechanism will match this fixed 4-instruction pattern. */
   1148 	if (flush) {
   1149 		FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
   1150 		FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
   1151 		return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
   1152 	}
   1153 
   1154 	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
   1155 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1156 	return SHL16INSLI(dst_ar, dst_ar, imm);
   1157 }
   1158 
   1159 static sljit_si emit_const_64(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
   1160 {
   1161 	/* Should *not* be optimized as load_immediate, as pcre relocation
   1162 	   mechanism will match this fixed 4-instruction pattern. */
   1163 	if (flush) {
   1164 		FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
   1165 		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
   1166 		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
   1167 		return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
   1168 	}
   1169 
   1170 	FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
   1171 	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
   1172 	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
   1173 	return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
   1174 }
   1175 
   1176 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
   1177 {
   1178 	sljit_ins base;
   1179 	sljit_ins bundle = 0;
   1180 
   1181 	CHECK_ERROR();
   1182 	check_sljit_emit_enter(compiler, args, scratches, saveds, local_size);
   1183 
   1184 	compiler->scratches = scratches;
   1185 	compiler->saveds = saveds;
   1186 #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
   1187 	compiler->logical_local_size = local_size;
   1188 #endif
   1189 
   1190 	local_size += (saveds + 1) * sizeof(sljit_sw);
   1191 	local_size = (local_size + 7) & ~7;
   1192 	compiler->local_size = local_size;
   1193 
   1194 	if (local_size <= SIMM_16BIT_MAX) {
   1195 		/* Frequent case. */
   1196 		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
   1197 		base = SLJIT_LOCALS_REG_mapped;
   1198 	} else {
   1199 		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
   1200 		FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
   1201 		FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
   1202 		base = TMP_REG2_mapped;
   1203 		local_size = 0;
   1204 	}
   1205 
   1206 	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
   1207 	FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));
   1208 
   1209 	if (saveds >= 1)
   1210 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG1_mapped, -8));
   1211 
   1212 	if (saveds >= 2)
   1213 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG2_mapped, -8));
   1214 
   1215 	if (saveds >= 3)
   1216 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG3_mapped, -8));
   1217 
   1218 	if (saveds >= 4)
   1219 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_EREG1_mapped, -8));
   1220 
   1221 	if (saveds >= 5)
   1222 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_EREG2_mapped, -8));
   1223 
   1224 	if (args >= 1)
   1225 		FAIL_IF(ADD(SLJIT_SAVED_REG1_mapped, 0, ZERO));
   1226 
   1227 	if (args >= 2)
   1228 		FAIL_IF(ADD(SLJIT_SAVED_REG2_mapped, 1, ZERO));
   1229 
   1230 	if (args >= 3)
   1231 		FAIL_IF(ADD(SLJIT_SAVED_REG3_mapped, 2, ZERO));
   1232 
   1233 	return SLJIT_SUCCESS;
   1234 }
   1235 
   1236 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
   1237 {
   1238 	CHECK_ERROR_VOID();
   1239 	check_sljit_set_context(compiler, args, scratches, saveds, local_size);
   1240 
   1241 	compiler->scratches = scratches;
   1242 	compiler->saveds = saveds;
   1243 #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
   1244 	compiler->logical_local_size = local_size;
   1245 #endif
   1246 
   1247 	local_size += (saveds + 1) * sizeof(sljit_sw);
   1248 	compiler->local_size = (local_size + 7) & ~7;
   1249 }
   1250 
   1251 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
   1252 {
   1253 	sljit_si local_size;
   1254 	sljit_ins base;
   1255 	int addr_initialized = 0;
   1256 
   1257 	CHECK_ERROR();
   1258 	check_sljit_emit_return(compiler, op, src, srcw);
   1259 
   1260 	FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
   1261 
   1262 	local_size = compiler->local_size;
   1263 	if (local_size <= SIMM_16BIT_MAX)
   1264 		base = SLJIT_LOCALS_REG_mapped;
   1265 	else {
   1266 		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
   1267 		FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
   1268 		base = TMP_REG1_mapped;
   1269 		local_size = 0;
   1270 	}
   1271 
   1272 	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
   1273 	FAIL_IF(LD(RA, ADDR_TMP_mapped));
   1274 
   1275 	if (compiler->saveds >= 5) {
   1276 		FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 48));
   1277 		addr_initialized = 1;
   1278 
   1279 		FAIL_IF(LD_ADD(SLJIT_SAVED_EREG2_mapped, ADDR_TMP_mapped, 8));
   1280 	}
   1281 
   1282 	if (compiler->saveds >= 4) {
   1283 		if (addr_initialized == 0) {
   1284 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 40));
   1285 			addr_initialized = 1;
   1286 		}
   1287 
   1288 		FAIL_IF(LD_ADD(SLJIT_SAVED_EREG1_mapped, ADDR_TMP_mapped, 8));
   1289 	}
   1290 
   1291 	if (compiler->saveds >= 3) {
   1292 		if (addr_initialized == 0) {
   1293 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 32));
   1294 			addr_initialized = 1;
   1295 		}
   1296 
   1297 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG3_mapped, ADDR_TMP_mapped, 8));
   1298 	}
   1299 
   1300 	if (compiler->saveds >= 2) {
   1301 		if (addr_initialized == 0) {
   1302 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 24));
   1303 			addr_initialized = 1;
   1304 		}
   1305 
   1306 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG2_mapped, ADDR_TMP_mapped, 8));
   1307 	}
   1308 
   1309 	if (compiler->saveds >= 1) {
   1310 		if (addr_initialized == 0) {
   1311 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 16));
   1312 			/* addr_initialized = 1; no need to initialize as it's the last one. */
   1313 		}
   1314 
   1315 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG1_mapped, ADDR_TMP_mapped, 8));
   1316 	}
   1317 
   1318 	if (compiler->local_size <= SIMM_16BIT_MAX)
   1319 		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
   1320 	else
   1321 		FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));
   1322 
   1323 	return JR(RA);
   1324 }
   1325 
   1326 /* reg_ar is an absoulute register! */
   1327 
   1328 /* Can perform an operation using at most 1 instruction. */
   1329 static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
   1330 {
   1331 	SLJIT_ASSERT(arg & SLJIT_MEM);
   1332 
   1333 	if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
   1334 			&& !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1335 		/* Works for both absoulte and relative addresses. */
   1336 		if (SLJIT_UNLIKELY(flags & ARG_TEST))
   1337 			return 1;
   1338 
   1339 		FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));
   1340 
   1341 		if (flags & LOAD_DATA)
   1342 			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
   1343 		else
   1344 			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
   1345 
   1346 		return -1;
   1347 	}
   1348 
   1349 	return 0;
   1350 }
   1351 
   1352 /* See getput_arg below.
   1353    Note: can_cache is called only for binary operators. Those
   1354    operators always uses word arguments without write back. */
   1355 static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
   1356 {
   1357 	SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
   1358 
   1359 	/* Simple operation except for updates. */
   1360 	if (arg & OFFS_REG_MASK) {
   1361 		argw &= 0x3;
   1362 		next_argw &= 0x3;
   1363 		if (argw && argw == next_argw
   1364 				&& (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
   1365 			return 1;
   1366 		return 0;
   1367 	}
   1368 
   1369 	if (arg == next_arg) {
   1370 		if (((next_argw - argw) <= SIMM_16BIT_MAX
   1371 				&& (next_argw - argw) >= SIMM_16BIT_MIN))
   1372 			return 1;
   1373 
   1374 		return 0;
   1375 	}
   1376 
   1377 	return 0;
   1378 }
   1379 
   1380 /* Emit the necessary instructions. See can_cache above. */
   1381 static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
   1382 {
   1383 	sljit_si tmp_ar, base;
   1384 
   1385 	SLJIT_ASSERT(arg & SLJIT_MEM);
   1386 	if (!(next_arg & SLJIT_MEM)) {
   1387 		next_arg = 0;
   1388 		next_argw = 0;
   1389 	}
   1390 
   1391 	if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
   1392 		tmp_ar = reg_ar;
   1393 	else
   1394 		tmp_ar = TMP_REG1_mapped;
   1395 
   1396 	base = arg & REG_MASK;
   1397 
   1398 	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
   1399 		argw &= 0x3;
   1400 
   1401 		if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
   1402 			SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
   1403 			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
   1404 			reg_ar = TMP_REG1_mapped;
   1405 		}
   1406 
   1407 		/* Using the cache. */
   1408 		if (argw == compiler->cache_argw) {
   1409 			if (!(flags & WRITE_BACK)) {
   1410 				if (arg == compiler->cache_arg) {
   1411 					if (flags & LOAD_DATA)
   1412 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1413 					else
   1414 						return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1415 				}
   1416 
   1417 				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
   1418 					if (arg == next_arg && argw == (next_argw & 0x3)) {
   1419 						compiler->cache_arg = arg;
   1420 						compiler->cache_argw = argw;
   1421 						FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
   1422 						if (flags & LOAD_DATA)
   1423 							return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1424 						else
   1425 							return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1426 					}
   1427 
   1428 					FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
   1429 					if (flags & LOAD_DATA)
   1430 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1431 					else
   1432 						return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1433 				}
   1434 			} else {
   1435 				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
   1436 					FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1437 					if (flags & LOAD_DATA)
   1438 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1439 					else
   1440 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1441 				}
   1442 			}
   1443 		}
   1444 
   1445 		if (SLJIT_UNLIKELY(argw)) {
   1446 			compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
   1447 			compiler->cache_argw = argw;
   1448 			FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
   1449 		}
   1450 
   1451 		if (!(flags & WRITE_BACK)) {
   1452 			if (arg == next_arg && argw == (next_argw & 0x3)) {
   1453 				compiler->cache_arg = arg;
   1454 				compiler->cache_argw = argw;
   1455 				FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1456 				tmp_ar = TMP_REG3_mapped;
   1457 			} else
   1458 				FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1459 
   1460 			if (flags & LOAD_DATA)
   1461 				return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1462 			else
   1463 				return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1464 		}
   1465 
   1466 		FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1467 
   1468 		if (flags & LOAD_DATA)
   1469 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1470 		else
   1471 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1472 	}
   1473 
   1474 	if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
   1475 		/* Update only applies if a base register exists. */
   1476 		if (reg_ar == reg_map[base]) {
   1477 			SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
   1478 			if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1479 				FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
   1480 				if (flags & LOAD_DATA)
   1481 					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
   1482 				else
   1483 					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
   1484 
   1485 				if (argw)
   1486 					return ADDLI(reg_map[base], reg_map[base], argw);
   1487 
   1488 				return SLJIT_SUCCESS;
   1489 			}
   1490 
   1491 			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
   1492 			reg_ar = TMP_REG1_mapped;
   1493 		}
   1494 
   1495 		if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1496 			if (argw)
   1497 				FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
   1498 		} else {
   1499 			if (compiler->cache_arg == SLJIT_MEM
   1500 					&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1501 					&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1502 				if (argw != compiler->cache_argw) {
   1503 					FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1504 					compiler->cache_argw = argw;
   1505 				}
   1506 
   1507 				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1508 			} else {
   1509 				compiler->cache_arg = SLJIT_MEM;
   1510 				compiler->cache_argw = argw;
   1511 				FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
   1512 				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1513 			}
   1514 		}
   1515 
   1516 		if (flags & LOAD_DATA)
   1517 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1518 		else
   1519 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1520 	}
   1521 
   1522 	if (compiler->cache_arg == arg
   1523 			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1524 			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1525 		if (argw != compiler->cache_argw) {
   1526 			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1527 			compiler->cache_argw = argw;
   1528 		}
   1529 
   1530 		if (flags & LOAD_DATA)
   1531 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1532 		else
   1533 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1534 	}
   1535 
   1536 	if (compiler->cache_arg == SLJIT_MEM
   1537 			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1538 			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1539 		if (argw != compiler->cache_argw)
   1540 			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1541 	} else {
   1542 		compiler->cache_arg = SLJIT_MEM;
   1543 		FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
   1544 	}
   1545 
   1546 	compiler->cache_argw = argw;
   1547 
   1548 	if (!base) {
   1549 		if (flags & LOAD_DATA)
   1550 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1551 		else
   1552 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1553 	}
   1554 
   1555 	if (arg == next_arg
   1556 			&& next_argw - argw <= SIMM_16BIT_MAX
   1557 			&& next_argw - argw >= SIMM_16BIT_MIN) {
   1558 		compiler->cache_arg = arg;
   1559 		FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
   1560 		if (flags & LOAD_DATA)
   1561 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1562 		else
   1563 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1564 	}
   1565 
   1566 	FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));
   1567 
   1568 	if (flags & LOAD_DATA)
   1569 		return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1570 	else
   1571 		return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1572 }
   1573 
   1574 static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
   1575 {
   1576 	if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
   1577 		return compiler->error;
   1578 
   1579 	compiler->cache_arg = 0;
   1580 	compiler->cache_argw = 0;
   1581 	return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
   1582 }
   1583 
   1584 static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
   1585 {
   1586 	if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
   1587 		return compiler->error;
   1588 	return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
   1589 }
   1590 
   1591 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
   1592 {
   1593 	CHECK_ERROR();
   1594 	check_sljit_emit_fast_enter(compiler, dst, dstw);
   1595 	ADJUST_LOCAL_OFFSET(dst, dstw);
   1596 
   1597 	/* For UNUSED dst. Uncommon, but possible. */
   1598 	if (dst == SLJIT_UNUSED)
   1599 		return SLJIT_SUCCESS;
   1600 
   1601 	if (FAST_IS_REG(dst))
   1602 		return ADD(reg_map[dst], RA, ZERO);
   1603 
   1604 	/* Memory. */
   1605 	return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
   1606 }
   1607 
   1608 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
   1609 {
   1610 	CHECK_ERROR();
   1611 	check_sljit_emit_fast_return(compiler, src, srcw);
   1612 	ADJUST_LOCAL_OFFSET(src, srcw);
   1613 
   1614 	if (FAST_IS_REG(src))
   1615 		FAIL_IF(ADD(RA, reg_map[src], ZERO));
   1616 
   1617 	else if (src & SLJIT_MEM)
   1618 		FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));
   1619 
   1620 	else if (src & SLJIT_IMM)
   1621 		FAIL_IF(load_immediate(compiler, RA, srcw));
   1622 
   1623 	return JR(RA);
   1624 }
   1625 
   1626 static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_si src1, sljit_sw src2)
   1627 {
   1628 	sljit_si overflow_ra = 0;
   1629 
   1630 	switch (GET_OPCODE(op)) {
   1631 	case SLJIT_MOV:
   1632 	case SLJIT_MOV_P:
   1633 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1634 		if (dst != src2)
   1635 			return ADD(reg_map[dst], reg_map[src2], ZERO);
   1636 		return SLJIT_SUCCESS;
   1637 
   1638 	case SLJIT_MOV_UI:
   1639 	case SLJIT_MOV_SI:
   1640 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1641 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1642 			if (op == SLJIT_MOV_SI)
   1643 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);
   1644 
   1645 		return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
   1646 		} else if (dst != src2)
   1647 			SLJIT_ASSERT_STOP();
   1648 
   1649 		return SLJIT_SUCCESS;
   1650 
   1651 	case SLJIT_MOV_UB:
   1652 	case SLJIT_MOV_SB:
   1653 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1654 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1655 			if (op == SLJIT_MOV_SB)
   1656 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);
   1657 
   1658 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
   1659 		} else if (dst != src2)
   1660 			SLJIT_ASSERT_STOP();
   1661 
   1662 		return SLJIT_SUCCESS;
   1663 
   1664 	case SLJIT_MOV_UH:
   1665 	case SLJIT_MOV_SH:
   1666 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1667 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1668 			if (op == SLJIT_MOV_SH)
   1669 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);
   1670 
   1671 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
   1672 		} else if (dst != src2)
   1673 			SLJIT_ASSERT_STOP();
   1674 
   1675 		return SLJIT_SUCCESS;
   1676 
   1677 	case SLJIT_NOT:
   1678 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1679 		if (op & SLJIT_SET_E)
   1680 			FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
   1681 		if (CHECK_FLAGS(SLJIT_SET_E))
   1682 			FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));
   1683 
   1684 		return SLJIT_SUCCESS;
   1685 
   1686 	case SLJIT_CLZ:
   1687 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1688 		if (op & SLJIT_SET_E)
   1689 			FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
   1690 		if (CHECK_FLAGS(SLJIT_SET_E))
   1691 			FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));
   1692 
   1693 		return SLJIT_SUCCESS;
   1694 
   1695 	case SLJIT_ADD:
   1696 		if (flags & SRC2_IMM) {
   1697 			if (op & SLJIT_SET_O) {
   1698 				FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
   1699 				if (src2 < 0)
   1700 					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
   1701 			}
   1702 
   1703 			if (op & SLJIT_SET_E)
   1704 				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));
   1705 
   1706 			if (op & SLJIT_SET_C) {
   1707 				if (src2 >= 0)
   1708 					FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
   1709 				else {
   1710 					FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
   1711 					FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
   1712 				}
   1713 			}
   1714 
   1715 			/* dst may be the same as src1 or src2. */
   1716 			if (CHECK_FLAGS(SLJIT_SET_E))
   1717 				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
   1718 
   1719 			if (op & SLJIT_SET_O) {
   1720 				FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));
   1721 
   1722 				if (src2 < 0)
   1723 					FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
   1724 			}
   1725 		} else {
   1726 			if (op & SLJIT_SET_O) {
   1727 				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1728 				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
   1729 
   1730 				if (src1 != dst)
   1731 					overflow_ra = reg_map[src1];
   1732 				else if (src2 != dst)
   1733 					overflow_ra = reg_map[src2];
   1734 				else {
   1735 					/* Rare ocasion. */
   1736 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1737 					overflow_ra = TMP_EREG2;
   1738 				}
   1739 			}
   1740 
   1741 			if (op & SLJIT_SET_E)
   1742 				FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));
   1743 
   1744 			if (op & SLJIT_SET_C)
   1745 				FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));
   1746 
   1747 			/* dst may be the same as src1 or src2. */
   1748 			if (CHECK_FLAGS(SLJIT_SET_E))
   1749 				FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));
   1750 
   1751 			if (op & SLJIT_SET_O) {
   1752 				FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
   1753 				FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
   1754 			}
   1755 		}
   1756 
   1757 		/* a + b >= a | b (otherwise, the carry should be set to 1). */
   1758 		if (op & SLJIT_SET_C)
   1759 			FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));
   1760 
   1761 		if (op & SLJIT_SET_O)
   1762 			return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
   1763 
   1764 		return SLJIT_SUCCESS;
   1765 
   1766 	case SLJIT_ADDC:
   1767 		if (flags & SRC2_IMM) {
   1768 			if (op & SLJIT_SET_C) {
   1769 				if (src2 >= 0)
   1770 					FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
   1771 				else {
   1772 					FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
   1773 					FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
   1774 				}
   1775 			}
   1776 
   1777 			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
   1778 
   1779 		} else {
   1780 			if (op & SLJIT_SET_C)
   1781 				FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1782 
   1783 			/* dst may be the same as src1 or src2. */
   1784 			FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
   1785 		}
   1786 
   1787 		if (op & SLJIT_SET_C)
   1788 			FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));
   1789 
   1790 		FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));
   1791 
   1792 		if (!(op & SLJIT_SET_C))
   1793 			return SLJIT_SUCCESS;
   1794 
   1795 		/* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
   1796 		FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
   1797 		FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
   1798 		/* Set carry flag. */
   1799 		return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);
   1800 
   1801 	case SLJIT_SUB:
   1802 		if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
   1803 			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
   1804 			src2 = TMP_REG2;
   1805 			flags &= ~SRC2_IMM;
   1806 		}
   1807 
   1808 		if (flags & SRC2_IMM) {
   1809 			if (op & SLJIT_SET_O) {
   1810 				FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));
   1811 
   1812 				if (src2 < 0)
   1813 					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
   1814 
   1815 				if (src1 != dst)
   1816 					overflow_ra = reg_map[src1];
   1817 				else {
   1818 					/* Rare ocasion. */
   1819 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1820 
   1821 					overflow_ra = TMP_EREG2;
   1822 				}
   1823 			}
   1824 
   1825 			if (op & SLJIT_SET_E)
   1826 				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));
   1827 
   1828 			if (op & SLJIT_SET_C) {
   1829 				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
   1830 				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
   1831 			}
   1832 
   1833 			/* dst may be the same as src1 or src2. */
   1834 			if (CHECK_FLAGS(SLJIT_SET_E))
   1835 				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
   1836 
   1837 		} else {
   1838 
   1839 			if (op & SLJIT_SET_O) {
   1840 				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1841 				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
   1842 
   1843 				if (src1 != dst)
   1844 					overflow_ra = reg_map[src1];
   1845 				else {
   1846 					/* Rare ocasion. */
   1847 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1848 					overflow_ra = TMP_EREG2;
   1849 				}
   1850 			}
   1851 
   1852 			if (op & SLJIT_SET_E)
   1853 				FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));
   1854 
   1855 			if (op & (SLJIT_SET_U | SLJIT_SET_C))
   1856 				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));
   1857 
   1858 			if (op & SLJIT_SET_U)
   1859 				FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));
   1860 
   1861 			if (op & SLJIT_SET_S) {
   1862 				FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
   1863 				FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
   1864 			}
   1865 
   1866 			/* dst may be the same as src1 or src2. */
   1867 			if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
   1868 				FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
   1869 		}
   1870 
   1871 		if (op & SLJIT_SET_O) {
   1872 			FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
   1873 			FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
   1874 			return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
   1875 		}
   1876 
   1877 		return SLJIT_SUCCESS;
   1878 
   1879 	case SLJIT_SUBC:
   1880 		if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
   1881 			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
   1882 			src2 = TMP_REG2;
   1883 			flags &= ~SRC2_IMM;
   1884 		}
   1885 
   1886 		if (flags & SRC2_IMM) {
   1887 			if (op & SLJIT_SET_C) {
   1888 				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
   1889 				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
   1890 			}
   1891 
   1892 			/* dst may be the same as src1 or src2. */
   1893 			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
   1894 
   1895 		} else {
   1896 			if (op & SLJIT_SET_C)
   1897 				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1898 				/* dst may be the same as src1 or src2. */
   1899 			FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
   1900 		}
   1901 
   1902 		if (op & SLJIT_SET_C)
   1903 			FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));
   1904 
   1905 		FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));
   1906 
   1907 		if (op & SLJIT_SET_C)
   1908 			FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));
   1909 
   1910 		return SLJIT_SUCCESS;
   1911 
   1912 #define EMIT_LOGICAL(op_imm, op_norm) \
   1913 	if (flags & SRC2_IMM) { \
   1914 		FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
   1915 		if (op & SLJIT_SET_E) \
   1916 			FAIL_IF(push_3_buffer( \
   1917 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
   1918 				ADDR_TMP_mapped, __LINE__)); \
   1919 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1920 			FAIL_IF(push_3_buffer( \
   1921 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1922 				ADDR_TMP_mapped, __LINE__)); \
   1923 	} else { \
   1924 		if (op & SLJIT_SET_E) \
   1925 			FAIL_IF(push_3_buffer( \
   1926 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
   1927 				reg_map[src2], __LINE__)); \
   1928 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1929 			FAIL_IF(push_3_buffer( \
   1930 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1931 				reg_map[src2], __LINE__)); \
   1932 	}
   1933 
   1934 	case SLJIT_AND:
   1935 		EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
   1936 		return SLJIT_SUCCESS;
   1937 
   1938 	case SLJIT_OR:
   1939 		EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
   1940 		return SLJIT_SUCCESS;
   1941 
   1942 	case SLJIT_XOR:
   1943 		EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
   1944 		return SLJIT_SUCCESS;
   1945 
   1946 #define EMIT_SHIFT(op_imm, op_norm) \
   1947 	if (flags & SRC2_IMM) { \
   1948 		if (op & SLJIT_SET_E) \
   1949 			FAIL_IF(push_3_buffer( \
   1950 				compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
   1951 				src2 & 0x3F, __LINE__)); \
   1952 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1953 			FAIL_IF(push_3_buffer( \
   1954 				compiler, op_imm, reg_map[dst], reg_map[src1], \
   1955 				src2 & 0x3F, __LINE__)); \
   1956 	} else { \
   1957 		if (op & SLJIT_SET_E) \
   1958 			FAIL_IF(push_3_buffer( \
   1959 				compiler, op_imm, reg_map[dst], reg_map[src1], \
   1960 				src2 & 0x3F, __LINE__)); \
   1961 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1962 			FAIL_IF(push_3_buffer( \
   1963 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1964 				reg_map[src2], __LINE__)); \
   1965 	}
   1966 
   1967 	case SLJIT_SHL:
   1968 		EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
   1969 		return SLJIT_SUCCESS;
   1970 
   1971 	case SLJIT_LSHR:
   1972 		EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
   1973 		return SLJIT_SUCCESS;
   1974 
   1975 	case SLJIT_ASHR:
   1976 		EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
   1977 		return SLJIT_SUCCESS;
   1978 	}
   1979 
   1980 	SLJIT_ASSERT_STOP();
   1981 	return SLJIT_SUCCESS;
   1982 }
   1983 
   1984 static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
   1985 {
   1986 	/* arg1 goes to TMP_REG1 or src reg.
   1987 	   arg2 goes to TMP_REG2, imm or src reg.
   1988 	   TMP_REG3 can be used for caching.
   1989 	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
   1990 	sljit_si dst_r = TMP_REG2;
   1991 	sljit_si src1_r;
   1992 	sljit_sw src2_r = 0;
   1993 	sljit_si sugg_src2_r = TMP_REG2;
   1994 
   1995 	if (!(flags & ALT_KEEP_CACHE)) {
   1996 		compiler->cache_arg = 0;
   1997 		compiler->cache_argw = 0;
   1998 	}
   1999 
   2000 	if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
   2001 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
   2002 			return SLJIT_SUCCESS;
   2003 		if (GET_FLAGS(op))
   2004 			flags |= UNUSED_DEST;
   2005 	} else if (FAST_IS_REG(dst)) {
   2006 		dst_r = dst;
   2007 		flags |= REG_DEST;
   2008 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
   2009 			sugg_src2_r = dst_r;
   2010 	} else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
   2011 		flags |= SLOW_DEST;
   2012 
   2013 	if (flags & IMM_OP) {
   2014 		if ((src2 & SLJIT_IMM) && src2w) {
   2015 			if ((!(flags & LOGICAL_OP)
   2016 					&& (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
   2017 					|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
   2018 				flags |= SRC2_IMM;
   2019 				src2_r = src2w;
   2020 			}
   2021 		}
   2022 
   2023 		if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
   2024 			if ((!(flags & LOGICAL_OP)
   2025 					&& (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
   2026 					|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
   2027 				flags |= SRC2_IMM;
   2028 				src2_r = src1w;
   2029 
   2030 				/* And swap arguments. */
   2031 				src1 = src2;
   2032 				src1w = src2w;
   2033 				src2 = SLJIT_IMM;
   2034 				/* src2w = src2_r unneeded. */
   2035 			}
   2036 		}
   2037 	}
   2038 
   2039 	/* Source 1. */
   2040 	if (FAST_IS_REG(src1)) {
   2041 		src1_r = src1;
   2042 		flags |= REG1_SOURCE;
   2043 	} else if (src1 & SLJIT_IMM) {
   2044 		if (src1w) {
   2045 			FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
   2046 			src1_r = TMP_REG1;
   2047 		} else
   2048 			src1_r = 0;
   2049 	} else {
   2050 		if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
   2051 			FAIL_IF(compiler->error);
   2052 		else
   2053 			flags |= SLOW_SRC1;
   2054 		src1_r = TMP_REG1;
   2055 	}
   2056 
   2057 	/* Source 2. */
   2058 	if (FAST_IS_REG(src2)) {
   2059 		src2_r = src2;
   2060 		flags |= REG2_SOURCE;
   2061 		if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
   2062 			dst_r = src2_r;
   2063 	} else if (src2 & SLJIT_IMM) {
   2064 		if (!(flags & SRC2_IMM)) {
   2065 			if (src2w) {
   2066 				FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
   2067 				src2_r = sugg_src2_r;
   2068 			} else {
   2069 				src2_r = 0;
   2070 				if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
   2071 					dst_r = 0;
   2072 			}
   2073 		}
   2074 	} else {
   2075 		if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
   2076 			FAIL_IF(compiler->error);
   2077 		else
   2078 			flags |= SLOW_SRC2;
   2079 		src2_r = sugg_src2_r;
   2080 	}
   2081 
   2082 	if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
   2083 		SLJIT_ASSERT(src2_r == TMP_REG2);
   2084 		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
   2085 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
   2086 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
   2087 		} else {
   2088 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
   2089 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
   2090 		}
   2091 	} else if (flags & SLOW_SRC1)
   2092 		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
   2093 	else if (flags & SLOW_SRC2)
   2094 		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));
   2095 
   2096 	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
   2097 
   2098 	if (dst & SLJIT_MEM) {
   2099 		if (!(flags & SLOW_DEST)) {
   2100 			getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
   2101 			return compiler->error;
   2102 		}
   2103 
   2104 		return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
   2105 	}
   2106 
   2107 	return SLJIT_SUCCESS;
   2108 }
   2109 
   2110 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw, sljit_si type)
   2111 {
   2112 	sljit_si sugg_dst_ar, dst_ar;
   2113 	sljit_si flags = GET_ALL_FLAGS(op);
   2114 
   2115 	CHECK_ERROR();
   2116 	check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type);
   2117 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2118 
   2119 	if (dst == SLJIT_UNUSED)
   2120 		return SLJIT_SUCCESS;
   2121 
   2122 	op = GET_OPCODE(op);
   2123 	sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];
   2124 
   2125 	compiler->cache_arg = 0;
   2126 	compiler->cache_argw = 0;
   2127 	if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
   2128 		ADJUST_LOCAL_OFFSET(src, srcw);
   2129 		FAIL_IF(emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
   2130 		src = TMP_REG1;
   2131 		srcw = 0;
   2132 	}
   2133 
   2134 	switch (type) {
   2135 	case SLJIT_C_EQUAL:
   2136 	case SLJIT_C_NOT_EQUAL:
   2137 		FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
   2138 		dst_ar = sugg_dst_ar;
   2139 		break;
   2140 	case SLJIT_C_LESS:
   2141 	case SLJIT_C_GREATER_EQUAL:
   2142 	case SLJIT_C_FLOAT_LESS:
   2143 	case SLJIT_C_FLOAT_GREATER_EQUAL:
   2144 		dst_ar = ULESS_FLAG;
   2145 		break;
   2146 	case SLJIT_C_GREATER:
   2147 	case SLJIT_C_LESS_EQUAL:
   2148 	case SLJIT_C_FLOAT_GREATER:
   2149 	case SLJIT_C_FLOAT_LESS_EQUAL:
   2150 		dst_ar = UGREATER_FLAG;
   2151 		break;
   2152 	case SLJIT_C_SIG_LESS:
   2153 	case SLJIT_C_SIG_GREATER_EQUAL:
   2154 		dst_ar = LESS_FLAG;
   2155 		break;
   2156 	case SLJIT_C_SIG_GREATER:
   2157 	case SLJIT_C_SIG_LESS_EQUAL:
   2158 		dst_ar = GREATER_FLAG;
   2159 		break;
   2160 	case SLJIT_C_OVERFLOW:
   2161 	case SLJIT_C_NOT_OVERFLOW:
   2162 		dst_ar = OVERFLOW_FLAG;
   2163 		break;
   2164 	case SLJIT_C_MUL_OVERFLOW:
   2165 	case SLJIT_C_MUL_NOT_OVERFLOW:
   2166 		FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
   2167 		dst_ar = sugg_dst_ar;
   2168 		type ^= 0x1; /* Flip type bit for the XORI below. */
   2169 		break;
   2170 	case SLJIT_C_FLOAT_EQUAL:
   2171 	case SLJIT_C_FLOAT_NOT_EQUAL:
   2172 		dst_ar = EQUAL_FLAG;
   2173 		break;
   2174 
   2175 	default:
   2176 		SLJIT_ASSERT_STOP();
   2177 		dst_ar = sugg_dst_ar;
   2178 		break;
   2179 	}
   2180 
   2181 	if (type & 0x1) {
   2182 		FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
   2183 		dst_ar = sugg_dst_ar;
   2184 	}
   2185 
   2186 	if (op >= SLJIT_ADD) {
   2187 		if (TMP_REG2_mapped != dst_ar)
   2188 			FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
   2189 		return emit_op(compiler, op | flags, CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
   2190 	}
   2191 
   2192 	if (dst & SLJIT_MEM)
   2193 		return emit_op_mem(compiler, WORD_DATA, dst_ar, dst, dstw);
   2194 
   2195 	if (sugg_dst_ar != dst_ar)
   2196 		return ADD(sugg_dst_ar, dst_ar, ZERO);
   2197 
   2198 	return SLJIT_SUCCESS;
   2199 }
   2200 
   2201 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op) {
   2202 	CHECK_ERROR();
   2203 	check_sljit_emit_op0(compiler, op);
   2204 
   2205 	op = GET_OPCODE(op);
   2206 	switch (op) {
   2207 	case SLJIT_NOP:
   2208 		return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);
   2209 
   2210 	case SLJIT_BREAKPOINT:
   2211 		return PI(BPT);
   2212 
   2213 	case SLJIT_UMUL:
   2214 	case SLJIT_SMUL:
   2215 	case SLJIT_UDIV:
   2216 	case SLJIT_SDIV:
   2217 		SLJIT_ASSERT_STOP();
   2218 	}
   2219 
   2220 	return SLJIT_SUCCESS;
   2221 }
   2222 
   2223 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
   2224 {
   2225 	CHECK_ERROR();
   2226 	check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
   2227 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2228 	ADJUST_LOCAL_OFFSET(src, srcw);
   2229 
   2230 	switch (GET_OPCODE(op)) {
   2231 	case SLJIT_MOV:
   2232 	case SLJIT_MOV_P:
   2233 		return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2234 
   2235 	case SLJIT_MOV_UI:
   2236 		return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2237 
   2238 	case SLJIT_MOV_SI:
   2239 		return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2240 
   2241 	case SLJIT_MOV_UB:
   2242 		return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
   2243 
   2244 	case SLJIT_MOV_SB:
   2245 		return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
   2246 
   2247 	case SLJIT_MOV_UH:
   2248 		return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
   2249 
   2250 	case SLJIT_MOV_SH:
   2251 		return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
   2252 
   2253 	case SLJIT_MOVU:
   2254 	case SLJIT_MOVU_P:
   2255 		return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2256 
   2257 	case SLJIT_MOVU_UI:
   2258 		return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2259 
   2260 	case SLJIT_MOVU_SI:
   2261 		return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2262 
   2263 	case SLJIT_MOVU_UB:
   2264 		return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
   2265 
   2266 	case SLJIT_MOVU_SB:
   2267 		return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
   2268 
   2269 	case SLJIT_MOVU_UH:
   2270 		return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
   2271 
   2272 	case SLJIT_MOVU_SH:
   2273 		return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
   2274 
   2275 	case SLJIT_NOT:
   2276 		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
   2277 
   2278 	case SLJIT_NEG:
   2279 		return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
   2280 
   2281 	case SLJIT_CLZ:
   2282 		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
   2283 	}
   2284 
   2285 	return SLJIT_SUCCESS;
   2286 }
   2287 
   2288 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
   2289 {
   2290 	CHECK_ERROR();
   2291 	check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
   2292 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2293 	ADJUST_LOCAL_OFFSET(src1, src1w);
   2294 	ADJUST_LOCAL_OFFSET(src2, src2w);
   2295 
   2296 	switch (GET_OPCODE(op)) {
   2297 	case SLJIT_ADD:
   2298 	case SLJIT_ADDC:
   2299 		return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2300 
   2301 	case SLJIT_SUB:
   2302 	case SLJIT_SUBC:
   2303 		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2304 
   2305 	case SLJIT_MUL:
   2306 		return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
   2307 
   2308 	case SLJIT_AND:
   2309 	case SLJIT_OR:
   2310 	case SLJIT_XOR:
   2311 		return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2312 
   2313 	case SLJIT_SHL:
   2314 	case SLJIT_LSHR:
   2315 	case SLJIT_ASHR:
   2316 		if (src2 & SLJIT_IMM)
   2317 			src2w &= 0x3f;
   2318 		if (op & SLJIT_INT_OP)
   2319 			src2w &= 0x1f;
   2320 
   2321 		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2322 	}
   2323 
   2324 	return SLJIT_SUCCESS;
   2325 }
   2326 
   2327 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
   2328 {
   2329 	struct sljit_label *label;
   2330 
   2331 	flush_buffer(compiler);
   2332 
   2333 	CHECK_ERROR_PTR();
   2334 	check_sljit_emit_label(compiler);
   2335 
   2336 	if (compiler->last_label && compiler->last_label->size == compiler->size)
   2337 		return compiler->last_label;
   2338 
   2339 	label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
   2340 	PTR_FAIL_IF(!label);
   2341 	set_label(label, compiler);
   2342 	return label;
   2343 }
   2344 
   2345 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
   2346 {
   2347 	sljit_si src_r = TMP_REG2;
   2348 	struct sljit_jump *jump = NULL;
   2349 
   2350 	flush_buffer(compiler);
   2351 
   2352 	CHECK_ERROR();
   2353 	check_sljit_emit_ijump(compiler, type, src, srcw);
   2354 	ADJUST_LOCAL_OFFSET(src, srcw);
   2355 
   2356 	if (FAST_IS_REG(src)) {
   2357 		if (reg_map[src] != 0)
   2358 			src_r = src;
   2359 		else
   2360 			FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
   2361 	}
   2362 
   2363 	if (type >= SLJIT_CALL0) {
   2364 		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
   2365 		if (src & (SLJIT_IMM | SLJIT_MEM)) {
   2366 			if (src & SLJIT_IMM)
   2367 				FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
   2368 			else {
   2369 				SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
   2370 				FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
   2371 			}
   2372 
   2373 			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
   2374 
   2375 			FAIL_IF(ADDI_SOLO(54, 54, -16));
   2376 
   2377 			FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));
   2378 
   2379 			return ADDI_SOLO(54, 54, 16);
   2380 		}
   2381 
   2382 		/* Register input. */
   2383 		if (type >= SLJIT_CALL1)
   2384 			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
   2385 
   2386 		FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));
   2387 
   2388 		FAIL_IF(ADDI_SOLO(54, 54, -16));
   2389 
   2390 		FAIL_IF(JALR_SOLO(reg_map[src_r]));
   2391 
   2392 		return ADDI_SOLO(54, 54, 16);
   2393 	}
   2394 
   2395 	if (src & SLJIT_IMM) {
   2396 		jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
   2397 		FAIL_IF(!jump);
   2398 		set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
   2399 		jump->u.target = srcw;
   2400 		FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
   2401 
   2402 		if (type >= SLJIT_FAST_CALL) {
   2403 			FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
   2404 			jump->addr = compiler->size;
   2405 			FAIL_IF(JR_SOLO(reg_map[src_r]));
   2406 		} else {
   2407 			jump->addr = compiler->size;
   2408 			FAIL_IF(JR_SOLO(reg_map[src_r]));
   2409 		}
   2410 
   2411 		return SLJIT_SUCCESS;
   2412 
   2413 	} else if (src & SLJIT_MEM)
   2414 		FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
   2415 
   2416 	FAIL_IF(JR_SOLO(reg_map[src_r]));
   2417 
   2418 	if (jump)
   2419 		jump->addr = compiler->size;
   2420 
   2421 	return SLJIT_SUCCESS;
   2422 }
   2423 
   2424 #define BR_Z(src) \
   2425 	inst = BEQZ_X1 | SRCA_X1(src); \
   2426 	flags = IS_COND;
   2427 
   2428 #define BR_NZ(src) \
   2429 	inst = BNEZ_X1 | SRCA_X1(src); \
   2430 	flags = IS_COND;
   2431 
   2432 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
   2433 {
   2434 	struct sljit_jump *jump;
   2435 	sljit_ins inst;
   2436 	sljit_si flags = 0;
   2437 
   2438 	flush_buffer(compiler);
   2439 
   2440 	CHECK_ERROR_PTR();
   2441 	check_sljit_emit_jump(compiler, type);
   2442 
   2443 	jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
   2444 	PTR_FAIL_IF(!jump);
   2445 	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
   2446 	type &= 0xff;
   2447 
   2448 	switch (type) {
   2449 	case SLJIT_C_EQUAL:
   2450 	case SLJIT_C_FLOAT_NOT_EQUAL:
   2451 		BR_NZ(EQUAL_FLAG);
   2452 		break;
   2453 	case SLJIT_C_NOT_EQUAL:
   2454 	case SLJIT_C_FLOAT_EQUAL:
   2455 		BR_Z(EQUAL_FLAG);
   2456 		break;
   2457 	case SLJIT_C_LESS:
   2458 	case SLJIT_C_FLOAT_LESS:
   2459 		BR_Z(ULESS_FLAG);
   2460 		break;
   2461 	case SLJIT_C_GREATER_EQUAL:
   2462 	case SLJIT_C_FLOAT_GREATER_EQUAL:
   2463 		BR_NZ(ULESS_FLAG);
   2464 		break;
   2465 	case SLJIT_C_GREATER:
   2466 	case SLJIT_C_FLOAT_GREATER:
   2467 		BR_Z(UGREATER_FLAG);
   2468 		break;
   2469 	case SLJIT_C_LESS_EQUAL:
   2470 	case SLJIT_C_FLOAT_LESS_EQUAL:
   2471 		BR_NZ(UGREATER_FLAG);
   2472 		break;
   2473 	case SLJIT_C_SIG_LESS:
   2474 		BR_Z(LESS_FLAG);
   2475 		break;
   2476 	case SLJIT_C_SIG_GREATER_EQUAL:
   2477 		BR_NZ(LESS_FLAG);
   2478 		break;
   2479 	case SLJIT_C_SIG_GREATER:
   2480 		BR_Z(GREATER_FLAG);
   2481 		break;
   2482 	case SLJIT_C_SIG_LESS_EQUAL:
   2483 		BR_NZ(GREATER_FLAG);
   2484 		break;
   2485 	case SLJIT_C_OVERFLOW:
   2486 	case SLJIT_C_MUL_OVERFLOW:
   2487 		BR_Z(OVERFLOW_FLAG);
   2488 		break;
   2489 	case SLJIT_C_NOT_OVERFLOW:
   2490 	case SLJIT_C_MUL_NOT_OVERFLOW:
   2491 		BR_NZ(OVERFLOW_FLAG);
   2492 		break;
   2493 	default:
   2494 		/* Not conditional branch. */
   2495 		inst = 0;
   2496 		break;
   2497 	}
   2498 
   2499 	jump->flags |= flags;
   2500 
   2501 	if (inst) {
   2502 		inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
   2503 		PTR_FAIL_IF(PI(inst));
   2504 	}
   2505 
   2506 	PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
   2507 	if (type <= SLJIT_JUMP) {
   2508 		jump->addr = compiler->size;
   2509 		PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
   2510 	} else {
   2511 		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
   2512 		/* Cannot be optimized out if type is >= CALL0. */
   2513 		jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
   2514 		PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
   2515 		jump->addr = compiler->size;
   2516 		PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
   2517 	}
   2518 
   2519 	return jump;
   2520 }
   2521 
   2522 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
   2523 {
   2524 	return 0;
   2525 }
   2526 
   2527 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
   2528 {
   2529 	SLJIT_ASSERT_STOP();
   2530 }
   2531 
   2532 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
   2533 {
   2534 	SLJIT_ASSERT_STOP();
   2535 }
   2536 
   2537 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
   2538 {
   2539 	struct sljit_const *const_;
   2540 	sljit_si reg;
   2541 
   2542 	flush_buffer(compiler);
   2543 
   2544 	CHECK_ERROR_PTR();
   2545 	check_sljit_emit_const(compiler, dst, dstw, init_value);
   2546 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2547 
   2548 	const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
   2549 	PTR_FAIL_IF(!const_);
   2550 	set_const(const_, compiler);
   2551 
   2552 	reg = FAST_IS_REG(dst) ? dst : TMP_REG2;
   2553 
   2554 	PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));
   2555 
   2556 	if (dst & SLJIT_MEM)
   2557 		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
   2558 	return const_;
   2559 }
   2560 
   2561 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
   2562 {
   2563 	sljit_ins *inst = (sljit_ins *)addr;
   2564 
   2565 	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
   2566 	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
   2567 	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
   2568 	SLJIT_CACHE_FLUSH(inst, inst + 3);
   2569 }
   2570 
   2571 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
   2572 {
   2573 	sljit_ins *inst = (sljit_ins *)addr;
   2574 
   2575 	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
   2576 	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
   2577 	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
   2578 	inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
   2579 	SLJIT_CACHE_FLUSH(inst, inst + 4);
   2580 }
   2581