Home | History | Annotate | Line # | Download | only in sljit_src
sljitNativeTILEGX_64.c revision 1.2
      1 /*	$NetBSD: sljitNativeTILEGX_64.c,v 1.2 2014/06/17 19:33:20 alnsn Exp $	*/
      2 
      3 /*
      4  *    Stack-less Just-In-Time compiler
      5  *
      6  *    Copyright 2013-2013 Tilera Corporation(jiwang (at) tilera.com). All rights reserved.
      7  *    Copyright 2009-2012 Zoltan Herczeg (hzmester (at) freemail.hu). All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without modification, are
     10  * permitted provided that the following conditions are met:
     11  *
     12  *   1. Redistributions of source code must retain the above copyright notice, this list of
     13  *      conditions and the following disclaimer.
     14  *
     15  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
     16  *      of conditions and the following disclaimer in the documentation and/or other materials
     17  *      provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
     20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
     22  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     24  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     25  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     27  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 /* TileGX architecture. */
     31 /* Contributed by Tilera Corporation. */
     32 #include "sljitNativeTILEGX-encoder.c"
     33 
     34 #define SIMM_8BIT_MAX (0x7f)
     35 #define SIMM_8BIT_MIN (-0x80)
     36 #define SIMM_16BIT_MAX (0x7fff)
     37 #define SIMM_16BIT_MIN (-0x8000)
     38 #define SIMM_17BIT_MAX (0xffff)
     39 #define SIMM_17BIT_MIN (-0x10000)
     40 #define SIMM_32BIT_MIN (-0x80000000)
     41 #define SIMM_32BIT_MAX (0x7fffffff)
     42 #define SIMM_48BIT_MIN (0x800000000000L)
     43 #define SIMM_48BIT_MAX (0x7fffffff0000L)
     44 #define IMM16(imm) ((imm) & 0xffff)
     45 
     46 #define UIMM_16BIT_MAX (0xffff)
     47 
     48 #define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
     49 #define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
     50 #define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
     51 #define ADDR_TMP (SLJIT_NO_REGISTERS + 4)
     52 #define PIC_ADDR_REG TMP_REG2
     53 
     54 static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
     55 	63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
     56 };
     57 
     58 #define SLJIT_LOCALS_REG_mapped 54
     59 #define TMP_REG1_mapped 5
     60 #define TMP_REG2_mapped 16
     61 #define TMP_REG3_mapped 6
     62 #define ADDR_TMP_mapped 7
     63 #define SLJIT_SAVED_REG1_mapped 30
     64 #define SLJIT_SAVED_REG2_mapped 31
     65 #define SLJIT_SAVED_REG3_mapped 32
     66 #define SLJIT_SAVED_EREG1_mapped 33
     67 #define SLJIT_SAVED_EREG2_mapped 34
     68 
     69 /* Flags are keept in volatile registers. */
     70 #define EQUAL_FLAG 8
     71 /* And carry flag as well. */
     72 #define ULESS_FLAG 9
     73 #define UGREATER_FLAG 10
     74 #define LESS_FLAG 11
     75 #define GREATER_FLAG 12
     76 #define OVERFLOW_FLAG 13
     77 
     78 #define ZERO 63
     79 #define RA 55
     80 #define TMP_EREG1 14
     81 #define TMP_EREG2 15
     82 
     83 #define LOAD_DATA 0x01
     84 #define WORD_DATA 0x00
     85 #define BYTE_DATA 0x02
     86 #define HALF_DATA 0x04
     87 #define INT_DATA 0x06
     88 #define SIGNED_DATA 0x08
     89 #define DOUBLE_DATA 0x10
     90 
     91 /* Separates integer and floating point registers */
     92 #define GPR_REG 0xf
     93 
     94 #define MEM_MASK 0x1f
     95 
     96 #define WRITE_BACK 0x00020
     97 #define ARG_TEST 0x00040
     98 #define ALT_KEEP_CACHE 0x00080
     99 #define CUMULATIVE_OP 0x00100
    100 #define LOGICAL_OP 0x00200
    101 #define IMM_OP 0x00400
    102 #define SRC2_IMM 0x00800
    103 
    104 #define UNUSED_DEST 0x01000
    105 #define REG_DEST 0x02000
    106 #define REG1_SOURCE 0x04000
    107 #define REG2_SOURCE 0x08000
    108 #define SLOW_SRC1 0x10000
    109 #define SLOW_SRC2 0x20000
    110 #define SLOW_DEST 0x40000
    111 
    112 /* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
    113  */
    114 #define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
    115 
    116 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char *sljit_get_platform_name(void)
    117 {
    118 	return "TileGX" SLJIT_CPUINFO;
    119 }
    120 
    121 /* Length of an instruction word */
    122 typedef sljit_uw sljit_ins;
    123 
    124 struct jit_instr {
    125 	const struct tilegx_opcode* opcode;
    126 	tilegx_pipeline pipe;
    127 	unsigned long input_registers;
    128 	unsigned long output_registers;
    129 	int operand_value[4];
    130 	int line;
    131 };
    132 
    133 /* Opcode Helper Macros */
    134 #define TILEGX_X_MODE 0
    135 
    136 #define X_MODE create_Mode(TILEGX_X_MODE)
    137 
    138 #define FNOP_X0 \
    139 	create_Opcode_X0(RRR_0_OPCODE_X0) | \
    140 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    141 	create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)
    142 
    143 #define FNOP_X1 \
    144 	create_Opcode_X1(RRR_0_OPCODE_X1) | \
    145 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    146 	create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)
    147 
    148 #define NOP \
    149 	create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1
    150 
    151 #define ANOP_X0 \
    152 	create_Opcode_X0(RRR_0_OPCODE_X0) | \
    153 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    154 	create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)
    155 
    156 #define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    157 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    158 	create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
    159 	create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0
    160 
    161 #define ADD_X1 \
    162 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    163 	create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0
    164 
    165 #define ADDI_X1 \
    166 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    167 	create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0
    168 
    169 #define SUB_X1 \
    170 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    171 	create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0
    172 
    173 #define NOR_X1 \
    174 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    175 	create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0
    176 
    177 #define OR_X1 \
    178 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    179 	create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0
    180 
    181 #define AND_X1 \
    182 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    183 	create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0
    184 
    185 #define XOR_X1 \
    186 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    187 	create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0
    188 
    189 #define CMOVNEZ_X0 \
    190 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    191 	create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1
    192 
    193 #define CMOVEQZ_X0 \
    194 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    195 	create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1
    196 
    197 #define ADDLI_X1 \
    198 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0
    199 
    200 #define V4INT_L_X1 \
    201 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    202 	create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0
    203 
    204 #define BFEXTU_X0 \
    205 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
    206 	create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1
    207 
    208 #define BFEXTS_X0 \
    209 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
    210 	create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1
    211 
    212 #define SHL16INSLI_X1 \
    213 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0
    214 
    215 #define ST_X1 \
    216 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    217 	create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0
    218 
    219 #define LD_X1 \
    220 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    221 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    222 	create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0
    223 
    224 #define JR_X1 \
    225 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    226 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    227 	create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0
    228 
    229 #define JALR_X1 \
    230 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    231 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    232 	create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0
    233 
    234 #define CLZ_X0 \
    235 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    236 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    237 	create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1
    238 
    239 #define CMPLTUI_X1 \
    240 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    241 	create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0
    242 
    243 #define CMPLTU_X1 \
    244 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    245 	create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0
    246 
    247 #define CMPLTS_X1 \
    248 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    249 	create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0
    250 
    251 #define XORI_X1 \
    252 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    253 	create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0
    254 
    255 #define ORI_X1 \
    256 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    257 	create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0
    258 
    259 #define ANDI_X1 \
    260 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    261 	create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0
    262 
    263 #define SHLI_X1 \
    264 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    265 	create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0
    266 
    267 #define SHL_X1 \
    268 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    269 	create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0
    270 
    271 #define SHRSI_X1 \
    272 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    273 	create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0
    274 
    275 #define SHRS_X1 \
    276 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    277 	create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0
    278 
    279 #define SHRUI_X1 \
    280 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    281 	create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0
    282 
    283 #define SHRU_X1 \
    284 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    285 	create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0
    286 
    287 #define BEQZ_X1 \
    288 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
    289 	create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0
    290 
    291 #define BNEZ_X1 \
    292 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
    293 	create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0
    294 
    295 #define J_X1 \
    296 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
    297 	create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0
    298 
    299 #define JAL_X1 \
    300 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
    301 	create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0
    302 
    303 #define DEST_X0(x) create_Dest_X0(x)
    304 #define SRCA_X0(x) create_SrcA_X0(x)
    305 #define SRCB_X0(x) create_SrcB_X0(x)
    306 #define DEST_X1(x) create_Dest_X1(x)
    307 #define SRCA_X1(x) create_SrcA_X1(x)
    308 #define SRCB_X1(x) create_SrcB_X1(x)
    309 #define IMM16_X1(x) create_Imm16_X1(x)
    310 #define IMM8_X1(x) create_Imm8_X1(x)
    311 #define BFSTART_X0(x) create_BFStart_X0(x)
    312 #define BFEND_X0(x) create_BFEnd_X0(x)
    313 #define SHIFTIMM_X1(x) create_ShAmt_X1(x)
    314 #define JOFF_X1(x) create_JumpOff_X1(x)
    315 #define BOFF_X1(x) create_BrOff_X1(x)
    316 
    317 static SLJIT_CONST tilegx_mnemonic data_transfer_insts[16] = {
    318 	/* u w s */ TILEGX_OPC_ST   /* st */,
    319 	/* u w l */ TILEGX_OPC_LD   /* ld */,
    320 	/* u b s */ TILEGX_OPC_ST1  /* st1 */,
    321 	/* u b l */ TILEGX_OPC_LD1U /* ld1u */,
    322 	/* u h s */ TILEGX_OPC_ST2  /* st2 */,
    323 	/* u h l */ TILEGX_OPC_LD2U /* ld2u */,
    324 	/* u i s */ TILEGX_OPC_ST4  /* st4 */,
    325 	/* u i l */ TILEGX_OPC_LD4U /* ld4u */,
    326 	/* s w s */ TILEGX_OPC_ST   /* st */,
    327 	/* s w l */ TILEGX_OPC_LD   /* ld */,
    328 	/* s b s */ TILEGX_OPC_ST1  /* st1 */,
    329 	/* s b l */ TILEGX_OPC_LD1S /* ld1s */,
    330 	/* s h s */ TILEGX_OPC_ST2  /* st2 */,
    331 	/* s h l */ TILEGX_OPC_LD2S /* ld2s */,
    332 	/* s i s */ TILEGX_OPC_ST4  /* st4 */,
    333 	/* s i l */ TILEGX_OPC_LD4S /* ld4s */,
    334 };
    335 
    336 #ifdef TILEGX_JIT_DEBUG
    337 static sljit_si push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
    338 {
    339 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    340 	FAIL_IF(!ptr);
    341 	*ptr = ins;
    342 	compiler->size++;
    343 	printf("|%04d|S0|:\t\t", line);
    344 	print_insn_tilegx(ptr);
    345 	return SLJIT_SUCCESS;
    346 }
    347 
    348 static sljit_si push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
    349 {
    350 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    351 	FAIL_IF(!ptr);
    352 	*ptr = ins;
    353 	compiler->size++;
    354 	return SLJIT_SUCCESS;
    355 }
    356 
    357 #define push_inst(a, b) push_inst_debug(a, b, __LINE__)
    358 #else
    359 static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
    360 {
    361 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    362 	FAIL_IF(!ptr);
    363 	*ptr = ins;
    364 	compiler->size++;
    365 	return SLJIT_SUCCESS;
    366 }
    367 #endif
    368 
    369 #define BUNDLE_FORMAT_MASK(p0, p1, p2) \
    370 	((p0) | ((p1) << 8) | ((p2) << 16))
    371 
    372 #define BUNDLE_FORMAT(p0, p1, p2) \
    373 	{ \
    374 		{ \
    375 			(tilegx_pipeline)(p0), \
    376 			(tilegx_pipeline)(p1), \
    377 			(tilegx_pipeline)(p2) \
    378 		}, \
    379 		BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
    380 	}
    381 
    382 #define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS
    383 
    384 #define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)
    385 
    386 #define PI(encoding) \
    387 	push_inst(compiler, encoding)
    388 
    389 #define PB3(opcode, dst, srca, srcb) \
    390 	push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)
    391 
    392 #define PB2(opcode, dst, src) \
    393 	push_2_buffer(compiler, opcode, dst, src, __LINE__)
    394 
    395 #define JR(reg) \
    396 	push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)
    397 
    398 #define ADD(dst, srca, srcb) \
    399 	push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)
    400 
    401 #define SUB(dst, srca, srcb) \
    402 	push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)
    403 
    404 #define NOR(dst, srca, srcb) \
    405 	push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)
    406 
    407 #define OR(dst, srca, srcb) \
    408 	push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)
    409 
    410 #define XOR(dst, srca, srcb) \
    411 	push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)
    412 
    413 #define AND(dst, srca, srcb) \
    414 	push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)
    415 
    416 #define CLZ(dst, src) \
    417 	push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)
    418 
    419 #define SHLI(dst, srca, srcb) \
    420 	push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)
    421 
    422 #define SHRUI(dst, srca, imm) \
    423 	push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)
    424 
    425 #define XORI(dst, srca, imm) \
    426 	push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)
    427 
    428 #define ORI(dst, srca, imm) \
    429 	push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)
    430 
    431 #define CMPLTU(dst, srca, srcb) \
    432 	push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)
    433 
    434 #define CMPLTS(dst, srca, srcb) \
    435 	push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)
    436 
    437 #define CMPLTUI(dst, srca, imm) \
    438 	push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)
    439 
    440 #define CMOVNEZ(dst, srca, srcb) \
    441 	push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)
    442 
    443 #define CMOVEQZ(dst, srca, srcb) \
    444 	push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)
    445 
    446 #define ADDLI(dst, srca, srcb) \
    447 	push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)
    448 
    449 #define SHL16INSLI(dst, srca, srcb) \
    450 	push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)
    451 
    452 #define LD_ADD(dst, addr, adjust) \
    453 	push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)
    454 
    455 #define ST_ADD(src, addr, adjust) \
    456 	push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)
    457 
    458 #define LD(dst, addr) \
    459 	push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)
    460 
    461 #define BFEXTU(dst, src, start, end) \
    462 	push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)
    463 
    464 #define BFEXTS(dst, src, start, end) \
    465 	push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)
    466 
    467 #define ADD_SOLO(dest, srca, srcb) \
    468 	push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))
    469 
    470 #define ADDI_SOLO(dest, srca, imm) \
    471 	push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))
    472 
    473 #define ADDLI_SOLO(dest, srca, imm) \
    474 	push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
    475 
    476 #define SHL16INSLI_SOLO(dest, srca, imm) \
    477 	push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
    478 
    479 #define JALR_SOLO(reg) \
    480 	push_inst(compiler, JALR_X1 | SRCA_X1(reg))
    481 
    482 #define JR_SOLO(reg) \
    483 	push_inst(compiler, JR_X1 | SRCA_X1(reg))
    484 
    485 struct Format {
    486 	/* Mapping of bundle issue slot to assigned pipe. */
    487 	tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
    488 
    489 	/* Mask of pipes used by this bundle. */
    490 	unsigned int pipe_mask;
    491 };
    492 
    493 const struct Format formats[] =
    494 {
    495 	/* In Y format we must always have something in Y2, since it has
    496 	* no fnop, so this conveys that Y2 must always be used. */
    497 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
    498 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
    499 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
    500 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),
    501 
    502 	/* Y format has three instructions. */
    503 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
    504 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
    505 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
    506 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
    507 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
    508 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),
    509 
    510 	/* X format has only two instructions. */
    511 	BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
    512 	BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
    513 };
    514 
    515 
    516 struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
    517 unsigned long inst_buf_index;
    518 
    519 tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
    520 {
    521 	/* FIXME: tile: we could pregenerate this. */
    522 	int pipe;
    523 	for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
    524 		;
    525 	return (tilegx_pipeline)(pipe);
    526 }
    527 
    528 void insert_nop(tilegx_mnemonic opc, int line)
    529 {
    530 	const struct tilegx_opcode* opcode = NULL;
    531 
    532 	memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);
    533 
    534 	opcode = &tilegx_opcodes[opc];
    535 	inst_buf[0].opcode = opcode;
    536 	inst_buf[0].pipe = get_any_valid_pipe(opcode);
    537 	inst_buf[0].input_registers = 0;
    538 	inst_buf[0].output_registers = 0;
    539 	inst_buf[0].line = line;
    540 	++inst_buf_index;
    541 }
    542 
    543 const struct Format* compute_format()
    544 {
    545 	unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
    546 		inst_buf[0].opcode->pipes,
    547 		inst_buf[1].opcode->pipes,
    548 		(inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));
    549 
    550 	const struct Format* match = NULL;
    551 	const struct Format *b = NULL;
    552 	unsigned int i = 0;
    553 	for (i; i < sizeof formats / sizeof formats[0]; i++) {
    554 		b = &formats[i];
    555 		if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
    556 			match = b;
    557 			break;
    558 		}
    559 	}
    560 
    561 	return match;
    562 }
    563 
    564 sljit_si assign_pipes()
    565 {
    566 	unsigned long output_registers = 0;
    567 	unsigned int i = 0;
    568 
    569 	if (inst_buf_index == 1) {
    570 		tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
    571 					? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
    572 		insert_nop(opc, __LINE__);
    573 	}
    574 
    575 	const struct Format* match = compute_format();
    576 
    577 	if (match == NULL)
    578 		return -1;
    579 
    580 	for (i = 0; i < inst_buf_index; i++) {
    581 
    582 		if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
    583 			return -1;
    584 
    585 		if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
    586 			return -1;
    587 
    588 		/* Don't include Rzero in the match set, to avoid triggering
    589 		   needlessly on 'prefetch' instrs. */
    590 
    591 		output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;
    592 
    593 		inst_buf[i].pipe = match->pipe[i];
    594 	}
    595 
    596 	/* If only 2 instrs, and in Y-mode, insert a nop. */
    597 	if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
    598 		insert_nop(TILEGX_OPC_FNOP, __LINE__);
    599 
    600 		/* Select the yet unassigned pipe. */
    601 		tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
    602 					+ TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
    603 					- (inst_buf[1].pipe + inst_buf[2].pipe)));
    604 
    605 		inst_buf[0].pipe = pipe;
    606 	}
    607 
    608 	return 0;
    609 }
    610 
    611 tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
    612 {
    613 	int i, val;
    614 	const struct tilegx_opcode* opcode = inst->opcode;
    615 	tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];
    616 
    617 	const struct tilegx_operand* operand = NULL;
    618 	for (i = 0; i < opcode->num_operands; i++) {
    619 		operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
    620 		val = inst->operand_value[i];
    621 
    622 		bits |= operand->insert(val);
    623 	}
    624 
    625 	return bits;
    626 }
    627 
    628 static sljit_si update_buffer(struct sljit_compiler *compiler)
    629 {
    630 	int count;
    631 	int i;
    632 	int orig_index = inst_buf_index;
    633 	struct jit_instr inst0 = inst_buf[0];
    634 	struct jit_instr inst1 = inst_buf[1];
    635 	struct jit_instr inst2 = inst_buf[2];
    636 	tilegx_bundle_bits bits = 0;
    637 
    638 	/* If the bundle is valid as is, perform the encoding and return 1. */
    639 	if (assign_pipes() == 0) {
    640 		for (i = 0; i < inst_buf_index; i++) {
    641 			bits |= get_bundle_bit(inst_buf + i);
    642 #ifdef TILEGX_JIT_DEBUG
    643 			printf("|%04d", inst_buf[i].line);
    644 #endif
    645 		}
    646 #ifdef TILEGX_JIT_DEBUG
    647 		if (inst_buf_index == 3)
    648 			printf("|M0|:\t");
    649 		else
    650 			printf("|M0|:\t\t");
    651 		print_insn_tilegx(&bits);
    652 #endif
    653 
    654 		inst_buf_index = 0;
    655 
    656 #ifdef TILEGX_JIT_DEBUG
    657 		return push_inst_nodebug(compiler, bits);
    658 #else
    659 		return push_inst(compiler, bits);
    660 #endif
    661 	}
    662 
    663 	/* If the bundle is invalid, split it in two. First encode the first two
    664 	   (or possibly 1) instructions, and then the last, separately. Note that
    665 	   assign_pipes may have re-ordered the instrs (by inserting no-ops in
    666 	   lower slots) so we need to reset them. */
    667 
    668 	inst_buf_index = orig_index - 1;
    669 	inst_buf[0] = inst0;
    670 	inst_buf[1] = inst1;
    671 	inst_buf[2] = inst2;
    672 	if (assign_pipes() == 0) {
    673 		for (i = 0; i < inst_buf_index; i++) {
    674 			bits |= get_bundle_bit(inst_buf + i);
    675 #ifdef TILEGX_JIT_DEBUG
    676 			printf("|%04d", inst_buf[i].line);
    677 #endif
    678 		}
    679 
    680 #ifdef TILEGX_JIT_DEBUG
    681 		if (inst_buf_index == 3)
    682 			printf("|M1|:\t");
    683 		else
    684 			printf("|M1|:\t\t");
    685 		print_insn_tilegx(&bits);
    686 #endif
    687 
    688 		if ((orig_index - 1) == 2) {
    689 			inst_buf[0] = inst2;
    690 			inst_buf_index = 1;
    691 		} else if ((orig_index - 1) == 1) {
    692 			inst_buf[0] = inst1;
    693 			inst_buf_index = 1;
    694 		} else
    695 			SLJIT_ASSERT_STOP();
    696 
    697 #ifdef TILEGX_JIT_DEBUG
    698 		return push_inst_nodebug(compiler, bits);
    699 #else
    700 		return push_inst(compiler, bits);
    701 #endif
    702 	} else {
    703 		/* We had 3 instrs of which the first 2 can't live in the same bundle.
    704 		   Split those two. Note that we don't try to then combine the second
    705 		   and third instr into a single bundle.  First instruction: */
    706 		inst_buf_index = 1;
    707 		inst_buf[0] = inst0;
    708 		inst_buf[1] = inst1;
    709 		inst_buf[2] = inst2;
    710 		if (assign_pipes() == 0) {
    711 			for (i = 0; i < inst_buf_index; i++) {
    712 				bits |= get_bundle_bit(inst_buf + i);
    713 #ifdef TILEGX_JIT_DEBUG
    714 				printf("|%04d", inst_buf[i].line);
    715 #endif
    716 			}
    717 
    718 #ifdef TILEGX_JIT_DEBUG
    719 			if (inst_buf_index == 3)
    720 				printf("|M2|:\t");
    721 			else
    722 				printf("|M2|:\t\t");
    723 			print_insn_tilegx(&bits);
    724 #endif
    725 
    726 			inst_buf[0] = inst1;
    727 			inst_buf[1] = inst2;
    728 			inst_buf_index = orig_index - 1;
    729 #ifdef TILEGX_JIT_DEBUG
    730 			return push_inst_nodebug(compiler, bits);
    731 #else
    732 			return push_inst(compiler, bits);
    733 #endif
    734 		} else
    735 			SLJIT_ASSERT_STOP();
    736 	}
    737 
    738 	SLJIT_ASSERT_STOP();
    739 }
    740 
    741 static sljit_si flush_buffer(struct sljit_compiler *compiler)
    742 {
    743 	while (inst_buf_index != 0)
    744 		update_buffer(compiler);
    745 }
    746 
    747 static sljit_si push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
    748 {
    749 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    750 		FAIL_IF(update_buffer(compiler));
    751 
    752 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    753 	inst_buf[inst_buf_index].opcode = opcode;
    754 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    755 	inst_buf[inst_buf_index].operand_value[0] = op0;
    756 	inst_buf[inst_buf_index].operand_value[1] = op1;
    757 	inst_buf[inst_buf_index].operand_value[2] = op2;
    758 	inst_buf[inst_buf_index].operand_value[3] = op3;
    759 	inst_buf[inst_buf_index].input_registers = 1L << op1;
    760 	inst_buf[inst_buf_index].output_registers = 1L << op0;
    761 	inst_buf[inst_buf_index].line = line;
    762 	inst_buf_index++;
    763 
    764 	return SLJIT_SUCCESS;
    765 }
    766 
    767 static sljit_si push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
    768 {
    769 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    770 		FAIL_IF(update_buffer(compiler));
    771 
    772 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    773 	inst_buf[inst_buf_index].opcode = opcode;
    774 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    775 	inst_buf[inst_buf_index].operand_value[0] = op0;
    776 	inst_buf[inst_buf_index].operand_value[1] = op1;
    777 	inst_buf[inst_buf_index].operand_value[2] = op2;
    778 	inst_buf[inst_buf_index].line = line;
    779 
    780 	switch (opc) {
    781 	case TILEGX_OPC_ST_ADD:
    782 		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
    783 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    784 		break;
    785 	case TILEGX_OPC_LD_ADD:
    786 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    787 		inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
    788 		break;
    789 	case TILEGX_OPC_ADD:
    790 	case TILEGX_OPC_AND:
    791 	case TILEGX_OPC_SUB:
    792 	case TILEGX_OPC_OR:
    793 	case TILEGX_OPC_XOR:
    794 	case TILEGX_OPC_NOR:
    795 	case TILEGX_OPC_SHL:
    796 	case TILEGX_OPC_SHRU:
    797 	case TILEGX_OPC_SHRS:
    798 	case TILEGX_OPC_CMPLTU:
    799 	case TILEGX_OPC_CMPLTS:
    800 	case TILEGX_OPC_CMOVEQZ:
    801 	case TILEGX_OPC_CMOVNEZ:
    802 		inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
    803 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    804 		break;
    805 	case TILEGX_OPC_ADDLI:
    806 	case TILEGX_OPC_XORI:
    807 	case TILEGX_OPC_ORI:
    808 	case TILEGX_OPC_SHLI:
    809 	case TILEGX_OPC_SHRUI:
    810 	case TILEGX_OPC_SHRSI:
    811 	case TILEGX_OPC_SHL16INSLI:
    812 	case TILEGX_OPC_CMPLTUI:
    813 	case TILEGX_OPC_CMPLTSI:
    814 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    815 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    816 		break;
    817 	default:
    818 		printf("unrecoginzed opc: %s\n", opcode->name);
    819 		SLJIT_ASSERT_STOP();
    820 	}
    821 
    822 	inst_buf_index++;
    823 
    824 	return SLJIT_SUCCESS;
    825 }
    826 
    827 static sljit_si push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
    828 {
    829 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    830 		FAIL_IF(update_buffer(compiler));
    831 
    832 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    833 	inst_buf[inst_buf_index].opcode = opcode;
    834 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    835 	inst_buf[inst_buf_index].operand_value[0] = op0;
    836 	inst_buf[inst_buf_index].operand_value[1] = op1;
    837 	inst_buf[inst_buf_index].line = line;
    838 
    839 	switch (opc) {
    840 	case TILEGX_OPC_BEQZ:
    841 	case TILEGX_OPC_BNEZ:
    842 		inst_buf[inst_buf_index].input_registers = 1L << op0;
    843 		break;
    844 	case TILEGX_OPC_ST:
    845 	case TILEGX_OPC_ST1:
    846 	case TILEGX_OPC_ST2:
    847 	case TILEGX_OPC_ST4:
    848 		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
    849 		inst_buf[inst_buf_index].output_registers = 0;
    850 		break;
    851 	case TILEGX_OPC_CLZ:
    852 	case TILEGX_OPC_LD:
    853 	case TILEGX_OPC_LD1U:
    854 	case TILEGX_OPC_LD1S:
    855 	case TILEGX_OPC_LD2U:
    856 	case TILEGX_OPC_LD2S:
    857 	case TILEGX_OPC_LD4U:
    858 	case TILEGX_OPC_LD4S:
    859 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    860 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    861 		break;
    862 	default:
    863 		printf("unrecoginzed opc: %s\n", opcode->name);
    864 		SLJIT_ASSERT_STOP();
    865 	}
    866 
    867 	inst_buf_index++;
    868 
    869 	return SLJIT_SUCCESS;
    870 }
    871 
    872 static sljit_si push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
    873 {
    874 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    875 		FAIL_IF(update_buffer(compiler));
    876 
    877 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    878 	inst_buf[inst_buf_index].opcode = opcode;
    879 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    880 	inst_buf[inst_buf_index].input_registers = 0;
    881 	inst_buf[inst_buf_index].output_registers = 0;
    882 	inst_buf[inst_buf_index].line = line;
    883 	inst_buf_index++;
    884 
    885 	return SLJIT_SUCCESS;
    886 }
    887 
    888 static sljit_si push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
    889 {
    890 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    891 		FAIL_IF(update_buffer(compiler));
    892 
    893 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    894 	inst_buf[inst_buf_index].opcode = opcode;
    895 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    896 	inst_buf[inst_buf_index].operand_value[0] = op0;
    897 	inst_buf[inst_buf_index].input_registers = 1L << op0;
    898 	inst_buf[inst_buf_index].output_registers = 0;
    899 	inst_buf[inst_buf_index].line = line;
    900 	inst_buf_index++;
    901 
    902 	return flush_buffer(compiler);
    903 }
    904 
    905 static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
    906 {
    907 	sljit_sw diff;
    908 	sljit_uw target_addr;
    909 	sljit_ins *inst;
    910 	sljit_ins saved_inst;
    911 
    912 	if (jump->flags & SLJIT_REWRITABLE_JUMP)
    913 		return code_ptr;
    914 
    915 	if (jump->flags & JUMP_ADDR)
    916 		target_addr = jump->u.target;
    917 	else {
    918 		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
    919 		target_addr = (sljit_uw)(code + jump->u.label->size);
    920 	}
    921 
    922 	inst = (sljit_ins *)jump->addr;
    923 	if (jump->flags & IS_COND)
    924 		inst--;
    925 
    926 	diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
    927 	if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
    928 		jump->flags |= PATCH_B;
    929 
    930 		if (!(jump->flags & IS_COND)) {
    931 			if (jump->flags & IS_JAL) {
    932 				jump->flags &= ~(PATCH_B);
    933 				jump->flags |= PATCH_J;
    934 				inst[0] = JAL_X1;
    935 
    936 #ifdef TILEGX_JIT_DEBUG
    937 				printf("[runtime relocate]%04d:\t", __LINE__);
    938 				print_insn_tilegx(inst);
    939 #endif
    940 			} else {
    941 				inst[0] = BEQZ_X1 | SRCA_X1(ZERO);
    942 
    943 #ifdef TILEGX_JIT_DEBUG
    944 				printf("[runtime relocate]%04d:\t", __LINE__);
    945 				print_insn_tilegx(inst);
    946 #endif
    947 			}
    948 
    949 			return inst;
    950 		}
    951 
    952 		inst[0] = inst[0] ^ (0x7L << 55);
    953 
    954 #ifdef TILEGX_JIT_DEBUG
    955 		printf("[runtime relocate]%04d:\t", __LINE__);
    956 		print_insn_tilegx(inst);
    957 #endif
    958 		jump->addr -= sizeof(sljit_ins);
    959 		return inst;
    960 	}
    961 
    962 	if (jump->flags & IS_COND) {
    963 		if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
    964 			jump->flags |= PATCH_J;
    965 			inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
    966 			inst[1] = J_X1;
    967 			return inst + 1;
    968 		}
    969 
    970 		return code_ptr;
    971 	}
    972 
    973 	if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
    974 		jump->flags |= PATCH_J;
    975 
    976 		if (jump->flags & IS_JAL) {
    977 			inst[0] = JAL_X1;
    978 
    979 #ifdef TILEGX_JIT_DEBUG
    980 			printf("[runtime relocate]%04d:\t", __LINE__);
    981 			print_insn_tilegx(inst);
    982 #endif
    983 
    984 		} else {
    985 			inst[0] = J_X1;
    986 
    987 #ifdef TILEGX_JIT_DEBUG
    988 			printf("[runtime relocate]%04d:\t", __LINE__);
    989 			print_insn_tilegx(inst);
    990 #endif
    991 		}
    992 
    993 		return inst;
    994 	}
    995 
    996 	return code_ptr;
    997 }
    998 
    999 SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
   1000 {
   1001 	struct sljit_memory_fragment *buf;
   1002 	sljit_ins *code;
   1003 	sljit_ins *code_ptr;
   1004 	sljit_ins *buf_ptr;
   1005 	sljit_ins *buf_end;
   1006 	sljit_uw word_count;
   1007 	sljit_uw addr;
   1008 
   1009 	struct sljit_label *label;
   1010 	struct sljit_jump *jump;
   1011 	struct sljit_const *const_;
   1012 
   1013 	CHECK_ERROR_PTR();
   1014 	check_sljit_generate_code(compiler);
   1015 	reverse_buf(compiler);
   1016 
   1017 	code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
   1018 	PTR_FAIL_WITH_EXEC_IF(code);
   1019 	buf = compiler->buf;
   1020 
   1021 	code_ptr = code;
   1022 	word_count = 0;
   1023 	label = compiler->labels;
   1024 	jump = compiler->jumps;
   1025 	const_ = compiler->consts;
   1026 	do {
   1027 		buf_ptr = (sljit_ins *)buf->memory;
   1028 		buf_end = buf_ptr + (buf->used_size >> 3);
   1029 		do {
   1030 			*code_ptr = *buf_ptr++;
   1031 			SLJIT_ASSERT(!label || label->size >= word_count);
   1032 			SLJIT_ASSERT(!jump || jump->addr >= word_count);
   1033 			SLJIT_ASSERT(!const_ || const_->addr >= word_count);
   1034 			/* These structures are ordered by their address. */
   1035 			if (label && label->size == word_count) {
   1036 				/* Just recording the address. */
   1037 				label->addr = (sljit_uw) code_ptr;
   1038 				label->size = code_ptr - code;
   1039 				label = label->next;
   1040 			}
   1041 
   1042 			if (jump && jump->addr == word_count) {
   1043 				if (jump->flags & IS_JAL)
   1044 					jump->addr = (sljit_uw)(code_ptr - 4);
   1045 				else
   1046 					jump->addr = (sljit_uw)(code_ptr - 3);
   1047 
   1048 				code_ptr = detect_jump_type(jump, code_ptr, code);
   1049 				jump = jump->next;
   1050 			}
   1051 
   1052 			if (const_ && const_->addr == word_count) {
   1053 				/* Just recording the address. */
   1054 				const_->addr = (sljit_uw) code_ptr;
   1055 				const_ = const_->next;
   1056 			}
   1057 
   1058 			code_ptr++;
   1059 			word_count++;
   1060 		} while (buf_ptr < buf_end);
   1061 
   1062 		buf = buf->next;
   1063 	} while (buf);
   1064 
   1065 	if (label && label->size == word_count) {
   1066 		label->addr = (sljit_uw) code_ptr;
   1067 		label->size = code_ptr - code;
   1068 		label = label->next;
   1069 	}
   1070 
   1071 	SLJIT_ASSERT(!label);
   1072 	SLJIT_ASSERT(!jump);
   1073 	SLJIT_ASSERT(!const_);
   1074 	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
   1075 
   1076 	jump = compiler->jumps;
   1077 	while (jump) {
   1078 		do {
   1079 			addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
   1080 			buf_ptr = (sljit_ins *)jump->addr;
   1081 
   1082 			if (jump->flags & PATCH_B) {
   1083 				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
   1084 				SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
   1085 				buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);
   1086 
   1087 #ifdef TILEGX_JIT_DEBUG
   1088 				printf("[runtime relocate]%04d:\t", __LINE__);
   1089 				print_insn_tilegx(buf_ptr);
   1090 #endif
   1091 				break;
   1092 			}
   1093 
   1094 			if (jump->flags & PATCH_J) {
   1095 				SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
   1096 				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
   1097 				buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);
   1098 
   1099 #ifdef TILEGX_JIT_DEBUG
   1100 				printf("[runtime relocate]%04d:\t", __LINE__);
   1101 				print_insn_tilegx(buf_ptr);
   1102 #endif
   1103 				break;
   1104 			}
   1105 
   1106 			SLJIT_ASSERT(!(jump->flags & IS_JAL));
   1107 
   1108 			/* Set the fields of immediate loads. */
   1109 			buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
   1110 			buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
   1111 			buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
   1112 		} while (0);
   1113 
   1114 		jump = jump->next;
   1115 	}
   1116 
   1117 	compiler->error = SLJIT_ERR_COMPILED;
   1118 	compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
   1119 	SLJIT_CACHE_FLUSH(code, code_ptr);
   1120 	return code;
   1121 }
   1122 
   1123 static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
   1124 {
   1125 
   1126 	if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
   1127 		return ADDLI(dst_ar, ZERO, imm);
   1128 
   1129 	if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
   1130 		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
   1131 		return SHL16INSLI(dst_ar, dst_ar, imm);
   1132 	}
   1133 
   1134 	if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
   1135 		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
   1136 		FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1137 		return SHL16INSLI(dst_ar, dst_ar, imm);
   1138 	}
   1139 
   1140 	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
   1141 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
   1142 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1143 	return SHL16INSLI(dst_ar, dst_ar, imm);
   1144 }
   1145 
   1146 static sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
   1147 {
   1148 	/* Should *not* be optimized as load_immediate, as pcre relocation
   1149 	   mechanism will match this fixed 4-instruction pattern. */
   1150 	if (flush) {
   1151 		FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
   1152 		FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
   1153 		return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
   1154 	}
   1155 
   1156 	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
   1157 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1158 	return SHL16INSLI(dst_ar, dst_ar, imm);
   1159 }
   1160 
   1161 static sljit_si emit_const_64(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
   1162 {
   1163 	/* Should *not* be optimized as load_immediate, as pcre relocation
   1164 	   mechanism will match this fixed 4-instruction pattern. */
   1165 	if (flush) {
   1166 		FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
   1167 		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
   1168 		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
   1169 		return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
   1170 	}
   1171 
   1172 	FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
   1173 	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
   1174 	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
   1175 	return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
   1176 }
   1177 
   1178 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
   1179 {
   1180 	sljit_ins base;
   1181 	sljit_ins bundle = 0;
   1182 
   1183 	CHECK_ERROR();
   1184 	check_sljit_emit_enter(compiler, args, scratches, saveds, local_size);
   1185 
   1186 	compiler->scratches = scratches;
   1187 	compiler->saveds = saveds;
   1188 #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
   1189 	compiler->logical_local_size = local_size;
   1190 #endif
   1191 
   1192 	local_size += (saveds + 1) * sizeof(sljit_sw);
   1193 	local_size = (local_size + 7) & ~7;
   1194 	compiler->local_size = local_size;
   1195 
   1196 	if (local_size <= SIMM_16BIT_MAX) {
   1197 		/* Frequent case. */
   1198 		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
   1199 		base = SLJIT_LOCALS_REG_mapped;
   1200 	} else {
   1201 		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
   1202 		FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
   1203 		FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
   1204 		base = TMP_REG2_mapped;
   1205 		local_size = 0;
   1206 	}
   1207 
   1208 	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
   1209 	FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));
   1210 
   1211 	if (saveds >= 1)
   1212 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG1_mapped, -8));
   1213 
   1214 	if (saveds >= 2)
   1215 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG2_mapped, -8));
   1216 
   1217 	if (saveds >= 3)
   1218 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG3_mapped, -8));
   1219 
   1220 	if (saveds >= 4)
   1221 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_EREG1_mapped, -8));
   1222 
   1223 	if (saveds >= 5)
   1224 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_EREG2_mapped, -8));
   1225 
   1226 	if (args >= 1)
   1227 		FAIL_IF(ADD(SLJIT_SAVED_REG1_mapped, 0, ZERO));
   1228 
   1229 	if (args >= 2)
   1230 		FAIL_IF(ADD(SLJIT_SAVED_REG2_mapped, 1, ZERO));
   1231 
   1232 	if (args >= 3)
   1233 		FAIL_IF(ADD(SLJIT_SAVED_REG3_mapped, 2, ZERO));
   1234 
   1235 	return SLJIT_SUCCESS;
   1236 }
   1237 
   1238 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
   1239 {
   1240 	CHECK_ERROR_VOID();
   1241 	check_sljit_set_context(compiler, args, scratches, saveds, local_size);
   1242 
   1243 	compiler->scratches = scratches;
   1244 	compiler->saveds = saveds;
   1245 #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
   1246 	compiler->logical_local_size = local_size;
   1247 #endif
   1248 
   1249 	local_size += (saveds + 1) * sizeof(sljit_sw);
   1250 	compiler->local_size = (local_size + 7) & ~7;
   1251 }
   1252 
   1253 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
   1254 {
   1255 	sljit_si local_size;
   1256 	sljit_ins base;
   1257 	int addr_initialized = 0;
   1258 
   1259 	CHECK_ERROR();
   1260 	check_sljit_emit_return(compiler, op, src, srcw);
   1261 
   1262 	FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
   1263 
   1264 	local_size = compiler->local_size;
   1265 	if (local_size <= SIMM_16BIT_MAX)
   1266 		base = SLJIT_LOCALS_REG_mapped;
   1267 	else {
   1268 		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
   1269 		FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
   1270 		base = TMP_REG1_mapped;
   1271 		local_size = 0;
   1272 	}
   1273 
   1274 	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
   1275 	FAIL_IF(LD(RA, ADDR_TMP_mapped));
   1276 
   1277 	if (compiler->saveds >= 5) {
   1278 		FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 48));
   1279 		addr_initialized = 1;
   1280 
   1281 		FAIL_IF(LD_ADD(SLJIT_SAVED_EREG2_mapped, ADDR_TMP_mapped, 8));
   1282 	}
   1283 
   1284 	if (compiler->saveds >= 4) {
   1285 		if (addr_initialized == 0) {
   1286 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 40));
   1287 			addr_initialized = 1;
   1288 		}
   1289 
   1290 		FAIL_IF(LD_ADD(SLJIT_SAVED_EREG1_mapped, ADDR_TMP_mapped, 8));
   1291 	}
   1292 
   1293 	if (compiler->saveds >= 3) {
   1294 		if (addr_initialized == 0) {
   1295 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 32));
   1296 			addr_initialized = 1;
   1297 		}
   1298 
   1299 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG3_mapped, ADDR_TMP_mapped, 8));
   1300 	}
   1301 
   1302 	if (compiler->saveds >= 2) {
   1303 		if (addr_initialized == 0) {
   1304 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 24));
   1305 			addr_initialized = 1;
   1306 		}
   1307 
   1308 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG2_mapped, ADDR_TMP_mapped, 8));
   1309 	}
   1310 
   1311 	if (compiler->saveds >= 1) {
   1312 		if (addr_initialized == 0) {
   1313 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 16));
   1314 			/* addr_initialized = 1; no need to initialize as it's the last one. */
   1315 		}
   1316 
   1317 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG1_mapped, ADDR_TMP_mapped, 8));
   1318 	}
   1319 
   1320 	if (compiler->local_size <= SIMM_16BIT_MAX)
   1321 		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
   1322 	else
   1323 		FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));
   1324 
   1325 	return JR(RA);
   1326 }
   1327 
   1328 /* reg_ar is an absoulute register! */
   1329 
   1330 /* Can perform an operation using at most 1 instruction. */
   1331 static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
   1332 {
   1333 	SLJIT_ASSERT(arg & SLJIT_MEM);
   1334 
   1335 	if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
   1336 			&& !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1337 		/* Works for both absoulte and relative addresses. */
   1338 		if (SLJIT_UNLIKELY(flags & ARG_TEST))
   1339 			return 1;
   1340 
   1341 		FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));
   1342 
   1343 		if (flags & LOAD_DATA)
   1344 			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
   1345 		else
   1346 			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
   1347 
   1348 		return -1;
   1349 	}
   1350 
   1351 	return 0;
   1352 }
   1353 
   1354 /* See getput_arg below.
   1355    Note: can_cache is called only for binary operators. Those
   1356    operators always uses word arguments without write back. */
   1357 static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
   1358 {
   1359 	SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
   1360 
   1361 	/* Simple operation except for updates. */
   1362 	if (arg & OFFS_REG_MASK) {
   1363 		argw &= 0x3;
   1364 		next_argw &= 0x3;
   1365 		if (argw && argw == next_argw
   1366 				&& (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
   1367 			return 1;
   1368 		return 0;
   1369 	}
   1370 
   1371 	if (arg == next_arg) {
   1372 		if (((next_argw - argw) <= SIMM_16BIT_MAX
   1373 				&& (next_argw - argw) >= SIMM_16BIT_MIN))
   1374 			return 1;
   1375 
   1376 		return 0;
   1377 	}
   1378 
   1379 	return 0;
   1380 }
   1381 
   1382 /* Emit the necessary instructions. See can_cache above. */
   1383 static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
   1384 {
   1385 	sljit_si tmp_ar, base;
   1386 
   1387 	SLJIT_ASSERT(arg & SLJIT_MEM);
   1388 	if (!(next_arg & SLJIT_MEM)) {
   1389 		next_arg = 0;
   1390 		next_argw = 0;
   1391 	}
   1392 
   1393 	if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
   1394 		tmp_ar = reg_ar;
   1395 	else
   1396 		tmp_ar = TMP_REG1_mapped;
   1397 
   1398 	base = arg & REG_MASK;
   1399 
   1400 	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
   1401 		argw &= 0x3;
   1402 
   1403 		if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
   1404 			SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
   1405 			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
   1406 			reg_ar = TMP_REG1_mapped;
   1407 		}
   1408 
   1409 		/* Using the cache. */
   1410 		if (argw == compiler->cache_argw) {
   1411 			if (!(flags & WRITE_BACK)) {
   1412 				if (arg == compiler->cache_arg) {
   1413 					if (flags & LOAD_DATA)
   1414 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1415 					else
   1416 						return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1417 				}
   1418 
   1419 				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
   1420 					if (arg == next_arg && argw == (next_argw & 0x3)) {
   1421 						compiler->cache_arg = arg;
   1422 						compiler->cache_argw = argw;
   1423 						FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
   1424 						if (flags & LOAD_DATA)
   1425 							return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1426 						else
   1427 							return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1428 					}
   1429 
   1430 					FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
   1431 					if (flags & LOAD_DATA)
   1432 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1433 					else
   1434 						return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1435 				}
   1436 			} else {
   1437 				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
   1438 					FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1439 					if (flags & LOAD_DATA)
   1440 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1441 					else
   1442 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1443 				}
   1444 			}
   1445 		}
   1446 
   1447 		if (SLJIT_UNLIKELY(argw)) {
   1448 			compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
   1449 			compiler->cache_argw = argw;
   1450 			FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
   1451 		}
   1452 
   1453 		if (!(flags & WRITE_BACK)) {
   1454 			if (arg == next_arg && argw == (next_argw & 0x3)) {
   1455 				compiler->cache_arg = arg;
   1456 				compiler->cache_argw = argw;
   1457 				FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1458 				tmp_ar = TMP_REG3_mapped;
   1459 			} else
   1460 				FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1461 
   1462 			if (flags & LOAD_DATA)
   1463 				return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1464 			else
   1465 				return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1466 		}
   1467 
   1468 		FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1469 
   1470 		if (flags & LOAD_DATA)
   1471 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1472 		else
   1473 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1474 	}
   1475 
   1476 	if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
   1477 		/* Update only applies if a base register exists. */
   1478 		if (reg_ar == reg_map[base]) {
   1479 			SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
   1480 			if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1481 				FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
   1482 				if (flags & LOAD_DATA)
   1483 					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
   1484 				else
   1485 					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
   1486 
   1487 				if (argw)
   1488 					return ADDLI(reg_map[base], reg_map[base], argw);
   1489 
   1490 				return SLJIT_SUCCESS;
   1491 			}
   1492 
   1493 			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
   1494 			reg_ar = TMP_REG1_mapped;
   1495 		}
   1496 
   1497 		if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1498 			if (argw)
   1499 				FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
   1500 		} else {
   1501 			if (compiler->cache_arg == SLJIT_MEM
   1502 					&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1503 					&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1504 				if (argw != compiler->cache_argw) {
   1505 					FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1506 					compiler->cache_argw = argw;
   1507 				}
   1508 
   1509 				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1510 			} else {
   1511 				compiler->cache_arg = SLJIT_MEM;
   1512 				compiler->cache_argw = argw;
   1513 				FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
   1514 				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1515 			}
   1516 		}
   1517 
   1518 		if (flags & LOAD_DATA)
   1519 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1520 		else
   1521 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1522 	}
   1523 
   1524 	if (compiler->cache_arg == arg
   1525 			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1526 			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1527 		if (argw != compiler->cache_argw) {
   1528 			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1529 			compiler->cache_argw = argw;
   1530 		}
   1531 
   1532 		if (flags & LOAD_DATA)
   1533 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1534 		else
   1535 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1536 	}
   1537 
   1538 	if (compiler->cache_arg == SLJIT_MEM
   1539 			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1540 			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1541 		if (argw != compiler->cache_argw)
   1542 			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1543 	} else {
   1544 		compiler->cache_arg = SLJIT_MEM;
   1545 		FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
   1546 	}
   1547 
   1548 	compiler->cache_argw = argw;
   1549 
   1550 	if (!base) {
   1551 		if (flags & LOAD_DATA)
   1552 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1553 		else
   1554 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1555 	}
   1556 
   1557 	if (arg == next_arg
   1558 			&& next_argw - argw <= SIMM_16BIT_MAX
   1559 			&& next_argw - argw >= SIMM_16BIT_MIN) {
   1560 		compiler->cache_arg = arg;
   1561 		FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
   1562 		if (flags & LOAD_DATA)
   1563 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1564 		else
   1565 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1566 	}
   1567 
   1568 	FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));
   1569 
   1570 	if (flags & LOAD_DATA)
   1571 		return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1572 	else
   1573 		return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1574 }
   1575 
   1576 static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
   1577 {
   1578 	if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
   1579 		return compiler->error;
   1580 
   1581 	compiler->cache_arg = 0;
   1582 	compiler->cache_argw = 0;
   1583 	return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
   1584 }
   1585 
   1586 static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
   1587 {
   1588 	if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
   1589 		return compiler->error;
   1590 	return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
   1591 }
   1592 
   1593 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
   1594 {
   1595 	CHECK_ERROR();
   1596 	check_sljit_emit_fast_enter(compiler, dst, dstw);
   1597 	ADJUST_LOCAL_OFFSET(dst, dstw);
   1598 
   1599 	/* For UNUSED dst. Uncommon, but possible. */
   1600 	if (dst == SLJIT_UNUSED)
   1601 		return SLJIT_SUCCESS;
   1602 
   1603 	if (FAST_IS_REG(dst))
   1604 		return ADD(reg_map[dst], RA, ZERO);
   1605 
   1606 	/* Memory. */
   1607 	return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
   1608 }
   1609 
   1610 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
   1611 {
   1612 	CHECK_ERROR();
   1613 	check_sljit_emit_fast_return(compiler, src, srcw);
   1614 	ADJUST_LOCAL_OFFSET(src, srcw);
   1615 
   1616 	if (FAST_IS_REG(src))
   1617 		FAIL_IF(ADD(RA, reg_map[src], ZERO));
   1618 
   1619 	else if (src & SLJIT_MEM)
   1620 		FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));
   1621 
   1622 	else if (src & SLJIT_IMM)
   1623 		FAIL_IF(load_immediate(compiler, RA, srcw));
   1624 
   1625 	return JR(RA);
   1626 }
   1627 
   1628 static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_si src1, sljit_sw src2)
   1629 {
   1630 	sljit_si overflow_ra = 0;
   1631 
   1632 	switch (GET_OPCODE(op)) {
   1633 	case SLJIT_MOV:
   1634 	case SLJIT_MOV_P:
   1635 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1636 		if (dst != src2)
   1637 			return ADD(reg_map[dst], reg_map[src2], ZERO);
   1638 		return SLJIT_SUCCESS;
   1639 
   1640 	case SLJIT_MOV_UI:
   1641 	case SLJIT_MOV_SI:
   1642 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1643 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1644 			if (op == SLJIT_MOV_SI)
   1645 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);
   1646 
   1647 		return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
   1648 		} else if (dst != src2)
   1649 			SLJIT_ASSERT_STOP();
   1650 
   1651 		return SLJIT_SUCCESS;
   1652 
   1653 	case SLJIT_MOV_UB:
   1654 	case SLJIT_MOV_SB:
   1655 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1656 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1657 			if (op == SLJIT_MOV_SB)
   1658 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);
   1659 
   1660 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
   1661 		} else if (dst != src2)
   1662 			SLJIT_ASSERT_STOP();
   1663 
   1664 		return SLJIT_SUCCESS;
   1665 
   1666 	case SLJIT_MOV_UH:
   1667 	case SLJIT_MOV_SH:
   1668 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1669 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1670 			if (op == SLJIT_MOV_SH)
   1671 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);
   1672 
   1673 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
   1674 		} else if (dst != src2)
   1675 			SLJIT_ASSERT_STOP();
   1676 
   1677 		return SLJIT_SUCCESS;
   1678 
   1679 	case SLJIT_NOT:
   1680 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1681 		if (op & SLJIT_SET_E)
   1682 			FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
   1683 		if (CHECK_FLAGS(SLJIT_SET_E))
   1684 			FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));
   1685 
   1686 		return SLJIT_SUCCESS;
   1687 
   1688 	case SLJIT_CLZ:
   1689 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1690 		if (op & SLJIT_SET_E)
   1691 			FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
   1692 		if (CHECK_FLAGS(SLJIT_SET_E))
   1693 			FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));
   1694 
   1695 		return SLJIT_SUCCESS;
   1696 
   1697 	case SLJIT_ADD:
   1698 		if (flags & SRC2_IMM) {
   1699 			if (op & SLJIT_SET_O) {
   1700 				FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
   1701 				if (src2 < 0)
   1702 					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
   1703 			}
   1704 
   1705 			if (op & SLJIT_SET_E)
   1706 				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));
   1707 
   1708 			if (op & SLJIT_SET_C) {
   1709 				if (src2 >= 0)
   1710 					FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
   1711 				else {
   1712 					FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
   1713 					FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
   1714 				}
   1715 			}
   1716 
   1717 			/* dst may be the same as src1 or src2. */
   1718 			if (CHECK_FLAGS(SLJIT_SET_E))
   1719 				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
   1720 
   1721 			if (op & SLJIT_SET_O) {
   1722 				FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));
   1723 
   1724 				if (src2 < 0)
   1725 					FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
   1726 			}
   1727 		} else {
   1728 			if (op & SLJIT_SET_O) {
   1729 				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1730 				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
   1731 
   1732 				if (src1 != dst)
   1733 					overflow_ra = reg_map[src1];
   1734 				else if (src2 != dst)
   1735 					overflow_ra = reg_map[src2];
   1736 				else {
   1737 					/* Rare ocasion. */
   1738 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1739 					overflow_ra = TMP_EREG2;
   1740 				}
   1741 			}
   1742 
   1743 			if (op & SLJIT_SET_E)
   1744 				FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));
   1745 
   1746 			if (op & SLJIT_SET_C)
   1747 				FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));
   1748 
   1749 			/* dst may be the same as src1 or src2. */
   1750 			if (CHECK_FLAGS(SLJIT_SET_E))
   1751 				FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));
   1752 
   1753 			if (op & SLJIT_SET_O) {
   1754 				FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
   1755 				FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
   1756 			}
   1757 		}
   1758 
   1759 		/* a + b >= a | b (otherwise, the carry should be set to 1). */
   1760 		if (op & SLJIT_SET_C)
   1761 			FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));
   1762 
   1763 		if (op & SLJIT_SET_O)
   1764 			return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
   1765 
   1766 		return SLJIT_SUCCESS;
   1767 
   1768 	case SLJIT_ADDC:
   1769 		if (flags & SRC2_IMM) {
   1770 			if (op & SLJIT_SET_C) {
   1771 				if (src2 >= 0)
   1772 					FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
   1773 				else {
   1774 					FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
   1775 					FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
   1776 				}
   1777 			}
   1778 
   1779 			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
   1780 
   1781 		} else {
   1782 			if (op & SLJIT_SET_C)
   1783 				FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1784 
   1785 			/* dst may be the same as src1 or src2. */
   1786 			FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
   1787 		}
   1788 
   1789 		if (op & SLJIT_SET_C)
   1790 			FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));
   1791 
   1792 		FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));
   1793 
   1794 		if (!(op & SLJIT_SET_C))
   1795 			return SLJIT_SUCCESS;
   1796 
   1797 		/* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
   1798 		FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
   1799 		FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
   1800 		/* Set carry flag. */
   1801 		return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);
   1802 
   1803 	case SLJIT_SUB:
   1804 		if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
   1805 			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
   1806 			src2 = TMP_REG2;
   1807 			flags &= ~SRC2_IMM;
   1808 		}
   1809 
   1810 		if (flags & SRC2_IMM) {
   1811 			if (op & SLJIT_SET_O) {
   1812 				FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));
   1813 
   1814 				if (src2 < 0)
   1815 					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
   1816 
   1817 				if (src1 != dst)
   1818 					overflow_ra = reg_map[src1];
   1819 				else {
   1820 					/* Rare ocasion. */
   1821 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1822 
   1823 					overflow_ra = TMP_EREG2;
   1824 				}
   1825 			}
   1826 
   1827 			if (op & SLJIT_SET_E)
   1828 				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));
   1829 
   1830 			if (op & SLJIT_SET_C) {
   1831 				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
   1832 				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
   1833 			}
   1834 
   1835 			/* dst may be the same as src1 or src2. */
   1836 			if (CHECK_FLAGS(SLJIT_SET_E))
   1837 				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
   1838 
   1839 		} else {
   1840 
   1841 			if (op & SLJIT_SET_O) {
   1842 				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1843 				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
   1844 
   1845 				if (src1 != dst)
   1846 					overflow_ra = reg_map[src1];
   1847 				else {
   1848 					/* Rare ocasion. */
   1849 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1850 					overflow_ra = TMP_EREG2;
   1851 				}
   1852 			}
   1853 
   1854 			if (op & SLJIT_SET_E)
   1855 				FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));
   1856 
   1857 			if (op & (SLJIT_SET_U | SLJIT_SET_C))
   1858 				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));
   1859 
   1860 			if (op & SLJIT_SET_U)
   1861 				FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));
   1862 
   1863 			if (op & SLJIT_SET_S) {
   1864 				FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
   1865 				FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
   1866 			}
   1867 
   1868 			/* dst may be the same as src1 or src2. */
   1869 			if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
   1870 				FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
   1871 		}
   1872 
   1873 		if (op & SLJIT_SET_O) {
   1874 			FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
   1875 			FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
   1876 			return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
   1877 		}
   1878 
   1879 		return SLJIT_SUCCESS;
   1880 
   1881 	case SLJIT_SUBC:
   1882 		if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
   1883 			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
   1884 			src2 = TMP_REG2;
   1885 			flags &= ~SRC2_IMM;
   1886 		}
   1887 
   1888 		if (flags & SRC2_IMM) {
   1889 			if (op & SLJIT_SET_C) {
   1890 				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
   1891 				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
   1892 			}
   1893 
   1894 			/* dst may be the same as src1 or src2. */
   1895 			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
   1896 
   1897 		} else {
   1898 			if (op & SLJIT_SET_C)
   1899 				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1900 				/* dst may be the same as src1 or src2. */
   1901 			FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
   1902 		}
   1903 
   1904 		if (op & SLJIT_SET_C)
   1905 			FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));
   1906 
   1907 		FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));
   1908 
   1909 		if (op & SLJIT_SET_C)
   1910 			FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));
   1911 
   1912 		return SLJIT_SUCCESS;
   1913 
   1914 #define EMIT_LOGICAL(op_imm, op_norm) \
   1915 	if (flags & SRC2_IMM) { \
   1916 		FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
   1917 		if (op & SLJIT_SET_E) \
   1918 			FAIL_IF(push_3_buffer( \
   1919 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
   1920 				ADDR_TMP_mapped, __LINE__)); \
   1921 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1922 			FAIL_IF(push_3_buffer( \
   1923 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1924 				ADDR_TMP_mapped, __LINE__)); \
   1925 	} else { \
   1926 		if (op & SLJIT_SET_E) \
   1927 			FAIL_IF(push_3_buffer( \
   1928 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
   1929 				reg_map[src2], __LINE__)); \
   1930 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1931 			FAIL_IF(push_3_buffer( \
   1932 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1933 				reg_map[src2], __LINE__)); \
   1934 	}
   1935 
   1936 	case SLJIT_AND:
   1937 		EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
   1938 		return SLJIT_SUCCESS;
   1939 
   1940 	case SLJIT_OR:
   1941 		EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
   1942 		return SLJIT_SUCCESS;
   1943 
   1944 	case SLJIT_XOR:
   1945 		EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
   1946 		return SLJIT_SUCCESS;
   1947 
   1948 #define EMIT_SHIFT(op_imm, op_norm) \
   1949 	if (flags & SRC2_IMM) { \
   1950 		if (op & SLJIT_SET_E) \
   1951 			FAIL_IF(push_3_buffer( \
   1952 				compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
   1953 				src2 & 0x3F, __LINE__)); \
   1954 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1955 			FAIL_IF(push_3_buffer( \
   1956 				compiler, op_imm, reg_map[dst], reg_map[src1], \
   1957 				src2 & 0x3F, __LINE__)); \
   1958 	} else { \
   1959 		if (op & SLJIT_SET_E) \
   1960 			FAIL_IF(push_3_buffer( \
   1961 				compiler, op_imm, reg_map[dst], reg_map[src1], \
   1962 				src2 & 0x3F, __LINE__)); \
   1963 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1964 			FAIL_IF(push_3_buffer( \
   1965 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1966 				reg_map[src2], __LINE__)); \
   1967 	}
   1968 
   1969 	case SLJIT_SHL:
   1970 		EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
   1971 		return SLJIT_SUCCESS;
   1972 
   1973 	case SLJIT_LSHR:
   1974 		EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
   1975 		return SLJIT_SUCCESS;
   1976 
   1977 	case SLJIT_ASHR:
   1978 		EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
   1979 		return SLJIT_SUCCESS;
   1980 	}
   1981 
   1982 	SLJIT_ASSERT_STOP();
   1983 	return SLJIT_SUCCESS;
   1984 }
   1985 
   1986 static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
   1987 {
   1988 	/* arg1 goes to TMP_REG1 or src reg.
   1989 	   arg2 goes to TMP_REG2, imm or src reg.
   1990 	   TMP_REG3 can be used for caching.
   1991 	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
   1992 	sljit_si dst_r = TMP_REG2;
   1993 	sljit_si src1_r;
   1994 	sljit_sw src2_r = 0;
   1995 	sljit_si sugg_src2_r = TMP_REG2;
   1996 
   1997 	if (!(flags & ALT_KEEP_CACHE)) {
   1998 		compiler->cache_arg = 0;
   1999 		compiler->cache_argw = 0;
   2000 	}
   2001 
   2002 	if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
   2003 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
   2004 			return SLJIT_SUCCESS;
   2005 		if (GET_FLAGS(op))
   2006 			flags |= UNUSED_DEST;
   2007 	} else if (FAST_IS_REG(dst)) {
   2008 		dst_r = dst;
   2009 		flags |= REG_DEST;
   2010 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
   2011 			sugg_src2_r = dst_r;
   2012 	} else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
   2013 		flags |= SLOW_DEST;
   2014 
   2015 	if (flags & IMM_OP) {
   2016 		if ((src2 & SLJIT_IMM) && src2w) {
   2017 			if ((!(flags & LOGICAL_OP)
   2018 					&& (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
   2019 					|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
   2020 				flags |= SRC2_IMM;
   2021 				src2_r = src2w;
   2022 			}
   2023 		}
   2024 
   2025 		if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
   2026 			if ((!(flags & LOGICAL_OP)
   2027 					&& (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
   2028 					|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
   2029 				flags |= SRC2_IMM;
   2030 				src2_r = src1w;
   2031 
   2032 				/* And swap arguments. */
   2033 				src1 = src2;
   2034 				src1w = src2w;
   2035 				src2 = SLJIT_IMM;
   2036 				/* src2w = src2_r unneeded. */
   2037 			}
   2038 		}
   2039 	}
   2040 
   2041 	/* Source 1. */
   2042 	if (FAST_IS_REG(src1)) {
   2043 		src1_r = src1;
   2044 		flags |= REG1_SOURCE;
   2045 	} else if (src1 & SLJIT_IMM) {
   2046 		if (src1w) {
   2047 			FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
   2048 			src1_r = TMP_REG1;
   2049 		} else
   2050 			src1_r = 0;
   2051 	} else {
   2052 		if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
   2053 			FAIL_IF(compiler->error);
   2054 		else
   2055 			flags |= SLOW_SRC1;
   2056 		src1_r = TMP_REG1;
   2057 	}
   2058 
   2059 	/* Source 2. */
   2060 	if (FAST_IS_REG(src2)) {
   2061 		src2_r = src2;
   2062 		flags |= REG2_SOURCE;
   2063 		if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
   2064 			dst_r = src2_r;
   2065 	} else if (src2 & SLJIT_IMM) {
   2066 		if (!(flags & SRC2_IMM)) {
   2067 			if (src2w) {
   2068 				FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
   2069 				src2_r = sugg_src2_r;
   2070 			} else {
   2071 				src2_r = 0;
   2072 				if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
   2073 					dst_r = 0;
   2074 			}
   2075 		}
   2076 	} else {
   2077 		if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
   2078 			FAIL_IF(compiler->error);
   2079 		else
   2080 			flags |= SLOW_SRC2;
   2081 		src2_r = sugg_src2_r;
   2082 	}
   2083 
   2084 	if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
   2085 		SLJIT_ASSERT(src2_r == TMP_REG2);
   2086 		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
   2087 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
   2088 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
   2089 		} else {
   2090 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
   2091 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
   2092 		}
   2093 	} else if (flags & SLOW_SRC1)
   2094 		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
   2095 	else if (flags & SLOW_SRC2)
   2096 		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));
   2097 
   2098 	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
   2099 
   2100 	if (dst & SLJIT_MEM) {
   2101 		if (!(flags & SLOW_DEST)) {
   2102 			getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
   2103 			return compiler->error;
   2104 		}
   2105 
   2106 		return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
   2107 	}
   2108 
   2109 	return SLJIT_SUCCESS;
   2110 }
   2111 
   2112 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw, sljit_si type)
   2113 {
   2114 	sljit_si sugg_dst_ar, dst_ar;
   2115 	sljit_si flags = GET_ALL_FLAGS(op);
   2116 
   2117 	CHECK_ERROR();
   2118 	check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type);
   2119 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2120 
   2121 	if (dst == SLJIT_UNUSED)
   2122 		return SLJIT_SUCCESS;
   2123 
   2124 	op = GET_OPCODE(op);
   2125 	sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];
   2126 
   2127 	compiler->cache_arg = 0;
   2128 	compiler->cache_argw = 0;
   2129 	if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
   2130 		ADJUST_LOCAL_OFFSET(src, srcw);
   2131 		FAIL_IF(emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
   2132 		src = TMP_REG1;
   2133 		srcw = 0;
   2134 	}
   2135 
   2136 	switch (type) {
   2137 	case SLJIT_C_EQUAL:
   2138 	case SLJIT_C_NOT_EQUAL:
   2139 		FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
   2140 		dst_ar = sugg_dst_ar;
   2141 		break;
   2142 	case SLJIT_C_LESS:
   2143 	case SLJIT_C_GREATER_EQUAL:
   2144 	case SLJIT_C_FLOAT_LESS:
   2145 	case SLJIT_C_FLOAT_GREATER_EQUAL:
   2146 		dst_ar = ULESS_FLAG;
   2147 		break;
   2148 	case SLJIT_C_GREATER:
   2149 	case SLJIT_C_LESS_EQUAL:
   2150 	case SLJIT_C_FLOAT_GREATER:
   2151 	case SLJIT_C_FLOAT_LESS_EQUAL:
   2152 		dst_ar = UGREATER_FLAG;
   2153 		break;
   2154 	case SLJIT_C_SIG_LESS:
   2155 	case SLJIT_C_SIG_GREATER_EQUAL:
   2156 		dst_ar = LESS_FLAG;
   2157 		break;
   2158 	case SLJIT_C_SIG_GREATER:
   2159 	case SLJIT_C_SIG_LESS_EQUAL:
   2160 		dst_ar = GREATER_FLAG;
   2161 		break;
   2162 	case SLJIT_C_OVERFLOW:
   2163 	case SLJIT_C_NOT_OVERFLOW:
   2164 		dst_ar = OVERFLOW_FLAG;
   2165 		break;
   2166 	case SLJIT_C_MUL_OVERFLOW:
   2167 	case SLJIT_C_MUL_NOT_OVERFLOW:
   2168 		FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
   2169 		dst_ar = sugg_dst_ar;
   2170 		type ^= 0x1; /* Flip type bit for the XORI below. */
   2171 		break;
   2172 	case SLJIT_C_FLOAT_EQUAL:
   2173 	case SLJIT_C_FLOAT_NOT_EQUAL:
   2174 		dst_ar = EQUAL_FLAG;
   2175 		break;
   2176 
   2177 	default:
   2178 		SLJIT_ASSERT_STOP();
   2179 		dst_ar = sugg_dst_ar;
   2180 		break;
   2181 	}
   2182 
   2183 	if (type & 0x1) {
   2184 		FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
   2185 		dst_ar = sugg_dst_ar;
   2186 	}
   2187 
   2188 	if (op >= SLJIT_ADD) {
   2189 		if (TMP_REG2_mapped != dst_ar)
   2190 			FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
   2191 		return emit_op(compiler, op | flags, CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
   2192 	}
   2193 
   2194 	if (dst & SLJIT_MEM)
   2195 		return emit_op_mem(compiler, WORD_DATA, dst_ar, dst, dstw);
   2196 
   2197 	if (sugg_dst_ar != dst_ar)
   2198 		return ADD(sugg_dst_ar, dst_ar, ZERO);
   2199 
   2200 	return SLJIT_SUCCESS;
   2201 }
   2202 
   2203 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op) {
   2204 	CHECK_ERROR();
   2205 	check_sljit_emit_op0(compiler, op);
   2206 
   2207 	op = GET_OPCODE(op);
   2208 	switch (op) {
   2209 	case SLJIT_NOP:
   2210 		return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);
   2211 
   2212 	case SLJIT_BREAKPOINT:
   2213 		return PI(BPT);
   2214 
   2215 	case SLJIT_UMUL:
   2216 	case SLJIT_SMUL:
   2217 	case SLJIT_UDIV:
   2218 	case SLJIT_SDIV:
   2219 		SLJIT_ASSERT_STOP();
   2220 	}
   2221 
   2222 	return SLJIT_SUCCESS;
   2223 }
   2224 
   2225 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
   2226 {
   2227 	CHECK_ERROR();
   2228 	check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
   2229 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2230 	ADJUST_LOCAL_OFFSET(src, srcw);
   2231 
   2232 	switch (GET_OPCODE(op)) {
   2233 	case SLJIT_MOV:
   2234 	case SLJIT_MOV_P:
   2235 		return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2236 
   2237 	case SLJIT_MOV_UI:
   2238 		return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2239 
   2240 	case SLJIT_MOV_SI:
   2241 		return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2242 
   2243 	case SLJIT_MOV_UB:
   2244 		return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
   2245 
   2246 	case SLJIT_MOV_SB:
   2247 		return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
   2248 
   2249 	case SLJIT_MOV_UH:
   2250 		return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
   2251 
   2252 	case SLJIT_MOV_SH:
   2253 		return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
   2254 
   2255 	case SLJIT_MOVU:
   2256 	case SLJIT_MOVU_P:
   2257 		return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2258 
   2259 	case SLJIT_MOVU_UI:
   2260 		return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2261 
   2262 	case SLJIT_MOVU_SI:
   2263 		return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2264 
   2265 	case SLJIT_MOVU_UB:
   2266 		return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
   2267 
   2268 	case SLJIT_MOVU_SB:
   2269 		return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
   2270 
   2271 	case SLJIT_MOVU_UH:
   2272 		return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
   2273 
   2274 	case SLJIT_MOVU_SH:
   2275 		return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
   2276 
   2277 	case SLJIT_NOT:
   2278 		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
   2279 
   2280 	case SLJIT_NEG:
   2281 		return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
   2282 
   2283 	case SLJIT_CLZ:
   2284 		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
   2285 	}
   2286 
   2287 	return SLJIT_SUCCESS;
   2288 }
   2289 
   2290 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
   2291 {
   2292 	CHECK_ERROR();
   2293 	check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
   2294 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2295 	ADJUST_LOCAL_OFFSET(src1, src1w);
   2296 	ADJUST_LOCAL_OFFSET(src2, src2w);
   2297 
   2298 	switch (GET_OPCODE(op)) {
   2299 	case SLJIT_ADD:
   2300 	case SLJIT_ADDC:
   2301 		return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2302 
   2303 	case SLJIT_SUB:
   2304 	case SLJIT_SUBC:
   2305 		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2306 
   2307 	case SLJIT_MUL:
   2308 		return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
   2309 
   2310 	case SLJIT_AND:
   2311 	case SLJIT_OR:
   2312 	case SLJIT_XOR:
   2313 		return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2314 
   2315 	case SLJIT_SHL:
   2316 	case SLJIT_LSHR:
   2317 	case SLJIT_ASHR:
   2318 		if (src2 & SLJIT_IMM)
   2319 			src2w &= 0x3f;
   2320 		if (op & SLJIT_INT_OP)
   2321 			src2w &= 0x1f;
   2322 
   2323 		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2324 	}
   2325 
   2326 	return SLJIT_SUCCESS;
   2327 }
   2328 
   2329 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
   2330 {
   2331 	struct sljit_label *label;
   2332 
   2333 	flush_buffer(compiler);
   2334 
   2335 	CHECK_ERROR_PTR();
   2336 	check_sljit_emit_label(compiler);
   2337 
   2338 	if (compiler->last_label && compiler->last_label->size == compiler->size)
   2339 		return compiler->last_label;
   2340 
   2341 	label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
   2342 	PTR_FAIL_IF(!label);
   2343 	set_label(label, compiler);
   2344 	return label;
   2345 }
   2346 
   2347 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
   2348 {
   2349 	sljit_si src_r = TMP_REG2;
   2350 	struct sljit_jump *jump = NULL;
   2351 
   2352 	flush_buffer(compiler);
   2353 
   2354 	CHECK_ERROR();
   2355 	check_sljit_emit_ijump(compiler, type, src, srcw);
   2356 	ADJUST_LOCAL_OFFSET(src, srcw);
   2357 
   2358 	if (FAST_IS_REG(src)) {
   2359 		if (reg_map[src] != 0)
   2360 			src_r = src;
   2361 		else
   2362 			FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
   2363 	}
   2364 
   2365 	if (type >= SLJIT_CALL0) {
   2366 		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
   2367 		if (src & (SLJIT_IMM | SLJIT_MEM)) {
   2368 			if (src & SLJIT_IMM)
   2369 				FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
   2370 			else {
   2371 				SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
   2372 				FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
   2373 			}
   2374 
   2375 			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
   2376 
   2377 			FAIL_IF(ADDI_SOLO(54, 54, -16));
   2378 
   2379 			FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));
   2380 
   2381 			return ADDI_SOLO(54, 54, 16);
   2382 		}
   2383 
   2384 		/* Register input. */
   2385 		if (type >= SLJIT_CALL1)
   2386 			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
   2387 
   2388 		FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));
   2389 
   2390 		FAIL_IF(ADDI_SOLO(54, 54, -16));
   2391 
   2392 		FAIL_IF(JALR_SOLO(reg_map[src_r]));
   2393 
   2394 		return ADDI_SOLO(54, 54, 16);
   2395 	}
   2396 
   2397 	if (src & SLJIT_IMM) {
   2398 		jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
   2399 		FAIL_IF(!jump);
   2400 		set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
   2401 		jump->u.target = srcw;
   2402 		FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
   2403 
   2404 		if (type >= SLJIT_FAST_CALL) {
   2405 			FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
   2406 			jump->addr = compiler->size;
   2407 			FAIL_IF(JR_SOLO(reg_map[src_r]));
   2408 		} else {
   2409 			jump->addr = compiler->size;
   2410 			FAIL_IF(JR_SOLO(reg_map[src_r]));
   2411 		}
   2412 
   2413 		return SLJIT_SUCCESS;
   2414 
   2415 	} else if (src & SLJIT_MEM)
   2416 		FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
   2417 
   2418 	FAIL_IF(JR_SOLO(reg_map[src_r]));
   2419 
   2420 	if (jump)
   2421 		jump->addr = compiler->size;
   2422 
   2423 	return SLJIT_SUCCESS;
   2424 }
   2425 
   2426 #define BR_Z(src) \
   2427 	inst = BEQZ_X1 | SRCA_X1(src); \
   2428 	flags = IS_COND;
   2429 
   2430 #define BR_NZ(src) \
   2431 	inst = BNEZ_X1 | SRCA_X1(src); \
   2432 	flags = IS_COND;
   2433 
   2434 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
   2435 {
   2436 	struct sljit_jump *jump;
   2437 	sljit_ins inst;
   2438 	sljit_si flags = 0;
   2439 
   2440 	flush_buffer(compiler);
   2441 
   2442 	CHECK_ERROR_PTR();
   2443 	check_sljit_emit_jump(compiler, type);
   2444 
   2445 	jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
   2446 	PTR_FAIL_IF(!jump);
   2447 	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
   2448 	type &= 0xff;
   2449 
   2450 	switch (type) {
   2451 	case SLJIT_C_EQUAL:
   2452 	case SLJIT_C_FLOAT_NOT_EQUAL:
   2453 		BR_NZ(EQUAL_FLAG);
   2454 		break;
   2455 	case SLJIT_C_NOT_EQUAL:
   2456 	case SLJIT_C_FLOAT_EQUAL:
   2457 		BR_Z(EQUAL_FLAG);
   2458 		break;
   2459 	case SLJIT_C_LESS:
   2460 	case SLJIT_C_FLOAT_LESS:
   2461 		BR_Z(ULESS_FLAG);
   2462 		break;
   2463 	case SLJIT_C_GREATER_EQUAL:
   2464 	case SLJIT_C_FLOAT_GREATER_EQUAL:
   2465 		BR_NZ(ULESS_FLAG);
   2466 		break;
   2467 	case SLJIT_C_GREATER:
   2468 	case SLJIT_C_FLOAT_GREATER:
   2469 		BR_Z(UGREATER_FLAG);
   2470 		break;
   2471 	case SLJIT_C_LESS_EQUAL:
   2472 	case SLJIT_C_FLOAT_LESS_EQUAL:
   2473 		BR_NZ(UGREATER_FLAG);
   2474 		break;
   2475 	case SLJIT_C_SIG_LESS:
   2476 		BR_Z(LESS_FLAG);
   2477 		break;
   2478 	case SLJIT_C_SIG_GREATER_EQUAL:
   2479 		BR_NZ(LESS_FLAG);
   2480 		break;
   2481 	case SLJIT_C_SIG_GREATER:
   2482 		BR_Z(GREATER_FLAG);
   2483 		break;
   2484 	case SLJIT_C_SIG_LESS_EQUAL:
   2485 		BR_NZ(GREATER_FLAG);
   2486 		break;
   2487 	case SLJIT_C_OVERFLOW:
   2488 	case SLJIT_C_MUL_OVERFLOW:
   2489 		BR_Z(OVERFLOW_FLAG);
   2490 		break;
   2491 	case SLJIT_C_NOT_OVERFLOW:
   2492 	case SLJIT_C_MUL_NOT_OVERFLOW:
   2493 		BR_NZ(OVERFLOW_FLAG);
   2494 		break;
   2495 	default:
   2496 		/* Not conditional branch. */
   2497 		inst = 0;
   2498 		break;
   2499 	}
   2500 
   2501 	jump->flags |= flags;
   2502 
   2503 	if (inst) {
   2504 		inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
   2505 		PTR_FAIL_IF(PI(inst));
   2506 	}
   2507 
   2508 	PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
   2509 	if (type <= SLJIT_JUMP) {
   2510 		jump->addr = compiler->size;
   2511 		PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
   2512 	} else {
   2513 		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
   2514 		/* Cannot be optimized out if type is >= CALL0. */
   2515 		jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
   2516 		PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
   2517 		jump->addr = compiler->size;
   2518 		PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
   2519 	}
   2520 
   2521 	return jump;
   2522 }
   2523 
   2524 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
   2525 {
   2526 	return 0;
   2527 }
   2528 
   2529 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
   2530 {
   2531 	SLJIT_ASSERT_STOP();
   2532 }
   2533 
   2534 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
   2535 {
   2536 	SLJIT_ASSERT_STOP();
   2537 }
   2538 
   2539 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
   2540 {
   2541 	struct sljit_const *const_;
   2542 	sljit_si reg;
   2543 
   2544 	flush_buffer(compiler);
   2545 
   2546 	CHECK_ERROR_PTR();
   2547 	check_sljit_emit_const(compiler, dst, dstw, init_value);
   2548 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2549 
   2550 	const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
   2551 	PTR_FAIL_IF(!const_);
   2552 	set_const(const_, compiler);
   2553 
   2554 	reg = FAST_IS_REG(dst) ? dst : TMP_REG2;
   2555 
   2556 	PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));
   2557 
   2558 	if (dst & SLJIT_MEM)
   2559 		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
   2560 	return const_;
   2561 }
   2562 
   2563 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
   2564 {
   2565 	sljit_ins *inst = (sljit_ins *)addr;
   2566 
   2567 	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
   2568 	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
   2569 	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
   2570 	SLJIT_CACHE_FLUSH(inst, inst + 3);
   2571 }
   2572 
   2573 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
   2574 {
   2575 	sljit_ins *inst = (sljit_ins *)addr;
   2576 
   2577 	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
   2578 	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
   2579 	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
   2580 	inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
   2581 	SLJIT_CACHE_FLUSH(inst, inst + 4);
   2582 }
   2583