ah.c revision 1.3 1 1.1 alc /*
2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 1.1 alc * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 1.1 alc *
5 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any
6 1.1 alc * purpose with or without fee is hereby granted, provided that the above
7 1.1 alc * copyright notice and this permission notice appear in all copies.
8 1.1 alc *
9 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 1.1 alc *
17 1.3 cegger * $Id: ah.c,v 1.3 2011/03/07 11:25:42 cegger Exp $
18 1.1 alc */
19 1.1 alc #include "opt_ah.h"
20 1.1 alc
21 1.1 alc #include "ah.h"
22 1.1 alc #include "ah_internal.h"
23 1.1 alc #include "ah_devid.h"
24 1.1 alc
25 1.1 alc /* linker set of registered chips */
26 1.1 alc OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
27 1.1 alc
28 1.1 alc /*
29 1.1 alc * Check the set of registered chips to see if any recognize
30 1.1 alc * the device as one they can support.
31 1.1 alc */
32 1.1 alc const char*
33 1.1 alc ath_hal_probe(uint16_t vendorid, uint16_t devid)
34 1.1 alc {
35 1.2 alc struct ath_hal_chip * const *pchip;
36 1.1 alc
37 1.1 alc OS_SET_FOREACH(pchip, ah_chips) {
38 1.1 alc const char *name = (*pchip)->probe(vendorid, devid);
39 1.1 alc if (name != AH_NULL)
40 1.1 alc return name;
41 1.1 alc }
42 1.1 alc return AH_NULL;
43 1.1 alc }
44 1.1 alc
45 1.1 alc /*
46 1.1 alc * Attach detects device chip revisions, initializes the hwLayer
47 1.1 alc * function list, reads EEPROM information,
48 1.1 alc * selects reset vectors, and performs a short self test.
49 1.1 alc * Any failures will return an error that should cause a hardware
50 1.1 alc * disable.
51 1.1 alc */
52 1.1 alc struct ath_hal*
53 1.1 alc ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
54 1.1 alc HAL_BUS_TAG st, HAL_BUS_HANDLE sh, HAL_STATUS *error)
55 1.1 alc {
56 1.2 alc struct ath_hal_chip * const *pchip;
57 1.1 alc
58 1.1 alc OS_SET_FOREACH(pchip, ah_chips) {
59 1.1 alc struct ath_hal_chip *chip = *pchip;
60 1.1 alc struct ath_hal *ah;
61 1.1 alc
62 1.1 alc /* XXX don't have vendorid, assume atheros one works */
63 1.1 alc if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
64 1.1 alc continue;
65 1.1 alc ah = chip->attach(devid, sc, st, sh, error);
66 1.1 alc if (ah != AH_NULL) {
67 1.1 alc /* copy back private state to public area */
68 1.1 alc ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
69 1.1 alc ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
70 1.1 alc ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
71 1.1 alc ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
72 1.1 alc ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
73 1.1 alc ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
74 1.1 alc ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
75 1.1 alc return ah;
76 1.1 alc }
77 1.1 alc }
78 1.1 alc return AH_NULL;
79 1.1 alc }
80 1.1 alc
81 1.1 alc /* linker set of registered RF backends */
82 1.1 alc OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
83 1.1 alc
84 1.1 alc /*
85 1.1 alc * Check the set of registered RF backends to see if
86 1.1 alc * any recognize the device as one they can support.
87 1.1 alc */
88 1.1 alc struct ath_hal_rf *
89 1.1 alc ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
90 1.1 alc {
91 1.2 alc #ifdef AH_HAS_RF
92 1.2 alc struct ath_hal_rf * const *prf;
93 1.1 alc
94 1.1 alc OS_SET_FOREACH(prf, ah_rfs) {
95 1.1 alc struct ath_hal_rf *rf = *prf;
96 1.1 alc if (rf->probe(ah))
97 1.1 alc return rf;
98 1.1 alc }
99 1.1 alc *ecode = HAL_ENOTSUPP;
100 1.2 alc #endif
101 1.1 alc return AH_NULL;
102 1.1 alc }
103 1.1 alc
104 1.1 alc /*
105 1.1 alc * Poll the register looking for a specific value.
106 1.1 alc */
107 1.1 alc HAL_BOOL
108 1.1 alc ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
109 1.1 alc {
110 1.1 alc #define AH_TIMEOUT 1000
111 1.1 alc int i;
112 1.1 alc
113 1.1 alc for (i = 0; i < AH_TIMEOUT; i++) {
114 1.1 alc if ((OS_REG_READ(ah, reg) & mask) == val)
115 1.1 alc return AH_TRUE;
116 1.1 alc OS_DELAY(10);
117 1.1 alc }
118 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
119 1.1 alc "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
120 1.1 alc __func__, reg, OS_REG_READ(ah, reg), mask, val);
121 1.1 alc return AH_FALSE;
122 1.1 alc #undef AH_TIMEOUT
123 1.1 alc }
124 1.1 alc
125 1.1 alc /*
126 1.1 alc * Reverse the bits starting at the low bit for a value of
127 1.1 alc * bit_count in size
128 1.1 alc */
129 1.1 alc uint32_t
130 1.1 alc ath_hal_reverseBits(uint32_t val, uint32_t n)
131 1.1 alc {
132 1.1 alc uint32_t retval;
133 1.1 alc int i;
134 1.1 alc
135 1.1 alc for (i = 0, retval = 0; i < n; i++) {
136 1.1 alc retval = (retval << 1) | (val & 1);
137 1.1 alc val >>= 1;
138 1.1 alc }
139 1.1 alc return retval;
140 1.1 alc }
141 1.1 alc
142 1.1 alc /*
143 1.1 alc * Compute the time to transmit a frame of length frameLen bytes
144 1.1 alc * using the specified rate, phy, and short preamble setting.
145 1.1 alc */
146 1.1 alc uint16_t
147 1.1 alc ath_hal_computetxtime(struct ath_hal *ah,
148 1.1 alc const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
149 1.1 alc HAL_BOOL shortPreamble)
150 1.1 alc {
151 1.1 alc uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
152 1.1 alc uint32_t kbps;
153 1.1 alc
154 1.1 alc kbps = rates->info[rateix].rateKbps;
155 1.1 alc /*
156 1.1 alc * index can be invalid duting dynamic Turbo transitions.
157 1.1 alc */
158 1.1 alc if(kbps == 0) return 0;
159 1.1 alc switch (rates->info[rateix].phy) {
160 1.1 alc
161 1.1 alc case IEEE80211_T_CCK:
162 1.1 alc #define CCK_SIFS_TIME 10
163 1.1 alc #define CCK_PREAMBLE_BITS 144
164 1.1 alc #define CCK_PLCP_BITS 48
165 1.1 alc phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
166 1.1 alc if (shortPreamble && rates->info[rateix].shortPreamble)
167 1.1 alc phyTime >>= 1;
168 1.1 alc numBits = frameLen << 3;
169 1.1 alc txTime = CCK_SIFS_TIME + phyTime
170 1.1 alc + ((numBits * 1000)/kbps);
171 1.1 alc break;
172 1.1 alc #undef CCK_SIFS_TIME
173 1.1 alc #undef CCK_PREAMBLE_BITS
174 1.1 alc #undef CCK_PLCP_BITS
175 1.1 alc
176 1.1 alc case IEEE80211_T_OFDM:
177 1.1 alc #define OFDM_SIFS_TIME 16
178 1.1 alc #define OFDM_PREAMBLE_TIME 20
179 1.1 alc #define OFDM_PLCP_BITS 22
180 1.1 alc #define OFDM_SYMBOL_TIME 4
181 1.1 alc
182 1.1 alc #define OFDM_SIFS_TIME_HALF 32
183 1.1 alc #define OFDM_PREAMBLE_TIME_HALF 40
184 1.1 alc #define OFDM_PLCP_BITS_HALF 22
185 1.1 alc #define OFDM_SYMBOL_TIME_HALF 8
186 1.1 alc
187 1.1 alc #define OFDM_SIFS_TIME_QUARTER 64
188 1.1 alc #define OFDM_PREAMBLE_TIME_QUARTER 80
189 1.1 alc #define OFDM_PLCP_BITS_QUARTER 22
190 1.1 alc #define OFDM_SYMBOL_TIME_QUARTER 16
191 1.1 alc
192 1.1 alc if (AH_PRIVATE(ah)->ah_curchan &&
193 1.1 alc IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
194 1.1 alc bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
195 1.1 alc HALASSERT(bitsPerSymbol != 0);
196 1.1 alc
197 1.1 alc numBits = OFDM_PLCP_BITS + (frameLen << 3);
198 1.1 alc numSymbols = howmany(numBits, bitsPerSymbol);
199 1.1 alc txTime = OFDM_SIFS_TIME_QUARTER
200 1.1 alc + OFDM_PREAMBLE_TIME_QUARTER
201 1.1 alc + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
202 1.1 alc } else if (AH_PRIVATE(ah)->ah_curchan &&
203 1.1 alc IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
204 1.1 alc bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
205 1.1 alc HALASSERT(bitsPerSymbol != 0);
206 1.1 alc
207 1.1 alc numBits = OFDM_PLCP_BITS + (frameLen << 3);
208 1.1 alc numSymbols = howmany(numBits, bitsPerSymbol);
209 1.1 alc txTime = OFDM_SIFS_TIME_HALF +
210 1.1 alc OFDM_PREAMBLE_TIME_HALF
211 1.1 alc + (numSymbols * OFDM_SYMBOL_TIME_HALF);
212 1.1 alc } else { /* full rate channel */
213 1.1 alc bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
214 1.1 alc HALASSERT(bitsPerSymbol != 0);
215 1.1 alc
216 1.1 alc numBits = OFDM_PLCP_BITS + (frameLen << 3);
217 1.1 alc numSymbols = howmany(numBits, bitsPerSymbol);
218 1.1 alc txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
219 1.1 alc + (numSymbols * OFDM_SYMBOL_TIME);
220 1.1 alc }
221 1.1 alc break;
222 1.1 alc
223 1.1 alc #undef OFDM_SIFS_TIME
224 1.1 alc #undef OFDM_PREAMBLE_TIME
225 1.1 alc #undef OFDM_PLCP_BITS
226 1.1 alc #undef OFDM_SYMBOL_TIME
227 1.1 alc
228 1.1 alc case IEEE80211_T_TURBO:
229 1.1 alc #define TURBO_SIFS_TIME 8
230 1.1 alc #define TURBO_PREAMBLE_TIME 14
231 1.1 alc #define TURBO_PLCP_BITS 22
232 1.1 alc #define TURBO_SYMBOL_TIME 4
233 1.1 alc /* we still save OFDM rates in kbps - so double them */
234 1.1 alc bitsPerSymbol = ((kbps << 1) * TURBO_SYMBOL_TIME) / 1000;
235 1.1 alc HALASSERT(bitsPerSymbol != 0);
236 1.1 alc
237 1.1 alc numBits = TURBO_PLCP_BITS + (frameLen << 3);
238 1.1 alc numSymbols = howmany(numBits, bitsPerSymbol);
239 1.1 alc txTime = TURBO_SIFS_TIME + TURBO_PREAMBLE_TIME
240 1.1 alc + (numSymbols * TURBO_SYMBOL_TIME);
241 1.1 alc break;
242 1.1 alc #undef TURBO_SIFS_TIME
243 1.1 alc #undef TURBO_PREAMBLE_TIME
244 1.1 alc #undef TURBO_PLCP_BITS
245 1.1 alc #undef TURBO_SYMBOL_TIME
246 1.1 alc
247 1.1 alc default:
248 1.1 alc HALDEBUG(ah, HAL_DEBUG_PHYIO,
249 1.1 alc "%s: unknown phy %u (rate ix %u)\n",
250 1.1 alc __func__, rates->info[rateix].phy, rateix);
251 1.1 alc txTime = 0;
252 1.1 alc break;
253 1.1 alc }
254 1.1 alc return txTime;
255 1.1 alc }
256 1.1 alc
257 1.1 alc static __inline int
258 1.1 alc mapgsm(u_int freq, u_int flags)
259 1.1 alc {
260 1.1 alc freq *= 10;
261 1.1 alc if (flags & CHANNEL_QUARTER)
262 1.1 alc freq += 5;
263 1.1 alc else if (flags & CHANNEL_HALF)
264 1.1 alc freq += 10;
265 1.1 alc else
266 1.1 alc freq += 20;
267 1.1 alc return (freq - 24220) / 5;
268 1.1 alc }
269 1.1 alc
270 1.1 alc static __inline int
271 1.1 alc mappsb(u_int freq, u_int flags)
272 1.1 alc {
273 1.1 alc return ((freq * 10) + (((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
274 1.1 alc }
275 1.1 alc
276 1.1 alc /*
277 1.1 alc * Convert GHz frequency to IEEE channel number.
278 1.1 alc */
279 1.1 alc int
280 1.1 alc ath_hal_mhz2ieee(struct ath_hal *ah, u_int freq, u_int flags)
281 1.1 alc {
282 1.1 alc if (flags & CHANNEL_2GHZ) { /* 2GHz band */
283 1.1 alc if (freq == 2484)
284 1.1 alc return 14;
285 1.1 alc if (freq < 2484) {
286 1.1 alc if (ath_hal_isgsmsku(ah))
287 1.1 alc return mapgsm(freq, flags);
288 1.1 alc return ((int)freq - 2407) / 5;
289 1.1 alc } else
290 1.1 alc return 15 + ((freq - 2512) / 20);
291 1.1 alc } else if (flags & CHANNEL_5GHZ) {/* 5Ghz band */
292 1.1 alc if (ath_hal_ispublicsafetysku(ah) &&
293 1.1 alc IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
294 1.1 alc return mappsb(freq, flags);
295 1.1 alc } else if ((flags & CHANNEL_A) && (freq <= 5000)) {
296 1.1 alc return (freq - 4000) / 5;
297 1.1 alc } else {
298 1.1 alc return (freq - 5000) / 5;
299 1.1 alc }
300 1.1 alc } else { /* either, guess */
301 1.1 alc if (freq == 2484)
302 1.1 alc return 14;
303 1.1 alc if (freq < 2484) {
304 1.1 alc if (ath_hal_isgsmsku(ah))
305 1.1 alc return mapgsm(freq, flags);
306 1.1 alc return ((int)freq - 2407) / 5;
307 1.1 alc }
308 1.1 alc if (freq < 5000) {
309 1.1 alc if (ath_hal_ispublicsafetysku(ah) &&
310 1.1 alc IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
311 1.1 alc return mappsb(freq, flags);
312 1.1 alc } else if (freq > 4900) {
313 1.1 alc return (freq - 4000) / 5;
314 1.1 alc } else {
315 1.1 alc return 15 + ((freq - 2512) / 20);
316 1.1 alc }
317 1.1 alc }
318 1.1 alc return (freq - 5000) / 5;
319 1.1 alc }
320 1.1 alc }
321 1.1 alc
322 1.1 alc typedef enum {
323 1.1 alc WIRELESS_MODE_11a = 0,
324 1.1 alc WIRELESS_MODE_TURBO = 1,
325 1.1 alc WIRELESS_MODE_11b = 2,
326 1.1 alc WIRELESS_MODE_11g = 3,
327 1.1 alc WIRELESS_MODE_108g = 4,
328 1.1 alc
329 1.1 alc WIRELESS_MODE_MAX
330 1.1 alc } WIRELESS_MODE;
331 1.1 alc
332 1.1 alc static WIRELESS_MODE
333 1.1 alc ath_hal_chan2wmode(struct ath_hal *ah, const HAL_CHANNEL *chan)
334 1.1 alc {
335 1.1 alc if (IS_CHAN_CCK(chan))
336 1.1 alc return WIRELESS_MODE_11b;
337 1.1 alc if (IS_CHAN_G(chan))
338 1.1 alc return WIRELESS_MODE_11g;
339 1.1 alc if (IS_CHAN_108G(chan))
340 1.1 alc return WIRELESS_MODE_108g;
341 1.1 alc if (IS_CHAN_TURBO(chan))
342 1.1 alc return WIRELESS_MODE_TURBO;
343 1.1 alc return WIRELESS_MODE_11a;
344 1.1 alc }
345 1.1 alc
346 1.1 alc /*
347 1.1 alc * Convert between microseconds and core system clocks.
348 1.1 alc */
349 1.1 alc /* 11a Turbo 11b 11g 108g */
350 1.1 alc static const uint8_t CLOCK_RATE[] = { 40, 80, 22, 44, 88 };
351 1.1 alc
352 1.1 alc u_int
353 1.1 alc ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
354 1.1 alc {
355 1.1 alc const HAL_CHANNEL *c = (const HAL_CHANNEL *) AH_PRIVATE(ah)->ah_curchan;
356 1.1 alc u_int clks;
357 1.1 alc
358 1.1 alc /* NB: ah_curchan may be null when called attach time */
359 1.1 alc if (c != AH_NULL) {
360 1.1 alc clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
361 1.1 alc if (IS_CHAN_HT40(c))
362 1.1 alc clks <<= 1;
363 1.1 alc else if (IS_CHAN_HALF_RATE(c))
364 1.1 alc clks >>= 1;
365 1.1 alc else if (IS_CHAN_QUARTER_RATE(c))
366 1.1 alc clks >>= 2;
367 1.1 alc } else
368 1.1 alc clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];
369 1.1 alc return clks;
370 1.1 alc }
371 1.1 alc
372 1.1 alc u_int
373 1.1 alc ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
374 1.1 alc {
375 1.1 alc const HAL_CHANNEL *c = (const HAL_CHANNEL *) AH_PRIVATE(ah)->ah_curchan;
376 1.1 alc u_int usec;
377 1.1 alc
378 1.1 alc /* NB: ah_curchan may be null when called attach time */
379 1.1 alc if (c != AH_NULL) {
380 1.1 alc usec = clks / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
381 1.1 alc if (IS_CHAN_HT40(c))
382 1.1 alc usec >>= 1;
383 1.1 alc else if (IS_CHAN_HALF_RATE(c))
384 1.1 alc usec <<= 1;
385 1.1 alc else if (IS_CHAN_QUARTER_RATE(c))
386 1.1 alc usec <<= 2;
387 1.1 alc } else
388 1.1 alc usec = clks / CLOCK_RATE[WIRELESS_MODE_11b];
389 1.1 alc return usec;
390 1.1 alc }
391 1.1 alc
392 1.1 alc /*
393 1.1 alc * Setup a h/w rate table's reverse lookup table and
394 1.1 alc * fill in ack durations. This routine is called for
395 1.1 alc * each rate table returned through the ah_getRateTable
396 1.1 alc * method. The reverse lookup tables are assumed to be
397 1.1 alc * initialized to zero (or at least the first entry).
398 1.1 alc * We use this as a key that indicates whether or not
399 1.1 alc * we've previously setup the reverse lookup table.
400 1.1 alc *
401 1.1 alc * XXX not reentrant, but shouldn't matter
402 1.1 alc */
403 1.1 alc void
404 1.1 alc ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
405 1.1 alc {
406 1.1 alc #define N(a) (sizeof(a)/sizeof(a[0]))
407 1.1 alc int i;
408 1.1 alc
409 1.1 alc if (rt->rateCodeToIndex[0] != 0) /* already setup */
410 1.1 alc return;
411 1.1 alc for (i = 0; i < N(rt->rateCodeToIndex); i++)
412 1.1 alc rt->rateCodeToIndex[i] = (uint8_t) -1;
413 1.1 alc for (i = 0; i < rt->rateCount; i++) {
414 1.1 alc uint8_t code = rt->info[i].rateCode;
415 1.1 alc uint8_t cix = rt->info[i].controlRate;
416 1.1 alc
417 1.1 alc HALASSERT(code < N(rt->rateCodeToIndex));
418 1.1 alc rt->rateCodeToIndex[code] = i;
419 1.1 alc HALASSERT((code | rt->info[i].shortPreamble) <
420 1.1 alc N(rt->rateCodeToIndex));
421 1.1 alc rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
422 1.1 alc /*
423 1.1 alc * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
424 1.1 alc * depends on whether they are marked as basic rates;
425 1.1 alc * the static tables are setup with an 11b-compatible
426 1.1 alc * 2Mb/s rate which will work but is suboptimal
427 1.1 alc */
428 1.1 alc rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
429 1.1 alc WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE);
430 1.1 alc rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
431 1.1 alc WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE);
432 1.1 alc }
433 1.1 alc #undef N
434 1.1 alc }
435 1.1 alc
436 1.1 alc HAL_STATUS
437 1.1 alc ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
438 1.1 alc uint32_t capability, uint32_t *result)
439 1.1 alc {
440 1.1 alc const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
441 1.1 alc
442 1.1 alc switch (type) {
443 1.1 alc case HAL_CAP_REG_DMN: /* regulatory domain */
444 1.1 alc *result = AH_PRIVATE(ah)->ah_currentRD;
445 1.1 alc return HAL_OK;
446 1.1 alc case HAL_CAP_CIPHER: /* cipher handled in hardware */
447 1.1 alc case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
448 1.1 alc return HAL_ENOTSUPP;
449 1.1 alc case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
450 1.1 alc return HAL_ENOTSUPP;
451 1.1 alc case HAL_CAP_PHYCOUNTERS: /* hardware PHY error counters */
452 1.1 alc return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
453 1.1 alc case HAL_CAP_WME_TKIPMIC: /* hardware can do TKIP MIC when WMM is turned on */
454 1.1 alc return HAL_ENOTSUPP;
455 1.1 alc case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */
456 1.1 alc return HAL_ENOTSUPP;
457 1.1 alc case HAL_CAP_KEYCACHE_SIZE: /* hardware key cache size */
458 1.1 alc *result = pCap->halKeyCacheSize;
459 1.1 alc return HAL_OK;
460 1.1 alc case HAL_CAP_NUM_TXQUEUES: /* number of hardware tx queues */
461 1.1 alc *result = pCap->halTotalQueues;
462 1.1 alc return HAL_OK;
463 1.1 alc case HAL_CAP_VEOL: /* hardware supports virtual EOL */
464 1.1 alc return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
465 1.1 alc case HAL_CAP_PSPOLL: /* hardware PS-Poll support works */
466 1.1 alc return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
467 1.1 alc case HAL_CAP_COMPRESSION:
468 1.1 alc return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
469 1.1 alc case HAL_CAP_BURST:
470 1.1 alc return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
471 1.1 alc case HAL_CAP_FASTFRAME:
472 1.1 alc return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
473 1.1 alc case HAL_CAP_DIAG: /* hardware diagnostic support */
474 1.1 alc *result = AH_PRIVATE(ah)->ah_diagreg;
475 1.1 alc return HAL_OK;
476 1.1 alc case HAL_CAP_TXPOW: /* global tx power limit */
477 1.1 alc switch (capability) {
478 1.1 alc case 0: /* facility is supported */
479 1.1 alc return HAL_OK;
480 1.1 alc case 1: /* current limit */
481 1.1 alc *result = AH_PRIVATE(ah)->ah_powerLimit;
482 1.1 alc return HAL_OK;
483 1.1 alc case 2: /* current max tx power */
484 1.1 alc *result = AH_PRIVATE(ah)->ah_maxPowerLevel;
485 1.1 alc return HAL_OK;
486 1.1 alc case 3: /* scale factor */
487 1.1 alc *result = AH_PRIVATE(ah)->ah_tpScale;
488 1.1 alc return HAL_OK;
489 1.1 alc }
490 1.1 alc return HAL_ENOTSUPP;
491 1.1 alc case HAL_CAP_BSSIDMASK: /* hardware supports bssid mask */
492 1.1 alc return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
493 1.1 alc case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
494 1.1 alc return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
495 1.1 alc case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
496 1.1 alc return HAL_ENOTSUPP;
497 1.1 alc case HAL_CAP_RFSILENT: /* rfsilent support */
498 1.1 alc switch (capability) {
499 1.1 alc case 0: /* facility is supported */
500 1.1 alc return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
501 1.1 alc case 1: /* current setting */
502 1.1 alc return AH_PRIVATE(ah)->ah_rfkillEnabled ?
503 1.1 alc HAL_OK : HAL_ENOTSUPP;
504 1.1 alc case 2: /* rfsilent config */
505 1.1 alc *result = AH_PRIVATE(ah)->ah_rfsilent;
506 1.1 alc return HAL_OK;
507 1.1 alc }
508 1.1 alc return HAL_ENOTSUPP;
509 1.1 alc case HAL_CAP_11D:
510 1.1 alc #ifdef AH_SUPPORT_11D
511 1.1 alc return HAL_OK;
512 1.1 alc #else
513 1.1 alc return HAL_ENOTSUPP;
514 1.1 alc #endif
515 1.1 alc case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
516 1.1 alc return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
517 1.1 alc case HAL_CAP_HT:
518 1.1 alc return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
519 1.1 alc case HAL_CAP_TX_CHAINMASK: /* mask of TX chains supported */
520 1.1 alc *result = pCap->halTxChainMask;
521 1.1 alc return HAL_OK;
522 1.1 alc case HAL_CAP_RX_CHAINMASK: /* mask of RX chains supported */
523 1.1 alc *result = pCap->halRxChainMask;
524 1.1 alc return HAL_OK;
525 1.1 alc case HAL_CAP_RXTSTAMP_PREC: /* rx desc tstamp precision (bits) */
526 1.1 alc *result = pCap->halTstampPrecision;
527 1.1 alc return HAL_OK;
528 1.3 cegger case HAL_CAP_INTRMASK: /* mask of supported interrupts */
529 1.3 cegger *result = pCap->halIntrMask;
530 1.3 cegger return HAL_OK;
531 1.3 cegger case HAL_CAP_BSSIDMATCH: /* hardware has disable bssid match */
532 1.3 cegger return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
533 1.1 alc default:
534 1.1 alc return HAL_EINVAL;
535 1.1 alc }
536 1.1 alc }
537 1.1 alc
538 1.1 alc HAL_BOOL
539 1.1 alc ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
540 1.1 alc uint32_t capability, uint32_t setting, HAL_STATUS *status)
541 1.1 alc {
542 1.1 alc
543 1.1 alc switch (type) {
544 1.1 alc case HAL_CAP_TXPOW:
545 1.1 alc switch (capability) {
546 1.1 alc case 3:
547 1.1 alc if (setting <= HAL_TP_SCALE_MIN) {
548 1.1 alc AH_PRIVATE(ah)->ah_tpScale = setting;
549 1.1 alc return AH_TRUE;
550 1.1 alc }
551 1.1 alc break;
552 1.1 alc }
553 1.1 alc break;
554 1.1 alc case HAL_CAP_RFSILENT: /* rfsilent support */
555 1.1 alc /*
556 1.1 alc * NB: allow even if halRfSilentSupport is false
557 1.1 alc * in case the EEPROM is misprogrammed.
558 1.1 alc */
559 1.1 alc switch (capability) {
560 1.1 alc case 1: /* current setting */
561 1.1 alc AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
562 1.1 alc return AH_TRUE;
563 1.1 alc case 2: /* rfsilent config */
564 1.1 alc /* XXX better done per-chip for validation? */
565 1.1 alc AH_PRIVATE(ah)->ah_rfsilent = setting;
566 1.1 alc return AH_TRUE;
567 1.1 alc }
568 1.1 alc break;
569 1.1 alc case HAL_CAP_REG_DMN: /* regulatory domain */
570 1.1 alc AH_PRIVATE(ah)->ah_currentRD = setting;
571 1.1 alc return AH_TRUE;
572 1.1 alc case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
573 1.1 alc AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
574 1.1 alc return AH_TRUE;
575 1.1 alc default:
576 1.1 alc break;
577 1.1 alc }
578 1.1 alc if (status)
579 1.1 alc *status = HAL_EINVAL;
580 1.1 alc return AH_FALSE;
581 1.1 alc }
582 1.1 alc
583 1.1 alc /*
584 1.1 alc * Common support for getDiagState method.
585 1.1 alc */
586 1.1 alc
587 1.1 alc static u_int
588 1.1 alc ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
589 1.1 alc void *dstbuf, int space)
590 1.1 alc {
591 1.1 alc uint32_t *dp = dstbuf;
592 1.1 alc int i;
593 1.1 alc
594 1.1 alc for (i = 0; space >= 2*sizeof(uint32_t); i++) {
595 1.1 alc u_int r = regs[i].start;
596 1.1 alc u_int e = regs[i].end;
597 1.1 alc *dp++ = (r<<16) | e;
598 1.1 alc space -= sizeof(uint32_t);
599 1.1 alc do {
600 1.1 alc *dp++ = OS_REG_READ(ah, r);
601 1.1 alc r += sizeof(uint32_t);
602 1.1 alc space -= sizeof(uint32_t);
603 1.1 alc } while (r <= e && space >= sizeof(uint32_t));
604 1.1 alc }
605 1.1 alc return (char *) dp - (char *) dstbuf;
606 1.1 alc }
607 1.1 alc
608 1.1 alc HAL_BOOL
609 1.1 alc ath_hal_getdiagstate(struct ath_hal *ah, int request,
610 1.1 alc const void *args, uint32_t argsize,
611 1.1 alc void **result, uint32_t *resultsize)
612 1.1 alc {
613 1.1 alc switch (request) {
614 1.1 alc case HAL_DIAG_REVS:
615 1.1 alc *result = &AH_PRIVATE(ah)->ah_devid;
616 1.1 alc *resultsize = sizeof(HAL_REVS);
617 1.1 alc return AH_TRUE;
618 1.1 alc case HAL_DIAG_REGS:
619 1.1 alc *resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
620 1.1 alc return AH_TRUE;
621 1.1 alc case HAL_DIAG_FATALERR:
622 1.1 alc *result = &AH_PRIVATE(ah)->ah_fatalState[0];
623 1.1 alc *resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
624 1.1 alc return AH_TRUE;
625 1.1 alc case HAL_DIAG_EEREAD:
626 1.1 alc if (argsize != sizeof(uint16_t))
627 1.1 alc return AH_FALSE;
628 1.1 alc if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
629 1.1 alc return AH_FALSE;
630 1.1 alc *resultsize = sizeof(uint16_t);
631 1.1 alc return AH_TRUE;
632 1.1 alc #ifdef AH_PRIVATE_DIAG
633 1.1 alc case HAL_DIAG_SETKEY: {
634 1.1 alc const HAL_DIAG_KEYVAL *dk;
635 1.1 alc
636 1.1 alc if (argsize != sizeof(HAL_DIAG_KEYVAL))
637 1.1 alc return AH_FALSE;
638 1.1 alc dk = (const HAL_DIAG_KEYVAL *)args;
639 1.1 alc return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
640 1.1 alc &dk->dk_keyval, dk->dk_mac, dk->dk_xor);
641 1.1 alc }
642 1.1 alc case HAL_DIAG_RESETKEY:
643 1.1 alc if (argsize != sizeof(uint16_t))
644 1.1 alc return AH_FALSE;
645 1.1 alc return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
646 1.1 alc #ifdef AH_SUPPORT_WRITE_EEPROM
647 1.1 alc case HAL_DIAG_EEWRITE: {
648 1.1 alc const HAL_DIAG_EEVAL *ee;
649 1.1 alc if (argsize != sizeof(HAL_DIAG_EEVAL))
650 1.1 alc return AH_FALSE;
651 1.1 alc ee = (const HAL_DIAG_EEVAL *)args;
652 1.1 alc return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
653 1.1 alc }
654 1.1 alc #endif /* AH_SUPPORT_WRITE_EEPROM */
655 1.1 alc #endif /* AH_PRIVATE_DIAG */
656 1.1 alc case HAL_DIAG_11NCOMPAT:
657 1.1 alc if (argsize == 0) {
658 1.1 alc *resultsize = sizeof(uint32_t);
659 1.1 alc *((uint32_t *)(*result)) =
660 1.1 alc AH_PRIVATE(ah)->ah_11nCompat;
661 1.1 alc } else if (argsize == sizeof(uint32_t)) {
662 1.1 alc AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
663 1.1 alc } else
664 1.1 alc return AH_FALSE;
665 1.1 alc return AH_TRUE;
666 1.1 alc }
667 1.1 alc return AH_FALSE;
668 1.1 alc }
669 1.1 alc
670 1.1 alc /*
671 1.1 alc * Set the properties of the tx queue with the parameters
672 1.1 alc * from qInfo.
673 1.1 alc */
674 1.1 alc HAL_BOOL
675 1.1 alc ath_hal_setTxQProps(struct ath_hal *ah,
676 1.1 alc HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
677 1.1 alc {
678 1.1 alc uint32_t cw;
679 1.1 alc
680 1.1 alc if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
681 1.1 alc HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
682 1.1 alc "%s: inactive queue\n", __func__);
683 1.1 alc return AH_FALSE;
684 1.1 alc }
685 1.1 alc /* XXX validate parameters */
686 1.1 alc qi->tqi_ver = qInfo->tqi_ver;
687 1.1 alc qi->tqi_subtype = qInfo->tqi_subtype;
688 1.1 alc qi->tqi_qflags = qInfo->tqi_qflags;
689 1.1 alc qi->tqi_priority = qInfo->tqi_priority;
690 1.1 alc if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
691 1.1 alc qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
692 1.1 alc else
693 1.1 alc qi->tqi_aifs = INIT_AIFS;
694 1.1 alc if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
695 1.1 alc cw = AH_MIN(qInfo->tqi_cwmin, 1024);
696 1.1 alc /* make sure that the CWmin is of the form (2^n - 1) */
697 1.1 alc qi->tqi_cwmin = 1;
698 1.1 alc while (qi->tqi_cwmin < cw)
699 1.1 alc qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
700 1.1 alc } else
701 1.1 alc qi->tqi_cwmin = qInfo->tqi_cwmin;
702 1.1 alc if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
703 1.1 alc cw = AH_MIN(qInfo->tqi_cwmax, 1024);
704 1.1 alc /* make sure that the CWmax is of the form (2^n - 1) */
705 1.1 alc qi->tqi_cwmax = 1;
706 1.1 alc while (qi->tqi_cwmax < cw)
707 1.1 alc qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
708 1.1 alc } else
709 1.1 alc qi->tqi_cwmax = INIT_CWMAX;
710 1.1 alc /* Set retry limit values */
711 1.1 alc if (qInfo->tqi_shretry != 0)
712 1.1 alc qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
713 1.1 alc else
714 1.1 alc qi->tqi_shretry = INIT_SH_RETRY;
715 1.1 alc if (qInfo->tqi_lgretry != 0)
716 1.1 alc qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
717 1.1 alc else
718 1.1 alc qi->tqi_lgretry = INIT_LG_RETRY;
719 1.1 alc qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
720 1.1 alc qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
721 1.1 alc qi->tqi_burstTime = qInfo->tqi_burstTime;
722 1.1 alc qi->tqi_readyTime = qInfo->tqi_readyTime;
723 1.1 alc
724 1.1 alc switch (qInfo->tqi_subtype) {
725 1.1 alc case HAL_WME_UPSD:
726 1.1 alc if (qi->tqi_type == HAL_TX_QUEUE_DATA)
727 1.1 alc qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
728 1.1 alc break;
729 1.1 alc default:
730 1.1 alc break; /* NB: silence compiler */
731 1.1 alc }
732 1.1 alc return AH_TRUE;
733 1.1 alc }
734 1.1 alc
735 1.1 alc HAL_BOOL
736 1.1 alc ath_hal_getTxQProps(struct ath_hal *ah,
737 1.1 alc HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
738 1.1 alc {
739 1.1 alc if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
740 1.1 alc HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
741 1.1 alc "%s: inactive queue\n", __func__);
742 1.1 alc return AH_FALSE;
743 1.1 alc }
744 1.1 alc
745 1.1 alc qInfo->tqi_qflags = qi->tqi_qflags;
746 1.1 alc qInfo->tqi_ver = qi->tqi_ver;
747 1.1 alc qInfo->tqi_subtype = qi->tqi_subtype;
748 1.1 alc qInfo->tqi_qflags = qi->tqi_qflags;
749 1.1 alc qInfo->tqi_priority = qi->tqi_priority;
750 1.1 alc qInfo->tqi_aifs = qi->tqi_aifs;
751 1.1 alc qInfo->tqi_cwmin = qi->tqi_cwmin;
752 1.1 alc qInfo->tqi_cwmax = qi->tqi_cwmax;
753 1.1 alc qInfo->tqi_shretry = qi->tqi_shretry;
754 1.1 alc qInfo->tqi_lgretry = qi->tqi_lgretry;
755 1.1 alc qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
756 1.1 alc qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
757 1.1 alc qInfo->tqi_burstTime = qi->tqi_burstTime;
758 1.1 alc qInfo->tqi_readyTime = qi->tqi_readyTime;
759 1.1 alc return AH_TRUE;
760 1.1 alc }
761 1.1 alc
762 1.1 alc /* 11a Turbo 11b 11g 108g */
763 1.1 alc static const int16_t NOISE_FLOOR[] = { -96, -93, -98, -96, -93 };
764 1.1 alc
765 1.1 alc /*
766 1.1 alc * Read the current channel noise floor and return.
767 1.1 alc * If nf cal hasn't finished, channel noise floor should be 0
768 1.1 alc * and we return a nominal value based on band and frequency.
769 1.1 alc *
770 1.1 alc * NB: This is a private routine used by per-chip code to
771 1.1 alc * implement the ah_getChanNoise method.
772 1.1 alc */
773 1.1 alc int16_t
774 1.1 alc ath_hal_getChanNoise(struct ath_hal *ah, HAL_CHANNEL *chan)
775 1.1 alc {
776 1.1 alc HAL_CHANNEL_INTERNAL *ichan;
777 1.1 alc
778 1.1 alc ichan = ath_hal_checkchannel(ah, chan);
779 1.1 alc if (ichan == AH_NULL) {
780 1.1 alc HALDEBUG(ah, HAL_DEBUG_NFCAL,
781 1.1 alc "%s: invalid channel %u/0x%x; no mapping\n",
782 1.1 alc __func__, chan->channel, chan->channelFlags);
783 1.1 alc return 0;
784 1.1 alc }
785 1.1 alc if (ichan->rawNoiseFloor == 0) {
786 1.1 alc WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
787 1.1 alc
788 1.1 alc HALASSERT(mode < WIRELESS_MODE_MAX);
789 1.1 alc return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
790 1.1 alc } else
791 1.1 alc return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
792 1.1 alc }
793 1.1 alc
794 1.1 alc /*
795 1.1 alc * Process all valid raw noise floors into the dBm noise floor values.
796 1.1 alc * Though our device has no reference for a dBm noise floor, we perform
797 1.1 alc * a relative minimization of NF's based on the lowest NF found across a
798 1.1 alc * channel scan.
799 1.1 alc */
800 1.1 alc void
801 1.1 alc ath_hal_process_noisefloor(struct ath_hal *ah)
802 1.1 alc {
803 1.1 alc HAL_CHANNEL_INTERNAL *c;
804 1.1 alc int16_t correct2, correct5;
805 1.1 alc int16_t lowest2, lowest5;
806 1.1 alc int i;
807 1.1 alc
808 1.1 alc /*
809 1.1 alc * Find the lowest 2GHz and 5GHz noise floor values after adjusting
810 1.1 alc * for statistically recorded NF/channel deviation.
811 1.1 alc */
812 1.1 alc correct2 = lowest2 = 0;
813 1.1 alc correct5 = lowest5 = 0;
814 1.1 alc for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
815 1.1 alc WIRELESS_MODE mode;
816 1.1 alc int16_t nf;
817 1.1 alc
818 1.1 alc c = &AH_PRIVATE(ah)->ah_channels[i];
819 1.1 alc if (c->rawNoiseFloor >= 0)
820 1.1 alc continue;
821 1.1 alc mode = ath_hal_chan2wmode(ah, (HAL_CHANNEL *) c);
822 1.1 alc HALASSERT(mode < WIRELESS_MODE_MAX);
823 1.1 alc nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
824 1.1 alc ath_hal_getNfAdjust(ah, c);
825 1.1 alc if (IS_CHAN_5GHZ(c)) {
826 1.1 alc if (nf < lowest5) {
827 1.1 alc lowest5 = nf;
828 1.1 alc correct5 = NOISE_FLOOR[mode] -
829 1.1 alc (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
830 1.1 alc }
831 1.1 alc } else {
832 1.1 alc if (nf < lowest2) {
833 1.1 alc lowest2 = nf;
834 1.1 alc correct2 = NOISE_FLOOR[mode] -
835 1.1 alc (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
836 1.1 alc }
837 1.1 alc }
838 1.1 alc }
839 1.1 alc
840 1.1 alc /* Correct the channels to reach the expected NF value */
841 1.1 alc for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
842 1.1 alc c = &AH_PRIVATE(ah)->ah_channels[i];
843 1.1 alc if (c->rawNoiseFloor >= 0)
844 1.1 alc continue;
845 1.1 alc /* Apply correction factor */
846 1.1 alc c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
847 1.1 alc (IS_CHAN_5GHZ(c) ? correct5 : correct2);
848 1.1 alc HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u/0x%x raw nf %d adjust %d\n",
849 1.1 alc c->channel, c->channelFlags, c->rawNoiseFloor,
850 1.1 alc c->noiseFloorAdjust);
851 1.1 alc }
852 1.1 alc }
853 1.1 alc
854 1.1 alc /*
855 1.1 alc * INI support routines.
856 1.1 alc */
857 1.1 alc
858 1.1 alc int
859 1.1 alc ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
860 1.1 alc int col, int regWr)
861 1.1 alc {
862 1.1 alc int r;
863 1.1 alc
864 1.1 alc for (r = 0; r < ia->rows; r++) {
865 1.1 alc OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
866 1.1 alc HAL_INI_VAL(ia, r, col));
867 1.1 alc DMA_YIELD(regWr);
868 1.1 alc }
869 1.1 alc return regWr;
870 1.1 alc }
871 1.1 alc
872 1.1 alc void
873 1.1 alc ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
874 1.1 alc {
875 1.1 alc int r;
876 1.1 alc
877 1.1 alc for (r = 0; r < ia->rows; r++)
878 1.1 alc data[r] = HAL_INI_VAL(ia, r, col);
879 1.1 alc }
880 1.1 alc
881 1.1 alc int
882 1.1 alc ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
883 1.1 alc const uint32_t data[], int regWr)
884 1.1 alc {
885 1.1 alc int r;
886 1.1 alc
887 1.1 alc for (r = 0; r < ia->rows; r++) {
888 1.1 alc OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
889 1.1 alc DMA_YIELD(regWr);
890 1.1 alc }
891 1.1 alc return regWr;
892 1.1 alc }
893