Home | History | Annotate | Line # | Download | only in dist
      1  1.1     alc /*
      2  1.1     alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  1.1     alc  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  1.1     alc  *
      5  1.1     alc  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.1     alc  * purpose with or without fee is hereby granted, provided that the above
      7  1.1     alc  * copyright notice and this permission notice appear in all copies.
      8  1.1     alc  *
      9  1.1     alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.1     alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.1     alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.1     alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.1     alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.1     alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.1     alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.1     alc  *
     17  1.5     mrg  * $Id: ah_eeprom_v3.c,v 1.5 2021/04/13 03:27:13 mrg Exp $
     18  1.1     alc  */
     19  1.1     alc #include "opt_ah.h"
     20  1.1     alc 
     21  1.1     alc #include "ah.h"
     22  1.1     alc #include "ah_internal.h"
     23  1.1     alc #include "ah_eeprom_v3.h"
     24  1.1     alc 
     25  1.1     alc static void
     26  1.1     alc getPcdacInterceptsFromPcdacMinMax(HAL_EEPROM *ee,
     27  1.1     alc 	uint16_t pcdacMin, uint16_t pcdacMax, uint16_t *vp)
     28  1.1     alc {
     29  1.2     alc 	static const uint16_t intercepts3[] =
     30  1.1     alc 		{ 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
     31  1.2     alc 	static const uint16_t intercepts3_2[] =
     32  1.1     alc 		{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
     33  1.1     alc 	const uint16_t *ip = ee->ee_version < AR_EEPROM_VER3_2 ?
     34  1.1     alc 		intercepts3 : intercepts3_2;
     35  1.1     alc 	int i;
     36  1.1     alc 
     37  1.1     alc 	/* loop for the percentages in steps or 5 */
     38  1.1     alc 	for (i = 0; i < NUM_INTERCEPTS; i++ )
     39  1.1     alc 		*vp++ = (ip[i] * pcdacMax + (100 - ip[i]) * pcdacMin) / 100;
     40  1.1     alc }
     41  1.1     alc 
     42  1.1     alc /*
     43  1.1     alc  * Get channel value from binary representation held in eeprom
     44  1.1     alc  */
     45  1.1     alc static uint16_t
     46  1.1     alc fbin2freq(HAL_EEPROM *ee, uint16_t fbin)
     47  1.1     alc {
     48  1.1     alc 	if (fbin == CHANNEL_UNUSED)	/* reserved value, don't convert */
     49  1.1     alc 		return fbin;
     50  1.1     alc 	return ee->ee_version <= AR_EEPROM_VER3_2 ?
     51  1.1     alc 		(fbin > 62 ? 5100 + 10*62 + 5*(fbin-62) : 5100 + 10*fbin) :
     52  1.1     alc 		4800 + 5*fbin;
     53  1.1     alc }
     54  1.1     alc 
     55  1.1     alc static uint16_t
     56  1.1     alc fbin2freq_2p4(HAL_EEPROM *ee, uint16_t fbin)
     57  1.1     alc {
     58  1.1     alc 	if (fbin == CHANNEL_UNUSED)	/* reserved value, don't convert */
     59  1.1     alc 		return fbin;
     60  1.1     alc 	return ee->ee_version <= AR_EEPROM_VER3_2 ?
     61  1.1     alc 		2400 + fbin :
     62  1.1     alc 		2300 + fbin;
     63  1.1     alc }
     64  1.1     alc 
     65  1.1     alc /*
     66  1.1     alc  * Now copy EEPROM frequency pier contents into the allocated space
     67  1.1     alc  */
     68  1.1     alc static HAL_BOOL
     69  1.1     alc readEepromFreqPierInfo(struct ath_hal *ah, HAL_EEPROM *ee)
     70  1.1     alc {
     71  1.1     alc #define	EEREAD(_off) do {				\
     72  1.1     alc 	if (!ath_hal_eepromRead(ah, _off, &eeval))	\
     73  1.1     alc 		return AH_FALSE;			\
     74  1.1     alc } while (0)
     75  1.1     alc 	uint16_t eeval, off;
     76  1.1     alc 	int i;
     77  1.1     alc 
     78  1.1     alc 	if (ee->ee_version >= AR_EEPROM_VER4_0 &&
     79  1.1     alc 	    ee->ee_eepMap && !ee->ee_Amode) {
     80  1.1     alc 		/*
     81  1.1     alc 		 * V4.0 EEPROMs with map type 1 have frequency pier
     82  1.1     alc 		 * data only when 11a mode is supported.
     83  1.1     alc 		 */
     84  1.1     alc 		return AH_TRUE;
     85  1.1     alc 	}
     86  1.1     alc 	if (ee->ee_version >= AR_EEPROM_VER3_3) {
     87  1.1     alc 		off = GROUPS_OFFSET3_3 + GROUP1_OFFSET;
     88  1.1     alc 		for (i = 0; i < ee->ee_numChannels11a; i += 2) {
     89  1.1     alc 			EEREAD(off++);
     90  1.1     alc 			ee->ee_channels11a[i]   = (eeval >> 8) & FREQ_MASK_3_3;
     91  1.1     alc 			ee->ee_channels11a[i+1] = eeval & FREQ_MASK_3_3;
     92  1.1     alc 		}
     93  1.1     alc 	} else {
     94  1.1     alc 		off = GROUPS_OFFSET3_2 + GROUP1_OFFSET;
     95  1.1     alc 
     96  1.1     alc 		EEREAD(off++);
     97  1.1     alc 		ee->ee_channels11a[0] = (eeval >> 9) & FREQ_MASK;
     98  1.1     alc 		ee->ee_channels11a[1] = (eeval >> 2) & FREQ_MASK;
     99  1.1     alc 		ee->ee_channels11a[2] = (eeval << 5) & FREQ_MASK;
    100  1.1     alc 
    101  1.1     alc 		EEREAD(off++);
    102  1.1     alc 		ee->ee_channels11a[2] |= (eeval >> 11) & 0x1f;
    103  1.1     alc 		ee->ee_channels11a[3]  = (eeval >>  4) & FREQ_MASK;
    104  1.1     alc 		ee->ee_channels11a[4]  = (eeval <<  3) & FREQ_MASK;
    105  1.1     alc 
    106  1.1     alc 		EEREAD(off++);
    107  1.1     alc 		ee->ee_channels11a[4] |= (eeval >> 13) & 0x7;
    108  1.1     alc 		ee->ee_channels11a[5]  = (eeval >>  6) & FREQ_MASK;
    109  1.1     alc 		ee->ee_channels11a[6]  = (eeval <<  1) & FREQ_MASK;
    110  1.1     alc 
    111  1.1     alc 		EEREAD(off++);
    112  1.1     alc 		ee->ee_channels11a[6] |= (eeval >> 15) & 0x1;
    113  1.1     alc 		ee->ee_channels11a[7]  = (eeval >>  8) & FREQ_MASK;
    114  1.1     alc 		ee->ee_channels11a[8]  = (eeval >>  1) & FREQ_MASK;
    115  1.1     alc 		ee->ee_channels11a[9]  = (eeval <<  6) & FREQ_MASK;
    116  1.1     alc 
    117  1.1     alc 		EEREAD(off++);
    118  1.1     alc 		ee->ee_channels11a[9] |= (eeval >> 10) & 0x3f;
    119  1.1     alc 	}
    120  1.1     alc 
    121  1.1     alc 	for (i = 0; i < ee->ee_numChannels11a; i++)
    122  1.1     alc 		ee->ee_channels11a[i] = fbin2freq(ee, ee->ee_channels11a[i]);
    123  1.1     alc 
    124  1.1     alc 	return AH_TRUE;
    125  1.1     alc #undef EEREAD
    126  1.1     alc }
    127  1.1     alc 
    128  1.1     alc /*
    129  1.1     alc  * Rev 4 Eeprom 5112 Power Extract Functions
    130  1.1     alc  */
    131  1.1     alc 
    132  1.1     alc /*
    133  1.1     alc  * Allocate the power information based on the number of channels
    134  1.1     alc  * recorded by the calibration.  These values are then initialized.
    135  1.1     alc  */
    136  1.1     alc static HAL_BOOL
    137  1.1     alc eepromAllocExpnPower5112(struct ath_hal *ah,
    138  1.1     alc 	const EEPROM_POWER_5112 *pCalDataset,
    139  1.1     alc 	EEPROM_POWER_EXPN_5112 *pPowerExpn)
    140  1.1     alc {
    141  1.1     alc 	uint16_t numChannels = pCalDataset->numChannels;
    142  1.1     alc 	const uint16_t *pChanList = pCalDataset->pChannels;
    143  1.1     alc 	void *data;
    144  1.1     alc 	int i, j;
    145  1.1     alc 
    146  1.1     alc 	/* Allocate the channel and Power Data arrays together */
    147  1.1     alc 	data = ath_hal_malloc(
    148  1.1     alc 		roundup(sizeof(uint16_t) * numChannels, sizeof(uint32_t)) +
    149  1.1     alc 		sizeof(EXPN_DATA_PER_CHANNEL_5112) * numChannels);
    150  1.1     alc 	if (data == AH_NULL) {
    151  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    152  1.1     alc 		    "%s unable to allocate raw data struct (gen3)\n", __func__);
    153  1.1     alc 		return AH_FALSE;
    154  1.1     alc 	}
    155  1.1     alc 	pPowerExpn->pChannels = data;
    156  1.1     alc 	pPowerExpn->pDataPerChannel = (void *)(((char *)data) +
    157  1.1     alc 		roundup(sizeof(uint16_t) * numChannels, sizeof(uint32_t)));
    158  1.1     alc 
    159  1.1     alc 	pPowerExpn->numChannels = numChannels;
    160  1.1     alc 	for (i = 0; i < numChannels; i++) {
    161  1.1     alc 		pPowerExpn->pChannels[i] =
    162  1.1     alc 			pPowerExpn->pDataPerChannel[i].channelValue =
    163  1.1     alc 				pChanList[i];
    164  1.1     alc 		for (j = 0; j < NUM_XPD_PER_CHANNEL; j++) {
    165  1.1     alc 			pPowerExpn->pDataPerChannel[i].pDataPerXPD[j].xpd_gain = j;
    166  1.1     alc 			pPowerExpn->pDataPerChannel[i].pDataPerXPD[j].numPcdacs = 0;
    167  1.1     alc 		}
    168  1.1     alc 		pPowerExpn->pDataPerChannel[i].pDataPerXPD[0].numPcdacs = 4;
    169  1.1     alc 		pPowerExpn->pDataPerChannel[i].pDataPerXPD[3].numPcdacs = 3;
    170  1.1     alc 	}
    171  1.1     alc 	return AH_TRUE;
    172  1.1     alc }
    173  1.1     alc 
    174  1.1     alc /*
    175  1.1     alc  * Expand the dataSet from the calibration information into the
    176  1.1     alc  * final power structure for 5112
    177  1.1     alc  */
    178  1.1     alc static HAL_BOOL
    179  1.1     alc eepromExpandPower5112(struct ath_hal *ah,
    180  1.1     alc 	const EEPROM_POWER_5112 *pCalDataset,
    181  1.1     alc 	EEPROM_POWER_EXPN_5112 *pPowerExpn)
    182  1.1     alc {
    183  1.1     alc 	int ii, jj, kk;
    184  1.1     alc 	EXPN_DATA_PER_XPD_5112 *pExpnXPD;
    185  1.1     alc 	/* ptr to array of info held per channel */
    186  1.1     alc 	const EEPROM_DATA_PER_CHANNEL_5112 *pCalCh;
    187  1.1     alc 	uint16_t xgainList[2], xpdMask;
    188  1.1     alc 
    189  1.1     alc 	pPowerExpn->xpdMask = pCalDataset->xpdMask;
    190  1.1     alc 
    191  1.1     alc 	xgainList[0] = 0xDEAD;
    192  1.1     alc 	xgainList[1] = 0xDEAD;
    193  1.1     alc 
    194  1.1     alc 	kk = 0;
    195  1.1     alc 	xpdMask = pPowerExpn->xpdMask;
    196  1.1     alc 	for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
    197  1.1     alc 		if (((xpdMask >> jj) & 1) > 0) {
    198  1.1     alc 			if (kk > 1) {
    199  1.1     alc 				HALDEBUG(ah, HAL_DEBUG_ANY,
    200  1.1     alc 				    "%s: too many xpdGains in dataset: %u\n",
    201  1.1     alc 				    __func__, kk);
    202  1.1     alc 				return AH_FALSE;
    203  1.1     alc 			}
    204  1.1     alc 			xgainList[kk++] = jj;
    205  1.1     alc 		}
    206  1.1     alc 	}
    207  1.1     alc 
    208  1.1     alc 	pPowerExpn->numChannels = pCalDataset->numChannels;
    209  1.1     alc 	if (pPowerExpn->numChannels == 0) {
    210  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no channels\n", __func__);
    211  1.1     alc 		return AH_FALSE;
    212  1.1     alc 	}
    213  1.1     alc 
    214  1.1     alc 	for (ii = 0; ii < pPowerExpn->numChannels; ii++) {
    215  1.1     alc 		pCalCh = &pCalDataset->pDataPerChannel[ii];
    216  1.1     alc 		pPowerExpn->pDataPerChannel[ii].channelValue =
    217  1.1     alc 			pCalCh->channelValue;
    218  1.1     alc 		pPowerExpn->pDataPerChannel[ii].maxPower_t4 =
    219  1.1     alc 			pCalCh->maxPower_t4;
    220  1.1     alc 
    221  1.1     alc 		for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++)
    222  1.1     alc 			pPowerExpn->pDataPerChannel[ii].pDataPerXPD[jj].numPcdacs = 0;
    223  1.1     alc 		if (xgainList[1] == 0xDEAD) {
    224  1.1     alc 			jj = xgainList[0];
    225  1.1     alc 			pExpnXPD = &pPowerExpn->pDataPerChannel[ii].pDataPerXPD[jj];
    226  1.1     alc 			pExpnXPD->numPcdacs = 4;
    227  1.1     alc 			pExpnXPD->pcdac[0] = pCalCh->pcd1_xg0;
    228  1.1     alc 			pExpnXPD->pcdac[1] = (uint16_t)
    229  1.1     alc 				(pExpnXPD->pcdac[0] + pCalCh->pcd2_delta_xg0);
    230  1.1     alc 			pExpnXPD->pcdac[2] = (uint16_t)
    231  1.1     alc 				(pExpnXPD->pcdac[1] + pCalCh->pcd3_delta_xg0);
    232  1.1     alc 			pExpnXPD->pcdac[3] = (uint16_t)
    233  1.1     alc 				(pExpnXPD->pcdac[2] + pCalCh->pcd4_delta_xg0);
    234  1.1     alc 
    235  1.1     alc 			pExpnXPD->pwr_t4[0] = pCalCh->pwr1_xg0;
    236  1.1     alc 			pExpnXPD->pwr_t4[1] = pCalCh->pwr2_xg0;
    237  1.1     alc 			pExpnXPD->pwr_t4[2] = pCalCh->pwr3_xg0;
    238  1.1     alc 			pExpnXPD->pwr_t4[3] = pCalCh->pwr4_xg0;
    239  1.1     alc 
    240  1.1     alc 		} else {
    241  1.1     alc 			pPowerExpn->pDataPerChannel[ii].pDataPerXPD[xgainList[0]].pcdac[0] = pCalCh->pcd1_xg0;
    242  1.1     alc 			pPowerExpn->pDataPerChannel[ii].pDataPerXPD[xgainList[1]].pcdac[0] = 20;
    243  1.1     alc 			pPowerExpn->pDataPerChannel[ii].pDataPerXPD[xgainList[1]].pcdac[1] = 35;
    244  1.1     alc 			pPowerExpn->pDataPerChannel[ii].pDataPerXPD[xgainList[1]].pcdac[2] = 63;
    245  1.1     alc 
    246  1.1     alc 			jj = xgainList[0];
    247  1.1     alc 			pExpnXPD = &pPowerExpn->pDataPerChannel[ii].pDataPerXPD[jj];
    248  1.1     alc 			pExpnXPD->numPcdacs = 4;
    249  1.1     alc 			pExpnXPD->pcdac[1] = (uint16_t)
    250  1.1     alc 				(pExpnXPD->pcdac[0] + pCalCh->pcd2_delta_xg0);
    251  1.1     alc 			pExpnXPD->pcdac[2] = (uint16_t)
    252  1.1     alc 				(pExpnXPD->pcdac[1] + pCalCh->pcd3_delta_xg0);
    253  1.1     alc 			pExpnXPD->pcdac[3] = (uint16_t)
    254  1.1     alc 				(pExpnXPD->pcdac[2] + pCalCh->pcd4_delta_xg0);
    255  1.1     alc 			pExpnXPD->pwr_t4[0] = pCalCh->pwr1_xg0;
    256  1.1     alc 			pExpnXPD->pwr_t4[1] = pCalCh->pwr2_xg0;
    257  1.1     alc 			pExpnXPD->pwr_t4[2] = pCalCh->pwr3_xg0;
    258  1.1     alc 			pExpnXPD->pwr_t4[3] = pCalCh->pwr4_xg0;
    259  1.1     alc 
    260  1.1     alc 			jj = xgainList[1];
    261  1.1     alc 			pExpnXPD = &pPowerExpn->pDataPerChannel[ii].pDataPerXPD[jj];
    262  1.1     alc 			pExpnXPD->numPcdacs = 3;
    263  1.1     alc 
    264  1.1     alc 			pExpnXPD->pwr_t4[0] = pCalCh->pwr1_xg3;
    265  1.1     alc 			pExpnXPD->pwr_t4[1] = pCalCh->pwr2_xg3;
    266  1.1     alc 			pExpnXPD->pwr_t4[2] = pCalCh->pwr3_xg3;
    267  1.1     alc 		}
    268  1.1     alc 	}
    269  1.1     alc 	return AH_TRUE;
    270  1.1     alc }
    271  1.1     alc 
    272  1.1     alc static HAL_BOOL
    273  1.1     alc readEepromRawPowerCalInfo5112(struct ath_hal *ah, HAL_EEPROM *ee)
    274  1.1     alc {
    275  1.1     alc #define	EEREAD(_off) do {				\
    276  1.1     alc 	if (!ath_hal_eepromRead(ah, _off, &eeval))	\
    277  1.1     alc 		return AH_FALSE;			\
    278  1.1     alc } while (0)
    279  1.1     alc 	const uint16_t dbmmask		 = 0xff;
    280  1.1     alc 	const uint16_t pcdac_delta_mask = 0x1f;
    281  1.1     alc 	const uint16_t pcdac_mask	 = 0x3f;
    282  1.1     alc 	const uint16_t freqmask	 = 0xff;
    283  1.1     alc 
    284  1.1     alc 	int i, mode, numPiers;
    285  1.1     alc 	uint32_t off;
    286  1.1     alc 	uint16_t eeval;
    287  1.1     alc 	uint16_t freq[NUM_11A_EEPROM_CHANNELS];
    288  1.1     alc         EEPROM_POWER_5112 eePower;
    289  1.1     alc 
    290  1.1     alc 	HALASSERT(ee->ee_version >= AR_EEPROM_VER4_0);
    291  1.1     alc 	off = GROUPS_OFFSET3_3;
    292  1.1     alc 	for (mode = headerInfo11A; mode <= headerInfo11G; mode++) {
    293  1.1     alc 		numPiers = 0;
    294  1.1     alc 		switch (mode) {
    295  1.1     alc 		case headerInfo11A:
    296  1.1     alc 			if (!ee->ee_Amode)	/* no 11a calibration data */
    297  1.1     alc 				continue;
    298  1.1     alc 			while (numPiers < NUM_11A_EEPROM_CHANNELS) {
    299  1.1     alc 				EEREAD(off++);
    300  1.1     alc 				if ((eeval & freqmask) == 0)
    301  1.1     alc 					break;
    302  1.1     alc 				freq[numPiers++] = fbin2freq(ee,
    303  1.1     alc 					eeval & freqmask);
    304  1.1     alc 
    305  1.1     alc 				if (((eeval >> 8) & freqmask) == 0)
    306  1.1     alc 					break;
    307  1.1     alc 				freq[numPiers++] = fbin2freq(ee,
    308  1.1     alc 					(eeval>>8) & freqmask);
    309  1.1     alc 			}
    310  1.1     alc 			break;
    311  1.1     alc 		case headerInfo11B:
    312  1.1     alc 			if (!ee->ee_Bmode)	/* no 11b calibration data */
    313  1.1     alc 				continue;
    314  1.1     alc 			for (i = 0; i < NUM_2_4_EEPROM_CHANNELS; i++)
    315  1.1     alc 				if (ee->ee_calPier11b[i] != CHANNEL_UNUSED)
    316  1.1     alc 					freq[numPiers++] = ee->ee_calPier11b[i];
    317  1.1     alc 			break;
    318  1.1     alc 		case headerInfo11G:
    319  1.1     alc 			if (!ee->ee_Gmode)	/* no 11g calibration data */
    320  1.1     alc 				continue;
    321  1.1     alc 			for (i = 0; i < NUM_2_4_EEPROM_CHANNELS; i++)
    322  1.1     alc 				if (ee->ee_calPier11g[i] != CHANNEL_UNUSED)
    323  1.1     alc 					freq[numPiers++] = ee->ee_calPier11g[i];
    324  1.1     alc 			break;
    325  1.1     alc 		default:
    326  1.1     alc 			HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid mode 0x%x\n",
    327  1.1     alc 			    __func__, mode);
    328  1.1     alc 			return AH_FALSE;
    329  1.1     alc 		}
    330  1.1     alc 
    331  1.1     alc 		OS_MEMZERO(&eePower, sizeof(eePower));
    332  1.1     alc 		eePower.numChannels = numPiers;
    333  1.1     alc 
    334  1.1     alc 		for (i = 0; i < numPiers; i++) {
    335  1.1     alc 			eePower.pChannels[i] = freq[i];
    336  1.1     alc 			eePower.pDataPerChannel[i].channelValue = freq[i];
    337  1.1     alc 
    338  1.1     alc 			EEREAD(off++);
    339  1.1     alc 			eePower.pDataPerChannel[i].pwr1_xg0 = (int16_t)
    340  1.1     alc 				((eeval & dbmmask) - ((eeval >> 7) & 0x1)*256);
    341  1.1     alc 			eePower.pDataPerChannel[i].pwr2_xg0 = (int16_t)
    342  1.1     alc 				(((eeval >> 8) & dbmmask) - ((eeval >> 15) & 0x1)*256);
    343  1.1     alc 
    344  1.1     alc 			EEREAD(off++);
    345  1.1     alc 			eePower.pDataPerChannel[i].pwr3_xg0 = (int16_t)
    346  1.1     alc 				((eeval & dbmmask) - ((eeval >> 7) & 0x1)*256);
    347  1.1     alc 			eePower.pDataPerChannel[i].pwr4_xg0 = (int16_t)
    348  1.1     alc 				(((eeval >> 8) & dbmmask) - ((eeval >> 15) & 0x1)*256);
    349  1.1     alc 
    350  1.1     alc 			EEREAD(off++);
    351  1.1     alc 			eePower.pDataPerChannel[i].pcd2_delta_xg0 = (uint16_t)
    352  1.1     alc 				(eeval & pcdac_delta_mask);
    353  1.1     alc 			eePower.pDataPerChannel[i].pcd3_delta_xg0 = (uint16_t)
    354  1.1     alc 				((eeval >> 5) & pcdac_delta_mask);
    355  1.1     alc 			eePower.pDataPerChannel[i].pcd4_delta_xg0 = (uint16_t)
    356  1.1     alc 				((eeval >> 10) & pcdac_delta_mask);
    357  1.1     alc 
    358  1.1     alc 			EEREAD(off++);
    359  1.1     alc 			eePower.pDataPerChannel[i].pwr1_xg3 = (int16_t)
    360  1.1     alc 				((eeval & dbmmask) - ((eeval >> 7) & 0x1)*256);
    361  1.1     alc 			eePower.pDataPerChannel[i].pwr2_xg3 = (int16_t)
    362  1.1     alc 				(((eeval >> 8) & dbmmask) - ((eeval >> 15) & 0x1)*256);
    363  1.1     alc 
    364  1.1     alc 			EEREAD(off++);
    365  1.1     alc 			eePower.pDataPerChannel[i].pwr3_xg3 = (int16_t)
    366  1.1     alc 				((eeval & dbmmask) - ((eeval >> 7) & 0x1)*256);
    367  1.1     alc 			if (ee->ee_version >= AR_EEPROM_VER4_3) {
    368  1.1     alc 				eePower.pDataPerChannel[i].maxPower_t4 =
    369  1.1     alc 					eePower.pDataPerChannel[i].pwr4_xg0;
    370  1.1     alc 				eePower.pDataPerChannel[i].pcd1_xg0 = (uint16_t)
    371  1.1     alc 					((eeval >> 8) & pcdac_mask);
    372  1.1     alc 			} else {
    373  1.1     alc 				eePower.pDataPerChannel[i].maxPower_t4 = (int16_t)
    374  1.1     alc 					(((eeval >> 8) & dbmmask) -
    375  1.1     alc 					 ((eeval >> 15) & 0x1)*256);
    376  1.1     alc 				eePower.pDataPerChannel[i].pcd1_xg0 = 1;
    377  1.1     alc 			}
    378  1.1     alc 		}
    379  1.1     alc 		eePower.xpdMask = ee->ee_xgain[mode];
    380  1.1     alc 
    381  1.1     alc 		if (!eepromAllocExpnPower5112(ah, &eePower, &ee->ee_modePowerArray5112[mode])) {
    382  1.1     alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
    383  1.1     alc 			    "%s: did not allocate power struct\n", __func__);
    384  1.1     alc 			return AH_FALSE;
    385  1.1     alc                 }
    386  1.1     alc                 if (!eepromExpandPower5112(ah, &eePower, &ee->ee_modePowerArray5112[mode])) {
    387  1.1     alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
    388  1.1     alc 			    "%s: did not expand power struct\n", __func__);
    389  1.1     alc 			return AH_FALSE;
    390  1.1     alc 		}
    391  1.1     alc 	}
    392  1.1     alc 	return AH_TRUE;
    393  1.1     alc #undef EEREAD
    394  1.1     alc }
    395  1.1     alc 
    396  1.1     alc static void
    397  1.1     alc freeEepromRawPowerCalInfo5112(struct ath_hal *ah, HAL_EEPROM *ee)
    398  1.1     alc {
    399  1.1     alc 	int mode;
    400  1.1     alc 	void *data;
    401  1.1     alc 
    402  1.1     alc 	for (mode = headerInfo11A; mode <= headerInfo11G; mode++) {
    403  1.1     alc 		EEPROM_POWER_EXPN_5112 *pPowerExpn =
    404  1.1     alc 			&ee->ee_modePowerArray5112[mode];
    405  1.1     alc 		data = pPowerExpn->pChannels;
    406  1.1     alc 		if (data != AH_NULL) {
    407  1.1     alc 			pPowerExpn->pChannels = AH_NULL;
    408  1.1     alc 			ath_hal_free(data);
    409  1.1     alc 		}
    410  1.1     alc 	}
    411  1.1     alc }
    412  1.1     alc 
    413  1.1     alc static void
    414  1.1     alc ar2413SetupEEPROMDataset(EEPROM_DATA_STRUCT_2413 *pEEPROMDataset2413,
    415  1.1     alc 	uint16_t myNumRawChannels, uint16_t *pMyRawChanList)
    416  1.1     alc {
    417  1.1     alc 	uint16_t i, channelValue;
    418  1.1     alc 	uint32_t xpd_mask;
    419  1.1     alc 	uint16_t numPdGainsUsed;
    420  1.1     alc 
    421  1.1     alc 	pEEPROMDataset2413->numChannels = myNumRawChannels;
    422  1.1     alc 
    423  1.1     alc 	xpd_mask = pEEPROMDataset2413->xpd_mask;
    424  1.1     alc 	numPdGainsUsed = 0;
    425  1.1     alc 	if ((xpd_mask >> 0) & 0x1) numPdGainsUsed++;
    426  1.1     alc 	if ((xpd_mask >> 1) & 0x1) numPdGainsUsed++;
    427  1.1     alc 	if ((xpd_mask >> 2) & 0x1) numPdGainsUsed++;
    428  1.1     alc 	if ((xpd_mask >> 3) & 0x1) numPdGainsUsed++;
    429  1.1     alc 
    430  1.1     alc 	for (i = 0; i < myNumRawChannels; i++) {
    431  1.1     alc 		channelValue = pMyRawChanList[i];
    432  1.1     alc 		pEEPROMDataset2413->pChannels[i] = channelValue;
    433  1.1     alc 		pEEPROMDataset2413->pDataPerChannel[i].channelValue = channelValue;
    434  1.1     alc 		pEEPROMDataset2413->pDataPerChannel[i].numPdGains = numPdGainsUsed;
    435  1.1     alc 	}
    436  1.1     alc }
    437  1.1     alc 
    438  1.1     alc static HAL_BOOL
    439  1.1     alc ar2413ReadCalDataset(struct ath_hal *ah, HAL_EEPROM *ee,
    440  1.1     alc 	EEPROM_DATA_STRUCT_2413 *pCalDataset,
    441  1.1     alc 	uint32_t start_offset, uint32_t maxPiers, uint8_t mode)
    442  1.1     alc {
    443  1.1     alc #define	EEREAD(_off) do {				\
    444  1.1     alc 	if (!ath_hal_eepromRead(ah, _off, &eeval))	\
    445  1.1     alc 		return AH_FALSE;			\
    446  1.1     alc } while (0)
    447  1.1     alc 	const uint16_t dbm_I_mask = 0x1F;	/* 5-bits. 1dB step. */
    448  1.1     alc 	const uint16_t dbm_delta_mask = 0xF;	/* 4-bits. 0.5dB step. */
    449  1.1     alc 	const uint16_t Vpd_I_mask = 0x7F;	/* 7-bits. 0-128 */
    450  1.1     alc 	const uint16_t Vpd_delta_mask = 0x3F;	/* 6-bits. 0-63 */
    451  1.1     alc 	const uint16_t freqmask = 0xff;
    452  1.1     alc 
    453  1.1     alc 	uint16_t ii, eeval;
    454  1.1     alc 	uint16_t idx, numPiers;
    455  1.1     alc 	uint16_t freq[NUM_11A_EEPROM_CHANNELS];
    456  1.1     alc 
    457  1.1     alc 	idx = start_offset;
    458  1.1     alc     for (numPiers = 0; numPiers < maxPiers;) {
    459  1.1     alc         EEREAD(idx++);
    460  1.1     alc         if ((eeval & freqmask) == 0)
    461  1.1     alc             break;
    462  1.1     alc         if (mode == headerInfo11A)
    463  1.1     alc             freq[numPiers++] = fbin2freq(ee, (eeval & freqmask));
    464  1.1     alc         else
    465  1.1     alc             freq[numPiers++] = fbin2freq_2p4(ee, (eeval & freqmask));
    466  1.1     alc 
    467  1.1     alc         if (((eeval >> 8) & freqmask) == 0)
    468  1.1     alc             break;
    469  1.1     alc         if (mode == headerInfo11A)
    470  1.1     alc             freq[numPiers++] = fbin2freq(ee, (eeval >> 8) & freqmask);
    471  1.1     alc         else
    472  1.1     alc             freq[numPiers++] = fbin2freq_2p4(ee, (eeval >> 8) & freqmask);
    473  1.1     alc     }
    474  1.1     alc 	ar2413SetupEEPROMDataset(pCalDataset, numPiers, &freq[0]);
    475  1.1     alc 
    476  1.1     alc 	idx = start_offset + (maxPiers / 2);
    477  1.1     alc 	for (ii = 0; ii < pCalDataset->numChannels; ii++) {
    478  1.1     alc 		EEPROM_DATA_PER_CHANNEL_2413 *currCh =
    479  1.1     alc 			&(pCalDataset->pDataPerChannel[ii]);
    480  1.1     alc 
    481  1.1     alc 		if (currCh->numPdGains > 0) {
    482  1.1     alc 			/*
    483  1.1     alc 			 * Read the first NUM_POINTS_OTHER_PDGAINS pwr
    484  1.1     alc 			 * and Vpd values for pdgain_0
    485  1.1     alc 			 */
    486  1.1     alc 			EEREAD(idx++);
    487  1.1     alc 			currCh->pwr_I[0] = eeval & dbm_I_mask;
    488  1.1     alc 			currCh->Vpd_I[0] = (eeval >> 5) & Vpd_I_mask;
    489  1.1     alc 			currCh->pwr_delta_t2[0][0] =
    490  1.1     alc 				(eeval >> 12) & dbm_delta_mask;
    491  1.1     alc 
    492  1.1     alc 			EEREAD(idx++);
    493  1.1     alc 			currCh->Vpd_delta[0][0] = eeval & Vpd_delta_mask;
    494  1.1     alc 			currCh->pwr_delta_t2[1][0] =
    495  1.1     alc 				(eeval >> 6) & dbm_delta_mask;
    496  1.1     alc 			currCh->Vpd_delta[1][0] =
    497  1.1     alc 				(eeval >> 10) & Vpd_delta_mask;
    498  1.1     alc 
    499  1.1     alc 			EEREAD(idx++);
    500  1.1     alc 			currCh->pwr_delta_t2[2][0] = eeval & dbm_delta_mask;
    501  1.1     alc 			currCh->Vpd_delta[2][0] = (eeval >> 4) & Vpd_delta_mask;
    502  1.1     alc 		}
    503  1.1     alc 
    504  1.1     alc 		if (currCh->numPdGains > 1) {
    505  1.1     alc 			/*
    506  1.1     alc 			 * Read the first NUM_POINTS_OTHER_PDGAINS pwr
    507  1.1     alc 			 * and Vpd values for pdgain_1
    508  1.1     alc 			 */
    509  1.1     alc 			currCh->pwr_I[1] = (eeval >> 10) & dbm_I_mask;
    510  1.1     alc 			currCh->Vpd_I[1] = (eeval >> 15) & 0x1;
    511  1.1     alc 
    512  1.1     alc 			EEREAD(idx++);
    513  1.1     alc 			/* upper 6 bits */
    514  1.1     alc 			currCh->Vpd_I[1] |= (eeval & 0x3F) << 1;
    515  1.1     alc 			currCh->pwr_delta_t2[0][1] =
    516  1.1     alc 				(eeval >> 6) & dbm_delta_mask;
    517  1.1     alc 			currCh->Vpd_delta[0][1] =
    518  1.1     alc 				(eeval >> 10) & Vpd_delta_mask;
    519  1.1     alc 
    520  1.1     alc 			EEREAD(idx++);
    521  1.1     alc 			currCh->pwr_delta_t2[1][1] = eeval & dbm_delta_mask;
    522  1.1     alc 			currCh->Vpd_delta[1][1] = (eeval >> 4) & Vpd_delta_mask;
    523  1.1     alc 			currCh->pwr_delta_t2[2][1] =
    524  1.1     alc 				(eeval >> 10) & dbm_delta_mask;
    525  1.1     alc 			currCh->Vpd_delta[2][1] = (eeval >> 14) & 0x3;
    526  1.1     alc 
    527  1.1     alc 			EEREAD(idx++);
    528  1.1     alc 			/* upper 4 bits */
    529  1.1     alc 			currCh->Vpd_delta[2][1] |= (eeval & 0xF) << 2;
    530  1.1     alc 		} else if (currCh->numPdGains == 1) {
    531  1.1     alc 			/*
    532  1.1     alc 			 * Read the last pwr and Vpd values for pdgain_0
    533  1.1     alc 			 */
    534  1.1     alc 			currCh->pwr_delta_t2[3][0] =
    535  1.1     alc 				(eeval >> 10) & dbm_delta_mask;
    536  1.1     alc 			currCh->Vpd_delta[3][0] = (eeval >> 14) & 0x3;
    537  1.1     alc 
    538  1.1     alc 			EEREAD(idx++);
    539  1.1     alc 			/* upper 4 bits */
    540  1.1     alc 			currCh->Vpd_delta[3][0] |= (eeval & 0xF) << 2;
    541  1.1     alc 
    542  1.1     alc 			/* 4 words if numPdGains == 1 */
    543  1.1     alc 		}
    544  1.1     alc 
    545  1.1     alc 		if (currCh->numPdGains > 2) {
    546  1.1     alc 			/*
    547  1.1     alc 			 * Read the first NUM_POINTS_OTHER_PDGAINS pwr
    548  1.1     alc 			 * and Vpd values for pdgain_2
    549  1.1     alc 			 */
    550  1.1     alc 			currCh->pwr_I[2] = (eeval >> 4) & dbm_I_mask;
    551  1.1     alc 			currCh->Vpd_I[2] = (eeval >> 9) & Vpd_I_mask;
    552  1.1     alc 
    553  1.1     alc 			EEREAD(idx++);
    554  1.1     alc 			currCh->pwr_delta_t2[0][2] =
    555  1.1     alc 				(eeval >> 0) & dbm_delta_mask;
    556  1.1     alc 			currCh->Vpd_delta[0][2] = (eeval >> 4) & Vpd_delta_mask;
    557  1.1     alc 			currCh->pwr_delta_t2[1][2] =
    558  1.1     alc 				(eeval >> 10) & dbm_delta_mask;
    559  1.1     alc 			currCh->Vpd_delta[1][2] = (eeval >> 14) & 0x3;
    560  1.1     alc 
    561  1.1     alc 			EEREAD(idx++);
    562  1.1     alc 			/* upper 4 bits */
    563  1.1     alc 			currCh->Vpd_delta[1][2] |= (eeval & 0xF) << 2;
    564  1.1     alc 			currCh->pwr_delta_t2[2][2] =
    565  1.1     alc 				(eeval >> 4) & dbm_delta_mask;
    566  1.1     alc 			currCh->Vpd_delta[2][2] = (eeval >> 8) & Vpd_delta_mask;
    567  1.1     alc 		} else if (currCh->numPdGains == 2) {
    568  1.1     alc 			/*
    569  1.1     alc 			 * Read the last pwr and Vpd values for pdgain_1
    570  1.1     alc 			 */
    571  1.1     alc 			currCh->pwr_delta_t2[3][1] =
    572  1.1     alc 				(eeval >> 4) & dbm_delta_mask;
    573  1.1     alc 			currCh->Vpd_delta[3][1] = (eeval >> 8) & Vpd_delta_mask;
    574  1.1     alc 
    575  1.1     alc 			/* 6 words if numPdGains == 2 */
    576  1.1     alc 		}
    577  1.1     alc 
    578  1.1     alc 		if (currCh->numPdGains > 3) {
    579  1.1     alc 			/*
    580  1.1     alc 			 * Read the first NUM_POINTS_OTHER_PDGAINS pwr
    581  1.1     alc 			 * and Vpd values for pdgain_3
    582  1.1     alc 			 */
    583  1.1     alc 			currCh->pwr_I[3] = (eeval >> 14) & 0x3;
    584  1.1     alc 
    585  1.1     alc 			EEREAD(idx++);
    586  1.1     alc 			/* upper 3 bits */
    587  1.1     alc 			currCh->pwr_I[3] |= ((eeval >> 0) & 0x7) << 2;
    588  1.1     alc 			currCh->Vpd_I[3] = (eeval >> 3) & Vpd_I_mask;
    589  1.1     alc 			currCh->pwr_delta_t2[0][3] =
    590  1.1     alc 				(eeval >> 10) & dbm_delta_mask;
    591  1.1     alc 			currCh->Vpd_delta[0][3] = (eeval >> 14) & 0x3;
    592  1.1     alc 
    593  1.1     alc 			EEREAD(idx++);
    594  1.1     alc 			/* upper 4 bits */
    595  1.1     alc 			currCh->Vpd_delta[0][3] |= (eeval & 0xF) << 2;
    596  1.1     alc 			currCh->pwr_delta_t2[1][3] =
    597  1.1     alc 				(eeval >> 4) & dbm_delta_mask;
    598  1.1     alc 			currCh->Vpd_delta[1][3] = (eeval >> 8) & Vpd_delta_mask;
    599  1.1     alc 			currCh->pwr_delta_t2[2][3] = (eeval >> 14) & 0x3;
    600  1.1     alc 
    601  1.1     alc 			EEREAD(idx++);
    602  1.1     alc 			/* upper 2 bits */
    603  1.1     alc 			currCh->pwr_delta_t2[2][3] |= ((eeval >> 0) & 0x3) << 2;
    604  1.1     alc 			currCh->Vpd_delta[2][3] = (eeval >> 2) & Vpd_delta_mask;
    605  1.1     alc 			currCh->pwr_delta_t2[3][3] =
    606  1.1     alc 				(eeval >> 8) & dbm_delta_mask;
    607  1.1     alc 			currCh->Vpd_delta[3][3] = (eeval >> 12) & 0xF;
    608  1.1     alc 
    609  1.1     alc 			EEREAD(idx++);
    610  1.1     alc 			/* upper 2 bits */
    611  1.1     alc 			currCh->Vpd_delta[3][3] |= ((eeval >> 0) & 0x3) << 4;
    612  1.1     alc 
    613  1.1     alc 			/* 12 words if numPdGains == 4 */
    614  1.1     alc 		} else if (currCh->numPdGains == 3) {
    615  1.1     alc 			/* read the last pwr and Vpd values for pdgain_2 */
    616  1.1     alc 			currCh->pwr_delta_t2[3][2] = (eeval >> 14) & 0x3;
    617  1.1     alc 
    618  1.1     alc 			EEREAD(idx++);
    619  1.1     alc 			/* upper 2 bits */
    620  1.1     alc 			currCh->pwr_delta_t2[3][2] |= ((eeval >> 0) & 0x3) << 2;
    621  1.1     alc 			currCh->Vpd_delta[3][2] = (eeval >> 2) & Vpd_delta_mask;
    622  1.1     alc 
    623  1.1     alc 			/* 9 words if numPdGains == 3 */
    624  1.1     alc 		}
    625  1.1     alc 	}
    626  1.1     alc 	return AH_TRUE;
    627  1.1     alc #undef EEREAD
    628  1.1     alc }
    629  1.1     alc 
    630  1.1     alc static void
    631  1.1     alc ar2413SetupRawDataset(RAW_DATA_STRUCT_2413 *pRaw, EEPROM_DATA_STRUCT_2413 *pCal)
    632  1.1     alc {
    633  1.1     alc 	uint16_t i, j, kk, channelValue;
    634  1.1     alc 	uint16_t xpd_mask;
    635  1.1     alc 	uint16_t numPdGainsUsed;
    636  1.1     alc 
    637  1.1     alc 	pRaw->numChannels = pCal->numChannels;
    638  1.1     alc 
    639  1.1     alc 	xpd_mask = pRaw->xpd_mask;
    640  1.1     alc 	numPdGainsUsed = 0;
    641  1.1     alc 	if ((xpd_mask >> 0) & 0x1) numPdGainsUsed++;
    642  1.1     alc 	if ((xpd_mask >> 1) & 0x1) numPdGainsUsed++;
    643  1.1     alc 	if ((xpd_mask >> 2) & 0x1) numPdGainsUsed++;
    644  1.1     alc 	if ((xpd_mask >> 3) & 0x1) numPdGainsUsed++;
    645  1.1     alc 
    646  1.1     alc 	for (i = 0; i < pCal->numChannels; i++) {
    647  1.1     alc 		channelValue = pCal->pChannels[i];
    648  1.1     alc 
    649  1.1     alc 		pRaw->pChannels[i] = channelValue;
    650  1.1     alc 
    651  1.1     alc 		pRaw->pDataPerChannel[i].channelValue = channelValue;
    652  1.1     alc 		pRaw->pDataPerChannel[i].numPdGains = numPdGainsUsed;
    653  1.1     alc 
    654  1.1     alc 		kk = 0;
    655  1.1     alc 		for (j = 0; j < MAX_NUM_PDGAINS_PER_CHANNEL; j++) {
    656  1.1     alc 			pRaw->pDataPerChannel[i].pDataPerPDGain[j].pd_gain = j;
    657  1.1     alc 			if ((xpd_mask >> j) & 0x1) {
    658  1.1     alc 				pRaw->pDataPerChannel[i].pDataPerPDGain[j].numVpd = NUM_POINTS_OTHER_PDGAINS;
    659  1.1     alc 				kk++;
    660  1.1     alc 				if (kk == 1) {
    661  1.1     alc 					/*
    662  1.1     alc 					 * lowest pd_gain corresponds
    663  1.1     alc 					 *  to highest power and thus,
    664  1.1     alc 					 *  has one more point
    665  1.1     alc 					 */
    666  1.1     alc 					pRaw->pDataPerChannel[i].pDataPerPDGain[j].numVpd = NUM_POINTS_LAST_PDGAIN;
    667  1.1     alc 				}
    668  1.1     alc 			} else {
    669  1.1     alc 				pRaw->pDataPerChannel[i].pDataPerPDGain[j].numVpd = 0;
    670  1.1     alc 			}
    671  1.1     alc 		}
    672  1.1     alc 	}
    673  1.1     alc }
    674  1.1     alc 
    675  1.1     alc static HAL_BOOL
    676  1.1     alc ar2413EepromToRawDataset(struct ath_hal *ah,
    677  1.1     alc 	EEPROM_DATA_STRUCT_2413 *pCal, RAW_DATA_STRUCT_2413 *pRaw)
    678  1.1     alc {
    679  1.1     alc 	uint16_t ii, jj, kk, ss;
    680  1.1     alc 	RAW_DATA_PER_PDGAIN_2413 *pRawXPD;
    681  1.1     alc 	/* ptr to array of info held per channel */
    682  1.1     alc 	EEPROM_DATA_PER_CHANNEL_2413 *pCalCh;
    683  1.1     alc 	uint16_t xgain_list[MAX_NUM_PDGAINS_PER_CHANNEL];
    684  1.1     alc 	uint16_t xpd_mask;
    685  1.1     alc 	uint32_t numPdGainsUsed;
    686  1.1     alc 
    687  1.1     alc 	HALASSERT(pRaw->xpd_mask == pCal->xpd_mask);
    688  1.1     alc 
    689  1.1     alc 	xgain_list[0] = 0xDEAD;
    690  1.1     alc 	xgain_list[1] = 0xDEAD;
    691  1.1     alc 	xgain_list[2] = 0xDEAD;
    692  1.1     alc 	xgain_list[3] = 0xDEAD;
    693  1.1     alc 
    694  1.1     alc 	numPdGainsUsed = 0;
    695  1.1     alc 	xpd_mask = pRaw->xpd_mask;
    696  1.1     alc 	for (jj = 0; jj < MAX_NUM_PDGAINS_PER_CHANNEL; jj++) {
    697  1.1     alc 		if ((xpd_mask >> (MAX_NUM_PDGAINS_PER_CHANNEL-jj-1)) & 1)
    698  1.1     alc 			xgain_list[numPdGainsUsed++] = MAX_NUM_PDGAINS_PER_CHANNEL-jj-1;
    699  1.1     alc 	}
    700  1.1     alc 
    701  1.1     alc 	pRaw->numChannels = pCal->numChannels;
    702  1.1     alc 	for (ii = 0; ii < pRaw->numChannels; ii++) {
    703  1.1     alc 		pCalCh = &(pCal->pDataPerChannel[ii]);
    704  1.1     alc 		pRaw->pDataPerChannel[ii].channelValue = pCalCh->channelValue;
    705  1.1     alc 
    706  1.1     alc 		/* numVpd has already been setup appropriately for the relevant pdGains */
    707  1.1     alc 		for (jj = 0; jj < numPdGainsUsed; jj++) {
    708  1.1     alc 			/* use jj for calDataset and ss for rawDataset */
    709  1.1     alc 			ss = xgain_list[jj];
    710  1.1     alc 			pRawXPD = &(pRaw->pDataPerChannel[ii].pDataPerPDGain[ss]);
    711  1.1     alc 			HALASSERT(pRawXPD->numVpd >= 1);
    712  1.1     alc 
    713  1.1     alc 			pRawXPD->pwr_t4[0] = (uint16_t)(4*pCalCh->pwr_I[jj]);
    714  1.1     alc 			pRawXPD->Vpd[0]    = pCalCh->Vpd_I[jj];
    715  1.1     alc 
    716  1.1     alc 			for (kk = 1; kk < pRawXPD->numVpd; kk++) {
    717  1.1     alc 				pRawXPD->pwr_t4[kk] = (int16_t)(pRawXPD->pwr_t4[kk-1] + 2*pCalCh->pwr_delta_t2[kk-1][jj]);
    718  1.1     alc 				pRawXPD->Vpd[kk] = (uint16_t)(pRawXPD->Vpd[kk-1] + pCalCh->Vpd_delta[kk-1][jj]);
    719  1.1     alc 			}
    720  1.1     alc 			/* loop over Vpds */
    721  1.1     alc 		}
    722  1.1     alc 		/* loop over pd_gains */
    723  1.1     alc 	}
    724  1.1     alc 	/* loop over channels */
    725  1.1     alc 	return AH_TRUE;
    726  1.1     alc }
    727  1.1     alc 
    728  1.1     alc static HAL_BOOL
    729  1.1     alc readEepromRawPowerCalInfo2413(struct ath_hal *ah, HAL_EEPROM *ee)
    730  1.1     alc {
    731  1.1     alc 	/* NB: index is 1 less than numPdgains */
    732  1.1     alc 	static const uint16_t wordsForPdgains[] = { 4, 6, 9, 12 };
    733  1.1     alc 	EEPROM_DATA_STRUCT_2413 *pCal = AH_NULL;
    734  1.1     alc 	RAW_DATA_STRUCT_2413 *pRaw;
    735  1.1     alc 	int numEEPROMWordsPerChannel;
    736  1.1     alc 	uint32_t off;
    737  1.1     alc 	HAL_BOOL ret = AH_FALSE;
    738  1.1     alc 
    739  1.1     alc 	HALASSERT(ee->ee_version >= AR_EEPROM_VER5_0);
    740  1.1     alc 	HALASSERT(ee->ee_eepMap == 2);
    741  1.1     alc 
    742  1.1     alc 	pCal = ath_hal_malloc(sizeof(EEPROM_DATA_STRUCT_2413));
    743  1.1     alc 	if (pCal == AH_NULL)
    744  1.1     alc 		goto exit;
    745  1.1     alc 
    746  1.1     alc 	off = ee->ee_eepMap2PowerCalStart;
    747  1.1     alc 	if (ee->ee_Amode) {
    748  1.1     alc 		OS_MEMZERO(pCal, sizeof(EEPROM_DATA_STRUCT_2413));
    749  1.1     alc 		pCal->xpd_mask = ee->ee_xgain[headerInfo11A];
    750  1.1     alc 		if (!ar2413ReadCalDataset(ah, ee, pCal, off,
    751  1.1     alc 			NUM_11A_EEPROM_CHANNELS_2413, headerInfo11A)) {
    752  1.1     alc 			goto exit;
    753  1.1     alc 		}
    754  1.1     alc 		pRaw = &ee->ee_rawDataset2413[headerInfo11A];
    755  1.1     alc 		pRaw->xpd_mask = ee->ee_xgain[headerInfo11A];
    756  1.1     alc 		ar2413SetupRawDataset(pRaw, pCal);
    757  1.1     alc 		if (!ar2413EepromToRawDataset(ah, pCal, pRaw)) {
    758  1.1     alc 			goto exit;
    759  1.1     alc 		}
    760  1.1     alc 		/* setup offsets for mode_11a next */
    761  1.1     alc 		numEEPROMWordsPerChannel = wordsForPdgains[
    762  1.1     alc 			pCal->pDataPerChannel[0].numPdGains - 1];
    763  1.1     alc 		off += pCal->numChannels * numEEPROMWordsPerChannel + 5;
    764  1.1     alc 	}
    765  1.1     alc 	if (ee->ee_Bmode) {
    766  1.1     alc 		OS_MEMZERO(pCal, sizeof(EEPROM_DATA_STRUCT_2413));
    767  1.1     alc 		pCal->xpd_mask = ee->ee_xgain[headerInfo11B];
    768  1.1     alc 		if (!ar2413ReadCalDataset(ah, ee, pCal, off,
    769  1.1     alc 			NUM_2_4_EEPROM_CHANNELS_2413 , headerInfo11B)) {
    770  1.1     alc 			goto exit;
    771  1.1     alc 		}
    772  1.1     alc 		pRaw = &ee->ee_rawDataset2413[headerInfo11B];
    773  1.1     alc 		pRaw->xpd_mask = ee->ee_xgain[headerInfo11B];
    774  1.1     alc 		ar2413SetupRawDataset(pRaw, pCal);
    775  1.1     alc 		if (!ar2413EepromToRawDataset(ah, pCal, pRaw)) {
    776  1.1     alc 			goto exit;
    777  1.1     alc 		}
    778  1.1     alc 		/* setup offsets for mode_11g next */
    779  1.1     alc 		numEEPROMWordsPerChannel = wordsForPdgains[
    780  1.1     alc 			pCal->pDataPerChannel[0].numPdGains - 1];
    781  1.1     alc 		off += pCal->numChannels * numEEPROMWordsPerChannel + 2;
    782  1.1     alc 	}
    783  1.1     alc 	if (ee->ee_Gmode) {
    784  1.1     alc 		OS_MEMZERO(pCal, sizeof(EEPROM_DATA_STRUCT_2413));
    785  1.1     alc 		pCal->xpd_mask = ee->ee_xgain[headerInfo11G];
    786  1.1     alc 		if (!ar2413ReadCalDataset(ah, ee, pCal, off,
    787  1.1     alc 			NUM_2_4_EEPROM_CHANNELS_2413, headerInfo11G)) {
    788  1.1     alc 			goto exit;
    789  1.1     alc 		}
    790  1.1     alc 		pRaw = &ee->ee_rawDataset2413[headerInfo11G];
    791  1.1     alc 		pRaw->xpd_mask = ee->ee_xgain[headerInfo11G];
    792  1.1     alc 		ar2413SetupRawDataset(pRaw, pCal);
    793  1.1     alc 		if (!ar2413EepromToRawDataset(ah, pCal, pRaw)) {
    794  1.1     alc 			goto exit;
    795  1.1     alc 		}
    796  1.1     alc 	}
    797  1.1     alc 	ret = AH_TRUE;
    798  1.1     alc  exit:
    799  1.1     alc 	if (pCal != AH_NULL)
    800  1.1     alc 		ath_hal_free(pCal);
    801  1.1     alc 	return ret;
    802  1.1     alc }
    803  1.1     alc 
    804  1.1     alc /*
    805  1.1     alc  * Now copy EEPROM Raw Power Calibration per frequency contents
    806  1.1     alc  * into the allocated space
    807  1.1     alc  */
    808  1.1     alc static HAL_BOOL
    809  1.1     alc readEepromRawPowerCalInfo(struct ath_hal *ah, HAL_EEPROM *ee)
    810  1.1     alc {
    811  1.1     alc #define	EEREAD(_off) do {				\
    812  1.1     alc 	if (!ath_hal_eepromRead(ah, _off, &eeval))	\
    813  1.1     alc 		return AH_FALSE;			\
    814  1.1     alc } while (0)
    815  1.1     alc 	uint16_t eeval, nchan;
    816  1.1     alc 	uint32_t off;
    817  1.1     alc 	int i, j, mode;
    818  1.1     alc 
    819  1.1     alc         if (ee->ee_version >= AR_EEPROM_VER4_0 && ee->ee_eepMap == 1)
    820  1.1     alc 		return readEepromRawPowerCalInfo5112(ah, ee);
    821  1.1     alc 	if (ee->ee_version >= AR_EEPROM_VER5_0 && ee->ee_eepMap == 2)
    822  1.1     alc 		return readEepromRawPowerCalInfo2413(ah, ee);
    823  1.1     alc 
    824  1.1     alc 	/*
    825  1.1     alc 	 * Group 2:  read raw power data for all frequency piers
    826  1.1     alc 	 *
    827  1.1     alc 	 * NOTE: Group 2 contains the raw power calibration
    828  1.1     alc 	 *	 information for each of the channels that
    829  1.1     alc 	 *	 we recorded above.
    830  1.1     alc 	 */
    831  1.1     alc 	for (mode = headerInfo11A; mode <= headerInfo11G; mode++) {
    832  1.1     alc 		uint16_t *pChannels = AH_NULL;
    833  1.1     alc 		DATA_PER_CHANNEL *pChannelData = AH_NULL;
    834  1.1     alc 
    835  1.1     alc 		off = ee->ee_version >= AR_EEPROM_VER3_3 ?
    836  1.1     alc 			GROUPS_OFFSET3_3 : GROUPS_OFFSET3_2;
    837  1.1     alc 		switch (mode) {
    838  1.1     alc 		case headerInfo11A:
    839  1.1     alc 			off      	+= GROUP2_OFFSET;
    840  1.1     alc 			nchan		= ee->ee_numChannels11a;
    841  1.1     alc 			pChannelData	= ee->ee_dataPerChannel11a;
    842  1.1     alc 			pChannels	= ee->ee_channels11a;
    843  1.1     alc 			break;
    844  1.1     alc 		case headerInfo11B:
    845  1.1     alc 			if (!ee->ee_Bmode)
    846  1.1     alc 				continue;
    847  1.1     alc 			off		+= GROUP3_OFFSET;
    848  1.1     alc 			nchan		= ee->ee_numChannels2_4;
    849  1.1     alc 			pChannelData	= ee->ee_dataPerChannel11b;
    850  1.1     alc 			pChannels	= ee->ee_channels11b;
    851  1.1     alc 			break;
    852  1.1     alc 		case headerInfo11G:
    853  1.1     alc 			if (!ee->ee_Gmode)
    854  1.1     alc 				continue;
    855  1.1     alc 			off		+= GROUP4_OFFSET;
    856  1.1     alc 			nchan		= ee->ee_numChannels2_4;
    857  1.1     alc 			pChannelData	= ee->ee_dataPerChannel11g;
    858  1.1     alc 			pChannels	= ee->ee_channels11g;
    859  1.1     alc 			break;
    860  1.1     alc 		default:
    861  1.1     alc 			HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid mode 0x%x\n",
    862  1.1     alc 			    __func__, mode);
    863  1.1     alc 			return AH_FALSE;
    864  1.1     alc 		}
    865  1.1     alc 		for (i = 0; i < nchan; i++) {
    866  1.1     alc 			pChannelData->channelValue = pChannels[i];
    867  1.1     alc 
    868  1.1     alc 			EEREAD(off++);
    869  1.1     alc 			pChannelData->pcdacMax     = (uint16_t)((eeval >> 10) & PCDAC_MASK);
    870  1.1     alc 			pChannelData->pcdacMin     = (uint16_t)((eeval >> 4) & PCDAC_MASK);
    871  1.1     alc 			pChannelData->PwrValues[0] = (uint16_t)((eeval << 2) & POWER_MASK);
    872  1.1     alc 
    873  1.1     alc 			EEREAD(off++);
    874  1.1     alc 			pChannelData->PwrValues[0] |= (uint16_t)((eeval >> 14) & 0x3);
    875  1.1     alc 			pChannelData->PwrValues[1] = (uint16_t)((eeval >> 8) & POWER_MASK);
    876  1.1     alc 			pChannelData->PwrValues[2] = (uint16_t)((eeval >> 2) & POWER_MASK);
    877  1.1     alc 			pChannelData->PwrValues[3] = (uint16_t)((eeval << 4) & POWER_MASK);
    878  1.1     alc 
    879  1.1     alc 			EEREAD(off++);
    880  1.1     alc 			pChannelData->PwrValues[3] |= (uint16_t)((eeval >> 12) & 0xf);
    881  1.1     alc 			pChannelData->PwrValues[4] = (uint16_t)((eeval >> 6) & POWER_MASK);
    882  1.1     alc 			pChannelData->PwrValues[5] = (uint16_t)(eeval  & POWER_MASK);
    883  1.1     alc 
    884  1.1     alc 			EEREAD(off++);
    885  1.1     alc 			pChannelData->PwrValues[6] = (uint16_t)((eeval >> 10) & POWER_MASK);
    886  1.1     alc 			pChannelData->PwrValues[7] = (uint16_t)((eeval >> 4) & POWER_MASK);
    887  1.1     alc 			pChannelData->PwrValues[8] = (uint16_t)((eeval << 2) & POWER_MASK);
    888  1.1     alc 
    889  1.1     alc 			EEREAD(off++);
    890  1.1     alc 			pChannelData->PwrValues[8] |= (uint16_t)((eeval >> 14) & 0x3);
    891  1.1     alc 			pChannelData->PwrValues[9] = (uint16_t)((eeval >> 8) & POWER_MASK);
    892  1.1     alc 			pChannelData->PwrValues[10] = (uint16_t)((eeval >> 2) & POWER_MASK);
    893  1.1     alc 
    894  1.1     alc 			getPcdacInterceptsFromPcdacMinMax(ee,
    895  1.1     alc 				pChannelData->pcdacMin, pChannelData->pcdacMax,
    896  1.1     alc 				pChannelData->PcdacValues) ;
    897  1.1     alc 
    898  1.1     alc 			for (j = 0; j < pChannelData->numPcdacValues; j++) {
    899  1.1     alc 				pChannelData->PwrValues[j] = (uint16_t)(
    900  1.1     alc 					PWR_STEP * pChannelData->PwrValues[j]);
    901  1.1     alc 				/* Note these values are scaled up. */
    902  1.1     alc 			}
    903  1.1     alc 			pChannelData++;
    904  1.1     alc 		}
    905  1.1     alc 	}
    906  1.1     alc 	return AH_TRUE;
    907  1.1     alc #undef EEREAD
    908  1.1     alc }
    909  1.1     alc 
    910  1.1     alc /*
    911  1.1     alc  * Copy EEPROM Target Power Calbration per rate contents
    912  1.1     alc  * into the allocated space
    913  1.1     alc  */
    914  1.1     alc static HAL_BOOL
    915  1.1     alc readEepromTargetPowerCalInfo(struct ath_hal *ah, HAL_EEPROM *ee)
    916  1.1     alc {
    917  1.1     alc #define	EEREAD(_off) do {				\
    918  1.1     alc 	if (!ath_hal_eepromRead(ah, _off, &eeval))	\
    919  1.1     alc 		return AH_FALSE;			\
    920  1.1     alc } while (0)
    921  1.1     alc 	uint16_t eeval, enable24;
    922  1.1     alc 	uint32_t off;
    923  1.1     alc 	int i, mode, nchan;
    924  1.1     alc 
    925  1.1     alc 	enable24 = ee->ee_Bmode || ee->ee_Gmode;
    926  1.1     alc 	for (mode = headerInfo11A; mode <= headerInfo11G; mode++) {
    927  1.1     alc 		TRGT_POWER_INFO *pPowerInfo;
    928  1.1     alc 		uint16_t *pNumTrgtChannels;
    929  1.1     alc 
    930  1.1     alc 		off = ee->ee_version >= AR_EEPROM_VER4_0 ?
    931  1.1     alc 				ee->ee_targetPowersStart - GROUP5_OFFSET :
    932  1.1     alc 		      ee->ee_version >= AR_EEPROM_VER3_3 ?
    933  1.1     alc 				GROUPS_OFFSET3_3 : GROUPS_OFFSET3_2;
    934  1.1     alc 		switch (mode) {
    935  1.1     alc 		case headerInfo11A:
    936  1.1     alc 			off += GROUP5_OFFSET;
    937  1.1     alc 			nchan = NUM_TEST_FREQUENCIES;
    938  1.1     alc 			pPowerInfo = ee->ee_trgtPwr_11a;
    939  1.1     alc 			pNumTrgtChannels = &ee->ee_numTargetPwr_11a;
    940  1.1     alc 			break;
    941  1.1     alc 		case headerInfo11B:
    942  1.1     alc 			if (!enable24)
    943  1.1     alc 				continue;
    944  1.1     alc 			off += GROUP6_OFFSET;
    945  1.1     alc 			nchan = 2;
    946  1.1     alc 			pPowerInfo = ee->ee_trgtPwr_11b;
    947  1.1     alc 			pNumTrgtChannels = &ee->ee_numTargetPwr_11b;
    948  1.1     alc 			break;
    949  1.1     alc 		case headerInfo11G:
    950  1.1     alc 			if (!enable24)
    951  1.1     alc 				continue;
    952  1.1     alc 			off += GROUP7_OFFSET;
    953  1.1     alc 			nchan = 3;
    954  1.1     alc 			pPowerInfo = ee->ee_trgtPwr_11g;
    955  1.1     alc 			pNumTrgtChannels = &ee->ee_numTargetPwr_11g;
    956  1.1     alc 			break;
    957  1.1     alc 		default:
    958  1.1     alc 			HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid mode 0x%x\n",
    959  1.1     alc 			    __func__, mode);
    960  1.1     alc 			return AH_FALSE;
    961  1.1     alc 		}
    962  1.1     alc 		*pNumTrgtChannels = 0;
    963  1.1     alc 		for (i = 0; i < nchan; i++) {
    964  1.1     alc 			EEREAD(off++);
    965  1.1     alc 			if (ee->ee_version >= AR_EEPROM_VER3_3) {
    966  1.1     alc 				pPowerInfo->testChannel = (eeval >> 8) & 0xff;
    967  1.1     alc 			} else {
    968  1.1     alc 				pPowerInfo->testChannel = (eeval >> 9) & 0x7f;
    969  1.1     alc 			}
    970  1.1     alc 
    971  1.1     alc 			if (pPowerInfo->testChannel != 0) {
    972  1.1     alc 				/* get the channel value and read rest of info */
    973  1.1     alc 				if (mode == headerInfo11A) {
    974  1.1     alc 					pPowerInfo->testChannel = fbin2freq(ee, pPowerInfo->testChannel);
    975  1.1     alc 				} else {
    976  1.1     alc 					pPowerInfo->testChannel = fbin2freq_2p4(ee, pPowerInfo->testChannel);
    977  1.1     alc 				}
    978  1.1     alc 
    979  1.1     alc 				if (ee->ee_version >= AR_EEPROM_VER3_3) {
    980  1.1     alc 					pPowerInfo->twicePwr6_24 = (eeval >> 2) & POWER_MASK;
    981  1.1     alc 					pPowerInfo->twicePwr36   = (eeval << 4) & POWER_MASK;
    982  1.1     alc 				} else {
    983  1.1     alc 					pPowerInfo->twicePwr6_24 = (eeval >> 3) & POWER_MASK;
    984  1.1     alc 					pPowerInfo->twicePwr36   = (eeval << 3) & POWER_MASK;
    985  1.1     alc 				}
    986  1.1     alc 
    987  1.1     alc 				EEREAD(off++);
    988  1.1     alc 				if (ee->ee_version >= AR_EEPROM_VER3_3) {
    989  1.1     alc 					pPowerInfo->twicePwr36 |= (eeval >> 12) & 0xf;
    990  1.1     alc 					pPowerInfo->twicePwr48 = (eeval >> 6) & POWER_MASK;
    991  1.1     alc 					pPowerInfo->twicePwr54 =  eeval & POWER_MASK;
    992  1.1     alc 				} else {
    993  1.1     alc 					pPowerInfo->twicePwr36 |= (eeval >> 13) & 0x7;
    994  1.1     alc 					pPowerInfo->twicePwr48 = (eeval >> 7) & POWER_MASK;
    995  1.1     alc 					pPowerInfo->twicePwr54 = (eeval >> 1) & POWER_MASK;
    996  1.1     alc 				}
    997  1.1     alc 				(*pNumTrgtChannels)++;
    998  1.1     alc 			}
    999  1.1     alc 			pPowerInfo++;
   1000  1.1     alc 		}
   1001  1.1     alc 	}
   1002  1.1     alc 	return AH_TRUE;
   1003  1.1     alc #undef EEREAD
   1004  1.1     alc }
   1005  1.1     alc 
   1006  1.1     alc /*
   1007  1.1     alc  * Now copy EEPROM Coformance Testing Limits contents
   1008  1.1     alc  * into the allocated space
   1009  1.1     alc  */
   1010  1.1     alc static HAL_BOOL
   1011  1.1     alc readEepromCTLInfo(struct ath_hal *ah, HAL_EEPROM *ee)
   1012  1.1     alc {
   1013  1.1     alc #define	EEREAD(_off) do {				\
   1014  1.1     alc 	if (!ath_hal_eepromRead(ah, _off, &eeval))	\
   1015  1.1     alc 		return AH_FALSE;			\
   1016  1.1     alc } while (0)
   1017  1.1     alc 	RD_EDGES_POWER *rep;
   1018  1.1     alc 	uint16_t eeval;
   1019  1.1     alc 	uint32_t off;
   1020  1.1     alc 	int i, j;
   1021  1.1     alc 
   1022  1.1     alc 	rep = ee->ee_rdEdgesPower;
   1023  1.1     alc 
   1024  1.1     alc 	off = GROUP8_OFFSET +
   1025  1.1     alc 		(ee->ee_version >= AR_EEPROM_VER4_0 ?
   1026  1.1     alc 			ee->ee_targetPowersStart - GROUP5_OFFSET :
   1027  1.1     alc 	         ee->ee_version >= AR_EEPROM_VER3_3 ?
   1028  1.1     alc 			GROUPS_OFFSET3_3 : GROUPS_OFFSET3_2);
   1029  1.1     alc 	for (i = 0; i < ee->ee_numCtls; i++) {
   1030  1.1     alc 		if (ee->ee_ctl[i] == 0) {
   1031  1.1     alc 			/* Move offset and edges */
   1032  1.1     alc 			off += (ee->ee_version >= AR_EEPROM_VER3_3 ? 8 : 7);
   1033  1.1     alc 			rep += NUM_EDGES;
   1034  1.1     alc 			continue;
   1035  1.1     alc 		}
   1036  1.1     alc 		if (ee->ee_version >= AR_EEPROM_VER3_3) {
   1037  1.1     alc 			for (j = 0; j < NUM_EDGES; j += 2) {
   1038  1.1     alc 				EEREAD(off++);
   1039  1.1     alc 				rep[j].rdEdge = (eeval >> 8) & FREQ_MASK_3_3;
   1040  1.1     alc 				rep[j+1].rdEdge = eeval & FREQ_MASK_3_3;
   1041  1.1     alc 			}
   1042  1.1     alc 			for (j = 0; j < NUM_EDGES; j += 2) {
   1043  1.1     alc 				EEREAD(off++);
   1044  1.1     alc 				rep[j].twice_rdEdgePower =
   1045  1.1     alc 					(eeval >> 8) & POWER_MASK;
   1046  1.1     alc 				rep[j].flag = (eeval >> 14) & 1;
   1047  1.1     alc 				rep[j+1].twice_rdEdgePower = eeval & POWER_MASK;
   1048  1.1     alc 				rep[j+1].flag = (eeval >> 6) & 1;
   1049  1.1     alc 			}
   1050  1.1     alc 		} else {
   1051  1.1     alc 			EEREAD(off++);
   1052  1.1     alc 			rep[0].rdEdge = (eeval >> 9) & FREQ_MASK;
   1053  1.1     alc 			rep[1].rdEdge = (eeval >> 2) & FREQ_MASK;
   1054  1.1     alc 			rep[2].rdEdge = (eeval << 5) & FREQ_MASK;
   1055  1.1     alc 
   1056  1.1     alc 			EEREAD(off++);
   1057  1.1     alc 			rep[2].rdEdge |= (eeval >> 11) & 0x1f;
   1058  1.1     alc 			rep[3].rdEdge = (eeval >> 4) & FREQ_MASK;
   1059  1.1     alc 			rep[4].rdEdge = (eeval << 3) & FREQ_MASK;
   1060  1.1     alc 
   1061  1.1     alc 			EEREAD(off++);
   1062  1.1     alc 			rep[4].rdEdge |= (eeval >> 13) & 0x7;
   1063  1.1     alc 			rep[5].rdEdge = (eeval >> 6) & FREQ_MASK;
   1064  1.1     alc 			rep[6].rdEdge = (eeval << 1) & FREQ_MASK;
   1065  1.1     alc 
   1066  1.1     alc 			EEREAD(off++);
   1067  1.1     alc 			rep[6].rdEdge |= (eeval >> 15) & 0x1;
   1068  1.1     alc 			rep[7].rdEdge = (eeval >> 8) & FREQ_MASK;
   1069  1.1     alc 
   1070  1.1     alc 			rep[0].twice_rdEdgePower = (eeval >> 2) & POWER_MASK;
   1071  1.1     alc 			rep[1].twice_rdEdgePower = (eeval << 4) & POWER_MASK;
   1072  1.1     alc 
   1073  1.1     alc 			EEREAD(off++);
   1074  1.1     alc 			rep[1].twice_rdEdgePower |= (eeval >> 12) & 0xf;
   1075  1.1     alc 			rep[2].twice_rdEdgePower = (eeval >> 6) & POWER_MASK;
   1076  1.1     alc 			rep[3].twice_rdEdgePower = eeval & POWER_MASK;
   1077  1.1     alc 
   1078  1.1     alc 			EEREAD(off++);
   1079  1.1     alc 			rep[4].twice_rdEdgePower = (eeval >> 10) & POWER_MASK;
   1080  1.1     alc 			rep[5].twice_rdEdgePower = (eeval >> 4) & POWER_MASK;
   1081  1.1     alc 			rep[6].twice_rdEdgePower = (eeval << 2) & POWER_MASK;
   1082  1.1     alc 
   1083  1.1     alc 			EEREAD(off++);
   1084  1.1     alc 			rep[6].twice_rdEdgePower |= (eeval >> 14) & 0x3;
   1085  1.1     alc 			rep[7].twice_rdEdgePower = (eeval >> 8) & POWER_MASK;
   1086  1.1     alc 		}
   1087  1.1     alc 
   1088  1.1     alc 		for (j = 0; j < NUM_EDGES; j++ ) {
   1089  1.1     alc 			if (rep[j].rdEdge != 0 || rep[j].twice_rdEdgePower != 0) {
   1090  1.1     alc 				if ((ee->ee_ctl[i] & CTL_MODE_M) == CTL_11A ||
   1091  1.1     alc 				    (ee->ee_ctl[i] & CTL_MODE_M) == CTL_TURBO) {
   1092  1.1     alc 					rep[j].rdEdge = fbin2freq(ee, rep[j].rdEdge);
   1093  1.1     alc 				} else {
   1094  1.1     alc 					rep[j].rdEdge = fbin2freq_2p4(ee, rep[j].rdEdge);
   1095  1.1     alc 				}
   1096  1.1     alc 			}
   1097  1.1     alc 		}
   1098  1.1     alc 		rep += NUM_EDGES;
   1099  1.1     alc 	}
   1100  1.1     alc 	return AH_TRUE;
   1101  1.1     alc #undef EEREAD
   1102  1.1     alc }
   1103  1.1     alc 
   1104  1.1     alc /*
   1105  1.1     alc  * Read the individual header fields for a Rev 3 EEPROM
   1106  1.1     alc  */
   1107  1.1     alc static HAL_BOOL
   1108  1.1     alc readHeaderInfo(struct ath_hal *ah, HAL_EEPROM *ee)
   1109  1.1     alc {
   1110  1.1     alc #define	EEREAD(_off) do {				\
   1111  1.1     alc 	if (!ath_hal_eepromRead(ah, _off, &eeval))	\
   1112  1.1     alc 		return AH_FALSE;			\
   1113  1.1     alc } while (0)
   1114  1.1     alc 	static const uint32_t headerOffset3_0[] = {
   1115  1.1     alc 		0x00C2, /* 0 - Mode bits, device type, max turbo power */
   1116  1.1     alc 		0x00C4, /* 1 - 2.4 and 5 antenna gain */
   1117  1.1     alc 		0x00C5, /* 2 - Begin 11A modal section */
   1118  1.1     alc 		0x00D0, /* 3 - Begin 11B modal section */
   1119  1.1     alc 		0x00DA, /* 4 - Begin 11G modal section */
   1120  1.1     alc 		0x00E4  /* 5 - Begin CTL section */
   1121  1.1     alc 	};
   1122  1.1     alc 	static const uint32_t headerOffset3_3[] = {
   1123  1.1     alc 		0x00C2, /* 0 - Mode bits, device type, max turbo power */
   1124  1.1     alc 		0x00C3, /* 1 - 2.4 and 5 antenna gain */
   1125  1.1     alc 		0x00D4, /* 2 - Begin 11A modal section */
   1126  1.1     alc 		0x00F2, /* 3 - Begin 11B modal section */
   1127  1.1     alc 		0x010D, /* 4 - Begin 11G modal section */
   1128  1.1     alc 		0x0128  /* 5 - Begin CTL section */
   1129  1.1     alc 	};
   1130  1.1     alc 
   1131  1.1     alc 	static const uint32_t regCapOffsetPre4_0 = 0x00CF;
   1132  1.1     alc 	static const uint32_t regCapOffsetPost4_0 = 0x00CA;
   1133  1.1     alc 
   1134  1.1     alc 	const uint32_t *header;
   1135  1.1     alc 	uint32_t off;
   1136  1.1     alc 	uint16_t eeval;
   1137  1.1     alc 	int i;
   1138  1.1     alc 
   1139  1.1     alc 	/* initialize cckOfdmGainDelta for < 4.2 eeprom */
   1140  1.1     alc 	ee->ee_cckOfdmGainDelta = CCK_OFDM_GAIN_DELTA;
   1141  1.1     alc 	ee->ee_scaledCh14FilterCckDelta = TENX_CH14_FILTER_CCK_DELTA_INIT;
   1142  1.1     alc 
   1143  1.1     alc 	if (ee->ee_version >= AR_EEPROM_VER3_3) {
   1144  1.1     alc 		header = headerOffset3_3;
   1145  1.1     alc 		ee->ee_numCtls = NUM_CTLS_3_3;
   1146  1.1     alc 	} else {
   1147  1.1     alc 		header = headerOffset3_0;
   1148  1.1     alc 		ee->ee_numCtls = NUM_CTLS;
   1149  1.1     alc 	}
   1150  1.1     alc 	HALASSERT(ee->ee_numCtls <= NUM_CTLS_MAX);
   1151  1.1     alc 
   1152  1.1     alc 	EEREAD(header[0]);
   1153  1.1     alc 	ee->ee_turbo5Disable	= (eeval >> 15) & 0x01;
   1154  1.1     alc 	ee->ee_rfKill		= (eeval >> 14) & 0x01;
   1155  1.1     alc 	ee->ee_deviceType	= (eeval >> 11) & 0x07;
   1156  1.1     alc 	ee->ee_turbo2WMaxPower5	= (eeval >> 4) & 0x7F;
   1157  1.1     alc 	if (ee->ee_version >= AR_EEPROM_VER4_0)
   1158  1.1     alc 		ee->ee_turbo2Disable	= (eeval >> 3) & 0x01;
   1159  1.1     alc 	else
   1160  1.1     alc 		ee->ee_turbo2Disable	= 1;
   1161  1.1     alc 	ee->ee_Gmode		= (eeval >> 2) & 0x01;
   1162  1.1     alc 	ee->ee_Bmode		= (eeval >> 1) & 0x01;
   1163  1.1     alc 	ee->ee_Amode		= (eeval & 0x01);
   1164  1.1     alc 
   1165  1.1     alc 	off = header[1];
   1166  1.1     alc 	EEREAD(off++);
   1167  1.1     alc 	ee->ee_antennaGainMax[0] = (int8_t)((eeval >> 8) & 0xFF);
   1168  1.1     alc 	ee->ee_antennaGainMax[1] = (int8_t)(eeval & 0xFF);
   1169  1.1     alc 	if (ee->ee_version >= AR_EEPROM_VER4_0) {
   1170  1.1     alc 		EEREAD(off++);
   1171  1.1     alc 		ee->ee_eepMap		 = (eeval>>14) & 0x3;
   1172  1.1     alc 		ee->ee_disableXr5	 = (eeval>>13) & 0x1;
   1173  1.1     alc 		ee->ee_disableXr2	 = (eeval>>12) & 0x1;
   1174  1.1     alc 		ee->ee_earStart		 = eeval & 0xfff;
   1175  1.1     alc 
   1176  1.1     alc 		EEREAD(off++);
   1177  1.1     alc 		ee->ee_targetPowersStart = eeval & 0xfff;
   1178  1.1     alc 		ee->ee_exist32kHzCrystal = (eeval>>14) & 0x1;
   1179  1.1     alc 
   1180  1.1     alc 		if (ee->ee_version >= AR_EEPROM_VER5_0) {
   1181  1.1     alc 			off += 2;
   1182  1.1     alc 			EEREAD(off);
   1183  1.1     alc 			ee->ee_eepMap2PowerCalStart = (eeval >> 4) & 0xfff;
   1184  1.1     alc 			/* Properly cal'ed 5.0 devices should be non-zero */
   1185  1.1     alc 		}
   1186  1.1     alc 	}
   1187  1.1     alc 
   1188  1.1     alc 	/* Read the moded sections of the EEPROM header in the order A, B, G */
   1189  1.1     alc 	for (i = headerInfo11A; i <= headerInfo11G; i++) {
   1190  1.1     alc 		/* Set the offset via the index */
   1191  1.1     alc 		off = header[2 + i];
   1192  1.1     alc 
   1193  1.1     alc 		EEREAD(off++);
   1194  1.1     alc 		ee->ee_switchSettling[i] = (eeval >> 8) & 0x7f;
   1195  1.1     alc 		ee->ee_txrxAtten[i] = (eeval >> 2) & 0x3f;
   1196  1.1     alc 		ee->ee_antennaControl[0][i] = (eeval << 4) & 0x3f;
   1197  1.1     alc 
   1198  1.1     alc 		EEREAD(off++);
   1199  1.1     alc 		ee->ee_antennaControl[0][i] |= (eeval >> 12) & 0x0f;
   1200  1.1     alc 		ee->ee_antennaControl[1][i] = (eeval >> 6) & 0x3f;
   1201  1.1     alc 		ee->ee_antennaControl[2][i] = eeval & 0x3f;
   1202  1.1     alc 
   1203  1.1     alc 		EEREAD(off++);
   1204  1.1     alc 		ee->ee_antennaControl[3][i] = (eeval >> 10)  & 0x3f;
   1205  1.1     alc 		ee->ee_antennaControl[4][i] = (eeval >> 4)  & 0x3f;
   1206  1.1     alc 		ee->ee_antennaControl[5][i] = (eeval << 2)  & 0x3f;
   1207  1.1     alc 
   1208  1.1     alc 		EEREAD(off++);
   1209  1.1     alc 		ee->ee_antennaControl[5][i] |= (eeval >> 14)  & 0x03;
   1210  1.1     alc 		ee->ee_antennaControl[6][i] = (eeval >> 8)  & 0x3f;
   1211  1.1     alc 		ee->ee_antennaControl[7][i] = (eeval >> 2)  & 0x3f;
   1212  1.1     alc 		ee->ee_antennaControl[8][i] = (eeval << 4)  & 0x3f;
   1213  1.1     alc 
   1214  1.1     alc 		EEREAD(off++);
   1215  1.1     alc 		ee->ee_antennaControl[8][i] |= (eeval >> 12)  & 0x0f;
   1216  1.1     alc 		ee->ee_antennaControl[9][i] = (eeval >> 6)  & 0x3f;
   1217  1.1     alc 		ee->ee_antennaControl[10][i] = eeval & 0x3f;
   1218  1.1     alc 
   1219  1.1     alc 		EEREAD(off++);
   1220  1.1     alc 		ee->ee_adcDesiredSize[i] = (int8_t)((eeval >> 8)  & 0xff);
   1221  1.1     alc 		switch (i) {
   1222  1.1     alc 		case headerInfo11A:
   1223  1.1     alc 			ee->ee_ob4 = (eeval >> 5)  & 0x07;
   1224  1.1     alc 			ee->ee_db4 = (eeval >> 2)  & 0x07;
   1225  1.1     alc 			ee->ee_ob3 = (eeval << 1)  & 0x07;
   1226  1.1     alc 			break;
   1227  1.1     alc 		case headerInfo11B:
   1228  1.1     alc 			ee->ee_obFor24 = (eeval >> 4)  & 0x07;
   1229  1.1     alc 			ee->ee_dbFor24 = eeval & 0x07;
   1230  1.1     alc 			break;
   1231  1.1     alc 		case headerInfo11G:
   1232  1.1     alc 			ee->ee_obFor24g = (eeval >> 4)  & 0x07;
   1233  1.1     alc 			ee->ee_dbFor24g = eeval & 0x07;
   1234  1.1     alc 			break;
   1235  1.1     alc 		}
   1236  1.1     alc 
   1237  1.1     alc 		if (i == headerInfo11A) {
   1238  1.1     alc 			EEREAD(off++);
   1239  1.1     alc 			ee->ee_ob3 |= (eeval >> 15)  & 0x01;
   1240  1.1     alc 			ee->ee_db3 = (eeval >> 12)  & 0x07;
   1241  1.1     alc 			ee->ee_ob2 = (eeval >> 9)  & 0x07;
   1242  1.1     alc 			ee->ee_db2 = (eeval >> 6)  & 0x07;
   1243  1.1     alc 			ee->ee_ob1 = (eeval >> 3)  & 0x07;
   1244  1.1     alc 			ee->ee_db1 = eeval & 0x07;
   1245  1.1     alc 		}
   1246  1.1     alc 
   1247  1.1     alc 		EEREAD(off++);
   1248  1.1     alc 		ee->ee_txEndToXLNAOn[i] = (eeval >> 8)  & 0xff;
   1249  1.1     alc 		ee->ee_thresh62[i] = eeval & 0xff;
   1250  1.1     alc 
   1251  1.1     alc 		EEREAD(off++);
   1252  1.1     alc 		ee->ee_txEndToXPAOff[i] = (eeval >> 8)  & 0xff;
   1253  1.1     alc 		ee->ee_txFrameToXPAOn[i] = eeval  & 0xff;
   1254  1.1     alc 
   1255  1.1     alc 		EEREAD(off++);
   1256  1.1     alc 		ee->ee_pgaDesiredSize[i] = (int8_t)((eeval >> 8)  & 0xff);
   1257  1.1     alc 		ee->ee_noiseFloorThresh[i] = eeval  & 0xff;
   1258  1.1     alc 		if (ee->ee_noiseFloorThresh[i] & 0x80) {
   1259  1.1     alc 			ee->ee_noiseFloorThresh[i] = 0 -
   1260  1.1     alc 				((ee->ee_noiseFloorThresh[i] ^ 0xff) + 1);
   1261  1.1     alc 		}
   1262  1.1     alc 
   1263  1.1     alc 		EEREAD(off++);
   1264  1.1     alc 		ee->ee_xlnaGain[i] = (eeval >> 5)  & 0xff;
   1265  1.1     alc 		ee->ee_xgain[i] = (eeval >> 1)  & 0x0f;
   1266  1.1     alc 		ee->ee_xpd[i] = eeval  & 0x01;
   1267  1.1     alc 		if (ee->ee_version >= AR_EEPROM_VER4_0) {
   1268  1.1     alc 			switch (i) {
   1269  1.1     alc 			case headerInfo11A:
   1270  1.1     alc 				ee->ee_fixedBias5 = (eeval >> 13) & 0x1;
   1271  1.1     alc 				break;
   1272  1.1     alc 			case headerInfo11G:
   1273  1.1     alc 				ee->ee_fixedBias2 = (eeval >> 13) & 0x1;
   1274  1.1     alc 				break;
   1275  1.1     alc 			}
   1276  1.1     alc 		}
   1277  1.1     alc 
   1278  1.1     alc 		if (ee->ee_version >= AR_EEPROM_VER3_3) {
   1279  1.1     alc 			EEREAD(off++);
   1280  1.1     alc 			ee->ee_falseDetectBackoff[i] = (eeval >> 6) & 0x7F;
   1281  1.1     alc 			switch (i) {
   1282  1.1     alc 			case headerInfo11B:
   1283  1.1     alc 				ee->ee_ob2GHz[0] = eeval & 0x7;
   1284  1.1     alc 				ee->ee_db2GHz[0] = (eeval >> 3) & 0x7;
   1285  1.1     alc 				break;
   1286  1.1     alc 			case headerInfo11G:
   1287  1.1     alc 				ee->ee_ob2GHz[1] = eeval & 0x7;
   1288  1.1     alc 				ee->ee_db2GHz[1] = (eeval >> 3) & 0x7;
   1289  1.1     alc 				break;
   1290  1.1     alc 			case headerInfo11A:
   1291  1.1     alc 				ee->ee_xrTargetPower5 = eeval & 0x3f;
   1292  1.1     alc 				break;
   1293  1.1     alc 			}
   1294  1.1     alc 		}
   1295  1.1     alc 		if (ee->ee_version >= AR_EEPROM_VER3_4) {
   1296  1.1     alc 			ee->ee_gainI[i] = (eeval >> 13) & 0x07;
   1297  1.1     alc 
   1298  1.1     alc 			EEREAD(off++);
   1299  1.1     alc 			ee->ee_gainI[i] |= (eeval << 3) & 0x38;
   1300  1.1     alc 			if (i == headerInfo11G) {
   1301  1.1     alc 				ee->ee_cckOfdmPwrDelta = (eeval >> 3) & 0xFF;
   1302  1.1     alc 				if (ee->ee_version >= AR_EEPROM_VER4_6)
   1303  1.1     alc 					ee->ee_scaledCh14FilterCckDelta =
   1304  1.1     alc 						(eeval >> 11) & 0x1f;
   1305  1.1     alc 			}
   1306  1.1     alc 			if (i == headerInfo11A &&
   1307  1.1     alc 			    ee->ee_version >= AR_EEPROM_VER4_0) {
   1308  1.1     alc 				ee->ee_iqCalI[0] = (eeval >> 8 ) & 0x3f;
   1309  1.1     alc 				ee->ee_iqCalQ[0] = (eeval >> 3 ) & 0x1f;
   1310  1.1     alc 			}
   1311  1.1     alc 		} else {
   1312  1.1     alc 			ee->ee_gainI[i] = 10;
   1313  1.1     alc 			ee->ee_cckOfdmPwrDelta = TENX_OFDM_CCK_DELTA_INIT;
   1314  1.1     alc 		}
   1315  1.1     alc 		if (ee->ee_version >= AR_EEPROM_VER4_0) {
   1316  1.1     alc 			switch (i) {
   1317  1.1     alc 			case headerInfo11B:
   1318  1.1     alc 				EEREAD(off++);
   1319  1.1     alc 				ee->ee_calPier11b[0] =
   1320  1.1     alc 					fbin2freq_2p4(ee, eeval&0xff);
   1321  1.1     alc 				ee->ee_calPier11b[1] =
   1322  1.1     alc 					fbin2freq_2p4(ee, (eeval >> 8)&0xff);
   1323  1.1     alc 				EEREAD(off++);
   1324  1.1     alc 				ee->ee_calPier11b[2] =
   1325  1.1     alc 					fbin2freq_2p4(ee, eeval&0xff);
   1326  1.1     alc 				if (ee->ee_version >= AR_EEPROM_VER4_1)
   1327  1.1     alc 					ee->ee_rxtxMargin[headerInfo11B] =
   1328  1.1     alc 						(eeval >> 8) & 0x3f;
   1329  1.1     alc 				break;
   1330  1.1     alc 			case headerInfo11G:
   1331  1.1     alc 				EEREAD(off++);
   1332  1.1     alc 				ee->ee_calPier11g[0] =
   1333  1.1     alc 					fbin2freq_2p4(ee, eeval & 0xff);
   1334  1.1     alc 				ee->ee_calPier11g[1] =
   1335  1.1     alc 					fbin2freq_2p4(ee, (eeval >> 8) & 0xff);
   1336  1.1     alc 
   1337  1.1     alc 				EEREAD(off++);
   1338  1.1     alc 				ee->ee_turbo2WMaxPower2 = eeval & 0x7F;
   1339  1.1     alc 				ee->ee_xrTargetPower2 = (eeval >> 7) & 0x3f;
   1340  1.1     alc 
   1341  1.1     alc 				EEREAD(off++);
   1342  1.1     alc 				ee->ee_calPier11g[2] =
   1343  1.1     alc 					fbin2freq_2p4(ee, eeval & 0xff);
   1344  1.1     alc 				if (ee->ee_version >= AR_EEPROM_VER4_1)
   1345  1.1     alc 					 ee->ee_rxtxMargin[headerInfo11G] =
   1346  1.1     alc 						(eeval >> 8) & 0x3f;
   1347  1.1     alc 
   1348  1.1     alc 				EEREAD(off++);
   1349  1.1     alc 				ee->ee_iqCalI[1] = (eeval >> 5) & 0x3F;
   1350  1.1     alc 				ee->ee_iqCalQ[1] = eeval & 0x1F;
   1351  1.1     alc 
   1352  1.1     alc 				if (ee->ee_version >= AR_EEPROM_VER4_2) {
   1353  1.1     alc 					EEREAD(off++);
   1354  1.1     alc 					ee->ee_cckOfdmGainDelta =
   1355  1.1     alc 						(uint8_t)(eeval & 0xFF);
   1356  1.1     alc 					if (ee->ee_version >= AR_EEPROM_VER5_0) {
   1357  1.1     alc 						ee->ee_switchSettlingTurbo[1] =
   1358  1.1     alc 							(eeval >> 8) & 0x7f;
   1359  1.1     alc 						ee->ee_txrxAttenTurbo[1] =
   1360  1.1     alc 							(eeval >> 15) & 0x1;
   1361  1.1     alc 						EEREAD(off++);
   1362  1.1     alc 						ee->ee_txrxAttenTurbo[1] |=
   1363  1.1     alc 							(eeval & 0x1F) << 1;
   1364  1.1     alc 						ee->ee_rxtxMarginTurbo[1] =
   1365  1.1     alc 							(eeval >> 5) & 0x3F;
   1366  1.1     alc 						ee->ee_adcDesiredSizeTurbo[1] =
   1367  1.1     alc 							(eeval >> 11) & 0x1F;
   1368  1.1     alc 						EEREAD(off++);
   1369  1.1     alc 						ee->ee_adcDesiredSizeTurbo[1] |=
   1370  1.1     alc 							(eeval & 0x7) << 5;
   1371  1.1     alc 						ee->ee_pgaDesiredSizeTurbo[1] =
   1372  1.1     alc 							(eeval >> 3) & 0xFF;
   1373  1.1     alc 					}
   1374  1.1     alc 				}
   1375  1.1     alc 				break;
   1376  1.1     alc 			case headerInfo11A:
   1377  1.1     alc 				if (ee->ee_version >= AR_EEPROM_VER4_1) {
   1378  1.1     alc 					EEREAD(off++);
   1379  1.1     alc 					ee->ee_rxtxMargin[headerInfo11A] =
   1380  1.1     alc 						eeval & 0x3f;
   1381  1.1     alc 					if (ee->ee_version >= AR_EEPROM_VER5_0) {
   1382  1.1     alc 						ee->ee_switchSettlingTurbo[0] =
   1383  1.1     alc 							(eeval >> 6) & 0x7f;
   1384  1.1     alc 						ee->ee_txrxAttenTurbo[0] =
   1385  1.1     alc 							(eeval >> 13) & 0x7;
   1386  1.1     alc 						EEREAD(off++);
   1387  1.1     alc 						ee->ee_txrxAttenTurbo[0] |=
   1388  1.1     alc 							(eeval & 0x7) << 3;
   1389  1.1     alc 						ee->ee_rxtxMarginTurbo[0] =
   1390  1.1     alc 							(eeval >> 3) & 0x3F;
   1391  1.1     alc 						ee->ee_adcDesiredSizeTurbo[0] =
   1392  1.1     alc 							(eeval >> 9) & 0x7F;
   1393  1.1     alc 						EEREAD(off++);
   1394  1.1     alc 						ee->ee_adcDesiredSizeTurbo[0] |=
   1395  1.1     alc 							(eeval & 0x1) << 7;
   1396  1.1     alc 						ee->ee_pgaDesiredSizeTurbo[0] =
   1397  1.1     alc 							(eeval >> 1) & 0xFF;
   1398  1.1     alc 					}
   1399  1.1     alc 				}
   1400  1.1     alc 				break;
   1401  1.1     alc 			}
   1402  1.1     alc 		}
   1403  1.1     alc 	}
   1404  1.1     alc 	if (ee->ee_version < AR_EEPROM_VER3_3) {
   1405  1.1     alc 		/* Version 3.1+ specific parameters */
   1406  1.1     alc 		EEREAD(0xec);
   1407  1.1     alc 		ee->ee_ob2GHz[0] = eeval & 0x7;
   1408  1.1     alc 		ee->ee_db2GHz[0] = (eeval >> 3) & 0x7;
   1409  1.1     alc 
   1410  1.1     alc 		EEREAD(0xed);
   1411  1.1     alc 		ee->ee_ob2GHz[1] = eeval & 0x7;
   1412  1.1     alc 		ee->ee_db2GHz[1] = (eeval >> 3) & 0x7;
   1413  1.1     alc 	}
   1414  1.1     alc 
   1415  1.1     alc 	/* Initialize corner cal (thermal tx gain adjust parameters) */
   1416  1.1     alc 	ee->ee_cornerCal.clip = 4;
   1417  1.1     alc 	ee->ee_cornerCal.pd90 = 1;
   1418  1.1     alc 	ee->ee_cornerCal.pd84 = 1;
   1419  1.1     alc 	ee->ee_cornerCal.gSel = 0;
   1420  1.1     alc 
   1421  1.1     alc 	/*
   1422  1.1     alc 	* Read the conformance test limit identifiers
   1423  1.1     alc 	* These are used to match regulatory domain testing needs with
   1424  1.1     alc 	* the RD-specific tests that have been calibrated in the EEPROM.
   1425  1.1     alc 	*/
   1426  1.1     alc 	off = header[5];
   1427  1.1     alc 	for (i = 0; i < ee->ee_numCtls; i += 2) {
   1428  1.1     alc 		EEREAD(off++);
   1429  1.1     alc 		ee->ee_ctl[i] = (eeval >> 8) & 0xff;
   1430  1.1     alc 		ee->ee_ctl[i+1] = eeval & 0xff;
   1431  1.1     alc 	}
   1432  1.1     alc 
   1433  1.1     alc 	if (ee->ee_version < AR_EEPROM_VER5_3) {
   1434  1.1     alc 		/* XXX only for 5413? */
   1435  1.1     alc 		ee->ee_spurChans[0][1] = AR_SPUR_5413_1;
   1436  1.1     alc 		ee->ee_spurChans[1][1] = AR_SPUR_5413_2;
   1437  1.1     alc 		ee->ee_spurChans[2][1] = AR_NO_SPUR;
   1438  1.1     alc 		ee->ee_spurChans[0][0] = AR_NO_SPUR;
   1439  1.1     alc 	} else {
   1440  1.1     alc 		/* Read spur mitigation data */
   1441  1.1     alc 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
   1442  1.1     alc 			EEREAD(off);
   1443  1.1     alc 			ee->ee_spurChans[i][0] = eeval;
   1444  1.1     alc 			EEREAD(off+AR_EEPROM_MODAL_SPURS);
   1445  1.1     alc 			ee->ee_spurChans[i][1] = eeval;
   1446  1.1     alc 			off++;
   1447  1.1     alc 		}
   1448  1.1     alc 	}
   1449  1.1     alc 
   1450  1.1     alc 	/* for recent changes to NF scale */
   1451  1.1     alc 	if (ee->ee_version <= AR_EEPROM_VER3_2) {
   1452  1.1     alc 		ee->ee_noiseFloorThresh[headerInfo11A] = -54;
   1453  1.1     alc 		ee->ee_noiseFloorThresh[headerInfo11B] = -1;
   1454  1.1     alc 		ee->ee_noiseFloorThresh[headerInfo11G] = -1;
   1455  1.1     alc 	}
   1456  1.1     alc 	/* to override thresh62 for better 2.4 and 5 operation */
   1457  1.1     alc 	if (ee->ee_version <= AR_EEPROM_VER3_2) {
   1458  1.1     alc 		ee->ee_thresh62[headerInfo11A] = 15;	/* 11A */
   1459  1.1     alc 		ee->ee_thresh62[headerInfo11B] = 28;	/* 11B */
   1460  1.1     alc 		ee->ee_thresh62[headerInfo11G] = 28;	/* 11G */
   1461  1.1     alc 	}
   1462  1.1     alc 
   1463  1.1     alc 	/* Check for regulatory capabilities */
   1464  1.1     alc 	if (ee->ee_version >= AR_EEPROM_VER4_0) {
   1465  1.1     alc 		EEREAD(regCapOffsetPost4_0);
   1466  1.1     alc 	} else {
   1467  1.1     alc 		EEREAD(regCapOffsetPre4_0);
   1468  1.1     alc 	}
   1469  1.1     alc 
   1470  1.1     alc 	ee->ee_regCap = eeval;
   1471  1.1     alc 
   1472  1.1     alc 	if (ee->ee_Amode == 0) {
   1473  1.1     alc 		/* Check for valid Amode in upgraded h/w */
   1474  1.1     alc 		if (ee->ee_version >= AR_EEPROM_VER4_0) {
   1475  1.1     alc 			ee->ee_Amode = (ee->ee_regCap & AR_EEPROM_EEREGCAP_EN_KK_NEW_11A)?1:0;
   1476  1.1     alc 		} else {
   1477  1.1     alc 			ee->ee_Amode = (ee->ee_regCap & AR_EEPROM_EEREGCAP_EN_KK_NEW_11A_PRE4_0)?1:0;
   1478  1.1     alc 		}
   1479  1.1     alc 	}
   1480  1.1     alc 
   1481  1.1     alc 	if (ee->ee_version >= AR_EEPROM_VER5_1)
   1482  1.1     alc 		EEREAD(AR_EEPROM_CAPABILITIES_OFFSET);
   1483  1.1     alc 	else
   1484  1.1     alc 		eeval = 0;
   1485  1.1     alc 	ee->ee_opCap = eeval;
   1486  1.1     alc 
   1487  1.1     alc 	EEREAD(AR_EEPROM_REG_DOMAIN);
   1488  1.1     alc 	ee->ee_regdomain = eeval;
   1489  1.1     alc 
   1490  1.1     alc 	return AH_TRUE;
   1491  1.1     alc #undef EEREAD
   1492  1.1     alc }
   1493  1.1     alc 
   1494  1.1     alc /*
   1495  1.1     alc  * Now verify and copy EEPROM contents into the allocated space
   1496  1.1     alc  */
   1497  1.1     alc static HAL_BOOL
   1498  1.1     alc legacyEepromReadContents(struct ath_hal *ah, HAL_EEPROM *ee)
   1499  1.1     alc {
   1500  1.1     alc 	/* Read the header information here */
   1501  1.1     alc 	if (!readHeaderInfo(ah, ee))
   1502  1.1     alc 		return AH_FALSE;
   1503  1.1     alc #if 0
   1504  1.1     alc 	/* Require 5112 devices to have EEPROM 4.0 EEP_MAP set */
   1505  1.1     alc 	if (IS_5112(ah) && !ee->ee_eepMap) {
   1506  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
   1507  1.1     alc 		    "%s: 5112 devices must have EEPROM 4.0 with the "
   1508  1.1     alc 		    "EEP_MAP set\n", __func__);
   1509  1.1     alc 		return AH_FALSE;
   1510  1.1     alc 	}
   1511  1.1     alc #endif
   1512  1.1     alc 	/*
   1513  1.1     alc 	 * Group 1: frequency pier locations readback
   1514  1.1     alc 	 * check that the structure has been populated
   1515  1.1     alc 	 * with enough space to hold the channels
   1516  1.1     alc 	 *
   1517  1.1     alc 	 * NOTE: Group 1 contains the 5 GHz channel numbers
   1518  1.1     alc 	 *	 that have dBm->pcdac calibrated information.
   1519  1.1     alc 	 */
   1520  1.1     alc 	if (!readEepromFreqPierInfo(ah, ee))
   1521  1.1     alc 		return AH_FALSE;
   1522  1.1     alc 
   1523  1.1     alc 	/*
   1524  1.1     alc 	 * Group 2:  readback data for all frequency piers
   1525  1.1     alc 	 *
   1526  1.1     alc 	 * NOTE: Group 2 contains the raw power calibration
   1527  1.1     alc 	 *	 information for each of the channels that we
   1528  1.1     alc 	 *	 recorded above.
   1529  1.1     alc 	 */
   1530  1.1     alc 	if (!readEepromRawPowerCalInfo(ah, ee))
   1531  1.1     alc 		return AH_FALSE;
   1532  1.1     alc 
   1533  1.1     alc 	/*
   1534  1.1     alc 	 * Group 5: target power values per rate
   1535  1.1     alc 	 *
   1536  1.1     alc 	 * NOTE: Group 5 contains the recorded maximum power
   1537  1.1     alc 	 *	 in dB that can be attained for the given rate.
   1538  1.1     alc 	 */
   1539  1.1     alc 	/* Read the power per rate info for test channels */
   1540  1.1     alc 	if (!readEepromTargetPowerCalInfo(ah, ee))
   1541  1.1     alc 		return AH_FALSE;
   1542  1.1     alc 
   1543  1.1     alc 	/*
   1544  1.1     alc 	 * Group 8: Conformance Test Limits information
   1545  1.1     alc 	 *
   1546  1.1     alc 	 * NOTE: Group 8 contains the values to limit the
   1547  1.1     alc 	 *	 maximum transmit power value based on any
   1548  1.1     alc 	 *	 band edge violations.
   1549  1.1     alc 	 */
   1550  1.1     alc 	/* Read the RD edge power limits */
   1551  1.1     alc 	return readEepromCTLInfo(ah, ee);
   1552  1.1     alc }
   1553  1.1     alc 
   1554  1.1     alc static HAL_STATUS
   1555  1.1     alc legacyEepromGet(struct ath_hal *ah, int param, void *val)
   1556  1.1     alc {
   1557  1.1     alc 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1558  1.1     alc 	uint8_t *macaddr;
   1559  1.1     alc 	uint16_t eeval;
   1560  1.1     alc 	uint32_t sum;
   1561  1.1     alc 	int i;
   1562  1.1     alc 
   1563  1.1     alc 	switch (param) {
   1564  1.1     alc 	case AR_EEP_OPCAP:
   1565  1.1     alc 		*(uint16_t *) val = ee->ee_opCap;
   1566  1.1     alc 		return HAL_OK;
   1567  1.1     alc 	case AR_EEP_REGDMN_0:
   1568  1.1     alc 		*(uint16_t *) val = ee->ee_regdomain;
   1569  1.1     alc 		return HAL_OK;
   1570  1.1     alc 	case AR_EEP_RFSILENT:
   1571  1.1     alc 		if (!ath_hal_eepromRead(ah, AR_EEPROM_RFSILENT, &eeval))
   1572  1.1     alc 			return HAL_EEREAD;
   1573  1.1     alc 		*(uint16_t *) val = eeval;
   1574  1.1     alc 		return HAL_OK;
   1575  1.1     alc 	case AR_EEP_MACADDR:
   1576  1.1     alc 		sum = 0;
   1577  1.1     alc 		macaddr = val;
   1578  1.1     alc 		for (i = 0; i < 3; i++) {
   1579  1.1     alc 			if (!ath_hal_eepromRead(ah, AR_EEPROM_MAC(2-i), &eeval)) {
   1580  1.1     alc 				HALDEBUG(ah, HAL_DEBUG_ANY,
   1581  1.1     alc 				    "%s: cannot read EEPROM location %u\n",
   1582  1.1     alc 				    __func__, i);
   1583  1.1     alc 				return HAL_EEREAD;
   1584  1.1     alc 			}
   1585  1.1     alc 			sum += eeval;
   1586  1.1     alc 			macaddr[2*i] = eeval >> 8;
   1587  1.1     alc 			macaddr[2*i + 1] = eeval & 0xff;
   1588  1.1     alc 		}
   1589  1.1     alc 		if (sum == 0 || sum == 0xffff*3) {
   1590  1.1     alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
   1591  1.1     alc 			    "%s: mac address read failed: %s\n", __func__,
   1592  1.1     alc 			    ath_hal_ether_sprintf(macaddr));
   1593  1.1     alc 			return HAL_EEBADMAC;
   1594  1.1     alc 		}
   1595  1.1     alc 		return HAL_OK;
   1596  1.1     alc 	case AR_EEP_RFKILL:
   1597  1.1     alc 		HALASSERT(val == AH_NULL);
   1598  1.1     alc 		return ee->ee_rfKill ? HAL_OK : HAL_EIO;
   1599  1.1     alc 	case AR_EEP_AMODE:
   1600  1.1     alc 		HALASSERT(val == AH_NULL);
   1601  1.1     alc 		return ee->ee_Amode ? HAL_OK : HAL_EIO;
   1602  1.1     alc 	case AR_EEP_BMODE:
   1603  1.1     alc 		HALASSERT(val == AH_NULL);
   1604  1.1     alc 		return ee->ee_Bmode ? HAL_OK : HAL_EIO;
   1605  1.1     alc 	case AR_EEP_GMODE:
   1606  1.1     alc 		HALASSERT(val == AH_NULL);
   1607  1.1     alc 		return ee->ee_Gmode ? HAL_OK : HAL_EIO;
   1608  1.1     alc 	case AR_EEP_TURBO5DISABLE:
   1609  1.1     alc 		HALASSERT(val == AH_NULL);
   1610  1.1     alc 		return ee->ee_turbo5Disable ? HAL_OK : HAL_EIO;
   1611  1.1     alc 	case AR_EEP_TURBO2DISABLE:
   1612  1.1     alc 		HALASSERT(val == AH_NULL);
   1613  1.1     alc 		return ee->ee_turbo2Disable ? HAL_OK : HAL_EIO;
   1614  1.1     alc 	case AR_EEP_ISTALON:		/* Talon detect */
   1615  1.1     alc 		HALASSERT(val == AH_NULL);
   1616  1.1     alc 		return (ee->ee_version >= AR_EEPROM_VER5_4 &&
   1617  1.1     alc 		    ath_hal_eepromRead(ah, 0x0b, &eeval) && eeval == 1) ?
   1618  1.1     alc 			HAL_OK : HAL_EIO;
   1619  1.1     alc 	case AR_EEP_32KHZCRYSTAL:
   1620  1.1     alc 		HALASSERT(val == AH_NULL);
   1621  1.1     alc 		return ee->ee_exist32kHzCrystal ? HAL_OK : HAL_EIO;
   1622  1.1     alc 	case AR_EEP_COMPRESS:
   1623  1.1     alc 		HALASSERT(val == AH_NULL);
   1624  1.1     alc 		return (ee->ee_opCap & AR_EEPROM_EEPCAP_COMPRESS_DIS) == 0 ?
   1625  1.1     alc 		    HAL_OK : HAL_EIO;
   1626  1.1     alc 	case AR_EEP_FASTFRAME:
   1627  1.1     alc 		HALASSERT(val == AH_NULL);
   1628  1.1     alc 		return (ee->ee_opCap & AR_EEPROM_EEPCAP_FASTFRAME_DIS) == 0 ?
   1629  1.1     alc 		    HAL_OK : HAL_EIO;
   1630  1.1     alc 	case AR_EEP_AES:
   1631  1.1     alc 		HALASSERT(val == AH_NULL);
   1632  1.1     alc 		return (ee->ee_opCap & AR_EEPROM_EEPCAP_AES_DIS) == 0 ?
   1633  1.1     alc 		    HAL_OK : HAL_EIO;
   1634  1.1     alc 	case AR_EEP_BURST:
   1635  1.1     alc 		HALASSERT(val == AH_NULL);
   1636  1.1     alc 		return (ee->ee_opCap & AR_EEPROM_EEPCAP_BURST_DIS) == 0 ?
   1637  1.1     alc 		    HAL_OK : HAL_EIO;
   1638  1.1     alc 	case AR_EEP_MAXQCU:
   1639  1.1     alc 		if (ee->ee_opCap & AR_EEPROM_EEPCAP_MAXQCU) {
   1640  1.1     alc 			*(uint16_t *) val =
   1641  1.1     alc 			    MS(ee->ee_opCap, AR_EEPROM_EEPCAP_MAXQCU);
   1642  1.1     alc 			return HAL_OK;
   1643  1.1     alc 		} else
   1644  1.1     alc 			return HAL_EIO;
   1645  1.1     alc 	case AR_EEP_KCENTRIES:
   1646  1.1     alc 		if (ee->ee_opCap & AR_EEPROM_EEPCAP_KC_ENTRIES) {
   1647  1.1     alc 			*(uint16_t *) val =
   1648  1.1     alc 			    1 << MS(ee->ee_opCap, AR_EEPROM_EEPCAP_KC_ENTRIES);
   1649  1.1     alc 			return HAL_OK;
   1650  1.1     alc 		} else
   1651  1.1     alc 			return HAL_EIO;
   1652  1.1     alc 	case AR_EEP_ANTGAINMAX_5:
   1653  1.1     alc 		*(int8_t *) val = ee->ee_antennaGainMax[0];
   1654  1.1     alc 		return HAL_OK;
   1655  1.1     alc 	case AR_EEP_ANTGAINMAX_2:
   1656  1.1     alc 		*(int8_t *) val = ee->ee_antennaGainMax[1];
   1657  1.1     alc 		return HAL_OK;
   1658  1.1     alc 	case AR_EEP_WRITEPROTECT:
   1659  1.1     alc 		HALASSERT(val == AH_NULL);
   1660  1.1     alc 		return (ee->ee_protect & AR_EEPROM_PROTECT_WP_128_191) ?
   1661  1.1     alc 		    HAL_OK : HAL_EIO;
   1662  1.1     alc 	}
   1663  1.1     alc 	return HAL_EINVAL;
   1664  1.1     alc }
   1665  1.1     alc 
   1666  1.1     alc static HAL_BOOL
   1667  1.1     alc legacyEepromSet(struct ath_hal *ah, int param, int v)
   1668  1.1     alc {
   1669  1.1     alc 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1670  1.1     alc 
   1671  1.1     alc 	switch (param) {
   1672  1.1     alc 	case AR_EEP_AMODE:
   1673  1.1     alc 		ee->ee_Amode = v;
   1674  1.5     mrg 		return AH_TRUE;
   1675  1.1     alc 	case AR_EEP_BMODE:
   1676  1.1     alc 		ee->ee_Bmode = v;
   1677  1.5     mrg 		return AH_TRUE;
   1678  1.1     alc 	case AR_EEP_GMODE:
   1679  1.1     alc 		ee->ee_Gmode = v;
   1680  1.5     mrg 		return AH_TRUE;
   1681  1.1     alc 	case AR_EEP_TURBO5DISABLE:
   1682  1.1     alc 		ee->ee_turbo5Disable = v;
   1683  1.5     mrg 		return AH_TRUE;
   1684  1.1     alc 	case AR_EEP_TURBO2DISABLE:
   1685  1.1     alc 		ee->ee_turbo2Disable = v;
   1686  1.5     mrg 		return AH_TRUE;
   1687  1.1     alc 	case AR_EEP_COMPRESS:
   1688  1.1     alc 		if (v)
   1689  1.1     alc 			ee->ee_opCap &= ~AR_EEPROM_EEPCAP_COMPRESS_DIS;
   1690  1.1     alc 		else
   1691  1.1     alc 			ee->ee_opCap |= AR_EEPROM_EEPCAP_COMPRESS_DIS;
   1692  1.5     mrg 		return AH_TRUE;
   1693  1.1     alc 	case AR_EEP_FASTFRAME:
   1694  1.1     alc 		if (v)
   1695  1.1     alc 			ee->ee_opCap &= ~AR_EEPROM_EEPCAP_FASTFRAME_DIS;
   1696  1.1     alc 		else
   1697  1.1     alc 			ee->ee_opCap |= AR_EEPROM_EEPCAP_FASTFRAME_DIS;
   1698  1.5     mrg 		return AH_TRUE;
   1699  1.1     alc 	case AR_EEP_AES:
   1700  1.1     alc 		if (v)
   1701  1.1     alc 			ee->ee_opCap &= ~AR_EEPROM_EEPCAP_AES_DIS;
   1702  1.1     alc 		else
   1703  1.1     alc 			ee->ee_opCap |= AR_EEPROM_EEPCAP_AES_DIS;
   1704  1.5     mrg 		return AH_TRUE;
   1705  1.1     alc 	case AR_EEP_BURST:
   1706  1.1     alc 		if (v)
   1707  1.1     alc 			ee->ee_opCap &= ~AR_EEPROM_EEPCAP_BURST_DIS;
   1708  1.1     alc 		else
   1709  1.1     alc 			ee->ee_opCap |= AR_EEPROM_EEPCAP_BURST_DIS;
   1710  1.5     mrg 		return AH_TRUE;
   1711  1.1     alc 	}
   1712  1.5     mrg 	return AH_FALSE;
   1713  1.1     alc }
   1714  1.1     alc 
   1715  1.1     alc static HAL_BOOL
   1716  1.1     alc legacyEepromDiag(struct ath_hal *ah, int request,
   1717  1.1     alc      const void *args, uint32_t argsize, void **result, uint32_t *resultsize)
   1718  1.1     alc {
   1719  1.1     alc 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1720  1.1     alc 	const EEPROM_POWER_EXPN_5112 *pe;
   1721  1.1     alc 
   1722  1.1     alc 	switch (request) {
   1723  1.1     alc 	case HAL_DIAG_EEPROM:
   1724  1.1     alc 		*result = ee;
   1725  1.1     alc 		*resultsize = sizeof(*ee);
   1726  1.1     alc 		return AH_TRUE;
   1727  1.1     alc 	case HAL_DIAG_EEPROM_EXP_11A:
   1728  1.1     alc 	case HAL_DIAG_EEPROM_EXP_11B:
   1729  1.1     alc 	case HAL_DIAG_EEPROM_EXP_11G:
   1730  1.1     alc 		pe = &ee->ee_modePowerArray5112[
   1731  1.1     alc 		    request - HAL_DIAG_EEPROM_EXP_11A];
   1732  1.1     alc 		*result = pe->pChannels;
   1733  1.1     alc 		*resultsize = (*result == AH_NULL) ? 0 :
   1734  1.1     alc 			roundup(sizeof(uint16_t) * pe->numChannels,
   1735  1.1     alc 				sizeof(uint32_t)) +
   1736  1.1     alc 			sizeof(EXPN_DATA_PER_CHANNEL_5112) * pe->numChannels;
   1737  1.1     alc 		return AH_TRUE;
   1738  1.1     alc 	}
   1739  1.1     alc 	return AH_FALSE;
   1740  1.1     alc }
   1741  1.1     alc 
   1742  1.1     alc static uint16_t
   1743  1.1     alc legacyEepromGetSpurChan(struct ath_hal *ah, int ix, HAL_BOOL is2GHz)
   1744  1.1     alc {
   1745  1.1     alc 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1746  1.1     alc 
   1747  1.1     alc 	HALASSERT(0 <= ix && ix < AR_EEPROM_MODAL_SPURS);
   1748  1.1     alc 	return ee->ee_spurChans[ix][is2GHz];
   1749  1.1     alc }
   1750  1.1     alc 
   1751  1.1     alc /*
   1752  1.1     alc  * Reclaim any EEPROM-related storage.
   1753  1.1     alc  */
   1754  1.1     alc static void
   1755  1.1     alc legacyEepromDetach(struct ath_hal *ah)
   1756  1.1     alc {
   1757  1.1     alc 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1758  1.1     alc 
   1759  1.1     alc         if (ee->ee_version >= AR_EEPROM_VER4_0 && ee->ee_eepMap == 1)
   1760  1.3  cegger 		freeEepromRawPowerCalInfo5112(ah, ee);
   1761  1.1     alc 	ath_hal_free(ee);
   1762  1.1     alc 	AH_PRIVATE(ah)->ah_eeprom = AH_NULL;
   1763  1.1     alc }
   1764  1.1     alc 
   1765  1.1     alc /*
   1766  1.1     alc  * These are not valid 2.4 channels, either we change 'em
   1767  1.1     alc  * or we need to change the coding to accept them.
   1768  1.1     alc  */
   1769  1.1     alc static const uint16_t channels11b[] = { 2412, 2447, 2484 };
   1770  1.1     alc static const uint16_t channels11g[] = { 2312, 2412, 2484 };
   1771  1.1     alc 
   1772  1.1     alc HAL_STATUS
   1773  1.1     alc ath_hal_legacyEepromAttach(struct ath_hal *ah)
   1774  1.1     alc {
   1775  1.1     alc 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1776  1.1     alc 	uint32_t sum, eepMax;
   1777  1.1     alc 	uint16_t eeversion, eeprotect, eeval;
   1778  1.1     alc 	u_int i;
   1779  1.1     alc 
   1780  1.1     alc 	HALASSERT(ee == AH_NULL);
   1781  1.1     alc 
   1782  1.1     alc 	if (!ath_hal_eepromRead(ah, AR_EEPROM_VERSION, &eeversion)) {
   1783  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
   1784  1.1     alc 		    "%s: unable to read EEPROM version\n", __func__);
   1785  1.1     alc 		return HAL_EEREAD;
   1786  1.1     alc 	}
   1787  1.1     alc 	if (eeversion < AR_EEPROM_VER3) {
   1788  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unsupported EEPROM version "
   1789  1.1     alc 		    "%u (0x%x) found\n", __func__, eeversion, eeversion);
   1790  1.1     alc 		return HAL_EEVERSION;
   1791  1.1     alc 	}
   1792  1.1     alc 
   1793  1.1     alc 	if (!ath_hal_eepromRead(ah, AR_EEPROM_PROTECT, &eeprotect)) {
   1794  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot read EEPROM protection "
   1795  1.1     alc 		    "bits; read locked?\n", __func__);
   1796  1.1     alc 		return HAL_EEREAD;
   1797  1.1     alc 	}
   1798  1.1     alc 	HALDEBUG(ah, HAL_DEBUG_ATTACH, "EEPROM protect 0x%x\n", eeprotect);
   1799  1.1     alc 	/* XXX check proper access before continuing */
   1800  1.1     alc 
   1801  1.1     alc 	/*
   1802  1.1     alc 	 * Read the Atheros EEPROM entries and calculate the checksum.
   1803  1.1     alc 	 */
   1804  1.1     alc 	if (!ath_hal_eepromRead(ah, AR_EEPROM_SIZE_UPPER, &eeval)) {
   1805  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
   1806  1.1     alc 		    "%s: cannot read EEPROM upper size\n" , __func__);
   1807  1.1     alc 		return HAL_EEREAD;
   1808  1.1     alc 	}
   1809  1.1     alc 	if (eeval != 0)	{
   1810  1.1     alc 		eepMax = (eeval & AR_EEPROM_SIZE_UPPER_MASK) <<
   1811  1.1     alc 			AR_EEPROM_SIZE_ENDLOC_SHIFT;
   1812  1.1     alc 		if (!ath_hal_eepromRead(ah, AR_EEPROM_SIZE_LOWER, &eeval)) {
   1813  1.1     alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
   1814  1.1     alc 			    "%s: cannot read EEPROM lower size\n" , __func__);
   1815  1.1     alc 			return HAL_EEREAD;
   1816  1.1     alc 		}
   1817  1.1     alc 		eepMax = (eepMax | eeval) - AR_EEPROM_ATHEROS_BASE;
   1818  1.1     alc 	} else
   1819  1.1     alc 		eepMax = AR_EEPROM_ATHEROS_MAX;
   1820  1.1     alc 	sum = 0;
   1821  1.1     alc 	for (i = 0; i < eepMax; i++) {
   1822  1.1     alc 		if (!ath_hal_eepromRead(ah, AR_EEPROM_ATHEROS(i), &eeval)) {
   1823  1.1     alc 			return HAL_EEREAD;
   1824  1.1     alc 		}
   1825  1.1     alc 		sum ^= eeval;
   1826  1.1     alc 	}
   1827  1.1     alc 	if (sum != 0xffff) {
   1828  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad EEPROM checksum 0x%x\n",
   1829  1.1     alc 		    __func__, sum);
   1830  1.1     alc 		return HAL_EEBADSUM;
   1831  1.1     alc 	}
   1832  1.1     alc 
   1833  1.1     alc 	ee = ath_hal_malloc(sizeof(HAL_EEPROM));
   1834  1.1     alc 	if (ee == AH_NULL) {
   1835  1.1     alc 		/* XXX message */
   1836  1.1     alc 		return HAL_ENOMEM;
   1837  1.1     alc 	}
   1838  1.1     alc 
   1839  1.1     alc 	ee->ee_protect = eeprotect;
   1840  1.1     alc 	ee->ee_version = eeversion;
   1841  1.1     alc 
   1842  1.1     alc 	ee->ee_numChannels11a = NUM_11A_EEPROM_CHANNELS;
   1843  1.1     alc 	ee->ee_numChannels2_4 = NUM_2_4_EEPROM_CHANNELS;
   1844  1.1     alc 
   1845  1.1     alc 	for (i = 0; i < NUM_11A_EEPROM_CHANNELS; i ++)
   1846  1.1     alc 		ee->ee_dataPerChannel11a[i].numPcdacValues = NUM_PCDAC_VALUES;
   1847  1.1     alc 
   1848  1.1     alc 	/* the channel list for 2.4 is fixed, fill this in here */
   1849  1.1     alc 	for (i = 0; i < NUM_2_4_EEPROM_CHANNELS; i++) {
   1850  1.1     alc 		ee->ee_channels11b[i] = channels11b[i];
   1851  1.1     alc 		/* XXX 5211 requires a hack though we don't support 11g */
   1852  1.1     alc 		if (ah->ah_magic == 0x19570405)
   1853  1.1     alc 			ee->ee_channels11g[i] = channels11b[i];
   1854  1.1     alc 		else
   1855  1.1     alc 			ee->ee_channels11g[i] = channels11g[i];
   1856  1.1     alc 		ee->ee_dataPerChannel11b[i].numPcdacValues = NUM_PCDAC_VALUES;
   1857  1.1     alc 		ee->ee_dataPerChannel11g[i].numPcdacValues = NUM_PCDAC_VALUES;
   1858  1.1     alc 	}
   1859  1.1     alc 
   1860  1.1     alc 	if (!legacyEepromReadContents(ah, ee)) {
   1861  1.1     alc 		/* XXX message */
   1862  1.1     alc 		ath_hal_free(ee);
   1863  1.1     alc 		return HAL_EEREAD;	/* XXX */
   1864  1.1     alc 	}
   1865  1.1     alc 
   1866  1.1     alc 	AH_PRIVATE(ah)->ah_eeprom = ee;
   1867  1.1     alc 	AH_PRIVATE(ah)->ah_eeversion = eeversion;
   1868  1.1     alc 	AH_PRIVATE(ah)->ah_eepromDetach = legacyEepromDetach;
   1869  1.1     alc 	AH_PRIVATE(ah)->ah_eepromGet = legacyEepromGet;
   1870  1.1     alc 	AH_PRIVATE(ah)->ah_eepromSet = legacyEepromSet;
   1871  1.1     alc 	AH_PRIVATE(ah)->ah_getSpurChan = legacyEepromGetSpurChan;
   1872  1.1     alc 	AH_PRIVATE(ah)->ah_eepromDiag = legacyEepromDiag;
   1873  1.1     alc 	return HAL_OK;
   1874  1.1     alc }
   1875