ah_regdomain.c revision 1.2 1 1.1 alc /*
2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 1.1 alc * Copyright (c) 2005-2006 Atheros Communications, Inc.
4 1.1 alc * All rights reserved.
5 1.1 alc *
6 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any
7 1.1 alc * purpose with or without fee is hereby granted, provided that the above
8 1.1 alc * copyright notice and this permission notice appear in all copies.
9 1.1 alc *
10 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 1.1 alc *
18 1.2 alc * $Id: ah_regdomain.c,v 1.2 2008/12/11 05:30:29 alc Exp $
19 1.1 alc */
20 1.1 alc #include "opt_ah.h"
21 1.1 alc
22 1.1 alc #include "ah.h"
23 1.1 alc #include "ah_internal.h"
24 1.1 alc #include "ah_eeprom.h"
25 1.1 alc #include "ah_devid.h"
26 1.1 alc
27 1.1 alc /*
28 1.1 alc * XXX this code needs a audit+review
29 1.1 alc */
30 1.1 alc
31 1.1 alc /* used throughout this file... */
32 1.1 alc #define N(a) (sizeof (a) / sizeof (a[0]))
33 1.1 alc
34 1.1 alc #define HAL_MODE_11A_TURBO HAL_MODE_108A
35 1.1 alc #define HAL_MODE_11G_TURBO HAL_MODE_108G
36 1.1 alc
37 1.1 alc /* 10MHz is half the 11A bandwidth used to determine upper edge freq
38 1.1 alc of the outdoor channel */
39 1.1 alc #define HALF_MAXCHANBW 10
40 1.1 alc
41 1.1 alc /*
42 1.1 alc * BMLEN defines the size of the bitmask used to hold frequency
43 1.1 alc * band specifications. Note this must agree with the BM macro
44 1.1 alc * definition that's used to setup initializers. See also further
45 1.1 alc * comments below.
46 1.1 alc */
47 1.1 alc #define BMLEN 2 /* 2 x 64 bits in each channel bitmask */
48 1.1 alc typedef uint64_t chanbmask_t[BMLEN];
49 1.1 alc
50 1.1 alc #define W0(_a) \
51 1.1 alc (((_a) >= 0 && (_a) < 64 ? (((uint64_t) 1)<<(_a)) : (uint64_t) 0))
52 1.1 alc #define W1(_a) \
53 1.1 alc (((_a) > 63 && (_a) < 128 ? (((uint64_t) 1)<<((_a)-64)) : (uint64_t) 0))
54 1.1 alc #define BM1(_fa) { W0(_fa), W1(_fa) }
55 1.1 alc #define BM2(_fa, _fb) { W0(_fa) | W0(_fb), W1(_fa) | W1(_fb) }
56 1.1 alc #define BM3(_fa, _fb, _fc) \
57 1.1 alc { W0(_fa) | W0(_fb) | W0(_fc), W1(_fa) | W1(_fb) | W1(_fc) }
58 1.1 alc #define BM4(_fa, _fb, _fc, _fd) \
59 1.1 alc { W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd), \
60 1.1 alc W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) }
61 1.1 alc #define BM5(_fa, _fb, _fc, _fd, _fe) \
62 1.1 alc { W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe), \
63 1.1 alc W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) }
64 1.1 alc #define BM6(_fa, _fb, _fc, _fd, _fe, _ff) \
65 1.1 alc { W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff), \
66 1.1 alc W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) }
67 1.1 alc #define BM7(_fa, _fb, _fc, _fd, _fe, _ff, _fg) \
68 1.1 alc { W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) | \
69 1.1 alc W0(_fg),\
70 1.1 alc W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) | \
71 1.1 alc W1(_fg) }
72 1.1 alc #define BM8(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh) \
73 1.1 alc { W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) | \
74 1.1 alc W0(_fg) | W0(_fh) , \
75 1.1 alc W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) | \
76 1.1 alc W1(_fg) | W1(_fh) }
77 1.1 alc
78 1.1 alc /*
79 1.1 alc * Country/Region Codes
80 1.1 alc * Numbering from ISO 3166
81 1.1 alc */
82 1.1 alc enum {
83 1.1 alc CTRY_ALBANIA = 8, /* Albania */
84 1.1 alc CTRY_ALGERIA = 12, /* Algeria */
85 1.1 alc CTRY_ARGENTINA = 32, /* Argentina */
86 1.1 alc CTRY_ARMENIA = 51, /* Armenia */
87 1.1 alc CTRY_AUSTRALIA = 36, /* Australia */
88 1.1 alc CTRY_AUSTRIA = 40, /* Austria */
89 1.1 alc CTRY_AZERBAIJAN = 31, /* Azerbaijan */
90 1.1 alc CTRY_BAHRAIN = 48, /* Bahrain */
91 1.1 alc CTRY_BELARUS = 112, /* Belarus */
92 1.1 alc CTRY_BELGIUM = 56, /* Belgium */
93 1.1 alc CTRY_BELIZE = 84, /* Belize */
94 1.1 alc CTRY_BOLIVIA = 68, /* Bolivia */
95 1.1 alc CTRY_BRAZIL = 76, /* Brazil */
96 1.1 alc CTRY_BRUNEI_DARUSSALAM = 96, /* Brunei Darussalam */
97 1.1 alc CTRY_BULGARIA = 100, /* Bulgaria */
98 1.1 alc CTRY_CANADA = 124, /* Canada */
99 1.1 alc CTRY_CHILE = 152, /* Chile */
100 1.1 alc CTRY_CHINA = 156, /* People's Republic of China */
101 1.1 alc CTRY_COLOMBIA = 170, /* Colombia */
102 1.1 alc CTRY_COSTA_RICA = 188, /* Costa Rica */
103 1.1 alc CTRY_CROATIA = 191, /* Croatia */
104 1.1 alc CTRY_CYPRUS = 196,
105 1.1 alc CTRY_CZECH = 203, /* Czech Republic */
106 1.1 alc CTRY_DENMARK = 208, /* Denmark */
107 1.1 alc CTRY_DOMINICAN_REPUBLIC = 214, /* Dominican Republic */
108 1.1 alc CTRY_ECUADOR = 218, /* Ecuador */
109 1.1 alc CTRY_EGYPT = 818, /* Egypt */
110 1.1 alc CTRY_EL_SALVADOR = 222, /* El Salvador */
111 1.1 alc CTRY_ESTONIA = 233, /* Estonia */
112 1.1 alc CTRY_FAEROE_ISLANDS = 234, /* Faeroe Islands */
113 1.1 alc CTRY_FINLAND = 246, /* Finland */
114 1.1 alc CTRY_FRANCE = 250, /* France */
115 1.1 alc CTRY_FRANCE2 = 255, /* France2 */
116 1.1 alc CTRY_GEORGIA = 268, /* Georgia */
117 1.1 alc CTRY_GERMANY = 276, /* Germany */
118 1.1 alc CTRY_GREECE = 300, /* Greece */
119 1.1 alc CTRY_GUATEMALA = 320, /* Guatemala */
120 1.1 alc CTRY_HONDURAS = 340, /* Honduras */
121 1.1 alc CTRY_HONG_KONG = 344, /* Hong Kong S.A.R., P.R.C. */
122 1.1 alc CTRY_HUNGARY = 348, /* Hungary */
123 1.1 alc CTRY_ICELAND = 352, /* Iceland */
124 1.1 alc CTRY_INDIA = 356, /* India */
125 1.1 alc CTRY_INDONESIA = 360, /* Indonesia */
126 1.1 alc CTRY_IRAN = 364, /* Iran */
127 1.1 alc CTRY_IRAQ = 368, /* Iraq */
128 1.1 alc CTRY_IRELAND = 372, /* Ireland */
129 1.1 alc CTRY_ISRAEL = 376, /* Israel */
130 1.1 alc CTRY_ITALY = 380, /* Italy */
131 1.1 alc CTRY_JAMAICA = 388, /* Jamaica */
132 1.1 alc CTRY_JAPAN = 392, /* Japan */
133 1.1 alc CTRY_JAPAN1 = 393, /* Japan (JP1) */
134 1.1 alc CTRY_JAPAN2 = 394, /* Japan (JP0) */
135 1.1 alc CTRY_JAPAN3 = 395, /* Japan (JP1-1) */
136 1.1 alc CTRY_JAPAN4 = 396, /* Japan (JE1) */
137 1.1 alc CTRY_JAPAN5 = 397, /* Japan (JE2) */
138 1.1 alc CTRY_JAPAN6 = 399, /* Japan (JP6) */
139 1.1 alc
140 1.1 alc CTRY_JAPAN7 = 4007, /* Japan (J7) */
141 1.1 alc CTRY_JAPAN8 = 4008, /* Japan (J8) */
142 1.1 alc CTRY_JAPAN9 = 4009, /* Japan (J9) */
143 1.1 alc
144 1.1 alc CTRY_JAPAN10 = 4010, /* Japan (J10) */
145 1.1 alc CTRY_JAPAN11 = 4011, /* Japan (J11) */
146 1.1 alc CTRY_JAPAN12 = 4012, /* Japan (J12) */
147 1.1 alc
148 1.1 alc CTRY_JAPAN13 = 4013, /* Japan (J13) */
149 1.1 alc CTRY_JAPAN14 = 4014, /* Japan (J14) */
150 1.1 alc CTRY_JAPAN15 = 4015, /* Japan (J15) */
151 1.1 alc
152 1.1 alc CTRY_JAPAN16 = 4016, /* Japan (J16) */
153 1.1 alc CTRY_JAPAN17 = 4017, /* Japan (J17) */
154 1.1 alc CTRY_JAPAN18 = 4018, /* Japan (J18) */
155 1.1 alc
156 1.1 alc CTRY_JAPAN19 = 4019, /* Japan (J19) */
157 1.1 alc CTRY_JAPAN20 = 4020, /* Japan (J20) */
158 1.1 alc CTRY_JAPAN21 = 4021, /* Japan (J21) */
159 1.1 alc
160 1.1 alc CTRY_JAPAN22 = 4022, /* Japan (J22) */
161 1.1 alc CTRY_JAPAN23 = 4023, /* Japan (J23) */
162 1.1 alc CTRY_JAPAN24 = 4024, /* Japan (J24) */
163 1.1 alc
164 1.1 alc CTRY_JORDAN = 400, /* Jordan */
165 1.1 alc CTRY_KAZAKHSTAN = 398, /* Kazakhstan */
166 1.1 alc CTRY_KENYA = 404, /* Kenya */
167 1.1 alc CTRY_KOREA_NORTH = 408, /* North Korea */
168 1.1 alc CTRY_KOREA_ROC = 410, /* South Korea */
169 1.1 alc CTRY_KOREA_ROC2 = 411, /* South Korea */
170 1.1 alc CTRY_KOREA_ROC3 = 412, /* South Korea */
171 1.1 alc CTRY_KUWAIT = 414, /* Kuwait */
172 1.1 alc CTRY_LATVIA = 428, /* Latvia */
173 1.1 alc CTRY_LEBANON = 422, /* Lebanon */
174 1.1 alc CTRY_LIBYA = 434, /* Libya */
175 1.1 alc CTRY_LIECHTENSTEIN = 438, /* Liechtenstein */
176 1.1 alc CTRY_LITHUANIA = 440, /* Lithuania */
177 1.1 alc CTRY_LUXEMBOURG = 442, /* Luxembourg */
178 1.1 alc CTRY_MACAU = 446, /* Macau */
179 1.1 alc CTRY_MACEDONIA = 807, /* the Former Yugoslav Republic of Macedonia */
180 1.1 alc CTRY_MALAYSIA = 458, /* Malaysia */
181 1.1 alc CTRY_MALTA = 470, /* Malta */
182 1.1 alc CTRY_MEXICO = 484, /* Mexico */
183 1.1 alc CTRY_MONACO = 492, /* Principality of Monaco */
184 1.1 alc CTRY_MOROCCO = 504, /* Morocco */
185 1.1 alc CTRY_NETHERLANDS = 528, /* Netherlands */
186 1.1 alc CTRY_NEW_ZEALAND = 554, /* New Zealand */
187 1.1 alc CTRY_NICARAGUA = 558, /* Nicaragua */
188 1.1 alc CTRY_NORWAY = 578, /* Norway */
189 1.1 alc CTRY_OMAN = 512, /* Oman */
190 1.1 alc CTRY_PAKISTAN = 586, /* Islamic Republic of Pakistan */
191 1.1 alc CTRY_PANAMA = 591, /* Panama */
192 1.1 alc CTRY_PARAGUAY = 600, /* Paraguay */
193 1.1 alc CTRY_PERU = 604, /* Peru */
194 1.1 alc CTRY_PHILIPPINES = 608, /* Republic of the Philippines */
195 1.1 alc CTRY_POLAND = 616, /* Poland */
196 1.1 alc CTRY_PORTUGAL = 620, /* Portugal */
197 1.1 alc CTRY_PUERTO_RICO = 630, /* Puerto Rico */
198 1.1 alc CTRY_QATAR = 634, /* Qatar */
199 1.1 alc CTRY_ROMANIA = 642, /* Romania */
200 1.1 alc CTRY_RUSSIA = 643, /* Russia */
201 1.1 alc CTRY_SAUDI_ARABIA = 682, /* Saudi Arabia */
202 1.1 alc CTRY_SINGAPORE = 702, /* Singapore */
203 1.1 alc CTRY_SLOVAKIA = 703, /* Slovak Republic */
204 1.1 alc CTRY_SLOVENIA = 705, /* Slovenia */
205 1.1 alc CTRY_SOUTH_AFRICA = 710, /* South Africa */
206 1.1 alc CTRY_SPAIN = 724, /* Spain */
207 1.1 alc CTRY_SR9 = 5000, /* Ubiquiti SR9 (900MHz/GSM) */
208 1.1 alc CTRY_SWEDEN = 752, /* Sweden */
209 1.1 alc CTRY_SWITZERLAND = 756, /* Switzerland */
210 1.1 alc CTRY_SYRIA = 760, /* Syria */
211 1.1 alc CTRY_TAIWAN = 158, /* Taiwan */
212 1.1 alc CTRY_THAILAND = 764, /* Thailand */
213 1.1 alc CTRY_TRINIDAD_Y_TOBAGO = 780, /* Trinidad y Tobago */
214 1.1 alc CTRY_TUNISIA = 788, /* Tunisia */
215 1.1 alc CTRY_TURKEY = 792, /* Turkey */
216 1.1 alc CTRY_UAE = 784, /* U.A.E. */
217 1.1 alc CTRY_UKRAINE = 804, /* Ukraine */
218 1.1 alc CTRY_UNITED_KINGDOM = 826, /* United Kingdom */
219 1.1 alc CTRY_UNITED_STATES = 840, /* United States */
220 1.1 alc CTRY_UNITED_STATES_FCC49 = 842, /* United States (Public Safety)*/
221 1.1 alc CTRY_URUGUAY = 858, /* Uruguay */
222 1.1 alc CTRY_UZBEKISTAN = 860, /* Uzbekistan */
223 1.1 alc CTRY_VENEZUELA = 862, /* Venezuela */
224 1.1 alc CTRY_VIET_NAM = 704, /* Viet Nam */
225 1.1 alc CTRY_XR9 = 5001, /* Ubiquiti XR9 (900MHz/GSM) */
226 1.1 alc CTRY_GZ901 = 5002, /* Zcomax GZ-901 (900MHz/GSM) */
227 1.1 alc CTRY_YEMEN = 887, /* Yemen */
228 1.1 alc CTRY_ZIMBABWE = 716 /* Zimbabwe */
229 1.1 alc };
230 1.1 alc
231 1.1 alc
232 1.1 alc /*
233 1.1 alc * Mask to check whether a domain is a multidomain or a single domain
234 1.1 alc */
235 1.1 alc #define MULTI_DOMAIN_MASK 0xFF00
236 1.1 alc
237 1.1 alc /*
238 1.1 alc * Enumerated Regulatory Domain Information 8 bit values indicate that
239 1.1 alc * the regdomain is really a pair of unitary regdomains. 12 bit values
240 1.1 alc * are the real unitary regdomains and are the only ones which have the
241 1.1 alc * frequency bitmasks and flags set.
242 1.1 alc */
243 1.1 alc enum {
244 1.1 alc /*
245 1.1 alc * The following regulatory domain definitions are
246 1.1 alc * found in the EEPROM. Each regulatory domain
247 1.1 alc * can operate in either a 5GHz or 2.4GHz wireless mode or
248 1.1 alc * both 5GHz and 2.4GHz wireless modes.
249 1.1 alc * In general, the value holds no special
250 1.1 alc * meaning and is used to decode into either specific
251 1.1 alc * 2.4GHz or 5GHz wireless mode for that particular
252 1.1 alc * regulatory domain.
253 1.1 alc */
254 1.1 alc NO_ENUMRD = 0x00,
255 1.1 alc NULL1_WORLD = 0x03, /* For 11b-only countries (no 11a allowed) */
256 1.1 alc NULL1_ETSIB = 0x07, /* Israel */
257 1.1 alc NULL1_ETSIC = 0x08,
258 1.1 alc FCC1_FCCA = 0x10, /* USA */
259 1.1 alc FCC1_WORLD = 0x11, /* Hong Kong */
260 1.1 alc FCC4_FCCA = 0x12, /* USA - Public Safety */
261 1.1 alc FCC5_FCCB = 0x13, /* USA w/ 1/2 and 1/4 width channels */
262 1.1 alc
263 1.1 alc FCC2_FCCA = 0x20, /* Canada */
264 1.1 alc FCC2_WORLD = 0x21, /* Australia & HK */
265 1.1 alc FCC2_ETSIC = 0x22,
266 1.1 alc FRANCE_RES = 0x31, /* Legacy France for OEM */
267 1.1 alc FCC3_FCCA = 0x3A, /* USA & Canada w/5470 band, 11h, DFS enabled */
268 1.1 alc FCC3_WORLD = 0x3B, /* USA & Canada w/5470 band, 11h, DFS enabled */
269 1.1 alc
270 1.1 alc ETSI1_WORLD = 0x37,
271 1.1 alc ETSI3_ETSIA = 0x32, /* France (optional) */
272 1.1 alc ETSI2_WORLD = 0x35, /* Hungary & others */
273 1.1 alc ETSI3_WORLD = 0x36, /* France & others */
274 1.1 alc ETSI4_WORLD = 0x30,
275 1.1 alc ETSI4_ETSIC = 0x38,
276 1.1 alc ETSI5_WORLD = 0x39,
277 1.1 alc ETSI6_WORLD = 0x34, /* Bulgaria */
278 1.1 alc ETSI_RESERVED = 0x33, /* Reserved (Do not used) */
279 1.1 alc
280 1.1 alc MKK1_MKKA = 0x40, /* Japan (JP1) */
281 1.1 alc MKK1_MKKB = 0x41, /* Japan (JP0) */
282 1.1 alc APL4_WORLD = 0x42, /* Singapore */
283 1.1 alc MKK2_MKKA = 0x43, /* Japan with 4.9G channels */
284 1.1 alc APL_RESERVED = 0x44, /* Reserved (Do not used) */
285 1.1 alc APL2_WORLD = 0x45, /* Korea */
286 1.1 alc APL2_APLC = 0x46,
287 1.1 alc APL3_WORLD = 0x47,
288 1.1 alc MKK1_FCCA = 0x48, /* Japan (JP1-1) */
289 1.1 alc APL2_APLD = 0x49, /* Korea with 2.3G channels */
290 1.1 alc MKK1_MKKA1 = 0x4A, /* Japan (JE1) */
291 1.1 alc MKK1_MKKA2 = 0x4B, /* Japan (JE2) */
292 1.1 alc MKK1_MKKC = 0x4C, /* Japan (MKK1_MKKA,except Ch14) */
293 1.1 alc
294 1.1 alc APL3_FCCA = 0x50,
295 1.1 alc APL1_WORLD = 0x52, /* Latin America */
296 1.1 alc APL1_FCCA = 0x53,
297 1.1 alc APL1_APLA = 0x54,
298 1.1 alc APL1_ETSIC = 0x55,
299 1.1 alc APL2_ETSIC = 0x56, /* Venezuela */
300 1.1 alc APL5_WORLD = 0x58, /* Chile */
301 1.1 alc APL6_WORLD = 0x5B, /* Singapore */
302 1.1 alc APL7_FCCA = 0x5C, /* Taiwan 5.47 Band */
303 1.1 alc APL8_WORLD = 0x5D, /* Malaysia 5GHz */
304 1.1 alc APL9_WORLD = 0x5E, /* Korea 5GHz */
305 1.1 alc
306 1.1 alc /*
307 1.1 alc * World mode SKUs
308 1.1 alc */
309 1.1 alc WOR0_WORLD = 0x60, /* World0 (WO0 SKU) */
310 1.1 alc WOR1_WORLD = 0x61, /* World1 (WO1 SKU) */
311 1.1 alc WOR2_WORLD = 0x62, /* World2 (WO2 SKU) */
312 1.1 alc WOR3_WORLD = 0x63, /* World3 (WO3 SKU) */
313 1.1 alc WOR4_WORLD = 0x64, /* World4 (WO4 SKU) */
314 1.1 alc WOR5_ETSIC = 0x65, /* World5 (WO5 SKU) */
315 1.1 alc
316 1.1 alc WOR01_WORLD = 0x66, /* World0-1 (WW0-1 SKU) */
317 1.1 alc WOR02_WORLD = 0x67, /* World0-2 (WW0-2 SKU) */
318 1.1 alc EU1_WORLD = 0x68, /* Same as World0-2 (WW0-2 SKU), except active scan ch1-13. No ch14 */
319 1.1 alc
320 1.1 alc WOR9_WORLD = 0x69, /* World9 (WO9 SKU) */
321 1.1 alc WORA_WORLD = 0x6A, /* WorldA (WOA SKU) */
322 1.1 alc
323 1.1 alc MKK3_MKKB = 0x80, /* Japan UNI-1 even + MKKB */
324 1.1 alc MKK3_MKKA2 = 0x81, /* Japan UNI-1 even + MKKA2 */
325 1.1 alc MKK3_MKKC = 0x82, /* Japan UNI-1 even + MKKC */
326 1.1 alc
327 1.1 alc MKK4_MKKB = 0x83, /* Japan UNI-1 even + UNI-2 + MKKB */
328 1.1 alc MKK4_MKKA2 = 0x84, /* Japan UNI-1 even + UNI-2 + MKKA2 */
329 1.1 alc MKK4_MKKC = 0x85, /* Japan UNI-1 even + UNI-2 + MKKC */
330 1.1 alc
331 1.1 alc MKK5_MKKB = 0x86, /* Japan UNI-1 even + UNI-2 + mid-band + MKKB */
332 1.1 alc MKK5_MKKA2 = 0x87, /* Japan UNI-1 even + UNI-2 + mid-band + MKKA2 */
333 1.1 alc MKK5_MKKC = 0x88, /* Japan UNI-1 even + UNI-2 + mid-band + MKKC */
334 1.1 alc
335 1.1 alc MKK6_MKKB = 0x89, /* Japan UNI-1 even + UNI-1 odd MKKB */
336 1.1 alc MKK6_MKKA2 = 0x8A, /* Japan UNI-1 even + UNI-1 odd + MKKA2 */
337 1.1 alc MKK6_MKKC = 0x8B, /* Japan UNI-1 even + UNI-1 odd + MKKC */
338 1.1 alc
339 1.1 alc MKK7_MKKB = 0x8C, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKB */
340 1.1 alc MKK7_MKKA2 = 0x8D, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKA2 */
341 1.1 alc MKK7_MKKC = 0x8E, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKC */
342 1.1 alc
343 1.1 alc MKK8_MKKB = 0x8F, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKB */
344 1.1 alc MKK8_MKKA2 = 0x90, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKA2 */
345 1.1 alc MKK8_MKKC = 0x91, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKC */
346 1.1 alc
347 1.1 alc /* Following definitions are used only by s/w to map old
348 1.1 alc * Japan SKUs.
349 1.1 alc */
350 1.1 alc MKK3_MKKA = 0xF0, /* Japan UNI-1 even + MKKA */
351 1.1 alc MKK3_MKKA1 = 0xF1, /* Japan UNI-1 even + MKKA1 */
352 1.1 alc MKK3_FCCA = 0xF2, /* Japan UNI-1 even + FCCA */
353 1.1 alc MKK4_MKKA = 0xF3, /* Japan UNI-1 even + UNI-2 + MKKA */
354 1.1 alc MKK4_MKKA1 = 0xF4, /* Japan UNI-1 even + UNI-2 + MKKA1 */
355 1.1 alc MKK4_FCCA = 0xF5, /* Japan UNI-1 even + UNI-2 + FCCA */
356 1.1 alc MKK9_MKKA = 0xF6, /* Japan UNI-1 even + 4.9GHz */
357 1.1 alc MKK10_MKKA = 0xF7, /* Japan UNI-1 even + UNI-2 + 4.9GHz */
358 1.1 alc
359 1.1 alc /*
360 1.1 alc * Regulator domains ending in a number (e.g. APL1,
361 1.1 alc * MK1, ETSI4, etc) apply to 5GHz channel and power
362 1.1 alc * information. Regulator domains ending in a letter
363 1.1 alc * (e.g. APLA, FCCA, etc) apply to 2.4GHz channel and
364 1.1 alc * power information.
365 1.1 alc */
366 1.1 alc APL1 = 0x0150, /* LAT & Asia */
367 1.1 alc APL2 = 0x0250, /* LAT & Asia */
368 1.1 alc APL3 = 0x0350, /* Taiwan */
369 1.1 alc APL4 = 0x0450, /* Jordan */
370 1.1 alc APL5 = 0x0550, /* Chile */
371 1.1 alc APL6 = 0x0650, /* Singapore */
372 1.1 alc APL8 = 0x0850, /* Malaysia */
373 1.1 alc APL9 = 0x0950, /* Korea (South) ROC 3 */
374 1.1 alc
375 1.1 alc ETSI1 = 0x0130, /* Europe & others */
376 1.1 alc ETSI2 = 0x0230, /* Europe & others */
377 1.1 alc ETSI3 = 0x0330, /* Europe & others */
378 1.1 alc ETSI4 = 0x0430, /* Europe & others */
379 1.1 alc ETSI5 = 0x0530, /* Europe & others */
380 1.1 alc ETSI6 = 0x0630, /* Europe & others */
381 1.1 alc ETSIA = 0x0A30, /* France */
382 1.1 alc ETSIB = 0x0B30, /* Israel */
383 1.1 alc ETSIC = 0x0C30, /* Latin America */
384 1.1 alc
385 1.1 alc FCC1 = 0x0110, /* US & others */
386 1.1 alc FCC2 = 0x0120, /* Canada, Australia & New Zealand */
387 1.1 alc FCC3 = 0x0160, /* US w/new middle band & DFS */
388 1.1 alc FCC4 = 0x0165, /* US Public Safety */
389 1.1 alc FCC5 = 0x0166, /* US w/ 1/2 and 1/4 width channels */
390 1.1 alc FCCA = 0x0A10,
391 1.1 alc FCCB = 0x0A11, /* US w/ 1/2 and 1/4 width channels */
392 1.1 alc
393 1.1 alc APLD = 0x0D50, /* South Korea */
394 1.1 alc
395 1.1 alc MKK1 = 0x0140, /* Japan (UNI-1 odd)*/
396 1.1 alc MKK2 = 0x0240, /* Japan (4.9 GHz + UNI-1 odd) */
397 1.1 alc MKK3 = 0x0340, /* Japan (UNI-1 even) */
398 1.1 alc MKK4 = 0x0440, /* Japan (UNI-1 even + UNI-2) */
399 1.1 alc MKK5 = 0x0540, /* Japan (UNI-1 even + UNI-2 + mid-band) */
400 1.1 alc MKK6 = 0x0640, /* Japan (UNI-1 odd + UNI-1 even) */
401 1.1 alc MKK7 = 0x0740, /* Japan (UNI-1 odd + UNI-1 even + UNI-2 */
402 1.1 alc MKK8 = 0x0840, /* Japan (UNI-1 odd + UNI-1 even + UNI-2 + mid-band) */
403 1.1 alc MKK9 = 0x0940, /* Japan (UNI-1 even + 4.9 GHZ) */
404 1.1 alc MKK10 = 0x0B40, /* Japan (UNI-1 even + UNI-2 + 4.9 GHZ) */
405 1.1 alc MKKA = 0x0A40, /* Japan */
406 1.1 alc MKKC = 0x0A50,
407 1.1 alc
408 1.1 alc NULL1 = 0x0198,
409 1.1 alc WORLD = 0x0199,
410 1.1 alc SR9_WORLD = 0x0298,
411 1.1 alc XR9_WORLD = 0x0299,
412 1.1 alc GZ901_WORLD = 0x029a,
413 1.1 alc DEBUG_REG_DMN = 0x01ff,
414 1.1 alc };
415 1.1 alc
416 1.1 alc #define WORLD_SKU_MASK 0x00F0
417 1.1 alc #define WORLD_SKU_PREFIX 0x0060
418 1.1 alc
419 1.1 alc enum { /* conformance test limits */
420 1.1 alc FCC = 0x10,
421 1.1 alc MKK = 0x40,
422 1.1 alc ETSI = 0x30,
423 1.1 alc };
424 1.1 alc
425 1.1 alc /*
426 1.1 alc * The following are flags for different requirements per reg domain.
427 1.1 alc * These requirements are either inhereted from the reg domain pair or
428 1.1 alc * from the unitary reg domain if the reg domain pair flags value is 0
429 1.1 alc */
430 1.1 alc enum {
431 1.1 alc NO_REQ = 0x00000000, /* NB: must be zero */
432 1.1 alc DISALLOW_ADHOC_11A = 0x00000001,
433 1.1 alc DISALLOW_ADHOC_11A_TURB = 0x00000002,
434 1.1 alc NEED_NFC = 0x00000004,
435 1.1 alc ADHOC_PER_11D = 0x00000008, /* Start Ad-Hoc mode */
436 1.1 alc ADHOC_NO_11A = 0x00000010,
437 1.1 alc LIMIT_FRAME_4MS = 0x00000020, /* 4msec limit on frame length*/
438 1.1 alc NO_HOSTAP = 0x00000040, /* No HOSTAP mode opereation */
439 1.1 alc };
440 1.1 alc
441 1.1 alc /*
442 1.1 alc * The following describe the bit masks for different passive scan
443 1.1 alc * capability/requirements per regdomain.
444 1.1 alc */
445 1.1 alc #define NO_PSCAN 0x0ULL /* NB: must be zero */
446 1.1 alc #define PSCAN_FCC 0x0000000000000001ULL
447 1.1 alc #define PSCAN_FCC_T 0x0000000000000002ULL
448 1.1 alc #define PSCAN_ETSI 0x0000000000000004ULL
449 1.1 alc #define PSCAN_MKK1 0x0000000000000008ULL
450 1.1 alc #define PSCAN_MKK2 0x0000000000000010ULL
451 1.1 alc #define PSCAN_MKKA 0x0000000000000020ULL
452 1.1 alc #define PSCAN_MKKA_G 0x0000000000000040ULL
453 1.1 alc #define PSCAN_ETSIA 0x0000000000000080ULL
454 1.1 alc #define PSCAN_ETSIB 0x0000000000000100ULL
455 1.1 alc #define PSCAN_ETSIC 0x0000000000000200ULL
456 1.1 alc #define PSCAN_WWR 0x0000000000000400ULL
457 1.1 alc #define PSCAN_MKKA1 0x0000000000000800ULL
458 1.1 alc #define PSCAN_MKKA1_G 0x0000000000001000ULL
459 1.1 alc #define PSCAN_MKKA2 0x0000000000002000ULL
460 1.1 alc #define PSCAN_MKKA2_G 0x0000000000004000ULL
461 1.1 alc #define PSCAN_MKK3 0x0000000000008000ULL
462 1.1 alc #define PSCAN_DEFER 0x7FFFFFFFFFFFFFFFULL
463 1.1 alc #define IS_ECM_CHAN 0x8000000000000000ULL
464 1.1 alc
465 1.1 alc /*
466 1.1 alc * THE following table is the mapping of regdomain pairs specified by
467 1.1 alc * an 8 bit regdomain value to the individual unitary reg domains
468 1.1 alc */
469 1.1 alc typedef struct {
470 1.1 alc HAL_REG_DOMAIN regDmnEnum; /* 16 bit reg domain pair */
471 1.1 alc HAL_REG_DOMAIN regDmn5GHz; /* 5GHz reg domain */
472 1.1 alc HAL_REG_DOMAIN regDmn2GHz; /* 2GHz reg domain */
473 1.1 alc uint32_t flags5GHz; /* Requirements flags (AdHoc
474 1.1 alc disallow, noise floor cal needed,
475 1.1 alc etc) */
476 1.1 alc uint32_t flags2GHz; /* Requirements flags (AdHoc
477 1.1 alc disallow, noise floor cal needed,
478 1.1 alc etc) */
479 1.1 alc uint64_t pscanMask; /* Passive Scan flags which
480 1.1 alc can override unitary domain
481 1.1 alc passive scan flags. This
482 1.1 alc value is used as a mask on
483 1.1 alc the unitary flags*/
484 1.1 alc uint16_t singleCC; /* Country code of single country if
485 1.1 alc a one-on-one mapping exists */
486 1.1 alc } REG_DMN_PAIR_MAPPING;
487 1.1 alc
488 1.1 alc static REG_DMN_PAIR_MAPPING regDomainPairs[] = {
489 1.1 alc {NO_ENUMRD, DEBUG_REG_DMN, DEBUG_REG_DMN, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
490 1.1 alc {NULL1_WORLD, NULL1, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
491 1.1 alc {NULL1_ETSIB, NULL1, ETSIB, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
492 1.1 alc {NULL1_ETSIC, NULL1, ETSIC, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
493 1.1 alc
494 1.1 alc {FCC2_FCCA, FCC2, FCCA, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
495 1.1 alc {FCC2_WORLD, FCC2, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
496 1.1 alc {FCC2_ETSIC, FCC2, ETSIC, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
497 1.1 alc {FCC3_FCCA, FCC3, FCCA, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
498 1.1 alc {FCC3_WORLD, FCC3, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
499 1.1 alc {FCC4_FCCA, FCC4, FCCA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
500 1.1 alc {FCC5_FCCB, FCC5, FCCB, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
501 1.1 alc
502 1.1 alc {ETSI1_WORLD, ETSI1, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
503 1.1 alc {ETSI2_WORLD, ETSI2, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
504 1.1 alc {ETSI3_WORLD, ETSI3, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
505 1.1 alc {ETSI4_WORLD, ETSI4, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
506 1.1 alc {ETSI5_WORLD, ETSI5, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
507 1.1 alc {ETSI6_WORLD, ETSI6, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
508 1.1 alc
509 1.1 alc {ETSI3_ETSIA, ETSI3, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
510 1.1 alc {FRANCE_RES, ETSI3, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
511 1.1 alc
512 1.1 alc {FCC1_WORLD, FCC1, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
513 1.1 alc {FCC1_FCCA, FCC1, FCCA, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
514 1.1 alc {APL1_WORLD, APL1, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
515 1.1 alc {APL2_WORLD, APL2, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
516 1.1 alc {APL3_WORLD, APL3, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
517 1.1 alc {APL4_WORLD, APL4, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
518 1.1 alc {APL5_WORLD, APL5, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
519 1.1 alc {APL6_WORLD, APL6, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
520 1.1 alc {APL8_WORLD, APL8, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
521 1.1 alc {APL9_WORLD, APL9, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
522 1.1 alc
523 1.1 alc {APL3_FCCA, APL3, FCCA, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
524 1.1 alc {APL1_ETSIC, APL1, ETSIC, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
525 1.1 alc {APL2_ETSIC, APL2, ETSIC, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
526 1.2 alc {APL2_APLD, APL2, APLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
527 1.1 alc
528 1.1 alc {MKK1_MKKA, MKK1, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA, CTRY_JAPAN },
529 1.1 alc {MKK1_MKKB, MKK1, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN1 },
530 1.1 alc {MKK1_FCCA, MKK1, FCCA, DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN2 },
531 1.1 alc {MKK1_MKKA1, MKK1, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_JAPAN4 },
532 1.1 alc {MKK1_MKKA2, MKK1, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN5 },
533 1.1 alc {MKK1_MKKC, MKK1, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN6 },
534 1.1 alc
535 1.1 alc /* MKK2 */
536 1.1 alc {MKK2_MKKA, MKK2, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK2 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN3 },
537 1.1 alc
538 1.1 alc /* MKK3 */
539 1.1 alc {MKK3_MKKA, MKK3, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC , PSCAN_MKKA, 0 },
540 1.1 alc {MKK3_MKKB, MKK3, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN7 },
541 1.1 alc {MKK3_MKKA1, MKK3, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA1 | PSCAN_MKKA1_G, 0 },
542 1.1 alc {MKK3_MKKA2,MKK3, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN8 },
543 1.1 alc {MKK3_MKKC, MKK3, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_JAPAN9 },
544 1.1 alc {MKK3_FCCA, MKK3, FCCA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, 0 },
545 1.1 alc
546 1.1 alc /* MKK4 */
547 1.1 alc {MKK4_MKKB, MKK4, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN10 },
548 1.1 alc {MKK4_MKKA1, MKK4, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA1 | PSCAN_MKKA1_G, 0 },
549 1.1 alc {MKK4_MKKA2, MKK4, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 |PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN11 },
550 1.1 alc {MKK4_MKKC, MKK4, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN12 },
551 1.1 alc {MKK4_FCCA, MKK4, FCCA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, 0 },
552 1.1 alc
553 1.1 alc /* MKK5 */
554 1.1 alc {MKK5_MKKB, MKK5, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN13 },
555 1.1 alc {MKK5_MKKA2,MKK5, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN14 },
556 1.1 alc {MKK5_MKKC, MKK5, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN15 },
557 1.1 alc
558 1.1 alc /* MKK6 */
559 1.1 alc {MKK6_MKKB, MKK6, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN16 },
560 1.1 alc {MKK6_MKKA2, MKK6, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN17 },
561 1.1 alc {MKK6_MKKC, MKK6, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN18 },
562 1.1 alc
563 1.1 alc /* MKK7 */
564 1.1 alc {MKK7_MKKB, MKK7, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN19 },
565 1.1 alc {MKK7_MKKA2, MKK7, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN20 },
566 1.1 alc {MKK7_MKKC, MKK7, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3, CTRY_JAPAN21 },
567 1.1 alc
568 1.1 alc /* MKK8 */
569 1.1 alc {MKK8_MKKB, MKK8, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN22 },
570 1.1 alc {MKK8_MKKA2,MKK8, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN23 },
571 1.1 alc {MKK8_MKKC, MKK8, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 , CTRY_JAPAN24 },
572 1.1 alc
573 1.1 alc {MKK9_MKKA, MKK9, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, 0 },
574 1.1 alc {MKK10_MKKA, MKK10, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, 0 },
575 1.1 alc
576 1.1 alc /* These are super domains */
577 1.1 alc {WOR0_WORLD, WOR0_WORLD, WOR0_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
578 1.1 alc {WOR1_WORLD, WOR1_WORLD, WOR1_WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
579 1.1 alc {WOR2_WORLD, WOR2_WORLD, WOR2_WORLD, DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
580 1.1 alc {WOR3_WORLD, WOR3_WORLD, WOR3_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
581 1.1 alc {WOR4_WORLD, WOR4_WORLD, WOR4_WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
582 1.1 alc {WOR5_ETSIC, WOR5_ETSIC, WOR5_ETSIC, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
583 1.1 alc {WOR01_WORLD, WOR01_WORLD, WOR01_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
584 1.1 alc {WOR02_WORLD, WOR02_WORLD, WOR02_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
585 1.1 alc {EU1_WORLD, EU1_WORLD, EU1_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, 0 },
586 1.1 alc {WOR9_WORLD, WOR9_WORLD, WOR9_WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
587 1.1 alc {WORA_WORLD, WORA_WORLD, WORA_WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, 0 },
588 1.1 alc {SR9_WORLD, NULL1, SR9_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_SR9 },
589 1.1 alc {XR9_WORLD, NULL1, XR9_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_XR9 },
590 1.1 alc {GZ901_WORLD, NULL1, GZ901_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_GZ901 },
591 1.1 alc };
592 1.1 alc
593 1.1 alc /*
594 1.1 alc * The following tables are the master list for all different freqeuncy
595 1.1 alc * bands with the complete matrix of all possible flags and settings
596 1.1 alc * for each band if it is used in ANY reg domain.
597 1.1 alc */
598 1.1 alc
599 1.1 alc #define DEF_REGDMN FCC1_FCCA
600 1.1 alc #define DEF_DMN_5 FCC1
601 1.1 alc #define DEF_DMN_2 FCCA
602 1.1 alc #define COUNTRY_ERD_FLAG 0x8000
603 1.1 alc #define WORLDWIDE_ROAMING_FLAG 0x4000
604 1.1 alc #define SUPER_DOMAIN_MASK 0x0fff
605 1.1 alc #define COUNTRY_CODE_MASK 0x3fff
606 1.1 alc
607 1.1 alc #define YES AH_TRUE
608 1.1 alc #define NO AH_FALSE
609 1.1 alc
610 1.1 alc typedef struct {
611 1.1 alc HAL_CTRY_CODE countryCode;
612 1.1 alc HAL_REG_DOMAIN regDmnEnum;
613 1.1 alc HAL_BOOL allow11g;
614 1.1 alc HAL_BOOL allow11aTurbo;
615 1.1 alc HAL_BOOL allow11gTurbo;
616 1.1 alc HAL_BOOL allow11ng20;
617 1.1 alc HAL_BOOL allow11ng40;
618 1.1 alc HAL_BOOL allow11na20;
619 1.1 alc HAL_BOOL allow11na40;
620 1.1 alc uint16_t outdoorChanStart;
621 1.1 alc } COUNTRY_CODE_TO_ENUM_RD;
622 1.1 alc
623 1.1 alc static COUNTRY_CODE_TO_ENUM_RD allCountries[] = {
624 1.1 alc {CTRY_DEBUG, NO_ENUMRD, YES, YES, YES, YES,YES, YES,YES, 7000 },
625 1.1 alc {CTRY_DEFAULT, DEF_REGDMN, YES, YES, YES, YES,YES, YES,YES, 7000 },
626 1.1 alc {CTRY_ALBANIA, NULL1_WORLD, YES, NO, YES, YES, NO, NO, NO, 7000 },
627 1.1 alc {CTRY_ALGERIA, NULL1_WORLD, YES, NO, YES, YES, NO, NO, NO, 7000 },
628 1.1 alc {CTRY_ARGENTINA, APL3_WORLD, NO, NO, NO, NO, NO, NO, NO, 7000 },
629 1.1 alc {CTRY_ARMENIA, ETSI4_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
630 1.1 alc {CTRY_AUSTRALIA, FCC2_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
631 1.1 alc {CTRY_AUSTRIA, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
632 1.1 alc {CTRY_AZERBAIJAN, ETSI4_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
633 1.1 alc {CTRY_BAHRAIN, APL6_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
634 1.1 alc {CTRY_BELARUS, NULL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
635 1.1 alc {CTRY_BELGIUM, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
636 1.1 alc {CTRY_BELIZE, APL1_ETSIC, YES, YES, YES, YES,YES, YES,YES, 7000 },
637 1.1 alc {CTRY_BOLIVIA, APL1_ETSIC, YES, YES, YES, YES,YES, YES,YES, 7000 },
638 1.1 alc {CTRY_BRAZIL, FCC3_WORLD, YES, NO, NO, YES, NO, YES, NO, 7000 },
639 1.1 alc {CTRY_BRUNEI_DARUSSALAM,APL1_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
640 1.1 alc {CTRY_BULGARIA, ETSI6_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
641 1.1 alc {CTRY_CANADA, FCC2_FCCA, YES, YES, YES, YES,YES, YES,YES, 7000 },
642 1.1 alc {CTRY_CHILE, APL6_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
643 1.1 alc {CTRY_CHINA, APL1_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
644 1.1 alc {CTRY_COLOMBIA, FCC1_FCCA, YES, NO, YES, YES,YES, YES, NO, 7000 },
645 1.1 alc {CTRY_COSTA_RICA, NULL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
646 1.1 alc {CTRY_CROATIA, ETSI3_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
647 1.1 alc {CTRY_CYPRUS, ETSI1_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
648 1.1 alc {CTRY_CZECH, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
649 1.1 alc {CTRY_DENMARK, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
650 1.1 alc {CTRY_DOMINICAN_REPUBLIC,FCC1_FCCA, YES, YES, YES, YES,YES, YES,YES, 7000 },
651 1.1 alc {CTRY_ECUADOR, NULL1_WORLD, NO, NO, NO, NO, NO, NO, NO, 7000 },
652 1.1 alc {CTRY_EGYPT, ETSI3_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
653 1.1 alc {CTRY_EL_SALVADOR, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
654 1.1 alc {CTRY_ESTONIA, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
655 1.1 alc {CTRY_FINLAND, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
656 1.1 alc {CTRY_FRANCE, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
657 1.1 alc {CTRY_FRANCE2, ETSI3_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
658 1.1 alc {CTRY_GEORGIA, ETSI4_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
659 1.1 alc {CTRY_GERMANY, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
660 1.1 alc {CTRY_GREECE, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
661 1.1 alc {CTRY_GUATEMALA, FCC1_FCCA, YES, YES, YES, YES,YES, YES,YES, 7000 },
662 1.1 alc {CTRY_GZ901, GZ901_WORLD, YES, NO, NO, NO, NO, NO, NO, 7000 },
663 1.1 alc {CTRY_HONDURAS, NULL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
664 1.1 alc {CTRY_HONG_KONG, FCC2_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
665 1.1 alc {CTRY_HUNGARY, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
666 1.1 alc {CTRY_ICELAND, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
667 1.1 alc {CTRY_INDIA, APL6_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
668 1.1 alc {CTRY_INDONESIA, APL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
669 1.1 alc {CTRY_IRAN, APL1_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
670 1.1 alc {CTRY_IRELAND, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
671 1.1 alc {CTRY_ISRAEL, NULL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
672 1.1 alc {CTRY_ITALY, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
673 1.1 alc {CTRY_JAPAN, MKK1_MKKA, YES, NO, NO, YES, NO, YES, NO, 7000 },
674 1.1 alc {CTRY_JAPAN1, MKK1_MKKB, YES, NO, NO, NO, NO, NO, NO, 7000 },
675 1.1 alc {CTRY_JAPAN2, MKK1_FCCA, YES, NO, NO, NO, NO, NO, NO, 7000 },
676 1.1 alc {CTRY_JAPAN3, MKK2_MKKA, YES, NO, NO, NO, NO, NO, NO, 7000 },
677 1.1 alc {CTRY_JAPAN4, MKK1_MKKA1, YES, NO, NO, NO, NO, NO, NO, 7000 },
678 1.1 alc {CTRY_JAPAN5, MKK1_MKKA2, YES, NO, NO, NO, NO, NO, NO, 7000 },
679 1.1 alc {CTRY_JAPAN6, MKK1_MKKC, YES, NO, NO, NO, NO, NO, NO, 7000 },
680 1.1 alc
681 1.1 alc {CTRY_JAPAN7, MKK3_MKKB, YES, NO, NO, NO, NO, NO, NO, 7000 },
682 1.1 alc {CTRY_JAPAN8, MKK3_MKKA2, YES, NO, NO, NO, NO, NO, NO, 7000 },
683 1.1 alc {CTRY_JAPAN9, MKK3_MKKC, YES, NO, NO, NO, NO, NO, NO, 7000 },
684 1.1 alc
685 1.1 alc {CTRY_JAPAN10, MKK4_MKKB, YES, NO, NO, NO, NO, NO, NO, 7000 },
686 1.1 alc {CTRY_JAPAN11, MKK4_MKKA2, YES, NO, NO, NO, NO, NO, NO, 7000 },
687 1.1 alc {CTRY_JAPAN12, MKK4_MKKC, YES, NO, NO, NO, NO, NO, NO, 7000 },
688 1.1 alc
689 1.1 alc {CTRY_JAPAN13, MKK5_MKKB, YES, NO, NO, NO, NO, NO, NO, 7000 },
690 1.1 alc {CTRY_JAPAN14, MKK5_MKKA2, YES, NO, NO, NO, NO, NO, NO, 7000 },
691 1.1 alc {CTRY_JAPAN15, MKK5_MKKC, YES, NO, NO, NO, NO, NO, NO, 7000 },
692 1.1 alc
693 1.1 alc {CTRY_JAPAN16, MKK6_MKKB, YES, NO, NO, NO, NO, NO, NO, 7000 },
694 1.1 alc {CTRY_JAPAN17, MKK6_MKKA2, YES, NO, NO, NO, NO, NO, NO, 7000 },
695 1.1 alc {CTRY_JAPAN18, MKK6_MKKC, YES, NO, NO, NO, NO, NO, NO, 7000 },
696 1.1 alc
697 1.1 alc {CTRY_JAPAN19, MKK7_MKKB, YES, NO, NO, NO, NO, NO, NO, 7000 },
698 1.1 alc {CTRY_JAPAN20, MKK7_MKKA2, YES, NO, NO, YES, NO, YES, NO, 7000 },
699 1.1 alc {CTRY_JAPAN21, MKK7_MKKC, YES, NO, NO, NO, NO, NO, NO, 7000 },
700 1.1 alc
701 1.1 alc {CTRY_JAPAN22, MKK8_MKKB, YES, NO, NO, NO, NO, NO, NO, 7000 },
702 1.1 alc {CTRY_JAPAN23, MKK8_MKKA2, YES, NO, NO, NO, NO, NO, NO, 7000 },
703 1.1 alc {CTRY_JAPAN24, MKK8_MKKC, YES, NO, NO, NO, NO, NO, NO, 7000 },
704 1.1 alc
705 1.1 alc {CTRY_JORDAN, APL4_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
706 1.1 alc {CTRY_KAZAKHSTAN, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
707 1.1 alc {CTRY_KOREA_NORTH, APL2_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
708 1.1 alc {CTRY_KOREA_ROC, APL2_WORLD, YES, NO, NO, YES, NO, YES, NO, 7000 },
709 1.1 alc {CTRY_KOREA_ROC2, APL2_WORLD, YES, NO, NO, YES, NO, YES, NO, 7000 },
710 1.1 alc {CTRY_KOREA_ROC3, APL9_WORLD, YES, NO, NO, YES, NO, YES, NO, 7000 },
711 1.1 alc {CTRY_KUWAIT, NULL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
712 1.1 alc {CTRY_LATVIA, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
713 1.1 alc {CTRY_LEBANON, NULL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
714 1.1 alc {CTRY_LIECHTENSTEIN,ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
715 1.1 alc {CTRY_LITHUANIA, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
716 1.1 alc {CTRY_LUXEMBOURG, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
717 1.1 alc {CTRY_MACAU, FCC2_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
718 1.1 alc {CTRY_MACEDONIA, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
719 1.1 alc {CTRY_MALAYSIA, APL8_WORLD, YES, NO, NO, YES, NO, YES, NO, 7000 },
720 1.1 alc {CTRY_MALTA, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
721 1.1 alc {CTRY_MEXICO, FCC1_FCCA, YES, YES, YES, YES,YES, YES,YES, 7000 },
722 1.1 alc {CTRY_MONACO, ETSI4_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
723 1.1 alc {CTRY_MOROCCO, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
724 1.1 alc {CTRY_NETHERLANDS, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
725 1.1 alc {CTRY_NEW_ZEALAND, FCC2_ETSIC, YES, NO, YES, YES,YES, YES,YES, 7000 },
726 1.1 alc {CTRY_NORWAY, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
727 1.1 alc {CTRY_OMAN, APL6_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
728 1.1 alc {CTRY_PAKISTAN, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
729 1.1 alc {CTRY_PANAMA, FCC1_FCCA, YES, YES, YES, YES,YES, YES,YES, 7000 },
730 1.1 alc {CTRY_PERU, APL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
731 1.1 alc {CTRY_PHILIPPINES, FCC3_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
732 1.1 alc {CTRY_POLAND, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
733 1.1 alc {CTRY_PORTUGAL, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
734 1.1 alc {CTRY_PUERTO_RICO, FCC1_FCCA, YES, YES, YES, YES,YES, YES,YES, 7000 },
735 1.1 alc {CTRY_QATAR, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
736 1.1 alc {CTRY_ROMANIA, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
737 1.1 alc {CTRY_RUSSIA, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
738 1.1 alc {CTRY_SAUDI_ARABIA,FCC2_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
739 1.1 alc {CTRY_SINGAPORE, APL6_WORLD, YES, YES, YES, YES,YES, YES,YES, 7000 },
740 1.1 alc {CTRY_SLOVAKIA, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
741 1.1 alc {CTRY_SLOVENIA, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
742 1.1 alc {CTRY_SOUTH_AFRICA,FCC3_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
743 1.1 alc {CTRY_SPAIN, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
744 1.1 alc {CTRY_SR9, SR9_WORLD, YES, NO, NO, NO, NO, NO, NO, 7000 },
745 1.1 alc {CTRY_SWEDEN, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
746 1.1 alc {CTRY_SWITZERLAND, ETSI1_WORLD, YES, NO, YES, YES,YES, YES,YES, 7000 },
747 1.1 alc {CTRY_SYRIA, NULL1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
748 1.1 alc {CTRY_TAIWAN, APL3_FCCA, YES, YES, YES, YES,YES, YES,YES, 7000 },
749 1.1 alc {CTRY_THAILAND, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
750 1.1 alc {CTRY_TRINIDAD_Y_TOBAGO,ETSI4_WORLD,YES, NO, YES, YES,YES, YES, NO, 7000 },
751 1.1 alc {CTRY_TUNISIA, ETSI3_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
752 1.1 alc {CTRY_TURKEY, ETSI3_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
753 1.1 alc {CTRY_UKRAINE, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
754 1.1 alc {CTRY_UAE, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
755 1.1 alc {CTRY_UNITED_KINGDOM, ETSI1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
756 1.1 alc {CTRY_UNITED_STATES, FCC1_FCCA, YES, YES, YES, YES,YES, YES,YES, 5825 },
757 1.1 alc {CTRY_UNITED_STATES_FCC49,FCC4_FCCA,YES, YES, YES, YES,YES, YES,YES, 7000 },
758 1.1 alc {CTRY_URUGUAY, FCC1_WORLD, YES, NO, YES, YES,YES, YES, NO, 7000 },
759 1.1 alc {CTRY_UZBEKISTAN, FCC3_FCCA, YES, YES, YES, YES,YES, YES,YES, 7000 },
760 1.1 alc {CTRY_VENEZUELA, APL2_ETSIC, YES, NO, YES, YES,YES, YES, NO, 7000 },
761 1.1 alc {CTRY_VIET_NAM, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
762 1.1 alc {CTRY_XR9, XR9_WORLD, YES, NO, NO, NO, NO, NO, NO, 7000 },
763 1.1 alc {CTRY_YEMEN, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 },
764 1.1 alc {CTRY_ZIMBABWE, NULL1_WORLD, YES, NO, YES, YES,YES, NO, NO, 7000 }
765 1.1 alc };
766 1.1 alc
767 1.1 alc /* Bit masks for DFS per regdomain */
768 1.1 alc enum {
769 1.1 alc NO_DFS = 0x0000000000000000ULL, /* NB: must be zero */
770 1.1 alc DFS_FCC3 = 0x0000000000000001ULL,
771 1.1 alc DFS_ETSI = 0x0000000000000002ULL,
772 1.1 alc DFS_MKK4 = 0x0000000000000004ULL,
773 1.1 alc };
774 1.1 alc
775 1.1 alc #define AFTER(x) ((x)+1)
776 1.1 alc
777 1.1 alc /*
778 1.1 alc * Frequency band collections are defined using bitmasks. Each bit
779 1.1 alc * in a mask is the index of an entry in one of the following tables.
780 1.1 alc * Bitmasks are BMLEN*64 bits so if a table grows beyond that the bit
781 1.1 alc * vectors must be enlarged or the tables split somehow (e.g. split
782 1.1 alc * 1/2 and 1/4 rate channels into a separate table).
783 1.1 alc *
784 1.1 alc * Beware of ordering; the indices are defined relative to the preceding
785 1.1 alc * entry so if things get off there will be confusion. A good way to
786 1.1 alc * check the indices is to collect them in a switch statement in a stub
787 1.1 alc * function so the compiler checks for duplicates.
788 1.1 alc */
789 1.1 alc
790 1.1 alc typedef struct {
791 1.1 alc uint16_t lowChannel; /* Low channel center in MHz */
792 1.1 alc uint16_t highChannel; /* High Channel center in MHz */
793 1.1 alc uint8_t powerDfs; /* Max power (dBm) for channel
794 1.1 alc range when using DFS */
795 1.1 alc uint8_t antennaMax; /* Max allowed antenna gain */
796 1.1 alc uint8_t channelBW; /* Bandwidth of the channel */
797 1.1 alc uint8_t channelSep; /* Channel separation within
798 1.1 alc the band */
799 1.1 alc uint64_t useDfs; /* Use DFS in the RegDomain
800 1.1 alc if corresponding bit is set */
801 1.1 alc uint64_t usePassScan; /* Use Passive Scan in the RegDomain
802 1.1 alc if corresponding bit is set */
803 1.1 alc uint8_t regClassId; /* Regulatory class id */
804 1.1 alc } REG_DMN_FREQ_BAND;
805 1.1 alc
806 1.1 alc /*
807 1.1 alc * 5GHz 11A channel tags
808 1.1 alc */
809 1.1 alc static REG_DMN_FREQ_BAND regDmn5GhzFreq[] = {
810 1.1 alc { 4915, 4925, 23, 0, 10, 5, NO_DFS, PSCAN_MKK2, 16 },
811 1.1 alc #define F1_4915_4925 0
812 1.1 alc { 4935, 4945, 23, 0, 10, 5, NO_DFS, PSCAN_MKK2, 16 },
813 1.1 alc #define F1_4935_4945 AFTER(F1_4915_4925)
814 1.1 alc { 4920, 4980, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2, 7 },
815 1.1 alc #define F1_4920_4980 AFTER(F1_4935_4945)
816 1.1 alc { 4942, 4987, 27, 6, 5, 5, NO_DFS, PSCAN_FCC, 0 },
817 1.1 alc #define F1_4942_4987 AFTER(F1_4920_4980)
818 1.1 alc { 4945, 4985, 30, 6, 10, 5, NO_DFS, PSCAN_FCC, 0 },
819 1.1 alc #define F1_4945_4985 AFTER(F1_4942_4987)
820 1.1 alc { 4950, 4980, 33, 6, 20, 5, NO_DFS, PSCAN_FCC, 0 },
821 1.1 alc #define F1_4950_4980 AFTER(F1_4945_4985)
822 1.1 alc { 5035, 5040, 23, 0, 10, 5, NO_DFS, PSCAN_MKK2, 12 },
823 1.1 alc #define F1_5035_5040 AFTER(F1_4950_4980)
824 1.1 alc { 5040, 5080, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2, 2 },
825 1.1 alc #define F1_5040_5080 AFTER(F1_5035_5040)
826 1.1 alc { 5055, 5055, 23, 0, 10, 5, NO_DFS, PSCAN_MKK2, 12 },
827 1.1 alc #define F1_5055_5055 AFTER(F1_5040_5080)
828 1.1 alc
829 1.1 alc { 5120, 5240, 5, 6, 20, 20, NO_DFS, NO_PSCAN, 0 },
830 1.1 alc #define F1_5120_5240 AFTER(F1_5055_5055)
831 1.1 alc { 5120, 5240, 5, 6, 10, 10, NO_DFS, NO_PSCAN, 0 },
832 1.1 alc #define F2_5120_5240 AFTER(F1_5120_5240)
833 1.1 alc { 5120, 5240, 5, 6, 5, 5, NO_DFS, NO_PSCAN, 0 },
834 1.1 alc #define F3_5120_5240 AFTER(F2_5120_5240)
835 1.1 alc
836 1.1 alc { 5170, 5230, 23, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2, 1 },
837 1.1 alc #define F1_5170_5230 AFTER(F3_5120_5240)
838 1.1 alc { 5170, 5230, 20, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2, 1 },
839 1.1 alc #define F2_5170_5230 AFTER(F1_5170_5230)
840 1.1 alc
841 1.1 alc { 5180, 5240, 15, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI, 0 },
842 1.1 alc #define F1_5180_5240 AFTER(F2_5170_5230)
843 1.1 alc { 5180, 5240, 17, 6, 20, 20, NO_DFS, PSCAN_FCC, 1 },
844 1.1 alc #define F2_5180_5240 AFTER(F1_5180_5240)
845 1.1 alc { 5180, 5240, 18, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI, 0 },
846 1.1 alc #define F3_5180_5240 AFTER(F2_5180_5240)
847 1.1 alc { 5180, 5240, 20, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI, 0 },
848 1.1 alc #define F4_5180_5240 AFTER(F3_5180_5240)
849 1.1 alc { 5180, 5240, 23, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI, 0 },
850 1.1 alc #define F5_5180_5240 AFTER(F4_5180_5240)
851 1.1 alc { 5180, 5240, 23, 6, 20, 20, NO_DFS, PSCAN_FCC, 0 },
852 1.1 alc #define F6_5180_5240 AFTER(F5_5180_5240)
853 1.1 alc { 5180, 5240, 17, 6, 20, 10, NO_DFS, PSCAN_FCC, 1 },
854 1.1 alc #define F7_5180_5240 AFTER(F6_5180_5240)
855 1.1 alc { 5180, 5240, 17, 6, 20, 5, NO_DFS, PSCAN_FCC, 1 },
856 1.1 alc #define F8_5180_5240 AFTER(F7_5180_5240)
857 1.1 alc
858 1.1 alc { 5180, 5320, 20, 6, 20, 20, DFS_ETSI, PSCAN_ETSI, 0 },
859 1.1 alc #define F1_5180_5320 AFTER(F8_5180_5240)
860 1.1 alc
861 1.1 alc { 5240, 5280, 23, 0, 20, 20, DFS_FCC3, PSCAN_FCC | PSCAN_ETSI, 0 },
862 1.1 alc #define F1_5240_5280 AFTER(F1_5180_5320)
863 1.1 alc
864 1.1 alc { 5260, 5280, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI, 0 },
865 1.1 alc #define F1_5260_5280 AFTER(F1_5240_5280)
866 1.1 alc
867 1.1 alc { 5260, 5320, 18, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI, 0 },
868 1.1 alc #define F1_5260_5320 AFTER(F1_5260_5280)
869 1.1 alc
870 1.1 alc { 5260, 5320, 20, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_FCC | PSCAN_ETSI | PSCAN_MKK3 , 0 },
871 1.1 alc #define F2_5260_5320 AFTER(F1_5260_5320)
872 1.1 alc
873 1.1 alc { 5260, 5320, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC, 2 },
874 1.1 alc #define F3_5260_5320 AFTER(F2_5260_5320)
875 1.1 alc { 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC, 2 },
876 1.1 alc #define F4_5260_5320 AFTER(F3_5260_5320)
877 1.1 alc { 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC, 0 },
878 1.1 alc #define F5_5260_5320 AFTER(F4_5260_5320)
879 1.1 alc { 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN, 0 },
880 1.1 alc #define F6_5260_5320 AFTER(F5_5260_5320)
881 1.1 alc { 5260, 5320, 23, 6, 20, 10, DFS_FCC3 | DFS_ETSI, PSCAN_FCC, 2 },
882 1.1 alc #define F7_5260_5320 AFTER(F6_5260_5320)
883 1.1 alc { 5260, 5320, 23, 6, 20, 5, DFS_FCC3 | DFS_ETSI, PSCAN_FCC, 2 },
884 1.1 alc #define F8_5260_5320 AFTER(F7_5260_5320)
885 1.1 alc
886 1.1 alc { 5260, 5700, 5, 6, 20, 20, DFS_FCC3 | DFS_ETSI, NO_PSCAN, 0 },
887 1.1 alc #define F1_5260_5700 AFTER(F8_5260_5320)
888 1.1 alc { 5260, 5700, 5, 6, 10, 10, DFS_FCC3 | DFS_ETSI, NO_PSCAN, 0 },
889 1.1 alc #define F2_5260_5700 AFTER(F1_5260_5700)
890 1.1 alc { 5260, 5700, 5, 6, 5, 5, DFS_FCC3 | DFS_ETSI, NO_PSCAN, 0 },
891 1.1 alc #define F3_5260_5700 AFTER(F2_5260_5700)
892 1.1 alc
893 1.1 alc { 5280, 5320, 17, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC, 0 },
894 1.1 alc #define F1_5280_5320 AFTER(F3_5260_5700)
895 1.1 alc
896 1.1 alc { 5500, 5620, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI, 0 },
897 1.1 alc #define F1_5500_5620 AFTER(F1_5280_5320)
898 1.1 alc
899 1.1 alc { 5500, 5700, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC, 4 },
900 1.1 alc #define F1_5500_5700 AFTER(F1_5500_5620)
901 1.1 alc { 5500, 5700, 27, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI, 0 },
902 1.1 alc #define F2_5500_5700 AFTER(F1_5500_5700)
903 1.1 alc { 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI, 0 },
904 1.1 alc #define F3_5500_5700 AFTER(F2_5500_5700)
905 1.1 alc { 5500, 5700, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_MKK3 | PSCAN_FCC, 0 },
906 1.1 alc #define F4_5500_5700 AFTER(F3_5500_5700)
907 1.1 alc
908 1.1 alc { 5745, 5805, 23, 0, 20, 20, NO_DFS, NO_PSCAN, 0 },
909 1.1 alc #define F1_5745_5805 AFTER(F4_5500_5700)
910 1.1 alc { 5745, 5805, 30, 6, 20, 20, NO_DFS, NO_PSCAN, 0 },
911 1.1 alc #define F2_5745_5805 AFTER(F1_5745_5805)
912 1.1 alc { 5745, 5805, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI, 0 },
913 1.1 alc #define F3_5745_5805 AFTER(F2_5745_5805)
914 1.1 alc { 5745, 5825, 5, 6, 20, 20, NO_DFS, NO_PSCAN, 0 },
915 1.1 alc #define F1_5745_5825 AFTER(F3_5745_5805)
916 1.1 alc { 5745, 5825, 17, 0, 20, 20, NO_DFS, NO_PSCAN, 0 },
917 1.1 alc #define F2_5745_5825 AFTER(F1_5745_5825)
918 1.1 alc { 5745, 5825, 20, 0, 20, 20, NO_DFS, NO_PSCAN, 0 },
919 1.1 alc #define F3_5745_5825 AFTER(F2_5745_5825)
920 1.1 alc { 5745, 5825, 30, 0, 20, 20, NO_DFS, NO_PSCAN, 0 },
921 1.1 alc #define F4_5745_5825 AFTER(F3_5745_5825)
922 1.1 alc { 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN, 3 },
923 1.1 alc #define F5_5745_5825 AFTER(F4_5745_5825)
924 1.1 alc { 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN, 0 },
925 1.1 alc #define F6_5745_5825 AFTER(F5_5745_5825)
926 1.1 alc { 5745, 5825, 5, 6, 10, 10, NO_DFS, NO_PSCAN, 0 },
927 1.1 alc #define F7_5745_5825 AFTER(F6_5745_5825)
928 1.1 alc { 5745, 5825, 5, 6, 5, 5, NO_DFS, NO_PSCAN, 0 },
929 1.1 alc #define F8_5745_5825 AFTER(F7_5745_5825)
930 1.1 alc { 5745, 5825, 30, 6, 20, 10, NO_DFS, NO_PSCAN, 3 },
931 1.1 alc #define F9_5745_5825 AFTER(F8_5745_5825)
932 1.1 alc { 5745, 5825, 30, 6, 20, 5, NO_DFS, NO_PSCAN, 3 },
933 1.1 alc #define F10_5745_5825 AFTER(F9_5745_5825)
934 1.1 alc
935 1.1 alc /*
936 1.1 alc * Below are the world roaming channels
937 1.1 alc * All WWR domains have no power limit, instead use the card's CTL
938 1.1 alc * or max power settings.
939 1.1 alc */
940 1.1 alc { 4920, 4980, 30, 0, 20, 20, NO_DFS, PSCAN_WWR, 0 },
941 1.1 alc #define W1_4920_4980 AFTER(F10_5745_5825)
942 1.1 alc { 5040, 5080, 30, 0, 20, 20, NO_DFS, PSCAN_WWR, 0 },
943 1.1 alc #define W1_5040_5080 AFTER(W1_4920_4980)
944 1.1 alc { 5170, 5230, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR, 0 },
945 1.1 alc #define W1_5170_5230 AFTER(W1_5040_5080)
946 1.1 alc { 5180, 5240, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR, 0 },
947 1.1 alc #define W1_5180_5240 AFTER(W1_5170_5230)
948 1.1 alc { 5260, 5320, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR, 0 },
949 1.1 alc #define W1_5260_5320 AFTER(W1_5180_5240)
950 1.1 alc { 5745, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR, 0 },
951 1.1 alc #define W1_5745_5825 AFTER(W1_5260_5320)
952 1.1 alc { 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR, 0 },
953 1.1 alc #define W1_5500_5700 AFTER(W1_5745_5825)
954 1.1 alc { 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN, 0 },
955 1.1 alc #define W2_5260_5320 AFTER(W1_5500_5700)
956 1.1 alc { 5180, 5240, 30, 0, 20, 20, NO_DFS, NO_PSCAN, 0 },
957 1.1 alc #define W2_5180_5240 AFTER(W2_5260_5320)
958 1.1 alc { 5825, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR, 0 },
959 1.1 alc #define W2_5825_5825 AFTER(W2_5180_5240)
960 1.1 alc };
961 1.1 alc
962 1.1 alc /*
963 1.1 alc * 5GHz Turbo (dynamic & static) tags
964 1.1 alc */
965 1.1 alc static REG_DMN_FREQ_BAND regDmn5GhzTurboFreq[] = {
966 1.1 alc { 5130, 5210, 5, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
967 1.1 alc #define T1_5130_5210 0
968 1.1 alc { 5250, 5330, 5, 6, 40, 40, DFS_FCC3, NO_PSCAN, 0},
969 1.1 alc #define T1_5250_5330 AFTER(T1_5130_5210)
970 1.1 alc { 5370, 5490, 5, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
971 1.1 alc #define T1_5370_5490 AFTER(T1_5250_5330)
972 1.1 alc { 5530, 5650, 5, 6, 40, 40, DFS_FCC3, NO_PSCAN, 0},
973 1.1 alc #define T1_5530_5650 AFTER(T1_5370_5490)
974 1.1 alc
975 1.1 alc { 5150, 5190, 5, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
976 1.1 alc #define T1_5150_5190 AFTER(T1_5530_5650)
977 1.1 alc { 5230, 5310, 5, 6, 40, 40, DFS_FCC3, NO_PSCAN, 0},
978 1.1 alc #define T1_5230_5310 AFTER(T1_5150_5190)
979 1.1 alc { 5350, 5470, 5, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
980 1.1 alc #define T1_5350_5470 AFTER(T1_5230_5310)
981 1.1 alc { 5510, 5670, 5, 6, 40, 40, DFS_FCC3, NO_PSCAN, 0},
982 1.1 alc #define T1_5510_5670 AFTER(T1_5350_5470)
983 1.1 alc
984 1.1 alc { 5200, 5240, 17, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
985 1.1 alc #define T1_5200_5240 AFTER(T1_5510_5670)
986 1.1 alc { 5200, 5240, 23, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
987 1.1 alc #define T2_5200_5240 AFTER(T1_5200_5240)
988 1.1 alc { 5210, 5210, 17, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
989 1.1 alc #define T1_5210_5210 AFTER(T2_5200_5240)
990 1.1 alc { 5210, 5210, 23, 0, 40, 40, NO_DFS, NO_PSCAN, 0},
991 1.1 alc #define T2_5210_5210 AFTER(T1_5210_5210)
992 1.1 alc
993 1.1 alc { 5280, 5280, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T, 0},
994 1.1 alc #define T1_5280_5280 AFTER(T2_5210_5210)
995 1.1 alc { 5280, 5280, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T, 0},
996 1.1 alc #define T2_5280_5280 AFTER(T1_5280_5280)
997 1.1 alc { 5250, 5250, 17, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T, 0},
998 1.1 alc #define T1_5250_5250 AFTER(T2_5280_5280)
999 1.1 alc { 5290, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T, 0},
1000 1.1 alc #define T1_5290_5290 AFTER(T1_5250_5250)
1001 1.1 alc { 5250, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T, 0},
1002 1.1 alc #define T1_5250_5290 AFTER(T1_5290_5290)
1003 1.1 alc { 5250, 5290, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T, 0},
1004 1.1 alc #define T2_5250_5290 AFTER(T1_5250_5290)
1005 1.1 alc
1006 1.1 alc { 5540, 5660, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T, 0},
1007 1.1 alc #define T1_5540_5660 AFTER(T2_5250_5290)
1008 1.1 alc { 5760, 5800, 20, 0, 40, 40, NO_DFS, NO_PSCAN, 0},
1009 1.1 alc #define T1_5760_5800 AFTER(T1_5540_5660)
1010 1.1 alc { 5760, 5800, 30, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
1011 1.1 alc #define T2_5760_5800 AFTER(T1_5760_5800)
1012 1.1 alc
1013 1.1 alc { 5765, 5805, 30, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
1014 1.1 alc #define T1_5765_5805 AFTER(T2_5760_5800)
1015 1.1 alc
1016 1.1 alc /*
1017 1.1 alc * Below are the WWR frequencies
1018 1.1 alc */
1019 1.1 alc { 5210, 5250, 15, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR, 0},
1020 1.1 alc #define WT1_5210_5250 AFTER(T1_5765_5805)
1021 1.1 alc { 5290, 5290, 18, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR, 0},
1022 1.1 alc #define WT1_5290_5290 AFTER(WT1_5210_5250)
1023 1.1 alc { 5540, 5660, 20, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR, 0},
1024 1.1 alc #define WT1_5540_5660 AFTER(WT1_5290_5290)
1025 1.1 alc { 5760, 5800, 20, 0, 40, 40, NO_DFS, PSCAN_WWR, 0},
1026 1.1 alc #define WT1_5760_5800 AFTER(WT1_5540_5660)
1027 1.1 alc };
1028 1.1 alc
1029 1.1 alc /*
1030 1.1 alc * 2GHz 11b channel tags
1031 1.1 alc */
1032 1.1 alc static REG_DMN_FREQ_BAND regDmn2GhzFreq[] = {
1033 1.1 alc { 2312, 2372, 5, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1034 1.1 alc #define F1_2312_2372 0
1035 1.1 alc { 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1036 1.1 alc #define F2_2312_2372 AFTER(F1_2312_2372)
1037 1.1 alc
1038 1.1 alc { 2412, 2472, 5, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1039 1.1 alc #define F1_2412_2472 AFTER(F2_2312_2372)
1040 1.1 alc { 2412, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA, 0},
1041 1.1 alc #define F2_2412_2472 AFTER(F1_2412_2472)
1042 1.1 alc { 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1043 1.1 alc #define F3_2412_2472 AFTER(F2_2412_2472)
1044 1.1 alc
1045 1.1 alc { 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1046 1.1 alc #define F1_2412_2462 AFTER(F3_2412_2472)
1047 1.1 alc { 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA, 0},
1048 1.1 alc #define F2_2412_2462 AFTER(F1_2412_2462)
1049 1.1 alc
1050 1.1 alc { 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1051 1.1 alc #define F1_2432_2442 AFTER(F2_2412_2462)
1052 1.1 alc
1053 1.1 alc { 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1054 1.1 alc #define F1_2457_2472 AFTER(F1_2432_2442)
1055 1.1 alc
1056 1.1 alc { 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA, 0},
1057 1.1 alc #define F1_2467_2472 AFTER(F1_2457_2472)
1058 1.1 alc
1059 1.1 alc { 2484, 2484, 5, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1060 1.1 alc #define F1_2484_2484 AFTER(F1_2467_2472)
1061 1.1 alc { 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA | PSCAN_MKKA1 | PSCAN_MKKA2, 0},
1062 1.1 alc #define F2_2484_2484 AFTER(F1_2484_2484)
1063 1.1 alc
1064 1.1 alc { 2512, 2732, 5, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1065 1.1 alc #define F1_2512_2732 AFTER(F2_2484_2484)
1066 1.1 alc
1067 1.1 alc /*
1068 1.1 alc * WWR have powers opened up to 20dBm.
1069 1.1 alc * Limits should often come from CTL/Max powers
1070 1.1 alc */
1071 1.1 alc { 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1072 1.1 alc #define W1_2312_2372 AFTER(F1_2512_2732)
1073 1.1 alc { 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1074 1.1 alc #define W1_2412_2412 AFTER(W1_2312_2372)
1075 1.1 alc { 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1076 1.1 alc #define W1_2417_2432 AFTER(W1_2412_2412)
1077 1.1 alc { 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1078 1.1 alc #define W1_2437_2442 AFTER(W1_2417_2432)
1079 1.1 alc { 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1080 1.1 alc #define W1_2447_2457 AFTER(W1_2437_2442)
1081 1.1 alc { 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1082 1.1 alc #define W1_2462_2462 AFTER(W1_2447_2457)
1083 1.1 alc { 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN, 0},
1084 1.1 alc #define W1_2467_2467 AFTER(W1_2462_2462)
1085 1.1 alc { 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN, 0},
1086 1.1 alc #define W2_2467_2467 AFTER(W1_2467_2467)
1087 1.1 alc { 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN, 0},
1088 1.1 alc #define W1_2472_2472 AFTER(W2_2467_2467)
1089 1.1 alc { 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN, 0},
1090 1.1 alc #define W2_2472_2472 AFTER(W1_2472_2472)
1091 1.1 alc { 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN, 0},
1092 1.1 alc #define W1_2484_2484 AFTER(W2_2472_2472)
1093 1.1 alc { 2484, 2484, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN, 0},
1094 1.1 alc #define W2_2484_2484 AFTER(W1_2484_2484)
1095 1.1 alc };
1096 1.1 alc
1097 1.1 alc /*
1098 1.1 alc * 2GHz 11g channel tags
1099 1.1 alc */
1100 1.1 alc static REG_DMN_FREQ_BAND regDmn2Ghz11gFreq[] = {
1101 1.1 alc { 2312, 2372, 5, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1102 1.1 alc #define G1_2312_2372 0
1103 1.1 alc { 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1104 1.1 alc #define G2_2312_2372 AFTER(G1_2312_2372)
1105 1.1 alc { 2312, 2372, 5, 6, 10, 5, NO_DFS, NO_PSCAN, 0},
1106 1.1 alc #define G3_2312_2372 AFTER(G2_2312_2372)
1107 1.1 alc { 2312, 2372, 5, 6, 5, 5, NO_DFS, NO_PSCAN, 0},
1108 1.1 alc #define G4_2312_2372 AFTER(G3_2312_2372)
1109 1.1 alc
1110 1.1 alc { 2412, 2472, 5, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1111 1.1 alc #define G1_2412_2472 AFTER(G4_2312_2372)
1112 1.1 alc { 2412, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA_G, 0},
1113 1.1 alc #define G2_2412_2472 AFTER(G1_2412_2472)
1114 1.1 alc { 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1115 1.1 alc #define G3_2412_2472 AFTER(G2_2412_2472)
1116 1.1 alc { 2412, 2472, 5, 6, 10, 5, NO_DFS, NO_PSCAN, 0},
1117 1.1 alc #define G4_2412_2472 AFTER(G3_2412_2472)
1118 1.1 alc { 2412, 2472, 5, 6, 5, 5, NO_DFS, NO_PSCAN, 0},
1119 1.1 alc #define G5_2412_2472 AFTER(G4_2412_2472)
1120 1.1 alc
1121 1.1 alc { 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1122 1.1 alc #define G1_2412_2462 AFTER(G5_2412_2472)
1123 1.1 alc { 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA_G, 0},
1124 1.1 alc #define G2_2412_2462 AFTER(G1_2412_2462)
1125 1.1 alc { 2412, 2462, 27, 6, 10, 5, NO_DFS, NO_PSCAN, 0},
1126 1.1 alc #define G3_2412_2462 AFTER(G2_2412_2462)
1127 1.1 alc { 2412, 2462, 27, 6, 5, 5, NO_DFS, NO_PSCAN, 0},
1128 1.1 alc #define G4_2412_2462 AFTER(G3_2412_2462)
1129 1.1 alc
1130 1.1 alc { 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1131 1.1 alc #define G1_2432_2442 AFTER(G4_2412_2462)
1132 1.1 alc
1133 1.1 alc { 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1134 1.1 alc #define G1_2457_2472 AFTER(G1_2432_2442)
1135 1.1 alc
1136 1.1 alc { 2512, 2732, 5, 6, 20, 5, NO_DFS, NO_PSCAN, 0},
1137 1.1 alc #define G1_2512_2732 AFTER(G1_2457_2472)
1138 1.1 alc { 2512, 2732, 5, 6, 10, 5, NO_DFS, NO_PSCAN, 0},
1139 1.1 alc #define G2_2512_2732 AFTER(G1_2512_2732)
1140 1.1 alc { 2512, 2732, 5, 6, 5, 5, NO_DFS, NO_PSCAN, 0},
1141 1.1 alc #define G3_2512_2732 AFTER(G2_2512_2732)
1142 1.1 alc
1143 1.1 alc { 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA, 0 },
1144 1.1 alc #define G1_2467_2472 AFTER(G3_2512_2732)
1145 1.1 alc
1146 1.1 alc /*
1147 1.1 alc * WWR open up the power to 20dBm
1148 1.1 alc */
1149 1.1 alc { 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1150 1.1 alc #define WG1_2312_2372 AFTER(G1_2467_2472)
1151 1.1 alc { 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1152 1.1 alc #define WG1_2412_2412 AFTER(WG1_2312_2372)
1153 1.1 alc { 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1154 1.1 alc #define WG1_2417_2432 AFTER(WG1_2412_2412)
1155 1.1 alc { 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1156 1.1 alc #define WG1_2437_2442 AFTER(WG1_2417_2432)
1157 1.1 alc { 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1158 1.1 alc #define WG1_2447_2457 AFTER(WG1_2437_2442)
1159 1.1 alc { 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN, 0},
1160 1.1 alc #define WG1_2462_2462 AFTER(WG1_2447_2457)
1161 1.1 alc { 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN, 0},
1162 1.1 alc #define WG1_2467_2467 AFTER(WG1_2462_2462)
1163 1.1 alc { 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN, 0},
1164 1.1 alc #define WG2_2467_2467 AFTER(WG1_2467_2467)
1165 1.1 alc { 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN, 0},
1166 1.1 alc #define WG1_2472_2472 AFTER(WG2_2467_2467)
1167 1.1 alc { 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN, 0},
1168 1.1 alc #define WG2_2472_2472 AFTER(WG1_2472_2472)
1169 1.1 alc
1170 1.1 alc /*
1171 1.1 alc * Mapping for 900MHz cards like Ubiquiti SR9 and XR9
1172 1.1 alc * and ZComax GZ-901.
1173 1.1 alc */
1174 1.1 alc { 2422, 2437, 30, 0, 5, 5, NO_DFS, PSCAN_FCC, 0 },
1175 1.1 alc #define S1_907_922_5 AFTER(WG2_2472_2472)
1176 1.1 alc { 2422, 2437, 30, 0, 10, 5, NO_DFS, PSCAN_FCC, 0 },
1177 1.1 alc #define S1_907_922_10 AFTER(S1_907_922_5)
1178 1.1 alc { 2427, 2432, 30, 0, 20, 5, NO_DFS, PSCAN_FCC, 0 },
1179 1.1 alc #define S1_912_917 AFTER(S1_907_922_10)
1180 1.1 alc { 2427, 2442, 30, 0, 5, 5, NO_DFS, PSCAN_FCC, 0 },
1181 1.1 alc #define S2_907_922_5 AFTER(S1_912_917)
1182 1.1 alc { 2427, 2442, 30, 0, 10, 5, NO_DFS, PSCAN_FCC, 0 },
1183 1.1 alc #define S2_907_922_10 AFTER(S2_907_922_5)
1184 1.1 alc { 2432, 2437, 30, 0, 20, 5, NO_DFS, PSCAN_FCC, 0 },
1185 1.1 alc #define S2_912_917 AFTER(S2_907_922_10)
1186 1.1 alc { 2452, 2467, 30, 0, 5, 5, NO_DFS, PSCAN_FCC, 0 },
1187 1.1 alc #define S1_908_923_5 AFTER(S2_912_917)
1188 1.1 alc { 2457, 2467, 30, 0, 10, 5, NO_DFS, PSCAN_FCC, 0 },
1189 1.1 alc #define S1_913_918_10 AFTER(S1_908_923_5)
1190 1.1 alc { 2457, 2467, 30, 0, 20, 5, NO_DFS, PSCAN_FCC, 0 },
1191 1.1 alc #define S1_913_918 AFTER(S1_913_918_10)
1192 1.1 alc };
1193 1.1 alc
1194 1.1 alc /*
1195 1.1 alc * 2GHz Dynamic turbo tags
1196 1.1 alc */
1197 1.1 alc static REG_DMN_FREQ_BAND regDmn2Ghz11gTurboFreq[] = {
1198 1.1 alc { 2312, 2372, 5, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
1199 1.1 alc #define T1_2312_2372 0
1200 1.1 alc { 2437, 2437, 5, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
1201 1.1 alc #define T1_2437_2437 AFTER(T1_2312_2372)
1202 1.1 alc { 2437, 2437, 20, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
1203 1.1 alc #define T2_2437_2437 AFTER(T1_2437_2437)
1204 1.1 alc { 2437, 2437, 18, 6, 40, 40, NO_DFS, PSCAN_WWR, 0},
1205 1.1 alc #define T3_2437_2437 AFTER(T2_2437_2437)
1206 1.1 alc { 2512, 2732, 5, 6, 40, 40, NO_DFS, NO_PSCAN, 0},
1207 1.1 alc #define T1_2512_2732 AFTER(T3_2437_2437)
1208 1.1 alc };
1209 1.1 alc
1210 1.1 alc typedef struct regDomain {
1211 1.1 alc uint16_t regDmnEnum; /* value from EnumRd table */
1212 1.1 alc uint8_t conformanceTestLimit;
1213 1.1 alc uint32_t flags; /* Requirement flags (AdHoc disallow,
1214 1.1 alc noise floor cal needed, etc) */
1215 1.1 alc uint64_t dfsMask; /* DFS bitmask for 5Ghz tables */
1216 1.1 alc uint64_t pscan; /* Bitmask for passive scan */
1217 1.1 alc chanbmask_t chan11a; /* 11a channels */
1218 1.1 alc chanbmask_t chan11a_turbo; /* 11a static turbo channels */
1219 1.1 alc chanbmask_t chan11a_dyn_turbo; /* 11a dynamic turbo channels */
1220 1.1 alc chanbmask_t chan11a_half; /* 11a 1/2 width channels */
1221 1.1 alc chanbmask_t chan11a_quarter; /* 11a 1/4 width channels */
1222 1.1 alc chanbmask_t chan11b; /* 11b channels */
1223 1.1 alc chanbmask_t chan11g; /* 11g channels */
1224 1.1 alc chanbmask_t chan11g_turbo; /* 11g dynamic turbo channels */
1225 1.1 alc chanbmask_t chan11g_half; /* 11g 1/2 width channels */
1226 1.1 alc chanbmask_t chan11g_quarter; /* 11g 1/4 width channels */
1227 1.1 alc } REG_DOMAIN;
1228 1.1 alc
1229 1.1 alc static REG_DOMAIN regDomains[] = {
1230 1.1 alc
1231 1.1 alc {.regDmnEnum = DEBUG_REG_DMN,
1232 1.1 alc .conformanceTestLimit = FCC,
1233 1.1 alc .dfsMask = DFS_FCC3,
1234 1.1 alc .chan11a = BM3(F1_5120_5240, F1_5260_5700, F1_5745_5825),
1235 1.1 alc .chan11a_half = BM3(F2_5120_5240, F2_5260_5700, F7_5745_5825),
1236 1.1 alc .chan11a_quarter = BM3(F3_5120_5240, F3_5260_5700, F8_5745_5825),
1237 1.1 alc .chan11a_turbo = BM8(T1_5130_5210,
1238 1.1 alc T1_5250_5330,
1239 1.1 alc T1_5370_5490,
1240 1.1 alc T1_5530_5650,
1241 1.1 alc T1_5150_5190,
1242 1.1 alc T1_5230_5310,
1243 1.1 alc T1_5350_5470,
1244 1.1 alc T1_5510_5670),
1245 1.1 alc .chan11a_dyn_turbo = BM4(T1_5200_5240,
1246 1.1 alc T1_5280_5280,
1247 1.1 alc T1_5540_5660,
1248 1.1 alc T1_5765_5805),
1249 1.1 alc .chan11b = BM4(F1_2312_2372,
1250 1.1 alc F1_2412_2472,
1251 1.1 alc F1_2484_2484,
1252 1.1 alc F1_2512_2732),
1253 1.1 alc .chan11g = BM3(G1_2312_2372, G1_2412_2472, G1_2512_2732),
1254 1.1 alc .chan11g_turbo = BM3(T1_2312_2372, T1_2437_2437, T1_2512_2732),
1255 1.1 alc .chan11g_half = BM3(G2_2312_2372, G4_2412_2472, G2_2512_2732),
1256 1.1 alc .chan11g_quarter = BM3(G3_2312_2372, G5_2412_2472, G3_2512_2732),
1257 1.1 alc },
1258 1.1 alc
1259 1.1 alc {.regDmnEnum = APL1,
1260 1.1 alc .conformanceTestLimit = FCC,
1261 1.1 alc .chan11a = BM1(F4_5745_5825),
1262 1.1 alc },
1263 1.1 alc
1264 1.1 alc {.regDmnEnum = APL2,
1265 1.1 alc .conformanceTestLimit = FCC,
1266 1.1 alc .chan11a = BM1(F1_5745_5805),
1267 1.1 alc },
1268 1.1 alc
1269 1.1 alc {.regDmnEnum = APL3,
1270 1.1 alc .conformanceTestLimit = FCC,
1271 1.1 alc .chan11a = BM2(F1_5280_5320, F2_5745_5805),
1272 1.1 alc },
1273 1.1 alc
1274 1.1 alc {.regDmnEnum = APL4,
1275 1.1 alc .conformanceTestLimit = FCC,
1276 1.1 alc .chan11a = BM2(F4_5180_5240, F3_5745_5825),
1277 1.1 alc },
1278 1.1 alc
1279 1.1 alc {.regDmnEnum = APL5,
1280 1.1 alc .conformanceTestLimit = FCC,
1281 1.1 alc .chan11a = BM1(F2_5745_5825),
1282 1.1 alc },
1283 1.1 alc
1284 1.1 alc {.regDmnEnum = APL6,
1285 1.1 alc .conformanceTestLimit = ETSI,
1286 1.1 alc .dfsMask = DFS_ETSI,
1287 1.1 alc .pscan = PSCAN_FCC_T | PSCAN_FCC,
1288 1.1 alc .chan11a = BM3(F4_5180_5240, F2_5260_5320, F3_5745_5825),
1289 1.1 alc .chan11a_turbo = BM3(T2_5210_5210, T1_5250_5290, T1_5760_5800),
1290 1.1 alc },
1291 1.1 alc
1292 1.1 alc {.regDmnEnum = APL8,
1293 1.1 alc .conformanceTestLimit = ETSI,
1294 1.1 alc .flags = DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
1295 1.1 alc .chan11a = BM2(F6_5260_5320, F4_5745_5825),
1296 1.1 alc },
1297 1.1 alc
1298 1.1 alc {.regDmnEnum = APL9,
1299 1.1 alc .conformanceTestLimit = ETSI,
1300 1.1 alc .dfsMask = DFS_ETSI,
1301 1.1 alc .pscan = PSCAN_ETSI,
1302 1.1 alc .flags = DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
1303 1.1 alc .chan11a = BM3(F1_5180_5320, F1_5500_5620, F3_5745_5805),
1304 1.1 alc },
1305 1.1 alc
1306 1.1 alc {.regDmnEnum = ETSI1,
1307 1.1 alc .conformanceTestLimit = ETSI,
1308 1.1 alc .dfsMask = DFS_ETSI,
1309 1.1 alc .pscan = PSCAN_ETSI,
1310 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1311 1.1 alc .chan11a = BM3(W2_5180_5240, F2_5260_5320, F2_5500_5700),
1312 1.1 alc },
1313 1.1 alc
1314 1.1 alc {.regDmnEnum = ETSI2,
1315 1.1 alc .conformanceTestLimit = ETSI,
1316 1.1 alc .dfsMask = DFS_ETSI,
1317 1.1 alc .pscan = PSCAN_ETSI,
1318 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1319 1.1 alc .chan11a = BM1(F3_5180_5240),
1320 1.1 alc },
1321 1.1 alc
1322 1.1 alc {.regDmnEnum = ETSI3,
1323 1.1 alc .conformanceTestLimit = ETSI,
1324 1.1 alc .dfsMask = DFS_ETSI,
1325 1.1 alc .pscan = PSCAN_ETSI,
1326 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1327 1.1 alc .chan11a = BM2(W2_5180_5240, F2_5260_5320),
1328 1.1 alc },
1329 1.1 alc
1330 1.1 alc {.regDmnEnum = ETSI4,
1331 1.1 alc .conformanceTestLimit = ETSI,
1332 1.1 alc .dfsMask = DFS_ETSI,
1333 1.1 alc .pscan = PSCAN_ETSI,
1334 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1335 1.1 alc .chan11a = BM2(F3_5180_5240, F1_5260_5320),
1336 1.1 alc },
1337 1.1 alc
1338 1.1 alc {.regDmnEnum = ETSI5,
1339 1.1 alc .conformanceTestLimit = ETSI,
1340 1.1 alc .dfsMask = DFS_ETSI,
1341 1.1 alc .pscan = PSCAN_ETSI,
1342 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1343 1.1 alc .chan11a = BM1(F1_5180_5240),
1344 1.1 alc },
1345 1.1 alc
1346 1.1 alc {.regDmnEnum = ETSI6,
1347 1.1 alc .conformanceTestLimit = ETSI,
1348 1.1 alc .dfsMask = DFS_ETSI,
1349 1.1 alc .pscan = PSCAN_ETSI,
1350 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1351 1.1 alc .chan11a = BM3(F5_5180_5240, F1_5260_5280, F3_5500_5700),
1352 1.1 alc },
1353 1.1 alc
1354 1.1 alc {.regDmnEnum = FCC1,
1355 1.1 alc .conformanceTestLimit = FCC,
1356 1.1 alc .chan11a = BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
1357 1.1 alc .chan11a_turbo = BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
1358 1.1 alc .chan11a_dyn_turbo = BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
1359 1.1 alc },
1360 1.1 alc
1361 1.1 alc {.regDmnEnum = FCC2,
1362 1.1 alc .conformanceTestLimit = FCC,
1363 1.1 alc .chan11a = BM3(F6_5180_5240, F5_5260_5320, F6_5745_5825),
1364 1.1 alc .chan11a_dyn_turbo = BM3(T2_5200_5240, T1_5280_5280, T1_5765_5805),
1365 1.1 alc },
1366 1.1 alc
1367 1.1 alc {.regDmnEnum = FCC3,
1368 1.1 alc .conformanceTestLimit = FCC,
1369 1.1 alc .dfsMask = DFS_FCC3,
1370 1.1 alc .pscan = PSCAN_FCC | PSCAN_FCC_T,
1371 1.1 alc .chan11a = BM4(F2_5180_5240,
1372 1.1 alc F3_5260_5320,
1373 1.1 alc F1_5500_5700,
1374 1.1 alc F5_5745_5825),
1375 1.1 alc .chan11a_turbo = BM4(T1_5210_5210,
1376 1.1 alc T1_5250_5250,
1377 1.1 alc T1_5290_5290,
1378 1.1 alc T2_5760_5800),
1379 1.1 alc .chan11a_dyn_turbo = BM3(T1_5200_5240, T2_5280_5280, T1_5540_5660),
1380 1.1 alc },
1381 1.1 alc
1382 1.1 alc {.regDmnEnum = FCC4,
1383 1.1 alc .conformanceTestLimit = FCC,
1384 1.1 alc .dfsMask = DFS_FCC3,
1385 1.1 alc .pscan = PSCAN_FCC | PSCAN_FCC_T,
1386 1.1 alc .chan11a = BM1(F1_4950_4980),
1387 1.1 alc .chan11a_half = BM1(F1_4945_4985),
1388 1.1 alc .chan11a_quarter = BM1(F1_4942_4987),
1389 1.1 alc },
1390 1.1 alc
1391 1.1 alc /* FCC1 w/ 1/2 and 1/4 width channels */
1392 1.1 alc {.regDmnEnum = FCC5,
1393 1.1 alc .conformanceTestLimit = FCC,
1394 1.1 alc .chan11a = BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
1395 1.1 alc .chan11a_turbo = BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
1396 1.1 alc .chan11a_dyn_turbo = BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
1397 1.1 alc .chan11a_half = BM3(F7_5180_5240, F7_5260_5320, F9_5745_5825),
1398 1.1 alc .chan11a_quarter = BM3(F8_5180_5240, F8_5260_5320,F10_5745_5825),
1399 1.1 alc },
1400 1.1 alc
1401 1.1 alc {.regDmnEnum = MKK1,
1402 1.1 alc .conformanceTestLimit = MKK,
1403 1.1 alc .pscan = PSCAN_MKK1,
1404 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1405 1.1 alc .chan11a = BM1(F1_5170_5230),
1406 1.1 alc },
1407 1.1 alc
1408 1.1 alc {.regDmnEnum = MKK2,
1409 1.1 alc .conformanceTestLimit = MKK,
1410 1.1 alc .pscan = PSCAN_MKK2,
1411 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1412 1.1 alc .chan11a = BM3(F1_4920_4980, F1_5040_5080, F1_5170_5230),
1413 1.1 alc .chan11a_half = BM4(F1_4915_4925,
1414 1.1 alc F1_4935_4945,
1415 1.1 alc F1_5035_5040,
1416 1.1 alc F1_5055_5055),
1417 1.1 alc },
1418 1.1 alc
1419 1.1 alc /* UNI-1 even */
1420 1.1 alc {.regDmnEnum = MKK3,
1421 1.1 alc .conformanceTestLimit = MKK,
1422 1.1 alc .pscan = PSCAN_MKK3,
1423 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1424 1.1 alc .chan11a = BM1(F4_5180_5240),
1425 1.1 alc },
1426 1.1 alc
1427 1.1 alc /* UNI-1 even + UNI-2 */
1428 1.1 alc {.regDmnEnum = MKK4,
1429 1.1 alc .conformanceTestLimit = MKK,
1430 1.1 alc .dfsMask = DFS_MKK4,
1431 1.1 alc .pscan = PSCAN_MKK3,
1432 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1433 1.1 alc .chan11a = BM2(F4_5180_5240, F2_5260_5320),
1434 1.1 alc },
1435 1.1 alc
1436 1.1 alc /* UNI-1 even + UNI-2 + mid-band */
1437 1.1 alc {.regDmnEnum = MKK5,
1438 1.1 alc .conformanceTestLimit = MKK,
1439 1.1 alc .dfsMask = DFS_MKK4,
1440 1.1 alc .pscan = PSCAN_MKK3,
1441 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1442 1.1 alc .chan11a = BM3(F4_5180_5240, F2_5260_5320, F4_5500_5700),
1443 1.1 alc },
1444 1.1 alc
1445 1.1 alc /* UNI-1 odd + even */
1446 1.1 alc {.regDmnEnum = MKK6,
1447 1.1 alc .conformanceTestLimit = MKK,
1448 1.1 alc .pscan = PSCAN_MKK1,
1449 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1450 1.1 alc .chan11a = BM2(F2_5170_5230, F4_5180_5240),
1451 1.1 alc },
1452 1.1 alc
1453 1.1 alc /* UNI-1 odd + UNI-1 even + UNI-2 */
1454 1.1 alc {.regDmnEnum = MKK7,
1455 1.1 alc .conformanceTestLimit = MKK,
1456 1.1 alc .dfsMask = DFS_MKK4,
1457 1.1 alc .pscan = PSCAN_MKK1 | PSCAN_MKK3,
1458 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1459 1.1 alc .chan11a = BM3(F1_5170_5230, F4_5180_5240, F2_5260_5320),
1460 1.1 alc },
1461 1.1 alc
1462 1.1 alc /* UNI-1 odd + UNI-1 even + UNI-2 + mid-band */
1463 1.1 alc {.regDmnEnum = MKK8,
1464 1.1 alc .conformanceTestLimit = MKK,
1465 1.1 alc .dfsMask = DFS_MKK4,
1466 1.1 alc .pscan = PSCAN_MKK1 | PSCAN_MKK3,
1467 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1468 1.1 alc .chan11a = BM4(F1_5170_5230,
1469 1.1 alc F4_5180_5240,
1470 1.1 alc F2_5260_5320,
1471 1.1 alc F4_5500_5700),
1472 1.1 alc },
1473 1.1 alc
1474 1.1 alc /* UNI-1 even + 4.9 GHZ */
1475 1.1 alc {.regDmnEnum = MKK9,
1476 1.1 alc .conformanceTestLimit = MKK,
1477 1.1 alc .pscan = PSCAN_MKK3,
1478 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1479 1.1 alc .chan11a = BM7(F1_4915_4925,
1480 1.1 alc F1_4935_4945,
1481 1.1 alc F1_4920_4980,
1482 1.1 alc F1_5035_5040,
1483 1.1 alc F1_5055_5055,
1484 1.1 alc F1_5040_5080,
1485 1.1 alc F4_5180_5240),
1486 1.1 alc },
1487 1.1 alc
1488 1.1 alc /* UNI-1 even + UNI-2 + 4.9 GHZ */
1489 1.1 alc {.regDmnEnum = MKK10,
1490 1.1 alc .conformanceTestLimit = MKK,
1491 1.1 alc .dfsMask = DFS_MKK4,
1492 1.1 alc .pscan = PSCAN_MKK3,
1493 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1494 1.1 alc .chan11a = BM8(F1_4915_4925,
1495 1.1 alc F1_4935_4945,
1496 1.1 alc F1_4920_4980,
1497 1.1 alc F1_5035_5040,
1498 1.1 alc F1_5055_5055,
1499 1.1 alc F1_5040_5080,
1500 1.1 alc F4_5180_5240,
1501 1.1 alc F2_5260_5320),
1502 1.1 alc },
1503 1.1 alc
1504 1.1 alc /* Defined here to use when 2G channels are authorised for country K2 */
1505 1.1 alc {.regDmnEnum = APLD,
1506 1.1 alc .conformanceTestLimit = NO_CTL,
1507 1.1 alc .chan11b = BM2(F2_2312_2372,F2_2412_2472),
1508 1.1 alc .chan11g = BM2(G2_2312_2372,G2_2412_2472),
1509 1.1 alc },
1510 1.1 alc
1511 1.1 alc {.regDmnEnum = ETSIA,
1512 1.1 alc .conformanceTestLimit = NO_CTL,
1513 1.1 alc .pscan = PSCAN_ETSIA,
1514 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1515 1.1 alc .chan11b = BM1(F1_2457_2472),
1516 1.1 alc .chan11g = BM1(G1_2457_2472),
1517 1.1 alc .chan11g_turbo = BM1(T2_2437_2437)
1518 1.1 alc },
1519 1.1 alc
1520 1.1 alc {.regDmnEnum = ETSIB,
1521 1.1 alc .conformanceTestLimit = ETSI,
1522 1.1 alc .pscan = PSCAN_ETSIB,
1523 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1524 1.1 alc .chan11b = BM1(F1_2432_2442),
1525 1.1 alc .chan11g = BM1(G1_2432_2442),
1526 1.1 alc .chan11g_turbo = BM1(T2_2437_2437)
1527 1.1 alc },
1528 1.1 alc
1529 1.1 alc {.regDmnEnum = ETSIC,
1530 1.1 alc .conformanceTestLimit = ETSI,
1531 1.1 alc .pscan = PSCAN_ETSIC,
1532 1.1 alc .flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1533 1.1 alc .chan11b = BM1(F3_2412_2472),
1534 1.1 alc .chan11g = BM1(G3_2412_2472),
1535 1.1 alc .chan11g_turbo = BM1(T2_2437_2437)
1536 1.1 alc },
1537 1.1 alc
1538 1.1 alc {.regDmnEnum = FCCA,
1539 1.1 alc .conformanceTestLimit = FCC,
1540 1.1 alc .chan11b = BM1(F1_2412_2462),
1541 1.1 alc .chan11g = BM1(G1_2412_2462),
1542 1.1 alc .chan11g_turbo = BM1(T2_2437_2437),
1543 1.1 alc },
1544 1.1 alc
1545 1.1 alc /* FCCA w/ 1/2 and 1/4 width channels */
1546 1.1 alc {.regDmnEnum = FCCB,
1547 1.1 alc .conformanceTestLimit = FCC,
1548 1.1 alc .chan11b = BM1(F1_2412_2462),
1549 1.1 alc .chan11g = BM1(G1_2412_2462),
1550 1.1 alc .chan11g_turbo = BM1(T2_2437_2437),
1551 1.1 alc .chan11g_half = BM1(G3_2412_2462),
1552 1.1 alc .chan11g_quarter = BM1(G4_2412_2462),
1553 1.1 alc },
1554 1.1 alc
1555 1.1 alc {.regDmnEnum = MKKA,
1556 1.1 alc .conformanceTestLimit = MKK,
1557 1.1 alc .pscan = PSCAN_MKKA | PSCAN_MKKA_G
1558 1.1 alc | PSCAN_MKKA1 | PSCAN_MKKA1_G
1559 1.1 alc | PSCAN_MKKA2 | PSCAN_MKKA2_G,
1560 1.1 alc .flags = DISALLOW_ADHOC_11A_TURB,
1561 1.1 alc .chan11b = BM3(F2_2412_2462, F1_2467_2472, F2_2484_2484),
1562 1.1 alc .chan11g = BM2(G2_2412_2462, G1_2467_2472),
1563 1.1 alc .chan11g_turbo = BM1(T2_2437_2437)
1564 1.1 alc },
1565 1.1 alc
1566 1.1 alc {.regDmnEnum = MKKC,
1567 1.1 alc .conformanceTestLimit = MKK,
1568 1.1 alc .chan11b = BM1(F2_2412_2472),
1569 1.1 alc .chan11g = BM1(G2_2412_2472),
1570 1.1 alc .chan11g_turbo = BM1(T2_2437_2437)
1571 1.1 alc },
1572 1.1 alc
1573 1.1 alc {.regDmnEnum = WORLD,
1574 1.1 alc .conformanceTestLimit = ETSI,
1575 1.1 alc .chan11b = BM1(F2_2412_2472),
1576 1.1 alc .chan11g = BM1(G2_2412_2472),
1577 1.1 alc .chan11g_turbo = BM1(T2_2437_2437)
1578 1.1 alc },
1579 1.1 alc
1580 1.1 alc {.regDmnEnum = WOR0_WORLD,
1581 1.1 alc .conformanceTestLimit = NO_CTL,
1582 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1583 1.1 alc .pscan = PSCAN_WWR,
1584 1.1 alc .flags = ADHOC_PER_11D,
1585 1.1 alc .chan11a = BM5(W1_5260_5320,
1586 1.1 alc W1_5180_5240,
1587 1.1 alc W1_5170_5230,
1588 1.1 alc W1_5745_5825,
1589 1.1 alc W1_5500_5700),
1590 1.1 alc .chan11a_turbo = BM3(WT1_5210_5250,
1591 1.1 alc WT1_5290_5290,
1592 1.1 alc WT1_5760_5800),
1593 1.1 alc .chan11b = BM8(W1_2412_2412,
1594 1.1 alc W1_2437_2442,
1595 1.1 alc W1_2462_2462,
1596 1.1 alc W1_2472_2472,
1597 1.1 alc W1_2417_2432,
1598 1.1 alc W1_2447_2457,
1599 1.1 alc W1_2467_2467,
1600 1.1 alc W1_2484_2484),
1601 1.1 alc .chan11g = BM7(WG1_2412_2412,
1602 1.1 alc WG1_2437_2442,
1603 1.1 alc WG1_2462_2462,
1604 1.1 alc WG1_2472_2472,
1605 1.1 alc WG1_2417_2432,
1606 1.1 alc WG1_2447_2457,
1607 1.1 alc WG1_2467_2467),
1608 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)
1609 1.1 alc },
1610 1.1 alc
1611 1.1 alc {.regDmnEnum = WOR01_WORLD,
1612 1.1 alc .conformanceTestLimit = NO_CTL,
1613 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1614 1.1 alc .pscan = PSCAN_WWR,
1615 1.1 alc .flags = ADHOC_PER_11D,
1616 1.1 alc .chan11a = BM5(W1_5260_5320,
1617 1.1 alc W1_5180_5240,
1618 1.1 alc W1_5170_5230,
1619 1.1 alc W1_5745_5825,
1620 1.1 alc W1_5500_5700),
1621 1.1 alc .chan11a_turbo = BM3(WT1_5210_5250,
1622 1.1 alc WT1_5290_5290,
1623 1.1 alc WT1_5760_5800),
1624 1.1 alc .chan11b = BM5(W1_2412_2412,
1625 1.1 alc W1_2437_2442,
1626 1.1 alc W1_2462_2462,
1627 1.1 alc W1_2417_2432,
1628 1.1 alc W1_2447_2457),
1629 1.1 alc .chan11g = BM5(WG1_2412_2412,
1630 1.1 alc WG1_2437_2442,
1631 1.1 alc WG1_2462_2462,
1632 1.1 alc WG1_2417_2432,
1633 1.1 alc WG1_2447_2457),
1634 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1635 1.1 alc
1636 1.1 alc {.regDmnEnum = WOR02_WORLD,
1637 1.1 alc .conformanceTestLimit = NO_CTL,
1638 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1639 1.1 alc .pscan = PSCAN_WWR,
1640 1.1 alc .flags = ADHOC_PER_11D,
1641 1.1 alc .chan11a = BM5(W1_5260_5320,
1642 1.1 alc W1_5180_5240,
1643 1.1 alc W1_5170_5230,
1644 1.1 alc W1_5745_5825,
1645 1.1 alc W1_5500_5700),
1646 1.1 alc .chan11a_turbo = BM3(WT1_5210_5250,
1647 1.1 alc WT1_5290_5290,
1648 1.1 alc WT1_5760_5800),
1649 1.1 alc .chan11b = BM7(W1_2412_2412,
1650 1.1 alc W1_2437_2442,
1651 1.1 alc W1_2462_2462,
1652 1.1 alc W1_2472_2472,
1653 1.1 alc W1_2417_2432,
1654 1.1 alc W1_2447_2457,
1655 1.1 alc W1_2467_2467),
1656 1.1 alc .chan11g = BM7(WG1_2412_2412,
1657 1.1 alc WG1_2437_2442,
1658 1.1 alc WG1_2462_2462,
1659 1.1 alc WG1_2472_2472,
1660 1.1 alc WG1_2417_2432,
1661 1.1 alc WG1_2447_2457,
1662 1.1 alc WG1_2467_2467),
1663 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1664 1.1 alc
1665 1.1 alc {.regDmnEnum = EU1_WORLD,
1666 1.1 alc .conformanceTestLimit = NO_CTL,
1667 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1668 1.1 alc .pscan = PSCAN_WWR,
1669 1.1 alc .flags = ADHOC_PER_11D,
1670 1.1 alc .chan11a = BM5(W1_5260_5320,
1671 1.1 alc W1_5180_5240,
1672 1.1 alc W1_5170_5230,
1673 1.1 alc W1_5745_5825,
1674 1.1 alc W1_5500_5700),
1675 1.1 alc .chan11a_turbo = BM3(WT1_5210_5250,
1676 1.1 alc WT1_5290_5290,
1677 1.1 alc WT1_5760_5800),
1678 1.1 alc .chan11b = BM7(W1_2412_2412,
1679 1.1 alc W1_2437_2442,
1680 1.1 alc W1_2462_2462,
1681 1.1 alc W2_2472_2472,
1682 1.1 alc W1_2417_2432,
1683 1.1 alc W1_2447_2457,
1684 1.1 alc W2_2467_2467),
1685 1.1 alc .chan11g = BM7(WG1_2412_2412,
1686 1.1 alc WG1_2437_2442,
1687 1.1 alc WG1_2462_2462,
1688 1.1 alc WG2_2472_2472,
1689 1.1 alc WG1_2417_2432,
1690 1.1 alc WG1_2447_2457,
1691 1.1 alc WG2_2467_2467),
1692 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1693 1.1 alc
1694 1.1 alc {.regDmnEnum = WOR1_WORLD,
1695 1.1 alc .conformanceTestLimit = NO_CTL,
1696 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1697 1.1 alc .pscan = PSCAN_WWR,
1698 1.1 alc .flags = ADHOC_NO_11A,
1699 1.1 alc .chan11a = BM5(W1_5260_5320,
1700 1.1 alc W1_5180_5240,
1701 1.1 alc W1_5170_5230,
1702 1.1 alc W1_5745_5825,
1703 1.1 alc W1_5500_5700),
1704 1.1 alc .chan11b = BM8(W1_2412_2412,
1705 1.1 alc W1_2437_2442,
1706 1.1 alc W1_2462_2462,
1707 1.1 alc W1_2472_2472,
1708 1.1 alc W1_2417_2432,
1709 1.1 alc W1_2447_2457,
1710 1.1 alc W1_2467_2467,
1711 1.1 alc W1_2484_2484),
1712 1.1 alc .chan11g = BM7(WG1_2412_2412,
1713 1.1 alc WG1_2437_2442,
1714 1.1 alc WG1_2462_2462,
1715 1.1 alc WG1_2472_2472,
1716 1.1 alc WG1_2417_2432,
1717 1.1 alc WG1_2447_2457,
1718 1.1 alc WG1_2467_2467),
1719 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)
1720 1.1 alc },
1721 1.1 alc
1722 1.1 alc {.regDmnEnum = WOR2_WORLD,
1723 1.1 alc .conformanceTestLimit = NO_CTL,
1724 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1725 1.1 alc .pscan = PSCAN_WWR,
1726 1.1 alc .flags = ADHOC_NO_11A,
1727 1.1 alc .chan11a = BM5(W1_5260_5320,
1728 1.1 alc W1_5180_5240,
1729 1.1 alc W1_5170_5230,
1730 1.1 alc W1_5745_5825,
1731 1.1 alc W1_5500_5700),
1732 1.1 alc .chan11a_turbo = BM3(WT1_5210_5250,
1733 1.1 alc WT1_5290_5290,
1734 1.1 alc WT1_5760_5800),
1735 1.1 alc .chan11b = BM8(W1_2412_2412,
1736 1.1 alc W1_2437_2442,
1737 1.1 alc W1_2462_2462,
1738 1.1 alc W1_2472_2472,
1739 1.1 alc W1_2417_2432,
1740 1.1 alc W1_2447_2457,
1741 1.1 alc W1_2467_2467,
1742 1.1 alc W1_2484_2484),
1743 1.1 alc .chan11g = BM7(WG1_2412_2412,
1744 1.1 alc WG1_2437_2442,
1745 1.1 alc WG1_2462_2462,
1746 1.1 alc WG1_2472_2472,
1747 1.1 alc WG1_2417_2432,
1748 1.1 alc WG1_2447_2457,
1749 1.1 alc WG1_2467_2467),
1750 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1751 1.1 alc
1752 1.1 alc {.regDmnEnum = WOR3_WORLD,
1753 1.1 alc .conformanceTestLimit = NO_CTL,
1754 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1755 1.1 alc .pscan = PSCAN_WWR,
1756 1.1 alc .flags = ADHOC_PER_11D,
1757 1.1 alc .chan11a = BM4(W1_5260_5320,
1758 1.1 alc W1_5180_5240,
1759 1.1 alc W1_5170_5230,
1760 1.1 alc W1_5745_5825),
1761 1.1 alc .chan11a_turbo = BM3(WT1_5210_5250,
1762 1.1 alc WT1_5290_5290,
1763 1.1 alc WT1_5760_5800),
1764 1.1 alc .chan11b = BM7(W1_2412_2412,
1765 1.1 alc W1_2437_2442,
1766 1.1 alc W1_2462_2462,
1767 1.1 alc W1_2472_2472,
1768 1.1 alc W1_2417_2432,
1769 1.1 alc W1_2447_2457,
1770 1.1 alc W1_2467_2467),
1771 1.1 alc .chan11g = BM7(WG1_2412_2412,
1772 1.1 alc WG1_2437_2442,
1773 1.1 alc WG1_2462_2462,
1774 1.1 alc WG1_2472_2472,
1775 1.1 alc WG1_2417_2432,
1776 1.1 alc WG1_2447_2457,
1777 1.1 alc WG1_2467_2467),
1778 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1779 1.1 alc
1780 1.1 alc {.regDmnEnum = WOR4_WORLD,
1781 1.1 alc .conformanceTestLimit = NO_CTL,
1782 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1783 1.1 alc .pscan = PSCAN_WWR,
1784 1.1 alc .flags = ADHOC_NO_11A,
1785 1.1 alc .chan11a = BM4(W2_5260_5320,
1786 1.1 alc W2_5180_5240,
1787 1.1 alc F2_5745_5805,
1788 1.1 alc W2_5825_5825),
1789 1.1 alc .chan11a_turbo = BM3(WT1_5210_5250,
1790 1.1 alc WT1_5290_5290,
1791 1.1 alc WT1_5760_5800),
1792 1.1 alc .chan11b = BM5(W1_2412_2412,
1793 1.1 alc W1_2437_2442,
1794 1.1 alc W1_2462_2462,
1795 1.1 alc W1_2417_2432,
1796 1.1 alc W1_2447_2457),
1797 1.1 alc .chan11g = BM5(WG1_2412_2412,
1798 1.1 alc WG1_2437_2442,
1799 1.1 alc WG1_2462_2462,
1800 1.1 alc WG1_2417_2432,
1801 1.1 alc WG1_2447_2457),
1802 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1803 1.1 alc
1804 1.1 alc {.regDmnEnum = WOR5_ETSIC,
1805 1.1 alc .conformanceTestLimit = NO_CTL,
1806 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1807 1.1 alc .pscan = PSCAN_WWR,
1808 1.1 alc .flags = ADHOC_NO_11A,
1809 1.1 alc .chan11a = BM3(W1_5260_5320, W2_5180_5240, F6_5745_5825),
1810 1.1 alc .chan11b = BM7(W1_2412_2412,
1811 1.1 alc W1_2437_2442,
1812 1.1 alc W1_2462_2462,
1813 1.1 alc W2_2472_2472,
1814 1.1 alc W1_2417_2432,
1815 1.1 alc W1_2447_2457,
1816 1.1 alc W2_2467_2467),
1817 1.1 alc .chan11g = BM7(WG1_2412_2412,
1818 1.1 alc WG1_2437_2442,
1819 1.1 alc WG1_2462_2462,
1820 1.1 alc WG2_2472_2472,
1821 1.1 alc WG1_2417_2432,
1822 1.1 alc WG1_2447_2457,
1823 1.1 alc WG2_2467_2467),
1824 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1825 1.1 alc
1826 1.1 alc {.regDmnEnum = WOR9_WORLD,
1827 1.1 alc .conformanceTestLimit = NO_CTL,
1828 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1829 1.1 alc .pscan = PSCAN_WWR,
1830 1.1 alc .flags = ADHOC_NO_11A,
1831 1.1 alc .chan11a = BM4(W1_5260_5320,
1832 1.1 alc W1_5180_5240,
1833 1.1 alc W1_5745_5825,
1834 1.1 alc W1_5500_5700),
1835 1.1 alc .chan11a_turbo = BM3(WT1_5210_5250,
1836 1.1 alc WT1_5290_5290,
1837 1.1 alc WT1_5760_5800),
1838 1.1 alc .chan11b = BM5(W1_2412_2412,
1839 1.1 alc W1_2437_2442,
1840 1.1 alc W1_2462_2462,
1841 1.1 alc W1_2417_2432,
1842 1.1 alc W1_2447_2457),
1843 1.1 alc .chan11g = BM5(WG1_2412_2412,
1844 1.1 alc WG1_2437_2442,
1845 1.1 alc WG1_2462_2462,
1846 1.1 alc WG1_2417_2432,
1847 1.1 alc WG1_2447_2457),
1848 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1849 1.1 alc
1850 1.1 alc {.regDmnEnum = WORA_WORLD,
1851 1.1 alc .conformanceTestLimit = NO_CTL,
1852 1.1 alc .dfsMask = DFS_FCC3 | DFS_ETSI,
1853 1.1 alc .pscan = PSCAN_WWR,
1854 1.1 alc .flags = ADHOC_NO_11A,
1855 1.1 alc .chan11a = BM4(W1_5260_5320,
1856 1.1 alc W1_5180_5240,
1857 1.1 alc W1_5745_5825,
1858 1.1 alc W1_5500_5700),
1859 1.1 alc .chan11b = BM7(W1_2412_2412,
1860 1.1 alc W1_2437_2442,
1861 1.1 alc W1_2462_2462,
1862 1.1 alc W1_2472_2472,
1863 1.1 alc W1_2417_2432,
1864 1.1 alc W1_2447_2457,
1865 1.1 alc W1_2467_2467),
1866 1.1 alc .chan11g = BM7(WG1_2412_2412,
1867 1.1 alc WG1_2437_2442,
1868 1.1 alc WG1_2462_2462,
1869 1.1 alc WG1_2472_2472,
1870 1.1 alc WG1_2417_2432,
1871 1.1 alc WG1_2447_2457,
1872 1.1 alc WG1_2467_2467),
1873 1.1 alc .chan11g_turbo = BM1(T3_2437_2437)},
1874 1.1 alc
1875 1.1 alc {.regDmnEnum = SR9_WORLD,
1876 1.1 alc .conformanceTestLimit = NO_CTL,
1877 1.1 alc .pscan = PSCAN_FCC | PSCAN_FCC_T,
1878 1.1 alc .chan11g = BM1(S1_912_917),
1879 1.1 alc .chan11g_half = BM1(S1_907_922_10),
1880 1.1 alc .chan11g_quarter = BM1(S1_907_922_5),
1881 1.1 alc },
1882 1.1 alc
1883 1.1 alc {.regDmnEnum = XR9_WORLD,
1884 1.1 alc .conformanceTestLimit = NO_CTL,
1885 1.1 alc .pscan = PSCAN_FCC | PSCAN_FCC_T,
1886 1.1 alc .chan11g = BM1(S2_912_917),
1887 1.1 alc .chan11g_half = BM1(S2_907_922_10),
1888 1.1 alc .chan11g_quarter = BM1(S2_907_922_5),
1889 1.1 alc },
1890 1.1 alc
1891 1.1 alc {.regDmnEnum = GZ901_WORLD,
1892 1.1 alc .conformanceTestLimit = NO_CTL,
1893 1.1 alc .pscan = PSCAN_FCC | PSCAN_FCC_T,
1894 1.1 alc .chan11g = BM1(S1_913_918),
1895 1.1 alc .chan11g_half = BM1(S1_913_918_10),
1896 1.1 alc .chan11g_quarter = BM1(S1_908_923_5),
1897 1.1 alc },
1898 1.1 alc
1899 1.1 alc {.regDmnEnum = NULL1,
1900 1.1 alc .conformanceTestLimit = NO_CTL,
1901 1.1 alc }
1902 1.1 alc };
1903 1.1 alc
1904 1.1 alc struct cmode {
1905 1.1 alc u_int mode;
1906 1.1 alc u_int flags;
1907 1.1 alc };
1908 1.1 alc
1909 1.1 alc static const struct cmode modes[] = {
1910 1.1 alc { HAL_MODE_TURBO, CHANNEL_ST}, /* NB: 11a Static Turbo */
1911 1.1 alc { HAL_MODE_11A, CHANNEL_A},
1912 1.1 alc { HAL_MODE_11B, CHANNEL_B},
1913 1.1 alc { HAL_MODE_11G, CHANNEL_G},
1914 1.1 alc { HAL_MODE_11G_TURBO, CHANNEL_108G},
1915 1.1 alc { HAL_MODE_11A_TURBO, CHANNEL_108A},
1916 1.1 alc { HAL_MODE_11A_QUARTER_RATE, CHANNEL_A | CHANNEL_QUARTER},
1917 1.1 alc { HAL_MODE_11A_HALF_RATE, CHANNEL_A | CHANNEL_HALF},
1918 1.1 alc { HAL_MODE_11G_QUARTER_RATE, CHANNEL_G | CHANNEL_QUARTER},
1919 1.1 alc { HAL_MODE_11G_HALF_RATE, CHANNEL_G | CHANNEL_HALF},
1920 1.1 alc { HAL_MODE_11NG_HT20, CHANNEL_G_HT20},
1921 1.1 alc { HAL_MODE_11NG_HT40PLUS, CHANNEL_G_HT40PLUS},
1922 1.1 alc { HAL_MODE_11NG_HT40MINUS, CHANNEL_G_HT40MINUS},
1923 1.1 alc { HAL_MODE_11NA_HT20, CHANNEL_A_HT20},
1924 1.1 alc { HAL_MODE_11NA_HT40PLUS, CHANNEL_A_HT40PLUS},
1925 1.1 alc { HAL_MODE_11NA_HT40MINUS, CHANNEL_A_HT40MINUS},
1926 1.1 alc };
1927 1.1 alc
1928 1.1 alc static int
1929 1.1 alc chansort(const void *a, const void *b)
1930 1.1 alc {
1931 1.1 alc #define CHAN_FLAGS (CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER)
1932 1.1 alc const HAL_CHANNEL_INTERNAL *ca = a;
1933 1.1 alc const HAL_CHANNEL_INTERNAL *cb = b;
1934 1.1 alc
1935 1.1 alc return (ca->channel == cb->channel) ?
1936 1.1 alc (ca->channelFlags & CHAN_FLAGS) -
1937 1.1 alc (cb->channelFlags & CHAN_FLAGS) :
1938 1.1 alc ca->channel - cb->channel;
1939 1.1 alc #undef CHAN_FLAGS
1940 1.1 alc }
1941 1.1 alc typedef int ath_hal_cmp_t(const void *, const void *);
1942 1.1 alc static void ath_hal_sort(void *a, size_t n, size_t es, ath_hal_cmp_t *cmp);
1943 1.1 alc static COUNTRY_CODE_TO_ENUM_RD* findCountry(HAL_CTRY_CODE countryCode);
1944 1.1 alc static HAL_BOOL getWmRD(struct ath_hal *ah, COUNTRY_CODE_TO_ENUM_RD *country, uint16_t channelFlag, REG_DOMAIN *rd);
1945 1.1 alc
1946 1.1 alc
1947 1.1 alc static uint16_t
1948 1.1 alc getEepromRD(struct ath_hal *ah)
1949 1.1 alc {
1950 1.1 alc return AH_PRIVATE(ah)->ah_currentRD &~ WORLDWIDE_ROAMING_FLAG;
1951 1.1 alc }
1952 1.1 alc
1953 1.1 alc /*
1954 1.1 alc * Test to see if the bitmask array is all zeros
1955 1.1 alc */
1956 1.1 alc static HAL_BOOL
1957 1.1 alc isChanBitMaskZero(const uint64_t *bitmask)
1958 1.1 alc {
1959 1.1 alc #if BMLEN > 2
1960 1.1 alc #error "add more cases"
1961 1.1 alc #endif
1962 1.1 alc #if BMLEN > 1
1963 1.1 alc if (bitmask[1] != 0)
1964 1.1 alc return AH_FALSE;
1965 1.1 alc #endif
1966 1.1 alc return (bitmask[0] == 0);
1967 1.1 alc }
1968 1.1 alc
1969 1.1 alc /*
1970 1.1 alc * Return whether or not the regulatory domain/country in EEPROM
1971 1.1 alc * is acceptable.
1972 1.1 alc */
1973 1.1 alc static HAL_BOOL
1974 1.1 alc isEepromValid(struct ath_hal *ah)
1975 1.1 alc {
1976 1.1 alc uint16_t rd = getEepromRD(ah);
1977 1.1 alc int i;
1978 1.1 alc
1979 1.1 alc if (rd & COUNTRY_ERD_FLAG) {
1980 1.1 alc uint16_t cc = rd &~ COUNTRY_ERD_FLAG;
1981 1.1 alc for (i = 0; i < N(allCountries); i++)
1982 1.1 alc if (allCountries[i].countryCode == cc)
1983 1.1 alc return AH_TRUE;
1984 1.1 alc } else {
1985 1.1 alc for (i = 0; i < N(regDomainPairs); i++)
1986 1.1 alc if (regDomainPairs[i].regDmnEnum == rd)
1987 1.1 alc return AH_TRUE;
1988 1.1 alc }
1989 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1990 1.1 alc "%s: invalid regulatory domain/country code 0x%x\n", __func__, rd);
1991 1.1 alc return AH_FALSE;
1992 1.1 alc }
1993 1.1 alc
1994 1.1 alc /*
1995 1.1 alc * Returns whether or not the specified country code
1996 1.1 alc * is allowed by the EEPROM setting
1997 1.1 alc */
1998 1.1 alc static HAL_BOOL
1999 1.1 alc isCountryCodeValid(struct ath_hal *ah, HAL_CTRY_CODE cc)
2000 1.1 alc {
2001 1.1 alc uint16_t rd;
2002 1.1 alc
2003 1.1 alc /* Default setting requires no checks */
2004 1.1 alc if (cc == CTRY_DEFAULT)
2005 1.1 alc return AH_TRUE;
2006 1.1 alc #ifdef AH_DEBUG_COUNTRY
2007 1.1 alc if (cc == CTRY_DEBUG)
2008 1.1 alc return AH_TRUE;
2009 1.1 alc #endif
2010 1.1 alc rd = getEepromRD(ah);
2011 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: EEPROM regdomain 0x%x\n",
2012 1.1 alc __func__, rd);
2013 1.1 alc
2014 1.1 alc if (rd & COUNTRY_ERD_FLAG) {
2015 1.1 alc /* EEP setting is a country - config shall match */
2016 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2017 1.1 alc "%s: EEPROM setting is country code %u\n", __func__,
2018 1.1 alc rd &~ COUNTRY_ERD_FLAG);
2019 1.1 alc return (cc == (rd & ~COUNTRY_ERD_FLAG));
2020 1.1 alc } else if (rd == DEBUG_REG_DMN || rd == NO_ENUMRD) {
2021 1.1 alc /* Set to Debug or AllowAnyCountry mode - allow any setting */
2022 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: rd %d allowed\n",
2023 1.1 alc __func__, rd);
2024 1.1 alc return AH_TRUE;
2025 1.1 alc #ifdef AH_SUPPORT_11D
2026 1.1 alc } else if ((rd & WORLD_SKU_MASK) == WORLD_SKU_PREFIX) {
2027 1.1 alc int i;
2028 1.1 alc for (i=0; i < N(allCountries); i++) {
2029 1.1 alc if (cc == allCountries[i].countryCode)
2030 1.1 alc return AH_TRUE;
2031 1.1 alc }
2032 1.1 alc #endif
2033 1.1 alc } else {
2034 1.1 alc int i;
2035 1.1 alc for (i = 0; i < N(allCountries); i++) {
2036 1.1 alc if (cc == allCountries[i].countryCode &&
2037 1.1 alc allCountries[i].regDmnEnum == rd)
2038 1.1 alc return AH_TRUE;
2039 1.1 alc }
2040 1.1 alc }
2041 1.1 alc return AH_FALSE;
2042 1.1 alc }
2043 1.1 alc
2044 1.1 alc /*
2045 1.1 alc * Return the mask of available modes based on the hardware
2046 1.1 alc * capabilities and the specified country code and reg domain.
2047 1.1 alc */
2048 1.1 alc static u_int
2049 1.1 alc ath_hal_getwmodesnreg(struct ath_hal *ah,
2050 1.1 alc const COUNTRY_CODE_TO_ENUM_RD *country, const REG_DOMAIN *rd5GHz)
2051 1.1 alc {
2052 1.1 alc #define HAL_MODE_11G_ALL \
2053 1.1 alc (HAL_MODE_11G | HAL_MODE_11G_TURBO | HAL_MODE_11G_QUARTER_RATE | \
2054 1.1 alc HAL_MODE_11G_HALF_RATE)
2055 1.1 alc #define HAL_MODE_11A_ALL \
2056 1.1 alc (HAL_MODE_11A | HAL_MODE_11A_TURBO | HAL_MODE_TURBO | \
2057 1.1 alc HAL_MODE_11A_QUARTER_RATE | HAL_MODE_11A_HALF_RATE)
2058 1.1 alc u_int modesAvail;
2059 1.1 alc
2060 1.1 alc /* Get modes that HW is capable of */
2061 1.1 alc modesAvail = ath_hal_getWirelessModes(ah);
2062 1.1 alc
2063 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2064 1.1 alc "%s: wireless modes 0x%x cc %u rd %u\n",
2065 1.1 alc __func__, modesAvail, country->countryCode, country->regDmnEnum);
2066 1.1 alc
2067 1.1 alc /* Check country regulations for allowed modes */
2068 1.1 alc if (!country->allow11g && (modesAvail & HAL_MODE_11G_ALL)) {
2069 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2070 1.1 alc "%s: disallow all 11g\n", __func__);
2071 1.1 alc modesAvail &= ~HAL_MODE_11G_ALL;
2072 1.1 alc }
2073 1.1 alc if (isChanBitMaskZero(rd5GHz->chan11a) &&
2074 1.1 alc (modesAvail & HAL_MODE_11A_ALL)) {
2075 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2076 1.1 alc "%s: disallow all 11a\n", __func__);
2077 1.1 alc modesAvail &= ~HAL_MODE_11A_ALL;
2078 1.1 alc }
2079 1.1 alc if ((modesAvail & (HAL_MODE_11A_TURBO | HAL_MODE_TURBO)) &&
2080 1.1 alc !country->allow11aTurbo) {
2081 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2082 1.1 alc "%s: disallow 11aTurbo\n", __func__);
2083 1.1 alc modesAvail &= ~(HAL_MODE_11A_TURBO | HAL_MODE_TURBO);
2084 1.1 alc }
2085 1.1 alc if ((modesAvail & HAL_MODE_11G_TURBO) && !country->allow11gTurbo) {
2086 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2087 1.1 alc "%s: disallow 11gTurbo\n", __func__);
2088 1.1 alc modesAvail &= ~HAL_MODE_11G_TURBO;
2089 1.1 alc }
2090 1.1 alc
2091 1.1 alc /* Check 11n operation */
2092 1.1 alc if ((modesAvail & HAL_MODE_11NG_HT20) && !country->allow11ng20) {
2093 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2094 1.1 alc "%s: disallow 11g HT20\n", __func__);
2095 1.1 alc modesAvail &= ~HAL_MODE_11NG_HT20;
2096 1.1 alc }
2097 1.1 alc if ((modesAvail & HAL_MODE_11NA_HT20) && !country->allow11na20) {
2098 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2099 1.1 alc "%s: disallow 11a HT20\n", __func__);
2100 1.1 alc modesAvail &= ~HAL_MODE_11NA_HT20;
2101 1.1 alc }
2102 1.1 alc if ((modesAvail & HAL_MODE_11NG_HT40PLUS) && !country->allow11ng40) {
2103 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2104 1.1 alc "%s: disallow 11g HT40+\n", __func__);
2105 1.1 alc modesAvail &= ~HAL_MODE_11NG_HT40PLUS;
2106 1.1 alc }
2107 1.1 alc if ((modesAvail & HAL_MODE_11NG_HT40MINUS) && !country->allow11ng40) {
2108 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2109 1.1 alc "%s: disallow 11g HT40-\n", __func__);
2110 1.1 alc modesAvail &= ~HAL_MODE_11NG_HT40MINUS;
2111 1.1 alc }
2112 1.1 alc if ((modesAvail & HAL_MODE_11NA_HT40PLUS) && !country->allow11na40) {
2113 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2114 1.1 alc "%s: disallow 11a HT40+\n", __func__);
2115 1.1 alc modesAvail &= ~HAL_MODE_11NA_HT40PLUS;
2116 1.1 alc }
2117 1.1 alc if ((modesAvail & HAL_MODE_11NA_HT40MINUS) && !country->allow11na40) {
2118 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2119 1.1 alc "%s: disallow 11a HT40-\n", __func__);
2120 1.1 alc modesAvail &= ~HAL_MODE_11NA_HT40MINUS;
2121 1.1 alc }
2122 1.1 alc
2123 1.1 alc return modesAvail;
2124 1.1 alc #undef HAL_MODE_11A_ALL
2125 1.1 alc #undef HAL_MODE_11G_ALL
2126 1.1 alc }
2127 1.1 alc
2128 1.1 alc /*
2129 1.1 alc * Return the mask of available modes based on the hardware
2130 1.1 alc * capabilities and the specified country code.
2131 1.1 alc */
2132 1.1 alc
2133 1.1 alc u_int
2134 1.1 alc ath_hal_getwirelessmodes(struct ath_hal *ah, HAL_CTRY_CODE cc)
2135 1.1 alc {
2136 1.1 alc COUNTRY_CODE_TO_ENUM_RD *country = AH_NULL;
2137 1.1 alc u_int mode = 0;
2138 1.1 alc REG_DOMAIN rd;
2139 1.1 alc
2140 1.1 alc country = findCountry(cc);
2141 1.1 alc if (country != AH_NULL) {
2142 1.1 alc if (getWmRD(ah, country, ~CHANNEL_2GHZ, &rd))
2143 1.1 alc mode = ath_hal_getwmodesnreg(ah, country, &rd);
2144 1.1 alc }
2145 1.1 alc return mode;
2146 1.1 alc }
2147 1.1 alc
2148 1.1 alc /*
2149 1.1 alc * Return if device is public safety.
2150 1.1 alc */
2151 1.1 alc HAL_BOOL
2152 1.1 alc ath_hal_ispublicsafetysku(struct ath_hal *ah)
2153 1.1 alc {
2154 1.1 alc uint16_t rd = getEepromRD(ah);
2155 1.1 alc
2156 1.1 alc switch (rd) {
2157 1.1 alc case FCC4_FCCA:
2158 1.1 alc case CTRY_UNITED_STATES_FCC49 | COUNTRY_ERD_FLAG:
2159 1.1 alc return AH_TRUE;
2160 1.1 alc case DEBUG_REG_DMN:
2161 1.1 alc case NO_ENUMRD:
2162 1.1 alc if (AH_PRIVATE(ah)->ah_countryCode == CTRY_UNITED_STATES_FCC49)
2163 1.1 alc return AH_TRUE;
2164 1.1 alc break;
2165 1.1 alc }
2166 1.1 alc return AH_FALSE;
2167 1.1 alc }
2168 1.1 alc
2169 1.1 alc /*
2170 1.1 alc * Return if device is actually operating in 900 MHz band.
2171 1.1 alc */
2172 1.1 alc HAL_BOOL
2173 1.1 alc ath_hal_isgsmsku(struct ath_hal *ah)
2174 1.1 alc {
2175 1.1 alc uint16_t rd = getEepromRD(ah);
2176 1.1 alc
2177 1.1 alc switch (rd) {
2178 1.1 alc case SR9_WORLD:
2179 1.1 alc case XR9_WORLD:
2180 1.1 alc case GZ901_WORLD:
2181 1.1 alc case CTRY_SR9 | COUNTRY_ERD_FLAG:
2182 1.1 alc case CTRY_XR9 | COUNTRY_ERD_FLAG:
2183 1.1 alc case CTRY_GZ901 | COUNTRY_ERD_FLAG:
2184 1.1 alc return AH_TRUE;
2185 1.1 alc case DEBUG_REG_DMN:
2186 1.1 alc case NO_ENUMRD:
2187 1.1 alc return AH_PRIVATE(ah)->ah_countryCode == CTRY_SR9
2188 1.1 alc || AH_PRIVATE(ah)->ah_countryCode == CTRY_XR9
2189 1.1 alc || AH_PRIVATE(ah)->ah_countryCode == CTRY_GZ901
2190 1.1 alc ;
2191 1.1 alc }
2192 1.1 alc return AH_FALSE;
2193 1.1 alc }
2194 1.1 alc
2195 1.1 alc /*
2196 1.1 alc * Find the pointer to the country element in the country table
2197 1.1 alc * corresponding to the country code
2198 1.1 alc */
2199 1.1 alc static COUNTRY_CODE_TO_ENUM_RD*
2200 1.1 alc findCountry(HAL_CTRY_CODE countryCode)
2201 1.1 alc {
2202 1.1 alc int i;
2203 1.1 alc
2204 1.1 alc for (i = 0; i < N(allCountries); i++) {
2205 1.1 alc if (allCountries[i].countryCode == countryCode)
2206 1.1 alc return &allCountries[i];
2207 1.1 alc }
2208 1.1 alc return AH_NULL; /* Not found */
2209 1.1 alc }
2210 1.1 alc
2211 1.1 alc /*
2212 1.1 alc * Calculate a default country based on the EEPROM setting.
2213 1.1 alc */
2214 1.1 alc static HAL_CTRY_CODE
2215 1.1 alc getDefaultCountry(struct ath_hal *ah)
2216 1.1 alc {
2217 1.1 alc uint16_t rd;
2218 1.1 alc int i;
2219 1.1 alc
2220 1.1 alc rd = getEepromRD(ah);
2221 1.1 alc if (rd & COUNTRY_ERD_FLAG) {
2222 1.1 alc COUNTRY_CODE_TO_ENUM_RD *country = AH_NULL;
2223 1.1 alc uint16_t cc = rd & ~COUNTRY_ERD_FLAG;
2224 1.1 alc
2225 1.1 alc country = findCountry(cc);
2226 1.1 alc if (country != AH_NULL)
2227 1.1 alc return cc;
2228 1.1 alc }
2229 1.1 alc /*
2230 1.1 alc * Check reg domains that have only one country
2231 1.1 alc */
2232 1.1 alc for (i = 0; i < N(regDomainPairs); i++)
2233 1.1 alc if (regDomainPairs[i].regDmnEnum == rd) {
2234 1.1 alc if (regDomainPairs[i].singleCC != 0)
2235 1.1 alc return regDomainPairs[i].singleCC;
2236 1.1 alc else
2237 1.1 alc i = N(regDomainPairs);
2238 1.1 alc }
2239 1.1 alc return CTRY_DEFAULT;
2240 1.1 alc }
2241 1.1 alc
2242 1.1 alc static HAL_BOOL
2243 1.1 alc isValidRegDmn(int regDmn, REG_DOMAIN *rd)
2244 1.1 alc {
2245 1.1 alc int i;
2246 1.1 alc
2247 1.1 alc for (i = 0; i < N(regDomains); i++) {
2248 1.1 alc if (regDomains[i].regDmnEnum == regDmn) {
2249 1.1 alc if (rd != AH_NULL) {
2250 1.1 alc OS_MEMCPY(rd, ®Domains[i],
2251 1.1 alc sizeof(REG_DOMAIN));
2252 1.1 alc }
2253 1.1 alc return AH_TRUE;
2254 1.1 alc }
2255 1.1 alc }
2256 1.1 alc return AH_FALSE;
2257 1.1 alc }
2258 1.1 alc
2259 1.1 alc static HAL_BOOL
2260 1.1 alc isValidRegDmnPair(int regDmnPair)
2261 1.1 alc {
2262 1.1 alc int i;
2263 1.1 alc
2264 1.1 alc if (regDmnPair == NO_ENUMRD)
2265 1.1 alc return AH_FALSE;
2266 1.1 alc for (i = 0; i < N(regDomainPairs); i++) {
2267 1.1 alc if (regDomainPairs[i].regDmnEnum == regDmnPair)
2268 1.1 alc return AH_TRUE;
2269 1.1 alc }
2270 1.1 alc return AH_FALSE;
2271 1.1 alc }
2272 1.1 alc
2273 1.1 alc /*
2274 1.1 alc * Return the Wireless Mode Regulatory Domain based
2275 1.1 alc * on the country code and the wireless mode.
2276 1.1 alc */
2277 1.1 alc static HAL_BOOL
2278 1.1 alc getWmRD(struct ath_hal *ah, COUNTRY_CODE_TO_ENUM_RD *country,
2279 1.1 alc uint16_t channelFlag, REG_DOMAIN *rd)
2280 1.1 alc {
2281 1.1 alc int regDmn;
2282 1.1 alc REG_DMN_PAIR_MAPPING *regPair;
2283 1.1 alc uint64_t flags;
2284 1.1 alc
2285 1.1 alc if (country->countryCode == CTRY_DEFAULT) {
2286 1.1 alc uint16_t rdnum = getEepromRD(ah);
2287 1.1 alc
2288 1.1 alc if ((rdnum & COUNTRY_ERD_FLAG) == 0) {
2289 1.1 alc if (isValidRegDmn(rdnum, AH_NULL) ||
2290 1.1 alc isValidRegDmnPair(rdnum))
2291 1.1 alc regDmn = rdnum;
2292 1.1 alc else
2293 1.1 alc regDmn = country->regDmnEnum;
2294 1.1 alc } else
2295 1.1 alc regDmn = country->regDmnEnum;
2296 1.1 alc } else
2297 1.1 alc regDmn = country->regDmnEnum;
2298 1.1 alc regPair = AH_NULL;
2299 1.1 alc flags = NO_REQ;
2300 1.1 alc if ((regDmn & MULTI_DOMAIN_MASK) == 0) {
2301 1.1 alc int i;
2302 1.1 alc
2303 1.1 alc for (i = 0; i < N(regDomainPairs); i++) {
2304 1.1 alc if (regDomainPairs[i].regDmnEnum == regDmn) {
2305 1.1 alc regPair = ®DomainPairs[i];
2306 1.1 alc break;
2307 1.1 alc }
2308 1.1 alc }
2309 1.1 alc if (regPair == AH_NULL) {
2310 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2311 1.1 alc "%s: Failed to find reg domain pair %u\n",
2312 1.1 alc __func__, regDmn);
2313 1.1 alc return AH_FALSE;
2314 1.1 alc }
2315 1.1 alc if (channelFlag & CHANNEL_2GHZ) {
2316 1.1 alc regDmn = regPair->regDmn2GHz;
2317 1.1 alc flags = regPair->flags2GHz;
2318 1.1 alc } else {
2319 1.1 alc regDmn = regPair->regDmn5GHz;
2320 1.1 alc flags = regPair->flags5GHz;
2321 1.1 alc }
2322 1.1 alc }
2323 1.1 alc
2324 1.1 alc /*
2325 1.1 alc * We either started with a unitary reg domain or we've found the
2326 1.1 alc * unitary reg domain of the pair
2327 1.1 alc */
2328 1.1 alc if (isValidRegDmn(regDmn, rd)) {
2329 1.1 alc if (regPair != AH_NULL)
2330 1.1 alc rd->pscan &= regPair->pscanMask;
2331 1.1 alc if ((country->regDmnEnum & MULTI_DOMAIN_MASK) == 0 &&
2332 1.1 alc flags != NO_REQ)
2333 1.1 alc rd->flags = flags;
2334 1.1 alc return AH_TRUE;
2335 1.1 alc } else {
2336 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2337 1.1 alc "%s: Failed to find unitary reg domain %u\n", __func__,
2338 1.1 alc country->regDmnEnum);
2339 1.1 alc return AH_FALSE;
2340 1.1 alc }
2341 1.1 alc }
2342 1.1 alc
2343 1.1 alc static HAL_BOOL
2344 1.1 alc IS_BIT_SET(int bit, const uint64_t bitmask[])
2345 1.1 alc {
2346 1.1 alc int byteOffset, bitnum;
2347 1.1 alc uint64_t val;
2348 1.1 alc
2349 1.1 alc byteOffset = bit/64;
2350 1.1 alc bitnum = bit - byteOffset*64;
2351 1.1 alc val = ((uint64_t) 1) << bitnum;
2352 1.1 alc return (bitmask[byteOffset] & val) != 0;
2353 1.1 alc }
2354 1.1 alc
2355 1.1 alc /* Add given regclassid into regclassids array upto max of maxregids */
2356 1.1 alc static void
2357 1.1 alc ath_add_regclassid(uint8_t *regclassids, u_int maxregids,
2358 1.1 alc u_int *nregids, uint8_t regclassid)
2359 1.1 alc {
2360 1.1 alc int i;
2361 1.1 alc
2362 1.1 alc /* Is regclassid valid? */
2363 1.1 alc if (regclassid == 0)
2364 1.1 alc return;
2365 1.1 alc
2366 1.1 alc for (i = 0; i < maxregids; i++) {
2367 1.1 alc if (regclassids[i] == regclassid) /* already present */
2368 1.1 alc return;
2369 1.1 alc if (regclassids[i] == 0) { /* free slot */
2370 1.1 alc regclassids[i] = regclassid;
2371 1.1 alc (*nregids)++;
2372 1.1 alc return;
2373 1.1 alc }
2374 1.1 alc }
2375 1.1 alc }
2376 1.1 alc
2377 1.1 alc /*
2378 1.1 alc * Setup the channel list based on the information in the EEPROM and
2379 1.1 alc * any supplied country code. Note that we also do a bunch of EEPROM
2380 1.1 alc * verification here and setup certain regulatory-related access
2381 1.1 alc * control data used later on.
2382 1.1 alc */
2383 1.1 alc
2384 1.1 alc HAL_BOOL
2385 1.1 alc ath_hal_init_channels(struct ath_hal *ah,
2386 1.1 alc HAL_CHANNEL *chans, u_int maxchans, u_int *nchans,
2387 1.1 alc uint8_t *regclassids, u_int maxregids, u_int *nregids,
2388 1.1 alc HAL_CTRY_CODE cc, u_int modeSelect,
2389 1.1 alc HAL_BOOL enableOutdoor, HAL_BOOL enableExtendedChannels)
2390 1.1 alc {
2391 1.1 alc #define CHANNEL_HALF_BW 10
2392 1.1 alc #define CHANNEL_QUARTER_BW 5
2393 1.1 alc u_int modesAvail;
2394 1.1 alc uint16_t maxChan;
2395 1.1 alc COUNTRY_CODE_TO_ENUM_RD *country = AH_NULL;
2396 1.1 alc REG_DOMAIN rd5GHz, rd2GHz;
2397 1.1 alc const struct cmode *cm;
2398 1.1 alc HAL_CHANNEL_INTERNAL *ichans = &AH_PRIVATE(ah)->ah_channels[0];
2399 1.1 alc int next, b;
2400 1.1 alc uint8_t ctl;
2401 1.1 alc
2402 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u mode 0x%x%s%s\n",
2403 1.1 alc __func__, cc, modeSelect, enableOutdoor? " Enable outdoor" : " ",
2404 1.1 alc enableExtendedChannels ? " Enable ecm" : "");
2405 1.1 alc
2406 1.1 alc /*
2407 1.1 alc * Validate the EEPROM setting and setup defaults
2408 1.1 alc */
2409 1.1 alc if (!isEepromValid(ah)) {
2410 1.1 alc /*
2411 1.1 alc * Don't return any channels if the EEPROM has an
2412 1.1 alc * invalid regulatory domain/country code setting.
2413 1.1 alc */
2414 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2415 1.1 alc "%s: invalid EEPROM contents\n",__func__);
2416 1.1 alc return AH_FALSE;
2417 1.1 alc }
2418 1.1 alc
2419 1.1 alc AH_PRIVATE(ah)->ah_countryCode = getDefaultCountry(ah);
2420 1.1 alc
2421 1.1 alc #ifndef AH_SUPPORT_11D
2422 1.1 alc if (AH_PRIVATE(ah)->ah_countryCode == CTRY_DEFAULT) {
2423 1.1 alc #endif
2424 1.1 alc /*
2425 1.1 alc * We now have enough state to validate any country code
2426 1.1 alc * passed in by the caller.
2427 1.1 alc */
2428 1.1 alc if (!isCountryCodeValid(ah, cc)) {
2429 1.1 alc /* NB: Atheros silently ignores invalid country codes */
2430 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2431 1.1 alc "%s: invalid country code %d\n", __func__, cc);
2432 1.1 alc return AH_FALSE;
2433 1.1 alc }
2434 1.1 alc AH_PRIVATE(ah)->ah_countryCode = cc & COUNTRY_CODE_MASK;
2435 1.1 alc #ifndef AH_SUPPORT_11D
2436 1.1 alc }
2437 1.1 alc #endif
2438 1.1 alc
2439 1.1 alc /* Get pointers to the country element and the reg domain elements */
2440 1.1 alc country = findCountry(AH_PRIVATE(ah)->ah_countryCode);
2441 1.1 alc
2442 1.1 alc if (country == AH_NULL) {
2443 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "NULL Country!, cc= %d\n",
2444 1.1 alc AH_PRIVATE(ah)->ah_countryCode);
2445 1.1 alc return AH_FALSE;
2446 1.1 alc }
2447 1.1 alc
2448 1.1 alc if (!getWmRD(ah, country, ~CHANNEL_2GHZ, &rd5GHz)) {
2449 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2450 1.1 alc "%s: no unitary 5GHz regdomain for country %u\n",
2451 1.1 alc __func__, AH_PRIVATE(ah)->ah_countryCode);
2452 1.1 alc return AH_FALSE;
2453 1.1 alc }
2454 1.1 alc if (!getWmRD(ah, country, CHANNEL_2GHZ, &rd2GHz)) {
2455 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2456 1.1 alc "%s: no unitary 2GHz regdomain for country %u\n",
2457 1.1 alc __func__, AH_PRIVATE(ah)->ah_countryCode);
2458 1.1 alc return AH_FALSE;
2459 1.1 alc }
2460 1.1 alc
2461 1.1 alc modesAvail = ath_hal_getwmodesnreg(ah, country, &rd5GHz);
2462 1.1 alc maxChan = !enableOutdoor ? country->outdoorChanStart : 7000;
2463 1.1 alc
2464 1.1 alc if (maxchans > N(AH_PRIVATE(ah)->ah_channels))
2465 1.1 alc maxchans = N(AH_PRIVATE(ah)->ah_channels);
2466 1.1 alc next = 0;
2467 1.1 alc for (cm = modes; cm < &modes[N(modes)]; cm++) {
2468 1.1 alc uint16_t c, c_hi, c_lo;
2469 1.1 alc uint64_t *channelBM = AH_NULL;
2470 1.1 alc REG_DOMAIN *rd = AH_NULL;
2471 1.1 alc REG_DMN_FREQ_BAND *fband = AH_NULL,*freqs;
2472 1.1 alc int low_adj, hi_adj, channelSep, lastc;
2473 1.1 alc
2474 1.1 alc if ((cm->mode & modeSelect) == 0) {
2475 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2476 1.1 alc "%s: skip mode 0x%x flags 0x%x\n",
2477 1.1 alc __func__, cm->mode, cm->flags);
2478 1.1 alc continue;
2479 1.1 alc }
2480 1.1 alc if ((cm->mode & modesAvail) == 0) {
2481 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2482 1.1 alc "%s: !avail mode 0x%x (0x%x) flags 0x%x\n",
2483 1.1 alc __func__, modesAvail, cm->mode, cm->flags);
2484 1.1 alc continue;
2485 1.1 alc }
2486 1.1 alc if (!ath_hal_getChannelEdges(ah, cm->flags, &c_lo, &c_hi)) {
2487 1.1 alc /* channel not supported by hardware, skip it */
2488 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2489 1.1 alc "%s: channels 0x%x not supported by hardware\n",
2490 1.1 alc __func__,cm->flags);
2491 1.1 alc continue;
2492 1.1 alc }
2493 1.1 alc switch (cm->mode) {
2494 1.1 alc case HAL_MODE_TURBO:
2495 1.1 alc rd = &rd5GHz;
2496 1.1 alc channelBM = rd->chan11a_turbo;
2497 1.1 alc freqs = ®Dmn5GhzTurboFreq[0];
2498 1.1 alc ctl = rd->conformanceTestLimit | CTL_TURBO;
2499 1.1 alc break;
2500 1.1 alc case HAL_MODE_11A:
2501 1.1 alc case HAL_MODE_11A_HALF_RATE:
2502 1.1 alc case HAL_MODE_11A_QUARTER_RATE:
2503 1.1 alc case HAL_MODE_11NA_HT20:
2504 1.1 alc case HAL_MODE_11NA_HT40PLUS:
2505 1.1 alc case HAL_MODE_11NA_HT40MINUS:
2506 1.1 alc rd = &rd5GHz;
2507 1.1 alc if (cm->mode == HAL_MODE_11A_HALF_RATE)
2508 1.1 alc channelBM = rd->chan11a_half;
2509 1.1 alc else if (cm->mode == HAL_MODE_11A_QUARTER_RATE)
2510 1.1 alc channelBM = rd->chan11a_quarter;
2511 1.1 alc else
2512 1.1 alc channelBM = rd->chan11a;
2513 1.1 alc freqs = ®Dmn5GhzFreq[0];
2514 1.1 alc ctl = rd->conformanceTestLimit;
2515 1.1 alc break;
2516 1.1 alc case HAL_MODE_11B:
2517 1.1 alc rd = &rd2GHz;
2518 1.1 alc channelBM = rd->chan11b;
2519 1.1 alc freqs = ®Dmn2GhzFreq[0];
2520 1.1 alc ctl = rd->conformanceTestLimit | CTL_11B;
2521 1.1 alc break;
2522 1.1 alc case HAL_MODE_11G:
2523 1.1 alc case HAL_MODE_11G_HALF_RATE:
2524 1.1 alc case HAL_MODE_11G_QUARTER_RATE:
2525 1.1 alc case HAL_MODE_11NG_HT20:
2526 1.1 alc case HAL_MODE_11NG_HT40PLUS:
2527 1.1 alc case HAL_MODE_11NG_HT40MINUS:
2528 1.1 alc rd = &rd2GHz;
2529 1.1 alc if (cm->mode == HAL_MODE_11G_HALF_RATE)
2530 1.1 alc channelBM = rd->chan11g_half;
2531 1.1 alc else if (cm->mode == HAL_MODE_11G_QUARTER_RATE)
2532 1.1 alc channelBM = rd->chan11g_quarter;
2533 1.1 alc else
2534 1.1 alc channelBM = rd->chan11g;
2535 1.1 alc freqs = ®Dmn2Ghz11gFreq[0];
2536 1.1 alc ctl = rd->conformanceTestLimit | CTL_11G;
2537 1.1 alc break;
2538 1.1 alc case HAL_MODE_11G_TURBO:
2539 1.1 alc rd = &rd2GHz;
2540 1.1 alc channelBM = rd->chan11g_turbo;
2541 1.1 alc freqs = ®Dmn2Ghz11gTurboFreq[0];
2542 1.1 alc ctl = rd->conformanceTestLimit | CTL_108G;
2543 1.1 alc break;
2544 1.1 alc case HAL_MODE_11A_TURBO:
2545 1.1 alc rd = &rd5GHz;
2546 1.1 alc channelBM = rd->chan11a_dyn_turbo;
2547 1.1 alc freqs = ®Dmn5GhzTurboFreq[0];
2548 1.1 alc ctl = rd->conformanceTestLimit | CTL_108G;
2549 1.1 alc break;
2550 1.1 alc default:
2551 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2552 1.1 alc "%s: Unkonwn HAL mode 0x%x\n", __func__, cm->mode);
2553 1.1 alc continue;
2554 1.1 alc }
2555 1.1 alc if (isChanBitMaskZero(channelBM))
2556 1.1 alc continue;
2557 1.1 alc /*
2558 1.1 alc * Setup special handling for HT40 channels; e.g.
2559 1.1 alc * 5G HT40 channels require 40Mhz channel separation.
2560 1.1 alc */
2561 1.1 alc hi_adj = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2562 1.1 alc cm->mode == HAL_MODE_11NG_HT40PLUS) ? -20 : 0;
2563 1.1 alc low_adj = (cm->mode == HAL_MODE_11NA_HT40MINUS ||
2564 1.1 alc cm->mode == HAL_MODE_11NG_HT40MINUS) ? 20 : 0;
2565 1.1 alc channelSep = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2566 1.1 alc cm->mode == HAL_MODE_11NA_HT40MINUS) ? 40 : 0;
2567 1.1 alc
2568 1.1 alc for (b = 0; b < 64*BMLEN; b++) {
2569 1.1 alc if (!IS_BIT_SET(b, channelBM))
2570 1.1 alc continue;
2571 1.1 alc fband = &freqs[b];
2572 1.1 alc lastc = 0;
2573 1.1 alc
2574 1.1 alc ath_add_regclassid(regclassids, maxregids,
2575 1.1 alc nregids, fband->regClassId);
2576 1.1 alc
2577 1.1 alc for (c = fband->lowChannel + low_adj;
2578 1.1 alc c <= fband->highChannel + hi_adj;
2579 1.1 alc c += fband->channelSep) {
2580 1.1 alc HAL_CHANNEL_INTERNAL icv;
2581 1.1 alc
2582 1.1 alc if (!(c_lo <= c && c <= c_hi)) {
2583 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2584 1.1 alc "%s: c %u out of range [%u..%u]\n",
2585 1.1 alc __func__, c, c_lo, c_hi);
2586 1.1 alc continue;
2587 1.1 alc }
2588 1.1 alc if (((c+fband->channelSep)/2) > (maxChan+HALF_MAXCHANBW)) {
2589 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2590 1.1 alc "%s: c %u > maxChan %u\n",
2591 1.1 alc __func__, c, maxChan);
2592 1.1 alc continue;
2593 1.1 alc }
2594 1.1 alc if (next >= maxchans){
2595 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2596 1.1 alc "%s: too many channels for channel table\n",
2597 1.1 alc __func__);
2598 1.1 alc goto done;
2599 1.1 alc }
2600 1.1 alc if ((fband->usePassScan & IS_ECM_CHAN) &&
2601 1.1 alc !enableExtendedChannels) {
2602 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2603 1.1 alc "Skipping ecm channel\n");
2604 1.1 alc continue;
2605 1.1 alc }
2606 1.1 alc /* XXX needs to be in ath_hal_checkchannel */
2607 1.1 alc if ((rd->flags & NO_HOSTAP) &&
2608 1.1 alc (AH_PRIVATE(ah)->ah_opmode == HAL_M_HOSTAP)) {
2609 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2610 1.1 alc "Skipping HOSTAP channel\n");
2611 1.1 alc continue;
2612 1.1 alc }
2613 1.1 alc /*
2614 1.1 alc * Make sure that channel separation
2615 1.1 alc * meets the requirement.
2616 1.1 alc */
2617 1.1 alc if (lastc && channelSep &&
2618 1.1 alc (c-lastc) < channelSep)
2619 1.1 alc continue;
2620 1.1 alc
2621 1.1 alc OS_MEMZERO(&icv, sizeof(icv));
2622 1.1 alc icv.channel = c;
2623 1.1 alc icv.channelFlags = cm->flags;
2624 1.1 alc icv.maxRegTxPower = fband->powerDfs;
2625 1.1 alc icv.antennaMax = fband->antennaMax;
2626 1.1 alc icv.regDmnFlags = rd->flags;
2627 1.1 alc icv.conformanceTestLimit = ctl;
2628 1.1 alc if (fband->usePassScan & rd->pscan)
2629 1.1 alc icv.channelFlags |= CHANNEL_PASSIVE;
2630 1.1 alc else
2631 1.1 alc icv.channelFlags &= ~CHANNEL_PASSIVE;
2632 1.1 alc lastc = c;
2633 1.1 alc if (fband->useDfs & rd->dfsMask) {
2634 1.1 alc /* DFS and HT40 don't mix */
2635 1.1 alc if (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2636 1.1 alc cm->mode == HAL_MODE_11NA_HT40MINUS)
2637 1.1 alc continue;
2638 1.1 alc icv.privFlags = CHANNEL_DFS;
2639 1.1 alc } else
2640 1.1 alc icv.privFlags = 0;
2641 1.1 alc if (rd->flags & LIMIT_FRAME_4MS)
2642 1.1 alc icv.privFlags |= CHANNEL_4MS_LIMIT;
2643 1.1 alc
2644 1.1 alc ichans[next++] = icv;
2645 1.1 alc }
2646 1.1 alc }
2647 1.1 alc }
2648 1.1 alc done:
2649 1.1 alc if (next != 0) {
2650 1.1 alc int i;
2651 1.1 alc
2652 1.1 alc /* XXX maxchans set above so this cannot happen? */
2653 1.1 alc if (next > N(AH_PRIVATE(ah)->ah_channels)) {
2654 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2655 1.1 alc "%s: too many channels %u; truncating to %u\n",
2656 1.1 alc __func__, next,
2657 1.1 alc (int) N(AH_PRIVATE(ah)->ah_channels));
2658 1.1 alc next = N(AH_PRIVATE(ah)->ah_channels);
2659 1.1 alc }
2660 1.1 alc
2661 1.1 alc /*
2662 1.1 alc * Keep a private copy of the channel list so we can
2663 1.1 alc * constrain future requests to only these channels
2664 1.1 alc */
2665 1.1 alc ath_hal_sort(ichans, next, sizeof(HAL_CHANNEL_INTERNAL),
2666 1.1 alc chansort);
2667 1.1 alc AH_PRIVATE(ah)->ah_nchan = next;
2668 1.1 alc
2669 1.1 alc /*
2670 1.1 alc * Copy the channel list to the public channel list
2671 1.1 alc */
2672 1.1 alc for (i = 0; i < next; i++) {
2673 1.1 alc chans[i].channel = ichans[i].channel;
2674 1.1 alc chans[i].channelFlags = ichans[i].channelFlags;
2675 1.1 alc chans[i].privFlags = ichans[i].privFlags;
2676 1.1 alc chans[i].maxRegTxPower = ichans[i].maxRegTxPower;
2677 1.1 alc }
2678 1.1 alc /*
2679 1.1 alc * Retrieve power limits.
2680 1.1 alc */
2681 1.1 alc ath_hal_getpowerlimits(ah, chans, next);
2682 1.1 alc for (i = 0; i < next; i++) {
2683 1.1 alc ichans[i].maxTxPower = chans[i].maxTxPower;
2684 1.1 alc ichans[i].minTxPower = chans[i].minTxPower;
2685 1.1 alc }
2686 1.1 alc }
2687 1.1 alc *nchans = next;
2688 1.1 alc /* XXX copy private setting to public area */
2689 1.1 alc ah->ah_countryCode = AH_PRIVATE(ah)->ah_countryCode;
2690 1.1 alc return (next != 0);
2691 1.1 alc #undef CHANNEL_HALF_BW
2692 1.1 alc #undef CHANNEL_QUARTER_BW
2693 1.1 alc }
2694 1.1 alc
2695 1.1 alc /*
2696 1.1 alc * Return whether or not the specified channel is ok to use
2697 1.1 alc * based on the current regulatory domain constraints and
2698 1.1 alc * DFS interference.
2699 1.1 alc */
2700 1.1 alc HAL_CHANNEL_INTERNAL *
2701 1.1 alc ath_hal_checkchannel(struct ath_hal *ah, const HAL_CHANNEL *c)
2702 1.1 alc {
2703 1.1 alc #define CHAN_FLAGS (CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER)
2704 1.1 alc HAL_CHANNEL_INTERNAL *base, *cc;
2705 1.1 alc /* NB: be wary of user-specified channel flags */
2706 1.1 alc int flags = c->channelFlags & CHAN_FLAGS;
2707 1.1 alc int n, lim, d;
2708 1.1 alc
2709 1.1 alc /*
2710 1.1 alc * Check current channel to avoid the lookup.
2711 1.1 alc */
2712 1.1 alc cc = AH_PRIVATE(ah)->ah_curchan;
2713 1.1 alc if (cc != AH_NULL && cc->channel == c->channel &&
2714 1.1 alc (cc->channelFlags & CHAN_FLAGS) == flags) {
2715 1.1 alc if ((cc->privFlags & CHANNEL_INTERFERENCE) &&
2716 1.1 alc (cc->channelFlags & CHANNEL_DFS))
2717 1.1 alc return AH_NULL;
2718 1.1 alc else
2719 1.1 alc return cc;
2720 1.1 alc }
2721 1.1 alc
2722 1.1 alc /* binary search based on known sorting order */
2723 1.1 alc base = AH_PRIVATE(ah)->ah_channels;
2724 1.1 alc n = AH_PRIVATE(ah)->ah_nchan;
2725 1.1 alc /* binary search based on known sorting order */
2726 1.1 alc for (lim = n; lim != 0; lim >>= 1) {
2727 1.1 alc cc = &base[lim>>1];
2728 1.1 alc d = c->channel - cc->channel;
2729 1.1 alc if (d == 0) {
2730 1.1 alc if ((cc->channelFlags & CHAN_FLAGS) == flags) {
2731 1.1 alc if ((cc->privFlags & CHANNEL_INTERFERENCE) &&
2732 1.1 alc (cc->channelFlags & CHANNEL_DFS))
2733 1.1 alc return AH_NULL;
2734 1.1 alc else
2735 1.1 alc return cc;
2736 1.1 alc }
2737 1.1 alc d = flags - (cc->channelFlags & CHAN_FLAGS);
2738 1.1 alc }
2739 1.1 alc if (d > 0) {
2740 1.1 alc base = cc + 1;
2741 1.1 alc lim--;
2742 1.1 alc }
2743 1.1 alc }
2744 1.1 alc HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: no match for %u/0x%x\n",
2745 1.1 alc __func__, c->channel, c->channelFlags);
2746 1.1 alc return AH_NULL;
2747 1.1 alc #undef CHAN_FLAGS
2748 1.1 alc }
2749 1.1 alc
2750 1.1 alc /*
2751 1.1 alc * Return the max allowed antenna gain and apply any regulatory
2752 1.1 alc * domain specific changes.
2753 1.1 alc *
2754 1.1 alc * NOTE: a negative reduction is possible in RD's that only
2755 1.1 alc * measure radiated power (e.g., ETSI) which would increase
2756 1.1 alc * that actual conducted output power (though never beyond
2757 1.1 alc * the calibrated target power).
2758 1.1 alc */
2759 1.1 alc u_int
2760 1.1 alc ath_hal_getantennareduction(struct ath_hal *ah, HAL_CHANNEL *chan, u_int twiceGain)
2761 1.1 alc {
2762 1.1 alc HAL_CHANNEL_INTERNAL *ichan=AH_NULL;
2763 1.1 alc int8_t antennaMax;
2764 1.1 alc
2765 1.1 alc if ((ichan = ath_hal_checkchannel(ah, chan)) != AH_NULL) {
2766 1.1 alc antennaMax = twiceGain - ichan->antennaMax*2;
2767 1.1 alc return (antennaMax < 0) ? 0 : antennaMax;
2768 1.1 alc } else {
2769 1.1 alc /* Failed to find the correct index - may be a debug channel */
2770 1.1 alc return 0;
2771 1.1 alc }
2772 1.1 alc }
2773 1.1 alc
2774 1.1 alc
2775 1.1 alc /* XXX - maybe move ctl decision into channel set area or
2776 1.1 alc into the tables so no decision is needed in the code */
2777 1.1 alc
2778 1.1 alc #define isWwrSKU(_ah) \
2779 1.1 alc ((getEepromRD((_ah)) & WORLD_SKU_MASK) == WORLD_SKU_PREFIX || \
2780 1.1 alc getEepromRD(_ah) == WORLD)
2781 1.1 alc
2782 1.1 alc
2783 1.1 alc /*
2784 1.1 alc * Return the test group from the specified channel from
2785 1.1 alc * the regulatory table.
2786 1.1 alc *
2787 1.1 alc * TODO: CTL for 11B CommonMode when regulatory domain is unknown
2788 1.1 alc */
2789 1.1 alc u_int
2790 1.1 alc ath_hal_getctl(struct ath_hal *ah, HAL_CHANNEL *chan)
2791 1.1 alc {
2792 1.1 alc u_int ctl = NO_CTL;
2793 1.1 alc HAL_CHANNEL_INTERNAL *ichan;
2794 1.1 alc
2795 1.1 alc /* Special CTL to signify WWR SKU without a known country */
2796 1.1 alc if (AH_PRIVATE(ah)->ah_countryCode == CTRY_DEFAULT && isWwrSKU(ah)) {
2797 1.1 alc if (IS_CHAN_B(chan)) {
2798 1.1 alc ctl = SD_NO_CTL | CTL_11B;
2799 1.1 alc } else if (IS_CHAN_G(chan)) {
2800 1.1 alc ctl = SD_NO_CTL | CTL_11G;
2801 1.1 alc } else if (IS_CHAN_108G(chan)) {
2802 1.1 alc ctl = SD_NO_CTL | CTL_108G;
2803 1.1 alc } else if (IS_CHAN_T(chan)) {
2804 1.1 alc ctl = SD_NO_CTL | CTL_TURBO;
2805 1.1 alc } else {
2806 1.1 alc ctl = SD_NO_CTL | CTL_11A;
2807 1.1 alc }
2808 1.1 alc } else {
2809 1.1 alc if ((ichan = ath_hal_checkchannel(ah, chan)) != AH_NULL) {
2810 1.1 alc ctl = ichan->conformanceTestLimit;
2811 1.1 alc /* limit 11G OFDM power */
2812 1.1 alc if (IS_CHAN_PUREG(chan) &&
2813 1.1 alc (ctl & CTL_MODE_M) == CTL_11B)
2814 1.1 alc ctl = (ctl &~ CTL_MODE_M) | CTL_11G;
2815 1.1 alc }
2816 1.1 alc }
2817 1.1 alc return ctl;
2818 1.1 alc }
2819 1.1 alc
2820 1.1 alc /*
2821 1.1 alc * Return whether or not a noise floor check is required in
2822 1.1 alc * the current regulatory domain for the specified channel.
2823 1.1 alc */
2824 1.1 alc HAL_BOOL
2825 1.1 alc ath_hal_getnfcheckrequired(struct ath_hal *ah, HAL_CHANNEL *chan)
2826 1.1 alc {
2827 1.1 alc HAL_CHANNEL_INTERNAL *ichan;
2828 1.1 alc
2829 1.1 alc if ((ichan = ath_hal_checkchannel(ah, chan)) != AH_NULL)
2830 1.1 alc return ((ichan->regDmnFlags & NEED_NFC) ? AH_TRUE : AH_FALSE);
2831 1.1 alc return AH_FALSE;
2832 1.1 alc }
2833 1.1 alc
2834 1.1 alc /*
2835 1.1 alc * Insertion sort.
2836 1.1 alc */
2837 1.1 alc #define swap(_a, _b, _size) { \
2838 1.1 alc uint8_t *s = _b; \
2839 1.1 alc int i = _size; \
2840 1.1 alc do { \
2841 1.1 alc uint8_t tmp = *_a; \
2842 1.1 alc *_a++ = *s; \
2843 1.1 alc *s++ = tmp; \
2844 1.1 alc } while (--i); \
2845 1.1 alc _a -= _size; \
2846 1.1 alc }
2847 1.1 alc
2848 1.1 alc static void
2849 1.1 alc ath_hal_sort(void *a, size_t n, size_t size, ath_hal_cmp_t *cmp)
2850 1.1 alc {
2851 1.1 alc uint8_t *aa = a;
2852 1.1 alc uint8_t *ai, *t;
2853 1.1 alc
2854 1.1 alc for (ai = aa+size; --n >= 1; ai += size)
2855 1.1 alc for (t = ai; t > aa; t -= size) {
2856 1.1 alc uint8_t *u = t - size;
2857 1.1 alc if (cmp(u, t) <= 0)
2858 1.1 alc break;
2859 1.1 alc swap(u, t, size);
2860 1.1 alc }
2861 1.1 alc }
2862