1 1.1 alc /* 2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 3 1.1 alc * Copyright (c) 2002-2004 Atheros Communications, Inc. 4 1.1 alc * 5 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any 6 1.1 alc * purpose with or without fee is hereby granted, provided that the above 7 1.1 alc * copyright notice and this permission notice appear in all copies. 8 1.1 alc * 9 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 1.1 alc * 17 1.2 cegger * $Id: ar5210_misc.c,v 1.2 2011/03/07 11:25:42 cegger Exp $ 18 1.1 alc */ 19 1.1 alc #include "opt_ah.h" 20 1.1 alc 21 1.1 alc #include "ah.h" 22 1.1 alc #include "ah_internal.h" 23 1.1 alc 24 1.1 alc #include "ar5210/ar5210.h" 25 1.1 alc #include "ar5210/ar5210reg.h" 26 1.1 alc #include "ar5210/ar5210phy.h" 27 1.1 alc 28 1.1 alc #include "ah_eeprom_v1.h" 29 1.1 alc 30 1.1 alc #define AR_NUM_GPIO 6 /* 6 GPIO bits */ 31 1.1 alc #define AR_GPIOD_MASK 0x2f /* 6-bit mask */ 32 1.1 alc 33 1.1 alc void 34 1.1 alc ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac) 35 1.1 alc { 36 1.1 alc struct ath_hal_5210 *ahp = AH5210(ah); 37 1.1 alc 38 1.1 alc OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN); 39 1.1 alc } 40 1.1 alc 41 1.1 alc HAL_BOOL 42 1.1 alc ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac) 43 1.1 alc { 44 1.1 alc struct ath_hal_5210 *ahp = AH5210(ah); 45 1.1 alc 46 1.1 alc OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN); 47 1.1 alc return AH_TRUE; 48 1.1 alc } 49 1.1 alc 50 1.1 alc void 51 1.1 alc ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask) 52 1.1 alc { 53 1.1 alc static const uint8_t ones[IEEE80211_ADDR_LEN] = 54 1.1 alc { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 55 1.1 alc OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN); 56 1.1 alc } 57 1.1 alc 58 1.1 alc HAL_BOOL 59 1.1 alc ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask) 60 1.1 alc { 61 1.1 alc return AH_FALSE; 62 1.1 alc } 63 1.1 alc 64 1.1 alc /* 65 1.1 alc * Read 16 bits of data from the specified EEPROM offset. 66 1.1 alc */ 67 1.1 alc HAL_BOOL 68 1.1 alc ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data) 69 1.1 alc { 70 1.1 alc (void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */ 71 1.1 alc if (!ath_hal_wait(ah, AR_EP_STA, 72 1.1 alc AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) { 73 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n", 74 1.1 alc __func__, AR_EP_AIR(off)); 75 1.1 alc return AH_FALSE; 76 1.1 alc } 77 1.1 alc *data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff; 78 1.1 alc return AH_TRUE; 79 1.1 alc } 80 1.1 alc 81 1.1 alc #ifdef AH_SUPPORT_WRITE_EEPROM 82 1.1 alc /* 83 1.1 alc * Write 16 bits of data to the specified EEPROM offset. 84 1.1 alc */ 85 1.1 alc HAL_BOOL 86 1.1 alc ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data) 87 1.1 alc { 88 1.1 alc return AH_FALSE; 89 1.1 alc } 90 1.1 alc #endif /* AH_SUPPORT_WRITE_EEPROM */ 91 1.1 alc 92 1.1 alc /* 93 1.1 alc * Attempt to change the cards operating regulatory domain to the given value 94 1.1 alc */ 95 1.1 alc HAL_BOOL 96 1.1 alc ar5210SetRegulatoryDomain(struct ath_hal *ah, 97 1.1 alc uint16_t regDomain, HAL_STATUS *status) 98 1.1 alc { 99 1.1 alc HAL_STATUS ecode; 100 1.1 alc 101 1.1 alc if (AH_PRIVATE(ah)->ah_currentRD == regDomain) { 102 1.1 alc ecode = HAL_EINVAL; 103 1.1 alc goto bad; 104 1.1 alc } 105 1.1 alc /* 106 1.1 alc * Check if EEPROM is configured to allow this; must 107 1.1 alc * be a proper version and the protection bits must 108 1.1 alc * permit re-writing that segment of the EEPROM. 109 1.1 alc */ 110 1.1 alc if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) { 111 1.1 alc ecode = HAL_EEWRITE; 112 1.1 alc goto bad; 113 1.1 alc } 114 1.1 alc ecode = HAL_EIO; /* disallow all writes */ 115 1.1 alc bad: 116 1.1 alc if (status) 117 1.1 alc *status = ecode; 118 1.1 alc return AH_FALSE; 119 1.1 alc } 120 1.1 alc 121 1.1 alc /* 122 1.1 alc * Return the wireless modes (a,b,g,t) supported by hardware. 123 1.1 alc * 124 1.1 alc * This value is what is actually supported by the hardware 125 1.1 alc * and is unaffected by regulatory/country code settings. 126 1.1 alc * 127 1.1 alc */ 128 1.1 alc u_int 129 1.1 alc ar5210GetWirelessModes(struct ath_hal *ah) 130 1.1 alc { 131 1.1 alc /* XXX could enable turbo mode but can't do all rates */ 132 1.1 alc return HAL_MODE_11A; 133 1.1 alc } 134 1.1 alc 135 1.1 alc /* 136 1.1 alc * Called if RfKill is supported (according to EEPROM). Set the interrupt and 137 1.1 alc * GPIO values so the ISR and can disable RF on a switch signal 138 1.1 alc */ 139 1.1 alc void 140 1.1 alc ar5210EnableRfKill(struct ath_hal *ah) 141 1.1 alc { 142 1.1 alc uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent; 143 1.1 alc int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL); 144 1.1 alc int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY); 145 1.1 alc 146 1.1 alc /* 147 1.1 alc * If radio disable switch connection to GPIO bit 0 is enabled 148 1.1 alc * program GPIO interrupt. 149 1.1 alc * If rfkill bit on eeprom is 1, setupeeprommap routine has already 150 1.1 alc * verified that it is a later version of eeprom, it has a place for 151 1.1 alc * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware 152 1.1 alc * connection is present. 153 1.1 alc */ 154 1.1 alc ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity)); 155 1.1 alc } 156 1.1 alc 157 1.1 alc /* 158 1.1 alc * Configure GPIO Output lines 159 1.1 alc */ 160 1.1 alc HAL_BOOL 161 1.2 cegger ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type) 162 1.1 alc { 163 1.1 alc HALASSERT(gpio < AR_NUM_GPIO); 164 1.1 alc 165 1.1 alc OS_REG_WRITE(ah, AR_GPIOCR, 166 1.1 alc (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio)) 167 1.1 alc | AR_GPIOCR_OUT1(gpio)); 168 1.1 alc 169 1.1 alc return AH_TRUE; 170 1.1 alc } 171 1.1 alc 172 1.1 alc /* 173 1.1 alc * Configure GPIO Input lines 174 1.1 alc */ 175 1.1 alc HAL_BOOL 176 1.1 alc ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio) 177 1.1 alc { 178 1.1 alc HALASSERT(gpio < AR_NUM_GPIO); 179 1.1 alc 180 1.1 alc OS_REG_WRITE(ah, AR_GPIOCR, 181 1.1 alc (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio)) 182 1.1 alc | AR_GPIOCR_IN(gpio)); 183 1.1 alc 184 1.1 alc return AH_TRUE; 185 1.1 alc } 186 1.1 alc 187 1.1 alc /* 188 1.1 alc * Once configured for I/O - set output lines 189 1.1 alc */ 190 1.1 alc HAL_BOOL 191 1.1 alc ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val) 192 1.1 alc { 193 1.1 alc uint32_t reg; 194 1.1 alc 195 1.1 alc HALASSERT(gpio < AR_NUM_GPIO); 196 1.1 alc 197 1.1 alc reg = OS_REG_READ(ah, AR_GPIODO); 198 1.1 alc reg &= ~(1 << gpio); 199 1.1 alc reg |= (val&1) << gpio; 200 1.1 alc 201 1.1 alc OS_REG_WRITE(ah, AR_GPIODO, reg); 202 1.1 alc return AH_TRUE; 203 1.1 alc } 204 1.1 alc 205 1.1 alc /* 206 1.1 alc * Once configured for I/O - get input lines 207 1.1 alc */ 208 1.1 alc uint32_t 209 1.1 alc ar5210GpioGet(struct ath_hal *ah, uint32_t gpio) 210 1.1 alc { 211 1.1 alc if (gpio < AR_NUM_GPIO) { 212 1.1 alc uint32_t val = OS_REG_READ(ah, AR_GPIODI); 213 1.1 alc val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1; 214 1.1 alc return val; 215 1.1 alc } else { 216 1.1 alc return 0xffffffff; 217 1.1 alc } 218 1.1 alc } 219 1.1 alc 220 1.1 alc /* 221 1.1 alc * Set the GPIO 0 Interrupt 222 1.1 alc */ 223 1.1 alc void 224 1.1 alc ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel) 225 1.1 alc { 226 1.1 alc uint32_t val = OS_REG_READ(ah, AR_GPIOCR); 227 1.1 alc 228 1.1 alc /* Clear the bits that we will modify. */ 229 1.1 alc val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA | 230 1.1 alc AR_GPIOCR_ALL(gpio)); 231 1.1 alc 232 1.1 alc val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA; 233 1.1 alc if (ilevel) 234 1.1 alc val |= AR_GPIOCR_INT_SELH; 235 1.1 alc 236 1.1 alc /* Don't need to change anything for low level interrupt. */ 237 1.1 alc OS_REG_WRITE(ah, AR_GPIOCR, val); 238 1.1 alc 239 1.1 alc /* Change the interrupt mask. */ 240 1.1 alc ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO); 241 1.1 alc } 242 1.1 alc 243 1.1 alc /* 244 1.1 alc * Change the LED blinking pattern to correspond to the connectivity 245 1.1 alc */ 246 1.1 alc void 247 1.1 alc ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state) 248 1.1 alc { 249 1.1 alc uint32_t val; 250 1.1 alc 251 1.1 alc val = OS_REG_READ(ah, AR_PCICFG); 252 1.1 alc switch (state) { 253 1.1 alc case HAL_LED_INIT: 254 1.1 alc val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT); 255 1.1 alc break; 256 1.1 alc case HAL_LED_RUN: 257 1.1 alc /* normal blink when connected */ 258 1.1 alc val &= ~AR_PCICFG_LED_PEND; 259 1.1 alc val |= AR_PCICFG_LED_ACT; 260 1.1 alc break; 261 1.1 alc default: 262 1.1 alc val |= AR_PCICFG_LED_PEND; 263 1.1 alc val &= ~AR_PCICFG_LED_ACT; 264 1.1 alc break; 265 1.1 alc } 266 1.1 alc OS_REG_WRITE(ah, AR_PCICFG, val); 267 1.1 alc } 268 1.1 alc 269 1.1 alc /* 270 1.1 alc * Return 1 or 2 for the corresponding antenna that is in use 271 1.1 alc */ 272 1.1 alc u_int 273 1.1 alc ar5210GetDefAntenna(struct ath_hal *ah) 274 1.1 alc { 275 1.1 alc uint32_t val = OS_REG_READ(ah, AR_STA_ID1); 276 1.1 alc return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1); 277 1.1 alc } 278 1.1 alc 279 1.1 alc void 280 1.1 alc ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna) 281 1.1 alc { 282 1.1 alc uint32_t val = OS_REG_READ(ah, AR_STA_ID1); 283 1.1 alc 284 1.1 alc if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) { 285 1.1 alc /* 286 1.1 alc * Antenna change requested, force a toggle of the default. 287 1.1 alc */ 288 1.1 alc OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA); 289 1.1 alc } 290 1.1 alc } 291 1.1 alc 292 1.1 alc HAL_ANT_SETTING 293 1.1 alc ar5210GetAntennaSwitch(struct ath_hal *ah) 294 1.1 alc { 295 1.1 alc return HAL_ANT_VARIABLE; 296 1.1 alc } 297 1.1 alc 298 1.1 alc HAL_BOOL 299 1.1 alc ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings) 300 1.1 alc { 301 1.1 alc /* XXX not sure how to fix antenna */ 302 1.1 alc return (settings == HAL_ANT_VARIABLE); 303 1.1 alc } 304 1.1 alc 305 1.1 alc /* 306 1.1 alc * Change association related fields programmed into the hardware. 307 1.1 alc * Writing a valid BSSID to the hardware effectively enables the hardware 308 1.1 alc * to synchronize its TSF to the correct beacons and receive frames coming 309 1.1 alc * from that BSSID. It is called by the SME JOIN operation. 310 1.1 alc */ 311 1.1 alc void 312 1.1 alc ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId) 313 1.1 alc { 314 1.1 alc struct ath_hal_5210 *ahp = AH5210(ah); 315 1.1 alc 316 1.1 alc /* XXX save bssid for possible re-use on reset */ 317 1.1 alc OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN); 318 1.1 alc OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 319 1.1 alc OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) | 320 1.1 alc ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S)); 321 1.1 alc if (assocId == 0) 322 1.1 alc OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL); 323 1.1 alc else 324 1.1 alc OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL); 325 1.1 alc } 326 1.1 alc 327 1.1 alc /* 328 1.1 alc * Get the current hardware tsf for stamlme. 329 1.1 alc */ 330 1.1 alc uint64_t 331 1.1 alc ar5210GetTsf64(struct ath_hal *ah) 332 1.1 alc { 333 1.1 alc uint32_t low1, low2, u32; 334 1.1 alc 335 1.1 alc /* sync multi-word read */ 336 1.1 alc low1 = OS_REG_READ(ah, AR_TSF_L32); 337 1.1 alc u32 = OS_REG_READ(ah, AR_TSF_U32); 338 1.1 alc low2 = OS_REG_READ(ah, AR_TSF_L32); 339 1.1 alc if (low2 < low1) { /* roll over */ 340 1.1 alc /* 341 1.1 alc * If we are not preempted this will work. If we are 342 1.1 alc * then we re-reading AR_TSF_U32 does no good as the 343 1.1 alc * low bits will be meaningless. Likewise reading 344 1.1 alc * L32, U32, U32, then comparing the last two reads 345 1.1 alc * to check for rollover doesn't help if preempted--so 346 1.1 alc * we take this approach as it costs one less PCI 347 1.1 alc * read which can be noticeable when doing things 348 1.1 alc * like timestamping packets in monitor mode. 349 1.1 alc */ 350 1.1 alc u32++; 351 1.1 alc } 352 1.1 alc return (((uint64_t) u32) << 32) | ((uint64_t) low2); 353 1.1 alc } 354 1.1 alc 355 1.1 alc /* 356 1.1 alc * Get the current hardware tsf for stamlme. 357 1.1 alc */ 358 1.1 alc uint32_t 359 1.1 alc ar5210GetTsf32(struct ath_hal *ah) 360 1.1 alc { 361 1.1 alc return OS_REG_READ(ah, AR_TSF_L32); 362 1.1 alc } 363 1.1 alc 364 1.1 alc /* 365 1.1 alc * Reset the current hardware tsf for stamlme 366 1.1 alc */ 367 1.1 alc void 368 1.1 alc ar5210ResetTsf(struct ath_hal *ah) 369 1.1 alc { 370 1.1 alc uint32_t val = OS_REG_READ(ah, AR_BEACON); 371 1.1 alc 372 1.1 alc OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF); 373 1.1 alc } 374 1.1 alc 375 1.1 alc /* 376 1.1 alc * Grab a semi-random value from hardware registers - may not 377 1.1 alc * change often 378 1.1 alc */ 379 1.1 alc uint32_t 380 1.1 alc ar5210GetRandomSeed(struct ath_hal *ah) 381 1.1 alc { 382 1.1 alc uint32_t nf; 383 1.1 alc 384 1.1 alc nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff; 385 1.1 alc if (nf & 0x100) 386 1.1 alc nf = 0 - ((nf ^ 0x1ff) + 1); 387 1.1 alc return (OS_REG_READ(ah, AR_TSF_U32) ^ 388 1.1 alc OS_REG_READ(ah, AR_TSF_L32) ^ nf); 389 1.1 alc } 390 1.1 alc 391 1.1 alc /* 392 1.1 alc * Detect if our card is present 393 1.1 alc */ 394 1.1 alc HAL_BOOL 395 1.1 alc ar5210DetectCardPresent(struct ath_hal *ah) 396 1.1 alc { 397 1.1 alc /* 398 1.1 alc * Read the Silicon Revision register and compare that 399 1.1 alc * to what we read at attach time. If the same, we say 400 1.1 alc * a card/device is present. 401 1.1 alc */ 402 1.1 alc return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff)); 403 1.1 alc } 404 1.1 alc 405 1.1 alc /* 406 1.1 alc * Update MIB Counters 407 1.1 alc */ 408 1.1 alc void 409 1.1 alc ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats) 410 1.1 alc { 411 1.1 alc stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL); 412 1.1 alc stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL); 413 1.1 alc stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL); 414 1.1 alc stats->rts_good += OS_REG_READ(ah, AR_RTS_OK); 415 1.1 alc stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT); 416 1.1 alc } 417 1.1 alc 418 1.1 alc HAL_BOOL 419 1.1 alc ar5210SetSifsTime(struct ath_hal *ah, u_int us) 420 1.1 alc { 421 1.1 alc struct ath_hal_5210 *ahp = AH5210(ah); 422 1.1 alc 423 1.1 alc if (us > ath_hal_mac_usec(ah, 0x7ff)) { 424 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n", 425 1.1 alc __func__, us); 426 1.1 alc ahp->ah_sifstime = (u_int) -1; /* restore default handling */ 427 1.1 alc return AH_FALSE; 428 1.1 alc } else { 429 1.1 alc /* convert to system clocks */ 430 1.1 alc OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS, 431 1.1 alc ath_hal_mac_clks(ah, us)); 432 1.1 alc ahp->ah_sifstime = us; 433 1.1 alc return AH_TRUE; 434 1.1 alc } 435 1.1 alc } 436 1.1 alc 437 1.1 alc u_int 438 1.1 alc ar5210GetSifsTime(struct ath_hal *ah) 439 1.1 alc { 440 1.1 alc u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff; 441 1.1 alc return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ 442 1.1 alc } 443 1.1 alc 444 1.1 alc HAL_BOOL 445 1.1 alc ar5210SetSlotTime(struct ath_hal *ah, u_int us) 446 1.1 alc { 447 1.1 alc struct ath_hal_5210 *ahp = AH5210(ah); 448 1.1 alc 449 1.1 alc if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) { 450 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n", 451 1.1 alc __func__, us); 452 1.1 alc ahp->ah_slottime = (u_int) -1; /* restore default handling */ 453 1.1 alc return AH_FALSE; 454 1.1 alc } else { 455 1.1 alc /* convert to system clocks */ 456 1.1 alc OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us)); 457 1.1 alc ahp->ah_slottime = us; 458 1.1 alc return AH_TRUE; 459 1.1 alc } 460 1.1 alc } 461 1.1 alc 462 1.1 alc u_int 463 1.1 alc ar5210GetSlotTime(struct ath_hal *ah) 464 1.1 alc { 465 1.1 alc u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff; 466 1.1 alc return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ 467 1.1 alc } 468 1.1 alc 469 1.1 alc HAL_BOOL 470 1.1 alc ar5210SetAckTimeout(struct ath_hal *ah, u_int us) 471 1.1 alc { 472 1.1 alc struct ath_hal_5210 *ahp = AH5210(ah); 473 1.1 alc 474 1.1 alc if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { 475 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n", 476 1.1 alc __func__, us); 477 1.1 alc ahp->ah_acktimeout = (u_int) -1; /* restore default handling */ 478 1.1 alc return AH_FALSE; 479 1.1 alc } else { 480 1.1 alc /* convert to system clocks */ 481 1.1 alc OS_REG_RMW_FIELD(ah, AR_TIME_OUT, 482 1.1 alc AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us)); 483 1.1 alc ahp->ah_acktimeout = us; 484 1.1 alc return AH_TRUE; 485 1.1 alc } 486 1.1 alc } 487 1.1 alc 488 1.1 alc u_int 489 1.1 alc ar5210GetAckTimeout(struct ath_hal *ah) 490 1.1 alc { 491 1.1 alc u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK); 492 1.1 alc return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ 493 1.1 alc } 494 1.1 alc 495 1.1 alc u_int 496 1.1 alc ar5210GetAckCTSRate(struct ath_hal *ah) 497 1.1 alc { 498 1.1 alc return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0); 499 1.1 alc } 500 1.1 alc 501 1.1 alc HAL_BOOL 502 1.1 alc ar5210SetAckCTSRate(struct ath_hal *ah, u_int high) 503 1.1 alc { 504 1.1 alc struct ath_hal_5210 *ahp = AH5210(ah); 505 1.1 alc 506 1.1 alc if (high) { 507 1.1 alc OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB); 508 1.1 alc ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB; 509 1.1 alc } else { 510 1.1 alc OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB); 511 1.1 alc ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB; 512 1.1 alc } 513 1.1 alc return AH_TRUE; 514 1.1 alc } 515 1.1 alc 516 1.1 alc HAL_BOOL 517 1.1 alc ar5210SetCTSTimeout(struct ath_hal *ah, u_int us) 518 1.1 alc { 519 1.1 alc struct ath_hal_5210 *ahp = AH5210(ah); 520 1.1 alc 521 1.1 alc if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { 522 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n", 523 1.1 alc __func__, us); 524 1.1 alc ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */ 525 1.1 alc return AH_FALSE; 526 1.1 alc } else { 527 1.1 alc /* convert to system clocks */ 528 1.1 alc OS_REG_RMW_FIELD(ah, AR_TIME_OUT, 529 1.1 alc AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us)); 530 1.1 alc ahp->ah_ctstimeout = us; 531 1.1 alc return AH_TRUE; 532 1.1 alc } 533 1.1 alc } 534 1.1 alc 535 1.1 alc u_int 536 1.1 alc ar5210GetCTSTimeout(struct ath_hal *ah) 537 1.1 alc { 538 1.1 alc u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS); 539 1.1 alc return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ 540 1.1 alc } 541 1.1 alc 542 1.1 alc HAL_BOOL 543 1.1 alc ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en) 544 1.1 alc { 545 1.1 alc /* nothing to do */ 546 1.1 alc return AH_TRUE; 547 1.1 alc } 548 1.1 alc 549 1.1 alc void 550 1.1 alc ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now) 551 1.1 alc { 552 1.1 alc } 553 1.1 alc 554 1.1 alc /* 555 1.1 alc * Control Adaptive Noise Immunity Parameters 556 1.1 alc */ 557 1.1 alc HAL_BOOL 558 1.1 alc ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param) 559 1.1 alc { 560 1.1 alc return AH_FALSE; 561 1.1 alc } 562 1.1 alc 563 1.1 alc void 564 1.1 alc ar5210AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, HAL_CHANNEL *chan) 565 1.1 alc { 566 1.1 alc } 567 1.1 alc 568 1.1 alc void 569 1.1 alc ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats) 570 1.1 alc { 571 1.1 alc } 572 1.1 alc 573 1.1 alc #define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC) 574 1.1 alc 575 1.1 alc HAL_STATUS 576 1.1 alc ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, 577 1.1 alc uint32_t capability, uint32_t *result) 578 1.1 alc { 579 1.1 alc 580 1.1 alc switch (type) { 581 1.1 alc case HAL_CAP_CIPHER: /* cipher handled in hardware */ 582 1.1 alc return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP); 583 1.1 alc default: 584 1.1 alc return ath_hal_getcapability(ah, type, capability, result); 585 1.1 alc } 586 1.1 alc } 587 1.1 alc 588 1.1 alc HAL_BOOL 589 1.1 alc ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, 590 1.1 alc uint32_t capability, uint32_t setting, HAL_STATUS *status) 591 1.1 alc { 592 1.1 alc 593 1.1 alc switch (type) { 594 1.1 alc case HAL_CAP_DIAG: /* hardware diagnostic support */ 595 1.1 alc /* 596 1.1 alc * NB: could split this up into virtual capabilities, 597 1.1 alc * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly 598 1.1 alc * seems worth the additional complexity. 599 1.1 alc */ 600 1.1 alc #ifdef AH_DEBUG 601 1.1 alc AH_PRIVATE(ah)->ah_diagreg = setting; 602 1.1 alc #else 603 1.1 alc AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */ 604 1.1 alc #endif 605 1.1 alc OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 606 1.1 alc return AH_TRUE; 607 1.1 alc case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */ 608 1.1 alc return AH_FALSE; /* NB: disallow */ 609 1.1 alc default: 610 1.1 alc return ath_hal_setcapability(ah, type, capability, 611 1.1 alc setting, status); 612 1.1 alc } 613 1.1 alc } 614 1.1 alc 615 1.1 alc HAL_BOOL 616 1.1 alc ar5210GetDiagState(struct ath_hal *ah, int request, 617 1.1 alc const void *args, uint32_t argsize, 618 1.1 alc void **result, uint32_t *resultsize) 619 1.1 alc { 620 1.1 alc #ifdef AH_PRIVATE_DIAG 621 1.1 alc uint32_t pcicfg; 622 1.1 alc HAL_BOOL ok; 623 1.1 alc 624 1.1 alc switch (request) { 625 1.1 alc case HAL_DIAG_EEPROM: 626 1.1 alc /* XXX */ 627 1.1 alc break; 628 1.1 alc case HAL_DIAG_EEREAD: 629 1.1 alc if (argsize != sizeof(uint16_t)) 630 1.1 alc return AH_FALSE; 631 1.1 alc pcicfg = OS_REG_READ(ah, AR_PCICFG); 632 1.1 alc OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL); 633 1.1 alc ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result); 634 1.1 alc OS_REG_WRITE(ah, AR_PCICFG, pcicfg); 635 1.1 alc if (ok) 636 1.1 alc *resultsize = sizeof(uint16_t); 637 1.1 alc return ok; 638 1.1 alc } 639 1.1 alc #endif 640 1.1 alc return ath_hal_getdiagstate(ah, request, 641 1.1 alc args, argsize, result, resultsize); 642 1.1 alc } 643