Home | History | Annotate | Line # | Download | only in ar5210
      1  1.1     alc /*
      2  1.1     alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  1.1     alc  * Copyright (c) 2002-2004 Atheros Communications, Inc.
      4  1.1     alc  *
      5  1.1     alc  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.1     alc  * purpose with or without fee is hereby granted, provided that the above
      7  1.1     alc  * copyright notice and this permission notice appear in all copies.
      8  1.1     alc  *
      9  1.1     alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.1     alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.1     alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.1     alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.1     alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.1     alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.1     alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.1     alc  *
     17  1.2  cegger  * $Id: ar5210_misc.c,v 1.2 2011/03/07 11:25:42 cegger Exp $
     18  1.1     alc  */
     19  1.1     alc #include "opt_ah.h"
     20  1.1     alc 
     21  1.1     alc #include "ah.h"
     22  1.1     alc #include "ah_internal.h"
     23  1.1     alc 
     24  1.1     alc #include "ar5210/ar5210.h"
     25  1.1     alc #include "ar5210/ar5210reg.h"
     26  1.1     alc #include "ar5210/ar5210phy.h"
     27  1.1     alc 
     28  1.1     alc #include "ah_eeprom_v1.h"
     29  1.1     alc 
     30  1.1     alc #define	AR_NUM_GPIO	6		/* 6 GPIO bits */
     31  1.1     alc #define	AR_GPIOD_MASK	0x2f		/* 6-bit mask */
     32  1.1     alc 
     33  1.1     alc void
     34  1.1     alc ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
     35  1.1     alc {
     36  1.1     alc 	struct ath_hal_5210 *ahp = AH5210(ah);
     37  1.1     alc 
     38  1.1     alc 	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
     39  1.1     alc }
     40  1.1     alc 
     41  1.1     alc HAL_BOOL
     42  1.1     alc ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
     43  1.1     alc {
     44  1.1     alc 	struct ath_hal_5210 *ahp = AH5210(ah);
     45  1.1     alc 
     46  1.1     alc 	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
     47  1.1     alc 	return AH_TRUE;
     48  1.1     alc }
     49  1.1     alc 
     50  1.1     alc void
     51  1.1     alc ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
     52  1.1     alc {
     53  1.1     alc 	static const uint8_t ones[IEEE80211_ADDR_LEN] =
     54  1.1     alc 		{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
     55  1.1     alc 	OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
     56  1.1     alc }
     57  1.1     alc 
     58  1.1     alc HAL_BOOL
     59  1.1     alc ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
     60  1.1     alc {
     61  1.1     alc 	return AH_FALSE;
     62  1.1     alc }
     63  1.1     alc 
     64  1.1     alc /*
     65  1.1     alc  * Read 16 bits of data from the specified EEPROM offset.
     66  1.1     alc  */
     67  1.1     alc HAL_BOOL
     68  1.1     alc ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
     69  1.1     alc {
     70  1.1     alc 	(void) OS_REG_READ(ah, AR_EP_AIR(off));	/* activate read op */
     71  1.1     alc 	if (!ath_hal_wait(ah, AR_EP_STA,
     72  1.1     alc 	    AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
     73  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
     74  1.1     alc 		    __func__, AR_EP_AIR(off));
     75  1.1     alc 		return AH_FALSE;
     76  1.1     alc 	}
     77  1.1     alc 	*data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
     78  1.1     alc 	return AH_TRUE;
     79  1.1     alc }
     80  1.1     alc 
     81  1.1     alc #ifdef AH_SUPPORT_WRITE_EEPROM
     82  1.1     alc /*
     83  1.1     alc  * Write 16 bits of data to the specified EEPROM offset.
     84  1.1     alc  */
     85  1.1     alc HAL_BOOL
     86  1.1     alc ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
     87  1.1     alc {
     88  1.1     alc 	return AH_FALSE;
     89  1.1     alc }
     90  1.1     alc #endif /* AH_SUPPORT_WRITE_EEPROM */
     91  1.1     alc 
     92  1.1     alc /*
     93  1.1     alc  * Attempt to change the cards operating regulatory domain to the given value
     94  1.1     alc  */
     95  1.1     alc HAL_BOOL
     96  1.1     alc ar5210SetRegulatoryDomain(struct ath_hal *ah,
     97  1.1     alc 	uint16_t regDomain, HAL_STATUS *status)
     98  1.1     alc {
     99  1.1     alc 	HAL_STATUS ecode;
    100  1.1     alc 
    101  1.1     alc 	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
    102  1.1     alc 		ecode = HAL_EINVAL;
    103  1.1     alc 		goto bad;
    104  1.1     alc 	}
    105  1.1     alc 	/*
    106  1.1     alc 	 * Check if EEPROM is configured to allow this; must
    107  1.1     alc 	 * be a proper version and the protection bits must
    108  1.1     alc 	 * permit re-writing that segment of the EEPROM.
    109  1.1     alc 	 */
    110  1.1     alc 	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
    111  1.1     alc 		ecode = HAL_EEWRITE;
    112  1.1     alc 		goto bad;
    113  1.1     alc 	}
    114  1.1     alc 	ecode = HAL_EIO;		/* disallow all writes */
    115  1.1     alc bad:
    116  1.1     alc 	if (status)
    117  1.1     alc 		*status = ecode;
    118  1.1     alc 	return AH_FALSE;
    119  1.1     alc }
    120  1.1     alc 
    121  1.1     alc /*
    122  1.1     alc  * Return the wireless modes (a,b,g,t) supported by hardware.
    123  1.1     alc  *
    124  1.1     alc  * This value is what is actually supported by the hardware
    125  1.1     alc  * and is unaffected by regulatory/country code settings.
    126  1.1     alc  *
    127  1.1     alc  */
    128  1.1     alc u_int
    129  1.1     alc ar5210GetWirelessModes(struct ath_hal *ah)
    130  1.1     alc {
    131  1.1     alc 	/* XXX could enable turbo mode but can't do all rates */
    132  1.1     alc 	return HAL_MODE_11A;
    133  1.1     alc }
    134  1.1     alc 
    135  1.1     alc /*
    136  1.1     alc  * Called if RfKill is supported (according to EEPROM).  Set the interrupt and
    137  1.1     alc  * GPIO values so the ISR and can disable RF on a switch signal
    138  1.1     alc  */
    139  1.1     alc void
    140  1.1     alc ar5210EnableRfKill(struct ath_hal *ah)
    141  1.1     alc {
    142  1.1     alc 	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
    143  1.1     alc 	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
    144  1.1     alc 	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
    145  1.1     alc 
    146  1.1     alc 	/*
    147  1.1     alc 	 * If radio disable switch connection to GPIO bit 0 is enabled
    148  1.1     alc 	 * program GPIO interrupt.
    149  1.1     alc 	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
    150  1.1     alc 	 * verified that it is a later version of eeprom, it has a place for
    151  1.1     alc 	 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
    152  1.1     alc 	 * connection is present.
    153  1.1     alc 	 */
    154  1.1     alc 	ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
    155  1.1     alc }
    156  1.1     alc 
    157  1.1     alc /*
    158  1.1     alc  * Configure GPIO Output lines
    159  1.1     alc  */
    160  1.1     alc HAL_BOOL
    161  1.2  cegger ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
    162  1.1     alc {
    163  1.1     alc 	HALASSERT(gpio < AR_NUM_GPIO);
    164  1.1     alc 
    165  1.1     alc 	OS_REG_WRITE(ah, AR_GPIOCR,
    166  1.1     alc 		  (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
    167  1.1     alc 		| AR_GPIOCR_OUT1(gpio));
    168  1.1     alc 
    169  1.1     alc 	return AH_TRUE;
    170  1.1     alc }
    171  1.1     alc 
    172  1.1     alc /*
    173  1.1     alc  * Configure GPIO Input lines
    174  1.1     alc  */
    175  1.1     alc HAL_BOOL
    176  1.1     alc ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
    177  1.1     alc {
    178  1.1     alc 	HALASSERT(gpio < AR_NUM_GPIO);
    179  1.1     alc 
    180  1.1     alc 	OS_REG_WRITE(ah, AR_GPIOCR,
    181  1.1     alc 		  (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
    182  1.1     alc 		| AR_GPIOCR_IN(gpio));
    183  1.1     alc 
    184  1.1     alc 	return AH_TRUE;
    185  1.1     alc }
    186  1.1     alc 
    187  1.1     alc /*
    188  1.1     alc  * Once configured for I/O - set output lines
    189  1.1     alc  */
    190  1.1     alc HAL_BOOL
    191  1.1     alc ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
    192  1.1     alc {
    193  1.1     alc 	uint32_t reg;
    194  1.1     alc 
    195  1.1     alc 	HALASSERT(gpio < AR_NUM_GPIO);
    196  1.1     alc 
    197  1.1     alc 	reg =  OS_REG_READ(ah, AR_GPIODO);
    198  1.1     alc 	reg &= ~(1 << gpio);
    199  1.1     alc 	reg |= (val&1) << gpio;
    200  1.1     alc 
    201  1.1     alc 	OS_REG_WRITE(ah, AR_GPIODO, reg);
    202  1.1     alc 	return AH_TRUE;
    203  1.1     alc }
    204  1.1     alc 
    205  1.1     alc /*
    206  1.1     alc  * Once configured for I/O - get input lines
    207  1.1     alc  */
    208  1.1     alc uint32_t
    209  1.1     alc ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
    210  1.1     alc {
    211  1.1     alc 	if (gpio < AR_NUM_GPIO) {
    212  1.1     alc 		uint32_t val = OS_REG_READ(ah, AR_GPIODI);
    213  1.1     alc 		val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
    214  1.1     alc 		return val;
    215  1.1     alc 	} else  {
    216  1.1     alc 		return 0xffffffff;
    217  1.1     alc 	}
    218  1.1     alc }
    219  1.1     alc 
    220  1.1     alc /*
    221  1.1     alc  * Set the GPIO 0 Interrupt
    222  1.1     alc  */
    223  1.1     alc void
    224  1.1     alc ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
    225  1.1     alc {
    226  1.1     alc 	uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
    227  1.1     alc 
    228  1.1     alc 	/* Clear the bits that we will modify. */
    229  1.1     alc 	val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
    230  1.1     alc 			AR_GPIOCR_ALL(gpio));
    231  1.1     alc 
    232  1.1     alc 	val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
    233  1.1     alc 	if (ilevel)
    234  1.1     alc 		val |= AR_GPIOCR_INT_SELH;
    235  1.1     alc 
    236  1.1     alc 	/* Don't need to change anything for low level interrupt. */
    237  1.1     alc 	OS_REG_WRITE(ah, AR_GPIOCR, val);
    238  1.1     alc 
    239  1.1     alc 	/* Change the interrupt mask. */
    240  1.1     alc 	ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
    241  1.1     alc }
    242  1.1     alc 
    243  1.1     alc /*
    244  1.1     alc  * Change the LED blinking pattern to correspond to the connectivity
    245  1.1     alc  */
    246  1.1     alc void
    247  1.1     alc ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
    248  1.1     alc {
    249  1.1     alc 	uint32_t val;
    250  1.1     alc 
    251  1.1     alc 	val = OS_REG_READ(ah, AR_PCICFG);
    252  1.1     alc 	switch (state) {
    253  1.1     alc 	case HAL_LED_INIT:
    254  1.1     alc 		val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
    255  1.1     alc 		break;
    256  1.1     alc 	case HAL_LED_RUN:
    257  1.1     alc 		/* normal blink when connected */
    258  1.1     alc 		val &= ~AR_PCICFG_LED_PEND;
    259  1.1     alc 		val |= AR_PCICFG_LED_ACT;
    260  1.1     alc 		break;
    261  1.1     alc 	default:
    262  1.1     alc 		val |= AR_PCICFG_LED_PEND;
    263  1.1     alc 		val &= ~AR_PCICFG_LED_ACT;
    264  1.1     alc 		break;
    265  1.1     alc 	}
    266  1.1     alc 	OS_REG_WRITE(ah, AR_PCICFG, val);
    267  1.1     alc }
    268  1.1     alc 
    269  1.1     alc /*
    270  1.1     alc  * Return 1 or 2 for the corresponding antenna that is in use
    271  1.1     alc  */
    272  1.1     alc u_int
    273  1.1     alc ar5210GetDefAntenna(struct ath_hal *ah)
    274  1.1     alc {
    275  1.1     alc 	uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
    276  1.1     alc 	return (val & AR_STA_ID1_DEFAULT_ANTENNA ?  2 : 1);
    277  1.1     alc }
    278  1.1     alc 
    279  1.1     alc void
    280  1.1     alc ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
    281  1.1     alc {
    282  1.1     alc 	uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
    283  1.1     alc 
    284  1.1     alc 	if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ?  2 : 1)) {
    285  1.1     alc 		/*
    286  1.1     alc 		 * Antenna change requested, force a toggle of the default.
    287  1.1     alc 		 */
    288  1.1     alc 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
    289  1.1     alc 	}
    290  1.1     alc }
    291  1.1     alc 
    292  1.1     alc HAL_ANT_SETTING
    293  1.1     alc ar5210GetAntennaSwitch(struct ath_hal *ah)
    294  1.1     alc {
    295  1.1     alc 	return HAL_ANT_VARIABLE;
    296  1.1     alc }
    297  1.1     alc 
    298  1.1     alc HAL_BOOL
    299  1.1     alc ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
    300  1.1     alc {
    301  1.1     alc 	/* XXX not sure how to fix antenna */
    302  1.1     alc 	return (settings == HAL_ANT_VARIABLE);
    303  1.1     alc }
    304  1.1     alc 
    305  1.1     alc /*
    306  1.1     alc  * Change association related fields programmed into the hardware.
    307  1.1     alc  * Writing a valid BSSID to the hardware effectively enables the hardware
    308  1.1     alc  * to synchronize its TSF to the correct beacons and receive frames coming
    309  1.1     alc  * from that BSSID. It is called by the SME JOIN operation.
    310  1.1     alc  */
    311  1.1     alc void
    312  1.1     alc ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
    313  1.1     alc {
    314  1.1     alc 	struct ath_hal_5210 *ahp = AH5210(ah);
    315  1.1     alc 
    316  1.1     alc 	/* XXX save bssid for possible re-use on reset */
    317  1.1     alc 	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
    318  1.1     alc 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
    319  1.1     alc 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
    320  1.1     alc 				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
    321  1.1     alc 	if (assocId == 0)
    322  1.1     alc 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
    323  1.1     alc 	else
    324  1.1     alc 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
    325  1.1     alc }
    326  1.1     alc 
    327  1.1     alc /*
    328  1.1     alc  * Get the current hardware tsf for stamlme.
    329  1.1     alc  */
    330  1.1     alc uint64_t
    331  1.1     alc ar5210GetTsf64(struct ath_hal *ah)
    332  1.1     alc {
    333  1.1     alc 	uint32_t low1, low2, u32;
    334  1.1     alc 
    335  1.1     alc 	/* sync multi-word read */
    336  1.1     alc 	low1 = OS_REG_READ(ah, AR_TSF_L32);
    337  1.1     alc 	u32 = OS_REG_READ(ah, AR_TSF_U32);
    338  1.1     alc 	low2 = OS_REG_READ(ah, AR_TSF_L32);
    339  1.1     alc 	if (low2 < low1) {	/* roll over */
    340  1.1     alc 		/*
    341  1.1     alc 		 * If we are not preempted this will work.  If we are
    342  1.1     alc 		 * then we re-reading AR_TSF_U32 does no good as the
    343  1.1     alc 		 * low bits will be meaningless.  Likewise reading
    344  1.1     alc 		 * L32, U32, U32, then comparing the last two reads
    345  1.1     alc 		 * to check for rollover doesn't help if preempted--so
    346  1.1     alc 		 * we take this approach as it costs one less PCI
    347  1.1     alc 		 * read which can be noticeable when doing things
    348  1.1     alc 		 * like timestamping packets in monitor mode.
    349  1.1     alc 		 */
    350  1.1     alc 		u32++;
    351  1.1     alc 	}
    352  1.1     alc 	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
    353  1.1     alc }
    354  1.1     alc 
    355  1.1     alc /*
    356  1.1     alc  * Get the current hardware tsf for stamlme.
    357  1.1     alc  */
    358  1.1     alc uint32_t
    359  1.1     alc ar5210GetTsf32(struct ath_hal *ah)
    360  1.1     alc {
    361  1.1     alc 	return OS_REG_READ(ah, AR_TSF_L32);
    362  1.1     alc }
    363  1.1     alc 
    364  1.1     alc /*
    365  1.1     alc  * Reset the current hardware tsf for stamlme
    366  1.1     alc  */
    367  1.1     alc void
    368  1.1     alc ar5210ResetTsf(struct ath_hal *ah)
    369  1.1     alc {
    370  1.1     alc 	uint32_t val = OS_REG_READ(ah, AR_BEACON);
    371  1.1     alc 
    372  1.1     alc 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
    373  1.1     alc }
    374  1.1     alc 
    375  1.1     alc /*
    376  1.1     alc  * Grab a semi-random value from hardware registers - may not
    377  1.1     alc  * change often
    378  1.1     alc  */
    379  1.1     alc uint32_t
    380  1.1     alc ar5210GetRandomSeed(struct ath_hal *ah)
    381  1.1     alc {
    382  1.1     alc 	uint32_t nf;
    383  1.1     alc 
    384  1.1     alc 	nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
    385  1.1     alc 	if (nf & 0x100)
    386  1.1     alc 		nf = 0 - ((nf ^ 0x1ff) + 1);
    387  1.1     alc 	return (OS_REG_READ(ah, AR_TSF_U32) ^
    388  1.1     alc 		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
    389  1.1     alc }
    390  1.1     alc 
    391  1.1     alc /*
    392  1.1     alc  * Detect if our card is present
    393  1.1     alc  */
    394  1.1     alc HAL_BOOL
    395  1.1     alc ar5210DetectCardPresent(struct ath_hal *ah)
    396  1.1     alc {
    397  1.1     alc 	/*
    398  1.1     alc 	 * Read the Silicon Revision register and compare that
    399  1.1     alc 	 * to what we read at attach time.  If the same, we say
    400  1.1     alc 	 * a card/device is present.
    401  1.1     alc 	 */
    402  1.1     alc 	return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
    403  1.1     alc }
    404  1.1     alc 
    405  1.1     alc /*
    406  1.1     alc  * Update MIB Counters
    407  1.1     alc  */
    408  1.1     alc void
    409  1.1     alc ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
    410  1.1     alc {
    411  1.1     alc 	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
    412  1.1     alc 	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
    413  1.1     alc 	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
    414  1.1     alc 	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
    415  1.1     alc 	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
    416  1.1     alc }
    417  1.1     alc 
    418  1.1     alc HAL_BOOL
    419  1.1     alc ar5210SetSifsTime(struct ath_hal *ah, u_int us)
    420  1.1     alc {
    421  1.1     alc 	struct ath_hal_5210 *ahp = AH5210(ah);
    422  1.1     alc 
    423  1.1     alc 	if (us > ath_hal_mac_usec(ah, 0x7ff)) {
    424  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
    425  1.1     alc 		    __func__, us);
    426  1.1     alc 		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
    427  1.1     alc 		return AH_FALSE;
    428  1.1     alc 	} else {
    429  1.1     alc 		/* convert to system clocks */
    430  1.1     alc 		OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
    431  1.1     alc 		    ath_hal_mac_clks(ah, us));
    432  1.1     alc 		ahp->ah_sifstime = us;
    433  1.1     alc 		return AH_TRUE;
    434  1.1     alc 	}
    435  1.1     alc }
    436  1.1     alc 
    437  1.1     alc u_int
    438  1.1     alc ar5210GetSifsTime(struct ath_hal *ah)
    439  1.1     alc {
    440  1.1     alc 	u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
    441  1.1     alc 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
    442  1.1     alc }
    443  1.1     alc 
    444  1.1     alc HAL_BOOL
    445  1.1     alc ar5210SetSlotTime(struct ath_hal *ah, u_int us)
    446  1.1     alc {
    447  1.1     alc 	struct ath_hal_5210 *ahp = AH5210(ah);
    448  1.1     alc 
    449  1.1     alc 	if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
    450  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
    451  1.1     alc 		    __func__, us);
    452  1.1     alc 		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
    453  1.1     alc 		return AH_FALSE;
    454  1.1     alc 	} else {
    455  1.1     alc 		/* convert to system clocks */
    456  1.1     alc 		OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
    457  1.1     alc 		ahp->ah_slottime = us;
    458  1.1     alc 		return AH_TRUE;
    459  1.1     alc 	}
    460  1.1     alc }
    461  1.1     alc 
    462  1.1     alc u_int
    463  1.1     alc ar5210GetSlotTime(struct ath_hal *ah)
    464  1.1     alc {
    465  1.1     alc 	u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
    466  1.1     alc 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
    467  1.1     alc }
    468  1.1     alc 
    469  1.1     alc HAL_BOOL
    470  1.1     alc ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
    471  1.1     alc {
    472  1.1     alc 	struct ath_hal_5210 *ahp = AH5210(ah);
    473  1.1     alc 
    474  1.1     alc 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
    475  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
    476  1.1     alc 		    __func__, us);
    477  1.1     alc 		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
    478  1.1     alc 		return AH_FALSE;
    479  1.1     alc 	} else {
    480  1.1     alc 		/* convert to system clocks */
    481  1.1     alc 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
    482  1.1     alc 			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
    483  1.1     alc 		ahp->ah_acktimeout = us;
    484  1.1     alc 		return AH_TRUE;
    485  1.1     alc 	}
    486  1.1     alc }
    487  1.1     alc 
    488  1.1     alc u_int
    489  1.1     alc ar5210GetAckTimeout(struct ath_hal *ah)
    490  1.1     alc {
    491  1.1     alc 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
    492  1.1     alc 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
    493  1.1     alc }
    494  1.1     alc 
    495  1.1     alc u_int
    496  1.1     alc ar5210GetAckCTSRate(struct ath_hal *ah)
    497  1.1     alc {
    498  1.1     alc 	return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
    499  1.1     alc }
    500  1.1     alc 
    501  1.1     alc HAL_BOOL
    502  1.1     alc ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
    503  1.1     alc {
    504  1.1     alc 	struct ath_hal_5210 *ahp = AH5210(ah);
    505  1.1     alc 
    506  1.1     alc 	if (high) {
    507  1.1     alc 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
    508  1.1     alc 		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
    509  1.1     alc 	} else {
    510  1.1     alc 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
    511  1.1     alc 		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
    512  1.1     alc 	}
    513  1.1     alc 	return AH_TRUE;
    514  1.1     alc }
    515  1.1     alc 
    516  1.1     alc HAL_BOOL
    517  1.1     alc ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
    518  1.1     alc {
    519  1.1     alc 	struct ath_hal_5210 *ahp = AH5210(ah);
    520  1.1     alc 
    521  1.1     alc 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
    522  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
    523  1.1     alc 		    __func__, us);
    524  1.1     alc 		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
    525  1.1     alc 		return AH_FALSE;
    526  1.1     alc 	} else {
    527  1.1     alc 		/* convert to system clocks */
    528  1.1     alc 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
    529  1.1     alc 			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
    530  1.1     alc 		ahp->ah_ctstimeout = us;
    531  1.1     alc 		return AH_TRUE;
    532  1.1     alc 	}
    533  1.1     alc }
    534  1.1     alc 
    535  1.1     alc u_int
    536  1.1     alc ar5210GetCTSTimeout(struct ath_hal *ah)
    537  1.1     alc {
    538  1.1     alc 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
    539  1.1     alc 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
    540  1.1     alc }
    541  1.1     alc 
    542  1.1     alc HAL_BOOL
    543  1.1     alc ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
    544  1.1     alc {
    545  1.1     alc 	/* nothing to do */
    546  1.1     alc         return AH_TRUE;
    547  1.1     alc }
    548  1.1     alc 
    549  1.1     alc void
    550  1.1     alc ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
    551  1.1     alc {
    552  1.1     alc }
    553  1.1     alc 
    554  1.1     alc /*
    555  1.1     alc  * Control Adaptive Noise Immunity Parameters
    556  1.1     alc  */
    557  1.1     alc HAL_BOOL
    558  1.1     alc ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
    559  1.1     alc {
    560  1.1     alc 	return AH_FALSE;
    561  1.1     alc }
    562  1.1     alc 
    563  1.1     alc void
    564  1.1     alc ar5210AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, HAL_CHANNEL *chan)
    565  1.1     alc {
    566  1.1     alc }
    567  1.1     alc 
    568  1.1     alc void
    569  1.1     alc ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
    570  1.1     alc {
    571  1.1     alc }
    572  1.1     alc 
    573  1.1     alc #define	AR_DIAG_SW_DIS_CRYPTO	(AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
    574  1.1     alc 
    575  1.1     alc HAL_STATUS
    576  1.1     alc ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
    577  1.1     alc 	uint32_t capability, uint32_t *result)
    578  1.1     alc {
    579  1.1     alc 
    580  1.1     alc 	switch (type) {
    581  1.1     alc 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
    582  1.1     alc 		return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
    583  1.1     alc 	default:
    584  1.1     alc 		return ath_hal_getcapability(ah, type, capability, result);
    585  1.1     alc 	}
    586  1.1     alc }
    587  1.1     alc 
    588  1.1     alc HAL_BOOL
    589  1.1     alc ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
    590  1.1     alc 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
    591  1.1     alc {
    592  1.1     alc 
    593  1.1     alc 	switch (type) {
    594  1.1     alc 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
    595  1.1     alc 		/*
    596  1.1     alc 		 * NB: could split this up into virtual capabilities,
    597  1.1     alc 		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
    598  1.1     alc 		 *     seems worth the additional complexity.
    599  1.1     alc 		 */
    600  1.1     alc #ifdef AH_DEBUG
    601  1.1     alc 		AH_PRIVATE(ah)->ah_diagreg = setting;
    602  1.1     alc #else
    603  1.1     alc 		AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;	/* ACK+CTS */
    604  1.1     alc #endif
    605  1.1     alc 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
    606  1.1     alc 		return AH_TRUE;
    607  1.1     alc 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
    608  1.1     alc 		return AH_FALSE;	/* NB: disallow */
    609  1.1     alc 	default:
    610  1.1     alc 		return ath_hal_setcapability(ah, type, capability,
    611  1.1     alc 			setting, status);
    612  1.1     alc 	}
    613  1.1     alc }
    614  1.1     alc 
    615  1.1     alc HAL_BOOL
    616  1.1     alc ar5210GetDiagState(struct ath_hal *ah, int request,
    617  1.1     alc 	const void *args, uint32_t argsize,
    618  1.1     alc 	void **result, uint32_t *resultsize)
    619  1.1     alc {
    620  1.1     alc #ifdef AH_PRIVATE_DIAG
    621  1.1     alc 	uint32_t pcicfg;
    622  1.1     alc 	HAL_BOOL ok;
    623  1.1     alc 
    624  1.1     alc 	switch (request) {
    625  1.1     alc 	case HAL_DIAG_EEPROM:
    626  1.1     alc 		/* XXX */
    627  1.1     alc 		break;
    628  1.1     alc 	case HAL_DIAG_EEREAD:
    629  1.1     alc 		if (argsize != sizeof(uint16_t))
    630  1.1     alc 			return AH_FALSE;
    631  1.1     alc 		pcicfg = OS_REG_READ(ah, AR_PCICFG);
    632  1.1     alc 		OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
    633  1.1     alc 		ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
    634  1.1     alc 		OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
    635  1.1     alc 		if (ok)
    636  1.1     alc 			*resultsize = sizeof(uint16_t);
    637  1.1     alc 		return ok;
    638  1.1     alc 	}
    639  1.1     alc #endif
    640  1.1     alc 	return ath_hal_getdiagstate(ah, request,
    641  1.1     alc 		args, argsize, result, resultsize);
    642  1.1     alc }
    643