ar5210_reset.c revision 1.2 1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5210_reset.c,v 1.2 2008/12/11 05:30:29 alc Exp $
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
27
28 #include "ah_eeprom_v1.h"
29
30 typedef struct {
31 uint32_t Offset;
32 uint32_t Value;
33 } REGISTER_VAL;
34
35 static const REGISTER_VAL ar5k0007_init[] = {
36 #include "ar5210/ar5k_0007.ini"
37 };
38
39 /* Default Power Settings for channels outside of EEPROM range */
40 static const uint8_t ar5k0007_pwrSettings[17] = {
41 /* gain delta pc dac */
42 /* 54 48 36 24 18 12 9 54 48 36 24 18 12 9 6 ob db */
43 9, 9, 0, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2
44 };
45
46 /*
47 * The delay, in usecs, between writing AR_RC with a reset
48 * request and waiting for the chip to settle. If this is
49 * too short then the chip does not come out of sleep state.
50 * Note this value was empirically derived and may be dependent
51 * on the host machine (don't know--the problem was identified
52 * on an IBM 570e laptop; 10us delays worked on other systems).
53 */
54 #define AR_RC_SETTLE_TIME 20000
55
56 static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57 uint32_t resetMask, u_int waitTime);
58 static HAL_BOOL ar5210SetChannel(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
59 static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
60
61 /*
62 * Places the device in and out of reset and then places sane
63 * values in the registers based on EEPROM config, initialization
64 * vectors (as determined by the mode), and station configuration
65 *
66 * bChannelChange is used to preserve DMA/PCU registers across
67 * a HW Reset during channel change.
68 */
69 HAL_BOOL
70 ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71 HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
72 {
73 #define N(a) (sizeof (a) /sizeof (a[0]))
74 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
75 struct ath_hal_5210 *ahp = AH5210(ah);
76 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
77 HAL_CHANNEL_INTERNAL *ichan;
78 HAL_STATUS ecode;
79 uint32_t ledstate;
80 int i, q;
81
82 HALDEBUG(ah, HAL_DEBUG_RESET,
83 "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
84 opmode, chan->channel, chan->channelFlags,
85 bChannelChange ? "change" : "same");
86
87 if ((chan->channelFlags & CHANNEL_5GHZ) == 0) {
88 /* Only 11a mode */
89 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5Ghz\n", __func__);
90 FAIL(HAL_EINVAL);
91 }
92 /*
93 * Map public channel to private.
94 */
95 ichan = ath_hal_checkchannel(ah, chan);
96 if (ichan == AH_NULL) {
97 HALDEBUG(ah, HAL_DEBUG_ANY,
98 "%s: invalid channel %u/0x%x; no mapping\n",
99 __func__, chan->channel, chan->channelFlags);
100 FAIL(HAL_EINVAL);
101 }
102 switch (opmode) {
103 case HAL_M_STA:
104 case HAL_M_IBSS:
105 case HAL_M_HOSTAP:
106 case HAL_M_MONITOR:
107 break;
108 default:
109 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
110 __func__, opmode);
111 FAIL(HAL_EINVAL);
112 break;
113 }
114
115 ledstate = OS_REG_READ(ah, AR_PCICFG) &
116 (AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
117
118 if (!ar5210ChipReset(ah, chan)) {
119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
120 __func__);
121 FAIL(HAL_EIO);
122 }
123
124 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
125 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
126 ar5210SetOperatingMode(ah, opmode);
127
128 switch (opmode) {
129 case HAL_M_HOSTAP:
130 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
131 OS_REG_WRITE(ah, AR_PCICFG,
132 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
133 break;
134 case HAL_M_IBSS:
135 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
136 OS_REG_WRITE(ah, AR_PCICFG,
137 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
138 break;
139 case HAL_M_STA:
140 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
141 OS_REG_WRITE(ah, AR_PCICFG,
142 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
143 break;
144 case HAL_M_MONITOR:
145 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
146 OS_REG_WRITE(ah, AR_PCICFG,
147 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
148 break;
149 }
150
151 /* Restore previous led state */
152 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
153
154 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
155 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
156
157 OS_REG_WRITE(ah, AR_TXDP0, 0);
158 OS_REG_WRITE(ah, AR_TXDP1, 0);
159 OS_REG_WRITE(ah, AR_RXDP, 0);
160
161 /*
162 * Initialize interrupt state.
163 */
164 (void) OS_REG_READ(ah, AR_ISR); /* cleared on read */
165 OS_REG_WRITE(ah, AR_IMR, 0);
166 OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
167 ahp->ah_maskReg = 0;
168
169 (void) OS_REG_READ(ah, AR_BSR); /* cleared on read */
170 OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
171 OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
172
173 OS_REG_WRITE(ah, AR_TOPS, 8); /* timeout prescale */
174 OS_REG_WRITE(ah, AR_RXNOFRM, 8); /* RX no frame timeout */
175 OS_REG_WRITE(ah, AR_RPGTO, 0); /* RX frame gap timeout */
176 OS_REG_WRITE(ah, AR_TXNOFRM, 0); /* TX no frame timeout */
177
178 OS_REG_WRITE(ah, AR_SFR, 0);
179 OS_REG_WRITE(ah, AR_MIBC, 0); /* unfreeze ctrs + clr state */
180 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
181 OS_REG_WRITE(ah, AR_CFP_DUR, 0);
182
183 ar5210SetRxFilter(ah, 0); /* nothing for now */
184 OS_REG_WRITE(ah, AR_MCAST_FIL0, 0); /* multicast filter */
185 OS_REG_WRITE(ah, AR_MCAST_FIL1, 0); /* XXX was 2 */
186
187 OS_REG_WRITE(ah, AR_TX_MASK0, 0);
188 OS_REG_WRITE(ah, AR_TX_MASK1, 0);
189 OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
190 OS_REG_WRITE(ah, AR_TRIG_LEV, 1); /* minimum */
191
192 OS_REG_WRITE(ah, AR_DIAG_SW, 0);
193
194 OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
195 OS_REG_WRITE(ah, AR_TIMER0, 0); /* next beacon time */
196 OS_REG_WRITE(ah, AR_TSF_L32, 0); /* local clock */
197 OS_REG_WRITE(ah, AR_TIMER1, ~0); /* next DMA beacon alert */
198 OS_REG_WRITE(ah, AR_TIMER2, ~0); /* next SW beacon alert */
199 OS_REG_WRITE(ah, AR_TIMER3, 1); /* next ATIM window */
200
201 /* Write the INI values for PHYreg initialization */
202 for (i = 0; i < N(ar5k0007_init); i++) {
203 uint32_t reg = ar5k0007_init[i].Offset;
204 /* On channel change, don't reset the PCU registers */
205 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
206 OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
207 }
208
209 /* Setup the transmit power values for cards since 0x0[0-2]05 */
210 if (!ar5210SetTransmitPower(ah, chan)) {
211 HALDEBUG(ah, HAL_DEBUG_ANY,
212 "%s: error init'ing transmit power\n", __func__);
213 FAIL(HAL_EIO);
214 }
215
216 OS_REG_WRITE(ah, AR_PHY(10),
217 (OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
218 (ee->ee_xlnaOn << 8));
219 OS_REG_WRITE(ah, AR_PHY(13),
220 (ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
221 (ee->ee_xpaOn << 8) | ee->ee_xpaOn);
222 OS_REG_WRITE(ah, AR_PHY(17),
223 (OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
224 ((ee->ee_antenna >> 1) & 0x3F80));
225 OS_REG_WRITE(ah, AR_PHY(18),
226 (OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
227 ((ee->ee_antenna << 10) & 0x3F000));
228 OS_REG_WRITE(ah, AR_PHY(25),
229 (OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
230 ((ee->ee_thresh62 << 12) & 0x7F000));
231 OS_REG_WRITE(ah, AR_PHY(68),
232 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
233 (ee->ee_antenna & 0x3));
234
235 if (!ar5210SetChannel(ah, ichan)) {
236 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
237 __func__);
238 FAIL(HAL_EIO);
239 }
240 if (bChannelChange) {
241 if (!(ichan->privFlags & CHANNEL_DFS))
242 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
243 chan->channelFlags = ichan->channelFlags;
244 chan->privFlags = ichan->privFlags;
245 }
246
247 /* Activate the PHY */
248 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
249
250 OS_DELAY(1000); /* Wait a bit (1 msec) */
251
252 /* calibrate the HW and poll the bit going to 0 for completion */
253 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
254 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
255 (void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
256
257 /* Perform noise floor calibration and set status */
258 if (!ar5210CalNoiseFloor(ah, ichan)) {
259 chan->channelFlags |= CHANNEL_CW_INT;
260 HALDEBUG(ah, HAL_DEBUG_ANY,
261 "%s: noise floor calibration failed\n", __func__);
262 FAIL(HAL_EIO);
263 }
264
265 for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
266 ar5210ResetTxQueue(ah, q);
267
268 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
269 ar5210EnableRfKill(ah);
270
271 /*
272 * Writing to AR_BEACON will start timers. Hence it should be
273 * the last register to be written. Do not reset tsf, do not
274 * enable beacons at this point, but preserve other values
275 * like beaconInterval.
276 */
277 OS_REG_WRITE(ah, AR_BEACON,
278 (OS_REG_READ(ah, AR_BEACON) &
279 ~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
280
281 /* Restore user-specified slot time and timeouts */
282 if (ahp->ah_sifstime != (u_int) -1)
283 ar5210SetSifsTime(ah, ahp->ah_sifstime);
284 if (ahp->ah_slottime != (u_int) -1)
285 ar5210SetSlotTime(ah, ahp->ah_slottime);
286 if (ahp->ah_acktimeout != (u_int) -1)
287 ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
288 if (ahp->ah_ctstimeout != (u_int) -1)
289 ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
290 if (AH_PRIVATE(ah)->ah_diagreg != 0)
291 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
292
293 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
294
295 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
296
297 return AH_TRUE;
298 bad:
299 if (*status)
300 *status = ecode;
301 return AH_FALSE;
302 #undef FAIL
303 #undef N
304 }
305
306 static void
307 ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
308 {
309 struct ath_hal_5210 *ahp = AH5210(ah);
310 uint32_t val;
311
312 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
313 switch (opmode) {
314 case HAL_M_HOSTAP:
315 OS_REG_WRITE(ah, AR_STA_ID1, val
316 | AR_STA_ID1_AP
317 | AR_STA_ID1_NO_PSPOLL
318 | AR_STA_ID1_DESC_ANTENNA
319 | ahp->ah_staId1Defaults);
320 break;
321 case HAL_M_IBSS:
322 OS_REG_WRITE(ah, AR_STA_ID1, val
323 | AR_STA_ID1_ADHOC
324 | AR_STA_ID1_NO_PSPOLL
325 | AR_STA_ID1_DESC_ANTENNA
326 | ahp->ah_staId1Defaults);
327 break;
328 case HAL_M_STA:
329 OS_REG_WRITE(ah, AR_STA_ID1, val
330 | AR_STA_ID1_NO_PSPOLL
331 | AR_STA_ID1_PWR_SV
332 | ahp->ah_staId1Defaults);
333 break;
334 case HAL_M_MONITOR:
335 OS_REG_WRITE(ah, AR_STA_ID1, val
336 | AR_STA_ID1_NO_PSPOLL
337 | ahp->ah_staId1Defaults);
338 break;
339 }
340 }
341
342 void
343 ar5210SetPCUConfig(struct ath_hal *ah)
344 {
345 ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
346 }
347
348 /*
349 * Places the PHY and Radio chips into reset. A full reset
350 * must be called to leave this state. The PCI/MAC/PCU are
351 * not placed into reset as we must receive interrupt to
352 * re-enable the hardware.
353 */
354 HAL_BOOL
355 ar5210PhyDisable(struct ath_hal *ah)
356 {
357 return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
358 }
359
360 /*
361 * Places all of hardware into reset
362 */
363 HAL_BOOL
364 ar5210Disable(struct ath_hal *ah)
365 {
366 #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
367 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
368 return AH_FALSE;
369
370 /*
371 * Reset the HW - PCI must be reset after the rest of the
372 * device has been reset
373 */
374 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
375 return AH_FALSE;
376 OS_DELAY(1000);
377 (void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
378 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
379
380 return AH_TRUE;
381 #undef AR_RC_HW
382 }
383
384 /*
385 * Places the hardware into reset and then pulls it out of reset
386 */
387 HAL_BOOL
388 ar5210ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
389 {
390 #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
391
392 HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
393 chan && IS_CHAN_TURBO(chan) ? "enabled" : "disabled");
394
395 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
396 return AH_FALSE;
397
398 /* Place chip in turbo before reset to cleanly reset clocks */
399 OS_REG_WRITE(ah, AR_PHY_FRCTL,
400 chan && IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
401
402 /*
403 * Reset the HW.
404 * PCI must be reset after the rest of the device has been reset.
405 */
406 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
407 return AH_FALSE;
408 OS_DELAY(1000);
409 if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
410 return AH_FALSE;
411 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
412
413 /*
414 * Bring out of sleep mode (AGAIN)
415 *
416 * WARNING WARNING WARNING
417 *
418 * There is a problem with the chip where it doesn't always indicate
419 * that it's awake, so initializePowerUp() will fail.
420 */
421 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
422 return AH_FALSE;
423
424 /* Clear warm reset reg */
425 return ar5210SetResetReg(ah, 0, 10);
426 #undef AR_RC_HW
427 }
428
429 enum {
430 FIRPWR_M = 0x03fc0000,
431 FIRPWR_S = 18,
432 KCOARSEHIGH_M = 0x003f8000,
433 KCOARSEHIGH_S = 15,
434 KCOARSELOW_M = 0x00007f80,
435 KCOARSELOW_S = 7,
436 ADCSAT_ICOUNT_M = 0x0001f800,
437 ADCSAT_ICOUNT_S = 11,
438 ADCSAT_THRESH_M = 0x000007e0,
439 ADCSAT_THRESH_S = 5
440 };
441
442 /*
443 * Recalibrate the lower PHY chips to account for temperature/environment
444 * changes.
445 */
446 HAL_BOOL
447 ar5210PerCalibrationN(struct ath_hal *ah, HAL_CHANNEL *chan, u_int chainMask,
448 HAL_BOOL longCal, HAL_BOOL *isCalDone)
449 {
450 uint32_t regBeacon;
451 uint32_t reg9858, reg985c, reg9868;
452 HAL_CHANNEL_INTERNAL *ichan;
453
454 ichan = ath_hal_checkchannel(ah, chan);
455 if (ichan == AH_NULL) {
456 HALDEBUG(ah, HAL_DEBUG_ANY,
457 "%s: invalid channel %u/0x%x; no mapping\n",
458 __func__, chan->channel, chan->channelFlags);
459 return AH_FALSE;
460 }
461 /* Disable tx and rx */
462 OS_REG_WRITE(ah, AR_DIAG_SW,
463 OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
464
465 /* Disable Beacon Enable */
466 regBeacon = OS_REG_READ(ah, AR_BEACON);
467 OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
468
469 /* Delay 4ms to ensure that all tx and rx activity has ceased */
470 OS_DELAY(4000);
471
472 /* Disable AGC to radio traffic */
473 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
474 /* Wait for the AGC traffic to cease. */
475 OS_DELAY(10);
476
477 /* Change Channel to relock synth */
478 if (!ar5210SetChannel(ah, ichan))
479 return AH_FALSE;
480
481 /* wait for the synthesizer lock to stabilize */
482 OS_DELAY(1000);
483
484 /* Re-enable AGC to radio traffic */
485 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
486
487 /*
488 * Configure the AGC so that it is highly unlikely (if not
489 * impossible) for it to send any gain changes to the analog
490 * chip. We store off the current values so that they can
491 * be rewritten below. Setting the following values:
492 * firpwr = -1
493 * Kcoursehigh = -1
494 * Kcourselow = -127
495 * ADCsat_icount = 2
496 * ADCsat_thresh = 12
497 */
498 reg9858 = OS_REG_READ(ah, 0x9858);
499 reg985c = OS_REG_READ(ah, 0x985c);
500 reg9868 = OS_REG_READ(ah, 0x9868);
501
502 OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
503 ((-1 << FIRPWR_S) & FIRPWR_M));
504 OS_REG_WRITE(ah, 0x985c,
505 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
506 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
507 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
508 OS_REG_WRITE(ah, 0x9868,
509 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
510 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
511 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
512
513 /* Wait for AGC changes to be enacted */
514 OS_DELAY(20);
515
516 /*
517 * We disable RF mix/gain stages for the PGA to avoid a
518 * race condition that will occur with receiving a frame
519 * and performing the AGC calibration. This will be
520 * re-enabled at the end of offset cal. We turn off AGC
521 * writes during this write as it will go over the analog bus.
522 */
523 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
524 OS_DELAY(10); /* wait for the AGC traffic to cease */
525 OS_REG_WRITE(ah, 0x98D4, 0x21);
526 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
527
528 /* wait to make sure that additional AGC traffic has quiesced */
529 OS_DELAY(1000);
530
531 /* AGC calibration (this was added to make the NF threshold check work) */
532 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
533 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
534 #ifdef AH_DEBUG
535 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0))
536 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
537 __func__);
538 #endif
539
540 /* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
541 OS_REG_WRITE(ah, 0x9858, reg9858);
542 OS_REG_WRITE(ah, 0x985c, reg985c);
543 OS_REG_WRITE(ah, 0x9868, reg9868);
544
545 /* Perform noise floor and set status */
546 if (!ar5210CalNoiseFloor(ah, ichan)) {
547 /*
548 * Delay 5ms before retrying the noise floor -
549 * just to make sure. We're in an error
550 * condition here
551 */
552 HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
553 "%s: Performing 2nd Noise Cal\n", __func__);
554 OS_DELAY(5000);
555 if (!ar5210CalNoiseFloor(ah, ichan))
556 chan->channelFlags |= CHANNEL_CW_INT;
557 }
558
559 /* Clear tx and rx disable bit */
560 OS_REG_WRITE(ah, AR_DIAG_SW,
561 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
562
563 /* Re-enable Beacons */
564 OS_REG_WRITE(ah, AR_BEACON, regBeacon);
565
566 *isCalDone = AH_TRUE;
567
568 return AH_TRUE;
569 }
570
571 HAL_BOOL
572 ar5210PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
573 {
574 return ar5210PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
575 }
576
577 HAL_BOOL
578 ar5210ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
579 {
580 return AH_TRUE;
581 }
582
583 /*
584 * Writes the given reset bit mask into the reset register
585 */
586 static HAL_BOOL
587 ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int waitTime)
588 {
589 uint32_t mask = resetMask ? resetMask : ~0;
590 HAL_BOOL rt;
591
592 OS_REG_WRITE(ah, AR_RC, resetMask);
593 /* need to wait at least 128 clocks when reseting PCI before read */
594 OS_DELAY(waitTime);
595
596 resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
597 mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
598 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
599 if ((resetMask & AR_RC_RMAC) == 0) {
600 if (isBigEndian()) {
601 /*
602 * Set CFG, little-endian for register
603 * and descriptor accesses.
604 */
605 mask = INIT_CONFIG_STATUS |
606 AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
607 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
608 } else
609 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
610 }
611 return rt;
612 }
613
614
615 /*
616 * Returns: the pcdac value
617 */
618 static uint8_t
619 getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
620 {
621 int32_t i;
622 int useNextEntry = AH_FALSE;
623 uint32_t interp;
624
625 for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
626 /* Check for exact entry */
627 if (dBm == AR_I2DBM(i)) {
628 if (pRD->pcdac[i] != 63)
629 return pRD->pcdac[i];
630 useNextEntry = AH_TRUE;
631 } else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
632 /* Interpolate for between entry with a logish scale */
633 if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
634 interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
635 interp = (interp / 1000) + pRD->pcdac[i-1];
636 return interp;
637 }
638 useNextEntry = AH_TRUE;
639 } else if (useNextEntry == AH_TRUE) {
640 /* Grab the next lowest */
641 if (pRD->pcdac[i] != 63)
642 return pRD->pcdac[i];
643 }
644 }
645
646 /* Return the lowest Entry if we haven't returned */
647 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
648 if (pRD->pcdac[i] != 63)
649 return pRD->pcdac[i];
650
651 /* No value to return from table */
652 #ifdef AH_DEBUG
653 ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
654 #endif
655 return 1;
656 }
657
658 /*
659 * Find or interpolates the gainF value from the table ptr.
660 */
661 static uint8_t
662 getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
663 uint8_t pcdac, uint8_t *dBm)
664 {
665 uint32_t interp;
666 int low, high, i;
667
668 low = high = -1;
669
670 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
671 if(pRD->pcdac[i] == 63)
672 continue;
673 if (pcdac == pRD->pcdac[i]) {
674 *dBm = AR_I2DBM(i);
675 return pRD->gainF[i]; /* Exact Match */
676 }
677 if (pcdac > pRD->pcdac[i])
678 low = i;
679 if (pcdac < pRD->pcdac[i]) {
680 high = i;
681 if (low == -1) {
682 *dBm = AR_I2DBM(i);
683 /* PCDAC is lower than lowest setting */
684 return pRD->gainF[i];
685 }
686 break;
687 }
688 }
689 if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
690 /* No settings were found */
691 #ifdef AH_DEBUG
692 ath_hal_printf(ah,
693 "%s: no valid entries in the pcdac table: %d\n",
694 __func__, pcdac);
695 #endif
696 return 63;
697 }
698 if (i >= AR_TP_SCALING_ENTRIES) {
699 /* PCDAC setting was above the max setting in the table */
700 *dBm = AR_I2DBM(low);
701 return pRD->gainF[low];
702 }
703 /* Only exact if table has no missing entries */
704 *dBm = (low + high) + 3;
705
706 /*
707 * Perform interpolation between low and high values to find gainF
708 * linearly scale the pcdac between low and high
709 */
710 interp = ((pcdac - pRD->pcdac[low]) * 1000) /
711 (pRD->pcdac[high] - pRD->pcdac[low]);
712 /*
713 * Multiply the scale ratio by the gainF difference
714 * (plus a rnd up factor)
715 */
716 interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
717
718 /* Add ratioed gain_f to low gain_f value */
719 return interp + pRD->gainF[low];
720 }
721
722 HAL_BOOL
723 ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
724 {
725 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
726 /* XXX flush to h/w */
727 return AH_TRUE;
728 }
729
730 /*
731 * Get TXPower values and set them in the radio
732 */
733 static HAL_BOOL
734 setupPowerSettings(struct ath_hal *ah, HAL_CHANNEL *chan, uint8_t cp[17])
735 {
736 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
737 uint8_t gainFRD, gainF36, gainF48, gainF54;
738 uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
739 uint32_t rd, group;
740 const struct tpcMap *pRD;
741
742 /* Set OB/DB Values regardless of channel */
743 cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
744 cp[16] = ee->ee_biasCurrents & 0x7;
745
746 if (chan->channel < 5170 || chan->channel > 5320) {
747 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
748 __func__, chan->channel);
749 return AH_FALSE;
750 }
751
752 HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
753 ee->ee_version < AR_EEPROM_VER3);
754
755 /* Match regulatory domain */
756 for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
757 if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
758 break;
759 if (rd == AR_REG_DOMAINS_MAX) {
760 #ifdef AH_DEBUG
761 ath_hal_printf(ah,
762 "%s: no calibrated regulatory domain matches the "
763 "current regularly domain (0x%0x)\n", __func__,
764 AH_PRIVATE(ah)->ah_currentRD);
765 #endif
766 return AH_FALSE;
767 }
768 group = ((chan->channel - 5170) / 10);
769
770 if (group > 11) {
771 /* Pull 5.29 into the 5.27 group */
772 group--;
773 }
774
775 /* Integer divide will set group from 0 to 4 */
776 group = group / 3;
777 pRD = &ee->ee_tpc[group];
778
779 /* Set PC DAC Values */
780 cp[14] = pRD->regdmn[rd];
781 cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36);
782 cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48);
783 cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54);
784
785 /* Find Corresponding gainF values for RD, 36, 48, 54 */
786 gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
787 gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
788 gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
789 gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
790
791 /* Power Scale if requested */
792 if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
793 static const uint16_t tpcScaleReductionTable[5] =
794 { 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
795 uint16_t tpScale;
796
797 tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
798 if (dBmRD < tpScale+3)
799 dBmRD = 3; /* min */
800 else
801 dBmRD -= tpScale;
802 cp[14] = getPcdac(ah, pRD, dBmRD);
803 gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
804 dBm36 = AH_MIN(dBm36, dBmRD);
805 cp[9] = getPcdac(ah, pRD, dBm36);
806 gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
807 dBm48 = AH_MIN(dBm48, dBmRD);
808 cp[8] = getPcdac(ah, pRD, dBm48);
809 gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
810 dBm54 = AH_MIN(dBm54, dBmRD);
811 cp[7] = getPcdac(ah, pRD, dBm54);
812 gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
813 }
814 /* Record current dBm at rate 6 */
815 AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
816
817 cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
818
819 /* Set GainF Values */
820 cp[0] = gainFRD - gainF54;
821 cp[1] = gainFRD - gainF48;
822 cp[2] = gainFRD - gainF36;
823 /* 9, 12, 18, 24 have no gain_delta from 6 */
824 cp[3] = cp[4] = cp[5] = cp[6] = 0;
825 return AH_TRUE;
826 }
827
828 /*
829 * Places the device in and out of reset and then places sane
830 * values in the registers based on EEPROM config, initialization
831 * vectors (as determined by the mode), and station configuration
832 */
833 HAL_BOOL
834 ar5210SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan)
835 {
836 #define N(a) (sizeof (a) / sizeof (a[0]))
837 static const uint32_t pwr_regs_start[17] = {
838 0x00000000, 0x00000000, 0x00000000,
839 0x00000000, 0x00000000, 0xf0000000,
840 0xcc000000, 0x00000000, 0x00000000,
841 0x00000000, 0x0a000000, 0x000000e2,
842 0x0a000020, 0x01000002, 0x01000018,
843 0x40000000, 0x00000418
844 };
845 uint16_t i;
846 uint8_t cp[sizeof(ar5k0007_pwrSettings)];
847 uint32_t pwr_regs[17];
848
849 OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
850 OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
851
852 /* Check the EEPROM tx power calibration settings */
853 if (!setupPowerSettings(ah, chan, cp)) {
854 #ifdef AH_DEBUG
855 ath_hal_printf(ah, "%s: unable to setup power settings\n",
856 __func__);
857 #endif
858 return AH_FALSE;
859 }
860 if (cp[15] < 1 || cp[15] > 5) {
861 #ifdef AH_DEBUG
862 ath_hal_printf(ah, "%s: OB out of range (%u)\n",
863 __func__, cp[15]);
864 #endif
865 return AH_FALSE;
866 }
867 if (cp[16] < 1 || cp[16] > 5) {
868 #ifdef AH_DEBUG
869 ath_hal_printf(ah, "%s: DB out of range (%u)\n",
870 __func__, cp[16]);
871 #endif
872 return AH_FALSE;
873 }
874
875 /* reverse bits of the transmit power array */
876 for (i = 0; i < 7; i++)
877 cp[i] = ath_hal_reverseBits(cp[i], 5);
878 for (i = 7; i < 15; i++)
879 cp[i] = ath_hal_reverseBits(cp[i], 6);
880
881 /* merge transmit power values into the register - quite gross */
882 pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
883 pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
884 ((cp[1] >> 3) & 0x03);
885 pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
886 pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
887 ((cp[4] >> 4) & 0x01);
888 pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
889 pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
890 ((cp[7] >> 5) & 0x01);
891 pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
892 pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
893 pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
894 pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
895 pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
896 pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
897
898 /* Set OB */
899 pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
900 pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
901
902 /* Set DB */
903 pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
904
905 /* Write the registers */
906 for (i = 0; i < N(pwr_regs)-1; i++)
907 OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
908 /* last write is a flush */
909 OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
910
911 return AH_TRUE;
912 #undef N
913 }
914
915 /*
916 * Takes the MHz channel value and sets the Channel value
917 *
918 * ASSUMES: Writes enabled to analog bus before AGC is active
919 * or by disabling the AGC.
920 */
921 static HAL_BOOL
922 ar5210SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
923 {
924 uint32_t data;
925
926 /* Set the Channel */
927 data = ath_hal_reverseBits((chan->channel - 5120)/10, 5);
928 data = (data << 1) | 0x41;
929 OS_REG_WRITE(ah, AR_PHY(0x27), data);
930 OS_REG_WRITE(ah, AR_PHY(0x30), 0);
931 AH_PRIVATE(ah)->ah_curchan = chan;
932 return AH_TRUE;
933 }
934
935 int16_t
936 ar5210GetNoiseFloor(struct ath_hal *ah)
937 {
938 int16_t nf;
939
940 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
941 if (nf & 0x100)
942 nf = 0 - ((nf ^ 0x1ff) + 1);
943 return nf;
944 }
945
946 #define NORMAL_NF_THRESH (-72)
947 /*
948 * Peform the noisefloor calibration and check for
949 * any constant channel interference
950 *
951 * Returns: TRUE for a successful noise floor calibration; else FALSE
952 */
953 HAL_BOOL
954 ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
955 {
956 int32_t nf, nfLoops;
957
958 /* Calibrate the noise floor */
959 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
960 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
961
962 /* Do not read noise floor until it has done the first update */
963 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
964 #ifdef ATH_HAL_DEBUG
965 ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
966 OS_REG_READ(ah, AR_PHY_AGCCTL));
967 ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
968 OS_REG_READ(ah, AR_RC));
969 ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
970 OS_REG_READ(ah, AR_PHY_ACTIVE));
971 #endif /* ATH_HAL_DEBUG */
972 return AH_FALSE;
973 }
974
975 nf = 0;
976 /* Keep checking until the floor is below the threshold or the nf is done */
977 for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
978 OS_DELAY(1000); /* Sleep for 1 ms */
979 nf = ar5210GetNoiseFloor(ah);
980 }
981
982 if (nf > NORMAL_NF_THRESH) {
983 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
984 __func__, nf);
985 chan->rawNoiseFloor = 0;
986 return AH_FALSE;
987 }
988 chan->rawNoiseFloor = nf;
989 return AH_TRUE;
990 }
991
992 /*
993 * Adjust NF based on statistical values for 5GHz frequencies.
994 */
995 int16_t
996 ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
997 {
998 return 0;
999 }
1000
1001 HAL_RFGAIN
1002 ar5210GetRfgain(struct ath_hal *ah)
1003 {
1004 return HAL_RFGAIN_INACTIVE;
1005 }
1006