Home | History | Annotate | Line # | Download | only in ar5211
      1  1.1     alc /*
      2  1.1     alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  1.1     alc  * Copyright (c) 2002-2006 Atheros Communications, Inc.
      4  1.1     alc  *
      5  1.1     alc  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.1     alc  * purpose with or without fee is hereby granted, provided that the above
      7  1.1     alc  * copyright notice and this permission notice appear in all copies.
      8  1.1     alc  *
      9  1.1     alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.1     alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.1     alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.1     alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.1     alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.1     alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.1     alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.1     alc  *
     17  1.2  cegger  * $Id: ar5211_misc.c,v 1.2 2011/03/07 11:25:42 cegger Exp $
     18  1.1     alc  */
     19  1.1     alc #include "opt_ah.h"
     20  1.1     alc 
     21  1.1     alc #include "ah.h"
     22  1.1     alc #include "ah_internal.h"
     23  1.1     alc 
     24  1.1     alc #include "ar5211/ar5211.h"
     25  1.1     alc #include "ar5211/ar5211reg.h"
     26  1.1     alc #include "ar5211/ar5211phy.h"
     27  1.1     alc 
     28  1.1     alc #include "ah_eeprom_v3.h"
     29  1.1     alc 
     30  1.1     alc #define	AR_NUM_GPIO	6		/* 6 GPIO bits */
     31  1.1     alc #define	AR_GPIOD_MASK	0x2f		/* 6-bit mask */
     32  1.1     alc 
     33  1.1     alc void
     34  1.1     alc ar5211GetMacAddress(struct ath_hal *ah, uint8_t *mac)
     35  1.1     alc {
     36  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
     37  1.1     alc 
     38  1.1     alc 	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
     39  1.1     alc }
     40  1.1     alc 
     41  1.1     alc HAL_BOOL
     42  1.1     alc ar5211SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
     43  1.1     alc {
     44  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
     45  1.1     alc 
     46  1.1     alc 	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
     47  1.1     alc 	return AH_TRUE;
     48  1.1     alc }
     49  1.1     alc 
     50  1.1     alc void
     51  1.1     alc ar5211GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
     52  1.1     alc {
     53  1.1     alc 	static const uint8_t ones[IEEE80211_ADDR_LEN] =
     54  1.1     alc 		{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
     55  1.1     alc 	OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
     56  1.1     alc }
     57  1.1     alc 
     58  1.1     alc HAL_BOOL
     59  1.1     alc ar5211SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
     60  1.1     alc {
     61  1.1     alc 	return AH_FALSE;
     62  1.1     alc }
     63  1.1     alc 
     64  1.1     alc /*
     65  1.1     alc  * Read 16 bits of data from the specified EEPROM offset.
     66  1.1     alc  */
     67  1.1     alc HAL_BOOL
     68  1.1     alc ar5211EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
     69  1.1     alc {
     70  1.1     alc 	OS_REG_WRITE(ah, AR_EEPROM_ADDR, off);
     71  1.1     alc 	OS_REG_WRITE(ah, AR_EEPROM_CMD, AR_EEPROM_CMD_READ);
     72  1.1     alc 
     73  1.1     alc 	if (!ath_hal_wait(ah, AR_EEPROM_STS,
     74  1.1     alc 	    AR_EEPROM_STS_READ_COMPLETE | AR_EEPROM_STS_READ_ERROR,
     75  1.1     alc 	    AR_EEPROM_STS_READ_COMPLETE)) {
     76  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
     77  1.1     alc 		    "%s: read failed for entry 0x%x\n", __func__, off);
     78  1.1     alc 		return AH_FALSE;
     79  1.1     alc 	}
     80  1.1     alc 	*data = OS_REG_READ(ah, AR_EEPROM_DATA) & 0xffff;
     81  1.1     alc 	return AH_TRUE;
     82  1.1     alc }
     83  1.1     alc 
     84  1.1     alc #ifdef AH_SUPPORT_WRITE_EEPROM
     85  1.1     alc /*
     86  1.1     alc  * Write 16 bits of data to the specified EEPROM offset.
     87  1.1     alc  */
     88  1.1     alc HAL_BOOL
     89  1.1     alc ar5211EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
     90  1.1     alc {
     91  1.1     alc 	return AH_FALSE;
     92  1.1     alc }
     93  1.1     alc #endif /* AH_SUPPORT_WRITE_EEPROM */
     94  1.1     alc 
     95  1.1     alc /*
     96  1.1     alc  * Attempt to change the cards operating regulatory domain to the given value
     97  1.1     alc  */
     98  1.1     alc HAL_BOOL
     99  1.1     alc ar5211SetRegulatoryDomain(struct ath_hal *ah,
    100  1.1     alc 	uint16_t regDomain, HAL_STATUS *status)
    101  1.1     alc {
    102  1.1     alc 	HAL_STATUS ecode;
    103  1.1     alc 
    104  1.1     alc 	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
    105  1.1     alc 		ecode = HAL_EINVAL;
    106  1.1     alc 		goto bad;
    107  1.1     alc 	}
    108  1.1     alc 	/*
    109  1.1     alc 	 * Check if EEPROM is configured to allow this; must
    110  1.1     alc 	 * be a proper version and the protection bits must
    111  1.1     alc 	 * permit re-writing that segment of the EEPROM.
    112  1.1     alc 	 */
    113  1.1     alc 	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
    114  1.1     alc 		ecode = HAL_EEWRITE;
    115  1.1     alc 		goto bad;
    116  1.1     alc 	}
    117  1.1     alc #ifdef AH_SUPPORT_WRITE_REGDOMAIN
    118  1.1     alc 	if (ar5211EepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
    119  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    120  1.1     alc 		    "%s: set regulatory domain to %u (0x%x)\n",
    121  1.1     alc 		    __func__, regDomain, regDomain);
    122  1.1     alc 		AH_PRIVATE(ah)->ah_currentRD = regDomain;
    123  1.1     alc 		return AH_TRUE;
    124  1.1     alc 	}
    125  1.1     alc #endif
    126  1.1     alc 	ecode = HAL_EIO;
    127  1.1     alc bad:
    128  1.1     alc 	if (status)
    129  1.1     alc 		*status = ecode;
    130  1.1     alc 	return AH_FALSE;
    131  1.1     alc }
    132  1.1     alc 
    133  1.1     alc /*
    134  1.1     alc  * Return the wireless modes (a,b,g,t) supported by hardware.
    135  1.1     alc  *
    136  1.1     alc  * This value is what is actually supported by the hardware
    137  1.1     alc  * and is unaffected by regulatory/country code settings.
    138  1.1     alc  *
    139  1.1     alc  */
    140  1.1     alc u_int
    141  1.1     alc ar5211GetWirelessModes(struct ath_hal *ah)
    142  1.1     alc {
    143  1.1     alc 	u_int mode = 0;
    144  1.1     alc 
    145  1.1     alc 	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
    146  1.1     alc 		mode = HAL_MODE_11A;
    147  1.1     alc 		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
    148  1.1     alc 			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
    149  1.1     alc 	}
    150  1.1     alc 	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
    151  1.1     alc 		mode |= HAL_MODE_11B;
    152  1.1     alc 	return mode;
    153  1.1     alc }
    154  1.1     alc 
    155  1.1     alc #if 0
    156  1.1     alc HAL_BOOL
    157  1.1     alc ar5211GetTurboDisable(struct ath_hal *ah)
    158  1.1     alc {
    159  1.1     alc 	return (AH5211(ah)->ah_turboDisable != 0);
    160  1.1     alc }
    161  1.1     alc #endif
    162  1.1     alc 
    163  1.1     alc /*
    164  1.1     alc  * Called if RfKill is supported (according to EEPROM).  Set the interrupt and
    165  1.1     alc  * GPIO values so the ISR and can disable RF on a switch signal
    166  1.1     alc  */
    167  1.1     alc void
    168  1.1     alc ar5211EnableRfKill(struct ath_hal *ah)
    169  1.1     alc {
    170  1.1     alc 	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
    171  1.1     alc 	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
    172  1.1     alc 	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
    173  1.1     alc 
    174  1.1     alc 	/*
    175  1.1     alc 	 * Configure the desired GPIO port for input
    176  1.1     alc 	 * and enable baseband rf silence.
    177  1.1     alc 	 */
    178  1.1     alc 	ar5211GpioCfgInput(ah, select);
    179  1.1     alc 	OS_REG_SET_BIT(ah, AR_PHY_BASE, 0x00002000);
    180  1.1     alc 	/*
    181  1.1     alc 	 * If radio disable switch connection to GPIO bit x is enabled
    182  1.1     alc 	 * program GPIO interrupt.
    183  1.1     alc 	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
    184  1.1     alc 	 * verified that it is a later version of eeprom, it has a place for
    185  1.1     alc 	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
    186  1.1     alc 	 * connection is present.
    187  1.1     alc 	 */
    188  1.1     alc 	ar5211GpioSetIntr(ah, select, (ar5211GpioGet(ah, select) != polarity));
    189  1.1     alc }
    190  1.1     alc 
    191  1.1     alc /*
    192  1.1     alc  * Configure GPIO Output lines
    193  1.1     alc  */
    194  1.1     alc HAL_BOOL
    195  1.2  cegger ar5211GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
    196  1.1     alc {
    197  1.1     alc 	uint32_t reg;
    198  1.1     alc 
    199  1.1     alc 	HALASSERT(gpio < AR_NUM_GPIO);
    200  1.1     alc 
    201  1.1     alc 	reg =  OS_REG_READ(ah, AR_GPIOCR);
    202  1.1     alc 	reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
    203  1.1     alc 	reg |= AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT);
    204  1.1     alc 
    205  1.1     alc 	OS_REG_WRITE(ah, AR_GPIOCR, reg);
    206  1.1     alc 	return AH_TRUE;
    207  1.1     alc }
    208  1.1     alc 
    209  1.1     alc /*
    210  1.1     alc  * Configure GPIO Input lines
    211  1.1     alc  */
    212  1.1     alc HAL_BOOL
    213  1.1     alc ar5211GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
    214  1.1     alc {
    215  1.1     alc 	uint32_t reg;
    216  1.1     alc 
    217  1.1     alc 	HALASSERT(gpio < AR_NUM_GPIO);
    218  1.1     alc 
    219  1.1     alc 	reg =  OS_REG_READ(ah, AR_GPIOCR);
    220  1.1     alc 	reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
    221  1.1     alc 	reg |= AR_GPIOCR_0_CR_N << (gpio * AR_GPIOCR_CR_SHIFT);
    222  1.1     alc 
    223  1.1     alc 	OS_REG_WRITE(ah, AR_GPIOCR, reg);
    224  1.1     alc 	return AH_TRUE;
    225  1.1     alc }
    226  1.1     alc 
    227  1.1     alc /*
    228  1.1     alc  * Once configured for I/O - set output lines
    229  1.1     alc  */
    230  1.1     alc HAL_BOOL
    231  1.1     alc ar5211GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
    232  1.1     alc {
    233  1.1     alc 	uint32_t reg;
    234  1.1     alc 
    235  1.1     alc 	HALASSERT(gpio < AR_NUM_GPIO);
    236  1.1     alc 
    237  1.1     alc 	reg =  OS_REG_READ(ah, AR_GPIODO);
    238  1.1     alc 	reg &= ~(1 << gpio);
    239  1.1     alc 	reg |= (val&1) << gpio;
    240  1.1     alc 
    241  1.1     alc 	OS_REG_WRITE(ah, AR_GPIODO, reg);
    242  1.1     alc 	return AH_TRUE;
    243  1.1     alc }
    244  1.1     alc 
    245  1.1     alc /*
    246  1.1     alc  * Once configured for I/O - get input lines
    247  1.1     alc  */
    248  1.1     alc uint32_t
    249  1.1     alc ar5211GpioGet(struct ath_hal *ah, uint32_t gpio)
    250  1.1     alc {
    251  1.1     alc 	if (gpio < AR_NUM_GPIO) {
    252  1.1     alc 		uint32_t val = OS_REG_READ(ah, AR_GPIODI);
    253  1.1     alc 		val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
    254  1.1     alc 		return val;
    255  1.1     alc 	} else  {
    256  1.1     alc 		return 0xffffffff;
    257  1.1     alc 	}
    258  1.1     alc }
    259  1.1     alc 
    260  1.1     alc /*
    261  1.1     alc  * Set the GPIO 0 Interrupt (gpio is ignored)
    262  1.1     alc  */
    263  1.1     alc void
    264  1.1     alc ar5211GpioSetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
    265  1.1     alc {
    266  1.1     alc 	uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
    267  1.1     alc 
    268  1.1     alc 	/* Clear the bits that we will modify. */
    269  1.1     alc 	val &= ~(AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
    270  1.1     alc 			AR_GPIOCR_0_CR_A);
    271  1.1     alc 
    272  1.1     alc 	val |= AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_ENA;
    273  1.1     alc 	if (ilevel)
    274  1.1     alc 		val |= AR_GPIOCR_INT_SELH;
    275  1.1     alc 
    276  1.1     alc 	/* Don't need to change anything for low level interrupt. */
    277  1.1     alc 	OS_REG_WRITE(ah, AR_GPIOCR, val);
    278  1.1     alc 
    279  1.1     alc 	/* Change the interrupt mask. */
    280  1.1     alc 	ar5211SetInterrupts(ah, AH5211(ah)->ah_maskReg | HAL_INT_GPIO);
    281  1.1     alc }
    282  1.1     alc 
    283  1.1     alc /*
    284  1.1     alc  * Change the LED blinking pattern to correspond to the connectivity
    285  1.1     alc  */
    286  1.1     alc void
    287  1.1     alc ar5211SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
    288  1.1     alc {
    289  1.1     alc 	static const uint32_t ledbits[8] = {
    290  1.1     alc 		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_INIT */
    291  1.1     alc 		AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_SCAN */
    292  1.1     alc 		AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_AUTH */
    293  1.1     alc 		AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_ASSOC*/
    294  1.1     alc 		AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_RUN */
    295  1.1     alc 		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
    296  1.1     alc 		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
    297  1.1     alc 		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
    298  1.1     alc 	};
    299  1.1     alc 	OS_REG_WRITE(ah, AR_PCICFG,
    300  1.1     alc 		(OS_REG_READ(ah, AR_PCICFG) &~
    301  1.1     alc 			(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE))
    302  1.1     alc 		| ledbits[state & 0x7]
    303  1.1     alc 	);
    304  1.1     alc }
    305  1.1     alc 
    306  1.1     alc /*
    307  1.1     alc  * Change association related fields programmed into the hardware.
    308  1.1     alc  * Writing a valid BSSID to the hardware effectively enables the hardware
    309  1.1     alc  * to synchronize its TSF to the correct beacons and receive frames coming
    310  1.1     alc  * from that BSSID. It is called by the SME JOIN operation.
    311  1.1     alc  */
    312  1.1     alc void
    313  1.1     alc ar5211WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
    314  1.1     alc {
    315  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
    316  1.1     alc 
    317  1.1     alc 	/* XXX save bssid for possible re-use on reset */
    318  1.1     alc 	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
    319  1.1     alc 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
    320  1.1     alc 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
    321  1.1     alc 				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
    322  1.1     alc }
    323  1.1     alc 
    324  1.1     alc /*
    325  1.1     alc  * Get the current hardware tsf for stamlme.
    326  1.1     alc  */
    327  1.1     alc uint64_t
    328  1.1     alc ar5211GetTsf64(struct ath_hal *ah)
    329  1.1     alc {
    330  1.1     alc 	uint32_t low1, low2, u32;
    331  1.1     alc 
    332  1.1     alc 	/* sync multi-word read */
    333  1.1     alc 	low1 = OS_REG_READ(ah, AR_TSF_L32);
    334  1.1     alc 	u32 = OS_REG_READ(ah, AR_TSF_U32);
    335  1.1     alc 	low2 = OS_REG_READ(ah, AR_TSF_L32);
    336  1.1     alc 	if (low2 < low1) {	/* roll over */
    337  1.1     alc 		/*
    338  1.1     alc 		 * If we are not preempted this will work.  If we are
    339  1.1     alc 		 * then we re-reading AR_TSF_U32 does no good as the
    340  1.1     alc 		 * low bits will be meaningless.  Likewise reading
    341  1.1     alc 		 * L32, U32, U32, then comparing the last two reads
    342  1.1     alc 		 * to check for rollover doesn't help if preempted--so
    343  1.1     alc 		 * we take this approach as it costs one less PCI
    344  1.1     alc 		 * read which can be noticeable when doing things
    345  1.1     alc 		 * like timestamping packets in monitor mode.
    346  1.1     alc 		 */
    347  1.1     alc 		u32++;
    348  1.1     alc 	}
    349  1.1     alc 	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
    350  1.1     alc }
    351  1.1     alc 
    352  1.1     alc /*
    353  1.1     alc  * Get the current hardware tsf for stamlme.
    354  1.1     alc  */
    355  1.1     alc uint32_t
    356  1.1     alc ar5211GetTsf32(struct ath_hal *ah)
    357  1.1     alc {
    358  1.1     alc 	return OS_REG_READ(ah, AR_TSF_L32);
    359  1.1     alc }
    360  1.1     alc 
    361  1.1     alc /*
    362  1.1     alc  * Reset the current hardware tsf for stamlme
    363  1.1     alc  */
    364  1.1     alc void
    365  1.1     alc ar5211ResetTsf(struct ath_hal *ah)
    366  1.1     alc {
    367  1.1     alc 	uint32_t val = OS_REG_READ(ah, AR_BEACON);
    368  1.1     alc 
    369  1.1     alc 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
    370  1.1     alc }
    371  1.1     alc 
    372  1.1     alc /*
    373  1.1     alc  * Grab a semi-random value from hardware registers - may not
    374  1.1     alc  * change often
    375  1.1     alc  */
    376  1.1     alc uint32_t
    377  1.1     alc ar5211GetRandomSeed(struct ath_hal *ah)
    378  1.1     alc {
    379  1.1     alc 	uint32_t nf;
    380  1.1     alc 
    381  1.1     alc 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
    382  1.1     alc 	if (nf & 0x100)
    383  1.1     alc 		nf = 0 - ((nf ^ 0x1ff) + 1);
    384  1.1     alc 	return (OS_REG_READ(ah, AR_TSF_U32) ^
    385  1.1     alc 		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
    386  1.1     alc }
    387  1.1     alc 
    388  1.1     alc /*
    389  1.1     alc  * Detect if our card is present
    390  1.1     alc  */
    391  1.1     alc HAL_BOOL
    392  1.1     alc ar5211DetectCardPresent(struct ath_hal *ah)
    393  1.1     alc {
    394  1.1     alc 	uint16_t macVersion, macRev;
    395  1.1     alc 	uint32_t v;
    396  1.1     alc 
    397  1.1     alc 	/*
    398  1.1     alc 	 * Read the Silicon Revision register and compare that
    399  1.1     alc 	 * to what we read at attach time.  If the same, we say
    400  1.1     alc 	 * a card/device is present.
    401  1.1     alc 	 */
    402  1.1     alc 	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID_M;
    403  1.1     alc 	macVersion = v >> AR_SREV_ID_S;
    404  1.1     alc 	macRev = v & AR_SREV_REVISION_M;
    405  1.1     alc 	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
    406  1.1     alc 		AH_PRIVATE(ah)->ah_macRev == macRev);
    407  1.1     alc }
    408  1.1     alc 
    409  1.1     alc /*
    410  1.1     alc  * Update MIB Counters
    411  1.1     alc  */
    412  1.1     alc void
    413  1.1     alc ar5211UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
    414  1.1     alc {
    415  1.1     alc 	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
    416  1.1     alc 	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
    417  1.1     alc 	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
    418  1.1     alc 	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
    419  1.1     alc 	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
    420  1.1     alc }
    421  1.1     alc 
    422  1.1     alc HAL_BOOL
    423  1.1     alc ar5211SetSifsTime(struct ath_hal *ah, u_int us)
    424  1.1     alc {
    425  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
    426  1.1     alc 
    427  1.1     alc 	if (us > ath_hal_mac_usec(ah, 0xffff)) {
    428  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
    429  1.1     alc 		    __func__, us);
    430  1.1     alc 		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
    431  1.1     alc 		return AH_FALSE;
    432  1.1     alc 	} else {
    433  1.1     alc 		/* convert to system clocks */
    434  1.1     alc 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
    435  1.1     alc 		ahp->ah_slottime = us;
    436  1.1     alc 		return AH_TRUE;
    437  1.1     alc 	}
    438  1.1     alc }
    439  1.1     alc 
    440  1.1     alc u_int
    441  1.1     alc ar5211GetSifsTime(struct ath_hal *ah)
    442  1.1     alc {
    443  1.1     alc 	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
    444  1.1     alc 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
    445  1.1     alc }
    446  1.1     alc 
    447  1.1     alc HAL_BOOL
    448  1.1     alc ar5211SetSlotTime(struct ath_hal *ah, u_int us)
    449  1.1     alc {
    450  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
    451  1.1     alc 
    452  1.1     alc 	if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
    453  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
    454  1.1     alc 		    __func__, us);
    455  1.1     alc 		ahp->ah_slottime = us;	/* restore default handling */
    456  1.1     alc 		return AH_FALSE;
    457  1.1     alc 	} else {
    458  1.1     alc 		/* convert to system clocks */
    459  1.1     alc 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
    460  1.1     alc 		ahp->ah_slottime = us;
    461  1.1     alc 		return AH_TRUE;
    462  1.1     alc 	}
    463  1.1     alc }
    464  1.1     alc 
    465  1.1     alc u_int
    466  1.1     alc ar5211GetSlotTime(struct ath_hal *ah)
    467  1.1     alc {
    468  1.1     alc 	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
    469  1.1     alc 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
    470  1.1     alc }
    471  1.1     alc 
    472  1.1     alc HAL_BOOL
    473  1.1     alc ar5211SetAckTimeout(struct ath_hal *ah, u_int us)
    474  1.1     alc {
    475  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
    476  1.1     alc 
    477  1.1     alc 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
    478  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
    479  1.1     alc 		    __func__, us);
    480  1.1     alc 		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
    481  1.1     alc 		return AH_FALSE;
    482  1.1     alc 	} else {
    483  1.1     alc 		/* convert to system clocks */
    484  1.1     alc 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
    485  1.1     alc 			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
    486  1.1     alc 		ahp->ah_acktimeout = us;
    487  1.1     alc 		return AH_TRUE;
    488  1.1     alc 	}
    489  1.1     alc }
    490  1.1     alc 
    491  1.1     alc u_int
    492  1.1     alc ar5211GetAckTimeout(struct ath_hal *ah)
    493  1.1     alc {
    494  1.1     alc 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
    495  1.1     alc 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
    496  1.1     alc }
    497  1.1     alc 
    498  1.1     alc u_int
    499  1.1     alc ar5211GetAckCTSRate(struct ath_hal *ah)
    500  1.1     alc {
    501  1.1     alc 	return ((AH5211(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
    502  1.1     alc }
    503  1.1     alc 
    504  1.1     alc HAL_BOOL
    505  1.1     alc ar5211SetAckCTSRate(struct ath_hal *ah, u_int high)
    506  1.1     alc {
    507  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
    508  1.1     alc 
    509  1.1     alc 	if (high) {
    510  1.1     alc 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
    511  1.1     alc 		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
    512  1.1     alc 	} else {
    513  1.1     alc 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
    514  1.1     alc 		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
    515  1.1     alc 	}
    516  1.1     alc 	return AH_TRUE;
    517  1.1     alc }
    518  1.1     alc 
    519  1.1     alc HAL_BOOL
    520  1.1     alc ar5211SetCTSTimeout(struct ath_hal *ah, u_int us)
    521  1.1     alc {
    522  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
    523  1.1     alc 
    524  1.1     alc 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
    525  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
    526  1.1     alc 		    __func__, us);
    527  1.1     alc 		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
    528  1.1     alc 		return AH_FALSE;
    529  1.1     alc 	} else {
    530  1.1     alc 		/* convert to system clocks */
    531  1.1     alc 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
    532  1.1     alc 			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
    533  1.1     alc 		ahp->ah_ctstimeout = us;
    534  1.1     alc 		return AH_TRUE;
    535  1.1     alc 	}
    536  1.1     alc }
    537  1.1     alc 
    538  1.1     alc u_int
    539  1.1     alc ar5211GetCTSTimeout(struct ath_hal *ah)
    540  1.1     alc {
    541  1.1     alc 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
    542  1.1     alc 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
    543  1.1     alc }
    544  1.1     alc 
    545  1.1     alc HAL_BOOL
    546  1.1     alc ar5211SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
    547  1.1     alc {
    548  1.1     alc 	/* nothing to do */
    549  1.1     alc         return AH_TRUE;
    550  1.1     alc }
    551  1.1     alc 
    552  1.1     alc void
    553  1.1     alc ar5211SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
    554  1.1     alc {
    555  1.1     alc }
    556  1.1     alc 
    557  1.1     alc /*
    558  1.1     alc  * Control Adaptive Noise Immunity Parameters
    559  1.1     alc  */
    560  1.1     alc HAL_BOOL
    561  1.1     alc ar5211AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
    562  1.1     alc {
    563  1.1     alc 	return AH_FALSE;
    564  1.1     alc }
    565  1.1     alc 
    566  1.1     alc void
    567  1.1     alc ar5211AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, HAL_CHANNEL *chan)
    568  1.1     alc {
    569  1.1     alc }
    570  1.1     alc 
    571  1.1     alc void
    572  1.1     alc ar5211MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
    573  1.1     alc {
    574  1.1     alc }
    575  1.1     alc 
    576  1.1     alc /*
    577  1.1     alc  * Get the rssi of frame curently being received.
    578  1.1     alc  */
    579  1.1     alc uint32_t
    580  1.1     alc ar5211GetCurRssi(struct ath_hal *ah)
    581  1.1     alc {
    582  1.1     alc 	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
    583  1.1     alc }
    584  1.1     alc 
    585  1.1     alc u_int
    586  1.1     alc ar5211GetDefAntenna(struct ath_hal *ah)
    587  1.1     alc {
    588  1.1     alc 	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
    589  1.1     alc }
    590  1.1     alc 
    591  1.1     alc void
    592  1.1     alc ar5211SetDefAntenna(struct ath_hal *ah, u_int antenna)
    593  1.1     alc {
    594  1.1     alc 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
    595  1.1     alc }
    596  1.1     alc 
    597  1.1     alc HAL_ANT_SETTING
    598  1.1     alc ar5211GetAntennaSwitch(struct ath_hal *ah)
    599  1.1     alc {
    600  1.1     alc 	return AH5211(ah)->ah_diversityControl;
    601  1.1     alc }
    602  1.1     alc 
    603  1.1     alc HAL_BOOL
    604  1.1     alc ar5211SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
    605  1.1     alc {
    606  1.1     alc 	const HAL_CHANNEL *chan =
    607  1.1     alc 		(const HAL_CHANNEL *) AH_PRIVATE(ah)->ah_curchan;
    608  1.1     alc 
    609  1.1     alc 	if (chan == AH_NULL) {
    610  1.1     alc 		AH5211(ah)->ah_diversityControl = settings;
    611  1.1     alc 		return AH_TRUE;
    612  1.1     alc 	}
    613  1.1     alc 	return ar5211SetAntennaSwitchInternal(ah, settings, chan);
    614  1.1     alc }
    615  1.1     alc 
    616  1.1     alc HAL_STATUS
    617  1.1     alc ar5211GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
    618  1.1     alc 	uint32_t capability, uint32_t *result)
    619  1.1     alc {
    620  1.1     alc 
    621  1.1     alc 	switch (type) {
    622  1.1     alc 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
    623  1.1     alc 		switch (capability) {
    624  1.1     alc 		case HAL_CIPHER_AES_OCB:
    625  1.1     alc 		case HAL_CIPHER_WEP:
    626  1.1     alc 		case HAL_CIPHER_CLR:
    627  1.1     alc 			return HAL_OK;
    628  1.1     alc 		default:
    629  1.1     alc 			return HAL_ENOTSUPP;
    630  1.1     alc 		}
    631  1.1     alc 	default:
    632  1.1     alc 		return ath_hal_getcapability(ah, type, capability, result);
    633  1.1     alc 	}
    634  1.1     alc }
    635  1.1     alc 
    636  1.1     alc HAL_BOOL
    637  1.1     alc ar5211SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
    638  1.1     alc 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
    639  1.1     alc {
    640  1.1     alc 	switch (type) {
    641  1.1     alc 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
    642  1.1     alc 		/*
    643  1.1     alc 		 * NB: could split this up into virtual capabilities,
    644  1.1     alc 		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
    645  1.1     alc 		 *     seems worth the additional complexity.
    646  1.1     alc 		 */
    647  1.1     alc #ifdef AH_DEBUG
    648  1.1     alc 		AH_PRIVATE(ah)->ah_diagreg = setting;
    649  1.1     alc #else
    650  1.1     alc 		AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;	/* ACK+CTS */
    651  1.1     alc #endif
    652  1.1     alc 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
    653  1.1     alc 		return AH_TRUE;
    654  1.1     alc 	default:
    655  1.1     alc 		return ath_hal_setcapability(ah, type, capability,
    656  1.1     alc 			setting, status);
    657  1.1     alc 	}
    658  1.1     alc }
    659  1.1     alc 
    660  1.1     alc HAL_BOOL
    661  1.1     alc ar5211GetDiagState(struct ath_hal *ah, int request,
    662  1.1     alc 	const void *args, uint32_t argsize,
    663  1.1     alc 	void **result, uint32_t *resultsize)
    664  1.1     alc {
    665  1.1     alc 	struct ath_hal_5211 *ahp = AH5211(ah);
    666  1.1     alc 
    667  1.1     alc 	(void) ahp;
    668  1.1     alc 	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
    669  1.1     alc 		return AH_TRUE;
    670  1.1     alc 	switch (request) {
    671  1.1     alc 	case HAL_DIAG_EEPROM:
    672  1.1     alc 		return ath_hal_eepromDiag(ah, request,
    673  1.1     alc 		    args, argsize, result, resultsize);
    674  1.1     alc 	case HAL_DIAG_RFGAIN:
    675  1.1     alc 		*result = &ahp->ah_gainValues;
    676  1.1     alc 		*resultsize = sizeof(GAIN_VALUES);
    677  1.1     alc 		return AH_TRUE;
    678  1.1     alc 	case HAL_DIAG_RFGAIN_CURSTEP:
    679  1.1     alc 		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
    680  1.1     alc 		*resultsize = (*result == AH_NULL) ?
    681  1.1     alc 			0 : sizeof(GAIN_OPTIMIZATION_STEP);
    682  1.1     alc 		return AH_TRUE;
    683  1.1     alc 	}
    684  1.1     alc 	return AH_FALSE;
    685  1.1     alc }
    686