ar2316.c revision 1.2.10.2 1 1.2.10.2 snj /*
2 1.2.10.2 snj * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 1.2.10.2 snj * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 1.2.10.2 snj *
5 1.2.10.2 snj * Permission to use, copy, modify, and/or distribute this software for any
6 1.2.10.2 snj * purpose with or without fee is hereby granted, provided that the above
7 1.2.10.2 snj * copyright notice and this permission notice appear in all copies.
8 1.2.10.2 snj *
9 1.2.10.2 snj * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 1.2.10.2 snj * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 1.2.10.2 snj * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 1.2.10.2 snj * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 1.2.10.2 snj * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 1.2.10.2 snj * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 1.2.10.2 snj * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 1.2.10.2 snj *
17 1.2.10.2 snj * $Id: ar2316.c,v 1.2.10.2 2009/08/07 06:43:39 snj Exp $
18 1.2.10.2 snj */
19 1.2.10.2 snj #include "opt_ah.h"
20 1.2.10.2 snj
21 1.2.10.2 snj #include "ah.h"
22 1.2.10.2 snj #include "ah_internal.h"
23 1.2.10.2 snj
24 1.2.10.2 snj #include "ar5212/ar5212.h"
25 1.2.10.2 snj #include "ar5212/ar5212reg.h"
26 1.2.10.2 snj #include "ar5212/ar5212phy.h"
27 1.2.10.2 snj
28 1.2.10.2 snj #include "ah_eeprom_v3.h"
29 1.2.10.2 snj
30 1.2.10.2 snj #define AH_5212_2316
31 1.2.10.2 snj #include "ar5212/ar5212.ini"
32 1.2.10.2 snj
33 1.2.10.2 snj #define N(a) (sizeof(a)/sizeof(a[0]))
34 1.2.10.2 snj
35 1.2.10.2 snj typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
36 1.2.10.2 snj typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
37 1.2.10.2 snj #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
38 1.2.10.2 snj
39 1.2.10.2 snj struct ar2316State {
40 1.2.10.2 snj RF_HAL_FUNCS base; /* public state, must be first */
41 1.2.10.2 snj uint16_t pcdacTable[PWR_TABLE_SIZE_2316];
42 1.2.10.2 snj
43 1.2.10.2 snj uint32_t Bank1Data[N(ar5212Bank1_2316)];
44 1.2.10.2 snj uint32_t Bank2Data[N(ar5212Bank2_2316)];
45 1.2.10.2 snj uint32_t Bank3Data[N(ar5212Bank3_2316)];
46 1.2.10.2 snj uint32_t Bank6Data[N(ar5212Bank6_2316)];
47 1.2.10.2 snj uint32_t Bank7Data[N(ar5212Bank7_2316)];
48 1.2.10.2 snj
49 1.2.10.2 snj /*
50 1.2.10.2 snj * Private state for reduced stack usage.
51 1.2.10.2 snj */
52 1.2.10.2 snj /* filled out Vpd table for all pdGains (chanL) */
53 1.2.10.2 snj uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54 1.2.10.2 snj [MAX_PWR_RANGE_IN_HALF_DB];
55 1.2.10.2 snj /* filled out Vpd table for all pdGains (chanR) */
56 1.2.10.2 snj uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57 1.2.10.2 snj [MAX_PWR_RANGE_IN_HALF_DB];
58 1.2.10.2 snj /* filled out Vpd table for all pdGains (interpolated) */
59 1.2.10.2 snj uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60 1.2.10.2 snj [MAX_PWR_RANGE_IN_HALF_DB];
61 1.2.10.2 snj };
62 1.2.10.2 snj #define AR2316(ah) ((struct ar2316State *) AH5212(ah)->ah_rfHal)
63 1.2.10.2 snj
64 1.2.10.2 snj extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65 1.2.10.2 snj uint32_t numBits, uint32_t firstBit, uint32_t column);
66 1.2.10.2 snj
67 1.2.10.2 snj static void
68 1.2.10.2 snj ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69 1.2.10.2 snj int regWrites)
70 1.2.10.2 snj {
71 1.2.10.2 snj struct ath_hal_5212 *ahp = AH5212(ah);
72 1.2.10.2 snj
73 1.2.10.2 snj HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
74 1.2.10.2 snj HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
75 1.2.10.2 snj HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
76 1.2.10.2 snj
77 1.2.10.2 snj /* For AP51 */
78 1.2.10.2 snj if (!ahp->ah_cwCalRequire) {
79 1.2.10.2 snj OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
80 1.2.10.2 snj } else {
81 1.2.10.2 snj ahp->ah_cwCalRequire = AH_FALSE;
82 1.2.10.2 snj }
83 1.2.10.2 snj }
84 1.2.10.2 snj
85 1.2.10.2 snj /*
86 1.2.10.2 snj * Take the MHz channel value and set the Channel value
87 1.2.10.2 snj *
88 1.2.10.2 snj * ASSUMES: Writes enabled to analog bus
89 1.2.10.2 snj */
90 1.2.10.2 snj static HAL_BOOL
91 1.2.10.2 snj ar2316SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
92 1.2.10.2 snj {
93 1.2.10.2 snj uint32_t channelSel = 0;
94 1.2.10.2 snj uint32_t bModeSynth = 0;
95 1.2.10.2 snj uint32_t aModeRefSel = 0;
96 1.2.10.2 snj uint32_t reg32 = 0;
97 1.2.10.2 snj
98 1.2.10.2 snj OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
99 1.2.10.2 snj
100 1.2.10.2 snj if (chan->channel < 4800) {
101 1.2.10.2 snj uint32_t txctl;
102 1.2.10.2 snj
103 1.2.10.2 snj if (((chan->channel - 2192) % 5) == 0) {
104 1.2.10.2 snj channelSel = ((chan->channel - 672) * 2 - 3040)/10;
105 1.2.10.2 snj bModeSynth = 0;
106 1.2.10.2 snj } else if (((chan->channel - 2224) % 5) == 0) {
107 1.2.10.2 snj channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
108 1.2.10.2 snj bModeSynth = 1;
109 1.2.10.2 snj } else {
110 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_ANY,
111 1.2.10.2 snj "%s: invalid channel %u MHz\n",
112 1.2.10.2 snj __func__, chan->channel);
113 1.2.10.2 snj return AH_FALSE;
114 1.2.10.2 snj }
115 1.2.10.2 snj
116 1.2.10.2 snj channelSel = (channelSel << 2) & 0xff;
117 1.2.10.2 snj channelSel = ath_hal_reverseBits(channelSel, 8);
118 1.2.10.2 snj
119 1.2.10.2 snj txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
120 1.2.10.2 snj if (chan->channel == 2484) {
121 1.2.10.2 snj /* Enable channel spreading for channel 14 */
122 1.2.10.2 snj OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
123 1.2.10.2 snj txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
124 1.2.10.2 snj } else {
125 1.2.10.2 snj OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
126 1.2.10.2 snj txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
127 1.2.10.2 snj }
128 1.2.10.2 snj } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
129 1.2.10.2 snj channelSel = ath_hal_reverseBits(
130 1.2.10.2 snj ((chan->channel - 4800) / 20 << 2), 8);
131 1.2.10.2 snj aModeRefSel = ath_hal_reverseBits(3, 2);
132 1.2.10.2 snj } else if ((chan->channel % 10) == 0) {
133 1.2.10.2 snj channelSel = ath_hal_reverseBits(
134 1.2.10.2 snj ((chan->channel - 4800) / 10 << 1), 8);
135 1.2.10.2 snj aModeRefSel = ath_hal_reverseBits(2, 2);
136 1.2.10.2 snj } else if ((chan->channel % 5) == 0) {
137 1.2.10.2 snj channelSel = ath_hal_reverseBits(
138 1.2.10.2 snj (chan->channel - 4800) / 5, 8);
139 1.2.10.2 snj aModeRefSel = ath_hal_reverseBits(1, 2);
140 1.2.10.2 snj } else {
141 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
142 1.2.10.2 snj __func__, chan->channel);
143 1.2.10.2 snj return AH_FALSE;
144 1.2.10.2 snj }
145 1.2.10.2 snj
146 1.2.10.2 snj reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
147 1.2.10.2 snj (1 << 12) | 0x1;
148 1.2.10.2 snj OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
149 1.2.10.2 snj
150 1.2.10.2 snj reg32 >>= 8;
151 1.2.10.2 snj OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
152 1.2.10.2 snj
153 1.2.10.2 snj AH_PRIVATE(ah)->ah_curchan = chan;
154 1.2.10.2 snj return AH_TRUE;
155 1.2.10.2 snj }
156 1.2.10.2 snj
157 1.2.10.2 snj /*
158 1.2.10.2 snj * Reads EEPROM header info from device structure and programs
159 1.2.10.2 snj * all rf registers
160 1.2.10.2 snj *
161 1.2.10.2 snj * REQUIRES: Access to the analog rf device
162 1.2.10.2 snj */
163 1.2.10.2 snj static HAL_BOOL
164 1.2.10.2 snj ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
165 1.2.10.2 snj {
166 1.2.10.2 snj #define RF_BANK_SETUP(_priv, _ix, _col) do { \
167 1.2.10.2 snj int i; \
168 1.2.10.2 snj for (i = 0; i < N(ar5212Bank##_ix##_2316); i++) \
169 1.2.10.2 snj (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
170 1.2.10.2 snj } while (0)
171 1.2.10.2 snj struct ath_hal_5212 *ahp = AH5212(ah);
172 1.2.10.2 snj const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
173 1.2.10.2 snj uint16_t ob2GHz = 0, db2GHz = 0;
174 1.2.10.2 snj struct ar2316State *priv = AR2316(ah);
175 1.2.10.2 snj int regWrites = 0;
176 1.2.10.2 snj
177 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_RFPARAM,
178 1.2.10.2 snj "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
179 1.2.10.2 snj __func__, chan->channel, chan->channelFlags, modesIndex);
180 1.2.10.2 snj
181 1.2.10.2 snj HALASSERT(priv != AH_NULL);
182 1.2.10.2 snj
183 1.2.10.2 snj /* Setup rf parameters */
184 1.2.10.2 snj switch (chan->channelFlags & CHANNEL_ALL) {
185 1.2.10.2 snj case CHANNEL_B:
186 1.2.10.2 snj ob2GHz = ee->ee_obFor24;
187 1.2.10.2 snj db2GHz = ee->ee_dbFor24;
188 1.2.10.2 snj break;
189 1.2.10.2 snj case CHANNEL_G:
190 1.2.10.2 snj case CHANNEL_108G:
191 1.2.10.2 snj ob2GHz = ee->ee_obFor24g;
192 1.2.10.2 snj db2GHz = ee->ee_dbFor24g;
193 1.2.10.2 snj break;
194 1.2.10.2 snj default:
195 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
196 1.2.10.2 snj __func__, chan->channelFlags);
197 1.2.10.2 snj return AH_FALSE;
198 1.2.10.2 snj }
199 1.2.10.2 snj
200 1.2.10.2 snj /* Bank 1 Write */
201 1.2.10.2 snj RF_BANK_SETUP(priv, 1, 1);
202 1.2.10.2 snj
203 1.2.10.2 snj /* Bank 2 Write */
204 1.2.10.2 snj RF_BANK_SETUP(priv, 2, modesIndex);
205 1.2.10.2 snj
206 1.2.10.2 snj /* Bank 3 Write */
207 1.2.10.2 snj RF_BANK_SETUP(priv, 3, modesIndex);
208 1.2.10.2 snj
209 1.2.10.2 snj /* Bank 6 Write */
210 1.2.10.2 snj RF_BANK_SETUP(priv, 6, modesIndex);
211 1.2.10.2 snj
212 1.2.10.2 snj ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 178, 0);
213 1.2.10.2 snj ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 175, 0);
214 1.2.10.2 snj
215 1.2.10.2 snj /* Bank 7 Setup */
216 1.2.10.2 snj RF_BANK_SETUP(priv, 7, modesIndex);
217 1.2.10.2 snj
218 1.2.10.2 snj /* Write Analog registers */
219 1.2.10.2 snj HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
220 1.2.10.2 snj HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
221 1.2.10.2 snj HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
222 1.2.10.2 snj HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
223 1.2.10.2 snj HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
224 1.2.10.2 snj
225 1.2.10.2 snj /* Now that we have reprogrammed rfgain value, clear the flag. */
226 1.2.10.2 snj ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
227 1.2.10.2 snj
228 1.2.10.2 snj return AH_TRUE;
229 1.2.10.2 snj #undef RF_BANK_SETUP
230 1.2.10.2 snj }
231 1.2.10.2 snj
232 1.2.10.2 snj /*
233 1.2.10.2 snj * Return a reference to the requested RF Bank.
234 1.2.10.2 snj */
235 1.2.10.2 snj static uint32_t *
236 1.2.10.2 snj ar2316GetRfBank(struct ath_hal *ah, int bank)
237 1.2.10.2 snj {
238 1.2.10.2 snj struct ar2316State *priv = AR2316(ah);
239 1.2.10.2 snj
240 1.2.10.2 snj HALASSERT(priv != AH_NULL);
241 1.2.10.2 snj switch (bank) {
242 1.2.10.2 snj case 1: return priv->Bank1Data;
243 1.2.10.2 snj case 2: return priv->Bank2Data;
244 1.2.10.2 snj case 3: return priv->Bank3Data;
245 1.2.10.2 snj case 6: return priv->Bank6Data;
246 1.2.10.2 snj case 7: return priv->Bank7Data;
247 1.2.10.2 snj }
248 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
249 1.2.10.2 snj __func__, bank);
250 1.2.10.2 snj return AH_NULL;
251 1.2.10.2 snj }
252 1.2.10.2 snj
253 1.2.10.2 snj /*
254 1.2.10.2 snj * Return indices surrounding the value in sorted integer lists.
255 1.2.10.2 snj *
256 1.2.10.2 snj * NB: the input list is assumed to be sorted in ascending order
257 1.2.10.2 snj */
258 1.2.10.2 snj static void
259 1.2.10.2 snj GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
260 1.2.10.2 snj uint32_t *vlo, uint32_t *vhi)
261 1.2.10.2 snj {
262 1.2.10.2 snj int16_t target = v;
263 1.2.10.2 snj const int16_t *ep = lp+listSize;
264 1.2.10.2 snj const int16_t *tp;
265 1.2.10.2 snj
266 1.2.10.2 snj /*
267 1.2.10.2 snj * Check first and last elements for out-of-bounds conditions.
268 1.2.10.2 snj */
269 1.2.10.2 snj if (target < lp[0]) {
270 1.2.10.2 snj *vlo = *vhi = 0;
271 1.2.10.2 snj return;
272 1.2.10.2 snj }
273 1.2.10.2 snj if (target >= ep[-1]) {
274 1.2.10.2 snj *vlo = *vhi = listSize - 1;
275 1.2.10.2 snj return;
276 1.2.10.2 snj }
277 1.2.10.2 snj
278 1.2.10.2 snj /* look for value being near or between 2 values in list */
279 1.2.10.2 snj for (tp = lp; tp < ep; tp++) {
280 1.2.10.2 snj /*
281 1.2.10.2 snj * If value is close to the current value of the list
282 1.2.10.2 snj * then target is not between values, it is one of the values
283 1.2.10.2 snj */
284 1.2.10.2 snj if (*tp == target) {
285 1.2.10.2 snj *vlo = *vhi = tp - (const int16_t *) lp;
286 1.2.10.2 snj return;
287 1.2.10.2 snj }
288 1.2.10.2 snj /*
289 1.2.10.2 snj * Look for value being between current value and next value
290 1.2.10.2 snj * if so return these 2 values
291 1.2.10.2 snj */
292 1.2.10.2 snj if (target < tp[1]) {
293 1.2.10.2 snj *vlo = tp - (const int16_t *) lp;
294 1.2.10.2 snj *vhi = *vlo + 1;
295 1.2.10.2 snj return;
296 1.2.10.2 snj }
297 1.2.10.2 snj }
298 1.2.10.2 snj }
299 1.2.10.2 snj
300 1.2.10.2 snj /*
301 1.2.10.2 snj * Fill the Vpdlist for indices Pmax-Pmin
302 1.2.10.2 snj */
303 1.2.10.2 snj static HAL_BOOL
304 1.2.10.2 snj ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
305 1.2.10.2 snj const int16_t *pwrList, const int16_t *VpdList,
306 1.2.10.2 snj uint16_t numIntercepts, uint16_t retVpdList[][64])
307 1.2.10.2 snj {
308 1.2.10.2 snj uint16_t ii, jj, kk;
309 1.2.10.2 snj int16_t currPwr = (int16_t)(2*Pmin);
310 1.2.10.2 snj /* since Pmin is pwr*2 and pwrList is 4*pwr */
311 1.2.10.2 snj uint32_t idxL = 0, idxR = 0;
312 1.2.10.2 snj
313 1.2.10.2 snj ii = 0;
314 1.2.10.2 snj jj = 0;
315 1.2.10.2 snj
316 1.2.10.2 snj if (numIntercepts < 2)
317 1.2.10.2 snj return AH_FALSE;
318 1.2.10.2 snj
319 1.2.10.2 snj while (ii <= (uint16_t)(Pmax - Pmin)) {
320 1.2.10.2 snj GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
321 1.2.10.2 snj &(idxL), &(idxR));
322 1.2.10.2 snj if (idxR < 1)
323 1.2.10.2 snj idxR = 1; /* extrapolate below */
324 1.2.10.2 snj if (idxL == (uint32_t)(numIntercepts - 1))
325 1.2.10.2 snj idxL = numIntercepts - 2; /* extrapolate above */
326 1.2.10.2 snj if (pwrList[idxL] == pwrList[idxR])
327 1.2.10.2 snj kk = VpdList[idxL];
328 1.2.10.2 snj else
329 1.2.10.2 snj kk = (uint16_t)
330 1.2.10.2 snj (((currPwr - pwrList[idxL])*VpdList[idxR]+
331 1.2.10.2 snj (pwrList[idxR] - currPwr)*VpdList[idxL])/
332 1.2.10.2 snj (pwrList[idxR] - pwrList[idxL]));
333 1.2.10.2 snj retVpdList[pdGainIdx][ii] = kk;
334 1.2.10.2 snj ii++;
335 1.2.10.2 snj currPwr += 2; /* half dB steps */
336 1.2.10.2 snj }
337 1.2.10.2 snj
338 1.2.10.2 snj return AH_TRUE;
339 1.2.10.2 snj }
340 1.2.10.2 snj
341 1.2.10.2 snj /*
342 1.2.10.2 snj * Returns interpolated or the scaled up interpolated value
343 1.2.10.2 snj */
344 1.2.10.2 snj static int16_t
345 1.2.10.2 snj interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
346 1.2.10.2 snj int16_t targetLeft, int16_t targetRight)
347 1.2.10.2 snj {
348 1.2.10.2 snj int16_t rv;
349 1.2.10.2 snj
350 1.2.10.2 snj if (srcRight != srcLeft) {
351 1.2.10.2 snj rv = ((target - srcLeft)*targetRight +
352 1.2.10.2 snj (srcRight - target)*targetLeft) / (srcRight - srcLeft);
353 1.2.10.2 snj } else {
354 1.2.10.2 snj rv = targetLeft;
355 1.2.10.2 snj }
356 1.2.10.2 snj return rv;
357 1.2.10.2 snj }
358 1.2.10.2 snj
359 1.2.10.2 snj /*
360 1.2.10.2 snj * Uses the data points read from EEPROM to reconstruct the pdadc power table
361 1.2.10.2 snj * Called by ar2316SetPowerTable()
362 1.2.10.2 snj */
363 1.2.10.2 snj static int
364 1.2.10.2 snj ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
365 1.2.10.2 snj const RAW_DATA_STRUCT_2316 *pRawDataset,
366 1.2.10.2 snj uint16_t pdGainOverlap_t2,
367 1.2.10.2 snj int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
368 1.2.10.2 snj uint16_t pPdGainValues[], uint16_t pPDADCValues[])
369 1.2.10.2 snj {
370 1.2.10.2 snj struct ar2316State *priv = AR2316(ah);
371 1.2.10.2 snj #define VpdTable_L priv->vpdTable_L
372 1.2.10.2 snj #define VpdTable_R priv->vpdTable_R
373 1.2.10.2 snj #define VpdTable_I priv->vpdTable_I
374 1.2.10.2 snj uint32_t ii, jj, kk;
375 1.2.10.2 snj int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
376 1.2.10.2 snj uint32_t idxL = 0, idxR = 0;
377 1.2.10.2 snj uint32_t numPdGainsUsed = 0;
378 1.2.10.2 snj /*
379 1.2.10.2 snj * If desired to support -ve power levels in future, just
380 1.2.10.2 snj * change pwr_I_0 to signed 5-bits.
381 1.2.10.2 snj */
382 1.2.10.2 snj int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
383 1.2.10.2 snj /* to accomodate -ve power levels later on. */
384 1.2.10.2 snj int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
385 1.2.10.2 snj /* to accomodate -ve power levels later on */
386 1.2.10.2 snj uint16_t numVpd = 0;
387 1.2.10.2 snj uint16_t Vpd_step;
388 1.2.10.2 snj int16_t tmpVal ;
389 1.2.10.2 snj uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
390 1.2.10.2 snj
391 1.2.10.2 snj /* Get upper lower index */
392 1.2.10.2 snj GetLowerUpperIndex(channel, pRawDataset->pChannels,
393 1.2.10.2 snj pRawDataset->numChannels, &(idxL), &(idxR));
394 1.2.10.2 snj
395 1.2.10.2 snj for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
396 1.2.10.2 snj jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
397 1.2.10.2 snj /* work backwards 'cause highest pdGain for lowest power */
398 1.2.10.2 snj numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
399 1.2.10.2 snj if (numVpd > 0) {
400 1.2.10.2 snj pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
401 1.2.10.2 snj Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
402 1.2.10.2 snj if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
403 1.2.10.2 snj Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
404 1.2.10.2 snj }
405 1.2.10.2 snj Pmin_t2[numPdGainsUsed] = (int16_t)
406 1.2.10.2 snj (Pmin_t2[numPdGainsUsed] / 2);
407 1.2.10.2 snj Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
408 1.2.10.2 snj if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
409 1.2.10.2 snj Pmax_t2[numPdGainsUsed] =
410 1.2.10.2 snj pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
411 1.2.10.2 snj Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
412 1.2.10.2 snj ar2316FillVpdTable(
413 1.2.10.2 snj numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
414 1.2.10.2 snj &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
415 1.2.10.2 snj &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
416 1.2.10.2 snj );
417 1.2.10.2 snj ar2316FillVpdTable(
418 1.2.10.2 snj numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
419 1.2.10.2 snj &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
420 1.2.10.2 snj &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
421 1.2.10.2 snj );
422 1.2.10.2 snj for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
423 1.2.10.2 snj VpdTable_I[numPdGainsUsed][kk] =
424 1.2.10.2 snj interpolate_signed(
425 1.2.10.2 snj channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
426 1.2.10.2 snj (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
427 1.2.10.2 snj }
428 1.2.10.2 snj /* fill VpdTable_I for this pdGain */
429 1.2.10.2 snj numPdGainsUsed++;
430 1.2.10.2 snj }
431 1.2.10.2 snj /* if this pdGain is used */
432 1.2.10.2 snj }
433 1.2.10.2 snj
434 1.2.10.2 snj *pMinCalPower = Pmin_t2[0];
435 1.2.10.2 snj kk = 0; /* index for the final table */
436 1.2.10.2 snj for (ii = 0; ii < numPdGainsUsed; ii++) {
437 1.2.10.2 snj if (ii == (numPdGainsUsed - 1))
438 1.2.10.2 snj pPdGainBoundaries[ii] = Pmax_t2[ii] +
439 1.2.10.2 snj PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
440 1.2.10.2 snj else
441 1.2.10.2 snj pPdGainBoundaries[ii] = (uint16_t)
442 1.2.10.2 snj ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
443 1.2.10.2 snj if (pPdGainBoundaries[ii] > 63) {
444 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_ANY,
445 1.2.10.2 snj "%s: clamp pPdGainBoundaries[%d] %d\n",
446 1.2.10.2 snj __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
447 1.2.10.2 snj pPdGainBoundaries[ii] = 63;
448 1.2.10.2 snj }
449 1.2.10.2 snj
450 1.2.10.2 snj /* Find starting index for this pdGain */
451 1.2.10.2 snj if (ii == 0)
452 1.2.10.2 snj ss = 0; /* for the first pdGain, start from index 0 */
453 1.2.10.2 snj else
454 1.2.10.2 snj ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
455 1.2.10.2 snj pdGainOverlap_t2;
456 1.2.10.2 snj Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
457 1.2.10.2 snj Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
458 1.2.10.2 snj /*
459 1.2.10.2 snj *-ve ss indicates need to extrapolate data below for this pdGain
460 1.2.10.2 snj */
461 1.2.10.2 snj while (ss < 0) {
462 1.2.10.2 snj tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
463 1.2.10.2 snj pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
464 1.2.10.2 snj ss++;
465 1.2.10.2 snj }
466 1.2.10.2 snj
467 1.2.10.2 snj sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
468 1.2.10.2 snj tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
469 1.2.10.2 snj maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
470 1.2.10.2 snj
471 1.2.10.2 snj while (ss < (int16_t)maxIndex)
472 1.2.10.2 snj pPDADCValues[kk++] = VpdTable_I[ii][ss++];
473 1.2.10.2 snj
474 1.2.10.2 snj Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
475 1.2.10.2 snj VpdTable_I[ii][sizeCurrVpdTable-2]);
476 1.2.10.2 snj Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
477 1.2.10.2 snj /*
478 1.2.10.2 snj * for last gain, pdGainBoundary == Pmax_t2, so will
479 1.2.10.2 snj * have to extrapolate
480 1.2.10.2 snj */
481 1.2.10.2 snj if (tgtIndex > maxIndex) { /* need to extrapolate above */
482 1.2.10.2 snj while(ss < (int16_t)tgtIndex) {
483 1.2.10.2 snj tmpVal = (uint16_t)
484 1.2.10.2 snj (VpdTable_I[ii][sizeCurrVpdTable-1] +
485 1.2.10.2 snj (ss-maxIndex)*Vpd_step);
486 1.2.10.2 snj pPDADCValues[kk++] = (tmpVal > 127) ?
487 1.2.10.2 snj 127 : tmpVal;
488 1.2.10.2 snj ss++;
489 1.2.10.2 snj }
490 1.2.10.2 snj } /* extrapolated above */
491 1.2.10.2 snj } /* for all pdGainUsed */
492 1.2.10.2 snj
493 1.2.10.2 snj while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
494 1.2.10.2 snj pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
495 1.2.10.2 snj ii++;
496 1.2.10.2 snj }
497 1.2.10.2 snj while (kk < 128) {
498 1.2.10.2 snj pPDADCValues[kk] = pPDADCValues[kk-1];
499 1.2.10.2 snj kk++;
500 1.2.10.2 snj }
501 1.2.10.2 snj
502 1.2.10.2 snj return numPdGainsUsed;
503 1.2.10.2 snj #undef VpdTable_L
504 1.2.10.2 snj #undef VpdTable_R
505 1.2.10.2 snj #undef VpdTable_I
506 1.2.10.2 snj }
507 1.2.10.2 snj
508 1.2.10.2 snj static HAL_BOOL
509 1.2.10.2 snj ar2316SetPowerTable(struct ath_hal *ah,
510 1.2.10.2 snj int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
511 1.2.10.2 snj uint16_t *rfXpdGain)
512 1.2.10.2 snj {
513 1.2.10.2 snj struct ath_hal_5212 *ahp = AH5212(ah);
514 1.2.10.2 snj const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
515 1.2.10.2 snj const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
516 1.2.10.2 snj uint16_t pdGainOverlap_t2;
517 1.2.10.2 snj int16_t minCalPower2316_t2;
518 1.2.10.2 snj uint16_t *pdadcValues = ahp->ah_pcdacTable;
519 1.2.10.2 snj uint16_t gainBoundaries[4];
520 1.2.10.2 snj uint32_t reg32, regoffset;
521 1.2.10.2 snj int i, numPdGainsUsed;
522 1.2.10.2 snj #ifndef AH_USE_INIPDGAIN
523 1.2.10.2 snj uint32_t tpcrg1;
524 1.2.10.2 snj #endif
525 1.2.10.2 snj
526 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
527 1.2.10.2 snj __func__, chan->channel,chan->channelFlags);
528 1.2.10.2 snj
529 1.2.10.2 snj if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
530 1.2.10.2 snj pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
531 1.2.10.2 snj else if (IS_CHAN_B(chan))
532 1.2.10.2 snj pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
533 1.2.10.2 snj else {
534 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
535 1.2.10.2 snj return AH_FALSE;
536 1.2.10.2 snj }
537 1.2.10.2 snj
538 1.2.10.2 snj pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
539 1.2.10.2 snj AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
540 1.2.10.2 snj
541 1.2.10.2 snj numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
542 1.2.10.2 snj chan->channel, pRawDataset, pdGainOverlap_t2,
543 1.2.10.2 snj &minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
544 1.2.10.2 snj HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
545 1.2.10.2 snj
546 1.2.10.2 snj #ifdef AH_USE_INIPDGAIN
547 1.2.10.2 snj /*
548 1.2.10.2 snj * Use pd_gains curve from eeprom; Atheros always uses
549 1.2.10.2 snj * the default curve from the ini file but some vendors
550 1.2.10.2 snj * (e.g. Zcomax) want to override this curve and not
551 1.2.10.2 snj * honoring their settings results in tx power 5dBm low.
552 1.2.10.2 snj */
553 1.2.10.2 snj OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
554 1.2.10.2 snj (pRawDataset->pDataPerChannel[0].numPdGains - 1));
555 1.2.10.2 snj #else
556 1.2.10.2 snj tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
557 1.2.10.2 snj tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
558 1.2.10.2 snj | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
559 1.2.10.2 snj switch (numPdGainsUsed) {
560 1.2.10.2 snj case 3:
561 1.2.10.2 snj tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
562 1.2.10.2 snj tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
563 1.2.10.2 snj /* fall thru... */
564 1.2.10.2 snj case 2:
565 1.2.10.2 snj tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
566 1.2.10.2 snj tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
567 1.2.10.2 snj /* fall thru... */
568 1.2.10.2 snj case 1:
569 1.2.10.2 snj tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
570 1.2.10.2 snj tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
571 1.2.10.2 snj break;
572 1.2.10.2 snj }
573 1.2.10.2 snj #ifdef AH_DEBUG
574 1.2.10.2 snj if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
575 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
576 1.2.10.2 snj "pd_gains (default 0x%x, calculated 0x%x)\n",
577 1.2.10.2 snj __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
578 1.2.10.2 snj #endif
579 1.2.10.2 snj OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
580 1.2.10.2 snj #endif
581 1.2.10.2 snj
582 1.2.10.2 snj /*
583 1.2.10.2 snj * Note the pdadc table may not start at 0 dBm power, could be
584 1.2.10.2 snj * negative or greater than 0. Need to offset the power
585 1.2.10.2 snj * values by the amount of minPower for griffin
586 1.2.10.2 snj */
587 1.2.10.2 snj if (minCalPower2316_t2 != 0)
588 1.2.10.2 snj ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
589 1.2.10.2 snj else
590 1.2.10.2 snj ahp->ah_txPowerIndexOffset = 0;
591 1.2.10.2 snj
592 1.2.10.2 snj /* Finally, write the power values into the baseband power table */
593 1.2.10.2 snj regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
594 1.2.10.2 snj for (i = 0; i < 32; i++) {
595 1.2.10.2 snj reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
596 1.2.10.2 snj ((pdadcValues[4*i + 1] & 0xFF) << 8) |
597 1.2.10.2 snj ((pdadcValues[4*i + 2] & 0xFF) << 16) |
598 1.2.10.2 snj ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
599 1.2.10.2 snj OS_REG_WRITE(ah, regoffset, reg32);
600 1.2.10.2 snj regoffset += 4;
601 1.2.10.2 snj }
602 1.2.10.2 snj
603 1.2.10.2 snj OS_REG_WRITE(ah, AR_PHY_TPCRG5,
604 1.2.10.2 snj SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
605 1.2.10.2 snj SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
606 1.2.10.2 snj SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
607 1.2.10.2 snj SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
608 1.2.10.2 snj SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
609 1.2.10.2 snj
610 1.2.10.2 snj return AH_TRUE;
611 1.2.10.2 snj }
612 1.2.10.2 snj
613 1.2.10.2 snj static int16_t
614 1.2.10.2 snj ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
615 1.2.10.2 snj {
616 1.2.10.2 snj uint32_t ii,jj;
617 1.2.10.2 snj uint16_t Pmin=0,numVpd;
618 1.2.10.2 snj
619 1.2.10.2 snj for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
620 1.2.10.2 snj jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
621 1.2.10.2 snj /* work backwards 'cause highest pdGain for lowest power */
622 1.2.10.2 snj numVpd = data->pDataPerPDGain[jj].numVpd;
623 1.2.10.2 snj if (numVpd > 0) {
624 1.2.10.2 snj Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
625 1.2.10.2 snj return(Pmin);
626 1.2.10.2 snj }
627 1.2.10.2 snj }
628 1.2.10.2 snj return(Pmin);
629 1.2.10.2 snj }
630 1.2.10.2 snj
631 1.2.10.2 snj static int16_t
632 1.2.10.2 snj ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
633 1.2.10.2 snj {
634 1.2.10.2 snj uint32_t ii;
635 1.2.10.2 snj uint16_t Pmax=0,numVpd;
636 1.2.10.2 snj
637 1.2.10.2 snj for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
638 1.2.10.2 snj /* work forwards cuase lowest pdGain for highest power */
639 1.2.10.2 snj numVpd = data->pDataPerPDGain[ii].numVpd;
640 1.2.10.2 snj if (numVpd > 0) {
641 1.2.10.2 snj Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
642 1.2.10.2 snj return(Pmax);
643 1.2.10.2 snj }
644 1.2.10.2 snj }
645 1.2.10.2 snj return(Pmax);
646 1.2.10.2 snj }
647 1.2.10.2 snj
648 1.2.10.2 snj static HAL_BOOL
649 1.2.10.2 snj ar2316GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
650 1.2.10.2 snj int16_t *maxPow, int16_t *minPow)
651 1.2.10.2 snj {
652 1.2.10.2 snj const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
653 1.2.10.2 snj const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
654 1.2.10.2 snj const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
655 1.2.10.2 snj uint16_t numChannels;
656 1.2.10.2 snj int totalD,totalF, totalMin,last, i;
657 1.2.10.2 snj
658 1.2.10.2 snj *maxPow = 0;
659 1.2.10.2 snj
660 1.2.10.2 snj if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
661 1.2.10.2 snj pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
662 1.2.10.2 snj else if (IS_CHAN_B(chan))
663 1.2.10.2 snj pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
664 1.2.10.2 snj else
665 1.2.10.2 snj return(AH_FALSE);
666 1.2.10.2 snj
667 1.2.10.2 snj numChannels = pRawDataset->numChannels;
668 1.2.10.2 snj data = pRawDataset->pDataPerChannel;
669 1.2.10.2 snj
670 1.2.10.2 snj /* Make sure the channel is in the range of the TP values
671 1.2.10.2 snj * (freq piers)
672 1.2.10.2 snj */
673 1.2.10.2 snj if (numChannels < 1)
674 1.2.10.2 snj return(AH_FALSE);
675 1.2.10.2 snj
676 1.2.10.2 snj if ((chan->channel < data[0].channelValue) ||
677 1.2.10.2 snj (chan->channel > data[numChannels-1].channelValue)) {
678 1.2.10.2 snj if (chan->channel < data[0].channelValue) {
679 1.2.10.2 snj *maxPow = ar2316GetMaxPower(ah, &data[0]);
680 1.2.10.2 snj *minPow = ar2316GetMinPower(ah, &data[0]);
681 1.2.10.2 snj return(AH_TRUE);
682 1.2.10.2 snj } else {
683 1.2.10.2 snj *maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
684 1.2.10.2 snj *minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
685 1.2.10.2 snj return(AH_TRUE);
686 1.2.10.2 snj }
687 1.2.10.2 snj }
688 1.2.10.2 snj
689 1.2.10.2 snj /* Linearly interpolate the power value now */
690 1.2.10.2 snj for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
691 1.2.10.2 snj last = i++);
692 1.2.10.2 snj totalD = data[i].channelValue - data[last].channelValue;
693 1.2.10.2 snj if (totalD > 0) {
694 1.2.10.2 snj totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
695 1.2.10.2 snj *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
696 1.2.10.2 snj ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
697 1.2.10.2 snj totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
698 1.2.10.2 snj *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
699 1.2.10.2 snj ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
700 1.2.10.2 snj return(AH_TRUE);
701 1.2.10.2 snj } else {
702 1.2.10.2 snj if (chan->channel == data[i].channelValue) {
703 1.2.10.2 snj *maxPow = ar2316GetMaxPower(ah, &data[i]);
704 1.2.10.2 snj *minPow = ar2316GetMinPower(ah, &data[i]);
705 1.2.10.2 snj return(AH_TRUE);
706 1.2.10.2 snj } else
707 1.2.10.2 snj return(AH_FALSE);
708 1.2.10.2 snj }
709 1.2.10.2 snj }
710 1.2.10.2 snj
711 1.2.10.2 snj /*
712 1.2.10.2 snj * Free memory for analog bank scratch buffers
713 1.2.10.2 snj */
714 1.2.10.2 snj static void
715 1.2.10.2 snj ar2316RfDetach(struct ath_hal *ah)
716 1.2.10.2 snj {
717 1.2.10.2 snj struct ath_hal_5212 *ahp = AH5212(ah);
718 1.2.10.2 snj
719 1.2.10.2 snj HALASSERT(ahp->ah_rfHal != AH_NULL);
720 1.2.10.2 snj ath_hal_free(ahp->ah_rfHal);
721 1.2.10.2 snj ahp->ah_rfHal = AH_NULL;
722 1.2.10.2 snj }
723 1.2.10.2 snj
724 1.2.10.2 snj /*
725 1.2.10.2 snj * Allocate memory for private state.
726 1.2.10.2 snj * Scratch Buffer will be reinitialized every reset so no need to zero now
727 1.2.10.2 snj */
728 1.2.10.2 snj static HAL_BOOL
729 1.2.10.2 snj ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
730 1.2.10.2 snj {
731 1.2.10.2 snj struct ath_hal_5212 *ahp = AH5212(ah);
732 1.2.10.2 snj struct ar2316State *priv;
733 1.2.10.2 snj
734 1.2.10.2 snj HALASSERT(ah->ah_magic == AR5212_MAGIC);
735 1.2.10.2 snj
736 1.2.10.2 snj HALASSERT(ahp->ah_rfHal == AH_NULL);
737 1.2.10.2 snj priv = ath_hal_malloc(sizeof(struct ar2316State));
738 1.2.10.2 snj if (priv == AH_NULL) {
739 1.2.10.2 snj HALDEBUG(ah, HAL_DEBUG_ANY,
740 1.2.10.2 snj "%s: cannot allocate private state\n", __func__);
741 1.2.10.2 snj *status = HAL_ENOMEM; /* XXX */
742 1.2.10.2 snj return AH_FALSE;
743 1.2.10.2 snj }
744 1.2.10.2 snj priv->base.rfDetach = ar2316RfDetach;
745 1.2.10.2 snj priv->base.writeRegs = ar2316WriteRegs;
746 1.2.10.2 snj priv->base.getRfBank = ar2316GetRfBank;
747 1.2.10.2 snj priv->base.setChannel = ar2316SetChannel;
748 1.2.10.2 snj priv->base.setRfRegs = ar2316SetRfRegs;
749 1.2.10.2 snj priv->base.setPowerTable = ar2316SetPowerTable;
750 1.2.10.2 snj priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
751 1.2.10.2 snj priv->base.getNfAdjust = ar5212GetNfAdjust;
752 1.2.10.2 snj
753 1.2.10.2 snj ahp->ah_pcdacTable = priv->pcdacTable;
754 1.2.10.2 snj ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
755 1.2.10.2 snj ahp->ah_rfHal = &priv->base;
756 1.2.10.2 snj
757 1.2.10.2 snj ahp->ah_cwCalRequire = AH_TRUE; /* force initial cal */
758 1.2.10.2 snj
759 1.2.10.2 snj return AH_TRUE;
760 1.2.10.2 snj }
761 1.2.10.2 snj
762 1.2.10.2 snj static HAL_BOOL
763 1.2.10.2 snj ar2316Probe(struct ath_hal *ah)
764 1.2.10.2 snj {
765 1.2.10.2 snj return IS_2316(ah);
766 1.2.10.2 snj }
767 1.2.10.2 snj AH_RF(RF2316, ar2316Probe, ar2316RfAttach);
768