Home | History | Annotate | Line # | Download | only in ar5212
ar2316.c revision 1.2
      1 /*
      2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  *
      5  * Permission to use, copy, modify, and/or distribute this software for any
      6  * purpose with or without fee is hereby granted, provided that the above
      7  * copyright notice and this permission notice appear in all copies.
      8  *
      9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  *
     17  * $Id: ar2316.c,v 1.2 2009/01/06 06:03:57 mrg Exp $
     18  */
     19 #include "opt_ah.h"
     20 
     21 #include "ah.h"
     22 #include "ah_internal.h"
     23 
     24 #include "ar5212/ar5212.h"
     25 #include "ar5212/ar5212reg.h"
     26 #include "ar5212/ar5212phy.h"
     27 
     28 #include "ah_eeprom_v3.h"
     29 
     30 #define AH_5212_2316
     31 #include "ar5212/ar5212.ini"
     32 
     33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
     34 
     35 typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
     36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
     37 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
     38 
     39 struct ar2316State {
     40 	RF_HAL_FUNCS	base;		/* public state, must be first */
     41 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2316];
     42 
     43 	uint32_t	Bank1Data[N(ar5212Bank1_2316)];
     44 	uint32_t	Bank2Data[N(ar5212Bank2_2316)];
     45 	uint32_t	Bank3Data[N(ar5212Bank3_2316)];
     46 	uint32_t	Bank6Data[N(ar5212Bank6_2316)];
     47 	uint32_t	Bank7Data[N(ar5212Bank7_2316)];
     48 
     49 	/*
     50 	 * Private state for reduced stack usage.
     51 	 */
     52 	/* filled out Vpd table for all pdGains (chanL) */
     53 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
     54 			    [MAX_PWR_RANGE_IN_HALF_DB];
     55 	/* filled out Vpd table for all pdGains (chanR) */
     56 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
     57 			    [MAX_PWR_RANGE_IN_HALF_DB];
     58 	/* filled out Vpd table for all pdGains (interpolated) */
     59 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
     60 			    [MAX_PWR_RANGE_IN_HALF_DB];
     61 };
     62 #define	AR2316(ah)	((struct ar2316State *) AH5212(ah)->ah_rfHal)
     63 
     64 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     65 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     66 
     67 static void
     68 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     69 	int regWrites)
     70 {
     71 	struct ath_hal_5212 *ahp = AH5212(ah);
     72 
     73 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
     74 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
     75 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
     76 
     77 	/* For AP51 */
     78         if (!ahp->ah_cwCalRequire) {
     79 		OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
     80         } else {
     81 		ahp->ah_cwCalRequire = AH_FALSE;
     82         }
     83 }
     84 
     85 /*
     86  * Take the MHz channel value and set the Channel value
     87  *
     88  * ASSUMES: Writes enabled to analog bus
     89  */
     90 static HAL_BOOL
     91 ar2316SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     92 {
     93 	uint32_t channelSel  = 0;
     94 	uint32_t bModeSynth  = 0;
     95 	uint32_t aModeRefSel = 0;
     96 	uint32_t reg32       = 0;
     97 
     98 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     99 
    100 	if (chan->channel < 4800) {
    101 		uint32_t txctl;
    102 
    103 		if (((chan->channel - 2192) % 5) == 0) {
    104 			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
    105 			bModeSynth = 0;
    106 		} else if (((chan->channel - 2224) % 5) == 0) {
    107 			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
    108 			bModeSynth = 1;
    109 		} else {
    110 			HALDEBUG(ah, HAL_DEBUG_ANY,
    111 			    "%s: invalid channel %u MHz\n",
    112 			    __func__, chan->channel);
    113 			return AH_FALSE;
    114 		}
    115 
    116 		channelSel = (channelSel << 2) & 0xff;
    117 		channelSel = ath_hal_reverseBits(channelSel, 8);
    118 
    119 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    120 		if (chan->channel == 2484) {
    121 			/* Enable channel spreading for channel 14 */
    122 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    123 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    124 		} else {
    125 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    126 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    127 		}
    128 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    129 		channelSel = ath_hal_reverseBits(
    130 			((chan->channel - 4800) / 20 << 2), 8);
    131 		aModeRefSel = ath_hal_reverseBits(3, 2);
    132 	} else if ((chan->channel % 10) == 0) {
    133 		channelSel = ath_hal_reverseBits(
    134 			((chan->channel - 4800) / 10 << 1), 8);
    135 		aModeRefSel = ath_hal_reverseBits(2, 2);
    136 	} else if ((chan->channel % 5) == 0) {
    137 		channelSel = ath_hal_reverseBits(
    138 			(chan->channel - 4800) / 5, 8);
    139 		aModeRefSel = ath_hal_reverseBits(1, 2);
    140 	} else {
    141 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    142 		    __func__, chan->channel);
    143 		return AH_FALSE;
    144 	}
    145 
    146 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    147 			(1 << 12) | 0x1;
    148 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    149 
    150 	reg32 >>= 8;
    151 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    152 
    153 	AH_PRIVATE(ah)->ah_curchan = chan;
    154 	return AH_TRUE;
    155 }
    156 
    157 /*
    158  * Reads EEPROM header info from device structure and programs
    159  * all rf registers
    160  *
    161  * REQUIRES: Access to the analog rf device
    162  */
    163 static HAL_BOOL
    164 ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    165 {
    166 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    167 	int i;								    \
    168 	for (i = 0; i < N(ar5212Bank##_ix##_2316); i++)			    \
    169 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
    170 } while (0)
    171 	struct ath_hal_5212 *ahp = AH5212(ah);
    172 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    173 	uint16_t ob2GHz = 0, db2GHz = 0;
    174 	struct ar2316State *priv = AR2316(ah);
    175 	int regWrites = 0;
    176 
    177 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    178 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
    179 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    180 
    181 	HALASSERT(priv != AH_NULL);
    182 
    183 	/* Setup rf parameters */
    184 	switch (chan->channelFlags & CHANNEL_ALL) {
    185 	case CHANNEL_B:
    186 		ob2GHz = ee->ee_obFor24;
    187 		db2GHz = ee->ee_dbFor24;
    188 		break;
    189 	case CHANNEL_G:
    190 	case CHANNEL_108G:
    191 		ob2GHz = ee->ee_obFor24g;
    192 		db2GHz = ee->ee_dbFor24g;
    193 		break;
    194 	default:
    195 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    196 		    __func__, chan->channelFlags);
    197 		return AH_FALSE;
    198 	}
    199 
    200 	/* Bank 1 Write */
    201 	RF_BANK_SETUP(priv, 1, 1);
    202 
    203 	/* Bank 2 Write */
    204 	RF_BANK_SETUP(priv, 2, modesIndex);
    205 
    206 	/* Bank 3 Write */
    207 	RF_BANK_SETUP(priv, 3, modesIndex);
    208 
    209 	/* Bank 6 Write */
    210 	RF_BANK_SETUP(priv, 6, modesIndex);
    211 
    212 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 178, 0);
    213 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 175, 0);
    214 
    215 	/* Bank 7 Setup */
    216 	RF_BANK_SETUP(priv, 7, modesIndex);
    217 
    218 	/* Write Analog registers */
    219 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
    220 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
    221 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
    222 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
    223 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
    224 
    225 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    226 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    227 
    228 	return AH_TRUE;
    229 #undef	RF_BANK_SETUP
    230 }
    231 
    232 /*
    233  * Return a reference to the requested RF Bank.
    234  */
    235 static uint32_t *
    236 ar2316GetRfBank(struct ath_hal *ah, int bank)
    237 {
    238 	struct ar2316State *priv = AR2316(ah);
    239 
    240 	HALASSERT(priv != AH_NULL);
    241 	switch (bank) {
    242 	case 1: return priv->Bank1Data;
    243 	case 2: return priv->Bank2Data;
    244 	case 3: return priv->Bank3Data;
    245 	case 6: return priv->Bank6Data;
    246 	case 7: return priv->Bank7Data;
    247 	}
    248 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    249 	    __func__, bank);
    250 	return AH_NULL;
    251 }
    252 
    253 /*
    254  * Return indices surrounding the value in sorted integer lists.
    255  *
    256  * NB: the input list is assumed to be sorted in ascending order
    257  */
    258 static void
    259 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    260                           uint32_t *vlo, uint32_t *vhi)
    261 {
    262 	int16_t target = v;
    263 	const int16_t *ep = lp+listSize;
    264 	const int16_t *tp;
    265 
    266 	/*
    267 	 * Check first and last elements for out-of-bounds conditions.
    268 	 */
    269 	if (target < lp[0]) {
    270 		*vlo = *vhi = 0;
    271 		return;
    272 	}
    273 	if (target >= ep[-1]) {
    274 		*vlo = *vhi = listSize - 1;
    275 		return;
    276 	}
    277 
    278 	/* look for value being near or between 2 values in list */
    279 	for (tp = lp; tp < ep; tp++) {
    280 		/*
    281 		 * If value is close to the current value of the list
    282 		 * then target is not between values, it is one of the values
    283 		 */
    284 		if (*tp == target) {
    285 			*vlo = *vhi = tp - (const int16_t *) lp;
    286 			return;
    287 		}
    288 		/*
    289 		 * Look for value being between current value and next value
    290 		 * if so return these 2 values
    291 		 */
    292 		if (target < tp[1]) {
    293 			*vlo = tp - (const int16_t *) lp;
    294 			*vhi = *vlo + 1;
    295 			return;
    296 		}
    297 	}
    298 }
    299 
    300 /*
    301  * Fill the Vpdlist for indices Pmax-Pmin
    302  */
    303 static HAL_BOOL
    304 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    305 		   const int16_t *pwrList, const int16_t *VpdList,
    306 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
    307 {
    308 	uint16_t ii, jj, kk;
    309 	int16_t currPwr = (int16_t)(2*Pmin);
    310 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    311 	uint32_t  idxL = 0, idxR = 0;
    312 
    313 	ii = 0;
    314 	jj = 0;
    315 
    316 	if (numIntercepts < 2)
    317 		return AH_FALSE;
    318 
    319 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    320 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
    321 					 &(idxL), &(idxR));
    322 		if (idxR < 1)
    323 			idxR = 1;			/* extrapolate below */
    324 		if (idxL == (uint32_t)(numIntercepts - 1))
    325 			idxL = numIntercepts - 2;	/* extrapolate above */
    326 		if (pwrList[idxL] == pwrList[idxR])
    327 			kk = VpdList[idxL];
    328 		else
    329 			kk = (uint16_t)
    330 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    331 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    332 				 (pwrList[idxR] - pwrList[idxL]));
    333 		retVpdList[pdGainIdx][ii] = kk;
    334 		ii++;
    335 		currPwr += 2;				/* half dB steps */
    336 	}
    337 
    338 	return AH_TRUE;
    339 }
    340 
    341 /*
    342  * Returns interpolated or the scaled up interpolated value
    343  */
    344 static int16_t
    345 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    346 	int16_t targetLeft, int16_t targetRight)
    347 {
    348 	int16_t rv;
    349 
    350 	if (srcRight != srcLeft) {
    351 		rv = ((target - srcLeft)*targetRight +
    352 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    353 	} else {
    354 		rv = targetLeft;
    355 	}
    356 	return rv;
    357 }
    358 
    359 /*
    360  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    361  * Called by ar2316SetPowerTable()
    362  */
    363 static int
    364 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    365 		const RAW_DATA_STRUCT_2316 *pRawDataset,
    366 		uint16_t pdGainOverlap_t2,
    367 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    368 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    369 {
    370 	struct ar2316State *priv = AR2316(ah);
    371 #define	VpdTable_L	priv->vpdTable_L
    372 #define	VpdTable_R	priv->vpdTable_R
    373 #define	VpdTable_I	priv->vpdTable_I
    374 	uint32_t ii, jj, kk;
    375 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    376 	uint32_t idxL = 0, idxR = 0;
    377 	uint32_t numPdGainsUsed = 0;
    378 	/*
    379 	 * If desired to support -ve power levels in future, just
    380 	 * change pwr_I_0 to signed 5-bits.
    381 	 */
    382 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    383 	/* to accomodate -ve power levels later on. */
    384 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    385 	/* to accomodate -ve power levels later on */
    386 	uint16_t numVpd = 0;
    387 	uint16_t Vpd_step;
    388 	int16_t tmpVal ;
    389 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    390 
    391 	/* Get upper lower index */
    392 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    393 				 pRawDataset->numChannels, &(idxL), &(idxR));
    394 
    395 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    396 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    397 		/* work backwards 'cause highest pdGain for lowest power */
    398 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    399 		if (numVpd > 0) {
    400 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    401 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    402 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    403 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    404 			}
    405 			Pmin_t2[numPdGainsUsed] = (int16_t)
    406 				(Pmin_t2[numPdGainsUsed] / 2);
    407 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    408 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    409 				Pmax_t2[numPdGainsUsed] =
    410 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    411 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    412 			ar2316FillVpdTable(
    413 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    414 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    415 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    416 					   );
    417 			ar2316FillVpdTable(
    418 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    419 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    420 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    421 					   );
    422 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    423 				VpdTable_I[numPdGainsUsed][kk] =
    424 					interpolate_signed(
    425 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    426 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    427 			}
    428 			/* fill VpdTable_I for this pdGain */
    429 			numPdGainsUsed++;
    430 		}
    431 		/* if this pdGain is used */
    432 	}
    433 
    434 	*pMinCalPower = Pmin_t2[0];
    435 	kk = 0; /* index for the final table */
    436 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    437 		if (ii == (numPdGainsUsed - 1))
    438 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    439 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    440 		else
    441 			pPdGainBoundaries[ii] = (uint16_t)
    442 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    443 		if (pPdGainBoundaries[ii] > 63) {
    444 			HALDEBUG(ah, HAL_DEBUG_ANY,
    445 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
    446 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
    447 			pPdGainBoundaries[ii] = 63;
    448 		}
    449 
    450 		/* Find starting index for this pdGain */
    451 		if (ii == 0)
    452 			ss = 0; /* for the first pdGain, start from index 0 */
    453 		else
    454 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    455 				pdGainOverlap_t2;
    456 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    457 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    458 		/*
    459 		 *-ve ss indicates need to extrapolate data below for this pdGain
    460 		 */
    461 		while (ss < 0) {
    462 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    463 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    464 			ss++;
    465 		}
    466 
    467 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    468 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    469 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    470 
    471 		while (ss < (int16_t)maxIndex)
    472 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    473 
    474 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    475 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    476 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    477 		/*
    478 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    479 		 * have to extrapolate
    480 		 */
    481 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    482 			while(ss < (int16_t)tgtIndex) {
    483 				tmpVal = (uint16_t)
    484 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    485 					 (ss-maxIndex)*Vpd_step);
    486 				pPDADCValues[kk++] = (tmpVal > 127) ?
    487 					127 : tmpVal;
    488 				ss++;
    489 			}
    490 		}				/* extrapolated above */
    491 	}					/* for all pdGainUsed */
    492 
    493 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    494 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    495 		ii++;
    496 	}
    497 	while (kk < 128) {
    498 		pPDADCValues[kk] = pPDADCValues[kk-1];
    499 		kk++;
    500 	}
    501 
    502 	return numPdGainsUsed;
    503 #undef VpdTable_L
    504 #undef VpdTable_R
    505 #undef VpdTable_I
    506 }
    507 
    508 static HAL_BOOL
    509 ar2316SetPowerTable(struct ath_hal *ah,
    510 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    511 	uint16_t *rfXpdGain)
    512 {
    513 	struct ath_hal_5212 *ahp = AH5212(ah);
    514 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    515 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
    516 	uint16_t pdGainOverlap_t2;
    517 	int16_t minCalPower2316_t2;
    518 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    519 	uint16_t gainBoundaries[4];
    520 	uint32_t reg32, regoffset;
    521 	int i, numPdGainsUsed;
    522 #ifndef AH_USE_INIPDGAIN
    523 	uint32_t tpcrg1;
    524 #endif
    525 
    526 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
    527 	    __func__, chan->channel,chan->channelFlags);
    528 
    529 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    530 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    531 	else if (IS_CHAN_B(chan))
    532 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    533 	else {
    534 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
    535 		return AH_FALSE;
    536 	}
    537 
    538 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    539 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    540 
    541 	numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
    542 		chan->channel, pRawDataset, pdGainOverlap_t2,
    543 		&minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
    544 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
    545 
    546 #ifdef AH_USE_INIPDGAIN
    547 	/*
    548 	 * Use pd_gains curve from eeprom; Atheros always uses
    549 	 * the default curve from the ini file but some vendors
    550 	 * (e.g. Zcomax) want to override this curve and not
    551 	 * honoring their settings results in tx power 5dBm low.
    552 	 */
    553 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    554 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    555 #else
    556 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
    557 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
    558 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
    559 	switch (numPdGainsUsed) {
    560 	case 3:
    561 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
    562 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
    563 		/* fall thru... */
    564 	case 2:
    565 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
    566 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
    567 		/* fall thru... */
    568 	case 1:
    569 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
    570 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
    571 		break;
    572 	}
    573 #ifdef AH_DEBUG
    574 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
    575 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
    576 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
    577 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
    578 #endif
    579 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
    580 #endif
    581 
    582 	/*
    583 	 * Note the pdadc table may not start at 0 dBm power, could be
    584 	 * negative or greater than 0.  Need to offset the power
    585 	 * values by the amount of minPower for griffin
    586 	 */
    587 	if (minCalPower2316_t2 != 0)
    588 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
    589 	else
    590 		ahp->ah_txPowerIndexOffset = 0;
    591 
    592 	/* Finally, write the power values into the baseband power table */
    593 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    594 	for (i = 0; i < 32; i++) {
    595 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    596 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    597 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    598 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    599 		OS_REG_WRITE(ah, regoffset, reg32);
    600 		regoffset += 4;
    601 	}
    602 
    603 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    604 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    605 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    606 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    607 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    608 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    609 
    610 	return AH_TRUE;
    611 }
    612 
    613 static int16_t
    614 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
    615 {
    616 	uint32_t ii,jj;
    617 	uint16_t Pmin=0,numVpd;
    618 
    619 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    620 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    621 		/* work backwards 'cause highest pdGain for lowest power */
    622 		numVpd = data->pDataPerPDGain[jj].numVpd;
    623 		if (numVpd > 0) {
    624 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    625 			return(Pmin);
    626 		}
    627 	}
    628 	return(Pmin);
    629 }
    630 
    631 static int16_t
    632 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
    633 {
    634 	uint32_t ii;
    635 	uint16_t Pmax=0,numVpd;
    636 
    637 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    638 		/* work forwards cuase lowest pdGain for highest power */
    639 		numVpd = data->pDataPerPDGain[ii].numVpd;
    640 		if (numVpd > 0) {
    641 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    642 			return(Pmax);
    643 		}
    644 	}
    645 	return(Pmax);
    646 }
    647 
    648 static HAL_BOOL
    649 ar2316GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    650 	int16_t *maxPow, int16_t *minPow)
    651 {
    652 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    653 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
    654 	const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
    655 	uint16_t numChannels;
    656 	int totalD,totalF, totalMin,last, i;
    657 
    658 	*maxPow = 0;
    659 
    660 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    661 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    662 	else if (IS_CHAN_B(chan))
    663 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    664 	else
    665 		return(AH_FALSE);
    666 
    667 	numChannels = pRawDataset->numChannels;
    668 	data = pRawDataset->pDataPerChannel;
    669 
    670 	/* Make sure the channel is in the range of the TP values
    671 	 *  (freq piers)
    672 	 */
    673 	if (numChannels < 1)
    674 		return(AH_FALSE);
    675 
    676 	if ((chan->channel < data[0].channelValue) ||
    677 	    (chan->channel > data[numChannels-1].channelValue)) {
    678 		if (chan->channel < data[0].channelValue) {
    679 			*maxPow = ar2316GetMaxPower(ah, &data[0]);
    680 			*minPow = ar2316GetMinPower(ah, &data[0]);
    681 			return(AH_TRUE);
    682 		} else {
    683 			*maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
    684 			*minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
    685 			return(AH_TRUE);
    686 		}
    687 	}
    688 
    689 	/* Linearly interpolate the power value now */
    690 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    691 	     last = i++);
    692 	totalD = data[i].channelValue - data[last].channelValue;
    693 	if (totalD > 0) {
    694 		totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
    695 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    696 				     ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
    697 		totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
    698 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    699 				     ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
    700 		return(AH_TRUE);
    701 	} else {
    702 		if (chan->channel == data[i].channelValue) {
    703 			*maxPow = ar2316GetMaxPower(ah, &data[i]);
    704 			*minPow = ar2316GetMinPower(ah, &data[i]);
    705 			return(AH_TRUE);
    706 		} else
    707 			return(AH_FALSE);
    708 	}
    709 }
    710 
    711 /*
    712  * Free memory for analog bank scratch buffers
    713  */
    714 static void
    715 ar2316RfDetach(struct ath_hal *ah)
    716 {
    717 	struct ath_hal_5212 *ahp = AH5212(ah);
    718 
    719 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    720 	ath_hal_free(ahp->ah_rfHal);
    721 	ahp->ah_rfHal = AH_NULL;
    722 }
    723 
    724 /*
    725  * Allocate memory for private state.
    726  * Scratch Buffer will be reinitialized every reset so no need to zero now
    727  */
    728 static HAL_BOOL
    729 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    730 {
    731 	struct ath_hal_5212 *ahp = AH5212(ah);
    732 	struct ar2316State *priv;
    733 
    734 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    735 
    736 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    737 	priv = ath_hal_malloc(sizeof(struct ar2316State));
    738 	if (priv == AH_NULL) {
    739 		HALDEBUG(ah, HAL_DEBUG_ANY,
    740 		    "%s: cannot allocate private state\n", __func__);
    741 		*status = HAL_ENOMEM;		/* XXX */
    742 		return AH_FALSE;
    743 	}
    744 	priv->base.rfDetach		= ar2316RfDetach;
    745 	priv->base.writeRegs		= ar2316WriteRegs;
    746 	priv->base.getRfBank		= ar2316GetRfBank;
    747 	priv->base.setChannel		= ar2316SetChannel;
    748 	priv->base.setRfRegs		= ar2316SetRfRegs;
    749 	priv->base.setPowerTable	= ar2316SetPowerTable;
    750 	priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
    751 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    752 
    753 	ahp->ah_pcdacTable = priv->pcdacTable;
    754 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    755 	ahp->ah_rfHal = &priv->base;
    756 
    757 	ahp->ah_cwCalRequire = AH_TRUE;		/* force initial cal */
    758 
    759 	return AH_TRUE;
    760 }
    761 
    762 static HAL_BOOL
    763 ar2316Probe(struct ath_hal *ah)
    764 {
    765 	return IS_2316(ah);
    766 }
    767 AH_RF(RF2316, ar2316Probe, ar2316RfAttach);
    768