Home | History | Annotate | Line # | Download | only in ar5212
      1  1.1     alc /*
      2  1.1     alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  1.1     alc  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  1.1     alc  *
      5  1.1     alc  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.1     alc  * purpose with or without fee is hereby granted, provided that the above
      7  1.1     alc  * copyright notice and this permission notice appear in all copies.
      8  1.1     alc  *
      9  1.1     alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.1     alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.1     alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.1     alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.1     alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.1     alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.1     alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.1     alc  *
     17  1.4  martin  * $Id: ar2317.c,v 1.4 2013/09/12 12:03:33 martin Exp $
     18  1.1     alc  */
     19  1.1     alc #include "opt_ah.h"
     20  1.1     alc 
     21  1.1     alc #include "ah.h"
     22  1.2     alc #include "ah_devid.h"
     23  1.1     alc #include "ah_internal.h"
     24  1.1     alc 
     25  1.1     alc #include "ar5212/ar5212.h"
     26  1.1     alc #include "ar5212/ar5212reg.h"
     27  1.1     alc #include "ar5212/ar5212phy.h"
     28  1.1     alc 
     29  1.1     alc #include "ah_eeprom_v3.h"
     30  1.1     alc 
     31  1.1     alc #define AH_5212_2317
     32  1.1     alc #include "ar5212/ar5212.ini"
     33  1.1     alc 
     34  1.1     alc #define	N(a)	(sizeof(a)/sizeof(a[0]))
     35  1.1     alc 
     36  1.1     alc typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
     37  1.1     alc typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
     38  1.1     alc #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
     39  1.1     alc 
     40  1.1     alc struct ar2317State {
     41  1.1     alc 	RF_HAL_FUNCS	base;		/* public state, must be first */
     42  1.1     alc 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2317];
     43  1.1     alc 
     44  1.1     alc 	uint32_t	Bank1Data[N(ar5212Bank1_2317)];
     45  1.1     alc 	uint32_t	Bank2Data[N(ar5212Bank2_2317)];
     46  1.1     alc 	uint32_t	Bank3Data[N(ar5212Bank3_2317)];
     47  1.1     alc 	uint32_t	Bank6Data[N(ar5212Bank6_2317)];
     48  1.1     alc 	uint32_t	Bank7Data[N(ar5212Bank7_2317)];
     49  1.1     alc 
     50  1.1     alc 	/*
     51  1.1     alc 	 * Private state for reduced stack usage.
     52  1.1     alc 	 */
     53  1.1     alc 	/* filled out Vpd table for all pdGains (chanL) */
     54  1.1     alc 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
     55  1.1     alc 			    [MAX_PWR_RANGE_IN_HALF_DB];
     56  1.1     alc 	/* filled out Vpd table for all pdGains (chanR) */
     57  1.1     alc 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
     58  1.1     alc 			    [MAX_PWR_RANGE_IN_HALF_DB];
     59  1.1     alc 	/* filled out Vpd table for all pdGains (interpolated) */
     60  1.1     alc 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
     61  1.1     alc 			    [MAX_PWR_RANGE_IN_HALF_DB];
     62  1.1     alc };
     63  1.1     alc #define	AR2317(ah)	((struct ar2317State *) AH5212(ah)->ah_rfHal)
     64  1.1     alc 
     65  1.1     alc extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     66  1.1     alc 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     67  1.1     alc 
     68  1.1     alc static void
     69  1.1     alc ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     70  1.1     alc 	int writes)
     71  1.1     alc {
     72  1.1     alc 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
     73  1.1     alc 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
     74  1.1     alc 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
     75  1.1     alc }
     76  1.1     alc 
     77  1.1     alc /*
     78  1.1     alc  * Take the MHz channel value and set the Channel value
     79  1.1     alc  *
     80  1.1     alc  * ASSUMES: Writes enabled to analog bus
     81  1.1     alc  */
     82  1.1     alc static HAL_BOOL
     83  1.1     alc ar2317SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     84  1.1     alc {
     85  1.1     alc 	uint32_t channelSel  = 0;
     86  1.1     alc 	uint32_t bModeSynth  = 0;
     87  1.1     alc 	uint32_t aModeRefSel = 0;
     88  1.1     alc 	uint32_t reg32       = 0;
     89  1.1     alc 
     90  1.1     alc 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     91  1.1     alc 
     92  1.1     alc 	if (chan->channel < 4800) {
     93  1.1     alc 		uint32_t txctl;
     94  1.1     alc 		channelSel = chan->channel - 2272 ;
     95  1.1     alc 		channelSel = ath_hal_reverseBits(channelSel, 8);
     96  1.1     alc 
     97  1.1     alc 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
     98  1.1     alc 		if (chan->channel == 2484) {
     99  1.1     alc 			/* Enable channel spreading for channel 14 */
    100  1.1     alc 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    101  1.1     alc 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    102  1.1     alc 		} else {
    103  1.1     alc 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    104  1.1     alc 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    105  1.1     alc 		}
    106  1.1     alc 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    107  1.1     alc 		channelSel = ath_hal_reverseBits(
    108  1.1     alc 			((chan->channel - 4800) / 20 << 2), 8);
    109  1.1     alc 		aModeRefSel = ath_hal_reverseBits(3, 2);
    110  1.1     alc 	} else if ((chan->channel % 10) == 0) {
    111  1.1     alc 		channelSel = ath_hal_reverseBits(
    112  1.1     alc 			((chan->channel - 4800) / 10 << 1), 8);
    113  1.1     alc 		aModeRefSel = ath_hal_reverseBits(2, 2);
    114  1.1     alc 	} else if ((chan->channel % 5) == 0) {
    115  1.1     alc 		channelSel = ath_hal_reverseBits(
    116  1.1     alc 			(chan->channel - 4800) / 5, 8);
    117  1.1     alc 		aModeRefSel = ath_hal_reverseBits(1, 2);
    118  1.1     alc 	} else {
    119  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    120  1.1     alc 		    __func__, chan->channel);
    121  1.1     alc 		return AH_FALSE;
    122  1.1     alc 	}
    123  1.1     alc 
    124  1.1     alc 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    125  1.1     alc 			(1 << 12) | 0x1;
    126  1.1     alc 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    127  1.1     alc 
    128  1.1     alc 	reg32 >>= 8;
    129  1.1     alc 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    130  1.1     alc 
    131  1.1     alc 	AH_PRIVATE(ah)->ah_curchan = chan;
    132  1.1     alc 	return AH_TRUE;
    133  1.1     alc }
    134  1.1     alc 
    135  1.1     alc /*
    136  1.1     alc  * Reads EEPROM header info from device structure and programs
    137  1.1     alc  * all rf registers
    138  1.1     alc  *
    139  1.1     alc  * REQUIRES: Access to the analog rf device
    140  1.1     alc  */
    141  1.1     alc static HAL_BOOL
    142  1.1     alc ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    143  1.1     alc {
    144  1.1     alc #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    145  1.1     alc 	int i;								    \
    146  1.1     alc 	for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)			    \
    147  1.1     alc 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
    148  1.1     alc } while (0)
    149  1.1     alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    150  1.1     alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    151  1.1     alc 	uint16_t ob2GHz = 0, db2GHz = 0;
    152  1.1     alc 	struct ar2317State *priv = AR2317(ah);
    153  1.1     alc 	int regWrites = 0;
    154  1.1     alc 
    155  1.1     alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    156  1.1     alc 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
    157  1.1     alc 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    158  1.1     alc 
    159  1.1     alc 	HALASSERT(priv);
    160  1.1     alc 
    161  1.1     alc 	/* Setup rf parameters */
    162  1.1     alc 	switch (chan->channelFlags & CHANNEL_ALL) {
    163  1.1     alc 	case CHANNEL_B:
    164  1.1     alc 		ob2GHz = ee->ee_obFor24;
    165  1.1     alc 		db2GHz = ee->ee_dbFor24;
    166  1.1     alc 		break;
    167  1.1     alc 	case CHANNEL_G:
    168  1.1     alc 	case CHANNEL_108G:
    169  1.1     alc 		ob2GHz = ee->ee_obFor24g;
    170  1.1     alc 		db2GHz = ee->ee_dbFor24g;
    171  1.1     alc 		break;
    172  1.1     alc 	default:
    173  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    174  1.1     alc 		    __func__, chan->channelFlags);
    175  1.1     alc 		return AH_FALSE;
    176  1.1     alc 	}
    177  1.1     alc 
    178  1.1     alc 	/* Bank 1 Write */
    179  1.1     alc 	RF_BANK_SETUP(priv, 1, 1);
    180  1.1     alc 
    181  1.1     alc 	/* Bank 2 Write */
    182  1.1     alc 	RF_BANK_SETUP(priv, 2, modesIndex);
    183  1.1     alc 
    184  1.1     alc 	/* Bank 3 Write */
    185  1.1     alc 	RF_BANK_SETUP(priv, 3, modesIndex);
    186  1.1     alc 
    187  1.1     alc 	/* Bank 6 Write */
    188  1.1     alc 	RF_BANK_SETUP(priv, 6, modesIndex);
    189  1.1     alc 
    190  1.1     alc 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
    191  1.1     alc 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
    192  1.1     alc 
    193  1.1     alc 	/* Bank 7 Setup */
    194  1.1     alc 	RF_BANK_SETUP(priv, 7, modesIndex);
    195  1.1     alc 
    196  1.1     alc 	/* Write Analog registers */
    197  1.1     alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
    198  1.1     alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
    199  1.1     alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
    200  1.1     alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
    201  1.1     alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
    202  1.1     alc 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    203  1.1     alc 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    204  1.1     alc 
    205  1.1     alc 	return AH_TRUE;
    206  1.1     alc #undef	RF_BANK_SETUP
    207  1.1     alc }
    208  1.1     alc 
    209  1.1     alc /*
    210  1.1     alc  * Return a reference to the requested RF Bank.
    211  1.1     alc  */
    212  1.1     alc static uint32_t *
    213  1.1     alc ar2317GetRfBank(struct ath_hal *ah, int bank)
    214  1.1     alc {
    215  1.1     alc 	struct ar2317State *priv = AR2317(ah);
    216  1.1     alc 
    217  1.1     alc 	HALASSERT(priv != AH_NULL);
    218  1.1     alc 	switch (bank) {
    219  1.1     alc 	case 1: return priv->Bank1Data;
    220  1.1     alc 	case 2: return priv->Bank2Data;
    221  1.1     alc 	case 3: return priv->Bank3Data;
    222  1.1     alc 	case 6: return priv->Bank6Data;
    223  1.1     alc 	case 7: return priv->Bank7Data;
    224  1.1     alc 	}
    225  1.1     alc 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    226  1.1     alc 	    __func__, bank);
    227  1.1     alc 	return AH_NULL;
    228  1.1     alc }
    229  1.1     alc 
    230  1.1     alc /*
    231  1.1     alc  * Return indices surrounding the value in sorted integer lists.
    232  1.1     alc  *
    233  1.1     alc  * NB: the input list is assumed to be sorted in ascending order
    234  1.1     alc  */
    235  1.1     alc static void
    236  1.1     alc GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    237  1.1     alc                           uint32_t *vlo, uint32_t *vhi)
    238  1.1     alc {
    239  1.1     alc 	int16_t target = v;
    240  1.1     alc 	const int16_t *ep = lp+listSize;
    241  1.1     alc 	const int16_t *tp;
    242  1.1     alc 
    243  1.1     alc 	/*
    244  1.1     alc 	 * Check first and last elements for out-of-bounds conditions.
    245  1.1     alc 	 */
    246  1.1     alc 	if (target < lp[0]) {
    247  1.1     alc 		*vlo = *vhi = 0;
    248  1.1     alc 		return;
    249  1.1     alc 	}
    250  1.1     alc 	if (target >= ep[-1]) {
    251  1.1     alc 		*vlo = *vhi = listSize - 1;
    252  1.1     alc 		return;
    253  1.1     alc 	}
    254  1.1     alc 
    255  1.1     alc 	/* look for value being near or between 2 values in list */
    256  1.1     alc 	for (tp = lp; tp < ep; tp++) {
    257  1.1     alc 		/*
    258  1.1     alc 		 * If value is close to the current value of the list
    259  1.1     alc 		 * then target is not between values, it is one of the values
    260  1.1     alc 		 */
    261  1.1     alc 		if (*tp == target) {
    262  1.1     alc 			*vlo = *vhi = tp - (const int16_t *) lp;
    263  1.1     alc 			return;
    264  1.1     alc 		}
    265  1.1     alc 		/*
    266  1.1     alc 		 * Look for value being between current value and next value
    267  1.1     alc 		 * if so return these 2 values
    268  1.1     alc 		 */
    269  1.1     alc 		if (target < tp[1]) {
    270  1.1     alc 			*vlo = tp - (const int16_t *) lp;
    271  1.1     alc 			*vhi = *vlo + 1;
    272  1.1     alc 			return;
    273  1.1     alc 		}
    274  1.1     alc 	}
    275  1.1     alc }
    276  1.1     alc 
    277  1.1     alc /*
    278  1.1     alc  * Fill the Vpdlist for indices Pmax-Pmin
    279  1.1     alc  */
    280  1.1     alc static HAL_BOOL
    281  1.1     alc ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    282  1.1     alc 		   const int16_t *pwrList, const int16_t *VpdList,
    283  1.1     alc 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
    284  1.1     alc {
    285  1.4  martin 	uint16_t ii, kk;
    286  1.1     alc 	int16_t currPwr = (int16_t)(2*Pmin);
    287  1.1     alc 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    288  1.3     mrg 	uint32_t  idxL = 0, idxR = 0;
    289  1.1     alc 
    290  1.1     alc 	ii = 0;
    291  1.1     alc 
    292  1.1     alc 	if (numIntercepts < 2)
    293  1.1     alc 		return AH_FALSE;
    294  1.1     alc 
    295  1.1     alc 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    296  1.1     alc 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
    297  1.1     alc 					 &(idxL), &(idxR));
    298  1.1     alc 		if (idxR < 1)
    299  1.1     alc 			idxR = 1;			/* extrapolate below */
    300  1.1     alc 		if (idxL == (uint32_t)(numIntercepts - 1))
    301  1.1     alc 			idxL = numIntercepts - 2;	/* extrapolate above */
    302  1.1     alc 		if (pwrList[idxL] == pwrList[idxR])
    303  1.1     alc 			kk = VpdList[idxL];
    304  1.1     alc 		else
    305  1.1     alc 			kk = (uint16_t)
    306  1.1     alc 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    307  1.1     alc 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    308  1.1     alc 				 (pwrList[idxR] - pwrList[idxL]));
    309  1.1     alc 		retVpdList[pdGainIdx][ii] = kk;
    310  1.1     alc 		ii++;
    311  1.1     alc 		currPwr += 2;				/* half dB steps */
    312  1.1     alc 	}
    313  1.1     alc 
    314  1.1     alc 	return AH_TRUE;
    315  1.1     alc }
    316  1.1     alc 
    317  1.1     alc /*
    318  1.1     alc  * Returns interpolated or the scaled up interpolated value
    319  1.1     alc  */
    320  1.1     alc static int16_t
    321  1.1     alc interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    322  1.1     alc 	int16_t targetLeft, int16_t targetRight)
    323  1.1     alc {
    324  1.1     alc 	int16_t rv;
    325  1.1     alc 
    326  1.1     alc 	if (srcRight != srcLeft) {
    327  1.1     alc 		rv = ((target - srcLeft)*targetRight +
    328  1.1     alc 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    329  1.1     alc 	} else {
    330  1.1     alc 		rv = targetLeft;
    331  1.1     alc 	}
    332  1.1     alc 	return rv;
    333  1.1     alc }
    334  1.1     alc 
    335  1.1     alc /*
    336  1.1     alc  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    337  1.1     alc  * Called by ar2317SetPowerTable()
    338  1.1     alc  */
    339  1.1     alc static int
    340  1.1     alc ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    341  1.1     alc 		const RAW_DATA_STRUCT_2317 *pRawDataset,
    342  1.1     alc 		uint16_t pdGainOverlap_t2,
    343  1.1     alc 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    344  1.1     alc 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    345  1.1     alc {
    346  1.1     alc 	struct ar2317State *priv = AR2317(ah);
    347  1.1     alc #define	VpdTable_L	priv->vpdTable_L
    348  1.1     alc #define	VpdTable_R	priv->vpdTable_R
    349  1.1     alc #define	VpdTable_I	priv->vpdTable_I
    350  1.1     alc 	/* XXX excessive stack usage? */
    351  1.1     alc 	uint32_t ii, jj, kk;
    352  1.1     alc 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    353  1.3     mrg 	uint32_t idxL = 0, idxR = 0;
    354  1.1     alc 	uint32_t numPdGainsUsed = 0;
    355  1.1     alc 	/*
    356  1.1     alc 	 * If desired to support -ve power levels in future, just
    357  1.1     alc 	 * change pwr_I_0 to signed 5-bits.
    358  1.1     alc 	 */
    359  1.1     alc 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    360  1.1     alc 	/* to accomodate -ve power levels later on. */
    361  1.1     alc 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    362  1.1     alc 	/* to accomodate -ve power levels later on */
    363  1.1     alc 	uint16_t numVpd = 0;
    364  1.1     alc 	uint16_t Vpd_step;
    365  1.1     alc 	int16_t tmpVal ;
    366  1.1     alc 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    367  1.1     alc 
    368  1.1     alc 	/* Get upper lower index */
    369  1.1     alc 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    370  1.1     alc 				 pRawDataset->numChannels, &(idxL), &(idxR));
    371  1.1     alc 
    372  1.1     alc 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    373  1.1     alc 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    374  1.1     alc 		/* work backwards 'cause highest pdGain for lowest power */
    375  1.1     alc 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    376  1.1     alc 		if (numVpd > 0) {
    377  1.1     alc 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    378  1.1     alc 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    379  1.1     alc 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    380  1.1     alc 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    381  1.1     alc 			}
    382  1.1     alc 			Pmin_t2[numPdGainsUsed] = (int16_t)
    383  1.1     alc 				(Pmin_t2[numPdGainsUsed] / 2);
    384  1.1     alc 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    385  1.1     alc 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    386  1.1     alc 				Pmax_t2[numPdGainsUsed] =
    387  1.1     alc 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    388  1.1     alc 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    389  1.1     alc 			ar2317FillVpdTable(
    390  1.1     alc 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    391  1.1     alc 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    392  1.1     alc 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    393  1.1     alc 					   );
    394  1.1     alc 			ar2317FillVpdTable(
    395  1.1     alc 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    396  1.1     alc 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    397  1.1     alc 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    398  1.1     alc 					   );
    399  1.1     alc 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    400  1.1     alc 				VpdTable_I[numPdGainsUsed][kk] =
    401  1.1     alc 					interpolate_signed(
    402  1.1     alc 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    403  1.1     alc 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    404  1.1     alc 			}
    405  1.1     alc 			/* fill VpdTable_I for this pdGain */
    406  1.1     alc 			numPdGainsUsed++;
    407  1.1     alc 		}
    408  1.1     alc 		/* if this pdGain is used */
    409  1.1     alc 	}
    410  1.1     alc 
    411  1.1     alc 	*pMinCalPower = Pmin_t2[0];
    412  1.1     alc 	kk = 0; /* index for the final table */
    413  1.1     alc 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    414  1.1     alc 		if (ii == (numPdGainsUsed - 1))
    415  1.1     alc 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    416  1.1     alc 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    417  1.1     alc 		else
    418  1.1     alc 			pPdGainBoundaries[ii] = (uint16_t)
    419  1.1     alc 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    420  1.1     alc 		if (pPdGainBoundaries[ii] > 63) {
    421  1.1     alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
    422  1.1     alc 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
    423  1.1     alc 			   __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
    424  1.1     alc 			pPdGainBoundaries[ii] = 63;
    425  1.1     alc 		}
    426  1.1     alc 
    427  1.1     alc 		/* Find starting index for this pdGain */
    428  1.1     alc 		if (ii == 0)
    429  1.1     alc 			ss = 0; /* for the first pdGain, start from index 0 */
    430  1.1     alc 		else
    431  1.1     alc 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    432  1.1     alc 				pdGainOverlap_t2;
    433  1.1     alc 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    434  1.1     alc 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    435  1.1     alc 		/*
    436  1.1     alc 		 *-ve ss indicates need to extrapolate data below for this pdGain
    437  1.1     alc 		 */
    438  1.1     alc 		while (ss < 0) {
    439  1.1     alc 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    440  1.1     alc 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    441  1.1     alc 			ss++;
    442  1.1     alc 		}
    443  1.1     alc 
    444  1.1     alc 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    445  1.1     alc 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    446  1.1     alc 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    447  1.1     alc 
    448  1.1     alc 		while (ss < (int16_t)maxIndex)
    449  1.1     alc 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    450  1.1     alc 
    451  1.1     alc 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    452  1.1     alc 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    453  1.1     alc 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    454  1.1     alc 		/*
    455  1.1     alc 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    456  1.1     alc 		 * have to extrapolate
    457  1.1     alc 		 */
    458  1.1     alc 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    459  1.1     alc 			while(ss < (int16_t)tgtIndex) {
    460  1.1     alc 				tmpVal = (uint16_t)
    461  1.1     alc 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    462  1.1     alc 					 (ss-maxIndex)*Vpd_step);
    463  1.1     alc 				pPDADCValues[kk++] = (tmpVal > 127) ?
    464  1.1     alc 					127 : tmpVal;
    465  1.1     alc 				ss++;
    466  1.1     alc 			}
    467  1.1     alc 		}				/* extrapolated above */
    468  1.1     alc 	}					/* for all pdGainUsed */
    469  1.1     alc 
    470  1.1     alc 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    471  1.1     alc 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    472  1.1     alc 		ii++;
    473  1.1     alc 	}
    474  1.1     alc 	while (kk < 128) {
    475  1.1     alc 		pPDADCValues[kk] = pPDADCValues[kk-1];
    476  1.1     alc 		kk++;
    477  1.1     alc 	}
    478  1.1     alc 
    479  1.1     alc 	return numPdGainsUsed;
    480  1.1     alc #undef VpdTable_L
    481  1.1     alc #undef VpdTable_R
    482  1.1     alc #undef VpdTable_I
    483  1.1     alc }
    484  1.1     alc 
    485  1.1     alc static HAL_BOOL
    486  1.1     alc ar2317SetPowerTable(struct ath_hal *ah,
    487  1.1     alc 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    488  1.1     alc 	uint16_t *rfXpdGain)
    489  1.1     alc {
    490  1.1     alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    491  1.1     alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    492  1.1     alc 	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
    493  1.1     alc 	uint16_t pdGainOverlap_t2;
    494  1.1     alc 	int16_t minCalPower2317_t2;
    495  1.1     alc 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    496  1.1     alc 	uint16_t gainBoundaries[4];
    497  1.1     alc 	uint32_t reg32, regoffset;
    498  1.1     alc 	int i, numPdGainsUsed;
    499  1.1     alc #ifndef AH_USE_INIPDGAIN
    500  1.1     alc 	uint32_t tpcrg1;
    501  1.1     alc #endif
    502  1.1     alc 
    503  1.1     alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
    504  1.1     alc 	    __func__, chan->channel,chan->channelFlags);
    505  1.1     alc 
    506  1.1     alc 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    507  1.1     alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    508  1.1     alc 	else if (IS_CHAN_B(chan))
    509  1.1     alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    510  1.1     alc 	else {
    511  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
    512  1.1     alc 		return AH_FALSE;
    513  1.1     alc 	}
    514  1.1     alc 
    515  1.1     alc 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    516  1.1     alc 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    517  1.1     alc 
    518  1.1     alc 	numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
    519  1.1     alc 		chan->channel, pRawDataset, pdGainOverlap_t2,
    520  1.1     alc 		&minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
    521  1.1     alc 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
    522  1.1     alc 
    523  1.1     alc #ifdef AH_USE_INIPDGAIN
    524  1.1     alc 	/*
    525  1.1     alc 	 * Use pd_gains curve from eeprom; Atheros always uses
    526  1.1     alc 	 * the default curve from the ini file but some vendors
    527  1.1     alc 	 * (e.g. Zcomax) want to override this curve and not
    528  1.1     alc 	 * honoring their settings results in tx power 5dBm low.
    529  1.1     alc 	 */
    530  1.1     alc 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    531  1.1     alc 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    532  1.1     alc #else
    533  1.1     alc 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
    534  1.1     alc 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
    535  1.1     alc 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
    536  1.1     alc 	switch (numPdGainsUsed) {
    537  1.1     alc 	case 3:
    538  1.1     alc 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
    539  1.1     alc 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
    540  1.1     alc 		/* fall thru... */
    541  1.1     alc 	case 2:
    542  1.1     alc 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
    543  1.1     alc 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
    544  1.1     alc 		/* fall thru... */
    545  1.1     alc 	case 1:
    546  1.1     alc 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
    547  1.1     alc 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
    548  1.1     alc 		break;
    549  1.1     alc 	}
    550  1.1     alc #ifdef AH_DEBUG
    551  1.1     alc 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
    552  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
    553  1.1     alc 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
    554  1.1     alc 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
    555  1.1     alc #endif
    556  1.1     alc 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
    557  1.1     alc #endif
    558  1.1     alc 
    559  1.1     alc 	/*
    560  1.1     alc 	 * Note the pdadc table may not start at 0 dBm power, could be
    561  1.1     alc 	 * negative or greater than 0.  Need to offset the power
    562  1.1     alc 	 * values by the amount of minPower for griffin
    563  1.1     alc 	 */
    564  1.1     alc 	if (minCalPower2317_t2 != 0)
    565  1.1     alc 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
    566  1.1     alc 	else
    567  1.1     alc 		ahp->ah_txPowerIndexOffset = 0;
    568  1.1     alc 
    569  1.1     alc 	/* Finally, write the power values into the baseband power table */
    570  1.1     alc 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    571  1.1     alc 	for (i = 0; i < 32; i++) {
    572  1.1     alc 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    573  1.1     alc 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    574  1.1     alc 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    575  1.1     alc 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    576  1.1     alc 		OS_REG_WRITE(ah, regoffset, reg32);
    577  1.1     alc 		regoffset += 4;
    578  1.1     alc 	}
    579  1.1     alc 
    580  1.1     alc 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    581  1.1     alc 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    582  1.1     alc 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    583  1.1     alc 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    584  1.1     alc 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    585  1.1     alc 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    586  1.1     alc 
    587  1.1     alc 	return AH_TRUE;
    588  1.1     alc }
    589  1.1     alc 
    590  1.1     alc static int16_t
    591  1.1     alc ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
    592  1.1     alc {
    593  1.1     alc 	uint32_t ii,jj;
    594  1.1     alc 	uint16_t Pmin=0,numVpd;
    595  1.1     alc 
    596  1.1     alc 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    597  1.1     alc 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    598  1.1     alc 		/* work backwards 'cause highest pdGain for lowest power */
    599  1.1     alc 		numVpd = data->pDataPerPDGain[jj].numVpd;
    600  1.1     alc 		if (numVpd > 0) {
    601  1.1     alc 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    602  1.1     alc 			return(Pmin);
    603  1.1     alc 		}
    604  1.1     alc 	}
    605  1.1     alc 	return(Pmin);
    606  1.1     alc }
    607  1.1     alc 
    608  1.1     alc static int16_t
    609  1.1     alc ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
    610  1.1     alc {
    611  1.1     alc 	uint32_t ii;
    612  1.1     alc 	uint16_t Pmax=0,numVpd;
    613  1.1     alc 
    614  1.1     alc 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    615  1.1     alc 		/* work forwards cuase lowest pdGain for highest power */
    616  1.1     alc 		numVpd = data->pDataPerPDGain[ii].numVpd;
    617  1.1     alc 		if (numVpd > 0) {
    618  1.1     alc 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    619  1.1     alc 			return(Pmax);
    620  1.1     alc 		}
    621  1.1     alc 	}
    622  1.1     alc 	return(Pmax);
    623  1.1     alc }
    624  1.1     alc 
    625  1.1     alc static HAL_BOOL
    626  1.1     alc ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    627  1.1     alc 	int16_t *maxPow, int16_t *minPow)
    628  1.1     alc {
    629  1.1     alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    630  1.1     alc 	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
    631  1.1     alc 	const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
    632  1.1     alc 	uint16_t numChannels;
    633  1.1     alc 	int totalD,totalF, totalMin,last, i;
    634  1.1     alc 
    635  1.1     alc 	*maxPow = 0;
    636  1.1     alc 
    637  1.1     alc 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    638  1.1     alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    639  1.1     alc 	else if (IS_CHAN_B(chan))
    640  1.1     alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    641  1.1     alc 	else
    642  1.1     alc 		return(AH_FALSE);
    643  1.1     alc 
    644  1.1     alc 	numChannels = pRawDataset->numChannels;
    645  1.1     alc 	data = pRawDataset->pDataPerChannel;
    646  1.1     alc 
    647  1.1     alc 	/* Make sure the channel is in the range of the TP values
    648  1.1     alc 	 *  (freq piers)
    649  1.1     alc 	 */
    650  1.1     alc 	if (numChannels < 1)
    651  1.1     alc 		return(AH_FALSE);
    652  1.1     alc 
    653  1.1     alc 	if ((chan->channel < data[0].channelValue) ||
    654  1.1     alc 	    (chan->channel > data[numChannels-1].channelValue)) {
    655  1.1     alc 		if (chan->channel < data[0].channelValue) {
    656  1.1     alc 			*maxPow = ar2317GetMaxPower(ah, &data[0]);
    657  1.1     alc 			*minPow = ar2317GetMinPower(ah, &data[0]);
    658  1.1     alc 			return(AH_TRUE);
    659  1.1     alc 		} else {
    660  1.1     alc 			*maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
    661  1.1     alc 			*minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
    662  1.1     alc 			return(AH_TRUE);
    663  1.1     alc 		}
    664  1.1     alc 	}
    665  1.1     alc 
    666  1.1     alc 	/* Linearly interpolate the power value now */
    667  1.1     alc 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    668  1.1     alc 	     last = i++);
    669  1.1     alc 	totalD = data[i].channelValue - data[last].channelValue;
    670  1.1     alc 	if (totalD > 0) {
    671  1.1     alc 		totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
    672  1.1     alc 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    673  1.1     alc 				     ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
    674  1.1     alc 		totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
    675  1.1     alc 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    676  1.1     alc 				     ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
    677  1.1     alc 		return(AH_TRUE);
    678  1.1     alc 	} else {
    679  1.1     alc 		if (chan->channel == data[i].channelValue) {
    680  1.1     alc 			*maxPow = ar2317GetMaxPower(ah, &data[i]);
    681  1.1     alc 			*minPow = ar2317GetMinPower(ah, &data[i]);
    682  1.1     alc 			return(AH_TRUE);
    683  1.1     alc 		} else
    684  1.1     alc 			return(AH_FALSE);
    685  1.1     alc 	}
    686  1.1     alc }
    687  1.1     alc 
    688  1.1     alc /*
    689  1.1     alc  * Free memory for analog bank scratch buffers
    690  1.1     alc  */
    691  1.1     alc static void
    692  1.1     alc ar2317RfDetach(struct ath_hal *ah)
    693  1.1     alc {
    694  1.1     alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    695  1.1     alc 
    696  1.1     alc 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    697  1.1     alc 	ath_hal_free(ahp->ah_rfHal);
    698  1.1     alc 	ahp->ah_rfHal = AH_NULL;
    699  1.1     alc }
    700  1.1     alc 
    701  1.1     alc /*
    702  1.1     alc  * Allocate memory for analog bank scratch buffers
    703  1.1     alc  * Scratch Buffer will be reinitialized every reset so no need to zero now
    704  1.1     alc  */
    705  1.1     alc static HAL_BOOL
    706  1.1     alc ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    707  1.1     alc {
    708  1.1     alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    709  1.1     alc 	struct ar2317State *priv;
    710  1.1     alc 
    711  1.1     alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    712  1.1     alc 
    713  1.1     alc 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    714  1.1     alc 	priv = ath_hal_malloc(sizeof(struct ar2317State));
    715  1.1     alc 	if (priv == AH_NULL) {
    716  1.1     alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    717  1.1     alc 		    "%s: cannot allocate private state\n", __func__);
    718  1.1     alc 		*status = HAL_ENOMEM;		/* XXX */
    719  1.1     alc 		return AH_FALSE;
    720  1.1     alc 	}
    721  1.1     alc 	priv->base.rfDetach		= ar2317RfDetach;
    722  1.1     alc 	priv->base.writeRegs		= ar2317WriteRegs;
    723  1.1     alc 	priv->base.getRfBank		= ar2317GetRfBank;
    724  1.1     alc 	priv->base.setChannel		= ar2317SetChannel;
    725  1.1     alc 	priv->base.setRfRegs		= ar2317SetRfRegs;
    726  1.1     alc 	priv->base.setPowerTable	= ar2317SetPowerTable;
    727  1.1     alc 	priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
    728  1.1     alc 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    729  1.1     alc 
    730  1.1     alc 	ahp->ah_pcdacTable = priv->pcdacTable;
    731  1.1     alc 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    732  1.1     alc 	ahp->ah_rfHal = &priv->base;
    733  1.1     alc 
    734  1.1     alc 	return AH_TRUE;
    735  1.1     alc }
    736  1.1     alc 
    737  1.1     alc static HAL_BOOL
    738  1.1     alc ar2317Probe(struct ath_hal *ah)
    739  1.1     alc {
    740  1.1     alc 	return IS_2317(ah);
    741  1.1     alc }
    742  1.1     alc AH_RF(RF2317, ar2317Probe, ar2317RfAttach);
    743