Home | History | Annotate | Line # | Download | only in ar5212
ar2413.c revision 1.2.10.2
      1  1.2.10.2  snj /*
      2  1.2.10.2  snj  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  1.2.10.2  snj  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  1.2.10.2  snj  *
      5  1.2.10.2  snj  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.2.10.2  snj  * purpose with or without fee is hereby granted, provided that the above
      7  1.2.10.2  snj  * copyright notice and this permission notice appear in all copies.
      8  1.2.10.2  snj  *
      9  1.2.10.2  snj  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.2.10.2  snj  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.2.10.2  snj  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.2.10.2  snj  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.2.10.2  snj  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.2.10.2  snj  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.2.10.2  snj  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.2.10.2  snj  *
     17  1.2.10.2  snj  * $Id: ar2413.c,v 1.2.10.2 2009/08/07 06:43:40 snj Exp $
     18  1.2.10.2  snj  */
     19  1.2.10.2  snj #include "opt_ah.h"
     20  1.2.10.2  snj 
     21  1.2.10.2  snj #include "ah.h"
     22  1.2.10.2  snj #include "ah_internal.h"
     23  1.2.10.2  snj 
     24  1.2.10.2  snj #include "ar5212/ar5212.h"
     25  1.2.10.2  snj #include "ar5212/ar5212reg.h"
     26  1.2.10.2  snj #include "ar5212/ar5212phy.h"
     27  1.2.10.2  snj 
     28  1.2.10.2  snj #include "ah_eeprom_v3.h"
     29  1.2.10.2  snj 
     30  1.2.10.2  snj #define AH_5212_2413
     31  1.2.10.2  snj #include "ar5212/ar5212.ini"
     32  1.2.10.2  snj 
     33  1.2.10.2  snj #define	N(a)	(sizeof(a)/sizeof(a[0]))
     34  1.2.10.2  snj 
     35  1.2.10.2  snj struct ar2413State {
     36  1.2.10.2  snj 	RF_HAL_FUNCS	base;		/* public state, must be first */
     37  1.2.10.2  snj 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
     38  1.2.10.2  snj 
     39  1.2.10.2  snj 	uint32_t	Bank1Data[N(ar5212Bank1_2413)];
     40  1.2.10.2  snj 	uint32_t	Bank2Data[N(ar5212Bank2_2413)];
     41  1.2.10.2  snj 	uint32_t	Bank3Data[N(ar5212Bank3_2413)];
     42  1.2.10.2  snj 	uint32_t	Bank6Data[N(ar5212Bank6_2413)];
     43  1.2.10.2  snj 	uint32_t	Bank7Data[N(ar5212Bank7_2413)];
     44  1.2.10.2  snj 
     45  1.2.10.2  snj 	/*
     46  1.2.10.2  snj 	 * Private state for reduced stack usage.
     47  1.2.10.2  snj 	 */
     48  1.2.10.2  snj 	/* filled out Vpd table for all pdGains (chanL) */
     49  1.2.10.2  snj 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
     50  1.2.10.2  snj 			    [MAX_PWR_RANGE_IN_HALF_DB];
     51  1.2.10.2  snj 	/* filled out Vpd table for all pdGains (chanR) */
     52  1.2.10.2  snj 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
     53  1.2.10.2  snj 			    [MAX_PWR_RANGE_IN_HALF_DB];
     54  1.2.10.2  snj 	/* filled out Vpd table for all pdGains (interpolated) */
     55  1.2.10.2  snj 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
     56  1.2.10.2  snj 			    [MAX_PWR_RANGE_IN_HALF_DB];
     57  1.2.10.2  snj };
     58  1.2.10.2  snj #define	AR2413(ah)	((struct ar2413State *) AH5212(ah)->ah_rfHal)
     59  1.2.10.2  snj 
     60  1.2.10.2  snj extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     61  1.2.10.2  snj 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     62  1.2.10.2  snj 
     63  1.2.10.2  snj static void
     64  1.2.10.2  snj ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     65  1.2.10.2  snj 	int writes)
     66  1.2.10.2  snj {
     67  1.2.10.2  snj 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
     68  1.2.10.2  snj 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
     69  1.2.10.2  snj 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
     70  1.2.10.2  snj }
     71  1.2.10.2  snj 
     72  1.2.10.2  snj /*
     73  1.2.10.2  snj  * Take the MHz channel value and set the Channel value
     74  1.2.10.2  snj  *
     75  1.2.10.2  snj  * ASSUMES: Writes enabled to analog bus
     76  1.2.10.2  snj  */
     77  1.2.10.2  snj static HAL_BOOL
     78  1.2.10.2  snj ar2413SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     79  1.2.10.2  snj {
     80  1.2.10.2  snj 	uint32_t channelSel  = 0;
     81  1.2.10.2  snj 	uint32_t bModeSynth  = 0;
     82  1.2.10.2  snj 	uint32_t aModeRefSel = 0;
     83  1.2.10.2  snj 	uint32_t reg32       = 0;
     84  1.2.10.2  snj 	uint16_t freq;
     85  1.2.10.2  snj 
     86  1.2.10.2  snj 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     87  1.2.10.2  snj 
     88  1.2.10.2  snj 	if (chan->channel < 4800) {
     89  1.2.10.2  snj 		uint32_t txctl;
     90  1.2.10.2  snj 
     91  1.2.10.2  snj 		if (((chan->channel - 2192) % 5) == 0) {
     92  1.2.10.2  snj 			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
     93  1.2.10.2  snj 			bModeSynth = 0;
     94  1.2.10.2  snj 		} else if (((chan->channel - 2224) % 5) == 0) {
     95  1.2.10.2  snj 			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
     96  1.2.10.2  snj 			bModeSynth = 1;
     97  1.2.10.2  snj 		} else {
     98  1.2.10.2  snj 			HALDEBUG(ah, HAL_DEBUG_ANY,
     99  1.2.10.2  snj 			    "%s: invalid channel %u MHz\n",
    100  1.2.10.2  snj 			    __func__, chan->channel);
    101  1.2.10.2  snj 			return AH_FALSE;
    102  1.2.10.2  snj 		}
    103  1.2.10.2  snj 
    104  1.2.10.2  snj 		channelSel = (channelSel << 2) & 0xff;
    105  1.2.10.2  snj 		channelSel = ath_hal_reverseBits(channelSel, 8);
    106  1.2.10.2  snj 
    107  1.2.10.2  snj 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    108  1.2.10.2  snj 		if (chan->channel == 2484) {
    109  1.2.10.2  snj 			/* Enable channel spreading for channel 14 */
    110  1.2.10.2  snj 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    111  1.2.10.2  snj 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    112  1.2.10.2  snj 		} else {
    113  1.2.10.2  snj 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    114  1.2.10.2  snj 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    115  1.2.10.2  snj 		}
    116  1.2.10.2  snj 	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
    117  1.2.10.2  snj 		freq = chan->channel - 2; /* Align to even 5MHz raster */
    118  1.2.10.2  snj 		channelSel = ath_hal_reverseBits(
    119  1.2.10.2  snj 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
    120  1.2.10.2  snj             	aModeRefSel = ath_hal_reverseBits(0, 2);
    121  1.2.10.2  snj 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    122  1.2.10.2  snj 		channelSel = ath_hal_reverseBits(
    123  1.2.10.2  snj 			((chan->channel - 4800) / 20 << 2), 8);
    124  1.2.10.2  snj 		aModeRefSel = ath_hal_reverseBits(3, 2);
    125  1.2.10.2  snj 	} else if ((chan->channel % 10) == 0) {
    126  1.2.10.2  snj 		channelSel = ath_hal_reverseBits(
    127  1.2.10.2  snj 			((chan->channel - 4800) / 10 << 1), 8);
    128  1.2.10.2  snj 		aModeRefSel = ath_hal_reverseBits(2, 2);
    129  1.2.10.2  snj 	} else if ((chan->channel % 5) == 0) {
    130  1.2.10.2  snj 		channelSel = ath_hal_reverseBits(
    131  1.2.10.2  snj 			(chan->channel - 4800) / 5, 8);
    132  1.2.10.2  snj 		aModeRefSel = ath_hal_reverseBits(1, 2);
    133  1.2.10.2  snj 	} else {
    134  1.2.10.2  snj 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    135  1.2.10.2  snj 		    __func__, chan->channel);
    136  1.2.10.2  snj 		return AH_FALSE;
    137  1.2.10.2  snj 	}
    138  1.2.10.2  snj 
    139  1.2.10.2  snj 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    140  1.2.10.2  snj 			(1 << 12) | 0x1;
    141  1.2.10.2  snj 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    142  1.2.10.2  snj 
    143  1.2.10.2  snj 	reg32 >>= 8;
    144  1.2.10.2  snj 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    145  1.2.10.2  snj 
    146  1.2.10.2  snj 	AH_PRIVATE(ah)->ah_curchan = chan;
    147  1.2.10.2  snj 
    148  1.2.10.2  snj 	return AH_TRUE;
    149  1.2.10.2  snj }
    150  1.2.10.2  snj 
    151  1.2.10.2  snj /*
    152  1.2.10.2  snj  * Reads EEPROM header info from device structure and programs
    153  1.2.10.2  snj  * all rf registers
    154  1.2.10.2  snj  *
    155  1.2.10.2  snj  * REQUIRES: Access to the analog rf device
    156  1.2.10.2  snj  */
    157  1.2.10.2  snj static HAL_BOOL
    158  1.2.10.2  snj ar2413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    159  1.2.10.2  snj {
    160  1.2.10.2  snj #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    161  1.2.10.2  snj 	int i;								    \
    162  1.2.10.2  snj 	for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)			    \
    163  1.2.10.2  snj 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
    164  1.2.10.2  snj } while (0)
    165  1.2.10.2  snj 	struct ath_hal_5212 *ahp = AH5212(ah);
    166  1.2.10.2  snj 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    167  1.2.10.2  snj 	uint16_t ob2GHz = 0, db2GHz = 0;
    168  1.2.10.2  snj 	struct ar2413State *priv = AR2413(ah);
    169  1.2.10.2  snj 	int regWrites = 0;
    170  1.2.10.2  snj 
    171  1.2.10.2  snj 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    172  1.2.10.2  snj 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
    173  1.2.10.2  snj 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    174  1.2.10.2  snj 
    175  1.2.10.2  snj 	HALASSERT(priv);
    176  1.2.10.2  snj 
    177  1.2.10.2  snj 	/* Setup rf parameters */
    178  1.2.10.2  snj 	switch (chan->channelFlags & CHANNEL_ALL) {
    179  1.2.10.2  snj 	case CHANNEL_B:
    180  1.2.10.2  snj 		ob2GHz = ee->ee_obFor24;
    181  1.2.10.2  snj 		db2GHz = ee->ee_dbFor24;
    182  1.2.10.2  snj 		break;
    183  1.2.10.2  snj 	case CHANNEL_G:
    184  1.2.10.2  snj 	case CHANNEL_108G:
    185  1.2.10.2  snj 		ob2GHz = ee->ee_obFor24g;
    186  1.2.10.2  snj 		db2GHz = ee->ee_dbFor24g;
    187  1.2.10.2  snj 		break;
    188  1.2.10.2  snj 	default:
    189  1.2.10.2  snj 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    190  1.2.10.2  snj 		    __func__, chan->channelFlags);
    191  1.2.10.2  snj 		return AH_FALSE;
    192  1.2.10.2  snj 	}
    193  1.2.10.2  snj 
    194  1.2.10.2  snj 	/* Bank 1 Write */
    195  1.2.10.2  snj 	RF_BANK_SETUP(priv, 1, 1);
    196  1.2.10.2  snj 
    197  1.2.10.2  snj 	/* Bank 2 Write */
    198  1.2.10.2  snj 	RF_BANK_SETUP(priv, 2, modesIndex);
    199  1.2.10.2  snj 
    200  1.2.10.2  snj 	/* Bank 3 Write */
    201  1.2.10.2  snj 	RF_BANK_SETUP(priv, 3, modesIndex);
    202  1.2.10.2  snj 
    203  1.2.10.2  snj 	/* Bank 6 Write */
    204  1.2.10.2  snj 	RF_BANK_SETUP(priv, 6, modesIndex);
    205  1.2.10.2  snj 
    206  1.2.10.2  snj 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
    207  1.2.10.2  snj 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
    208  1.2.10.2  snj 
    209  1.2.10.2  snj 	/* Bank 7 Setup */
    210  1.2.10.2  snj 	RF_BANK_SETUP(priv, 7, modesIndex);
    211  1.2.10.2  snj 
    212  1.2.10.2  snj 	/* Write Analog registers */
    213  1.2.10.2  snj 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
    214  1.2.10.2  snj 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
    215  1.2.10.2  snj 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
    216  1.2.10.2  snj 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
    217  1.2.10.2  snj 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
    218  1.2.10.2  snj 
    219  1.2.10.2  snj 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    220  1.2.10.2  snj 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    221  1.2.10.2  snj 
    222  1.2.10.2  snj 	return AH_TRUE;
    223  1.2.10.2  snj #undef	RF_BANK_SETUP
    224  1.2.10.2  snj }
    225  1.2.10.2  snj 
    226  1.2.10.2  snj /*
    227  1.2.10.2  snj  * Return a reference to the requested RF Bank.
    228  1.2.10.2  snj  */
    229  1.2.10.2  snj static uint32_t *
    230  1.2.10.2  snj ar2413GetRfBank(struct ath_hal *ah, int bank)
    231  1.2.10.2  snj {
    232  1.2.10.2  snj 	struct ar2413State *priv = AR2413(ah);
    233  1.2.10.2  snj 
    234  1.2.10.2  snj 	HALASSERT(priv != AH_NULL);
    235  1.2.10.2  snj 	switch (bank) {
    236  1.2.10.2  snj 	case 1: return priv->Bank1Data;
    237  1.2.10.2  snj 	case 2: return priv->Bank2Data;
    238  1.2.10.2  snj 	case 3: return priv->Bank3Data;
    239  1.2.10.2  snj 	case 6: return priv->Bank6Data;
    240  1.2.10.2  snj 	case 7: return priv->Bank7Data;
    241  1.2.10.2  snj 	}
    242  1.2.10.2  snj 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    243  1.2.10.2  snj 	    __func__, bank);
    244  1.2.10.2  snj 	return AH_NULL;
    245  1.2.10.2  snj }
    246  1.2.10.2  snj 
    247  1.2.10.2  snj /*
    248  1.2.10.2  snj  * Return indices surrounding the value in sorted integer lists.
    249  1.2.10.2  snj  *
    250  1.2.10.2  snj  * NB: the input list is assumed to be sorted in ascending order
    251  1.2.10.2  snj  */
    252  1.2.10.2  snj static void
    253  1.2.10.2  snj GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    254  1.2.10.2  snj                           uint32_t *vlo, uint32_t *vhi)
    255  1.2.10.2  snj {
    256  1.2.10.2  snj 	int16_t target = v;
    257  1.2.10.2  snj 	const uint16_t *ep = lp+listSize;
    258  1.2.10.2  snj 	const uint16_t *tp;
    259  1.2.10.2  snj 
    260  1.2.10.2  snj 	/*
    261  1.2.10.2  snj 	 * Check first and last elements for out-of-bounds conditions.
    262  1.2.10.2  snj 	 */
    263  1.2.10.2  snj 	if (target < lp[0]) {
    264  1.2.10.2  snj 		*vlo = *vhi = 0;
    265  1.2.10.2  snj 		return;
    266  1.2.10.2  snj 	}
    267  1.2.10.2  snj 	if (target >= ep[-1]) {
    268  1.2.10.2  snj 		*vlo = *vhi = listSize - 1;
    269  1.2.10.2  snj 		return;
    270  1.2.10.2  snj 	}
    271  1.2.10.2  snj 
    272  1.2.10.2  snj 	/* look for value being near or between 2 values in list */
    273  1.2.10.2  snj 	for (tp = lp; tp < ep; tp++) {
    274  1.2.10.2  snj 		/*
    275  1.2.10.2  snj 		 * If value is close to the current value of the list
    276  1.2.10.2  snj 		 * then target is not between values, it is one of the values
    277  1.2.10.2  snj 		 */
    278  1.2.10.2  snj 		if (*tp == target) {
    279  1.2.10.2  snj 			*vlo = *vhi = tp - (const uint16_t *) lp;
    280  1.2.10.2  snj 			return;
    281  1.2.10.2  snj 		}
    282  1.2.10.2  snj 		/*
    283  1.2.10.2  snj 		 * Look for value being between current value and next value
    284  1.2.10.2  snj 		 * if so return these 2 values
    285  1.2.10.2  snj 		 */
    286  1.2.10.2  snj 		if (target < tp[1]) {
    287  1.2.10.2  snj 			*vlo = tp - (const uint16_t *) lp;
    288  1.2.10.2  snj 			*vhi = *vlo + 1;
    289  1.2.10.2  snj 			return;
    290  1.2.10.2  snj 		}
    291  1.2.10.2  snj 	}
    292  1.2.10.2  snj }
    293  1.2.10.2  snj 
    294  1.2.10.2  snj /*
    295  1.2.10.2  snj  * Fill the Vpdlist for indices Pmax-Pmin
    296  1.2.10.2  snj  */
    297  1.2.10.2  snj static HAL_BOOL
    298  1.2.10.2  snj ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    299  1.2.10.2  snj 		   const int16_t *pwrList, const uint16_t *VpdList,
    300  1.2.10.2  snj 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
    301  1.2.10.2  snj {
    302  1.2.10.2  snj 	uint16_t ii, jj, kk;
    303  1.2.10.2  snj 	int16_t currPwr = (int16_t)(2*Pmin);
    304  1.2.10.2  snj 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    305  1.2.10.2  snj 	uint32_t  idxL = 0, idxR = 0;
    306  1.2.10.2  snj 
    307  1.2.10.2  snj 	ii = 0;
    308  1.2.10.2  snj 	jj = 0;
    309  1.2.10.2  snj 
    310  1.2.10.2  snj 	if (numIntercepts < 2)
    311  1.2.10.2  snj 		return AH_FALSE;
    312  1.2.10.2  snj 
    313  1.2.10.2  snj 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    314  1.2.10.2  snj 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
    315  1.2.10.2  snj 				   numIntercepts, &(idxL), &(idxR));
    316  1.2.10.2  snj 		if (idxR < 1)
    317  1.2.10.2  snj 			idxR = 1;			/* extrapolate below */
    318  1.2.10.2  snj 		if (idxL == (uint32_t)(numIntercepts - 1))
    319  1.2.10.2  snj 			idxL = numIntercepts - 2;	/* extrapolate above */
    320  1.2.10.2  snj 		if (pwrList[idxL] == pwrList[idxR])
    321  1.2.10.2  snj 			kk = VpdList[idxL];
    322  1.2.10.2  snj 		else
    323  1.2.10.2  snj 			kk = (uint16_t)
    324  1.2.10.2  snj 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    325  1.2.10.2  snj 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    326  1.2.10.2  snj 				 (pwrList[idxR] - pwrList[idxL]));
    327  1.2.10.2  snj 		retVpdList[pdGainIdx][ii] = kk;
    328  1.2.10.2  snj 		ii++;
    329  1.2.10.2  snj 		currPwr += 2;				/* half dB steps */
    330  1.2.10.2  snj 	}
    331  1.2.10.2  snj 
    332  1.2.10.2  snj 	return AH_TRUE;
    333  1.2.10.2  snj }
    334  1.2.10.2  snj 
    335  1.2.10.2  snj /*
    336  1.2.10.2  snj  * Returns interpolated or the scaled up interpolated value
    337  1.2.10.2  snj  */
    338  1.2.10.2  snj static int16_t
    339  1.2.10.2  snj interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    340  1.2.10.2  snj 	int16_t targetLeft, int16_t targetRight)
    341  1.2.10.2  snj {
    342  1.2.10.2  snj 	int16_t rv;
    343  1.2.10.2  snj 
    344  1.2.10.2  snj 	if (srcRight != srcLeft) {
    345  1.2.10.2  snj 		rv = ((target - srcLeft)*targetRight +
    346  1.2.10.2  snj 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    347  1.2.10.2  snj 	} else {
    348  1.2.10.2  snj 		rv = targetLeft;
    349  1.2.10.2  snj 	}
    350  1.2.10.2  snj 	return rv;
    351  1.2.10.2  snj }
    352  1.2.10.2  snj 
    353  1.2.10.2  snj /*
    354  1.2.10.2  snj  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    355  1.2.10.2  snj  * Called by ar2413SetPowerTable()
    356  1.2.10.2  snj  */
    357  1.2.10.2  snj static int
    358  1.2.10.2  snj ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    359  1.2.10.2  snj 		const RAW_DATA_STRUCT_2413 *pRawDataset,
    360  1.2.10.2  snj 		uint16_t pdGainOverlap_t2,
    361  1.2.10.2  snj 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    362  1.2.10.2  snj 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    363  1.2.10.2  snj {
    364  1.2.10.2  snj 	struct ar2413State *priv = AR2413(ah);
    365  1.2.10.2  snj #define	VpdTable_L	priv->vpdTable_L
    366  1.2.10.2  snj #define	VpdTable_R	priv->vpdTable_R
    367  1.2.10.2  snj #define	VpdTable_I	priv->vpdTable_I
    368  1.2.10.2  snj 	uint32_t ii, jj, kk;
    369  1.2.10.2  snj 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    370  1.2.10.2  snj 	uint32_t idxL = 0, idxR = 0;
    371  1.2.10.2  snj 	uint32_t numPdGainsUsed = 0;
    372  1.2.10.2  snj 	/*
    373  1.2.10.2  snj 	 * If desired to support -ve power levels in future, just
    374  1.2.10.2  snj 	 * change pwr_I_0 to signed 5-bits.
    375  1.2.10.2  snj 	 */
    376  1.2.10.2  snj 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    377  1.2.10.2  snj 	/* to accomodate -ve power levels later on. */
    378  1.2.10.2  snj 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    379  1.2.10.2  snj 	/* to accomodate -ve power levels later on */
    380  1.2.10.2  snj 	uint16_t numVpd = 0;
    381  1.2.10.2  snj 	uint16_t Vpd_step;
    382  1.2.10.2  snj 	int16_t tmpVal ;
    383  1.2.10.2  snj 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    384  1.2.10.2  snj 
    385  1.2.10.2  snj 	/* Get upper lower index */
    386  1.2.10.2  snj 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    387  1.2.10.2  snj 				 pRawDataset->numChannels, &(idxL), &(idxR));
    388  1.2.10.2  snj 
    389  1.2.10.2  snj 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    390  1.2.10.2  snj 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    391  1.2.10.2  snj 		/* work backwards 'cause highest pdGain for lowest power */
    392  1.2.10.2  snj 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    393  1.2.10.2  snj 		if (numVpd > 0) {
    394  1.2.10.2  snj 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    395  1.2.10.2  snj 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    396  1.2.10.2  snj 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    397  1.2.10.2  snj 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    398  1.2.10.2  snj 			}
    399  1.2.10.2  snj 			Pmin_t2[numPdGainsUsed] = (int16_t)
    400  1.2.10.2  snj 				(Pmin_t2[numPdGainsUsed] / 2);
    401  1.2.10.2  snj 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    402  1.2.10.2  snj 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    403  1.2.10.2  snj 				Pmax_t2[numPdGainsUsed] =
    404  1.2.10.2  snj 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    405  1.2.10.2  snj 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    406  1.2.10.2  snj 			ar2413FillVpdTable(
    407  1.2.10.2  snj 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    408  1.2.10.2  snj 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    409  1.2.10.2  snj 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    410  1.2.10.2  snj 					   );
    411  1.2.10.2  snj 			ar2413FillVpdTable(
    412  1.2.10.2  snj 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    413  1.2.10.2  snj 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    414  1.2.10.2  snj 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    415  1.2.10.2  snj 					   );
    416  1.2.10.2  snj 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    417  1.2.10.2  snj 				VpdTable_I[numPdGainsUsed][kk] =
    418  1.2.10.2  snj 					interpolate_signed(
    419  1.2.10.2  snj 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    420  1.2.10.2  snj 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    421  1.2.10.2  snj 			}
    422  1.2.10.2  snj 			/* fill VpdTable_I for this pdGain */
    423  1.2.10.2  snj 			numPdGainsUsed++;
    424  1.2.10.2  snj 		}
    425  1.2.10.2  snj 		/* if this pdGain is used */
    426  1.2.10.2  snj 	}
    427  1.2.10.2  snj 
    428  1.2.10.2  snj 	*pMinCalPower = Pmin_t2[0];
    429  1.2.10.2  snj 	kk = 0; /* index for the final table */
    430  1.2.10.2  snj 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    431  1.2.10.2  snj 		if (ii == (numPdGainsUsed - 1))
    432  1.2.10.2  snj 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    433  1.2.10.2  snj 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    434  1.2.10.2  snj 		else
    435  1.2.10.2  snj 			pPdGainBoundaries[ii] = (uint16_t)
    436  1.2.10.2  snj 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    437  1.2.10.2  snj 		if (pPdGainBoundaries[ii] > 63) {
    438  1.2.10.2  snj 			HALDEBUG(ah, HAL_DEBUG_ANY,
    439  1.2.10.2  snj 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
    440  1.2.10.2  snj 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
    441  1.2.10.2  snj 			pPdGainBoundaries[ii] = 63;
    442  1.2.10.2  snj 		}
    443  1.2.10.2  snj 
    444  1.2.10.2  snj 		/* Find starting index for this pdGain */
    445  1.2.10.2  snj 		if (ii == 0)
    446  1.2.10.2  snj 			ss = 0; /* for the first pdGain, start from index 0 */
    447  1.2.10.2  snj 		else
    448  1.2.10.2  snj 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    449  1.2.10.2  snj 				pdGainOverlap_t2;
    450  1.2.10.2  snj 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    451  1.2.10.2  snj 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    452  1.2.10.2  snj 		/*
    453  1.2.10.2  snj 		 *-ve ss indicates need to extrapolate data below for this pdGain
    454  1.2.10.2  snj 		 */
    455  1.2.10.2  snj 		while (ss < 0) {
    456  1.2.10.2  snj 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    457  1.2.10.2  snj 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    458  1.2.10.2  snj 			ss++;
    459  1.2.10.2  snj 		}
    460  1.2.10.2  snj 
    461  1.2.10.2  snj 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    462  1.2.10.2  snj 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    463  1.2.10.2  snj 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    464  1.2.10.2  snj 
    465  1.2.10.2  snj 		while (ss < (int16_t)maxIndex)
    466  1.2.10.2  snj 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    467  1.2.10.2  snj 
    468  1.2.10.2  snj 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    469  1.2.10.2  snj 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    470  1.2.10.2  snj 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    471  1.2.10.2  snj 		/*
    472  1.2.10.2  snj 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    473  1.2.10.2  snj 		 * have to extrapolate
    474  1.2.10.2  snj 		 */
    475  1.2.10.2  snj 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    476  1.2.10.2  snj 			while(ss < (int16_t)tgtIndex) {
    477  1.2.10.2  snj 				tmpVal = (uint16_t)
    478  1.2.10.2  snj 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    479  1.2.10.2  snj 					 (ss-maxIndex)*Vpd_step);
    480  1.2.10.2  snj 				pPDADCValues[kk++] = (tmpVal > 127) ?
    481  1.2.10.2  snj 					127 : tmpVal;
    482  1.2.10.2  snj 				ss++;
    483  1.2.10.2  snj 			}
    484  1.2.10.2  snj 		}				/* extrapolated above */
    485  1.2.10.2  snj 	}					/* for all pdGainUsed */
    486  1.2.10.2  snj 
    487  1.2.10.2  snj 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    488  1.2.10.2  snj 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    489  1.2.10.2  snj 		ii++;
    490  1.2.10.2  snj 	}
    491  1.2.10.2  snj 	while (kk < 128) {
    492  1.2.10.2  snj 		pPDADCValues[kk] = pPDADCValues[kk-1];
    493  1.2.10.2  snj 		kk++;
    494  1.2.10.2  snj 	}
    495  1.2.10.2  snj 
    496  1.2.10.2  snj 	return numPdGainsUsed;
    497  1.2.10.2  snj #undef VpdTable_L
    498  1.2.10.2  snj #undef VpdTable_R
    499  1.2.10.2  snj #undef VpdTable_I
    500  1.2.10.2  snj }
    501  1.2.10.2  snj 
    502  1.2.10.2  snj static HAL_BOOL
    503  1.2.10.2  snj ar2413SetPowerTable(struct ath_hal *ah,
    504  1.2.10.2  snj 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    505  1.2.10.2  snj 	uint16_t *rfXpdGain)
    506  1.2.10.2  snj {
    507  1.2.10.2  snj 	struct ath_hal_5212 *ahp = AH5212(ah);
    508  1.2.10.2  snj 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    509  1.2.10.2  snj 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    510  1.2.10.2  snj 	uint16_t pdGainOverlap_t2;
    511  1.2.10.2  snj 	int16_t minCalPower2413_t2;
    512  1.2.10.2  snj 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    513  1.2.10.2  snj 	uint16_t gainBoundaries[4];
    514  1.2.10.2  snj 	uint32_t reg32, regoffset;
    515  1.2.10.2  snj 	int i, numPdGainsUsed;
    516  1.2.10.2  snj #ifndef AH_USE_INIPDGAIN
    517  1.2.10.2  snj 	uint32_t tpcrg1;
    518  1.2.10.2  snj #endif
    519  1.2.10.2  snj 
    520  1.2.10.2  snj 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
    521  1.2.10.2  snj 	    __func__, chan->channel,chan->channelFlags);
    522  1.2.10.2  snj 
    523  1.2.10.2  snj 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    524  1.2.10.2  snj 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    525  1.2.10.2  snj 	else if (IS_CHAN_B(chan))
    526  1.2.10.2  snj 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    527  1.2.10.2  snj 	else {
    528  1.2.10.2  snj 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
    529  1.2.10.2  snj 		return AH_FALSE;
    530  1.2.10.2  snj 	}
    531  1.2.10.2  snj 
    532  1.2.10.2  snj 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    533  1.2.10.2  snj 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    534  1.2.10.2  snj 
    535  1.2.10.2  snj 	numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
    536  1.2.10.2  snj 		chan->channel, pRawDataset, pdGainOverlap_t2,
    537  1.2.10.2  snj 		&minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
    538  1.2.10.2  snj 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
    539  1.2.10.2  snj 
    540  1.2.10.2  snj #ifdef AH_USE_INIPDGAIN
    541  1.2.10.2  snj 	/*
    542  1.2.10.2  snj 	 * Use pd_gains curve from eeprom; Atheros always uses
    543  1.2.10.2  snj 	 * the default curve from the ini file but some vendors
    544  1.2.10.2  snj 	 * (e.g. Zcomax) want to override this curve and not
    545  1.2.10.2  snj 	 * honoring their settings results in tx power 5dBm low.
    546  1.2.10.2  snj 	 */
    547  1.2.10.2  snj 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    548  1.2.10.2  snj 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    549  1.2.10.2  snj #else
    550  1.2.10.2  snj 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
    551  1.2.10.2  snj 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
    552  1.2.10.2  snj 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
    553  1.2.10.2  snj 	switch (numPdGainsUsed) {
    554  1.2.10.2  snj 	case 3:
    555  1.2.10.2  snj 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
    556  1.2.10.2  snj 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
    557  1.2.10.2  snj 		/* fall thru... */
    558  1.2.10.2  snj 	case 2:
    559  1.2.10.2  snj 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
    560  1.2.10.2  snj 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
    561  1.2.10.2  snj 		/* fall thru... */
    562  1.2.10.2  snj 	case 1:
    563  1.2.10.2  snj 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
    564  1.2.10.2  snj 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
    565  1.2.10.2  snj 		break;
    566  1.2.10.2  snj 	}
    567  1.2.10.2  snj #ifdef AH_DEBUG
    568  1.2.10.2  snj 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
    569  1.2.10.2  snj 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
    570  1.2.10.2  snj 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
    571  1.2.10.2  snj 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
    572  1.2.10.2  snj #endif
    573  1.2.10.2  snj 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
    574  1.2.10.2  snj #endif
    575  1.2.10.2  snj 
    576  1.2.10.2  snj 	/*
    577  1.2.10.2  snj 	 * Note the pdadc table may not start at 0 dBm power, could be
    578  1.2.10.2  snj 	 * negative or greater than 0.  Need to offset the power
    579  1.2.10.2  snj 	 * values by the amount of minPower for griffin
    580  1.2.10.2  snj 	 */
    581  1.2.10.2  snj 	if (minCalPower2413_t2 != 0)
    582  1.2.10.2  snj 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
    583  1.2.10.2  snj 	else
    584  1.2.10.2  snj 		ahp->ah_txPowerIndexOffset = 0;
    585  1.2.10.2  snj 
    586  1.2.10.2  snj 	/* Finally, write the power values into the baseband power table */
    587  1.2.10.2  snj 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    588  1.2.10.2  snj 	for (i = 0; i < 32; i++) {
    589  1.2.10.2  snj 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    590  1.2.10.2  snj 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    591  1.2.10.2  snj 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    592  1.2.10.2  snj 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    593  1.2.10.2  snj 		OS_REG_WRITE(ah, regoffset, reg32);
    594  1.2.10.2  snj 		regoffset += 4;
    595  1.2.10.2  snj 	}
    596  1.2.10.2  snj 
    597  1.2.10.2  snj 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    598  1.2.10.2  snj 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    599  1.2.10.2  snj 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    600  1.2.10.2  snj 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    601  1.2.10.2  snj 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    602  1.2.10.2  snj 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    603  1.2.10.2  snj 
    604  1.2.10.2  snj 	return AH_TRUE;
    605  1.2.10.2  snj }
    606  1.2.10.2  snj 
    607  1.2.10.2  snj static int16_t
    608  1.2.10.2  snj ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    609  1.2.10.2  snj {
    610  1.2.10.2  snj 	uint32_t ii,jj;
    611  1.2.10.2  snj 	uint16_t Pmin=0,numVpd;
    612  1.2.10.2  snj 
    613  1.2.10.2  snj 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    614  1.2.10.2  snj 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    615  1.2.10.2  snj 		/* work backwards 'cause highest pdGain for lowest power */
    616  1.2.10.2  snj 		numVpd = data->pDataPerPDGain[jj].numVpd;
    617  1.2.10.2  snj 		if (numVpd > 0) {
    618  1.2.10.2  snj 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    619  1.2.10.2  snj 			return(Pmin);
    620  1.2.10.2  snj 		}
    621  1.2.10.2  snj 	}
    622  1.2.10.2  snj 	return(Pmin);
    623  1.2.10.2  snj }
    624  1.2.10.2  snj 
    625  1.2.10.2  snj static int16_t
    626  1.2.10.2  snj ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    627  1.2.10.2  snj {
    628  1.2.10.2  snj 	uint32_t ii;
    629  1.2.10.2  snj 	uint16_t Pmax=0,numVpd;
    630  1.2.10.2  snj 
    631  1.2.10.2  snj 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    632  1.2.10.2  snj 		/* work forwards cuase lowest pdGain for highest power */
    633  1.2.10.2  snj 		numVpd = data->pDataPerPDGain[ii].numVpd;
    634  1.2.10.2  snj 		if (numVpd > 0) {
    635  1.2.10.2  snj 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    636  1.2.10.2  snj 			return(Pmax);
    637  1.2.10.2  snj 		}
    638  1.2.10.2  snj 	}
    639  1.2.10.2  snj 	return(Pmax);
    640  1.2.10.2  snj }
    641  1.2.10.2  snj 
    642  1.2.10.2  snj static HAL_BOOL
    643  1.2.10.2  snj ar2413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    644  1.2.10.2  snj 	int16_t *maxPow, int16_t *minPow)
    645  1.2.10.2  snj {
    646  1.2.10.2  snj 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    647  1.2.10.2  snj 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    648  1.2.10.2  snj 	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
    649  1.2.10.2  snj 	uint16_t numChannels;
    650  1.2.10.2  snj 	int totalD,totalF, totalMin,last, i;
    651  1.2.10.2  snj 
    652  1.2.10.2  snj 	*maxPow = 0;
    653  1.2.10.2  snj 
    654  1.2.10.2  snj 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    655  1.2.10.2  snj 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    656  1.2.10.2  snj 	else if (IS_CHAN_B(chan))
    657  1.2.10.2  snj 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    658  1.2.10.2  snj 	else
    659  1.2.10.2  snj 		return(AH_FALSE);
    660  1.2.10.2  snj 
    661  1.2.10.2  snj 	numChannels = pRawDataset->numChannels;
    662  1.2.10.2  snj 	data = pRawDataset->pDataPerChannel;
    663  1.2.10.2  snj 
    664  1.2.10.2  snj 	/* Make sure the channel is in the range of the TP values
    665  1.2.10.2  snj 	 *  (freq piers)
    666  1.2.10.2  snj 	 */
    667  1.2.10.2  snj 	if (numChannels < 1)
    668  1.2.10.2  snj 		return(AH_FALSE);
    669  1.2.10.2  snj 
    670  1.2.10.2  snj 	if ((chan->channel < data[0].channelValue) ||
    671  1.2.10.2  snj 	    (chan->channel > data[numChannels-1].channelValue)) {
    672  1.2.10.2  snj 		if (chan->channel < data[0].channelValue) {
    673  1.2.10.2  snj 			*maxPow = ar2413GetMaxPower(ah, &data[0]);
    674  1.2.10.2  snj 			*minPow = ar2413GetMinPower(ah, &data[0]);
    675  1.2.10.2  snj 			return(AH_TRUE);
    676  1.2.10.2  snj 		} else {
    677  1.2.10.2  snj 			*maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
    678  1.2.10.2  snj 			*minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
    679  1.2.10.2  snj 			return(AH_TRUE);
    680  1.2.10.2  snj 		}
    681  1.2.10.2  snj 	}
    682  1.2.10.2  snj 
    683  1.2.10.2  snj 	/* Linearly interpolate the power value now */
    684  1.2.10.2  snj 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    685  1.2.10.2  snj 	     last = i++);
    686  1.2.10.2  snj 	totalD = data[i].channelValue - data[last].channelValue;
    687  1.2.10.2  snj 	if (totalD > 0) {
    688  1.2.10.2  snj 		totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
    689  1.2.10.2  snj 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    690  1.2.10.2  snj 				     ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
    691  1.2.10.2  snj 		totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
    692  1.2.10.2  snj 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    693  1.2.10.2  snj 				     ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
    694  1.2.10.2  snj 		return(AH_TRUE);
    695  1.2.10.2  snj 	} else {
    696  1.2.10.2  snj 		if (chan->channel == data[i].channelValue) {
    697  1.2.10.2  snj 			*maxPow = ar2413GetMaxPower(ah, &data[i]);
    698  1.2.10.2  snj 			*minPow = ar2413GetMinPower(ah, &data[i]);
    699  1.2.10.2  snj 			return(AH_TRUE);
    700  1.2.10.2  snj 		} else
    701  1.2.10.2  snj 			return(AH_FALSE);
    702  1.2.10.2  snj 	}
    703  1.2.10.2  snj }
    704  1.2.10.2  snj 
    705  1.2.10.2  snj /*
    706  1.2.10.2  snj  * Free memory for analog bank scratch buffers
    707  1.2.10.2  snj  */
    708  1.2.10.2  snj static void
    709  1.2.10.2  snj ar2413RfDetach(struct ath_hal *ah)
    710  1.2.10.2  snj {
    711  1.2.10.2  snj 	struct ath_hal_5212 *ahp = AH5212(ah);
    712  1.2.10.2  snj 
    713  1.2.10.2  snj 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    714  1.2.10.2  snj 	ath_hal_free(ahp->ah_rfHal);
    715  1.2.10.2  snj 	ahp->ah_rfHal = AH_NULL;
    716  1.2.10.2  snj }
    717  1.2.10.2  snj 
    718  1.2.10.2  snj /*
    719  1.2.10.2  snj  * Allocate memory for analog bank scratch buffers
    720  1.2.10.2  snj  * Scratch Buffer will be reinitialized every reset so no need to zero now
    721  1.2.10.2  snj  */
    722  1.2.10.2  snj static HAL_BOOL
    723  1.2.10.2  snj ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    724  1.2.10.2  snj {
    725  1.2.10.2  snj 	struct ath_hal_5212 *ahp = AH5212(ah);
    726  1.2.10.2  snj 	struct ar2413State *priv;
    727  1.2.10.2  snj 
    728  1.2.10.2  snj 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    729  1.2.10.2  snj 
    730  1.2.10.2  snj 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    731  1.2.10.2  snj 	priv = ath_hal_malloc(sizeof(struct ar2413State));
    732  1.2.10.2  snj 	if (priv == AH_NULL) {
    733  1.2.10.2  snj 		HALDEBUG(ah, HAL_DEBUG_ANY,
    734  1.2.10.2  snj 		    "%s: cannot allocate private state\n", __func__);
    735  1.2.10.2  snj 		*status = HAL_ENOMEM;		/* XXX */
    736  1.2.10.2  snj 		return AH_FALSE;
    737  1.2.10.2  snj 	}
    738  1.2.10.2  snj 	priv->base.rfDetach		= ar2413RfDetach;
    739  1.2.10.2  snj 	priv->base.writeRegs		= ar2413WriteRegs;
    740  1.2.10.2  snj 	priv->base.getRfBank		= ar2413GetRfBank;
    741  1.2.10.2  snj 	priv->base.setChannel		= ar2413SetChannel;
    742  1.2.10.2  snj 	priv->base.setRfRegs		= ar2413SetRfRegs;
    743  1.2.10.2  snj 	priv->base.setPowerTable	= ar2413SetPowerTable;
    744  1.2.10.2  snj 	priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
    745  1.2.10.2  snj 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    746  1.2.10.2  snj 
    747  1.2.10.2  snj 	ahp->ah_pcdacTable = priv->pcdacTable;
    748  1.2.10.2  snj 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    749  1.2.10.2  snj 	ahp->ah_rfHal = &priv->base;
    750  1.2.10.2  snj 
    751  1.2.10.2  snj 	return AH_TRUE;
    752  1.2.10.2  snj }
    753  1.2.10.2  snj 
    754  1.2.10.2  snj static HAL_BOOL
    755  1.2.10.2  snj ar2413Probe(struct ath_hal *ah)
    756  1.2.10.2  snj {
    757  1.2.10.2  snj 	return IS_2413(ah);
    758  1.2.10.2  snj }
    759  1.2.10.2  snj AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
    760