Home | History | Annotate | Line # | Download | only in ar5212
ar2413.c revision 1.2.24.1
      1       1.1   alc /*
      2       1.1   alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3       1.1   alc  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4       1.1   alc  *
      5       1.1   alc  * Permission to use, copy, modify, and/or distribute this software for any
      6       1.1   alc  * purpose with or without fee is hereby granted, provided that the above
      7       1.1   alc  * copyright notice and this permission notice appear in all copies.
      8       1.1   alc  *
      9       1.1   alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10       1.1   alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11       1.1   alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12       1.1   alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13       1.1   alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14       1.1   alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15       1.1   alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16       1.1   alc  *
     17  1.2.24.1  yamt  * $Id: ar2413.c,v 1.2.24.1 2014/05/22 11:40:59 yamt Exp $
     18       1.1   alc  */
     19       1.1   alc #include "opt_ah.h"
     20       1.1   alc 
     21       1.1   alc #include "ah.h"
     22       1.1   alc #include "ah_internal.h"
     23       1.1   alc 
     24       1.1   alc #include "ar5212/ar5212.h"
     25       1.1   alc #include "ar5212/ar5212reg.h"
     26       1.1   alc #include "ar5212/ar5212phy.h"
     27       1.1   alc 
     28       1.1   alc #include "ah_eeprom_v3.h"
     29       1.1   alc 
     30       1.1   alc #define AH_5212_2413
     31       1.1   alc #include "ar5212/ar5212.ini"
     32       1.1   alc 
     33       1.1   alc #define	N(a)	(sizeof(a)/sizeof(a[0]))
     34       1.1   alc 
     35       1.1   alc struct ar2413State {
     36       1.1   alc 	RF_HAL_FUNCS	base;		/* public state, must be first */
     37       1.1   alc 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
     38       1.1   alc 
     39       1.1   alc 	uint32_t	Bank1Data[N(ar5212Bank1_2413)];
     40       1.1   alc 	uint32_t	Bank2Data[N(ar5212Bank2_2413)];
     41       1.1   alc 	uint32_t	Bank3Data[N(ar5212Bank3_2413)];
     42       1.1   alc 	uint32_t	Bank6Data[N(ar5212Bank6_2413)];
     43       1.1   alc 	uint32_t	Bank7Data[N(ar5212Bank7_2413)];
     44       1.1   alc 
     45       1.1   alc 	/*
     46       1.1   alc 	 * Private state for reduced stack usage.
     47       1.1   alc 	 */
     48       1.1   alc 	/* filled out Vpd table for all pdGains (chanL) */
     49       1.1   alc 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
     50       1.1   alc 			    [MAX_PWR_RANGE_IN_HALF_DB];
     51       1.1   alc 	/* filled out Vpd table for all pdGains (chanR) */
     52       1.1   alc 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
     53       1.1   alc 			    [MAX_PWR_RANGE_IN_HALF_DB];
     54       1.1   alc 	/* filled out Vpd table for all pdGains (interpolated) */
     55       1.1   alc 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
     56       1.1   alc 			    [MAX_PWR_RANGE_IN_HALF_DB];
     57       1.1   alc };
     58       1.1   alc #define	AR2413(ah)	((struct ar2413State *) AH5212(ah)->ah_rfHal)
     59       1.1   alc 
     60       1.1   alc extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     61       1.1   alc 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     62       1.1   alc 
     63       1.1   alc static void
     64       1.1   alc ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     65       1.1   alc 	int writes)
     66       1.1   alc {
     67       1.1   alc 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
     68       1.1   alc 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
     69       1.1   alc 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
     70       1.1   alc }
     71       1.1   alc 
     72       1.1   alc /*
     73       1.1   alc  * Take the MHz channel value and set the Channel value
     74       1.1   alc  *
     75       1.1   alc  * ASSUMES: Writes enabled to analog bus
     76       1.1   alc  */
     77       1.1   alc static HAL_BOOL
     78       1.1   alc ar2413SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     79       1.1   alc {
     80       1.1   alc 	uint32_t channelSel  = 0;
     81       1.1   alc 	uint32_t bModeSynth  = 0;
     82       1.1   alc 	uint32_t aModeRefSel = 0;
     83       1.1   alc 	uint32_t reg32       = 0;
     84       1.1   alc 	uint16_t freq;
     85       1.1   alc 
     86       1.1   alc 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     87       1.1   alc 
     88       1.1   alc 	if (chan->channel < 4800) {
     89       1.1   alc 		uint32_t txctl;
     90       1.1   alc 
     91       1.1   alc 		if (((chan->channel - 2192) % 5) == 0) {
     92       1.1   alc 			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
     93       1.1   alc 			bModeSynth = 0;
     94       1.1   alc 		} else if (((chan->channel - 2224) % 5) == 0) {
     95       1.1   alc 			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
     96       1.1   alc 			bModeSynth = 1;
     97       1.1   alc 		} else {
     98       1.1   alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
     99       1.1   alc 			    "%s: invalid channel %u MHz\n",
    100       1.1   alc 			    __func__, chan->channel);
    101       1.1   alc 			return AH_FALSE;
    102       1.1   alc 		}
    103       1.1   alc 
    104       1.1   alc 		channelSel = (channelSel << 2) & 0xff;
    105       1.1   alc 		channelSel = ath_hal_reverseBits(channelSel, 8);
    106       1.1   alc 
    107       1.1   alc 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    108       1.1   alc 		if (chan->channel == 2484) {
    109       1.1   alc 			/* Enable channel spreading for channel 14 */
    110       1.1   alc 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    111       1.1   alc 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    112       1.1   alc 		} else {
    113       1.1   alc 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    114       1.1   alc 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    115       1.1   alc 		}
    116       1.1   alc 	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
    117       1.1   alc 		freq = chan->channel - 2; /* Align to even 5MHz raster */
    118       1.1   alc 		channelSel = ath_hal_reverseBits(
    119       1.1   alc 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
    120       1.1   alc             	aModeRefSel = ath_hal_reverseBits(0, 2);
    121       1.1   alc 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    122       1.1   alc 		channelSel = ath_hal_reverseBits(
    123       1.1   alc 			((chan->channel - 4800) / 20 << 2), 8);
    124       1.1   alc 		aModeRefSel = ath_hal_reverseBits(3, 2);
    125       1.1   alc 	} else if ((chan->channel % 10) == 0) {
    126       1.1   alc 		channelSel = ath_hal_reverseBits(
    127       1.1   alc 			((chan->channel - 4800) / 10 << 1), 8);
    128       1.1   alc 		aModeRefSel = ath_hal_reverseBits(2, 2);
    129       1.1   alc 	} else if ((chan->channel % 5) == 0) {
    130       1.1   alc 		channelSel = ath_hal_reverseBits(
    131       1.1   alc 			(chan->channel - 4800) / 5, 8);
    132       1.1   alc 		aModeRefSel = ath_hal_reverseBits(1, 2);
    133       1.1   alc 	} else {
    134       1.1   alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    135       1.1   alc 		    __func__, chan->channel);
    136       1.1   alc 		return AH_FALSE;
    137       1.1   alc 	}
    138       1.1   alc 
    139       1.1   alc 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    140       1.1   alc 			(1 << 12) | 0x1;
    141       1.1   alc 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    142       1.1   alc 
    143       1.1   alc 	reg32 >>= 8;
    144       1.1   alc 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    145       1.1   alc 
    146       1.1   alc 	AH_PRIVATE(ah)->ah_curchan = chan;
    147       1.1   alc 
    148       1.1   alc 	return AH_TRUE;
    149       1.1   alc }
    150       1.1   alc 
    151       1.1   alc /*
    152       1.1   alc  * Reads EEPROM header info from device structure and programs
    153       1.1   alc  * all rf registers
    154       1.1   alc  *
    155       1.1   alc  * REQUIRES: Access to the analog rf device
    156       1.1   alc  */
    157       1.1   alc static HAL_BOOL
    158       1.1   alc ar2413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    159       1.1   alc {
    160       1.1   alc #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    161       1.1   alc 	int i;								    \
    162       1.1   alc 	for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)			    \
    163       1.1   alc 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
    164       1.1   alc } while (0)
    165       1.1   alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    166       1.1   alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    167       1.1   alc 	uint16_t ob2GHz = 0, db2GHz = 0;
    168       1.1   alc 	struct ar2413State *priv = AR2413(ah);
    169       1.1   alc 	int regWrites = 0;
    170       1.1   alc 
    171       1.1   alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    172       1.1   alc 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
    173       1.1   alc 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    174       1.1   alc 
    175       1.1   alc 	HALASSERT(priv);
    176       1.1   alc 
    177       1.1   alc 	/* Setup rf parameters */
    178       1.1   alc 	switch (chan->channelFlags & CHANNEL_ALL) {
    179       1.1   alc 	case CHANNEL_B:
    180       1.1   alc 		ob2GHz = ee->ee_obFor24;
    181       1.1   alc 		db2GHz = ee->ee_dbFor24;
    182       1.1   alc 		break;
    183       1.1   alc 	case CHANNEL_G:
    184       1.1   alc 	case CHANNEL_108G:
    185       1.1   alc 		ob2GHz = ee->ee_obFor24g;
    186       1.1   alc 		db2GHz = ee->ee_dbFor24g;
    187       1.1   alc 		break;
    188       1.1   alc 	default:
    189       1.1   alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    190       1.1   alc 		    __func__, chan->channelFlags);
    191       1.1   alc 		return AH_FALSE;
    192       1.1   alc 	}
    193       1.1   alc 
    194       1.1   alc 	/* Bank 1 Write */
    195       1.1   alc 	RF_BANK_SETUP(priv, 1, 1);
    196       1.1   alc 
    197       1.1   alc 	/* Bank 2 Write */
    198       1.1   alc 	RF_BANK_SETUP(priv, 2, modesIndex);
    199       1.1   alc 
    200       1.1   alc 	/* Bank 3 Write */
    201       1.1   alc 	RF_BANK_SETUP(priv, 3, modesIndex);
    202       1.1   alc 
    203       1.1   alc 	/* Bank 6 Write */
    204       1.1   alc 	RF_BANK_SETUP(priv, 6, modesIndex);
    205       1.1   alc 
    206       1.1   alc 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
    207       1.1   alc 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
    208       1.1   alc 
    209       1.1   alc 	/* Bank 7 Setup */
    210       1.1   alc 	RF_BANK_SETUP(priv, 7, modesIndex);
    211       1.1   alc 
    212       1.1   alc 	/* Write Analog registers */
    213       1.1   alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
    214       1.1   alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
    215       1.1   alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
    216       1.1   alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
    217       1.1   alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
    218       1.1   alc 
    219       1.1   alc 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    220       1.1   alc 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    221       1.1   alc 
    222       1.1   alc 	return AH_TRUE;
    223       1.1   alc #undef	RF_BANK_SETUP
    224       1.1   alc }
    225       1.1   alc 
    226       1.1   alc /*
    227       1.1   alc  * Return a reference to the requested RF Bank.
    228       1.1   alc  */
    229       1.1   alc static uint32_t *
    230       1.1   alc ar2413GetRfBank(struct ath_hal *ah, int bank)
    231       1.1   alc {
    232       1.1   alc 	struct ar2413State *priv = AR2413(ah);
    233       1.1   alc 
    234       1.1   alc 	HALASSERT(priv != AH_NULL);
    235       1.1   alc 	switch (bank) {
    236       1.1   alc 	case 1: return priv->Bank1Data;
    237       1.1   alc 	case 2: return priv->Bank2Data;
    238       1.1   alc 	case 3: return priv->Bank3Data;
    239       1.1   alc 	case 6: return priv->Bank6Data;
    240       1.1   alc 	case 7: return priv->Bank7Data;
    241       1.1   alc 	}
    242       1.1   alc 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    243       1.1   alc 	    __func__, bank);
    244       1.1   alc 	return AH_NULL;
    245       1.1   alc }
    246       1.1   alc 
    247       1.1   alc /*
    248       1.1   alc  * Return indices surrounding the value in sorted integer lists.
    249       1.1   alc  *
    250       1.1   alc  * NB: the input list is assumed to be sorted in ascending order
    251       1.1   alc  */
    252       1.1   alc static void
    253       1.1   alc GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    254       1.1   alc                           uint32_t *vlo, uint32_t *vhi)
    255       1.1   alc {
    256       1.1   alc 	int16_t target = v;
    257       1.1   alc 	const uint16_t *ep = lp+listSize;
    258       1.1   alc 	const uint16_t *tp;
    259       1.1   alc 
    260       1.1   alc 	/*
    261       1.1   alc 	 * Check first and last elements for out-of-bounds conditions.
    262       1.1   alc 	 */
    263       1.1   alc 	if (target < lp[0]) {
    264       1.1   alc 		*vlo = *vhi = 0;
    265       1.1   alc 		return;
    266       1.1   alc 	}
    267       1.1   alc 	if (target >= ep[-1]) {
    268       1.1   alc 		*vlo = *vhi = listSize - 1;
    269       1.1   alc 		return;
    270       1.1   alc 	}
    271       1.1   alc 
    272       1.1   alc 	/* look for value being near or between 2 values in list */
    273       1.1   alc 	for (tp = lp; tp < ep; tp++) {
    274       1.1   alc 		/*
    275       1.1   alc 		 * If value is close to the current value of the list
    276       1.1   alc 		 * then target is not between values, it is one of the values
    277       1.1   alc 		 */
    278       1.1   alc 		if (*tp == target) {
    279       1.1   alc 			*vlo = *vhi = tp - (const uint16_t *) lp;
    280       1.1   alc 			return;
    281       1.1   alc 		}
    282       1.1   alc 		/*
    283       1.1   alc 		 * Look for value being between current value and next value
    284       1.1   alc 		 * if so return these 2 values
    285       1.1   alc 		 */
    286       1.1   alc 		if (target < tp[1]) {
    287       1.1   alc 			*vlo = tp - (const uint16_t *) lp;
    288       1.1   alc 			*vhi = *vlo + 1;
    289       1.1   alc 			return;
    290       1.1   alc 		}
    291       1.1   alc 	}
    292       1.1   alc }
    293       1.1   alc 
    294       1.1   alc /*
    295       1.1   alc  * Fill the Vpdlist for indices Pmax-Pmin
    296       1.1   alc  */
    297       1.1   alc static HAL_BOOL
    298       1.1   alc ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    299       1.1   alc 		   const int16_t *pwrList, const uint16_t *VpdList,
    300       1.1   alc 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
    301       1.1   alc {
    302  1.2.24.1  yamt 	uint16_t ii, kk;
    303       1.1   alc 	int16_t currPwr = (int16_t)(2*Pmin);
    304       1.1   alc 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    305       1.2   mrg 	uint32_t  idxL = 0, idxR = 0;
    306       1.1   alc 
    307       1.1   alc 	ii = 0;
    308       1.1   alc 
    309       1.1   alc 	if (numIntercepts < 2)
    310       1.1   alc 		return AH_FALSE;
    311       1.1   alc 
    312       1.1   alc 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    313       1.1   alc 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
    314       1.1   alc 				   numIntercepts, &(idxL), &(idxR));
    315       1.1   alc 		if (idxR < 1)
    316       1.1   alc 			idxR = 1;			/* extrapolate below */
    317       1.1   alc 		if (idxL == (uint32_t)(numIntercepts - 1))
    318       1.1   alc 			idxL = numIntercepts - 2;	/* extrapolate above */
    319       1.1   alc 		if (pwrList[idxL] == pwrList[idxR])
    320       1.1   alc 			kk = VpdList[idxL];
    321       1.1   alc 		else
    322       1.1   alc 			kk = (uint16_t)
    323       1.1   alc 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    324       1.1   alc 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    325       1.1   alc 				 (pwrList[idxR] - pwrList[idxL]));
    326       1.1   alc 		retVpdList[pdGainIdx][ii] = kk;
    327       1.1   alc 		ii++;
    328       1.1   alc 		currPwr += 2;				/* half dB steps */
    329       1.1   alc 	}
    330       1.1   alc 
    331       1.1   alc 	return AH_TRUE;
    332       1.1   alc }
    333       1.1   alc 
    334       1.1   alc /*
    335       1.1   alc  * Returns interpolated or the scaled up interpolated value
    336       1.1   alc  */
    337       1.1   alc static int16_t
    338       1.1   alc interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    339       1.1   alc 	int16_t targetLeft, int16_t targetRight)
    340       1.1   alc {
    341       1.1   alc 	int16_t rv;
    342       1.1   alc 
    343       1.1   alc 	if (srcRight != srcLeft) {
    344       1.1   alc 		rv = ((target - srcLeft)*targetRight +
    345       1.1   alc 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    346       1.1   alc 	} else {
    347       1.1   alc 		rv = targetLeft;
    348       1.1   alc 	}
    349       1.1   alc 	return rv;
    350       1.1   alc }
    351       1.1   alc 
    352       1.1   alc /*
    353       1.1   alc  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    354       1.1   alc  * Called by ar2413SetPowerTable()
    355       1.1   alc  */
    356       1.1   alc static int
    357       1.1   alc ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    358       1.1   alc 		const RAW_DATA_STRUCT_2413 *pRawDataset,
    359       1.1   alc 		uint16_t pdGainOverlap_t2,
    360       1.1   alc 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    361       1.1   alc 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    362       1.1   alc {
    363       1.1   alc 	struct ar2413State *priv = AR2413(ah);
    364       1.1   alc #define	VpdTable_L	priv->vpdTable_L
    365       1.1   alc #define	VpdTable_R	priv->vpdTable_R
    366       1.1   alc #define	VpdTable_I	priv->vpdTable_I
    367       1.1   alc 	uint32_t ii, jj, kk;
    368       1.1   alc 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    369       1.2   mrg 	uint32_t idxL = 0, idxR = 0;
    370       1.1   alc 	uint32_t numPdGainsUsed = 0;
    371       1.1   alc 	/*
    372       1.1   alc 	 * If desired to support -ve power levels in future, just
    373       1.1   alc 	 * change pwr_I_0 to signed 5-bits.
    374       1.1   alc 	 */
    375       1.1   alc 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    376       1.1   alc 	/* to accomodate -ve power levels later on. */
    377       1.1   alc 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    378       1.1   alc 	/* to accomodate -ve power levels later on */
    379       1.1   alc 	uint16_t numVpd = 0;
    380       1.1   alc 	uint16_t Vpd_step;
    381       1.1   alc 	int16_t tmpVal ;
    382       1.1   alc 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    383       1.1   alc 
    384       1.1   alc 	/* Get upper lower index */
    385       1.1   alc 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    386       1.1   alc 				 pRawDataset->numChannels, &(idxL), &(idxR));
    387       1.1   alc 
    388       1.1   alc 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    389       1.1   alc 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    390       1.1   alc 		/* work backwards 'cause highest pdGain for lowest power */
    391       1.1   alc 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    392       1.1   alc 		if (numVpd > 0) {
    393       1.1   alc 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    394       1.1   alc 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    395       1.1   alc 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    396       1.1   alc 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    397       1.1   alc 			}
    398       1.1   alc 			Pmin_t2[numPdGainsUsed] = (int16_t)
    399       1.1   alc 				(Pmin_t2[numPdGainsUsed] / 2);
    400       1.1   alc 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    401       1.1   alc 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    402       1.1   alc 				Pmax_t2[numPdGainsUsed] =
    403       1.1   alc 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    404       1.1   alc 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    405       1.1   alc 			ar2413FillVpdTable(
    406       1.1   alc 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    407       1.1   alc 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    408       1.1   alc 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    409       1.1   alc 					   );
    410       1.1   alc 			ar2413FillVpdTable(
    411       1.1   alc 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    412       1.1   alc 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    413       1.1   alc 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    414       1.1   alc 					   );
    415       1.1   alc 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    416       1.1   alc 				VpdTable_I[numPdGainsUsed][kk] =
    417       1.1   alc 					interpolate_signed(
    418       1.1   alc 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    419       1.1   alc 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    420       1.1   alc 			}
    421       1.1   alc 			/* fill VpdTable_I for this pdGain */
    422       1.1   alc 			numPdGainsUsed++;
    423       1.1   alc 		}
    424       1.1   alc 		/* if this pdGain is used */
    425       1.1   alc 	}
    426       1.1   alc 
    427       1.1   alc 	*pMinCalPower = Pmin_t2[0];
    428       1.1   alc 	kk = 0; /* index for the final table */
    429       1.1   alc 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    430       1.1   alc 		if (ii == (numPdGainsUsed - 1))
    431       1.1   alc 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    432       1.1   alc 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    433       1.1   alc 		else
    434       1.1   alc 			pPdGainBoundaries[ii] = (uint16_t)
    435       1.1   alc 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    436       1.1   alc 		if (pPdGainBoundaries[ii] > 63) {
    437       1.1   alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
    438       1.1   alc 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
    439       1.1   alc 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
    440       1.1   alc 			pPdGainBoundaries[ii] = 63;
    441       1.1   alc 		}
    442       1.1   alc 
    443       1.1   alc 		/* Find starting index for this pdGain */
    444       1.1   alc 		if (ii == 0)
    445       1.1   alc 			ss = 0; /* for the first pdGain, start from index 0 */
    446       1.1   alc 		else
    447       1.1   alc 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    448       1.1   alc 				pdGainOverlap_t2;
    449       1.1   alc 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    450       1.1   alc 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    451       1.1   alc 		/*
    452       1.1   alc 		 *-ve ss indicates need to extrapolate data below for this pdGain
    453       1.1   alc 		 */
    454       1.1   alc 		while (ss < 0) {
    455       1.1   alc 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    456       1.1   alc 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    457       1.1   alc 			ss++;
    458       1.1   alc 		}
    459       1.1   alc 
    460       1.1   alc 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    461       1.1   alc 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    462       1.1   alc 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    463       1.1   alc 
    464       1.1   alc 		while (ss < (int16_t)maxIndex)
    465       1.1   alc 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    466       1.1   alc 
    467       1.1   alc 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    468       1.1   alc 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    469       1.1   alc 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    470       1.1   alc 		/*
    471       1.1   alc 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    472       1.1   alc 		 * have to extrapolate
    473       1.1   alc 		 */
    474       1.1   alc 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    475       1.1   alc 			while(ss < (int16_t)tgtIndex) {
    476       1.1   alc 				tmpVal = (uint16_t)
    477       1.1   alc 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    478       1.1   alc 					 (ss-maxIndex)*Vpd_step);
    479       1.1   alc 				pPDADCValues[kk++] = (tmpVal > 127) ?
    480       1.1   alc 					127 : tmpVal;
    481       1.1   alc 				ss++;
    482       1.1   alc 			}
    483       1.1   alc 		}				/* extrapolated above */
    484       1.1   alc 	}					/* for all pdGainUsed */
    485       1.1   alc 
    486       1.1   alc 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    487       1.1   alc 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    488       1.1   alc 		ii++;
    489       1.1   alc 	}
    490       1.1   alc 	while (kk < 128) {
    491       1.1   alc 		pPDADCValues[kk] = pPDADCValues[kk-1];
    492       1.1   alc 		kk++;
    493       1.1   alc 	}
    494       1.1   alc 
    495       1.1   alc 	return numPdGainsUsed;
    496       1.1   alc #undef VpdTable_L
    497       1.1   alc #undef VpdTable_R
    498       1.1   alc #undef VpdTable_I
    499       1.1   alc }
    500       1.1   alc 
    501       1.1   alc static HAL_BOOL
    502       1.1   alc ar2413SetPowerTable(struct ath_hal *ah,
    503       1.1   alc 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    504       1.1   alc 	uint16_t *rfXpdGain)
    505       1.1   alc {
    506       1.1   alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    507       1.1   alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    508       1.1   alc 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    509       1.1   alc 	uint16_t pdGainOverlap_t2;
    510       1.1   alc 	int16_t minCalPower2413_t2;
    511       1.1   alc 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    512       1.1   alc 	uint16_t gainBoundaries[4];
    513       1.1   alc 	uint32_t reg32, regoffset;
    514       1.1   alc 	int i, numPdGainsUsed;
    515       1.1   alc #ifndef AH_USE_INIPDGAIN
    516       1.1   alc 	uint32_t tpcrg1;
    517       1.1   alc #endif
    518       1.1   alc 
    519       1.1   alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
    520       1.1   alc 	    __func__, chan->channel,chan->channelFlags);
    521       1.1   alc 
    522       1.1   alc 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    523       1.1   alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    524       1.1   alc 	else if (IS_CHAN_B(chan))
    525       1.1   alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    526       1.1   alc 	else {
    527       1.1   alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
    528       1.1   alc 		return AH_FALSE;
    529       1.1   alc 	}
    530       1.1   alc 
    531       1.1   alc 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    532       1.1   alc 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    533       1.1   alc 
    534       1.1   alc 	numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
    535       1.1   alc 		chan->channel, pRawDataset, pdGainOverlap_t2,
    536       1.1   alc 		&minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
    537       1.1   alc 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
    538       1.1   alc 
    539       1.1   alc #ifdef AH_USE_INIPDGAIN
    540       1.1   alc 	/*
    541       1.1   alc 	 * Use pd_gains curve from eeprom; Atheros always uses
    542       1.1   alc 	 * the default curve from the ini file but some vendors
    543       1.1   alc 	 * (e.g. Zcomax) want to override this curve and not
    544       1.1   alc 	 * honoring their settings results in tx power 5dBm low.
    545       1.1   alc 	 */
    546       1.1   alc 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    547       1.1   alc 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    548       1.1   alc #else
    549       1.1   alc 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
    550       1.1   alc 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
    551       1.1   alc 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
    552       1.1   alc 	switch (numPdGainsUsed) {
    553       1.1   alc 	case 3:
    554       1.1   alc 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
    555       1.1   alc 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
    556       1.1   alc 		/* fall thru... */
    557       1.1   alc 	case 2:
    558       1.1   alc 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
    559       1.1   alc 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
    560       1.1   alc 		/* fall thru... */
    561       1.1   alc 	case 1:
    562       1.1   alc 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
    563       1.1   alc 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
    564       1.1   alc 		break;
    565       1.1   alc 	}
    566       1.1   alc #ifdef AH_DEBUG
    567       1.1   alc 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
    568       1.1   alc 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
    569       1.1   alc 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
    570       1.1   alc 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
    571       1.1   alc #endif
    572       1.1   alc 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
    573       1.1   alc #endif
    574       1.1   alc 
    575       1.1   alc 	/*
    576       1.1   alc 	 * Note the pdadc table may not start at 0 dBm power, could be
    577       1.1   alc 	 * negative or greater than 0.  Need to offset the power
    578       1.1   alc 	 * values by the amount of minPower for griffin
    579       1.1   alc 	 */
    580       1.1   alc 	if (minCalPower2413_t2 != 0)
    581       1.1   alc 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
    582       1.1   alc 	else
    583       1.1   alc 		ahp->ah_txPowerIndexOffset = 0;
    584       1.1   alc 
    585       1.1   alc 	/* Finally, write the power values into the baseband power table */
    586       1.1   alc 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    587       1.1   alc 	for (i = 0; i < 32; i++) {
    588       1.1   alc 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    589       1.1   alc 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    590       1.1   alc 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    591       1.1   alc 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    592       1.1   alc 		OS_REG_WRITE(ah, regoffset, reg32);
    593       1.1   alc 		regoffset += 4;
    594       1.1   alc 	}
    595       1.1   alc 
    596       1.1   alc 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    597       1.1   alc 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    598       1.1   alc 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    599       1.1   alc 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    600       1.1   alc 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    601       1.1   alc 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    602       1.1   alc 
    603       1.1   alc 	return AH_TRUE;
    604       1.1   alc }
    605       1.1   alc 
    606       1.1   alc static int16_t
    607       1.1   alc ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    608       1.1   alc {
    609       1.1   alc 	uint32_t ii,jj;
    610       1.1   alc 	uint16_t Pmin=0,numVpd;
    611       1.1   alc 
    612       1.1   alc 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    613       1.1   alc 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    614       1.1   alc 		/* work backwards 'cause highest pdGain for lowest power */
    615       1.1   alc 		numVpd = data->pDataPerPDGain[jj].numVpd;
    616       1.1   alc 		if (numVpd > 0) {
    617       1.1   alc 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    618       1.1   alc 			return(Pmin);
    619       1.1   alc 		}
    620       1.1   alc 	}
    621       1.1   alc 	return(Pmin);
    622       1.1   alc }
    623       1.1   alc 
    624       1.1   alc static int16_t
    625       1.1   alc ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    626       1.1   alc {
    627       1.1   alc 	uint32_t ii;
    628       1.1   alc 	uint16_t Pmax=0,numVpd;
    629       1.1   alc 
    630       1.1   alc 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    631       1.1   alc 		/* work forwards cuase lowest pdGain for highest power */
    632       1.1   alc 		numVpd = data->pDataPerPDGain[ii].numVpd;
    633       1.1   alc 		if (numVpd > 0) {
    634       1.1   alc 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    635       1.1   alc 			return(Pmax);
    636       1.1   alc 		}
    637       1.1   alc 	}
    638       1.1   alc 	return(Pmax);
    639       1.1   alc }
    640       1.1   alc 
    641       1.1   alc static HAL_BOOL
    642       1.1   alc ar2413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    643       1.1   alc 	int16_t *maxPow, int16_t *minPow)
    644       1.1   alc {
    645       1.1   alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    646       1.1   alc 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    647       1.1   alc 	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
    648       1.1   alc 	uint16_t numChannels;
    649       1.1   alc 	int totalD,totalF, totalMin,last, i;
    650       1.1   alc 
    651       1.1   alc 	*maxPow = 0;
    652       1.1   alc 
    653       1.1   alc 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    654       1.1   alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    655       1.1   alc 	else if (IS_CHAN_B(chan))
    656       1.1   alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    657       1.1   alc 	else
    658       1.1   alc 		return(AH_FALSE);
    659       1.1   alc 
    660       1.1   alc 	numChannels = pRawDataset->numChannels;
    661       1.1   alc 	data = pRawDataset->pDataPerChannel;
    662       1.1   alc 
    663       1.1   alc 	/* Make sure the channel is in the range of the TP values
    664       1.1   alc 	 *  (freq piers)
    665       1.1   alc 	 */
    666       1.1   alc 	if (numChannels < 1)
    667       1.1   alc 		return(AH_FALSE);
    668       1.1   alc 
    669       1.1   alc 	if ((chan->channel < data[0].channelValue) ||
    670       1.1   alc 	    (chan->channel > data[numChannels-1].channelValue)) {
    671       1.1   alc 		if (chan->channel < data[0].channelValue) {
    672       1.1   alc 			*maxPow = ar2413GetMaxPower(ah, &data[0]);
    673       1.1   alc 			*minPow = ar2413GetMinPower(ah, &data[0]);
    674       1.1   alc 			return(AH_TRUE);
    675       1.1   alc 		} else {
    676       1.1   alc 			*maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
    677       1.1   alc 			*minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
    678       1.1   alc 			return(AH_TRUE);
    679       1.1   alc 		}
    680       1.1   alc 	}
    681       1.1   alc 
    682       1.1   alc 	/* Linearly interpolate the power value now */
    683       1.1   alc 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    684       1.1   alc 	     last = i++);
    685       1.1   alc 	totalD = data[i].channelValue - data[last].channelValue;
    686       1.1   alc 	if (totalD > 0) {
    687       1.1   alc 		totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
    688       1.1   alc 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    689       1.1   alc 				     ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
    690       1.1   alc 		totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
    691       1.1   alc 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    692       1.1   alc 				     ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
    693       1.1   alc 		return(AH_TRUE);
    694       1.1   alc 	} else {
    695       1.1   alc 		if (chan->channel == data[i].channelValue) {
    696       1.1   alc 			*maxPow = ar2413GetMaxPower(ah, &data[i]);
    697       1.1   alc 			*minPow = ar2413GetMinPower(ah, &data[i]);
    698       1.1   alc 			return(AH_TRUE);
    699       1.1   alc 		} else
    700       1.1   alc 			return(AH_FALSE);
    701       1.1   alc 	}
    702       1.1   alc }
    703       1.1   alc 
    704       1.1   alc /*
    705       1.1   alc  * Free memory for analog bank scratch buffers
    706       1.1   alc  */
    707       1.1   alc static void
    708       1.1   alc ar2413RfDetach(struct ath_hal *ah)
    709       1.1   alc {
    710       1.1   alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    711       1.1   alc 
    712       1.1   alc 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    713       1.1   alc 	ath_hal_free(ahp->ah_rfHal);
    714       1.1   alc 	ahp->ah_rfHal = AH_NULL;
    715       1.1   alc }
    716       1.1   alc 
    717       1.1   alc /*
    718       1.1   alc  * Allocate memory for analog bank scratch buffers
    719       1.1   alc  * Scratch Buffer will be reinitialized every reset so no need to zero now
    720       1.1   alc  */
    721       1.1   alc static HAL_BOOL
    722       1.1   alc ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    723       1.1   alc {
    724       1.1   alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    725       1.1   alc 	struct ar2413State *priv;
    726       1.1   alc 
    727       1.1   alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    728       1.1   alc 
    729       1.1   alc 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    730       1.1   alc 	priv = ath_hal_malloc(sizeof(struct ar2413State));
    731       1.1   alc 	if (priv == AH_NULL) {
    732       1.1   alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    733       1.1   alc 		    "%s: cannot allocate private state\n", __func__);
    734       1.1   alc 		*status = HAL_ENOMEM;		/* XXX */
    735       1.1   alc 		return AH_FALSE;
    736       1.1   alc 	}
    737       1.1   alc 	priv->base.rfDetach		= ar2413RfDetach;
    738       1.1   alc 	priv->base.writeRegs		= ar2413WriteRegs;
    739       1.1   alc 	priv->base.getRfBank		= ar2413GetRfBank;
    740       1.1   alc 	priv->base.setChannel		= ar2413SetChannel;
    741       1.1   alc 	priv->base.setRfRegs		= ar2413SetRfRegs;
    742       1.1   alc 	priv->base.setPowerTable	= ar2413SetPowerTable;
    743       1.1   alc 	priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
    744       1.1   alc 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    745       1.1   alc 
    746       1.1   alc 	ahp->ah_pcdacTable = priv->pcdacTable;
    747       1.1   alc 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    748       1.1   alc 	ahp->ah_rfHal = &priv->base;
    749       1.1   alc 
    750       1.1   alc 	return AH_TRUE;
    751       1.1   alc }
    752       1.1   alc 
    753       1.1   alc static HAL_BOOL
    754       1.1   alc ar2413Probe(struct ath_hal *ah)
    755       1.1   alc {
    756       1.1   alc 	return IS_2413(ah);
    757       1.1   alc }
    758       1.1   alc AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
    759