Home | History | Annotate | Line # | Download | only in ar5212
      1  1.1       alc /*
      2  1.1       alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  1.1       alc  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  1.1       alc  *
      5  1.1       alc  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.1       alc  * purpose with or without fee is hereby granted, provided that the above
      7  1.1       alc  * copyright notice and this permission notice appear in all copies.
      8  1.1       alc  *
      9  1.1       alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.1       alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.1       alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.1       alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.1       alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.1       alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.1       alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.1       alc  *
     17  1.4    martin  * $Id: ar2425.c,v 1.4 2013/09/12 12:05:52 martin Exp $
     18  1.1       alc  */
     19  1.1       alc #include "opt_ah.h"
     20  1.1       alc 
     21  1.1       alc #include "ah.h"
     22  1.1       alc #include "ah_internal.h"
     23  1.1       alc 
     24  1.1       alc #include "ar5212/ar5212.h"
     25  1.1       alc #include "ar5212/ar5212reg.h"
     26  1.1       alc #include "ar5212/ar5212phy.h"
     27  1.1       alc 
     28  1.1       alc #include "ah_eeprom_v3.h"
     29  1.1       alc 
     30  1.1       alc #define AH_5212_2425
     31  1.1       alc #define AH_5212_2417
     32  1.1       alc #include "ar5212/ar5212.ini"
     33  1.1       alc 
     34  1.1       alc #define	N(a)	(sizeof(a)/sizeof(a[0]))
     35  1.1       alc 
     36  1.1       alc struct ar2425State {
     37  1.1       alc 	RF_HAL_FUNCS	base;		/* public state, must be first */
     38  1.1       alc 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
     39  1.1       alc 
     40  1.1       alc 	uint32_t	Bank1Data[N(ar5212Bank1_2425)];
     41  1.1       alc 	uint32_t	Bank2Data[N(ar5212Bank2_2425)];
     42  1.1       alc 	uint32_t	Bank3Data[N(ar5212Bank3_2425)];
     43  1.1       alc 	uint32_t	Bank6Data[N(ar5212Bank6_2425)];	/* 2417 is same size */
     44  1.1       alc 	uint32_t	Bank7Data[N(ar5212Bank7_2425)];
     45  1.1       alc };
     46  1.1       alc #define	AR2425(ah)	((struct ar2425State *) AH5212(ah)->ah_rfHal)
     47  1.1       alc 
     48  1.1       alc extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     49  1.1       alc 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     50  1.1       alc 
     51  1.1       alc static void
     52  1.1       alc ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     53  1.1       alc 	int writes)
     54  1.1       alc {
     55  1.1       alc 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
     56  1.1       alc 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
     57  1.1       alc 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
     58  1.1       alc #if 0
     59  1.1       alc 	/*
     60  1.1       alc 	 * for SWAN similar to Condor
     61  1.1       alc 	 * Bit 0 enables link to go to L1 when MAC goes to sleep.
     62  1.1       alc 	 * Bit 3 enables the loop back the link down to reset.
     63  1.1       alc 	 */
     64  1.3  jmcneill 	if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
     65  1.1       alc 		OS_REG_WRITE(ah, AR_PCIE_PMC,
     66  1.1       alc 		    AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
     67  1.1       alc 	}
     68  1.1       alc 	/*
     69  1.1       alc 	 * for Standby issue in Swan/Condor.
     70  1.1       alc 	 * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
     71  1.1       alc 	 *	before last Training Sequence 2 (TS2)
     72  1.1       alc 	 * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
     73  1.1       alc 	 *	Power Reset along with PCI Reset
     74  1.1       alc 	 */
     75  1.1       alc 	OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
     76  1.1       alc #endif
     77  1.1       alc }
     78  1.1       alc 
     79  1.1       alc /*
     80  1.1       alc  * Take the MHz channel value and set the Channel value
     81  1.1       alc  *
     82  1.1       alc  * ASSUMES: Writes enabled to analog bus
     83  1.1       alc  */
     84  1.1       alc static HAL_BOOL
     85  1.1       alc ar2425SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     86  1.1       alc {
     87  1.1       alc 	uint32_t channelSel  = 0;
     88  1.1       alc 	uint32_t bModeSynth  = 0;
     89  1.1       alc 	uint32_t aModeRefSel = 0;
     90  1.1       alc 	uint32_t reg32       = 0;
     91  1.1       alc 	uint16_t freq;
     92  1.1       alc 
     93  1.1       alc 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     94  1.1       alc 
     95  1.1       alc 	if (chan->channel < 4800) {
     96  1.1       alc 		uint32_t txctl;
     97  1.1       alc 
     98  1.1       alc         channelSel = chan->channel - 2272;
     99  1.1       alc         channelSel = ath_hal_reverseBits(channelSel, 8);
    100  1.1       alc 
    101  1.1       alc 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    102  1.1       alc         if (chan->channel == 2484) {
    103  1.1       alc 			// Enable channel spreading for channel 14
    104  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    105  1.1       alc 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    106  1.1       alc 		} else {
    107  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    108  1.1       alc 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    109  1.1       alc 		}
    110  1.1       alc 
    111  1.1       alc 	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
    112  1.1       alc 		freq = chan->channel - 2; /* Align to even 5MHz raster */
    113  1.1       alc 		channelSel = ath_hal_reverseBits(
    114  1.1       alc 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
    115  1.1       alc             	aModeRefSel = ath_hal_reverseBits(0, 2);
    116  1.1       alc 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    117  1.1       alc 		channelSel = ath_hal_reverseBits(
    118  1.1       alc 			((chan->channel - 4800) / 20 << 2), 8);
    119  1.1       alc 		aModeRefSel = ath_hal_reverseBits(1, 2);
    120  1.1       alc 	} else if ((chan->channel % 10) == 0) {
    121  1.1       alc 		channelSel = ath_hal_reverseBits(
    122  1.1       alc 			((chan->channel - 4800) / 10 << 1), 8);
    123  1.1       alc 		aModeRefSel = ath_hal_reverseBits(1, 2);
    124  1.1       alc 	} else if ((chan->channel % 5) == 0) {
    125  1.1       alc 		channelSel = ath_hal_reverseBits(
    126  1.1       alc 			(chan->channel - 4800) / 5, 8);
    127  1.1       alc 		aModeRefSel = ath_hal_reverseBits(1, 2);
    128  1.1       alc 	} else {
    129  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    130  1.1       alc 		    __func__, chan->channel);
    131  1.1       alc 		return AH_FALSE;
    132  1.1       alc 	}
    133  1.1       alc 
    134  1.1       alc 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    135  1.1       alc 			(1 << 12) | 0x1;
    136  1.1       alc 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    137  1.1       alc 
    138  1.1       alc 	reg32 >>= 8;
    139  1.1       alc 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    140  1.1       alc 
    141  1.1       alc 	AH_PRIVATE(ah)->ah_curchan = chan;
    142  1.1       alc 	return AH_TRUE;
    143  1.1       alc }
    144  1.1       alc 
    145  1.1       alc /*
    146  1.1       alc  * Reads EEPROM header info from device structure and programs
    147  1.1       alc  * all rf registers
    148  1.1       alc  *
    149  1.1       alc  * REQUIRES: Access to the analog rf device
    150  1.1       alc  */
    151  1.1       alc static HAL_BOOL
    152  1.1       alc ar2425SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    153  1.1       alc {
    154  1.1       alc #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    155  1.1       alc 	int i;								    \
    156  1.1       alc 	for (i = 0; i < N(ar5212Bank##_ix##_2425); i++)			    \
    157  1.1       alc 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
    158  1.1       alc } while (0)
    159  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    160  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    161  1.1       alc 	struct ar2425State *priv = AR2425(ah);
    162  1.1       alc 	uint16_t ob2GHz = 0, db2GHz = 0;
    163  1.1       alc 	int regWrites = 0;
    164  1.1       alc 
    165  1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    166  1.1       alc 	    "==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n",
    167  1.1       alc 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    168  1.1       alc 
    169  1.1       alc 	HALASSERT(priv);
    170  1.1       alc 
    171  1.1       alc 	/* Setup rf parameters */
    172  1.1       alc 	switch (chan->channelFlags & CHANNEL_ALL) {
    173  1.1       alc 	case CHANNEL_B:
    174  1.1       alc 		ob2GHz = ee->ee_obFor24;
    175  1.1       alc 		db2GHz = ee->ee_dbFor24;
    176  1.1       alc 		break;
    177  1.1       alc 	case CHANNEL_G:
    178  1.1       alc 	case CHANNEL_108G:
    179  1.1       alc 		ob2GHz = ee->ee_obFor24g;
    180  1.1       alc 		db2GHz = ee->ee_dbFor24g;
    181  1.1       alc 		break;
    182  1.1       alc 	default:
    183  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    184  1.1       alc 			__func__, chan->channelFlags);
    185  1.1       alc 		return AH_FALSE;
    186  1.1       alc 	}
    187  1.1       alc 
    188  1.1       alc 	/* Bank 1 Write */
    189  1.1       alc 	RF_BANK_SETUP(priv, 1, 1);
    190  1.1       alc 
    191  1.1       alc 	/* Bank 2 Write */
    192  1.1       alc 	RF_BANK_SETUP(priv, 2, modesIndex);
    193  1.1       alc 
    194  1.1       alc 	/* Bank 3 Write */
    195  1.1       alc 	RF_BANK_SETUP(priv, 3, modesIndex);
    196  1.1       alc 
    197  1.1       alc 	/* Bank 6 Write */
    198  1.1       alc 	RF_BANK_SETUP(priv, 6, modesIndex);
    199  1.1       alc 
    200  1.1       alc         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
    201  1.1       alc         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
    202  1.1       alc 
    203  1.1       alc 	/* Bank 7 Setup */
    204  1.1       alc 	RF_BANK_SETUP(priv, 7, modesIndex);
    205  1.1       alc 
    206  1.1       alc 	/* Write Analog registers */
    207  1.1       alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
    208  1.1       alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
    209  1.1       alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
    210  1.1       alc 	if (IS_2417(ah)) {
    211  1.1       alc 		HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
    212  1.1       alc 		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
    213  1.1       alc 		    regWrites);
    214  1.1       alc 	} else
    215  1.1       alc 		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
    216  1.1       alc 		    regWrites);
    217  1.1       alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
    218  1.1       alc 
    219  1.1       alc 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    220  1.1       alc 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    221  1.1       alc 
    222  1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
    223  1.1       alc 	return AH_TRUE;
    224  1.1       alc #undef	RF_BANK_SETUP
    225  1.1       alc }
    226  1.1       alc 
    227  1.1       alc /*
    228  1.1       alc  * Return a reference to the requested RF Bank.
    229  1.1       alc  */
    230  1.1       alc static uint32_t *
    231  1.1       alc ar2425GetRfBank(struct ath_hal *ah, int bank)
    232  1.1       alc {
    233  1.1       alc 	struct ar2425State *priv = AR2425(ah);
    234  1.1       alc 
    235  1.1       alc 	HALASSERT(priv != AH_NULL);
    236  1.1       alc 	switch (bank) {
    237  1.1       alc 	case 1: return priv->Bank1Data;
    238  1.1       alc 	case 2: return priv->Bank2Data;
    239  1.1       alc 	case 3: return priv->Bank3Data;
    240  1.1       alc 	case 6: return priv->Bank6Data;
    241  1.1       alc 	case 7: return priv->Bank7Data;
    242  1.1       alc 	}
    243  1.1       alc 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    244  1.1       alc 	    __func__, bank);
    245  1.1       alc 	return AH_NULL;
    246  1.1       alc }
    247  1.1       alc 
    248  1.1       alc /*
    249  1.1       alc  * Return indices surrounding the value in sorted integer lists.
    250  1.1       alc  *
    251  1.1       alc  * NB: the input list is assumed to be sorted in ascending order
    252  1.1       alc  */
    253  1.1       alc static void
    254  1.1       alc GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    255  1.1       alc                           uint32_t *vlo, uint32_t *vhi)
    256  1.1       alc {
    257  1.1       alc 	int16_t target = v;
    258  1.1       alc 	const uint16_t *ep = lp+listSize;
    259  1.1       alc 	const uint16_t *tp;
    260  1.1       alc 
    261  1.1       alc 	/*
    262  1.1       alc 	 * Check first and last elements for out-of-bounds conditions.
    263  1.1       alc 	 */
    264  1.1       alc 	if (target < lp[0]) {
    265  1.1       alc 		*vlo = *vhi = 0;
    266  1.1       alc 		return;
    267  1.1       alc 	}
    268  1.1       alc 	if (target >= ep[-1]) {
    269  1.1       alc 		*vlo = *vhi = listSize - 1;
    270  1.1       alc 		return;
    271  1.1       alc 	}
    272  1.1       alc 
    273  1.1       alc 	/* look for value being near or between 2 values in list */
    274  1.1       alc 	for (tp = lp; tp < ep; tp++) {
    275  1.1       alc 		/*
    276  1.1       alc 		 * If value is close to the current value of the list
    277  1.1       alc 		 * then target is not between values, it is one of the values
    278  1.1       alc 		 */
    279  1.1       alc 		if (*tp == target) {
    280  1.1       alc 			*vlo = *vhi = tp - (const uint16_t *) lp;
    281  1.1       alc 			return;
    282  1.1       alc 		}
    283  1.1       alc 		/*
    284  1.1       alc 		 * Look for value being between current value and next value
    285  1.1       alc 		 * if so return these 2 values
    286  1.1       alc 		 */
    287  1.1       alc 		if (target < tp[1]) {
    288  1.1       alc 			*vlo = tp - (const uint16_t *) lp;
    289  1.1       alc 			*vhi = *vlo + 1;
    290  1.1       alc 			return;
    291  1.1       alc 		}
    292  1.1       alc 	}
    293  1.1       alc }
    294  1.1       alc 
    295  1.1       alc /*
    296  1.1       alc  * Fill the Vpdlist for indices Pmax-Pmin
    297  1.1       alc  */
    298  1.1       alc static HAL_BOOL
    299  1.1       alc ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    300  1.1       alc 		   const int16_t *pwrList, const uint16_t *VpdList,
    301  1.1       alc 		   uint16_t numIntercepts,
    302  1.1       alc 		   uint16_t retVpdList[][64])
    303  1.1       alc {
    304  1.4    martin 	uint16_t ii, kk;
    305  1.1       alc 	int16_t currPwr = (int16_t)(2*Pmin);
    306  1.1       alc 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    307  1.2       mrg 	uint32_t  idxL = 0, idxR = 0;
    308  1.1       alc 
    309  1.1       alc 	ii = 0;
    310  1.1       alc 
    311  1.1       alc 	if (numIntercepts < 2)
    312  1.1       alc 		return AH_FALSE;
    313  1.1       alc 
    314  1.1       alc 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    315  1.1       alc 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
    316  1.1       alc 				   numIntercepts, &(idxL), &(idxR));
    317  1.1       alc 		if (idxR < 1)
    318  1.1       alc 			idxR = 1;			/* extrapolate below */
    319  1.1       alc 		if (idxL == (uint32_t)(numIntercepts - 1))
    320  1.1       alc 			idxL = numIntercepts - 2;	/* extrapolate above */
    321  1.1       alc 		if (pwrList[idxL] == pwrList[idxR])
    322  1.1       alc 			kk = VpdList[idxL];
    323  1.1       alc 		else
    324  1.1       alc 			kk = (uint16_t)
    325  1.1       alc 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    326  1.1       alc 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    327  1.1       alc 				 (pwrList[idxR] - pwrList[idxL]));
    328  1.1       alc 		retVpdList[pdGainIdx][ii] = kk;
    329  1.1       alc 		ii++;
    330  1.1       alc 		currPwr += 2;				/* half dB steps */
    331  1.1       alc 	}
    332  1.1       alc 
    333  1.1       alc 	return AH_TRUE;
    334  1.1       alc }
    335  1.1       alc 
    336  1.1       alc /*
    337  1.1       alc  * Returns interpolated or the scaled up interpolated value
    338  1.1       alc  */
    339  1.1       alc static int16_t
    340  1.1       alc interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    341  1.1       alc 	int16_t targetLeft, int16_t targetRight)
    342  1.1       alc {
    343  1.1       alc 	int16_t rv;
    344  1.1       alc 
    345  1.1       alc 	if (srcRight != srcLeft) {
    346  1.1       alc 		rv = ((target - srcLeft)*targetRight +
    347  1.1       alc 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    348  1.1       alc 	} else {
    349  1.1       alc 		rv = targetLeft;
    350  1.1       alc 	}
    351  1.1       alc 	return rv;
    352  1.1       alc }
    353  1.1       alc 
    354  1.1       alc /*
    355  1.1       alc  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    356  1.1       alc  * Called by ar2425SetPowerTable()
    357  1.1       alc  */
    358  1.1       alc static void
    359  1.1       alc ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    360  1.1       alc 		const RAW_DATA_STRUCT_2413 *pRawDataset,
    361  1.1       alc 		uint16_t pdGainOverlap_t2,
    362  1.1       alc 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    363  1.1       alc 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    364  1.1       alc {
    365  1.1       alc     /* Note the items statically allocated below are to reduce stack usage */
    366  1.1       alc 	uint32_t ii, jj, kk;
    367  1.1       alc 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    368  1.2       mrg 	uint32_t idxL = 0, idxR = 0;
    369  1.1       alc 	uint32_t numPdGainsUsed = 0;
    370  1.1       alc         static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    371  1.1       alc 	/* filled out Vpd table for all pdGains (chanL) */
    372  1.1       alc         static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    373  1.1       alc 	/* filled out Vpd table for all pdGains (chanR) */
    374  1.1       alc         static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    375  1.1       alc 	/* filled out Vpd table for all pdGains (interpolated) */
    376  1.1       alc 	/*
    377  1.1       alc 	 * If desired to support -ve power levels in future, just
    378  1.1       alc 	 * change pwr_I_0 to signed 5-bits.
    379  1.1       alc 	 */
    380  1.1       alc         static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    381  1.1       alc 	/* to accomodate -ve power levels later on. */
    382  1.1       alc         static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    383  1.1       alc 	/* to accomodate -ve power levels later on */
    384  1.1       alc 	uint16_t numVpd = 0;
    385  1.1       alc 	uint16_t Vpd_step;
    386  1.1       alc 	int16_t tmpVal ;
    387  1.1       alc 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    388  1.1       alc 
    389  1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
    390  1.1       alc 
    391  1.1       alc 	/* Get upper lower index */
    392  1.1       alc 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    393  1.1       alc 				 pRawDataset->numChannels, &(idxL), &(idxR));
    394  1.1       alc 
    395  1.1       alc 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    396  1.1       alc 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    397  1.1       alc 		/* work backwards 'cause highest pdGain for lowest power */
    398  1.1       alc 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    399  1.1       alc 		if (numVpd > 0) {
    400  1.1       alc 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    401  1.1       alc 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    402  1.1       alc 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    403  1.1       alc 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    404  1.1       alc 			}
    405  1.1       alc 			Pmin_t2[numPdGainsUsed] = (int16_t)
    406  1.1       alc 				(Pmin_t2[numPdGainsUsed] / 2);
    407  1.1       alc 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    408  1.1       alc 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    409  1.1       alc 				Pmax_t2[numPdGainsUsed] =
    410  1.1       alc 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    411  1.1       alc 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    412  1.1       alc 			ar2425FillVpdTable(
    413  1.1       alc 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    414  1.1       alc 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    415  1.1       alc 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    416  1.1       alc 					   );
    417  1.1       alc 			ar2425FillVpdTable(
    418  1.1       alc 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    419  1.1       alc 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    420  1.1       alc 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    421  1.1       alc 					   );
    422  1.1       alc 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    423  1.1       alc 				VpdTable_I[numPdGainsUsed][kk] =
    424  1.1       alc 					interpolate_signed(
    425  1.1       alc 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    426  1.1       alc 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    427  1.1       alc 			}
    428  1.1       alc 			/* fill VpdTable_I for this pdGain */
    429  1.1       alc 			numPdGainsUsed++;
    430  1.1       alc 		}
    431  1.1       alc 		/* if this pdGain is used */
    432  1.1       alc 	}
    433  1.1       alc 
    434  1.1       alc 	*pMinCalPower = Pmin_t2[0];
    435  1.1       alc 	kk = 0; /* index for the final table */
    436  1.1       alc 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    437  1.1       alc 		if (ii == (numPdGainsUsed - 1))
    438  1.1       alc 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    439  1.1       alc 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    440  1.1       alc 		else
    441  1.1       alc 			pPdGainBoundaries[ii] = (uint16_t)
    442  1.1       alc 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    443  1.1       alc 
    444  1.1       alc 		/* Find starting index for this pdGain */
    445  1.1       alc 		if (ii == 0)
    446  1.1       alc 			ss = 0; /* for the first pdGain, start from index 0 */
    447  1.1       alc 		else
    448  1.1       alc 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    449  1.1       alc 				pdGainOverlap_t2;
    450  1.1       alc 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    451  1.1       alc 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    452  1.1       alc 		/*
    453  1.1       alc 		 *-ve ss indicates need to extrapolate data below for this pdGain
    454  1.1       alc 		 */
    455  1.1       alc 		while (ss < 0) {
    456  1.1       alc 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    457  1.1       alc 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    458  1.1       alc 			ss++;
    459  1.1       alc 		}
    460  1.1       alc 
    461  1.1       alc 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    462  1.1       alc 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    463  1.1       alc 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    464  1.1       alc 
    465  1.1       alc 		while (ss < (int16_t)maxIndex)
    466  1.1       alc 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    467  1.1       alc 
    468  1.1       alc 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    469  1.1       alc 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    470  1.1       alc 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    471  1.1       alc 		/*
    472  1.1       alc 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    473  1.1       alc 		 * have to extrapolate
    474  1.1       alc 		 */
    475  1.1       alc 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    476  1.1       alc 			while(ss < (int16_t)tgtIndex) {
    477  1.1       alc 				tmpVal = (uint16_t)
    478  1.1       alc 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    479  1.1       alc 					 (ss-maxIndex)*Vpd_step);
    480  1.1       alc 				pPDADCValues[kk++] = (tmpVal > 127) ?
    481  1.1       alc 					127 : tmpVal;
    482  1.1       alc 				ss++;
    483  1.1       alc 			}
    484  1.1       alc 		}				/* extrapolated above */
    485  1.1       alc 	}					/* for all pdGainUsed */
    486  1.1       alc 
    487  1.1       alc 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    488  1.1       alc 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    489  1.1       alc 		ii++;
    490  1.1       alc 	}
    491  1.1       alc 	while (kk < 128) {
    492  1.1       alc 		pPDADCValues[kk] = pPDADCValues[kk-1];
    493  1.1       alc 		kk++;
    494  1.1       alc 	}
    495  1.1       alc 
    496  1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
    497  1.1       alc }
    498  1.1       alc 
    499  1.1       alc 
    500  1.1       alc /* Same as 2413 set power table */
    501  1.1       alc static HAL_BOOL
    502  1.1       alc ar2425SetPowerTable(struct ath_hal *ah,
    503  1.1       alc 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    504  1.1       alc 	uint16_t *rfXpdGain)
    505  1.1       alc {
    506  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    507  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    508  1.1       alc 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    509  1.1       alc 	uint16_t pdGainOverlap_t2;
    510  1.1       alc 	int16_t minCalPower2413_t2;
    511  1.1       alc 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    512  1.1       alc 	uint16_t gainBoundaries[4];
    513  1.1       alc 	uint32_t i, reg32, regoffset;
    514  1.1       alc 
    515  1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
    516  1.1       alc 	    __func__, chan->channel,chan->channelFlags);
    517  1.1       alc 
    518  1.1       alc 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    519  1.1       alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    520  1.1       alc 	else if (IS_CHAN_B(chan))
    521  1.1       alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    522  1.1       alc 	else {
    523  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
    524  1.1       alc 		return AH_FALSE;
    525  1.1       alc 	}
    526  1.1       alc 
    527  1.1       alc 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    528  1.1       alc 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    529  1.1       alc 
    530  1.1       alc 	ar2425getGainBoundariesAndPdadcsForPowers(ah, chan->channel,
    531  1.1       alc 		pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
    532  1.1       alc 		rfXpdGain, pdadcValues);
    533  1.1       alc 
    534  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    535  1.1       alc 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    536  1.1       alc 
    537  1.1       alc 	/*
    538  1.1       alc 	 * Note the pdadc table may not start at 0 dBm power, could be
    539  1.1       alc 	 * negative or greater than 0.  Need to offset the power
    540  1.1       alc 	 * values by the amount of minPower for griffin
    541  1.1       alc 	 */
    542  1.1       alc 	if (minCalPower2413_t2 != 0)
    543  1.1       alc 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
    544  1.1       alc 	else
    545  1.1       alc 		ahp->ah_txPowerIndexOffset = 0;
    546  1.1       alc 
    547  1.1       alc 	/* Finally, write the power values into the baseband power table */
    548  1.1       alc 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    549  1.1       alc 	for (i = 0; i < 32; i++) {
    550  1.1       alc 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    551  1.1       alc 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    552  1.1       alc 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    553  1.1       alc 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    554  1.1       alc 		OS_REG_WRITE(ah, regoffset, reg32);
    555  1.1       alc 		regoffset += 4;
    556  1.1       alc 	}
    557  1.1       alc 
    558  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    559  1.1       alc 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    560  1.1       alc 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    561  1.1       alc 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    562  1.1       alc 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    563  1.1       alc 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    564  1.1       alc 
    565  1.1       alc 	return AH_TRUE;
    566  1.1       alc }
    567  1.1       alc 
    568  1.1       alc static int16_t
    569  1.1       alc ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    570  1.1       alc {
    571  1.1       alc 	uint32_t ii,jj;
    572  1.1       alc 	uint16_t Pmin=0,numVpd;
    573  1.1       alc 
    574  1.1       alc 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    575  1.1       alc 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    576  1.1       alc 		/* work backwards 'cause highest pdGain for lowest power */
    577  1.1       alc 		numVpd = data->pDataPerPDGain[jj].numVpd;
    578  1.1       alc 		if (numVpd > 0) {
    579  1.1       alc 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    580  1.1       alc 			return(Pmin);
    581  1.1       alc 		}
    582  1.1       alc 	}
    583  1.1       alc 	return(Pmin);
    584  1.1       alc }
    585  1.1       alc 
    586  1.1       alc static int16_t
    587  1.1       alc ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    588  1.1       alc {
    589  1.1       alc 	uint32_t ii;
    590  1.1       alc 	uint16_t Pmax=0,numVpd;
    591  1.1       alc 
    592  1.1       alc 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    593  1.1       alc 		/* work forwards cuase lowest pdGain for highest power */
    594  1.1       alc 		numVpd = data->pDataPerPDGain[ii].numVpd;
    595  1.1       alc 		if (numVpd > 0) {
    596  1.1       alc 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    597  1.1       alc 			return(Pmax);
    598  1.1       alc 		}
    599  1.1       alc 	}
    600  1.1       alc 	return(Pmax);
    601  1.1       alc }
    602  1.1       alc 
    603  1.1       alc static
    604  1.1       alc HAL_BOOL
    605  1.1       alc ar2425GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    606  1.1       alc 				     int16_t *maxPow, int16_t *minPow)
    607  1.1       alc {
    608  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    609  1.1       alc 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    610  1.1       alc 	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
    611  1.1       alc 	uint16_t numChannels;
    612  1.1       alc 	int totalD,totalF, totalMin,last, i;
    613  1.1       alc 
    614  1.1       alc 	*maxPow = 0;
    615  1.1       alc 
    616  1.1       alc 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    617  1.1       alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    618  1.1       alc 	else if (IS_CHAN_B(chan))
    619  1.1       alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    620  1.1       alc 	else
    621  1.1       alc 		return(AH_FALSE);
    622  1.1       alc 
    623  1.1       alc 	numChannels = pRawDataset->numChannels;
    624  1.1       alc 	data = pRawDataset->pDataPerChannel;
    625  1.1       alc 
    626  1.1       alc 	/* Make sure the channel is in the range of the TP values
    627  1.1       alc 	 *  (freq piers)
    628  1.1       alc 	 */
    629  1.1       alc 	if (numChannels < 1)
    630  1.1       alc 		return(AH_FALSE);
    631  1.1       alc 
    632  1.1       alc 	if ((chan->channel < data[0].channelValue) ||
    633  1.1       alc 	    (chan->channel > data[numChannels-1].channelValue)) {
    634  1.1       alc 		if (chan->channel < data[0].channelValue) {
    635  1.1       alc 			*maxPow = ar2425GetMaxPower(ah, &data[0]);
    636  1.1       alc 			*minPow = ar2425GetMinPower(ah, &data[0]);
    637  1.1       alc 			return(AH_TRUE);
    638  1.1       alc 		} else {
    639  1.1       alc 			*maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
    640  1.1       alc 			*minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
    641  1.1       alc 			return(AH_TRUE);
    642  1.1       alc 		}
    643  1.1       alc 	}
    644  1.1       alc 
    645  1.1       alc 	/* Linearly interpolate the power value now */
    646  1.1       alc 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    647  1.1       alc 	     last = i++);
    648  1.1       alc 	totalD = data[i].channelValue - data[last].channelValue;
    649  1.1       alc 	if (totalD > 0) {
    650  1.1       alc 		totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
    651  1.1       alc 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    652  1.1       alc 				     ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
    653  1.1       alc 		totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
    654  1.1       alc 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    655  1.1       alc 				     ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
    656  1.1       alc 		return(AH_TRUE);
    657  1.1       alc 	} else {
    658  1.1       alc 		if (chan->channel == data[i].channelValue) {
    659  1.1       alc 			*maxPow = ar2425GetMaxPower(ah, &data[i]);
    660  1.1       alc 			*minPow = ar2425GetMinPower(ah, &data[i]);
    661  1.1       alc 			return(AH_TRUE);
    662  1.1       alc 		} else
    663  1.1       alc 			return(AH_FALSE);
    664  1.1       alc 	}
    665  1.1       alc }
    666  1.1       alc 
    667  1.1       alc /*
    668  1.1       alc  * Free memory for analog bank scratch buffers
    669  1.1       alc  */
    670  1.1       alc static void
    671  1.1       alc ar2425RfDetach(struct ath_hal *ah)
    672  1.1       alc {
    673  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    674  1.1       alc 
    675  1.1       alc 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    676  1.1       alc 	ath_hal_free(ahp->ah_rfHal);
    677  1.1       alc 	ahp->ah_rfHal = AH_NULL;
    678  1.1       alc }
    679  1.1       alc 
    680  1.1       alc /*
    681  1.1       alc  * Allocate memory for analog bank scratch buffers
    682  1.1       alc  * Scratch Buffer will be reinitialized every reset so no need to zero now
    683  1.1       alc  */
    684  1.1       alc static HAL_BOOL
    685  1.1       alc ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    686  1.1       alc {
    687  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    688  1.1       alc 	struct ar2425State *priv;
    689  1.1       alc 
    690  1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    691  1.1       alc 
    692  1.1       alc 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    693  1.1       alc 	priv = ath_hal_malloc(sizeof(struct ar2425State));
    694  1.1       alc 	if (priv == AH_NULL) {
    695  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    696  1.1       alc 		    "%s: cannot allocate private state\n", __func__);
    697  1.1       alc 		*status = HAL_ENOMEM;		/* XXX */
    698  1.1       alc 		return AH_FALSE;
    699  1.1       alc 	}
    700  1.1       alc 	priv->base.rfDetach		= ar2425RfDetach;
    701  1.1       alc 	priv->base.writeRegs		= ar2425WriteRegs;
    702  1.1       alc 	priv->base.getRfBank		= ar2425GetRfBank;
    703  1.1       alc 	priv->base.setChannel		= ar2425SetChannel;
    704  1.1       alc 	priv->base.setRfRegs		= ar2425SetRfRegs;
    705  1.1       alc 	priv->base.setPowerTable	= ar2425SetPowerTable;
    706  1.1       alc 	priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
    707  1.1       alc 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    708  1.1       alc 
    709  1.1       alc 	ahp->ah_pcdacTable = priv->pcdacTable;
    710  1.1       alc 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    711  1.1       alc 	ahp->ah_rfHal = &priv->base;
    712  1.1       alc 
    713  1.1       alc 	return AH_TRUE;
    714  1.1       alc }
    715  1.1       alc 
    716  1.1       alc static HAL_BOOL
    717  1.1       alc ar2425Probe(struct ath_hal *ah)
    718  1.1       alc {
    719  1.1       alc 	return IS_2425(ah) || IS_2417(ah);
    720  1.1       alc }
    721  1.1       alc AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
    722