Home | History | Annotate | Line # | Download | only in ar5212
ar2425.c revision 1.3.4.1
      1      1.1       alc /*
      2      1.1       alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3      1.1       alc  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4      1.1       alc  *
      5      1.1       alc  * Permission to use, copy, modify, and/or distribute this software for any
      6      1.1       alc  * purpose with or without fee is hereby granted, provided that the above
      7      1.1       alc  * copyright notice and this permission notice appear in all copies.
      8      1.1       alc  *
      9      1.1       alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10      1.1       alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11      1.1       alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12      1.1       alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13      1.1       alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14      1.1       alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15      1.1       alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16      1.1       alc  *
     17  1.3.4.1      yamt  * $Id: ar2425.c,v 1.3.4.1 2014/05/22 11:40:59 yamt Exp $
     18      1.1       alc  */
     19      1.1       alc #include "opt_ah.h"
     20      1.1       alc 
     21      1.1       alc #include "ah.h"
     22      1.1       alc #include "ah_internal.h"
     23      1.1       alc 
     24      1.1       alc #include "ar5212/ar5212.h"
     25      1.1       alc #include "ar5212/ar5212reg.h"
     26      1.1       alc #include "ar5212/ar5212phy.h"
     27      1.1       alc 
     28      1.1       alc #include "ah_eeprom_v3.h"
     29      1.1       alc 
     30      1.1       alc #define AH_5212_2425
     31      1.1       alc #define AH_5212_2417
     32      1.1       alc #include "ar5212/ar5212.ini"
     33      1.1       alc 
     34      1.1       alc #define	N(a)	(sizeof(a)/sizeof(a[0]))
     35      1.1       alc 
     36      1.1       alc struct ar2425State {
     37      1.1       alc 	RF_HAL_FUNCS	base;		/* public state, must be first */
     38      1.1       alc 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
     39      1.1       alc 
     40      1.1       alc 	uint32_t	Bank1Data[N(ar5212Bank1_2425)];
     41      1.1       alc 	uint32_t	Bank2Data[N(ar5212Bank2_2425)];
     42      1.1       alc 	uint32_t	Bank3Data[N(ar5212Bank3_2425)];
     43      1.1       alc 	uint32_t	Bank6Data[N(ar5212Bank6_2425)];	/* 2417 is same size */
     44      1.1       alc 	uint32_t	Bank7Data[N(ar5212Bank7_2425)];
     45      1.1       alc };
     46      1.1       alc #define	AR2425(ah)	((struct ar2425State *) AH5212(ah)->ah_rfHal)
     47      1.1       alc 
     48      1.1       alc extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     49      1.1       alc 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     50      1.1       alc 
     51      1.1       alc static void
     52      1.1       alc ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     53      1.1       alc 	int writes)
     54      1.1       alc {
     55      1.1       alc 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
     56      1.1       alc 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
     57      1.1       alc 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
     58      1.1       alc #if 0
     59      1.1       alc 	/*
     60      1.1       alc 	 * for SWAN similar to Condor
     61      1.1       alc 	 * Bit 0 enables link to go to L1 when MAC goes to sleep.
     62      1.1       alc 	 * Bit 3 enables the loop back the link down to reset.
     63      1.1       alc 	 */
     64      1.3  jmcneill 	if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
     65      1.1       alc 		OS_REG_WRITE(ah, AR_PCIE_PMC,
     66      1.1       alc 		    AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
     67      1.1       alc 	}
     68      1.1       alc 	/*
     69      1.1       alc 	 * for Standby issue in Swan/Condor.
     70      1.1       alc 	 * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
     71      1.1       alc 	 *	before last Training Sequence 2 (TS2)
     72      1.1       alc 	 * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
     73      1.1       alc 	 *	Power Reset along with PCI Reset
     74      1.1       alc 	 */
     75      1.1       alc 	OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
     76      1.1       alc #endif
     77      1.1       alc }
     78      1.1       alc 
     79      1.1       alc /*
     80      1.1       alc  * Take the MHz channel value and set the Channel value
     81      1.1       alc  *
     82      1.1       alc  * ASSUMES: Writes enabled to analog bus
     83      1.1       alc  */
     84      1.1       alc static HAL_BOOL
     85      1.1       alc ar2425SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     86      1.1       alc {
     87      1.1       alc 	uint32_t channelSel  = 0;
     88      1.1       alc 	uint32_t bModeSynth  = 0;
     89      1.1       alc 	uint32_t aModeRefSel = 0;
     90      1.1       alc 	uint32_t reg32       = 0;
     91      1.1       alc 	uint16_t freq;
     92      1.1       alc 
     93      1.1       alc 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     94      1.1       alc 
     95      1.1       alc 	if (chan->channel < 4800) {
     96      1.1       alc 		uint32_t txctl;
     97      1.1       alc 
     98      1.1       alc         channelSel = chan->channel - 2272;
     99      1.1       alc         channelSel = ath_hal_reverseBits(channelSel, 8);
    100      1.1       alc 
    101      1.1       alc 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    102      1.1       alc         if (chan->channel == 2484) {
    103      1.1       alc 			// Enable channel spreading for channel 14
    104      1.1       alc 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    105      1.1       alc 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    106      1.1       alc 		} else {
    107      1.1       alc 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    108      1.1       alc 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    109      1.1       alc 		}
    110      1.1       alc 
    111      1.1       alc 	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
    112      1.1       alc 		freq = chan->channel - 2; /* Align to even 5MHz raster */
    113      1.1       alc 		channelSel = ath_hal_reverseBits(
    114      1.1       alc 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
    115      1.1       alc             	aModeRefSel = ath_hal_reverseBits(0, 2);
    116      1.1       alc 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    117      1.1       alc 		channelSel = ath_hal_reverseBits(
    118      1.1       alc 			((chan->channel - 4800) / 20 << 2), 8);
    119      1.1       alc 		aModeRefSel = ath_hal_reverseBits(1, 2);
    120      1.1       alc 	} else if ((chan->channel % 10) == 0) {
    121      1.1       alc 		channelSel = ath_hal_reverseBits(
    122      1.1       alc 			((chan->channel - 4800) / 10 << 1), 8);
    123      1.1       alc 		aModeRefSel = ath_hal_reverseBits(1, 2);
    124      1.1       alc 	} else if ((chan->channel % 5) == 0) {
    125      1.1       alc 		channelSel = ath_hal_reverseBits(
    126      1.1       alc 			(chan->channel - 4800) / 5, 8);
    127      1.1       alc 		aModeRefSel = ath_hal_reverseBits(1, 2);
    128      1.1       alc 	} else {
    129      1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    130      1.1       alc 		    __func__, chan->channel);
    131      1.1       alc 		return AH_FALSE;
    132      1.1       alc 	}
    133      1.1       alc 
    134      1.1       alc 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    135      1.1       alc 			(1 << 12) | 0x1;
    136      1.1       alc 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    137      1.1       alc 
    138      1.1       alc 	reg32 >>= 8;
    139      1.1       alc 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    140      1.1       alc 
    141      1.1       alc 	AH_PRIVATE(ah)->ah_curchan = chan;
    142      1.1       alc 	return AH_TRUE;
    143      1.1       alc }
    144      1.1       alc 
    145      1.1       alc /*
    146      1.1       alc  * Reads EEPROM header info from device structure and programs
    147      1.1       alc  * all rf registers
    148      1.1       alc  *
    149      1.1       alc  * REQUIRES: Access to the analog rf device
    150      1.1       alc  */
    151      1.1       alc static HAL_BOOL
    152      1.1       alc ar2425SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    153      1.1       alc {
    154      1.1       alc #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    155      1.1       alc 	int i;								    \
    156      1.1       alc 	for (i = 0; i < N(ar5212Bank##_ix##_2425); i++)			    \
    157      1.1       alc 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
    158      1.1       alc } while (0)
    159      1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    160      1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    161      1.1       alc 	struct ar2425State *priv = AR2425(ah);
    162      1.1       alc 	uint16_t ob2GHz = 0, db2GHz = 0;
    163      1.1       alc 	int regWrites = 0;
    164      1.1       alc 
    165      1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    166      1.1       alc 	    "==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n",
    167      1.1       alc 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    168      1.1       alc 
    169      1.1       alc 	HALASSERT(priv);
    170      1.1       alc 
    171      1.1       alc 	/* Setup rf parameters */
    172      1.1       alc 	switch (chan->channelFlags & CHANNEL_ALL) {
    173      1.1       alc 	case CHANNEL_B:
    174      1.1       alc 		ob2GHz = ee->ee_obFor24;
    175      1.1       alc 		db2GHz = ee->ee_dbFor24;
    176      1.1       alc 		break;
    177      1.1       alc 	case CHANNEL_G:
    178      1.1       alc 	case CHANNEL_108G:
    179      1.1       alc 		ob2GHz = ee->ee_obFor24g;
    180      1.1       alc 		db2GHz = ee->ee_dbFor24g;
    181      1.1       alc 		break;
    182      1.1       alc 	default:
    183      1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    184      1.1       alc 			__func__, chan->channelFlags);
    185      1.1       alc 		return AH_FALSE;
    186      1.1       alc 	}
    187      1.1       alc 
    188      1.1       alc 	/* Bank 1 Write */
    189      1.1       alc 	RF_BANK_SETUP(priv, 1, 1);
    190      1.1       alc 
    191      1.1       alc 	/* Bank 2 Write */
    192      1.1       alc 	RF_BANK_SETUP(priv, 2, modesIndex);
    193      1.1       alc 
    194      1.1       alc 	/* Bank 3 Write */
    195      1.1       alc 	RF_BANK_SETUP(priv, 3, modesIndex);
    196      1.1       alc 
    197      1.1       alc 	/* Bank 6 Write */
    198      1.1       alc 	RF_BANK_SETUP(priv, 6, modesIndex);
    199      1.1       alc 
    200      1.1       alc         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
    201      1.1       alc         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
    202      1.1       alc 
    203      1.1       alc 	/* Bank 7 Setup */
    204      1.1       alc 	RF_BANK_SETUP(priv, 7, modesIndex);
    205      1.1       alc 
    206      1.1       alc 	/* Write Analog registers */
    207      1.1       alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
    208      1.1       alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
    209      1.1       alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
    210      1.1       alc 	if (IS_2417(ah)) {
    211      1.1       alc 		HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
    212      1.1       alc 		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
    213      1.1       alc 		    regWrites);
    214      1.1       alc 	} else
    215      1.1       alc 		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
    216      1.1       alc 		    regWrites);
    217      1.1       alc 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
    218      1.1       alc 
    219      1.1       alc 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    220      1.1       alc 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    221      1.1       alc 
    222      1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
    223      1.1       alc 	return AH_TRUE;
    224      1.1       alc #undef	RF_BANK_SETUP
    225      1.1       alc }
    226      1.1       alc 
    227      1.1       alc /*
    228      1.1       alc  * Return a reference to the requested RF Bank.
    229      1.1       alc  */
    230      1.1       alc static uint32_t *
    231      1.1       alc ar2425GetRfBank(struct ath_hal *ah, int bank)
    232      1.1       alc {
    233      1.1       alc 	struct ar2425State *priv = AR2425(ah);
    234      1.1       alc 
    235      1.1       alc 	HALASSERT(priv != AH_NULL);
    236      1.1       alc 	switch (bank) {
    237      1.1       alc 	case 1: return priv->Bank1Data;
    238      1.1       alc 	case 2: return priv->Bank2Data;
    239      1.1       alc 	case 3: return priv->Bank3Data;
    240      1.1       alc 	case 6: return priv->Bank6Data;
    241      1.1       alc 	case 7: return priv->Bank7Data;
    242      1.1       alc 	}
    243      1.1       alc 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    244      1.1       alc 	    __func__, bank);
    245      1.1       alc 	return AH_NULL;
    246      1.1       alc }
    247      1.1       alc 
    248      1.1       alc /*
    249      1.1       alc  * Return indices surrounding the value in sorted integer lists.
    250      1.1       alc  *
    251      1.1       alc  * NB: the input list is assumed to be sorted in ascending order
    252      1.1       alc  */
    253      1.1       alc static void
    254      1.1       alc GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    255      1.1       alc                           uint32_t *vlo, uint32_t *vhi)
    256      1.1       alc {
    257      1.1       alc 	int16_t target = v;
    258      1.1       alc 	const uint16_t *ep = lp+listSize;
    259      1.1       alc 	const uint16_t *tp;
    260      1.1       alc 
    261      1.1       alc 	/*
    262      1.1       alc 	 * Check first and last elements for out-of-bounds conditions.
    263      1.1       alc 	 */
    264      1.1       alc 	if (target < lp[0]) {
    265      1.1       alc 		*vlo = *vhi = 0;
    266      1.1       alc 		return;
    267      1.1       alc 	}
    268      1.1       alc 	if (target >= ep[-1]) {
    269      1.1       alc 		*vlo = *vhi = listSize - 1;
    270      1.1       alc 		return;
    271      1.1       alc 	}
    272      1.1       alc 
    273      1.1       alc 	/* look for value being near or between 2 values in list */
    274      1.1       alc 	for (tp = lp; tp < ep; tp++) {
    275      1.1       alc 		/*
    276      1.1       alc 		 * If value is close to the current value of the list
    277      1.1       alc 		 * then target is not between values, it is one of the values
    278      1.1       alc 		 */
    279      1.1       alc 		if (*tp == target) {
    280      1.1       alc 			*vlo = *vhi = tp - (const uint16_t *) lp;
    281      1.1       alc 			return;
    282      1.1       alc 		}
    283      1.1       alc 		/*
    284      1.1       alc 		 * Look for value being between current value and next value
    285      1.1       alc 		 * if so return these 2 values
    286      1.1       alc 		 */
    287      1.1       alc 		if (target < tp[1]) {
    288      1.1       alc 			*vlo = tp - (const uint16_t *) lp;
    289      1.1       alc 			*vhi = *vlo + 1;
    290      1.1       alc 			return;
    291      1.1       alc 		}
    292      1.1       alc 	}
    293      1.1       alc }
    294      1.1       alc 
    295      1.1       alc /*
    296      1.1       alc  * Fill the Vpdlist for indices Pmax-Pmin
    297      1.1       alc  */
    298      1.1       alc static HAL_BOOL
    299      1.1       alc ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    300      1.1       alc 		   const int16_t *pwrList, const uint16_t *VpdList,
    301      1.1       alc 		   uint16_t numIntercepts,
    302      1.1       alc 		   uint16_t retVpdList[][64])
    303      1.1       alc {
    304  1.3.4.1      yamt 	uint16_t ii, kk;
    305      1.1       alc 	int16_t currPwr = (int16_t)(2*Pmin);
    306      1.1       alc 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    307      1.2       mrg 	uint32_t  idxL = 0, idxR = 0;
    308      1.1       alc 
    309      1.1       alc 	ii = 0;
    310      1.1       alc 
    311      1.1       alc 	if (numIntercepts < 2)
    312      1.1       alc 		return AH_FALSE;
    313      1.1       alc 
    314      1.1       alc 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    315      1.1       alc 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
    316      1.1       alc 				   numIntercepts, &(idxL), &(idxR));
    317      1.1       alc 		if (idxR < 1)
    318      1.1       alc 			idxR = 1;			/* extrapolate below */
    319      1.1       alc 		if (idxL == (uint32_t)(numIntercepts - 1))
    320      1.1       alc 			idxL = numIntercepts - 2;	/* extrapolate above */
    321      1.1       alc 		if (pwrList[idxL] == pwrList[idxR])
    322      1.1       alc 			kk = VpdList[idxL];
    323      1.1       alc 		else
    324      1.1       alc 			kk = (uint16_t)
    325      1.1       alc 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    326      1.1       alc 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    327      1.1       alc 				 (pwrList[idxR] - pwrList[idxL]));
    328      1.1       alc 		retVpdList[pdGainIdx][ii] = kk;
    329      1.1       alc 		ii++;
    330      1.1       alc 		currPwr += 2;				/* half dB steps */
    331      1.1       alc 	}
    332      1.1       alc 
    333      1.1       alc 	return AH_TRUE;
    334      1.1       alc }
    335      1.1       alc 
    336      1.1       alc /*
    337      1.1       alc  * Returns interpolated or the scaled up interpolated value
    338      1.1       alc  */
    339      1.1       alc static int16_t
    340      1.1       alc interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    341      1.1       alc 	int16_t targetLeft, int16_t targetRight)
    342      1.1       alc {
    343      1.1       alc 	int16_t rv;
    344      1.1       alc 
    345      1.1       alc 	if (srcRight != srcLeft) {
    346      1.1       alc 		rv = ((target - srcLeft)*targetRight +
    347      1.1       alc 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    348      1.1       alc 	} else {
    349      1.1       alc 		rv = targetLeft;
    350      1.1       alc 	}
    351      1.1       alc 	return rv;
    352      1.1       alc }
    353      1.1       alc 
    354      1.1       alc /*
    355      1.1       alc  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    356      1.1       alc  * Called by ar2425SetPowerTable()
    357      1.1       alc  */
    358      1.1       alc static void
    359      1.1       alc ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    360      1.1       alc 		const RAW_DATA_STRUCT_2413 *pRawDataset,
    361      1.1       alc 		uint16_t pdGainOverlap_t2,
    362      1.1       alc 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    363      1.1       alc 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    364      1.1       alc {
    365      1.1       alc     /* Note the items statically allocated below are to reduce stack usage */
    366      1.1       alc 	uint32_t ii, jj, kk;
    367      1.1       alc 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    368      1.2       mrg 	uint32_t idxL = 0, idxR = 0;
    369      1.1       alc 	uint32_t numPdGainsUsed = 0;
    370      1.1       alc         static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    371      1.1       alc 	/* filled out Vpd table for all pdGains (chanL) */
    372      1.1       alc         static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    373      1.1       alc 	/* filled out Vpd table for all pdGains (chanR) */
    374      1.1       alc         static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    375      1.1       alc 	/* filled out Vpd table for all pdGains (interpolated) */
    376      1.1       alc 	/*
    377      1.1       alc 	 * If desired to support -ve power levels in future, just
    378      1.1       alc 	 * change pwr_I_0 to signed 5-bits.
    379      1.1       alc 	 */
    380      1.1       alc         static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    381      1.1       alc 	/* to accomodate -ve power levels later on. */
    382      1.1       alc         static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    383      1.1       alc 	/* to accomodate -ve power levels later on */
    384      1.1       alc 	uint16_t numVpd = 0;
    385      1.1       alc 	uint16_t Vpd_step;
    386      1.1       alc 	int16_t tmpVal ;
    387      1.1       alc 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    388      1.1       alc 
    389      1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
    390      1.1       alc 
    391      1.1       alc 	/* Get upper lower index */
    392      1.1       alc 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    393      1.1       alc 				 pRawDataset->numChannels, &(idxL), &(idxR));
    394      1.1       alc 
    395      1.1       alc 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    396      1.1       alc 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    397      1.1       alc 		/* work backwards 'cause highest pdGain for lowest power */
    398      1.1       alc 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    399      1.1       alc 		if (numVpd > 0) {
    400      1.1       alc 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    401      1.1       alc 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    402      1.1       alc 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    403      1.1       alc 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    404      1.1       alc 			}
    405      1.1       alc 			Pmin_t2[numPdGainsUsed] = (int16_t)
    406      1.1       alc 				(Pmin_t2[numPdGainsUsed] / 2);
    407      1.1       alc 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    408      1.1       alc 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    409      1.1       alc 				Pmax_t2[numPdGainsUsed] =
    410      1.1       alc 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    411      1.1       alc 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    412      1.1       alc 			ar2425FillVpdTable(
    413      1.1       alc 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    414      1.1       alc 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    415      1.1       alc 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    416      1.1       alc 					   );
    417      1.1       alc 			ar2425FillVpdTable(
    418      1.1       alc 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    419      1.1       alc 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    420      1.1       alc 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    421      1.1       alc 					   );
    422      1.1       alc 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    423      1.1       alc 				VpdTable_I[numPdGainsUsed][kk] =
    424      1.1       alc 					interpolate_signed(
    425      1.1       alc 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    426      1.1       alc 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    427      1.1       alc 			}
    428      1.1       alc 			/* fill VpdTable_I for this pdGain */
    429      1.1       alc 			numPdGainsUsed++;
    430      1.1       alc 		}
    431      1.1       alc 		/* if this pdGain is used */
    432      1.1       alc 	}
    433      1.1       alc 
    434      1.1       alc 	*pMinCalPower = Pmin_t2[0];
    435      1.1       alc 	kk = 0; /* index for the final table */
    436      1.1       alc 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    437      1.1       alc 		if (ii == (numPdGainsUsed - 1))
    438      1.1       alc 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    439      1.1       alc 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    440      1.1       alc 		else
    441      1.1       alc 			pPdGainBoundaries[ii] = (uint16_t)
    442      1.1       alc 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    443      1.1       alc 
    444      1.1       alc 		/* Find starting index for this pdGain */
    445      1.1       alc 		if (ii == 0)
    446      1.1       alc 			ss = 0; /* for the first pdGain, start from index 0 */
    447      1.1       alc 		else
    448      1.1       alc 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    449      1.1       alc 				pdGainOverlap_t2;
    450      1.1       alc 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    451      1.1       alc 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    452      1.1       alc 		/*
    453      1.1       alc 		 *-ve ss indicates need to extrapolate data below for this pdGain
    454      1.1       alc 		 */
    455      1.1       alc 		while (ss < 0) {
    456      1.1       alc 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    457      1.1       alc 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    458      1.1       alc 			ss++;
    459      1.1       alc 		}
    460      1.1       alc 
    461      1.1       alc 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    462      1.1       alc 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    463      1.1       alc 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    464      1.1       alc 
    465      1.1       alc 		while (ss < (int16_t)maxIndex)
    466      1.1       alc 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    467      1.1       alc 
    468      1.1       alc 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    469      1.1       alc 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    470      1.1       alc 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    471      1.1       alc 		/*
    472      1.1       alc 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    473      1.1       alc 		 * have to extrapolate
    474      1.1       alc 		 */
    475      1.1       alc 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    476      1.1       alc 			while(ss < (int16_t)tgtIndex) {
    477      1.1       alc 				tmpVal = (uint16_t)
    478      1.1       alc 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    479      1.1       alc 					 (ss-maxIndex)*Vpd_step);
    480      1.1       alc 				pPDADCValues[kk++] = (tmpVal > 127) ?
    481      1.1       alc 					127 : tmpVal;
    482      1.1       alc 				ss++;
    483      1.1       alc 			}
    484      1.1       alc 		}				/* extrapolated above */
    485      1.1       alc 	}					/* for all pdGainUsed */
    486      1.1       alc 
    487      1.1       alc 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    488      1.1       alc 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    489      1.1       alc 		ii++;
    490      1.1       alc 	}
    491      1.1       alc 	while (kk < 128) {
    492      1.1       alc 		pPDADCValues[kk] = pPDADCValues[kk-1];
    493      1.1       alc 		kk++;
    494      1.1       alc 	}
    495      1.1       alc 
    496      1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
    497      1.1       alc }
    498      1.1       alc 
    499      1.1       alc 
    500      1.1       alc /* Same as 2413 set power table */
    501      1.1       alc static HAL_BOOL
    502      1.1       alc ar2425SetPowerTable(struct ath_hal *ah,
    503      1.1       alc 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    504      1.1       alc 	uint16_t *rfXpdGain)
    505      1.1       alc {
    506      1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    507      1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    508      1.1       alc 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    509      1.1       alc 	uint16_t pdGainOverlap_t2;
    510      1.1       alc 	int16_t minCalPower2413_t2;
    511      1.1       alc 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    512      1.1       alc 	uint16_t gainBoundaries[4];
    513      1.1       alc 	uint32_t i, reg32, regoffset;
    514      1.1       alc 
    515      1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
    516      1.1       alc 	    __func__, chan->channel,chan->channelFlags);
    517      1.1       alc 
    518      1.1       alc 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    519      1.1       alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    520      1.1       alc 	else if (IS_CHAN_B(chan))
    521      1.1       alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    522      1.1       alc 	else {
    523      1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
    524      1.1       alc 		return AH_FALSE;
    525      1.1       alc 	}
    526      1.1       alc 
    527      1.1       alc 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    528      1.1       alc 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    529      1.1       alc 
    530      1.1       alc 	ar2425getGainBoundariesAndPdadcsForPowers(ah, chan->channel,
    531      1.1       alc 		pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
    532      1.1       alc 		rfXpdGain, pdadcValues);
    533      1.1       alc 
    534      1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    535      1.1       alc 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    536      1.1       alc 
    537      1.1       alc 	/*
    538      1.1       alc 	 * Note the pdadc table may not start at 0 dBm power, could be
    539      1.1       alc 	 * negative or greater than 0.  Need to offset the power
    540      1.1       alc 	 * values by the amount of minPower for griffin
    541      1.1       alc 	 */
    542      1.1       alc 	if (minCalPower2413_t2 != 0)
    543      1.1       alc 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
    544      1.1       alc 	else
    545      1.1       alc 		ahp->ah_txPowerIndexOffset = 0;
    546      1.1       alc 
    547      1.1       alc 	/* Finally, write the power values into the baseband power table */
    548      1.1       alc 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    549      1.1       alc 	for (i = 0; i < 32; i++) {
    550      1.1       alc 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    551      1.1       alc 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    552      1.1       alc 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    553      1.1       alc 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    554      1.1       alc 		OS_REG_WRITE(ah, regoffset, reg32);
    555      1.1       alc 		regoffset += 4;
    556      1.1       alc 	}
    557      1.1       alc 
    558      1.1       alc 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    559      1.1       alc 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    560      1.1       alc 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    561      1.1       alc 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    562      1.1       alc 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    563      1.1       alc 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    564      1.1       alc 
    565      1.1       alc 	return AH_TRUE;
    566      1.1       alc }
    567      1.1       alc 
    568      1.1       alc static int16_t
    569      1.1       alc ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    570      1.1       alc {
    571      1.1       alc 	uint32_t ii,jj;
    572      1.1       alc 	uint16_t Pmin=0,numVpd;
    573      1.1       alc 
    574      1.1       alc 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    575      1.1       alc 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    576      1.1       alc 		/* work backwards 'cause highest pdGain for lowest power */
    577      1.1       alc 		numVpd = data->pDataPerPDGain[jj].numVpd;
    578      1.1       alc 		if (numVpd > 0) {
    579      1.1       alc 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    580      1.1       alc 			return(Pmin);
    581      1.1       alc 		}
    582      1.1       alc 	}
    583      1.1       alc 	return(Pmin);
    584      1.1       alc }
    585      1.1       alc 
    586      1.1       alc static int16_t
    587      1.1       alc ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    588      1.1       alc {
    589      1.1       alc 	uint32_t ii;
    590      1.1       alc 	uint16_t Pmax=0,numVpd;
    591      1.1       alc 
    592      1.1       alc 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    593      1.1       alc 		/* work forwards cuase lowest pdGain for highest power */
    594      1.1       alc 		numVpd = data->pDataPerPDGain[ii].numVpd;
    595      1.1       alc 		if (numVpd > 0) {
    596      1.1       alc 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    597      1.1       alc 			return(Pmax);
    598      1.1       alc 		}
    599      1.1       alc 	}
    600      1.1       alc 	return(Pmax);
    601      1.1       alc }
    602      1.1       alc 
    603      1.1       alc static
    604      1.1       alc HAL_BOOL
    605      1.1       alc ar2425GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    606      1.1       alc 				     int16_t *maxPow, int16_t *minPow)
    607      1.1       alc {
    608      1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    609      1.1       alc 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    610      1.1       alc 	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
    611      1.1       alc 	uint16_t numChannels;
    612      1.1       alc 	int totalD,totalF, totalMin,last, i;
    613      1.1       alc 
    614      1.1       alc 	*maxPow = 0;
    615      1.1       alc 
    616      1.1       alc 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    617      1.1       alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    618      1.1       alc 	else if (IS_CHAN_B(chan))
    619      1.1       alc 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    620      1.1       alc 	else
    621      1.1       alc 		return(AH_FALSE);
    622      1.1       alc 
    623      1.1       alc 	numChannels = pRawDataset->numChannels;
    624      1.1       alc 	data = pRawDataset->pDataPerChannel;
    625      1.1       alc 
    626      1.1       alc 	/* Make sure the channel is in the range of the TP values
    627      1.1       alc 	 *  (freq piers)
    628      1.1       alc 	 */
    629      1.1       alc 	if (numChannels < 1)
    630      1.1       alc 		return(AH_FALSE);
    631      1.1       alc 
    632      1.1       alc 	if ((chan->channel < data[0].channelValue) ||
    633      1.1       alc 	    (chan->channel > data[numChannels-1].channelValue)) {
    634      1.1       alc 		if (chan->channel < data[0].channelValue) {
    635      1.1       alc 			*maxPow = ar2425GetMaxPower(ah, &data[0]);
    636      1.1       alc 			*minPow = ar2425GetMinPower(ah, &data[0]);
    637      1.1       alc 			return(AH_TRUE);
    638      1.1       alc 		} else {
    639      1.1       alc 			*maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
    640      1.1       alc 			*minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
    641      1.1       alc 			return(AH_TRUE);
    642      1.1       alc 		}
    643      1.1       alc 	}
    644      1.1       alc 
    645      1.1       alc 	/* Linearly interpolate the power value now */
    646      1.1       alc 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    647      1.1       alc 	     last = i++);
    648      1.1       alc 	totalD = data[i].channelValue - data[last].channelValue;
    649      1.1       alc 	if (totalD > 0) {
    650      1.1       alc 		totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
    651      1.1       alc 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    652      1.1       alc 				     ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
    653      1.1       alc 		totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
    654      1.1       alc 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    655      1.1       alc 				     ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
    656      1.1       alc 		return(AH_TRUE);
    657      1.1       alc 	} else {
    658      1.1       alc 		if (chan->channel == data[i].channelValue) {
    659      1.1       alc 			*maxPow = ar2425GetMaxPower(ah, &data[i]);
    660      1.1       alc 			*minPow = ar2425GetMinPower(ah, &data[i]);
    661      1.1       alc 			return(AH_TRUE);
    662      1.1       alc 		} else
    663      1.1       alc 			return(AH_FALSE);
    664      1.1       alc 	}
    665      1.1       alc }
    666      1.1       alc 
    667      1.1       alc /*
    668      1.1       alc  * Free memory for analog bank scratch buffers
    669      1.1       alc  */
    670      1.1       alc static void
    671      1.1       alc ar2425RfDetach(struct ath_hal *ah)
    672      1.1       alc {
    673      1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    674      1.1       alc 
    675      1.1       alc 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    676      1.1       alc 	ath_hal_free(ahp->ah_rfHal);
    677      1.1       alc 	ahp->ah_rfHal = AH_NULL;
    678      1.1       alc }
    679      1.1       alc 
    680      1.1       alc /*
    681      1.1       alc  * Allocate memory for analog bank scratch buffers
    682      1.1       alc  * Scratch Buffer will be reinitialized every reset so no need to zero now
    683      1.1       alc  */
    684      1.1       alc static HAL_BOOL
    685      1.1       alc ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    686      1.1       alc {
    687      1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    688      1.1       alc 	struct ar2425State *priv;
    689      1.1       alc 
    690      1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    691      1.1       alc 
    692      1.1       alc 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    693      1.1       alc 	priv = ath_hal_malloc(sizeof(struct ar2425State));
    694      1.1       alc 	if (priv == AH_NULL) {
    695      1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    696      1.1       alc 		    "%s: cannot allocate private state\n", __func__);
    697      1.1       alc 		*status = HAL_ENOMEM;		/* XXX */
    698      1.1       alc 		return AH_FALSE;
    699      1.1       alc 	}
    700      1.1       alc 	priv->base.rfDetach		= ar2425RfDetach;
    701      1.1       alc 	priv->base.writeRegs		= ar2425WriteRegs;
    702      1.1       alc 	priv->base.getRfBank		= ar2425GetRfBank;
    703      1.1       alc 	priv->base.setChannel		= ar2425SetChannel;
    704      1.1       alc 	priv->base.setRfRegs		= ar2425SetRfRegs;
    705      1.1       alc 	priv->base.setPowerTable	= ar2425SetPowerTable;
    706      1.1       alc 	priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
    707      1.1       alc 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    708      1.1       alc 
    709      1.1       alc 	ahp->ah_pcdacTable = priv->pcdacTable;
    710      1.1       alc 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    711      1.1       alc 	ahp->ah_rfHal = &priv->base;
    712      1.1       alc 
    713      1.1       alc 	return AH_TRUE;
    714      1.1       alc }
    715      1.1       alc 
    716      1.1       alc static HAL_BOOL
    717      1.1       alc ar2425Probe(struct ath_hal *ah)
    718      1.1       alc {
    719      1.1       alc 	return IS_2425(ah) || IS_2417(ah);
    720      1.1       alc }
    721      1.1       alc AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
    722