ar2425.c revision 1.4 1 1.1 alc /*
2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 1.1 alc * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 1.1 alc *
5 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any
6 1.1 alc * purpose with or without fee is hereby granted, provided that the above
7 1.1 alc * copyright notice and this permission notice appear in all copies.
8 1.1 alc *
9 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 1.1 alc *
17 1.4 martin * $Id: ar2425.c,v 1.4 2013/09/12 12:05:52 martin Exp $
18 1.1 alc */
19 1.1 alc #include "opt_ah.h"
20 1.1 alc
21 1.1 alc #include "ah.h"
22 1.1 alc #include "ah_internal.h"
23 1.1 alc
24 1.1 alc #include "ar5212/ar5212.h"
25 1.1 alc #include "ar5212/ar5212reg.h"
26 1.1 alc #include "ar5212/ar5212phy.h"
27 1.1 alc
28 1.1 alc #include "ah_eeprom_v3.h"
29 1.1 alc
30 1.1 alc #define AH_5212_2425
31 1.1 alc #define AH_5212_2417
32 1.1 alc #include "ar5212/ar5212.ini"
33 1.1 alc
34 1.1 alc #define N(a) (sizeof(a)/sizeof(a[0]))
35 1.1 alc
36 1.1 alc struct ar2425State {
37 1.1 alc RF_HAL_FUNCS base; /* public state, must be first */
38 1.1 alc uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
39 1.1 alc
40 1.1 alc uint32_t Bank1Data[N(ar5212Bank1_2425)];
41 1.1 alc uint32_t Bank2Data[N(ar5212Bank2_2425)];
42 1.1 alc uint32_t Bank3Data[N(ar5212Bank3_2425)];
43 1.1 alc uint32_t Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
44 1.1 alc uint32_t Bank7Data[N(ar5212Bank7_2425)];
45 1.1 alc };
46 1.1 alc #define AR2425(ah) ((struct ar2425State *) AH5212(ah)->ah_rfHal)
47 1.1 alc
48 1.1 alc extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
49 1.1 alc uint32_t numBits, uint32_t firstBit, uint32_t column);
50 1.1 alc
51 1.1 alc static void
52 1.1 alc ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
53 1.1 alc int writes)
54 1.1 alc {
55 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
56 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
57 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
58 1.1 alc #if 0
59 1.1 alc /*
60 1.1 alc * for SWAN similar to Condor
61 1.1 alc * Bit 0 enables link to go to L1 when MAC goes to sleep.
62 1.1 alc * Bit 3 enables the loop back the link down to reset.
63 1.1 alc */
64 1.3 jmcneill if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
65 1.1 alc OS_REG_WRITE(ah, AR_PCIE_PMC,
66 1.1 alc AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
67 1.1 alc }
68 1.1 alc /*
69 1.1 alc * for Standby issue in Swan/Condor.
70 1.1 alc * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
71 1.1 alc * before last Training Sequence 2 (TS2)
72 1.1 alc * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
73 1.1 alc * Power Reset along with PCI Reset
74 1.1 alc */
75 1.1 alc OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
76 1.1 alc #endif
77 1.1 alc }
78 1.1 alc
79 1.1 alc /*
80 1.1 alc * Take the MHz channel value and set the Channel value
81 1.1 alc *
82 1.1 alc * ASSUMES: Writes enabled to analog bus
83 1.1 alc */
84 1.1 alc static HAL_BOOL
85 1.1 alc ar2425SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
86 1.1 alc {
87 1.1 alc uint32_t channelSel = 0;
88 1.1 alc uint32_t bModeSynth = 0;
89 1.1 alc uint32_t aModeRefSel = 0;
90 1.1 alc uint32_t reg32 = 0;
91 1.1 alc uint16_t freq;
92 1.1 alc
93 1.1 alc OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
94 1.1 alc
95 1.1 alc if (chan->channel < 4800) {
96 1.1 alc uint32_t txctl;
97 1.1 alc
98 1.1 alc channelSel = chan->channel - 2272;
99 1.1 alc channelSel = ath_hal_reverseBits(channelSel, 8);
100 1.1 alc
101 1.1 alc txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
102 1.1 alc if (chan->channel == 2484) {
103 1.1 alc // Enable channel spreading for channel 14
104 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 1.1 alc txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
106 1.1 alc } else {
107 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
108 1.1 alc txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
109 1.1 alc }
110 1.1 alc
111 1.1 alc } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
112 1.1 alc freq = chan->channel - 2; /* Align to even 5MHz raster */
113 1.1 alc channelSel = ath_hal_reverseBits(
114 1.1 alc (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
115 1.1 alc aModeRefSel = ath_hal_reverseBits(0, 2);
116 1.1 alc } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
117 1.1 alc channelSel = ath_hal_reverseBits(
118 1.1 alc ((chan->channel - 4800) / 20 << 2), 8);
119 1.1 alc aModeRefSel = ath_hal_reverseBits(1, 2);
120 1.1 alc } else if ((chan->channel % 10) == 0) {
121 1.1 alc channelSel = ath_hal_reverseBits(
122 1.1 alc ((chan->channel - 4800) / 10 << 1), 8);
123 1.1 alc aModeRefSel = ath_hal_reverseBits(1, 2);
124 1.1 alc } else if ((chan->channel % 5) == 0) {
125 1.1 alc channelSel = ath_hal_reverseBits(
126 1.1 alc (chan->channel - 4800) / 5, 8);
127 1.1 alc aModeRefSel = ath_hal_reverseBits(1, 2);
128 1.1 alc } else {
129 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
130 1.1 alc __func__, chan->channel);
131 1.1 alc return AH_FALSE;
132 1.1 alc }
133 1.1 alc
134 1.1 alc reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
135 1.1 alc (1 << 12) | 0x1;
136 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
137 1.1 alc
138 1.1 alc reg32 >>= 8;
139 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
140 1.1 alc
141 1.1 alc AH_PRIVATE(ah)->ah_curchan = chan;
142 1.1 alc return AH_TRUE;
143 1.1 alc }
144 1.1 alc
145 1.1 alc /*
146 1.1 alc * Reads EEPROM header info from device structure and programs
147 1.1 alc * all rf registers
148 1.1 alc *
149 1.1 alc * REQUIRES: Access to the analog rf device
150 1.1 alc */
151 1.1 alc static HAL_BOOL
152 1.1 alc ar2425SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
153 1.1 alc {
154 1.1 alc #define RF_BANK_SETUP(_priv, _ix, _col) do { \
155 1.1 alc int i; \
156 1.1 alc for (i = 0; i < N(ar5212Bank##_ix##_2425); i++) \
157 1.1 alc (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
158 1.1 alc } while (0)
159 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
160 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
161 1.1 alc struct ar2425State *priv = AR2425(ah);
162 1.1 alc uint16_t ob2GHz = 0, db2GHz = 0;
163 1.1 alc int regWrites = 0;
164 1.1 alc
165 1.1 alc HALDEBUG(ah, HAL_DEBUG_RFPARAM,
166 1.1 alc "==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n",
167 1.1 alc __func__, chan->channel, chan->channelFlags, modesIndex);
168 1.1 alc
169 1.1 alc HALASSERT(priv);
170 1.1 alc
171 1.1 alc /* Setup rf parameters */
172 1.1 alc switch (chan->channelFlags & CHANNEL_ALL) {
173 1.1 alc case CHANNEL_B:
174 1.1 alc ob2GHz = ee->ee_obFor24;
175 1.1 alc db2GHz = ee->ee_dbFor24;
176 1.1 alc break;
177 1.1 alc case CHANNEL_G:
178 1.1 alc case CHANNEL_108G:
179 1.1 alc ob2GHz = ee->ee_obFor24g;
180 1.1 alc db2GHz = ee->ee_dbFor24g;
181 1.1 alc break;
182 1.1 alc default:
183 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
184 1.1 alc __func__, chan->channelFlags);
185 1.1 alc return AH_FALSE;
186 1.1 alc }
187 1.1 alc
188 1.1 alc /* Bank 1 Write */
189 1.1 alc RF_BANK_SETUP(priv, 1, 1);
190 1.1 alc
191 1.1 alc /* Bank 2 Write */
192 1.1 alc RF_BANK_SETUP(priv, 2, modesIndex);
193 1.1 alc
194 1.1 alc /* Bank 3 Write */
195 1.1 alc RF_BANK_SETUP(priv, 3, modesIndex);
196 1.1 alc
197 1.1 alc /* Bank 6 Write */
198 1.1 alc RF_BANK_SETUP(priv, 6, modesIndex);
199 1.1 alc
200 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
201 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
202 1.1 alc
203 1.1 alc /* Bank 7 Setup */
204 1.1 alc RF_BANK_SETUP(priv, 7, modesIndex);
205 1.1 alc
206 1.1 alc /* Write Analog registers */
207 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
208 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
209 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
210 1.1 alc if (IS_2417(ah)) {
211 1.1 alc HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
212 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
213 1.1 alc regWrites);
214 1.1 alc } else
215 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
216 1.1 alc regWrites);
217 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
218 1.1 alc
219 1.1 alc /* Now that we have reprogrammed rfgain value, clear the flag. */
220 1.1 alc ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
221 1.1 alc
222 1.1 alc HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
223 1.1 alc return AH_TRUE;
224 1.1 alc #undef RF_BANK_SETUP
225 1.1 alc }
226 1.1 alc
227 1.1 alc /*
228 1.1 alc * Return a reference to the requested RF Bank.
229 1.1 alc */
230 1.1 alc static uint32_t *
231 1.1 alc ar2425GetRfBank(struct ath_hal *ah, int bank)
232 1.1 alc {
233 1.1 alc struct ar2425State *priv = AR2425(ah);
234 1.1 alc
235 1.1 alc HALASSERT(priv != AH_NULL);
236 1.1 alc switch (bank) {
237 1.1 alc case 1: return priv->Bank1Data;
238 1.1 alc case 2: return priv->Bank2Data;
239 1.1 alc case 3: return priv->Bank3Data;
240 1.1 alc case 6: return priv->Bank6Data;
241 1.1 alc case 7: return priv->Bank7Data;
242 1.1 alc }
243 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
244 1.1 alc __func__, bank);
245 1.1 alc return AH_NULL;
246 1.1 alc }
247 1.1 alc
248 1.1 alc /*
249 1.1 alc * Return indices surrounding the value in sorted integer lists.
250 1.1 alc *
251 1.1 alc * NB: the input list is assumed to be sorted in ascending order
252 1.1 alc */
253 1.1 alc static void
254 1.1 alc GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
255 1.1 alc uint32_t *vlo, uint32_t *vhi)
256 1.1 alc {
257 1.1 alc int16_t target = v;
258 1.1 alc const uint16_t *ep = lp+listSize;
259 1.1 alc const uint16_t *tp;
260 1.1 alc
261 1.1 alc /*
262 1.1 alc * Check first and last elements for out-of-bounds conditions.
263 1.1 alc */
264 1.1 alc if (target < lp[0]) {
265 1.1 alc *vlo = *vhi = 0;
266 1.1 alc return;
267 1.1 alc }
268 1.1 alc if (target >= ep[-1]) {
269 1.1 alc *vlo = *vhi = listSize - 1;
270 1.1 alc return;
271 1.1 alc }
272 1.1 alc
273 1.1 alc /* look for value being near or between 2 values in list */
274 1.1 alc for (tp = lp; tp < ep; tp++) {
275 1.1 alc /*
276 1.1 alc * If value is close to the current value of the list
277 1.1 alc * then target is not between values, it is one of the values
278 1.1 alc */
279 1.1 alc if (*tp == target) {
280 1.1 alc *vlo = *vhi = tp - (const uint16_t *) lp;
281 1.1 alc return;
282 1.1 alc }
283 1.1 alc /*
284 1.1 alc * Look for value being between current value and next value
285 1.1 alc * if so return these 2 values
286 1.1 alc */
287 1.1 alc if (target < tp[1]) {
288 1.1 alc *vlo = tp - (const uint16_t *) lp;
289 1.1 alc *vhi = *vlo + 1;
290 1.1 alc return;
291 1.1 alc }
292 1.1 alc }
293 1.1 alc }
294 1.1 alc
295 1.1 alc /*
296 1.1 alc * Fill the Vpdlist for indices Pmax-Pmin
297 1.1 alc */
298 1.1 alc static HAL_BOOL
299 1.1 alc ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
300 1.1 alc const int16_t *pwrList, const uint16_t *VpdList,
301 1.1 alc uint16_t numIntercepts,
302 1.1 alc uint16_t retVpdList[][64])
303 1.1 alc {
304 1.4 martin uint16_t ii, kk;
305 1.1 alc int16_t currPwr = (int16_t)(2*Pmin);
306 1.1 alc /* since Pmin is pwr*2 and pwrList is 4*pwr */
307 1.2 mrg uint32_t idxL = 0, idxR = 0;
308 1.1 alc
309 1.1 alc ii = 0;
310 1.1 alc
311 1.1 alc if (numIntercepts < 2)
312 1.1 alc return AH_FALSE;
313 1.1 alc
314 1.1 alc while (ii <= (uint16_t)(Pmax - Pmin)) {
315 1.1 alc GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
316 1.1 alc numIntercepts, &(idxL), &(idxR));
317 1.1 alc if (idxR < 1)
318 1.1 alc idxR = 1; /* extrapolate below */
319 1.1 alc if (idxL == (uint32_t)(numIntercepts - 1))
320 1.1 alc idxL = numIntercepts - 2; /* extrapolate above */
321 1.1 alc if (pwrList[idxL] == pwrList[idxR])
322 1.1 alc kk = VpdList[idxL];
323 1.1 alc else
324 1.1 alc kk = (uint16_t)
325 1.1 alc (((currPwr - pwrList[idxL])*VpdList[idxR]+
326 1.1 alc (pwrList[idxR] - currPwr)*VpdList[idxL])/
327 1.1 alc (pwrList[idxR] - pwrList[idxL]));
328 1.1 alc retVpdList[pdGainIdx][ii] = kk;
329 1.1 alc ii++;
330 1.1 alc currPwr += 2; /* half dB steps */
331 1.1 alc }
332 1.1 alc
333 1.1 alc return AH_TRUE;
334 1.1 alc }
335 1.1 alc
336 1.1 alc /*
337 1.1 alc * Returns interpolated or the scaled up interpolated value
338 1.1 alc */
339 1.1 alc static int16_t
340 1.1 alc interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
341 1.1 alc int16_t targetLeft, int16_t targetRight)
342 1.1 alc {
343 1.1 alc int16_t rv;
344 1.1 alc
345 1.1 alc if (srcRight != srcLeft) {
346 1.1 alc rv = ((target - srcLeft)*targetRight +
347 1.1 alc (srcRight - target)*targetLeft) / (srcRight - srcLeft);
348 1.1 alc } else {
349 1.1 alc rv = targetLeft;
350 1.1 alc }
351 1.1 alc return rv;
352 1.1 alc }
353 1.1 alc
354 1.1 alc /*
355 1.1 alc * Uses the data points read from EEPROM to reconstruct the pdadc power table
356 1.1 alc * Called by ar2425SetPowerTable()
357 1.1 alc */
358 1.1 alc static void
359 1.1 alc ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
360 1.1 alc const RAW_DATA_STRUCT_2413 *pRawDataset,
361 1.1 alc uint16_t pdGainOverlap_t2,
362 1.1 alc int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
363 1.1 alc uint16_t pPdGainValues[], uint16_t pPDADCValues[])
364 1.1 alc {
365 1.1 alc /* Note the items statically allocated below are to reduce stack usage */
366 1.1 alc uint32_t ii, jj, kk;
367 1.1 alc int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
368 1.2 mrg uint32_t idxL = 0, idxR = 0;
369 1.1 alc uint32_t numPdGainsUsed = 0;
370 1.1 alc static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
371 1.1 alc /* filled out Vpd table for all pdGains (chanL) */
372 1.1 alc static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
373 1.1 alc /* filled out Vpd table for all pdGains (chanR) */
374 1.1 alc static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
375 1.1 alc /* filled out Vpd table for all pdGains (interpolated) */
376 1.1 alc /*
377 1.1 alc * If desired to support -ve power levels in future, just
378 1.1 alc * change pwr_I_0 to signed 5-bits.
379 1.1 alc */
380 1.1 alc static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
381 1.1 alc /* to accomodate -ve power levels later on. */
382 1.1 alc static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
383 1.1 alc /* to accomodate -ve power levels later on */
384 1.1 alc uint16_t numVpd = 0;
385 1.1 alc uint16_t Vpd_step;
386 1.1 alc int16_t tmpVal ;
387 1.1 alc uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
388 1.1 alc
389 1.1 alc HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
390 1.1 alc
391 1.1 alc /* Get upper lower index */
392 1.1 alc GetLowerUpperIndex(channel, pRawDataset->pChannels,
393 1.1 alc pRawDataset->numChannels, &(idxL), &(idxR));
394 1.1 alc
395 1.1 alc for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
396 1.1 alc jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
397 1.1 alc /* work backwards 'cause highest pdGain for lowest power */
398 1.1 alc numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
399 1.1 alc if (numVpd > 0) {
400 1.1 alc pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
401 1.1 alc Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
402 1.1 alc if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
403 1.1 alc Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
404 1.1 alc }
405 1.1 alc Pmin_t2[numPdGainsUsed] = (int16_t)
406 1.1 alc (Pmin_t2[numPdGainsUsed] / 2);
407 1.1 alc Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
408 1.1 alc if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
409 1.1 alc Pmax_t2[numPdGainsUsed] =
410 1.1 alc pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
411 1.1 alc Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
412 1.1 alc ar2425FillVpdTable(
413 1.1 alc numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
414 1.1 alc &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
415 1.1 alc &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
416 1.1 alc );
417 1.1 alc ar2425FillVpdTable(
418 1.1 alc numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
419 1.1 alc &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
420 1.1 alc &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
421 1.1 alc );
422 1.1 alc for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
423 1.1 alc VpdTable_I[numPdGainsUsed][kk] =
424 1.1 alc interpolate_signed(
425 1.1 alc channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
426 1.1 alc (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
427 1.1 alc }
428 1.1 alc /* fill VpdTable_I for this pdGain */
429 1.1 alc numPdGainsUsed++;
430 1.1 alc }
431 1.1 alc /* if this pdGain is used */
432 1.1 alc }
433 1.1 alc
434 1.1 alc *pMinCalPower = Pmin_t2[0];
435 1.1 alc kk = 0; /* index for the final table */
436 1.1 alc for (ii = 0; ii < numPdGainsUsed; ii++) {
437 1.1 alc if (ii == (numPdGainsUsed - 1))
438 1.1 alc pPdGainBoundaries[ii] = Pmax_t2[ii] +
439 1.1 alc PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
440 1.1 alc else
441 1.1 alc pPdGainBoundaries[ii] = (uint16_t)
442 1.1 alc ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
443 1.1 alc
444 1.1 alc /* Find starting index for this pdGain */
445 1.1 alc if (ii == 0)
446 1.1 alc ss = 0; /* for the first pdGain, start from index 0 */
447 1.1 alc else
448 1.1 alc ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
449 1.1 alc pdGainOverlap_t2;
450 1.1 alc Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
451 1.1 alc Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
452 1.1 alc /*
453 1.1 alc *-ve ss indicates need to extrapolate data below for this pdGain
454 1.1 alc */
455 1.1 alc while (ss < 0) {
456 1.1 alc tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
457 1.1 alc pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
458 1.1 alc ss++;
459 1.1 alc }
460 1.1 alc
461 1.1 alc sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
462 1.1 alc tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
463 1.1 alc maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
464 1.1 alc
465 1.1 alc while (ss < (int16_t)maxIndex)
466 1.1 alc pPDADCValues[kk++] = VpdTable_I[ii][ss++];
467 1.1 alc
468 1.1 alc Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
469 1.1 alc VpdTable_I[ii][sizeCurrVpdTable-2]);
470 1.1 alc Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
471 1.1 alc /*
472 1.1 alc * for last gain, pdGainBoundary == Pmax_t2, so will
473 1.1 alc * have to extrapolate
474 1.1 alc */
475 1.1 alc if (tgtIndex > maxIndex) { /* need to extrapolate above */
476 1.1 alc while(ss < (int16_t)tgtIndex) {
477 1.1 alc tmpVal = (uint16_t)
478 1.1 alc (VpdTable_I[ii][sizeCurrVpdTable-1] +
479 1.1 alc (ss-maxIndex)*Vpd_step);
480 1.1 alc pPDADCValues[kk++] = (tmpVal > 127) ?
481 1.1 alc 127 : tmpVal;
482 1.1 alc ss++;
483 1.1 alc }
484 1.1 alc } /* extrapolated above */
485 1.1 alc } /* for all pdGainUsed */
486 1.1 alc
487 1.1 alc while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
488 1.1 alc pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
489 1.1 alc ii++;
490 1.1 alc }
491 1.1 alc while (kk < 128) {
492 1.1 alc pPDADCValues[kk] = pPDADCValues[kk-1];
493 1.1 alc kk++;
494 1.1 alc }
495 1.1 alc
496 1.1 alc HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
497 1.1 alc }
498 1.1 alc
499 1.1 alc
500 1.1 alc /* Same as 2413 set power table */
501 1.1 alc static HAL_BOOL
502 1.1 alc ar2425SetPowerTable(struct ath_hal *ah,
503 1.1 alc int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
504 1.1 alc uint16_t *rfXpdGain)
505 1.1 alc {
506 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
507 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
508 1.1 alc const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
509 1.1 alc uint16_t pdGainOverlap_t2;
510 1.1 alc int16_t minCalPower2413_t2;
511 1.1 alc uint16_t *pdadcValues = ahp->ah_pcdacTable;
512 1.1 alc uint16_t gainBoundaries[4];
513 1.1 alc uint32_t i, reg32, regoffset;
514 1.1 alc
515 1.1 alc HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
516 1.1 alc __func__, chan->channel,chan->channelFlags);
517 1.1 alc
518 1.1 alc if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
519 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
520 1.1 alc else if (IS_CHAN_B(chan))
521 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
522 1.1 alc else {
523 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
524 1.1 alc return AH_FALSE;
525 1.1 alc }
526 1.1 alc
527 1.1 alc pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
528 1.1 alc AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
529 1.1 alc
530 1.1 alc ar2425getGainBoundariesAndPdadcsForPowers(ah, chan->channel,
531 1.1 alc pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
532 1.1 alc rfXpdGain, pdadcValues);
533 1.1 alc
534 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
535 1.1 alc (pRawDataset->pDataPerChannel[0].numPdGains - 1));
536 1.1 alc
537 1.1 alc /*
538 1.1 alc * Note the pdadc table may not start at 0 dBm power, could be
539 1.1 alc * negative or greater than 0. Need to offset the power
540 1.1 alc * values by the amount of minPower for griffin
541 1.1 alc */
542 1.1 alc if (minCalPower2413_t2 != 0)
543 1.1 alc ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
544 1.1 alc else
545 1.1 alc ahp->ah_txPowerIndexOffset = 0;
546 1.1 alc
547 1.1 alc /* Finally, write the power values into the baseband power table */
548 1.1 alc regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
549 1.1 alc for (i = 0; i < 32; i++) {
550 1.1 alc reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
551 1.1 alc ((pdadcValues[4*i + 1] & 0xFF) << 8) |
552 1.1 alc ((pdadcValues[4*i + 2] & 0xFF) << 16) |
553 1.1 alc ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
554 1.1 alc OS_REG_WRITE(ah, regoffset, reg32);
555 1.1 alc regoffset += 4;
556 1.1 alc }
557 1.1 alc
558 1.1 alc OS_REG_WRITE(ah, AR_PHY_TPCRG5,
559 1.1 alc SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
560 1.1 alc SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
561 1.1 alc SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
562 1.1 alc SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
563 1.1 alc SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
564 1.1 alc
565 1.1 alc return AH_TRUE;
566 1.1 alc }
567 1.1 alc
568 1.1 alc static int16_t
569 1.1 alc ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
570 1.1 alc {
571 1.1 alc uint32_t ii,jj;
572 1.1 alc uint16_t Pmin=0,numVpd;
573 1.1 alc
574 1.1 alc for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
575 1.1 alc jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
576 1.1 alc /* work backwards 'cause highest pdGain for lowest power */
577 1.1 alc numVpd = data->pDataPerPDGain[jj].numVpd;
578 1.1 alc if (numVpd > 0) {
579 1.1 alc Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
580 1.1 alc return(Pmin);
581 1.1 alc }
582 1.1 alc }
583 1.1 alc return(Pmin);
584 1.1 alc }
585 1.1 alc
586 1.1 alc static int16_t
587 1.1 alc ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
588 1.1 alc {
589 1.1 alc uint32_t ii;
590 1.1 alc uint16_t Pmax=0,numVpd;
591 1.1 alc
592 1.1 alc for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
593 1.1 alc /* work forwards cuase lowest pdGain for highest power */
594 1.1 alc numVpd = data->pDataPerPDGain[ii].numVpd;
595 1.1 alc if (numVpd > 0) {
596 1.1 alc Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
597 1.1 alc return(Pmax);
598 1.1 alc }
599 1.1 alc }
600 1.1 alc return(Pmax);
601 1.1 alc }
602 1.1 alc
603 1.1 alc static
604 1.1 alc HAL_BOOL
605 1.1 alc ar2425GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
606 1.1 alc int16_t *maxPow, int16_t *minPow)
607 1.1 alc {
608 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
609 1.1 alc const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
610 1.1 alc const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
611 1.1 alc uint16_t numChannels;
612 1.1 alc int totalD,totalF, totalMin,last, i;
613 1.1 alc
614 1.1 alc *maxPow = 0;
615 1.1 alc
616 1.1 alc if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
617 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
618 1.1 alc else if (IS_CHAN_B(chan))
619 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
620 1.1 alc else
621 1.1 alc return(AH_FALSE);
622 1.1 alc
623 1.1 alc numChannels = pRawDataset->numChannels;
624 1.1 alc data = pRawDataset->pDataPerChannel;
625 1.1 alc
626 1.1 alc /* Make sure the channel is in the range of the TP values
627 1.1 alc * (freq piers)
628 1.1 alc */
629 1.1 alc if (numChannels < 1)
630 1.1 alc return(AH_FALSE);
631 1.1 alc
632 1.1 alc if ((chan->channel < data[0].channelValue) ||
633 1.1 alc (chan->channel > data[numChannels-1].channelValue)) {
634 1.1 alc if (chan->channel < data[0].channelValue) {
635 1.1 alc *maxPow = ar2425GetMaxPower(ah, &data[0]);
636 1.1 alc *minPow = ar2425GetMinPower(ah, &data[0]);
637 1.1 alc return(AH_TRUE);
638 1.1 alc } else {
639 1.1 alc *maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
640 1.1 alc *minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
641 1.1 alc return(AH_TRUE);
642 1.1 alc }
643 1.1 alc }
644 1.1 alc
645 1.1 alc /* Linearly interpolate the power value now */
646 1.1 alc for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
647 1.1 alc last = i++);
648 1.1 alc totalD = data[i].channelValue - data[last].channelValue;
649 1.1 alc if (totalD > 0) {
650 1.1 alc totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
651 1.1 alc *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
652 1.1 alc ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
653 1.1 alc totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
654 1.1 alc *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
655 1.1 alc ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
656 1.1 alc return(AH_TRUE);
657 1.1 alc } else {
658 1.1 alc if (chan->channel == data[i].channelValue) {
659 1.1 alc *maxPow = ar2425GetMaxPower(ah, &data[i]);
660 1.1 alc *minPow = ar2425GetMinPower(ah, &data[i]);
661 1.1 alc return(AH_TRUE);
662 1.1 alc } else
663 1.1 alc return(AH_FALSE);
664 1.1 alc }
665 1.1 alc }
666 1.1 alc
667 1.1 alc /*
668 1.1 alc * Free memory for analog bank scratch buffers
669 1.1 alc */
670 1.1 alc static void
671 1.1 alc ar2425RfDetach(struct ath_hal *ah)
672 1.1 alc {
673 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
674 1.1 alc
675 1.1 alc HALASSERT(ahp->ah_rfHal != AH_NULL);
676 1.1 alc ath_hal_free(ahp->ah_rfHal);
677 1.1 alc ahp->ah_rfHal = AH_NULL;
678 1.1 alc }
679 1.1 alc
680 1.1 alc /*
681 1.1 alc * Allocate memory for analog bank scratch buffers
682 1.1 alc * Scratch Buffer will be reinitialized every reset so no need to zero now
683 1.1 alc */
684 1.1 alc static HAL_BOOL
685 1.1 alc ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
686 1.1 alc {
687 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
688 1.1 alc struct ar2425State *priv;
689 1.1 alc
690 1.1 alc HALASSERT(ah->ah_magic == AR5212_MAGIC);
691 1.1 alc
692 1.1 alc HALASSERT(ahp->ah_rfHal == AH_NULL);
693 1.1 alc priv = ath_hal_malloc(sizeof(struct ar2425State));
694 1.1 alc if (priv == AH_NULL) {
695 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
696 1.1 alc "%s: cannot allocate private state\n", __func__);
697 1.1 alc *status = HAL_ENOMEM; /* XXX */
698 1.1 alc return AH_FALSE;
699 1.1 alc }
700 1.1 alc priv->base.rfDetach = ar2425RfDetach;
701 1.1 alc priv->base.writeRegs = ar2425WriteRegs;
702 1.1 alc priv->base.getRfBank = ar2425GetRfBank;
703 1.1 alc priv->base.setChannel = ar2425SetChannel;
704 1.1 alc priv->base.setRfRegs = ar2425SetRfRegs;
705 1.1 alc priv->base.setPowerTable = ar2425SetPowerTable;
706 1.1 alc priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
707 1.1 alc priv->base.getNfAdjust = ar5212GetNfAdjust;
708 1.1 alc
709 1.1 alc ahp->ah_pcdacTable = priv->pcdacTable;
710 1.1 alc ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
711 1.1 alc ahp->ah_rfHal = &priv->base;
712 1.1 alc
713 1.1 alc return AH_TRUE;
714 1.1 alc }
715 1.1 alc
716 1.1 alc static HAL_BOOL
717 1.1 alc ar2425Probe(struct ath_hal *ah)
718 1.1 alc {
719 1.1 alc return IS_2425(ah) || IS_2417(ah);
720 1.1 alc }
721 1.1 alc AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
722