Home | History | Annotate | Line # | Download | only in ar5212
ar2425.c revision 1.3.14.1
      1 /*
      2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  *
      5  * Permission to use, copy, modify, and/or distribute this software for any
      6  * purpose with or without fee is hereby granted, provided that the above
      7  * copyright notice and this permission notice appear in all copies.
      8  *
      9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  *
     17  * $Id: ar2425.c,v 1.3.14.1 2014/08/20 00:04:25 tls Exp $
     18  */
     19 #include "opt_ah.h"
     20 
     21 #include "ah.h"
     22 #include "ah_internal.h"
     23 
     24 #include "ar5212/ar5212.h"
     25 #include "ar5212/ar5212reg.h"
     26 #include "ar5212/ar5212phy.h"
     27 
     28 #include "ah_eeprom_v3.h"
     29 
     30 #define AH_5212_2425
     31 #define AH_5212_2417
     32 #include "ar5212/ar5212.ini"
     33 
     34 #define	N(a)	(sizeof(a)/sizeof(a[0]))
     35 
     36 struct ar2425State {
     37 	RF_HAL_FUNCS	base;		/* public state, must be first */
     38 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
     39 
     40 	uint32_t	Bank1Data[N(ar5212Bank1_2425)];
     41 	uint32_t	Bank2Data[N(ar5212Bank2_2425)];
     42 	uint32_t	Bank3Data[N(ar5212Bank3_2425)];
     43 	uint32_t	Bank6Data[N(ar5212Bank6_2425)];	/* 2417 is same size */
     44 	uint32_t	Bank7Data[N(ar5212Bank7_2425)];
     45 };
     46 #define	AR2425(ah)	((struct ar2425State *) AH5212(ah)->ah_rfHal)
     47 
     48 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     49 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     50 
     51 static void
     52 ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     53 	int writes)
     54 {
     55 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
     56 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
     57 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
     58 #if 0
     59 	/*
     60 	 * for SWAN similar to Condor
     61 	 * Bit 0 enables link to go to L1 when MAC goes to sleep.
     62 	 * Bit 3 enables the loop back the link down to reset.
     63 	 */
     64 	if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
     65 		OS_REG_WRITE(ah, AR_PCIE_PMC,
     66 		    AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
     67 	}
     68 	/*
     69 	 * for Standby issue in Swan/Condor.
     70 	 * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
     71 	 *	before last Training Sequence 2 (TS2)
     72 	 * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
     73 	 *	Power Reset along with PCI Reset
     74 	 */
     75 	OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
     76 #endif
     77 }
     78 
     79 /*
     80  * Take the MHz channel value and set the Channel value
     81  *
     82  * ASSUMES: Writes enabled to analog bus
     83  */
     84 static HAL_BOOL
     85 ar2425SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     86 {
     87 	uint32_t channelSel  = 0;
     88 	uint32_t bModeSynth  = 0;
     89 	uint32_t aModeRefSel = 0;
     90 	uint32_t reg32       = 0;
     91 	uint16_t freq;
     92 
     93 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     94 
     95 	if (chan->channel < 4800) {
     96 		uint32_t txctl;
     97 
     98         channelSel = chan->channel - 2272;
     99         channelSel = ath_hal_reverseBits(channelSel, 8);
    100 
    101 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    102         if (chan->channel == 2484) {
    103 			// Enable channel spreading for channel 14
    104 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    105 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    106 		} else {
    107 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    108 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    109 		}
    110 
    111 	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
    112 		freq = chan->channel - 2; /* Align to even 5MHz raster */
    113 		channelSel = ath_hal_reverseBits(
    114 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
    115             	aModeRefSel = ath_hal_reverseBits(0, 2);
    116 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    117 		channelSel = ath_hal_reverseBits(
    118 			((chan->channel - 4800) / 20 << 2), 8);
    119 		aModeRefSel = ath_hal_reverseBits(1, 2);
    120 	} else if ((chan->channel % 10) == 0) {
    121 		channelSel = ath_hal_reverseBits(
    122 			((chan->channel - 4800) / 10 << 1), 8);
    123 		aModeRefSel = ath_hal_reverseBits(1, 2);
    124 	} else if ((chan->channel % 5) == 0) {
    125 		channelSel = ath_hal_reverseBits(
    126 			(chan->channel - 4800) / 5, 8);
    127 		aModeRefSel = ath_hal_reverseBits(1, 2);
    128 	} else {
    129 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    130 		    __func__, chan->channel);
    131 		return AH_FALSE;
    132 	}
    133 
    134 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    135 			(1 << 12) | 0x1;
    136 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    137 
    138 	reg32 >>= 8;
    139 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    140 
    141 	AH_PRIVATE(ah)->ah_curchan = chan;
    142 	return AH_TRUE;
    143 }
    144 
    145 /*
    146  * Reads EEPROM header info from device structure and programs
    147  * all rf registers
    148  *
    149  * REQUIRES: Access to the analog rf device
    150  */
    151 static HAL_BOOL
    152 ar2425SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    153 {
    154 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    155 	int i;								    \
    156 	for (i = 0; i < N(ar5212Bank##_ix##_2425); i++)			    \
    157 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
    158 } while (0)
    159 	struct ath_hal_5212 *ahp = AH5212(ah);
    160 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    161 	struct ar2425State *priv = AR2425(ah);
    162 	uint16_t ob2GHz = 0, db2GHz = 0;
    163 	int regWrites = 0;
    164 
    165 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    166 	    "==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n",
    167 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    168 
    169 	HALASSERT(priv);
    170 
    171 	/* Setup rf parameters */
    172 	switch (chan->channelFlags & CHANNEL_ALL) {
    173 	case CHANNEL_B:
    174 		ob2GHz = ee->ee_obFor24;
    175 		db2GHz = ee->ee_dbFor24;
    176 		break;
    177 	case CHANNEL_G:
    178 	case CHANNEL_108G:
    179 		ob2GHz = ee->ee_obFor24g;
    180 		db2GHz = ee->ee_dbFor24g;
    181 		break;
    182 	default:
    183 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    184 			__func__, chan->channelFlags);
    185 		return AH_FALSE;
    186 	}
    187 
    188 	/* Bank 1 Write */
    189 	RF_BANK_SETUP(priv, 1, 1);
    190 
    191 	/* Bank 2 Write */
    192 	RF_BANK_SETUP(priv, 2, modesIndex);
    193 
    194 	/* Bank 3 Write */
    195 	RF_BANK_SETUP(priv, 3, modesIndex);
    196 
    197 	/* Bank 6 Write */
    198 	RF_BANK_SETUP(priv, 6, modesIndex);
    199 
    200         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
    201         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
    202 
    203 	/* Bank 7 Setup */
    204 	RF_BANK_SETUP(priv, 7, modesIndex);
    205 
    206 	/* Write Analog registers */
    207 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
    208 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
    209 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
    210 	if (IS_2417(ah)) {
    211 		HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
    212 		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
    213 		    regWrites);
    214 	} else
    215 		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
    216 		    regWrites);
    217 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
    218 
    219 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    220 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    221 
    222 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
    223 	return AH_TRUE;
    224 #undef	RF_BANK_SETUP
    225 }
    226 
    227 /*
    228  * Return a reference to the requested RF Bank.
    229  */
    230 static uint32_t *
    231 ar2425GetRfBank(struct ath_hal *ah, int bank)
    232 {
    233 	struct ar2425State *priv = AR2425(ah);
    234 
    235 	HALASSERT(priv != AH_NULL);
    236 	switch (bank) {
    237 	case 1: return priv->Bank1Data;
    238 	case 2: return priv->Bank2Data;
    239 	case 3: return priv->Bank3Data;
    240 	case 6: return priv->Bank6Data;
    241 	case 7: return priv->Bank7Data;
    242 	}
    243 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    244 	    __func__, bank);
    245 	return AH_NULL;
    246 }
    247 
    248 /*
    249  * Return indices surrounding the value in sorted integer lists.
    250  *
    251  * NB: the input list is assumed to be sorted in ascending order
    252  */
    253 static void
    254 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    255                           uint32_t *vlo, uint32_t *vhi)
    256 {
    257 	int16_t target = v;
    258 	const uint16_t *ep = lp+listSize;
    259 	const uint16_t *tp;
    260 
    261 	/*
    262 	 * Check first and last elements for out-of-bounds conditions.
    263 	 */
    264 	if (target < lp[0]) {
    265 		*vlo = *vhi = 0;
    266 		return;
    267 	}
    268 	if (target >= ep[-1]) {
    269 		*vlo = *vhi = listSize - 1;
    270 		return;
    271 	}
    272 
    273 	/* look for value being near or between 2 values in list */
    274 	for (tp = lp; tp < ep; tp++) {
    275 		/*
    276 		 * If value is close to the current value of the list
    277 		 * then target is not between values, it is one of the values
    278 		 */
    279 		if (*tp == target) {
    280 			*vlo = *vhi = tp - (const uint16_t *) lp;
    281 			return;
    282 		}
    283 		/*
    284 		 * Look for value being between current value and next value
    285 		 * if so return these 2 values
    286 		 */
    287 		if (target < tp[1]) {
    288 			*vlo = tp - (const uint16_t *) lp;
    289 			*vhi = *vlo + 1;
    290 			return;
    291 		}
    292 	}
    293 }
    294 
    295 /*
    296  * Fill the Vpdlist for indices Pmax-Pmin
    297  */
    298 static HAL_BOOL
    299 ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    300 		   const int16_t *pwrList, const uint16_t *VpdList,
    301 		   uint16_t numIntercepts,
    302 		   uint16_t retVpdList[][64])
    303 {
    304 	uint16_t ii, kk;
    305 	int16_t currPwr = (int16_t)(2*Pmin);
    306 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    307 	uint32_t  idxL = 0, idxR = 0;
    308 
    309 	ii = 0;
    310 
    311 	if (numIntercepts < 2)
    312 		return AH_FALSE;
    313 
    314 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    315 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
    316 				   numIntercepts, &(idxL), &(idxR));
    317 		if (idxR < 1)
    318 			idxR = 1;			/* extrapolate below */
    319 		if (idxL == (uint32_t)(numIntercepts - 1))
    320 			idxL = numIntercepts - 2;	/* extrapolate above */
    321 		if (pwrList[idxL] == pwrList[idxR])
    322 			kk = VpdList[idxL];
    323 		else
    324 			kk = (uint16_t)
    325 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    326 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    327 				 (pwrList[idxR] - pwrList[idxL]));
    328 		retVpdList[pdGainIdx][ii] = kk;
    329 		ii++;
    330 		currPwr += 2;				/* half dB steps */
    331 	}
    332 
    333 	return AH_TRUE;
    334 }
    335 
    336 /*
    337  * Returns interpolated or the scaled up interpolated value
    338  */
    339 static int16_t
    340 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    341 	int16_t targetLeft, int16_t targetRight)
    342 {
    343 	int16_t rv;
    344 
    345 	if (srcRight != srcLeft) {
    346 		rv = ((target - srcLeft)*targetRight +
    347 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    348 	} else {
    349 		rv = targetLeft;
    350 	}
    351 	return rv;
    352 }
    353 
    354 /*
    355  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    356  * Called by ar2425SetPowerTable()
    357  */
    358 static void
    359 ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    360 		const RAW_DATA_STRUCT_2413 *pRawDataset,
    361 		uint16_t pdGainOverlap_t2,
    362 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    363 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    364 {
    365     /* Note the items statically allocated below are to reduce stack usage */
    366 	uint32_t ii, jj, kk;
    367 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    368 	uint32_t idxL = 0, idxR = 0;
    369 	uint32_t numPdGainsUsed = 0;
    370         static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    371 	/* filled out Vpd table for all pdGains (chanL) */
    372         static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    373 	/* filled out Vpd table for all pdGains (chanR) */
    374         static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
    375 	/* filled out Vpd table for all pdGains (interpolated) */
    376 	/*
    377 	 * If desired to support -ve power levels in future, just
    378 	 * change pwr_I_0 to signed 5-bits.
    379 	 */
    380         static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    381 	/* to accomodate -ve power levels later on. */
    382         static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    383 	/* to accomodate -ve power levels later on */
    384 	uint16_t numVpd = 0;
    385 	uint16_t Vpd_step;
    386 	int16_t tmpVal ;
    387 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    388 
    389 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
    390 
    391 	/* Get upper lower index */
    392 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    393 				 pRawDataset->numChannels, &(idxL), &(idxR));
    394 
    395 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    396 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    397 		/* work backwards 'cause highest pdGain for lowest power */
    398 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    399 		if (numVpd > 0) {
    400 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    401 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    402 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    403 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    404 			}
    405 			Pmin_t2[numPdGainsUsed] = (int16_t)
    406 				(Pmin_t2[numPdGainsUsed] / 2);
    407 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    408 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    409 				Pmax_t2[numPdGainsUsed] =
    410 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    411 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    412 			ar2425FillVpdTable(
    413 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    414 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    415 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    416 					   );
    417 			ar2425FillVpdTable(
    418 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    419 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    420 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    421 					   );
    422 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    423 				VpdTable_I[numPdGainsUsed][kk] =
    424 					interpolate_signed(
    425 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    426 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    427 			}
    428 			/* fill VpdTable_I for this pdGain */
    429 			numPdGainsUsed++;
    430 		}
    431 		/* if this pdGain is used */
    432 	}
    433 
    434 	*pMinCalPower = Pmin_t2[0];
    435 	kk = 0; /* index for the final table */
    436 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    437 		if (ii == (numPdGainsUsed - 1))
    438 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    439 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    440 		else
    441 			pPdGainBoundaries[ii] = (uint16_t)
    442 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    443 
    444 		/* Find starting index for this pdGain */
    445 		if (ii == 0)
    446 			ss = 0; /* for the first pdGain, start from index 0 */
    447 		else
    448 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    449 				pdGainOverlap_t2;
    450 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    451 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    452 		/*
    453 		 *-ve ss indicates need to extrapolate data below for this pdGain
    454 		 */
    455 		while (ss < 0) {
    456 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    457 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    458 			ss++;
    459 		}
    460 
    461 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    462 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    463 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    464 
    465 		while (ss < (int16_t)maxIndex)
    466 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    467 
    468 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    469 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    470 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    471 		/*
    472 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    473 		 * have to extrapolate
    474 		 */
    475 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    476 			while(ss < (int16_t)tgtIndex) {
    477 				tmpVal = (uint16_t)
    478 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    479 					 (ss-maxIndex)*Vpd_step);
    480 				pPDADCValues[kk++] = (tmpVal > 127) ?
    481 					127 : tmpVal;
    482 				ss++;
    483 			}
    484 		}				/* extrapolated above */
    485 	}					/* for all pdGainUsed */
    486 
    487 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    488 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    489 		ii++;
    490 	}
    491 	while (kk < 128) {
    492 		pPDADCValues[kk] = pPDADCValues[kk-1];
    493 		kk++;
    494 	}
    495 
    496 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
    497 }
    498 
    499 
    500 /* Same as 2413 set power table */
    501 static HAL_BOOL
    502 ar2425SetPowerTable(struct ath_hal *ah,
    503 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    504 	uint16_t *rfXpdGain)
    505 {
    506 	struct ath_hal_5212 *ahp = AH5212(ah);
    507 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    508 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    509 	uint16_t pdGainOverlap_t2;
    510 	int16_t minCalPower2413_t2;
    511 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    512 	uint16_t gainBoundaries[4];
    513 	uint32_t i, reg32, regoffset;
    514 
    515 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
    516 	    __func__, chan->channel,chan->channelFlags);
    517 
    518 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    519 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    520 	else if (IS_CHAN_B(chan))
    521 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    522 	else {
    523 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
    524 		return AH_FALSE;
    525 	}
    526 
    527 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    528 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    529 
    530 	ar2425getGainBoundariesAndPdadcsForPowers(ah, chan->channel,
    531 		pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
    532 		rfXpdGain, pdadcValues);
    533 
    534 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    535 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    536 
    537 	/*
    538 	 * Note the pdadc table may not start at 0 dBm power, could be
    539 	 * negative or greater than 0.  Need to offset the power
    540 	 * values by the amount of minPower for griffin
    541 	 */
    542 	if (minCalPower2413_t2 != 0)
    543 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
    544 	else
    545 		ahp->ah_txPowerIndexOffset = 0;
    546 
    547 	/* Finally, write the power values into the baseband power table */
    548 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    549 	for (i = 0; i < 32; i++) {
    550 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    551 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    552 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    553 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    554 		OS_REG_WRITE(ah, regoffset, reg32);
    555 		regoffset += 4;
    556 	}
    557 
    558 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    559 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    560 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    561 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    562 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    563 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    564 
    565 	return AH_TRUE;
    566 }
    567 
    568 static int16_t
    569 ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    570 {
    571 	uint32_t ii,jj;
    572 	uint16_t Pmin=0,numVpd;
    573 
    574 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    575 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    576 		/* work backwards 'cause highest pdGain for lowest power */
    577 		numVpd = data->pDataPerPDGain[jj].numVpd;
    578 		if (numVpd > 0) {
    579 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    580 			return(Pmin);
    581 		}
    582 	}
    583 	return(Pmin);
    584 }
    585 
    586 static int16_t
    587 ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    588 {
    589 	uint32_t ii;
    590 	uint16_t Pmax=0,numVpd;
    591 
    592 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    593 		/* work forwards cuase lowest pdGain for highest power */
    594 		numVpd = data->pDataPerPDGain[ii].numVpd;
    595 		if (numVpd > 0) {
    596 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    597 			return(Pmax);
    598 		}
    599 	}
    600 	return(Pmax);
    601 }
    602 
    603 static
    604 HAL_BOOL
    605 ar2425GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    606 				     int16_t *maxPow, int16_t *minPow)
    607 {
    608 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    609 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    610 	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
    611 	uint16_t numChannels;
    612 	int totalD,totalF, totalMin,last, i;
    613 
    614 	*maxPow = 0;
    615 
    616 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    617 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    618 	else if (IS_CHAN_B(chan))
    619 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    620 	else
    621 		return(AH_FALSE);
    622 
    623 	numChannels = pRawDataset->numChannels;
    624 	data = pRawDataset->pDataPerChannel;
    625 
    626 	/* Make sure the channel is in the range of the TP values
    627 	 *  (freq piers)
    628 	 */
    629 	if (numChannels < 1)
    630 		return(AH_FALSE);
    631 
    632 	if ((chan->channel < data[0].channelValue) ||
    633 	    (chan->channel > data[numChannels-1].channelValue)) {
    634 		if (chan->channel < data[0].channelValue) {
    635 			*maxPow = ar2425GetMaxPower(ah, &data[0]);
    636 			*minPow = ar2425GetMinPower(ah, &data[0]);
    637 			return(AH_TRUE);
    638 		} else {
    639 			*maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
    640 			*minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
    641 			return(AH_TRUE);
    642 		}
    643 	}
    644 
    645 	/* Linearly interpolate the power value now */
    646 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    647 	     last = i++);
    648 	totalD = data[i].channelValue - data[last].channelValue;
    649 	if (totalD > 0) {
    650 		totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
    651 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    652 				     ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
    653 		totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
    654 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    655 				     ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
    656 		return(AH_TRUE);
    657 	} else {
    658 		if (chan->channel == data[i].channelValue) {
    659 			*maxPow = ar2425GetMaxPower(ah, &data[i]);
    660 			*minPow = ar2425GetMinPower(ah, &data[i]);
    661 			return(AH_TRUE);
    662 		} else
    663 			return(AH_FALSE);
    664 	}
    665 }
    666 
    667 /*
    668  * Free memory for analog bank scratch buffers
    669  */
    670 static void
    671 ar2425RfDetach(struct ath_hal *ah)
    672 {
    673 	struct ath_hal_5212 *ahp = AH5212(ah);
    674 
    675 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    676 	ath_hal_free(ahp->ah_rfHal);
    677 	ahp->ah_rfHal = AH_NULL;
    678 }
    679 
    680 /*
    681  * Allocate memory for analog bank scratch buffers
    682  * Scratch Buffer will be reinitialized every reset so no need to zero now
    683  */
    684 static HAL_BOOL
    685 ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    686 {
    687 	struct ath_hal_5212 *ahp = AH5212(ah);
    688 	struct ar2425State *priv;
    689 
    690 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    691 
    692 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    693 	priv = ath_hal_malloc(sizeof(struct ar2425State));
    694 	if (priv == AH_NULL) {
    695 		HALDEBUG(ah, HAL_DEBUG_ANY,
    696 		    "%s: cannot allocate private state\n", __func__);
    697 		*status = HAL_ENOMEM;		/* XXX */
    698 		return AH_FALSE;
    699 	}
    700 	priv->base.rfDetach		= ar2425RfDetach;
    701 	priv->base.writeRegs		= ar2425WriteRegs;
    702 	priv->base.getRfBank		= ar2425GetRfBank;
    703 	priv->base.setChannel		= ar2425SetChannel;
    704 	priv->base.setRfRegs		= ar2425SetRfRegs;
    705 	priv->base.setPowerTable	= ar2425SetPowerTable;
    706 	priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
    707 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    708 
    709 	ahp->ah_pcdacTable = priv->pcdacTable;
    710 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    711 	ahp->ah_rfHal = &priv->base;
    712 
    713 	return AH_TRUE;
    714 }
    715 
    716 static HAL_BOOL
    717 ar2425Probe(struct ath_hal *ah)
    718 {
    719 	return IS_2425(ah) || IS_2417(ah);
    720 }
    721 AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
    722