ar5111.c revision 1.1 1 1.1 alc /*
2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 1.1 alc * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 1.1 alc *
5 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any
6 1.1 alc * purpose with or without fee is hereby granted, provided that the above
7 1.1 alc * copyright notice and this permission notice appear in all copies.
8 1.1 alc *
9 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 1.1 alc *
17 1.1 alc * $Id: ar5111.c,v 1.1 2008/12/11 04:46:37 alc Exp $
18 1.1 alc */
19 1.1 alc #include "opt_ah.h"
20 1.1 alc
21 1.1 alc #include "ah.h"
22 1.1 alc #include "ah_internal.h"
23 1.1 alc
24 1.1 alc #include "ah_eeprom_v3.h"
25 1.1 alc
26 1.1 alc #include "ar5212/ar5212.h"
27 1.1 alc #include "ar5212/ar5212reg.h"
28 1.1 alc #include "ar5212/ar5212phy.h"
29 1.1 alc
30 1.1 alc #define AH_5212_5111
31 1.1 alc #include "ar5212/ar5212.ini"
32 1.1 alc
33 1.1 alc #define N(a) (sizeof(a)/sizeof(a[0]))
34 1.1 alc
35 1.1 alc struct ar5111State {
36 1.1 alc RF_HAL_FUNCS base; /* public state, must be first */
37 1.1 alc uint16_t pcdacTable[PWR_TABLE_SIZE];
38 1.1 alc
39 1.1 alc uint32_t Bank0Data[N(ar5212Bank0_5111)];
40 1.1 alc uint32_t Bank1Data[N(ar5212Bank1_5111)];
41 1.1 alc uint32_t Bank2Data[N(ar5212Bank2_5111)];
42 1.1 alc uint32_t Bank3Data[N(ar5212Bank3_5111)];
43 1.1 alc uint32_t Bank6Data[N(ar5212Bank6_5111)];
44 1.1 alc uint32_t Bank7Data[N(ar5212Bank7_5111)];
45 1.1 alc };
46 1.1 alc #define AR5111(ah) ((struct ar5111State *) AH5212(ah)->ah_rfHal)
47 1.1 alc
48 1.1 alc static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
49 1.1 alc const PCDACS_EEPROM *pSrcStruct);
50 1.1 alc static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
51 1.1 alc const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
52 1.1 alc static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
53 1.1 alc const PCDACS_EEPROM *pSrcStruct,
54 1.1 alc uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
55 1.1 alc
56 1.1 alc extern void ar5212GetLowerUpperValues(uint16_t value,
57 1.1 alc const uint16_t *pList, uint16_t listSize,
58 1.1 alc uint16_t *pLowerValue, uint16_t *pUpperValue);
59 1.1 alc extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
60 1.1 alc uint32_t numBits, uint32_t firstBit, uint32_t column);
61 1.1 alc
62 1.1 alc static void
63 1.1 alc ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
64 1.1 alc int writes)
65 1.1 alc {
66 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
67 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
68 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
69 1.1 alc }
70 1.1 alc
71 1.1 alc /*
72 1.1 alc * Take the MHz channel value and set the Channel value
73 1.1 alc *
74 1.1 alc * ASSUMES: Writes enabled to analog bus
75 1.1 alc */
76 1.1 alc static HAL_BOOL
77 1.1 alc ar5111SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
78 1.1 alc {
79 1.1 alc #define CI_2GHZ_INDEX_CORRECTION 19
80 1.1 alc uint32_t refClk, reg32, data2111;
81 1.1 alc int16_t chan5111, chanIEEE;
82 1.1 alc
83 1.1 alc /*
84 1.1 alc * Structure to hold 11b tuning information for 5111/2111
85 1.1 alc * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
86 1.1 alc */
87 1.1 alc typedef struct {
88 1.1 alc uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
89 1.1 alc uint32_t channelSelect; /* P[7:4]S[3:0] bits */
90 1.1 alc uint16_t channel5111; /* 11a channel for 5111 */
91 1.1 alc } CHAN_INFO_2GHZ;
92 1.1 alc
93 1.1 alc const static CHAN_INFO_2GHZ chan2GHzData[] = {
94 1.1 alc { 1, 0x46, 96 }, /* 2312 -19 */
95 1.1 alc { 1, 0x46, 97 }, /* 2317 -18 */
96 1.1 alc { 1, 0x46, 98 }, /* 2322 -17 */
97 1.1 alc { 1, 0x46, 99 }, /* 2327 -16 */
98 1.1 alc { 1, 0x46, 100 }, /* 2332 -15 */
99 1.1 alc { 1, 0x46, 101 }, /* 2337 -14 */
100 1.1 alc { 1, 0x46, 102 }, /* 2342 -13 */
101 1.1 alc { 1, 0x46, 103 }, /* 2347 -12 */
102 1.1 alc { 1, 0x46, 104 }, /* 2352 -11 */
103 1.1 alc { 1, 0x46, 105 }, /* 2357 -10 */
104 1.1 alc { 1, 0x46, 106 }, /* 2362 -9 */
105 1.1 alc { 1, 0x46, 107 }, /* 2367 -8 */
106 1.1 alc { 1, 0x46, 108 }, /* 2372 -7 */
107 1.1 alc /* index -6 to 0 are pad to make this a nolookup table */
108 1.1 alc { 1, 0x46, 116 }, /* -6 */
109 1.1 alc { 1, 0x46, 116 }, /* -5 */
110 1.1 alc { 1, 0x46, 116 }, /* -4 */
111 1.1 alc { 1, 0x46, 116 }, /* -3 */
112 1.1 alc { 1, 0x46, 116 }, /* -2 */
113 1.1 alc { 1, 0x46, 116 }, /* -1 */
114 1.1 alc { 1, 0x46, 116 }, /* 0 */
115 1.1 alc { 1, 0x46, 116 }, /* 2412 1 */
116 1.1 alc { 1, 0x46, 117 }, /* 2417 2 */
117 1.1 alc { 1, 0x46, 118 }, /* 2422 3 */
118 1.1 alc { 1, 0x46, 119 }, /* 2427 4 */
119 1.1 alc { 1, 0x46, 120 }, /* 2432 5 */
120 1.1 alc { 1, 0x46, 121 }, /* 2437 6 */
121 1.1 alc { 1, 0x46, 122 }, /* 2442 7 */
122 1.1 alc { 1, 0x46, 123 }, /* 2447 8 */
123 1.1 alc { 1, 0x46, 124 }, /* 2452 9 */
124 1.1 alc { 1, 0x46, 125 }, /* 2457 10 */
125 1.1 alc { 1, 0x46, 126 }, /* 2462 11 */
126 1.1 alc { 1, 0x46, 127 }, /* 2467 12 */
127 1.1 alc { 1, 0x46, 128 }, /* 2472 13 */
128 1.1 alc { 1, 0x44, 124 }, /* 2484 14 */
129 1.1 alc { 1, 0x46, 136 }, /* 2512 15 */
130 1.1 alc { 1, 0x46, 140 }, /* 2532 16 */
131 1.1 alc { 1, 0x46, 144 }, /* 2552 17 */
132 1.1 alc { 1, 0x46, 148 }, /* 2572 18 */
133 1.1 alc { 1, 0x46, 152 }, /* 2592 19 */
134 1.1 alc { 1, 0x46, 156 }, /* 2612 20 */
135 1.1 alc { 1, 0x46, 160 }, /* 2632 21 */
136 1.1 alc { 1, 0x46, 164 }, /* 2652 22 */
137 1.1 alc { 1, 0x46, 168 }, /* 2672 23 */
138 1.1 alc { 1, 0x46, 172 }, /* 2692 24 */
139 1.1 alc { 1, 0x46, 176 }, /* 2712 25 */
140 1.1 alc { 1, 0x46, 180 } /* 2732 26 */
141 1.1 alc };
142 1.1 alc
143 1.1 alc OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
144 1.1 alc
145 1.1 alc chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
146 1.1 alc if (IS_CHAN_2GHZ(chan)) {
147 1.1 alc const CHAN_INFO_2GHZ* ci =
148 1.1 alc &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
149 1.1 alc uint32_t txctl;
150 1.1 alc
151 1.1 alc data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
152 1.1 alc << 5)
153 1.1 alc | (ci->refClkSel << 4);
154 1.1 alc chan5111 = ci->channel5111;
155 1.1 alc txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
156 1.1 alc if (chan->channel == 2484) {
157 1.1 alc /* Enable channel spreading for channel 14 */
158 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
159 1.1 alc txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
160 1.1 alc } else {
161 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
162 1.1 alc txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
163 1.1 alc }
164 1.1 alc } else {
165 1.1 alc chan5111 = chanIEEE; /* no conversion needed */
166 1.1 alc data2111 = 0;
167 1.1 alc }
168 1.1 alc
169 1.1 alc /* Rest of the code is common for 5 GHz and 2.4 GHz. */
170 1.1 alc if (chan5111 >= 145 || (chan5111 & 0x1)) {
171 1.1 alc reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
172 1.1 alc refClk = 1;
173 1.1 alc } else {
174 1.1 alc reg32 = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
175 1.1 alc refClk = 0;
176 1.1 alc }
177 1.1 alc
178 1.1 alc reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
179 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
180 1.1 alc reg32 >>= 8;
181 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
182 1.1 alc
183 1.1 alc AH_PRIVATE(ah)->ah_curchan = chan;
184 1.1 alc return AH_TRUE;
185 1.1 alc #undef CI_2GHZ_INDEX_CORRECTION
186 1.1 alc }
187 1.1 alc
188 1.1 alc /*
189 1.1 alc * Return a reference to the requested RF Bank.
190 1.1 alc */
191 1.1 alc static uint32_t *
192 1.1 alc ar5111GetRfBank(struct ath_hal *ah, int bank)
193 1.1 alc {
194 1.1 alc struct ar5111State *priv = AR5111(ah);
195 1.1 alc
196 1.1 alc HALASSERT(priv != AH_NULL);
197 1.1 alc switch (bank) {
198 1.1 alc case 0: return priv->Bank0Data;
199 1.1 alc case 1: return priv->Bank1Data;
200 1.1 alc case 2: return priv->Bank2Data;
201 1.1 alc case 3: return priv->Bank3Data;
202 1.1 alc case 6: return priv->Bank6Data;
203 1.1 alc case 7: return priv->Bank7Data;
204 1.1 alc }
205 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
206 1.1 alc __func__, bank);
207 1.1 alc return AH_NULL;
208 1.1 alc }
209 1.1 alc
210 1.1 alc /*
211 1.1 alc * Reads EEPROM header info from device structure and programs
212 1.1 alc * all rf registers
213 1.1 alc *
214 1.1 alc * REQUIRES: Access to the analog rf device
215 1.1 alc */
216 1.1 alc static HAL_BOOL
217 1.1 alc ar5111SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
218 1.1 alc uint16_t modesIndex, uint16_t *rfXpdGain)
219 1.1 alc {
220 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
221 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
222 1.1 alc uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
223 1.1 alc uint16_t tempOB, tempDB;
224 1.1 alc uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
225 1.1 alc int i, regWrites = 0;
226 1.1 alc
227 1.1 alc /* Setup rf parameters */
228 1.1 alc switch (chan->channelFlags & CHANNEL_ALL) {
229 1.1 alc case CHANNEL_A:
230 1.1 alc case CHANNEL_T:
231 1.1 alc if (4000 < chan->channel && chan->channel < 5260) {
232 1.1 alc tempOB = ee->ee_ob1;
233 1.1 alc tempDB = ee->ee_db1;
234 1.1 alc } else if (5260 <= chan->channel && chan->channel < 5500) {
235 1.1 alc tempOB = ee->ee_ob2;
236 1.1 alc tempDB = ee->ee_db2;
237 1.1 alc } else if (5500 <= chan->channel && chan->channel < 5725) {
238 1.1 alc tempOB = ee->ee_ob3;
239 1.1 alc tempDB = ee->ee_db3;
240 1.1 alc } else if (chan->channel >= 5725) {
241 1.1 alc tempOB = ee->ee_ob4;
242 1.1 alc tempDB = ee->ee_db4;
243 1.1 alc } else {
244 1.1 alc /* XXX when does this happen??? */
245 1.1 alc tempOB = tempDB = 0;
246 1.1 alc }
247 1.1 alc ob2GHz = db2GHz = 0;
248 1.1 alc
249 1.1 alc rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
250 1.1 alc rfPloSel = ee->ee_xpd[headerInfo11A];
251 1.1 alc rfPwdXpd = !ee->ee_xpd[headerInfo11A];
252 1.1 alc gainI = ee->ee_gainI[headerInfo11A];
253 1.1 alc break;
254 1.1 alc case CHANNEL_B:
255 1.1 alc tempOB = ee->ee_obFor24;
256 1.1 alc tempDB = ee->ee_dbFor24;
257 1.1 alc ob2GHz = ee->ee_ob2GHz[0];
258 1.1 alc db2GHz = ee->ee_db2GHz[0];
259 1.1 alc
260 1.1 alc rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
261 1.1 alc rfPloSel = ee->ee_xpd[headerInfo11B];
262 1.1 alc rfPwdXpd = !ee->ee_xpd[headerInfo11B];
263 1.1 alc gainI = ee->ee_gainI[headerInfo11B];
264 1.1 alc break;
265 1.1 alc case CHANNEL_G:
266 1.1 alc tempOB = ee->ee_obFor24g;
267 1.1 alc tempDB = ee->ee_dbFor24g;
268 1.1 alc ob2GHz = ee->ee_ob2GHz[1];
269 1.1 alc db2GHz = ee->ee_db2GHz[1];
270 1.1 alc
271 1.1 alc rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
272 1.1 alc rfPloSel = ee->ee_xpd[headerInfo11G];
273 1.1 alc rfPwdXpd = !ee->ee_xpd[headerInfo11G];
274 1.1 alc gainI = ee->ee_gainI[headerInfo11G];
275 1.1 alc break;
276 1.1 alc default:
277 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
278 1.1 alc __func__, chan->channelFlags);
279 1.1 alc return AH_FALSE;
280 1.1 alc }
281 1.1 alc
282 1.1 alc HALASSERT(1 <= tempOB && tempOB <= 5);
283 1.1 alc HALASSERT(1 <= tempDB && tempDB <= 5);
284 1.1 alc
285 1.1 alc /* Bank 0 Write */
286 1.1 alc for (i = 0; i < N(ar5212Bank0_5111); i++)
287 1.1 alc rfReg[i] = ar5212Bank0_5111[i][modesIndex];
288 1.1 alc if (IS_CHAN_2GHZ(chan)) {
289 1.1 alc ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
290 1.1 alc ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
291 1.1 alc }
292 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
293 1.1 alc
294 1.1 alc /* Bank 1 Write */
295 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
296 1.1 alc
297 1.1 alc /* Bank 2 Write */
298 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
299 1.1 alc
300 1.1 alc /* Bank 3 Write */
301 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
302 1.1 alc
303 1.1 alc /* Bank 6 Write */
304 1.1 alc for (i = 0; i < N(ar5212Bank6_5111); i++)
305 1.1 alc rfReg[i] = ar5212Bank6_5111[i][modesIndex];
306 1.1 alc if (IS_CHAN_A(chan)) { /* NB: CHANNEL_A | CHANNEL_T */
307 1.1 alc ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
308 1.1 alc ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
309 1.1 alc }
310 1.1 alc ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
311 1.1 alc ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
312 1.1 alc /* Set 5212 OB & DB */
313 1.1 alc ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
314 1.1 alc ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
315 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
316 1.1 alc
317 1.1 alc /* Bank 7 Write */
318 1.1 alc for (i = 0; i < N(ar5212Bank7_5111); i++)
319 1.1 alc rfReg[i] = ar5212Bank7_5111[i][modesIndex];
320 1.1 alc ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
321 1.1 alc ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
322 1.1 alc
323 1.1 alc if (IS_CHAN_QUARTER_RATE(chan) || IS_CHAN_HALF_RATE(chan)) {
324 1.1 alc uint32_t rfWaitI, rfWaitS, rfMaxTime;
325 1.1 alc
326 1.1 alc rfWaitS = 0x1f;
327 1.1 alc rfWaitI = (IS_CHAN_HALF_RATE(chan)) ? 0x10 : 0x1f;
328 1.1 alc rfMaxTime = 3;
329 1.1 alc ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
330 1.1 alc ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
331 1.1 alc ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
332 1.1 alc
333 1.1 alc }
334 1.1 alc
335 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
336 1.1 alc
337 1.1 alc /* Now that we have reprogrammed rfgain value, clear the flag. */
338 1.1 alc ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
339 1.1 alc
340 1.1 alc return AH_TRUE;
341 1.1 alc }
342 1.1 alc
343 1.1 alc /*
344 1.1 alc * Returns interpolated or the scaled up interpolated value
345 1.1 alc */
346 1.1 alc static uint16_t
347 1.1 alc interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
348 1.1 alc uint16_t targetLeft, uint16_t targetRight)
349 1.1 alc {
350 1.1 alc uint16_t rv;
351 1.1 alc int16_t lRatio;
352 1.1 alc
353 1.1 alc /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
354 1.1 alc if ((targetLeft * targetRight) == 0)
355 1.1 alc return 0;
356 1.1 alc
357 1.1 alc if (srcRight != srcLeft) {
358 1.1 alc /*
359 1.1 alc * Note the ratio always need to be scaled,
360 1.1 alc * since it will be a fraction.
361 1.1 alc */
362 1.1 alc lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
363 1.1 alc if (lRatio < 0) {
364 1.1 alc /* Return as Left target if value would be negative */
365 1.1 alc rv = targetLeft;
366 1.1 alc } else if (lRatio > EEP_SCALE) {
367 1.1 alc /* Return as Right target if Ratio is greater than 100% (SCALE) */
368 1.1 alc rv = targetRight;
369 1.1 alc } else {
370 1.1 alc rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
371 1.1 alc targetLeft) / EEP_SCALE;
372 1.1 alc }
373 1.1 alc } else {
374 1.1 alc rv = targetLeft;
375 1.1 alc }
376 1.1 alc return rv;
377 1.1 alc }
378 1.1 alc
379 1.1 alc /*
380 1.1 alc * Read the transmit power levels from the structures taken from EEPROM
381 1.1 alc * Interpolate read transmit power values for this channel
382 1.1 alc * Organize the transmit power values into a table for writing into the hardware
383 1.1 alc */
384 1.1 alc static HAL_BOOL
385 1.1 alc ar5111SetPowerTable(struct ath_hal *ah,
386 1.1 alc int16_t *pMinPower, int16_t *pMaxPower, HAL_CHANNEL_INTERNAL *chan,
387 1.1 alc uint16_t *rfXpdGain)
388 1.1 alc {
389 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
390 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
391 1.1 alc FULL_PCDAC_STRUCT pcdacStruct;
392 1.1 alc int i, j;
393 1.1 alc
394 1.1 alc uint16_t *pPcdacValues;
395 1.1 alc int16_t *pScaledUpDbm;
396 1.1 alc int16_t minScaledPwr;
397 1.1 alc int16_t maxScaledPwr;
398 1.1 alc int16_t pwr;
399 1.1 alc uint16_t pcdacMin = 0;
400 1.1 alc uint16_t pcdacMax = PCDAC_STOP;
401 1.1 alc uint16_t pcdacTableIndex;
402 1.1 alc uint16_t scaledPcdac;
403 1.1 alc PCDACS_EEPROM *pSrcStruct;
404 1.1 alc PCDACS_EEPROM eepromPcdacs;
405 1.1 alc
406 1.1 alc /* setup the pcdac struct to point to the correct info, based on mode */
407 1.1 alc switch (chan->channelFlags & CHANNEL_ALL) {
408 1.1 alc case CHANNEL_A:
409 1.1 alc case CHANNEL_T:
410 1.1 alc eepromPcdacs.numChannels = ee->ee_numChannels11a;
411 1.1 alc eepromPcdacs.pChannelList = ee->ee_channels11a;
412 1.1 alc eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
413 1.1 alc break;
414 1.1 alc case CHANNEL_B:
415 1.1 alc eepromPcdacs.numChannels = ee->ee_numChannels2_4;
416 1.1 alc eepromPcdacs.pChannelList = ee->ee_channels11b;
417 1.1 alc eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
418 1.1 alc break;
419 1.1 alc case CHANNEL_G:
420 1.1 alc case CHANNEL_108G:
421 1.1 alc eepromPcdacs.numChannels = ee->ee_numChannels2_4;
422 1.1 alc eepromPcdacs.pChannelList = ee->ee_channels11g;
423 1.1 alc eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
424 1.1 alc break;
425 1.1 alc default:
426 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
427 1.1 alc __func__, chan->channelFlags);
428 1.1 alc return AH_FALSE;
429 1.1 alc }
430 1.1 alc
431 1.1 alc pSrcStruct = &eepromPcdacs;
432 1.1 alc
433 1.1 alc OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
434 1.1 alc pPcdacValues = pcdacStruct.PcdacValues;
435 1.1 alc pScaledUpDbm = pcdacStruct.PwrValues;
436 1.1 alc
437 1.1 alc /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
438 1.1 alc for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
439 1.1 alc pPcdacValues[j] = i;
440 1.1 alc
441 1.1 alc pcdacStruct.numPcdacValues = j;
442 1.1 alc pcdacStruct.pcdacMin = PCDAC_START;
443 1.1 alc pcdacStruct.pcdacMax = PCDAC_STOP;
444 1.1 alc
445 1.1 alc /* Fill out the power values for this channel */
446 1.1 alc for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
447 1.1 alc pScaledUpDbm[j] = ar5212GetScaledPower(chan->channel,
448 1.1 alc pPcdacValues[j], pSrcStruct);
449 1.1 alc
450 1.1 alc /* Now scale the pcdac values to fit in the 64 entry power table */
451 1.1 alc minScaledPwr = pScaledUpDbm[0];
452 1.1 alc maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
453 1.1 alc
454 1.1 alc /* find minimum and make monotonic */
455 1.1 alc for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
456 1.1 alc if (minScaledPwr >= pScaledUpDbm[j]) {
457 1.1 alc minScaledPwr = pScaledUpDbm[j];
458 1.1 alc pcdacMin = j;
459 1.1 alc }
460 1.1 alc /*
461 1.1 alc * Make the full_hsh monotonically increasing otherwise
462 1.1 alc * interpolation algorithm will get fooled gotta start
463 1.1 alc * working from the top, hence i = 63 - j.
464 1.1 alc */
465 1.1 alc i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
466 1.1 alc if (i == 0)
467 1.1 alc break;
468 1.1 alc if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
469 1.1 alc /*
470 1.1 alc * It could be a glitch, so make the power for
471 1.1 alc * this pcdac the same as the power from the
472 1.1 alc * next highest pcdac.
473 1.1 alc */
474 1.1 alc pScaledUpDbm[i - 1] = pScaledUpDbm[i];
475 1.1 alc }
476 1.1 alc }
477 1.1 alc
478 1.1 alc for (j = 0; j < pcdacStruct.numPcdacValues; j++)
479 1.1 alc if (maxScaledPwr < pScaledUpDbm[j]) {
480 1.1 alc maxScaledPwr = pScaledUpDbm[j];
481 1.1 alc pcdacMax = j;
482 1.1 alc }
483 1.1 alc
484 1.1 alc /* Find the first power level with a pcdac */
485 1.1 alc pwr = (uint16_t)(PWR_STEP *
486 1.1 alc ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
487 1.1 alc
488 1.1 alc /* Write all the first pcdac entries based off the pcdacMin */
489 1.1 alc pcdacTableIndex = 0;
490 1.1 alc for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
491 1.1 alc HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
492 1.1 alc ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
493 1.1 alc }
494 1.1 alc
495 1.1 alc i = 0;
496 1.1 alc while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
497 1.1 alc pcdacTableIndex < PWR_TABLE_SIZE) {
498 1.1 alc pwr += PWR_STEP;
499 1.1 alc /* stop if dbM > max_power_possible */
500 1.1 alc while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
501 1.1 alc (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
502 1.1 alc i++;
503 1.1 alc /* scale by 2 and add 1 to enable round up or down as needed */
504 1.1 alc scaledPcdac = (uint16_t)(interpolate(pwr,
505 1.1 alc pScaledUpDbm[i], pScaledUpDbm[i + 1],
506 1.1 alc (uint16_t)(pPcdacValues[i] * 2),
507 1.1 alc (uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
508 1.1 alc
509 1.1 alc HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
510 1.1 alc ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
511 1.1 alc if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
512 1.1 alc ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
513 1.1 alc pcdacTableIndex++;
514 1.1 alc }
515 1.1 alc
516 1.1 alc /* Write all the last pcdac entries based off the last valid pcdac */
517 1.1 alc while (pcdacTableIndex < PWR_TABLE_SIZE) {
518 1.1 alc ahp->ah_pcdacTable[pcdacTableIndex] =
519 1.1 alc ahp->ah_pcdacTable[pcdacTableIndex - 1];
520 1.1 alc pcdacTableIndex++;
521 1.1 alc }
522 1.1 alc
523 1.1 alc /* No power table adjustment for 5111 */
524 1.1 alc ahp->ah_txPowerIndexOffset = 0;
525 1.1 alc
526 1.1 alc return AH_TRUE;
527 1.1 alc }
528 1.1 alc
529 1.1 alc /*
530 1.1 alc * Get or interpolate the pcdac value from the calibrated data.
531 1.1 alc */
532 1.1 alc static uint16_t
533 1.1 alc ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
534 1.1 alc const PCDACS_EEPROM *pSrcStruct)
535 1.1 alc {
536 1.1 alc uint16_t powerValue;
537 1.1 alc uint16_t lFreq, rFreq; /* left and right frequency values */
538 1.1 alc uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
539 1.1 alc uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
540 1.1 alc uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
541 1.1 alc uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
542 1.1 alc
543 1.1 alc if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
544 1.1 alc /* value was copied from srcStruct */
545 1.1 alc return powerValue;
546 1.1 alc }
547 1.1 alc
548 1.1 alc ar5212GetLowerUpperValues(channel,
549 1.1 alc pSrcStruct->pChannelList, pSrcStruct->numChannels,
550 1.1 alc &lFreq, &rFreq);
551 1.1 alc ar5212GetLowerUpperPcdacs(pcdacValue,
552 1.1 alc lFreq, pSrcStruct, &llPcdac, &ulPcdac);
553 1.1 alc ar5212GetLowerUpperPcdacs(pcdacValue,
554 1.1 alc rFreq, pSrcStruct, &lrPcdac, &urPcdac);
555 1.1 alc
556 1.1 alc /* get the power index for the pcdac value */
557 1.1 alc ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
558 1.1 alc ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
559 1.1 alc lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
560 1.1 alc
561 1.1 alc ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
562 1.1 alc ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
563 1.1 alc rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
564 1.1 alc
565 1.1 alc return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
566 1.1 alc }
567 1.1 alc
568 1.1 alc /*
569 1.1 alc * Find the value from the calibrated source data struct
570 1.1 alc */
571 1.1 alc static HAL_BOOL
572 1.1 alc ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
573 1.1 alc const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
574 1.1 alc {
575 1.1 alc const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
576 1.1 alc int i;
577 1.1 alc
578 1.1 alc for (i = 0; i < pSrcStruct->numChannels; i++ ) {
579 1.1 alc if (pChannelData->channelValue == channel) {
580 1.1 alc const uint16_t* pPcdac = pChannelData->PcdacValues;
581 1.1 alc int j;
582 1.1 alc
583 1.1 alc for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
584 1.1 alc if (*pPcdac == pcdacValue) {
585 1.1 alc *powerValue = pChannelData->PwrValues[j];
586 1.1 alc return AH_TRUE;
587 1.1 alc }
588 1.1 alc pPcdac++;
589 1.1 alc }
590 1.1 alc }
591 1.1 alc pChannelData++;
592 1.1 alc }
593 1.1 alc return AH_FALSE;
594 1.1 alc }
595 1.1 alc
596 1.1 alc /*
597 1.1 alc * Get the upper and lower pcdac given the channel and the pcdac
598 1.1 alc * used in the search
599 1.1 alc */
600 1.1 alc static void
601 1.1 alc ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
602 1.1 alc const PCDACS_EEPROM *pSrcStruct,
603 1.1 alc uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
604 1.1 alc {
605 1.1 alc const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
606 1.1 alc int i;
607 1.1 alc
608 1.1 alc /* Find the channel information */
609 1.1 alc for (i = 0; i < pSrcStruct->numChannels; i++) {
610 1.1 alc if (pChannelData->channelValue == channel)
611 1.1 alc break;
612 1.1 alc pChannelData++;
613 1.1 alc }
614 1.1 alc ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
615 1.1 alc pChannelData->numPcdacValues,
616 1.1 alc pLowerPcdac, pUpperPcdac);
617 1.1 alc }
618 1.1 alc
619 1.1 alc static HAL_BOOL
620 1.1 alc ar5111GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
621 1.1 alc int16_t *maxPow, int16_t *minPow)
622 1.1 alc {
623 1.1 alc /* XXX - Get 5111 power limits! */
624 1.1 alc /* NB: caller will cope */
625 1.1 alc return AH_FALSE;
626 1.1 alc }
627 1.1 alc
628 1.1 alc /*
629 1.1 alc * Adjust NF based on statistical values for 5GHz frequencies.
630 1.1 alc */
631 1.1 alc static int16_t
632 1.1 alc ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
633 1.1 alc {
634 1.1 alc static const struct {
635 1.1 alc uint16_t freqLow;
636 1.1 alc int16_t adjust;
637 1.1 alc } adjust5111[] = {
638 1.1 alc { 5790, 6 }, /* NB: ordered high -> low */
639 1.1 alc { 5730, 4 },
640 1.1 alc { 5690, 3 },
641 1.1 alc { 5660, 2 },
642 1.1 alc { 5610, 1 },
643 1.1 alc { 5530, 0 },
644 1.1 alc { 5450, 0 },
645 1.1 alc { 5379, 1 },
646 1.1 alc { 5209, 3 },
647 1.1 alc { 3000, 5 },
648 1.1 alc { 0, 0 },
649 1.1 alc };
650 1.1 alc int i;
651 1.1 alc
652 1.1 alc for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
653 1.1 alc ;
654 1.1 alc return adjust5111[i].adjust;
655 1.1 alc }
656 1.1 alc
657 1.1 alc /*
658 1.1 alc * Free memory for analog bank scratch buffers
659 1.1 alc */
660 1.1 alc static void
661 1.1 alc ar5111RfDetach(struct ath_hal *ah)
662 1.1 alc {
663 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
664 1.1 alc
665 1.1 alc HALASSERT(ahp->ah_rfHal != AH_NULL);
666 1.1 alc ath_hal_free(ahp->ah_rfHal);
667 1.1 alc ahp->ah_rfHal = AH_NULL;
668 1.1 alc }
669 1.1 alc
670 1.1 alc /*
671 1.1 alc * Allocate memory for analog bank scratch buffers
672 1.1 alc * Scratch Buffer will be reinitialized every reset so no need to zero now
673 1.1 alc */
674 1.1 alc static HAL_BOOL
675 1.1 alc ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
676 1.1 alc {
677 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
678 1.1 alc struct ar5111State *priv;
679 1.1 alc
680 1.1 alc HALASSERT(ah->ah_magic == AR5212_MAGIC);
681 1.1 alc
682 1.1 alc HALASSERT(ahp->ah_rfHal == AH_NULL);
683 1.1 alc priv = ath_hal_malloc(sizeof(struct ar5111State));
684 1.1 alc if (priv == AH_NULL) {
685 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
686 1.1 alc "%s: cannot allocate private state\n", __func__);
687 1.1 alc *status = HAL_ENOMEM; /* XXX */
688 1.1 alc return AH_FALSE;
689 1.1 alc }
690 1.1 alc priv->base.rfDetach = ar5111RfDetach;
691 1.1 alc priv->base.writeRegs = ar5111WriteRegs;
692 1.1 alc priv->base.getRfBank = ar5111GetRfBank;
693 1.1 alc priv->base.setChannel = ar5111SetChannel;
694 1.1 alc priv->base.setRfRegs = ar5111SetRfRegs;
695 1.1 alc priv->base.setPowerTable = ar5111SetPowerTable;
696 1.1 alc priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
697 1.1 alc priv->base.getNfAdjust = ar5111GetNfAdjust;
698 1.1 alc
699 1.1 alc ahp->ah_pcdacTable = priv->pcdacTable;
700 1.1 alc ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
701 1.1 alc ahp->ah_rfHal = &priv->base;
702 1.1 alc
703 1.1 alc return AH_TRUE;
704 1.1 alc }
705 1.1 alc
706 1.1 alc static HAL_BOOL
707 1.1 alc ar5111Probe(struct ath_hal *ah)
708 1.1 alc {
709 1.1 alc return IS_RAD5111(ah);
710 1.1 alc }
711 1.1 alc AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
712