1 1.1 alc /* 2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 3 1.1 alc * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 1.1 alc * 5 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any 6 1.1 alc * purpose with or without fee is hereby granted, provided that the above 7 1.1 alc * copyright notice and this permission notice appear in all copies. 8 1.1 alc * 9 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 1.1 alc * 17 1.1 alc * $Id: ar5112.c,v 1.1.1.1 2008/12/11 04:46:37 alc Exp $ 18 1.1 alc */ 19 1.1 alc #include "opt_ah.h" 20 1.1 alc 21 1.1 alc #include "ah.h" 22 1.1 alc #include "ah_internal.h" 23 1.1 alc 24 1.1 alc #include "ah_eeprom_v3.h" 25 1.1 alc 26 1.1 alc #include "ar5212/ar5212.h" 27 1.1 alc #include "ar5212/ar5212reg.h" 28 1.1 alc #include "ar5212/ar5212phy.h" 29 1.1 alc 30 1.1 alc #define AH_5212_5112 31 1.1 alc #include "ar5212/ar5212.ini" 32 1.1 alc 33 1.1 alc #define N(a) (sizeof(a)/sizeof(a[0])) 34 1.1 alc 35 1.1 alc struct ar5112State { 36 1.1 alc RF_HAL_FUNCS base; /* public state, must be first */ 37 1.1 alc uint16_t pcdacTable[PWR_TABLE_SIZE]; 38 1.1 alc 39 1.1 alc uint32_t Bank1Data[N(ar5212Bank1_5112)]; 40 1.1 alc uint32_t Bank2Data[N(ar5212Bank2_5112)]; 41 1.1 alc uint32_t Bank3Data[N(ar5212Bank3_5112)]; 42 1.1 alc uint32_t Bank6Data[N(ar5212Bank6_5112)]; 43 1.1 alc uint32_t Bank7Data[N(ar5212Bank7_5112)]; 44 1.1 alc }; 45 1.1 alc #define AR5112(ah) ((struct ar5112State *) AH5212(ah)->ah_rfHal) 46 1.1 alc 47 1.1 alc static void ar5212GetLowerUpperIndex(uint16_t v, 48 1.1 alc uint16_t *lp, uint16_t listSize, 49 1.1 alc uint32_t *vlo, uint32_t *vhi); 50 1.1 alc static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, 51 1.1 alc int16_t *power, int16_t maxPower, int16_t *retVals); 52 1.1 alc static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, 53 1.1 alc uint16_t retVals[]); 54 1.1 alc static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4, 55 1.1 alc int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid); 56 1.1 alc static int16_t interpolate_signed(uint16_t target, 57 1.1 alc uint16_t srcLeft, uint16_t srcRight, 58 1.1 alc int16_t targetLeft, int16_t targetRight); 59 1.1 alc 60 1.1 alc extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 61 1.1 alc uint32_t numBits, uint32_t firstBit, uint32_t column); 62 1.1 alc 63 1.1 alc static void 64 1.1 alc ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 65 1.1 alc int writes) 66 1.1 alc { 67 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes); 68 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes); 69 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes); 70 1.1 alc } 71 1.1 alc 72 1.1 alc /* 73 1.1 alc * Take the MHz channel value and set the Channel value 74 1.1 alc * 75 1.1 alc * ASSUMES: Writes enabled to analog bus 76 1.1 alc */ 77 1.1 alc static HAL_BOOL 78 1.1 alc ar5112SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) 79 1.1 alc { 80 1.1 alc uint32_t channelSel = 0; 81 1.1 alc uint32_t bModeSynth = 0; 82 1.1 alc uint32_t aModeRefSel = 0; 83 1.1 alc uint32_t reg32 = 0; 84 1.1 alc uint16_t freq; 85 1.1 alc 86 1.1 alc OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); 87 1.1 alc 88 1.1 alc if (chan->channel < 4800) { 89 1.1 alc uint32_t txctl; 90 1.1 alc 91 1.1 alc if (((chan->channel - 2192) % 5) == 0) { 92 1.1 alc channelSel = ((chan->channel - 672) * 2 - 3040)/10; 93 1.1 alc bModeSynth = 0; 94 1.1 alc } else if (((chan->channel - 2224) % 5) == 0) { 95 1.1 alc channelSel = ((chan->channel - 704) * 2 - 3040) / 10; 96 1.1 alc bModeSynth = 1; 97 1.1 alc } else { 98 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 99 1.1 alc "%s: invalid channel %u MHz\n", 100 1.1 alc __func__, chan->channel); 101 1.1 alc return AH_FALSE; 102 1.1 alc } 103 1.1 alc 104 1.1 alc channelSel = (channelSel << 2) & 0xff; 105 1.1 alc channelSel = ath_hal_reverseBits(channelSel, 8); 106 1.1 alc 107 1.1 alc txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 108 1.1 alc if (chan->channel == 2484) { 109 1.1 alc /* Enable channel spreading for channel 14 */ 110 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 111 1.1 alc txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 112 1.1 alc } else { 113 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 114 1.1 alc txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 115 1.1 alc } 116 1.1 alc } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) { 117 1.1 alc freq = chan->channel - 2; /* Align to even 5MHz raster */ 118 1.1 alc channelSel = ath_hal_reverseBits( 119 1.1 alc (uint32_t)(((freq - 4800)*10)/25 + 1), 8); 120 1.1 alc aModeRefSel = ath_hal_reverseBits(0, 2); 121 1.1 alc } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { 122 1.1 alc channelSel = ath_hal_reverseBits( 123 1.1 alc ((chan->channel - 4800) / 20 << 2), 8); 124 1.1 alc aModeRefSel = ath_hal_reverseBits(3, 2); 125 1.1 alc } else if ((chan->channel % 10) == 0) { 126 1.1 alc channelSel = ath_hal_reverseBits( 127 1.1 alc ((chan->channel - 4800) / 10 << 1), 8); 128 1.1 alc aModeRefSel = ath_hal_reverseBits(2, 2); 129 1.1 alc } else if ((chan->channel % 5) == 0) { 130 1.1 alc channelSel = ath_hal_reverseBits( 131 1.1 alc (chan->channel - 4800) / 5, 8); 132 1.1 alc aModeRefSel = ath_hal_reverseBits(1, 2); 133 1.1 alc } else { 134 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 135 1.1 alc __func__, chan->channel); 136 1.1 alc return AH_FALSE; 137 1.1 alc } 138 1.1 alc 139 1.1 alc reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 140 1.1 alc (1 << 12) | 0x1; 141 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 142 1.1 alc 143 1.1 alc reg32 >>= 8; 144 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 145 1.1 alc 146 1.1 alc AH_PRIVATE(ah)->ah_curchan = chan; 147 1.1 alc return AH_TRUE; 148 1.1 alc } 149 1.1 alc 150 1.1 alc /* 151 1.1 alc * Return a reference to the requested RF Bank. 152 1.1 alc */ 153 1.1 alc static uint32_t * 154 1.1 alc ar5112GetRfBank(struct ath_hal *ah, int bank) 155 1.1 alc { 156 1.1 alc struct ar5112State *priv = AR5112(ah); 157 1.1 alc 158 1.1 alc HALASSERT(priv != AH_NULL); 159 1.1 alc switch (bank) { 160 1.1 alc case 1: return priv->Bank1Data; 161 1.1 alc case 2: return priv->Bank2Data; 162 1.1 alc case 3: return priv->Bank3Data; 163 1.1 alc case 6: return priv->Bank6Data; 164 1.1 alc case 7: return priv->Bank7Data; 165 1.1 alc } 166 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 167 1.1 alc __func__, bank); 168 1.1 alc return AH_NULL; 169 1.1 alc } 170 1.1 alc 171 1.1 alc /* 172 1.1 alc * Reads EEPROM header info from device structure and programs 173 1.1 alc * all rf registers 174 1.1 alc * 175 1.1 alc * REQUIRES: Access to the analog rf device 176 1.1 alc */ 177 1.1 alc static HAL_BOOL 178 1.1 alc ar5112SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, 179 1.1 alc uint16_t modesIndex, uint16_t *rfXpdGain) 180 1.1 alc { 181 1.1 alc #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 182 1.1 alc int i; \ 183 1.1 alc for (i = 0; i < N(ar5212Bank##_ix##_5112); i++) \ 184 1.1 alc (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\ 185 1.1 alc } while (0) 186 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 187 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 188 1.1 alc uint16_t rfXpdSel, gainI; 189 1.1 alc uint16_t ob5GHz = 0, db5GHz = 0; 190 1.1 alc uint16_t ob2GHz = 0, db2GHz = 0; 191 1.1 alc struct ar5112State *priv = AR5112(ah); 192 1.1 alc GAIN_VALUES *gv = &ahp->ah_gainValues; 193 1.1 alc int regWrites = 0; 194 1.1 alc 195 1.1 alc HALASSERT(priv); 196 1.1 alc 197 1.1 alc /* Setup rf parameters */ 198 1.1 alc switch (chan->channelFlags & CHANNEL_ALL) { 199 1.1 alc case CHANNEL_A: 200 1.1 alc case CHANNEL_T: 201 1.1 alc if (chan->channel > 4000 && chan->channel < 5260) { 202 1.1 alc ob5GHz = ee->ee_ob1; 203 1.1 alc db5GHz = ee->ee_db1; 204 1.1 alc } else if (chan->channel >= 5260 && chan->channel < 5500) { 205 1.1 alc ob5GHz = ee->ee_ob2; 206 1.1 alc db5GHz = ee->ee_db2; 207 1.1 alc } else if (chan->channel >= 5500 && chan->channel < 5725) { 208 1.1 alc ob5GHz = ee->ee_ob3; 209 1.1 alc db5GHz = ee->ee_db3; 210 1.1 alc } else if (chan->channel >= 5725) { 211 1.1 alc ob5GHz = ee->ee_ob4; 212 1.1 alc db5GHz = ee->ee_db4; 213 1.1 alc } else { 214 1.1 alc /* XXX else */ 215 1.1 alc } 216 1.1 alc rfXpdSel = ee->ee_xpd[headerInfo11A]; 217 1.1 alc gainI = ee->ee_gainI[headerInfo11A]; 218 1.1 alc break; 219 1.1 alc case CHANNEL_B: 220 1.1 alc ob2GHz = ee->ee_ob2GHz[0]; 221 1.1 alc db2GHz = ee->ee_db2GHz[0]; 222 1.1 alc rfXpdSel = ee->ee_xpd[headerInfo11B]; 223 1.1 alc gainI = ee->ee_gainI[headerInfo11B]; 224 1.1 alc break; 225 1.1 alc case CHANNEL_G: 226 1.1 alc case CHANNEL_108G: 227 1.1 alc ob2GHz = ee->ee_ob2GHz[1]; 228 1.1 alc db2GHz = ee->ee_ob2GHz[1]; 229 1.1 alc rfXpdSel = ee->ee_xpd[headerInfo11G]; 230 1.1 alc gainI = ee->ee_gainI[headerInfo11G]; 231 1.1 alc break; 232 1.1 alc default: 233 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 234 1.1 alc __func__, chan->channelFlags); 235 1.1 alc return AH_FALSE; 236 1.1 alc } 237 1.1 alc 238 1.1 alc /* Setup Bank 1 Write */ 239 1.1 alc RF_BANK_SETUP(priv, 1, 1); 240 1.1 alc 241 1.1 alc /* Setup Bank 2 Write */ 242 1.1 alc RF_BANK_SETUP(priv, 2, modesIndex); 243 1.1 alc 244 1.1 alc /* Setup Bank 3 Write */ 245 1.1 alc RF_BANK_SETUP(priv, 3, modesIndex); 246 1.1 alc 247 1.1 alc /* Setup Bank 6 Write */ 248 1.1 alc RF_BANK_SETUP(priv, 6, modesIndex); 249 1.1 alc 250 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel, 1, 302, 0); 251 1.1 alc 252 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0); 253 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0); 254 1.1 alc 255 1.1 alc if (IS_CHAN_OFDM(chan)) { 256 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 257 1.1 alc gv->currStep->paramVal[GP_PWD_138], 1, 168, 3); 258 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 259 1.1 alc gv->currStep->paramVal[GP_PWD_137], 1, 169, 3); 260 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 261 1.1 alc gv->currStep->paramVal[GP_PWD_136], 1, 170, 3); 262 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 263 1.1 alc gv->currStep->paramVal[GP_PWD_132], 1, 174, 3); 264 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 265 1.1 alc gv->currStep->paramVal[GP_PWD_131], 1, 175, 3); 266 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 267 1.1 alc gv->currStep->paramVal[GP_PWD_130], 1, 176, 3); 268 1.1 alc } 269 1.1 alc 270 1.1 alc /* Only the 5 or 2 GHz OB/DB need to be set for a mode */ 271 1.1 alc if (IS_CHAN_2GHZ(chan)) { 272 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0); 273 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0); 274 1.1 alc } else { 275 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0); 276 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0); 277 1.1 alc } 278 1.1 alc 279 1.1 alc /* Lower synth voltage for X112 Rev 2.0 only */ 280 1.1 alc if (IS_RADX112_REV2(ah)) { 281 1.1 alc /* Non-Reversed analyg registers - so values are pre-reversed */ 282 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2); 283 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2); 284 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2); 285 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2); 286 1.1 alc } 287 1.1 alc 288 1.1 alc /* Decrease Power Consumption for 5312/5213 and up */ 289 1.1 alc if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) { 290 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1); 291 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3); 292 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3); 293 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3); 294 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3); 295 1.1 alc } 296 1.1 alc 297 1.1 alc /* Setup Bank 7 Setup */ 298 1.1 alc RF_BANK_SETUP(priv, 7, modesIndex); 299 1.1 alc if (IS_CHAN_OFDM(chan)) 300 1.1 alc ar5212ModifyRfBuffer(priv->Bank7Data, 301 1.1 alc gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0); 302 1.1 alc 303 1.1 alc ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0); 304 1.1 alc 305 1.1 alc /* Adjust params for Derby TX power control */ 306 1.1 alc if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) { 307 1.1 alc uint32_t rfDelay, rfPeriod; 308 1.1 alc 309 1.1 alc rfDelay = 0xf; 310 1.1 alc rfPeriod = (IS_CHAN_HALF_RATE(chan)) ? 0x8 : 0xf; 311 1.1 alc ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0); 312 1.1 alc ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0); 313 1.1 alc } 314 1.1 alc 315 1.1 alc #ifdef notyet 316 1.1 alc /* Analog registers are setup - EAR can modify */ 317 1.1 alc if (ar5212IsEarEngaged(pDev, chan)) 318 1.1 alc uint32_t modifier; 319 1.1 alc ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier); 320 1.1 alc #endif 321 1.1 alc /* Write Analog registers */ 322 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites); 323 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites); 324 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites); 325 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites); 326 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites); 327 1.1 alc 328 1.1 alc /* Now that we have reprogrammed rfgain value, clear the flag. */ 329 1.1 alc ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 330 1.1 alc return AH_TRUE; 331 1.1 alc #undef RF_BANK_SETUP 332 1.1 alc } 333 1.1 alc 334 1.1 alc /* 335 1.1 alc * Read the transmit power levels from the structures taken from EEPROM 336 1.1 alc * Interpolate read transmit power values for this channel 337 1.1 alc * Organize the transmit power values into a table for writing into the hardware 338 1.1 alc */ 339 1.1 alc static HAL_BOOL 340 1.1 alc ar5112SetPowerTable(struct ath_hal *ah, 341 1.1 alc int16_t *pPowerMin, int16_t *pPowerMax, HAL_CHANNEL_INTERNAL *chan, 342 1.1 alc uint16_t *rfXpdGain) 343 1.1 alc { 344 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 345 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 346 1.1 alc uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1; 347 1.1 alc uint32_t xpdGainMask = 0; 348 1.1 alc int16_t powerMid, *pPowerMid = &powerMid; 349 1.1 alc 350 1.1 alc const EXPN_DATA_PER_CHANNEL_5112 *pRawCh; 351 1.1 alc const EEPROM_POWER_EXPN_5112 *pPowerExpn = AH_NULL; 352 1.1 alc 353 1.1 alc uint32_t ii, jj, kk; 354 1.1 alc int16_t minPwr_t4, maxPwr_t4, Pmin, Pmid; 355 1.1 alc 356 1.1 alc uint32_t chan_idx_L = 0, chan_idx_R = 0; 357 1.1 alc uint16_t chan_L, chan_R; 358 1.1 alc 359 1.1 alc int16_t pwr_table0[64]; 360 1.1 alc int16_t pwr_table1[64]; 361 1.1 alc uint16_t pcdacs[10]; 362 1.1 alc int16_t powers[10]; 363 1.1 alc uint16_t numPcd; 364 1.1 alc int16_t powTableLXPD[2][64]; 365 1.1 alc int16_t powTableHXPD[2][64]; 366 1.1 alc int16_t tmpPowerTable[64]; 367 1.1 alc uint16_t xgainList[2]; 368 1.1 alc uint16_t xpdMask; 369 1.1 alc 370 1.1 alc switch (chan->channelFlags & CHANNEL_ALL) { 371 1.1 alc case CHANNEL_A: 372 1.1 alc case CHANNEL_T: 373 1.1 alc pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A]; 374 1.1 alc xpdGainMask = ee->ee_xgain[headerInfo11A]; 375 1.1 alc break; 376 1.1 alc case CHANNEL_B: 377 1.1 alc pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B]; 378 1.1 alc xpdGainMask = ee->ee_xgain[headerInfo11B]; 379 1.1 alc break; 380 1.1 alc case CHANNEL_G: 381 1.1 alc case CHANNEL_108G: 382 1.1 alc pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G]; 383 1.1 alc xpdGainMask = ee->ee_xgain[headerInfo11G]; 384 1.1 alc break; 385 1.1 alc default: 386 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n", 387 1.1 alc __func__, chan->channelFlags & CHANNEL_ALL); 388 1.1 alc return AH_FALSE; 389 1.1 alc } 390 1.1 alc 391 1.1 alc if ((xpdGainMask & pPowerExpn->xpdMask) < 1) { 392 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 393 1.1 alc "%s: desired xpdGainMask 0x%x not supported by " 394 1.1 alc "calibrated xpdMask 0x%x\n", __func__, 395 1.1 alc xpdGainMask, pPowerExpn->xpdMask); 396 1.1 alc return AH_FALSE; 397 1.1 alc } 398 1.1 alc 399 1.1 alc maxPwr_t4 = (int16_t)(2*(*pPowerMax)); /* pwr_t2 -> pwr_t4 */ 400 1.1 alc minPwr_t4 = (int16_t)(2*(*pPowerMin)); /* pwr_t2 -> pwr_t4 */ 401 1.1 alc 402 1.1 alc xgainList[0] = 0xDEAD; 403 1.1 alc xgainList[1] = 0xDEAD; 404 1.1 alc 405 1.1 alc kk = 0; 406 1.1 alc xpdMask = pPowerExpn->xpdMask; 407 1.1 alc for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) { 408 1.1 alc if (((xpdMask >> jj) & 1) > 0) { 409 1.1 alc if (kk > 1) { 410 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 411 1.1 alc "A maximum of 2 xpdGains supported" 412 1.1 alc "in pExpnPower data\n"); 413 1.1 alc return AH_FALSE; 414 1.1 alc } 415 1.1 alc xgainList[kk++] = (uint16_t)jj; 416 1.1 alc } 417 1.1 alc } 418 1.1 alc 419 1.1 alc ar5212GetLowerUpperIndex(chan->channel, &pPowerExpn->pChannels[0], 420 1.1 alc pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R); 421 1.1 alc 422 1.1 alc kk = 0; 423 1.1 alc for (ii = chan_idx_L; ii <= chan_idx_R; ii++) { 424 1.1 alc pRawCh = &(pPowerExpn->pDataPerChannel[ii]); 425 1.1 alc if (xgainList[1] == 0xDEAD) { 426 1.1 alc jj = xgainList[0]; 427 1.1 alc numPcd = pRawCh->pDataPerXPD[jj].numPcdacs; 428 1.1 alc OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0], 429 1.1 alc numPcd * sizeof(uint16_t)); 430 1.1 alc OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0], 431 1.1 alc numPcd * sizeof(int16_t)); 432 1.1 alc if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0], 433 1.1 alc pRawCh->maxPower_t4, &tmpPowerTable[0])) { 434 1.1 alc return AH_FALSE; 435 1.1 alc } 436 1.1 alc OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0], 437 1.1 alc 64*sizeof(int16_t)); 438 1.1 alc } else { 439 1.1 alc jj = xgainList[0]; 440 1.1 alc numPcd = pRawCh->pDataPerXPD[jj].numPcdacs; 441 1.1 alc OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0], 442 1.1 alc numPcd*sizeof(uint16_t)); 443 1.1 alc OS_MEMCPY(&powers[0], 444 1.1 alc &pRawCh->pDataPerXPD[jj].pwr_t4[0], 445 1.1 alc numPcd*sizeof(int16_t)); 446 1.1 alc if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0], 447 1.1 alc pRawCh->maxPower_t4, &tmpPowerTable[0])) { 448 1.1 alc return AH_FALSE; 449 1.1 alc } 450 1.1 alc OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0], 451 1.1 alc 64 * sizeof(int16_t)); 452 1.1 alc 453 1.1 alc jj = xgainList[1]; 454 1.1 alc numPcd = pRawCh->pDataPerXPD[jj].numPcdacs; 455 1.1 alc OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0], 456 1.1 alc numPcd * sizeof(uint16_t)); 457 1.1 alc OS_MEMCPY(&powers[0], 458 1.1 alc &pRawCh->pDataPerXPD[jj].pwr_t4[0], 459 1.1 alc numPcd * sizeof(int16_t)); 460 1.1 alc if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0], 461 1.1 alc pRawCh->maxPower_t4, &tmpPowerTable[0])) { 462 1.1 alc return AH_FALSE; 463 1.1 alc } 464 1.1 alc OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0], 465 1.1 alc 64 * sizeof(int16_t)); 466 1.1 alc } 467 1.1 alc kk++; 468 1.1 alc } 469 1.1 alc 470 1.1 alc chan_L = pPowerExpn->pChannels[chan_idx_L]; 471 1.1 alc chan_R = pPowerExpn->pChannels[chan_idx_R]; 472 1.1 alc kk = chan_idx_R - chan_idx_L; 473 1.1 alc 474 1.1 alc if (xgainList[1] == 0xDEAD) { 475 1.1 alc for (jj = 0; jj < 64; jj++) { 476 1.1 alc pwr_table0[jj] = interpolate_signed( 477 1.1 alc chan->channel, chan_L, chan_R, 478 1.1 alc powTableLXPD[0][jj], powTableLXPD[kk][jj]); 479 1.1 alc } 480 1.1 alc Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0], 481 1.1 alc ahp->ah_pcdacTable); 482 1.1 alc *pPowerMin = (int16_t) (Pmin / 2); 483 1.1 alc *pPowerMid = (int16_t) (pwr_table0[63] / 2); 484 1.1 alc *pPowerMax = (int16_t) (pwr_table0[63] / 2); 485 1.1 alc rfXpdGain[0] = xgainList[0]; 486 1.1 alc rfXpdGain[1] = rfXpdGain[0]; 487 1.1 alc } else { 488 1.1 alc for (jj = 0; jj < 64; jj++) { 489 1.1 alc pwr_table0[jj] = interpolate_signed( 490 1.1 alc chan->channel, chan_L, chan_R, 491 1.1 alc powTableLXPD[0][jj], powTableLXPD[kk][jj]); 492 1.1 alc pwr_table1[jj] = interpolate_signed( 493 1.1 alc chan->channel, chan_L, chan_R, 494 1.1 alc powTableHXPD[0][jj], powTableHXPD[kk][jj]); 495 1.1 alc } 496 1.1 alc if (numXpdGain == 2) { 497 1.1 alc Pmin = getPminAndPcdacTableFromTwoPowerTables( 498 1.1 alc &pwr_table0[0], &pwr_table1[0], 499 1.1 alc ahp->ah_pcdacTable, &Pmid); 500 1.1 alc *pPowerMin = (int16_t) (Pmin / 2); 501 1.1 alc *pPowerMid = (int16_t) (Pmid / 2); 502 1.1 alc *pPowerMax = (int16_t) (pwr_table0[63] / 2); 503 1.1 alc rfXpdGain[0] = xgainList[0]; 504 1.1 alc rfXpdGain[1] = xgainList[1]; 505 1.1 alc } else if (minPwr_t4 <= pwr_table1[63] && 506 1.1 alc maxPwr_t4 <= pwr_table1[63]) { 507 1.1 alc Pmin = getPminAndPcdacTableFromPowerTable( 508 1.1 alc &pwr_table1[0], ahp->ah_pcdacTable); 509 1.1 alc rfXpdGain[0] = xgainList[1]; 510 1.1 alc rfXpdGain[1] = rfXpdGain[0]; 511 1.1 alc *pPowerMin = (int16_t) (Pmin / 2); 512 1.1 alc *pPowerMid = (int16_t) (pwr_table1[63] / 2); 513 1.1 alc *pPowerMax = (int16_t) (pwr_table1[63] / 2); 514 1.1 alc } else { 515 1.1 alc Pmin = getPminAndPcdacTableFromPowerTable( 516 1.1 alc &pwr_table0[0], ahp->ah_pcdacTable); 517 1.1 alc rfXpdGain[0] = xgainList[0]; 518 1.1 alc rfXpdGain[1] = rfXpdGain[0]; 519 1.1 alc *pPowerMin = (int16_t) (Pmin/2); 520 1.1 alc *pPowerMid = (int16_t) (pwr_table0[63] / 2); 521 1.1 alc *pPowerMax = (int16_t) (pwr_table0[63] / 2); 522 1.1 alc } 523 1.1 alc } 524 1.1 alc 525 1.1 alc /* 526 1.1 alc * Move 5112 rates to match power tables where the max 527 1.1 alc * power table entry corresponds with maxPower. 528 1.1 alc */ 529 1.1 alc HALASSERT(*pPowerMax <= PCDAC_STOP); 530 1.1 alc ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax; 531 1.1 alc 532 1.1 alc return AH_TRUE; 533 1.1 alc } 534 1.1 alc 535 1.1 alc /* 536 1.1 alc * Returns interpolated or the scaled up interpolated value 537 1.1 alc */ 538 1.1 alc static int16_t 539 1.1 alc interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 540 1.1 alc int16_t targetLeft, int16_t targetRight) 541 1.1 alc { 542 1.1 alc int16_t rv; 543 1.1 alc 544 1.1 alc if (srcRight != srcLeft) { 545 1.1 alc rv = ((target - srcLeft)*targetRight + 546 1.1 alc (srcRight - target)*targetLeft) / (srcRight - srcLeft); 547 1.1 alc } else { 548 1.1 alc rv = targetLeft; 549 1.1 alc } 550 1.1 alc return rv; 551 1.1 alc } 552 1.1 alc 553 1.1 alc /* 554 1.1 alc * Return indices surrounding the value in sorted integer lists. 555 1.1 alc * 556 1.1 alc * NB: the input list is assumed to be sorted in ascending order 557 1.1 alc */ 558 1.1 alc static void 559 1.1 alc ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize, 560 1.1 alc uint32_t *vlo, uint32_t *vhi) 561 1.1 alc { 562 1.1 alc uint32_t target = v; 563 1.1 alc uint16_t *ep = lp+listSize; 564 1.1 alc uint16_t *tp; 565 1.1 alc 566 1.1 alc /* 567 1.1 alc * Check first and last elements for out-of-bounds conditions. 568 1.1 alc */ 569 1.1 alc if (target < lp[0]) { 570 1.1 alc *vlo = *vhi = 0; 571 1.1 alc return; 572 1.1 alc } 573 1.1 alc if (target >= ep[-1]) { 574 1.1 alc *vlo = *vhi = listSize - 1; 575 1.1 alc return; 576 1.1 alc } 577 1.1 alc 578 1.1 alc /* look for value being near or between 2 values in list */ 579 1.1 alc for (tp = lp; tp < ep; tp++) { 580 1.1 alc /* 581 1.1 alc * If value is close to the current value of the list 582 1.1 alc * then target is not between values, it is one of the values 583 1.1 alc */ 584 1.1 alc if (*tp == target) { 585 1.1 alc *vlo = *vhi = tp - lp; 586 1.1 alc return; 587 1.1 alc } 588 1.1 alc /* 589 1.1 alc * Look for value being between current value and next value 590 1.1 alc * if so return these 2 values 591 1.1 alc */ 592 1.1 alc if (target < tp[1]) { 593 1.1 alc *vlo = tp - lp; 594 1.1 alc *vhi = *vlo + 1; 595 1.1 alc return; 596 1.1 alc } 597 1.1 alc } 598 1.1 alc } 599 1.1 alc 600 1.1 alc static HAL_BOOL 601 1.1 alc getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals) 602 1.1 alc { 603 1.1 alc uint16_t ii; 604 1.1 alc uint16_t idxL = 0; 605 1.1 alc uint16_t idxR = 1; 606 1.1 alc 607 1.1 alc if (numPcdacs < 2) { 608 1.1 alc HALDEBUG(AH_NULL, HAL_DEBUG_ANY, 609 1.1 alc "%s: at least 2 pcdac values needed [%d]\n", 610 1.1 alc __func__, numPcdacs); 611 1.1 alc return AH_FALSE; 612 1.1 alc } 613 1.1 alc for (ii = 0; ii < 64; ii++) { 614 1.1 alc if (ii>pcdacs[idxR] && idxR < numPcdacs-1) { 615 1.1 alc idxL++; 616 1.1 alc idxR++; 617 1.1 alc } 618 1.1 alc retVals[ii] = interpolate_signed(ii, 619 1.1 alc pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]); 620 1.1 alc if (retVals[ii] >= maxPower) { 621 1.1 alc while (ii < 64) 622 1.1 alc retVals[ii++] = maxPower; 623 1.1 alc } 624 1.1 alc } 625 1.1 alc return AH_TRUE; 626 1.1 alc } 627 1.1 alc 628 1.1 alc /* 629 1.1 alc * Takes a single calibration curve and creates a power table. 630 1.1 alc * Adjusts the new power table so the max power is relative 631 1.1 alc * to the maximum index in the power table. 632 1.1 alc * 633 1.1 alc * WARNING: rates must be adjusted for this relative power table 634 1.1 alc */ 635 1.1 alc static int16_t 636 1.1 alc getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[]) 637 1.1 alc { 638 1.1 alc int16_t ii, jj, jjMax; 639 1.1 alc int16_t pMin, currPower, pMax; 640 1.1 alc 641 1.1 alc /* If the spread is > 31.5dB, keep the upper 31.5dB range */ 642 1.1 alc if ((pwrTableT4[63] - pwrTableT4[0]) > 126) { 643 1.1 alc pMin = pwrTableT4[63] - 126; 644 1.1 alc } else { 645 1.1 alc pMin = pwrTableT4[0]; 646 1.1 alc } 647 1.1 alc 648 1.1 alc pMax = pwrTableT4[63]; 649 1.1 alc jjMax = 63; 650 1.1 alc 651 1.1 alc /* Search for highest pcdac 0.25dB below maxPower */ 652 1.1 alc while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) { 653 1.1 alc jjMax--; 654 1.1 alc } 655 1.1 alc 656 1.1 alc jj = jjMax; 657 1.1 alc currPower = pMax; 658 1.1 alc for (ii = 63; ii >= 0; ii--) { 659 1.1 alc while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) { 660 1.1 alc jj--; 661 1.1 alc } 662 1.1 alc if (jj == 0) { 663 1.1 alc while (ii >= 0) { 664 1.1 alc retVals[ii] = retVals[ii + 1]; 665 1.1 alc ii--; 666 1.1 alc } 667 1.1 alc break; 668 1.1 alc } 669 1.1 alc retVals[ii] = jj; 670 1.1 alc currPower -= 2; // corresponds to a 0.5dB step 671 1.1 alc } 672 1.1 alc return pMin; 673 1.1 alc } 674 1.1 alc 675 1.1 alc /* 676 1.1 alc * Combines the XPD curves from two calibration sets into a single 677 1.1 alc * power table and adjusts the power table so the max power is relative 678 1.1 alc * to the maximum index in the power table 679 1.1 alc * 680 1.1 alc * WARNING: rates must be adjusted for this relative power table 681 1.1 alc */ 682 1.1 alc static int16_t 683 1.1 alc getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4, 684 1.1 alc int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid) 685 1.1 alc { 686 1.1 alc int16_t ii, jj, jjMax; 687 1.1 alc int16_t pMin, pMax, currPower; 688 1.1 alc int16_t *pwrTableT4; 689 1.1 alc uint16_t msbFlag = 0x40; // turns on the 7th bit of the pcdac 690 1.1 alc 691 1.1 alc /* If the spread is > 31.5dB, keep the upper 31.5dB range */ 692 1.1 alc if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) { 693 1.1 alc pMin = pwrTableLXpdT4[63] - 126; 694 1.1 alc } else { 695 1.1 alc pMin = pwrTableHXpdT4[0]; 696 1.1 alc } 697 1.1 alc 698 1.1 alc pMax = pwrTableLXpdT4[63]; 699 1.1 alc jjMax = 63; 700 1.1 alc /* Search for highest pcdac 0.25dB below maxPower */ 701 1.1 alc while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){ 702 1.1 alc jjMax--; 703 1.1 alc } 704 1.1 alc 705 1.1 alc *pMid = pwrTableHXpdT4[63]; 706 1.1 alc jj = jjMax; 707 1.1 alc ii = 63; 708 1.1 alc currPower = pMax; 709 1.1 alc pwrTableT4 = &(pwrTableLXpdT4[0]); 710 1.1 alc while (ii >= 0) { 711 1.1 alc if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){ 712 1.1 alc msbFlag = 0x00; 713 1.1 alc pwrTableT4 = &(pwrTableHXpdT4[0]); 714 1.1 alc jj = 63; 715 1.1 alc } 716 1.1 alc while ((jj > 0) && (pwrTableT4[jj] >= currPower)) { 717 1.1 alc jj--; 718 1.1 alc } 719 1.1 alc if ((jj == 0) && (msbFlag == 0x00)) { 720 1.1 alc while (ii >= 0) { 721 1.1 alc retVals[ii] = retVals[ii+1]; 722 1.1 alc ii--; 723 1.1 alc } 724 1.1 alc break; 725 1.1 alc } 726 1.1 alc retVals[ii] = jj | msbFlag; 727 1.1 alc currPower -= 2; // corresponds to a 0.5dB step 728 1.1 alc ii--; 729 1.1 alc } 730 1.1 alc return pMin; 731 1.1 alc } 732 1.1 alc 733 1.1 alc static int16_t 734 1.1 alc ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data) 735 1.1 alc { 736 1.1 alc int i, minIndex; 737 1.1 alc int16_t minGain,minPwr,minPcdac,retVal; 738 1.1 alc 739 1.1 alc /* Assume NUM_POINTS_XPD0 > 0 */ 740 1.1 alc minGain = data->pDataPerXPD[0].xpd_gain; 741 1.1 alc for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) { 742 1.1 alc if (data->pDataPerXPD[i].xpd_gain < minGain) { 743 1.1 alc minIndex = i; 744 1.1 alc minGain = data->pDataPerXPD[i].xpd_gain; 745 1.1 alc } 746 1.1 alc } 747 1.1 alc minPwr = data->pDataPerXPD[minIndex].pwr_t4[0]; 748 1.1 alc minPcdac = data->pDataPerXPD[minIndex].pcdac[0]; 749 1.1 alc for (i=1; i<NUM_POINTS_XPD0; i++) { 750 1.1 alc if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) { 751 1.1 alc minPwr = data->pDataPerXPD[minIndex].pwr_t4[i]; 752 1.1 alc minPcdac = data->pDataPerXPD[minIndex].pcdac[i]; 753 1.1 alc } 754 1.1 alc } 755 1.1 alc retVal = minPwr - (minPcdac*2); 756 1.1 alc return(retVal); 757 1.1 alc } 758 1.1 alc 759 1.1 alc static HAL_BOOL 760 1.1 alc ar5112GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, 761 1.1 alc int16_t *maxPow, int16_t *minPow) 762 1.1 alc { 763 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 764 1.1 alc int numChannels=0,i,last; 765 1.1 alc int totalD, totalF,totalMin; 766 1.1 alc const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL; 767 1.1 alc const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL; 768 1.1 alc 769 1.1 alc *maxPow = 0; 770 1.1 alc if (IS_CHAN_A(chan)) { 771 1.1 alc powerArray = ee->ee_modePowerArray5112; 772 1.1 alc data = powerArray[headerInfo11A].pDataPerChannel; 773 1.1 alc numChannels = powerArray[headerInfo11A].numChannels; 774 1.1 alc } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) { 775 1.1 alc /* XXX - is this correct? Should we also use the same power for turbo G? */ 776 1.1 alc powerArray = ee->ee_modePowerArray5112; 777 1.1 alc data = powerArray[headerInfo11G].pDataPerChannel; 778 1.1 alc numChannels = powerArray[headerInfo11G].numChannels; 779 1.1 alc } else if (IS_CHAN_B(chan)) { 780 1.1 alc powerArray = ee->ee_modePowerArray5112; 781 1.1 alc data = powerArray[headerInfo11B].pDataPerChannel; 782 1.1 alc numChannels = powerArray[headerInfo11B].numChannels; 783 1.1 alc } else { 784 1.1 alc return (AH_TRUE); 785 1.1 alc } 786 1.1 alc /* Make sure the channel is in the range of the TP values 787 1.1 alc * (freq piers) 788 1.1 alc */ 789 1.1 alc if (numChannels < 1) 790 1.1 alc return(AH_FALSE); 791 1.1 alc 792 1.1 alc if ((chan->channel < data[0].channelValue) || 793 1.1 alc (chan->channel > data[numChannels-1].channelValue)) { 794 1.1 alc if (chan->channel < data[0].channelValue) { 795 1.1 alc *maxPow = data[0].maxPower_t4; 796 1.1 alc *minPow = ar5112GetMinPower(ah, &data[0]); 797 1.1 alc return(AH_TRUE); 798 1.1 alc } else { 799 1.1 alc *maxPow = data[numChannels - 1].maxPower_t4; 800 1.1 alc *minPow = ar5112GetMinPower(ah, &data[numChannels - 1]); 801 1.1 alc return(AH_TRUE); 802 1.1 alc } 803 1.1 alc } 804 1.1 alc 805 1.1 alc /* Linearly interpolate the power value now */ 806 1.1 alc for (last=0,i=0; 807 1.1 alc (i<numChannels) && (chan->channel > data[i].channelValue); 808 1.1 alc last=i++); 809 1.1 alc totalD = data[i].channelValue - data[last].channelValue; 810 1.1 alc if (totalD > 0) { 811 1.1 alc totalF = data[i].maxPower_t4 - data[last].maxPower_t4; 812 1.1 alc *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD); 813 1.1 alc 814 1.1 alc totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]); 815 1.1 alc *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD); 816 1.1 alc return (AH_TRUE); 817 1.1 alc } else { 818 1.1 alc if (chan->channel == data[i].channelValue) { 819 1.1 alc *maxPow = data[i].maxPower_t4; 820 1.1 alc *minPow = ar5112GetMinPower(ah, &data[i]); 821 1.1 alc return(AH_TRUE); 822 1.1 alc } else 823 1.1 alc return(AH_FALSE); 824 1.1 alc } 825 1.1 alc } 826 1.1 alc 827 1.1 alc /* 828 1.1 alc * Free memory for analog bank scratch buffers 829 1.1 alc */ 830 1.1 alc static void 831 1.1 alc ar5112RfDetach(struct ath_hal *ah) 832 1.1 alc { 833 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 834 1.1 alc 835 1.1 alc HALASSERT(ahp->ah_rfHal != AH_NULL); 836 1.1 alc ath_hal_free(ahp->ah_rfHal); 837 1.1 alc ahp->ah_rfHal = AH_NULL; 838 1.1 alc } 839 1.1 alc 840 1.1 alc /* 841 1.1 alc * Allocate memory for analog bank scratch buffers 842 1.1 alc * Scratch Buffer will be reinitialized every reset so no need to zero now 843 1.1 alc */ 844 1.1 alc static HAL_BOOL 845 1.1 alc ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status) 846 1.1 alc { 847 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 848 1.1 alc struct ar5112State *priv; 849 1.1 alc 850 1.1 alc HALASSERT(ah->ah_magic == AR5212_MAGIC); 851 1.1 alc 852 1.1 alc HALASSERT(ahp->ah_rfHal == AH_NULL); 853 1.1 alc priv = ath_hal_malloc(sizeof(struct ar5112State)); 854 1.1 alc if (priv == AH_NULL) { 855 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 856 1.1 alc "%s: cannot allocate private state\n", __func__); 857 1.1 alc *status = HAL_ENOMEM; /* XXX */ 858 1.1 alc return AH_FALSE; 859 1.1 alc } 860 1.1 alc priv->base.rfDetach = ar5112RfDetach; 861 1.1 alc priv->base.writeRegs = ar5112WriteRegs; 862 1.1 alc priv->base.getRfBank = ar5112GetRfBank; 863 1.1 alc priv->base.setChannel = ar5112SetChannel; 864 1.1 alc priv->base.setRfRegs = ar5112SetRfRegs; 865 1.1 alc priv->base.setPowerTable = ar5112SetPowerTable; 866 1.1 alc priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower; 867 1.1 alc priv->base.getNfAdjust = ar5212GetNfAdjust; 868 1.1 alc 869 1.1 alc ahp->ah_pcdacTable = priv->pcdacTable; 870 1.1 alc ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 871 1.1 alc ahp->ah_rfHal = &priv->base; 872 1.1 alc 873 1.1 alc return AH_TRUE; 874 1.1 alc } 875 1.1 alc 876 1.1 alc static HAL_BOOL 877 1.1 alc ar5112Probe(struct ath_hal *ah) 878 1.1 alc { 879 1.1 alc return IS_RAD5112(ah); 880 1.1 alc } 881 1.1 alc AH_RF(RF5112, ar5112Probe, ar5112RfAttach); 882