ar5112.c revision 1.1 1 1.1 alc /*
2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 1.1 alc * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 1.1 alc *
5 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any
6 1.1 alc * purpose with or without fee is hereby granted, provided that the above
7 1.1 alc * copyright notice and this permission notice appear in all copies.
8 1.1 alc *
9 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 1.1 alc *
17 1.1 alc * $Id: ar5112.c,v 1.1 2008/12/11 04:46:37 alc Exp $
18 1.1 alc */
19 1.1 alc #include "opt_ah.h"
20 1.1 alc
21 1.1 alc #include "ah.h"
22 1.1 alc #include "ah_internal.h"
23 1.1 alc
24 1.1 alc #include "ah_eeprom_v3.h"
25 1.1 alc
26 1.1 alc #include "ar5212/ar5212.h"
27 1.1 alc #include "ar5212/ar5212reg.h"
28 1.1 alc #include "ar5212/ar5212phy.h"
29 1.1 alc
30 1.1 alc #define AH_5212_5112
31 1.1 alc #include "ar5212/ar5212.ini"
32 1.1 alc
33 1.1 alc #define N(a) (sizeof(a)/sizeof(a[0]))
34 1.1 alc
35 1.1 alc struct ar5112State {
36 1.1 alc RF_HAL_FUNCS base; /* public state, must be first */
37 1.1 alc uint16_t pcdacTable[PWR_TABLE_SIZE];
38 1.1 alc
39 1.1 alc uint32_t Bank1Data[N(ar5212Bank1_5112)];
40 1.1 alc uint32_t Bank2Data[N(ar5212Bank2_5112)];
41 1.1 alc uint32_t Bank3Data[N(ar5212Bank3_5112)];
42 1.1 alc uint32_t Bank6Data[N(ar5212Bank6_5112)];
43 1.1 alc uint32_t Bank7Data[N(ar5212Bank7_5112)];
44 1.1 alc };
45 1.1 alc #define AR5112(ah) ((struct ar5112State *) AH5212(ah)->ah_rfHal)
46 1.1 alc
47 1.1 alc static void ar5212GetLowerUpperIndex(uint16_t v,
48 1.1 alc uint16_t *lp, uint16_t listSize,
49 1.1 alc uint32_t *vlo, uint32_t *vhi);
50 1.1 alc static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,
51 1.1 alc int16_t *power, int16_t maxPower, int16_t *retVals);
52 1.1 alc static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,
53 1.1 alc uint16_t retVals[]);
54 1.1 alc static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
55 1.1 alc int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);
56 1.1 alc static int16_t interpolate_signed(uint16_t target,
57 1.1 alc uint16_t srcLeft, uint16_t srcRight,
58 1.1 alc int16_t targetLeft, int16_t targetRight);
59 1.1 alc
60 1.1 alc extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 1.1 alc uint32_t numBits, uint32_t firstBit, uint32_t column);
62 1.1 alc
63 1.1 alc static void
64 1.1 alc ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 1.1 alc int writes)
66 1.1 alc {
67 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);
68 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);
69 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);
70 1.1 alc }
71 1.1 alc
72 1.1 alc /*
73 1.1 alc * Take the MHz channel value and set the Channel value
74 1.1 alc *
75 1.1 alc * ASSUMES: Writes enabled to analog bus
76 1.1 alc */
77 1.1 alc static HAL_BOOL
78 1.1 alc ar5112SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
79 1.1 alc {
80 1.1 alc uint32_t channelSel = 0;
81 1.1 alc uint32_t bModeSynth = 0;
82 1.1 alc uint32_t aModeRefSel = 0;
83 1.1 alc uint32_t reg32 = 0;
84 1.1 alc uint16_t freq;
85 1.1 alc
86 1.1 alc OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
87 1.1 alc
88 1.1 alc if (chan->channel < 4800) {
89 1.1 alc uint32_t txctl;
90 1.1 alc
91 1.1 alc if (((chan->channel - 2192) % 5) == 0) {
92 1.1 alc channelSel = ((chan->channel - 672) * 2 - 3040)/10;
93 1.1 alc bModeSynth = 0;
94 1.1 alc } else if (((chan->channel - 2224) % 5) == 0) {
95 1.1 alc channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
96 1.1 alc bModeSynth = 1;
97 1.1 alc } else {
98 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
99 1.1 alc "%s: invalid channel %u MHz\n",
100 1.1 alc __func__, chan->channel);
101 1.1 alc return AH_FALSE;
102 1.1 alc }
103 1.1 alc
104 1.1 alc channelSel = (channelSel << 2) & 0xff;
105 1.1 alc channelSel = ath_hal_reverseBits(channelSel, 8);
106 1.1 alc
107 1.1 alc txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 1.1 alc if (chan->channel == 2484) {
109 1.1 alc /* Enable channel spreading for channel 14 */
110 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 1.1 alc txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 1.1 alc } else {
113 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 1.1 alc txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 1.1 alc }
116 1.1 alc } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
117 1.1 alc freq = chan->channel - 2; /* Align to even 5MHz raster */
118 1.1 alc channelSel = ath_hal_reverseBits(
119 1.1 alc (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120 1.1 alc aModeRefSel = ath_hal_reverseBits(0, 2);
121 1.1 alc } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
122 1.1 alc channelSel = ath_hal_reverseBits(
123 1.1 alc ((chan->channel - 4800) / 20 << 2), 8);
124 1.1 alc aModeRefSel = ath_hal_reverseBits(3, 2);
125 1.1 alc } else if ((chan->channel % 10) == 0) {
126 1.1 alc channelSel = ath_hal_reverseBits(
127 1.1 alc ((chan->channel - 4800) / 10 << 1), 8);
128 1.1 alc aModeRefSel = ath_hal_reverseBits(2, 2);
129 1.1 alc } else if ((chan->channel % 5) == 0) {
130 1.1 alc channelSel = ath_hal_reverseBits(
131 1.1 alc (chan->channel - 4800) / 5, 8);
132 1.1 alc aModeRefSel = ath_hal_reverseBits(1, 2);
133 1.1 alc } else {
134 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 1.1 alc __func__, chan->channel);
136 1.1 alc return AH_FALSE;
137 1.1 alc }
138 1.1 alc
139 1.1 alc reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 1.1 alc (1 << 12) | 0x1;
141 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142 1.1 alc
143 1.1 alc reg32 >>= 8;
144 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145 1.1 alc
146 1.1 alc AH_PRIVATE(ah)->ah_curchan = chan;
147 1.1 alc return AH_TRUE;
148 1.1 alc }
149 1.1 alc
150 1.1 alc /*
151 1.1 alc * Return a reference to the requested RF Bank.
152 1.1 alc */
153 1.1 alc static uint32_t *
154 1.1 alc ar5112GetRfBank(struct ath_hal *ah, int bank)
155 1.1 alc {
156 1.1 alc struct ar5112State *priv = AR5112(ah);
157 1.1 alc
158 1.1 alc HALASSERT(priv != AH_NULL);
159 1.1 alc switch (bank) {
160 1.1 alc case 1: return priv->Bank1Data;
161 1.1 alc case 2: return priv->Bank2Data;
162 1.1 alc case 3: return priv->Bank3Data;
163 1.1 alc case 6: return priv->Bank6Data;
164 1.1 alc case 7: return priv->Bank7Data;
165 1.1 alc }
166 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
167 1.1 alc __func__, bank);
168 1.1 alc return AH_NULL;
169 1.1 alc }
170 1.1 alc
171 1.1 alc /*
172 1.1 alc * Reads EEPROM header info from device structure and programs
173 1.1 alc * all rf registers
174 1.1 alc *
175 1.1 alc * REQUIRES: Access to the analog rf device
176 1.1 alc */
177 1.1 alc static HAL_BOOL
178 1.1 alc ar5112SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
179 1.1 alc uint16_t modesIndex, uint16_t *rfXpdGain)
180 1.1 alc {
181 1.1 alc #define RF_BANK_SETUP(_priv, _ix, _col) do { \
182 1.1 alc int i; \
183 1.1 alc for (i = 0; i < N(ar5212Bank##_ix##_5112); i++) \
184 1.1 alc (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\
185 1.1 alc } while (0)
186 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
187 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
188 1.1 alc uint16_t rfXpdSel, gainI;
189 1.1 alc uint16_t ob5GHz = 0, db5GHz = 0;
190 1.1 alc uint16_t ob2GHz = 0, db2GHz = 0;
191 1.1 alc struct ar5112State *priv = AR5112(ah);
192 1.1 alc GAIN_VALUES *gv = &ahp->ah_gainValues;
193 1.1 alc int regWrites = 0;
194 1.1 alc
195 1.1 alc HALASSERT(priv);
196 1.1 alc
197 1.1 alc /* Setup rf parameters */
198 1.1 alc switch (chan->channelFlags & CHANNEL_ALL) {
199 1.1 alc case CHANNEL_A:
200 1.1 alc case CHANNEL_T:
201 1.1 alc if (chan->channel > 4000 && chan->channel < 5260) {
202 1.1 alc ob5GHz = ee->ee_ob1;
203 1.1 alc db5GHz = ee->ee_db1;
204 1.1 alc } else if (chan->channel >= 5260 && chan->channel < 5500) {
205 1.1 alc ob5GHz = ee->ee_ob2;
206 1.1 alc db5GHz = ee->ee_db2;
207 1.1 alc } else if (chan->channel >= 5500 && chan->channel < 5725) {
208 1.1 alc ob5GHz = ee->ee_ob3;
209 1.1 alc db5GHz = ee->ee_db3;
210 1.1 alc } else if (chan->channel >= 5725) {
211 1.1 alc ob5GHz = ee->ee_ob4;
212 1.1 alc db5GHz = ee->ee_db4;
213 1.1 alc } else {
214 1.1 alc /* XXX else */
215 1.1 alc }
216 1.1 alc rfXpdSel = ee->ee_xpd[headerInfo11A];
217 1.1 alc gainI = ee->ee_gainI[headerInfo11A];
218 1.1 alc break;
219 1.1 alc case CHANNEL_B:
220 1.1 alc ob2GHz = ee->ee_ob2GHz[0];
221 1.1 alc db2GHz = ee->ee_db2GHz[0];
222 1.1 alc rfXpdSel = ee->ee_xpd[headerInfo11B];
223 1.1 alc gainI = ee->ee_gainI[headerInfo11B];
224 1.1 alc break;
225 1.1 alc case CHANNEL_G:
226 1.1 alc case CHANNEL_108G:
227 1.1 alc ob2GHz = ee->ee_ob2GHz[1];
228 1.1 alc db2GHz = ee->ee_ob2GHz[1];
229 1.1 alc rfXpdSel = ee->ee_xpd[headerInfo11G];
230 1.1 alc gainI = ee->ee_gainI[headerInfo11G];
231 1.1 alc break;
232 1.1 alc default:
233 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
234 1.1 alc __func__, chan->channelFlags);
235 1.1 alc return AH_FALSE;
236 1.1 alc }
237 1.1 alc
238 1.1 alc /* Setup Bank 1 Write */
239 1.1 alc RF_BANK_SETUP(priv, 1, 1);
240 1.1 alc
241 1.1 alc /* Setup Bank 2 Write */
242 1.1 alc RF_BANK_SETUP(priv, 2, modesIndex);
243 1.1 alc
244 1.1 alc /* Setup Bank 3 Write */
245 1.1 alc RF_BANK_SETUP(priv, 3, modesIndex);
246 1.1 alc
247 1.1 alc /* Setup Bank 6 Write */
248 1.1 alc RF_BANK_SETUP(priv, 6, modesIndex);
249 1.1 alc
250 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel, 1, 302, 0);
251 1.1 alc
252 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);
253 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);
254 1.1 alc
255 1.1 alc if (IS_CHAN_OFDM(chan)) {
256 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data,
257 1.1 alc gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);
258 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data,
259 1.1 alc gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);
260 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data,
261 1.1 alc gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);
262 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data,
263 1.1 alc gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);
264 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data,
265 1.1 alc gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);
266 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data,
267 1.1 alc gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);
268 1.1 alc }
269 1.1 alc
270 1.1 alc /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
271 1.1 alc if (IS_CHAN_2GHZ(chan)) {
272 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);
273 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);
274 1.1 alc } else {
275 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);
276 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);
277 1.1 alc }
278 1.1 alc
279 1.1 alc /* Lower synth voltage for X112 Rev 2.0 only */
280 1.1 alc if (IS_RADX112_REV2(ah)) {
281 1.1 alc /* Non-Reversed analyg registers - so values are pre-reversed */
282 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);
283 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);
284 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);
285 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);
286 1.1 alc }
287 1.1 alc
288 1.1 alc /* Decrease Power Consumption for 5312/5213 and up */
289 1.1 alc if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
290 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);
291 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);
292 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);
293 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);
294 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);
295 1.1 alc }
296 1.1 alc
297 1.1 alc /* Setup Bank 7 Setup */
298 1.1 alc RF_BANK_SETUP(priv, 7, modesIndex);
299 1.1 alc if (IS_CHAN_OFDM(chan))
300 1.1 alc ar5212ModifyRfBuffer(priv->Bank7Data,
301 1.1 alc gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);
302 1.1 alc
303 1.1 alc ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);
304 1.1 alc
305 1.1 alc /* Adjust params for Derby TX power control */
306 1.1 alc if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) {
307 1.1 alc uint32_t rfDelay, rfPeriod;
308 1.1 alc
309 1.1 alc rfDelay = 0xf;
310 1.1 alc rfPeriod = (IS_CHAN_HALF_RATE(chan)) ? 0x8 : 0xf;
311 1.1 alc ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);
312 1.1 alc ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);
313 1.1 alc }
314 1.1 alc
315 1.1 alc #ifdef notyet
316 1.1 alc /* Analog registers are setup - EAR can modify */
317 1.1 alc if (ar5212IsEarEngaged(pDev, chan))
318 1.1 alc uint32_t modifier;
319 1.1 alc ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);
320 1.1 alc #endif
321 1.1 alc /* Write Analog registers */
322 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);
323 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);
324 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);
325 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);
326 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);
327 1.1 alc
328 1.1 alc /* Now that we have reprogrammed rfgain value, clear the flag. */
329 1.1 alc ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
330 1.1 alc return AH_TRUE;
331 1.1 alc #undef RF_BANK_SETUP
332 1.1 alc }
333 1.1 alc
334 1.1 alc /*
335 1.1 alc * Read the transmit power levels from the structures taken from EEPROM
336 1.1 alc * Interpolate read transmit power values for this channel
337 1.1 alc * Organize the transmit power values into a table for writing into the hardware
338 1.1 alc */
339 1.1 alc static HAL_BOOL
340 1.1 alc ar5112SetPowerTable(struct ath_hal *ah,
341 1.1 alc int16_t *pPowerMin, int16_t *pPowerMax, HAL_CHANNEL_INTERNAL *chan,
342 1.1 alc uint16_t *rfXpdGain)
343 1.1 alc {
344 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
345 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
346 1.1 alc uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;
347 1.1 alc uint32_t xpdGainMask = 0;
348 1.1 alc int16_t powerMid, *pPowerMid = &powerMid;
349 1.1 alc
350 1.1 alc const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;
351 1.1 alc const EEPROM_POWER_EXPN_5112 *pPowerExpn = AH_NULL;
352 1.1 alc
353 1.1 alc uint32_t ii, jj, kk;
354 1.1 alc int16_t minPwr_t4, maxPwr_t4, Pmin, Pmid;
355 1.1 alc
356 1.1 alc uint32_t chan_idx_L = 0, chan_idx_R = 0;
357 1.1 alc uint16_t chan_L, chan_R;
358 1.1 alc
359 1.1 alc int16_t pwr_table0[64];
360 1.1 alc int16_t pwr_table1[64];
361 1.1 alc uint16_t pcdacs[10];
362 1.1 alc int16_t powers[10];
363 1.1 alc uint16_t numPcd;
364 1.1 alc int16_t powTableLXPD[2][64];
365 1.1 alc int16_t powTableHXPD[2][64];
366 1.1 alc int16_t tmpPowerTable[64];
367 1.1 alc uint16_t xgainList[2];
368 1.1 alc uint16_t xpdMask;
369 1.1 alc
370 1.1 alc switch (chan->channelFlags & CHANNEL_ALL) {
371 1.1 alc case CHANNEL_A:
372 1.1 alc case CHANNEL_T:
373 1.1 alc pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];
374 1.1 alc xpdGainMask = ee->ee_xgain[headerInfo11A];
375 1.1 alc break;
376 1.1 alc case CHANNEL_B:
377 1.1 alc pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];
378 1.1 alc xpdGainMask = ee->ee_xgain[headerInfo11B];
379 1.1 alc break;
380 1.1 alc case CHANNEL_G:
381 1.1 alc case CHANNEL_108G:
382 1.1 alc pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];
383 1.1 alc xpdGainMask = ee->ee_xgain[headerInfo11G];
384 1.1 alc break;
385 1.1 alc default:
386 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",
387 1.1 alc __func__, chan->channelFlags & CHANNEL_ALL);
388 1.1 alc return AH_FALSE;
389 1.1 alc }
390 1.1 alc
391 1.1 alc if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {
392 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
393 1.1 alc "%s: desired xpdGainMask 0x%x not supported by "
394 1.1 alc "calibrated xpdMask 0x%x\n", __func__,
395 1.1 alc xpdGainMask, pPowerExpn->xpdMask);
396 1.1 alc return AH_FALSE;
397 1.1 alc }
398 1.1 alc
399 1.1 alc maxPwr_t4 = (int16_t)(2*(*pPowerMax)); /* pwr_t2 -> pwr_t4 */
400 1.1 alc minPwr_t4 = (int16_t)(2*(*pPowerMin)); /* pwr_t2 -> pwr_t4 */
401 1.1 alc
402 1.1 alc xgainList[0] = 0xDEAD;
403 1.1 alc xgainList[1] = 0xDEAD;
404 1.1 alc
405 1.1 alc kk = 0;
406 1.1 alc xpdMask = pPowerExpn->xpdMask;
407 1.1 alc for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
408 1.1 alc if (((xpdMask >> jj) & 1) > 0) {
409 1.1 alc if (kk > 1) {
410 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
411 1.1 alc "A maximum of 2 xpdGains supported"
412 1.1 alc "in pExpnPower data\n");
413 1.1 alc return AH_FALSE;
414 1.1 alc }
415 1.1 alc xgainList[kk++] = (uint16_t)jj;
416 1.1 alc }
417 1.1 alc }
418 1.1 alc
419 1.1 alc ar5212GetLowerUpperIndex(chan->channel, &pPowerExpn->pChannels[0],
420 1.1 alc pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);
421 1.1 alc
422 1.1 alc kk = 0;
423 1.1 alc for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {
424 1.1 alc pRawCh = &(pPowerExpn->pDataPerChannel[ii]);
425 1.1 alc if (xgainList[1] == 0xDEAD) {
426 1.1 alc jj = xgainList[0];
427 1.1 alc numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
428 1.1 alc OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
429 1.1 alc numPcd * sizeof(uint16_t));
430 1.1 alc OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],
431 1.1 alc numPcd * sizeof(int16_t));
432 1.1 alc if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
433 1.1 alc pRawCh->maxPower_t4, &tmpPowerTable[0])) {
434 1.1 alc return AH_FALSE;
435 1.1 alc }
436 1.1 alc OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
437 1.1 alc 64*sizeof(int16_t));
438 1.1 alc } else {
439 1.1 alc jj = xgainList[0];
440 1.1 alc numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
441 1.1 alc OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
442 1.1 alc numPcd*sizeof(uint16_t));
443 1.1 alc OS_MEMCPY(&powers[0],
444 1.1 alc &pRawCh->pDataPerXPD[jj].pwr_t4[0],
445 1.1 alc numPcd*sizeof(int16_t));
446 1.1 alc if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
447 1.1 alc pRawCh->maxPower_t4, &tmpPowerTable[0])) {
448 1.1 alc return AH_FALSE;
449 1.1 alc }
450 1.1 alc OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
451 1.1 alc 64 * sizeof(int16_t));
452 1.1 alc
453 1.1 alc jj = xgainList[1];
454 1.1 alc numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
455 1.1 alc OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
456 1.1 alc numPcd * sizeof(uint16_t));
457 1.1 alc OS_MEMCPY(&powers[0],
458 1.1 alc &pRawCh->pDataPerXPD[jj].pwr_t4[0],
459 1.1 alc numPcd * sizeof(int16_t));
460 1.1 alc if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
461 1.1 alc pRawCh->maxPower_t4, &tmpPowerTable[0])) {
462 1.1 alc return AH_FALSE;
463 1.1 alc }
464 1.1 alc OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],
465 1.1 alc 64 * sizeof(int16_t));
466 1.1 alc }
467 1.1 alc kk++;
468 1.1 alc }
469 1.1 alc
470 1.1 alc chan_L = pPowerExpn->pChannels[chan_idx_L];
471 1.1 alc chan_R = pPowerExpn->pChannels[chan_idx_R];
472 1.1 alc kk = chan_idx_R - chan_idx_L;
473 1.1 alc
474 1.1 alc if (xgainList[1] == 0xDEAD) {
475 1.1 alc for (jj = 0; jj < 64; jj++) {
476 1.1 alc pwr_table0[jj] = interpolate_signed(
477 1.1 alc chan->channel, chan_L, chan_R,
478 1.1 alc powTableLXPD[0][jj], powTableLXPD[kk][jj]);
479 1.1 alc }
480 1.1 alc Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],
481 1.1 alc ahp->ah_pcdacTable);
482 1.1 alc *pPowerMin = (int16_t) (Pmin / 2);
483 1.1 alc *pPowerMid = (int16_t) (pwr_table0[63] / 2);
484 1.1 alc *pPowerMax = (int16_t) (pwr_table0[63] / 2);
485 1.1 alc rfXpdGain[0] = xgainList[0];
486 1.1 alc rfXpdGain[1] = rfXpdGain[0];
487 1.1 alc } else {
488 1.1 alc for (jj = 0; jj < 64; jj++) {
489 1.1 alc pwr_table0[jj] = interpolate_signed(
490 1.1 alc chan->channel, chan_L, chan_R,
491 1.1 alc powTableLXPD[0][jj], powTableLXPD[kk][jj]);
492 1.1 alc pwr_table1[jj] = interpolate_signed(
493 1.1 alc chan->channel, chan_L, chan_R,
494 1.1 alc powTableHXPD[0][jj], powTableHXPD[kk][jj]);
495 1.1 alc }
496 1.1 alc if (numXpdGain == 2) {
497 1.1 alc Pmin = getPminAndPcdacTableFromTwoPowerTables(
498 1.1 alc &pwr_table0[0], &pwr_table1[0],
499 1.1 alc ahp->ah_pcdacTable, &Pmid);
500 1.1 alc *pPowerMin = (int16_t) (Pmin / 2);
501 1.1 alc *pPowerMid = (int16_t) (Pmid / 2);
502 1.1 alc *pPowerMax = (int16_t) (pwr_table0[63] / 2);
503 1.1 alc rfXpdGain[0] = xgainList[0];
504 1.1 alc rfXpdGain[1] = xgainList[1];
505 1.1 alc } else if (minPwr_t4 <= pwr_table1[63] &&
506 1.1 alc maxPwr_t4 <= pwr_table1[63]) {
507 1.1 alc Pmin = getPminAndPcdacTableFromPowerTable(
508 1.1 alc &pwr_table1[0], ahp->ah_pcdacTable);
509 1.1 alc rfXpdGain[0] = xgainList[1];
510 1.1 alc rfXpdGain[1] = rfXpdGain[0];
511 1.1 alc *pPowerMin = (int16_t) (Pmin / 2);
512 1.1 alc *pPowerMid = (int16_t) (pwr_table1[63] / 2);
513 1.1 alc *pPowerMax = (int16_t) (pwr_table1[63] / 2);
514 1.1 alc } else {
515 1.1 alc Pmin = getPminAndPcdacTableFromPowerTable(
516 1.1 alc &pwr_table0[0], ahp->ah_pcdacTable);
517 1.1 alc rfXpdGain[0] = xgainList[0];
518 1.1 alc rfXpdGain[1] = rfXpdGain[0];
519 1.1 alc *pPowerMin = (int16_t) (Pmin/2);
520 1.1 alc *pPowerMid = (int16_t) (pwr_table0[63] / 2);
521 1.1 alc *pPowerMax = (int16_t) (pwr_table0[63] / 2);
522 1.1 alc }
523 1.1 alc }
524 1.1 alc
525 1.1 alc /*
526 1.1 alc * Move 5112 rates to match power tables where the max
527 1.1 alc * power table entry corresponds with maxPower.
528 1.1 alc */
529 1.1 alc HALASSERT(*pPowerMax <= PCDAC_STOP);
530 1.1 alc ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;
531 1.1 alc
532 1.1 alc return AH_TRUE;
533 1.1 alc }
534 1.1 alc
535 1.1 alc /*
536 1.1 alc * Returns interpolated or the scaled up interpolated value
537 1.1 alc */
538 1.1 alc static int16_t
539 1.1 alc interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
540 1.1 alc int16_t targetLeft, int16_t targetRight)
541 1.1 alc {
542 1.1 alc int16_t rv;
543 1.1 alc
544 1.1 alc if (srcRight != srcLeft) {
545 1.1 alc rv = ((target - srcLeft)*targetRight +
546 1.1 alc (srcRight - target)*targetLeft) / (srcRight - srcLeft);
547 1.1 alc } else {
548 1.1 alc rv = targetLeft;
549 1.1 alc }
550 1.1 alc return rv;
551 1.1 alc }
552 1.1 alc
553 1.1 alc /*
554 1.1 alc * Return indices surrounding the value in sorted integer lists.
555 1.1 alc *
556 1.1 alc * NB: the input list is assumed to be sorted in ascending order
557 1.1 alc */
558 1.1 alc static void
559 1.1 alc ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,
560 1.1 alc uint32_t *vlo, uint32_t *vhi)
561 1.1 alc {
562 1.1 alc uint32_t target = v;
563 1.1 alc uint16_t *ep = lp+listSize;
564 1.1 alc uint16_t *tp;
565 1.1 alc
566 1.1 alc /*
567 1.1 alc * Check first and last elements for out-of-bounds conditions.
568 1.1 alc */
569 1.1 alc if (target < lp[0]) {
570 1.1 alc *vlo = *vhi = 0;
571 1.1 alc return;
572 1.1 alc }
573 1.1 alc if (target >= ep[-1]) {
574 1.1 alc *vlo = *vhi = listSize - 1;
575 1.1 alc return;
576 1.1 alc }
577 1.1 alc
578 1.1 alc /* look for value being near or between 2 values in list */
579 1.1 alc for (tp = lp; tp < ep; tp++) {
580 1.1 alc /*
581 1.1 alc * If value is close to the current value of the list
582 1.1 alc * then target is not between values, it is one of the values
583 1.1 alc */
584 1.1 alc if (*tp == target) {
585 1.1 alc *vlo = *vhi = tp - lp;
586 1.1 alc return;
587 1.1 alc }
588 1.1 alc /*
589 1.1 alc * Look for value being between current value and next value
590 1.1 alc * if so return these 2 values
591 1.1 alc */
592 1.1 alc if (target < tp[1]) {
593 1.1 alc *vlo = tp - lp;
594 1.1 alc *vhi = *vlo + 1;
595 1.1 alc return;
596 1.1 alc }
597 1.1 alc }
598 1.1 alc }
599 1.1 alc
600 1.1 alc static HAL_BOOL
601 1.1 alc getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)
602 1.1 alc {
603 1.1 alc uint16_t ii;
604 1.1 alc uint16_t idxL = 0;
605 1.1 alc uint16_t idxR = 1;
606 1.1 alc
607 1.1 alc if (numPcdacs < 2) {
608 1.1 alc HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
609 1.1 alc "%s: at least 2 pcdac values needed [%d]\n",
610 1.1 alc __func__, numPcdacs);
611 1.1 alc return AH_FALSE;
612 1.1 alc }
613 1.1 alc for (ii = 0; ii < 64; ii++) {
614 1.1 alc if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {
615 1.1 alc idxL++;
616 1.1 alc idxR++;
617 1.1 alc }
618 1.1 alc retVals[ii] = interpolate_signed(ii,
619 1.1 alc pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);
620 1.1 alc if (retVals[ii] >= maxPower) {
621 1.1 alc while (ii < 64)
622 1.1 alc retVals[ii++] = maxPower;
623 1.1 alc }
624 1.1 alc }
625 1.1 alc return AH_TRUE;
626 1.1 alc }
627 1.1 alc
628 1.1 alc /*
629 1.1 alc * Takes a single calibration curve and creates a power table.
630 1.1 alc * Adjusts the new power table so the max power is relative
631 1.1 alc * to the maximum index in the power table.
632 1.1 alc *
633 1.1 alc * WARNING: rates must be adjusted for this relative power table
634 1.1 alc */
635 1.1 alc static int16_t
636 1.1 alc getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])
637 1.1 alc {
638 1.1 alc int16_t ii, jj, jjMax;
639 1.1 alc int16_t pMin, currPower, pMax;
640 1.1 alc
641 1.1 alc /* If the spread is > 31.5dB, keep the upper 31.5dB range */
642 1.1 alc if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {
643 1.1 alc pMin = pwrTableT4[63] - 126;
644 1.1 alc } else {
645 1.1 alc pMin = pwrTableT4[0];
646 1.1 alc }
647 1.1 alc
648 1.1 alc pMax = pwrTableT4[63];
649 1.1 alc jjMax = 63;
650 1.1 alc
651 1.1 alc /* Search for highest pcdac 0.25dB below maxPower */
652 1.1 alc while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {
653 1.1 alc jjMax--;
654 1.1 alc }
655 1.1 alc
656 1.1 alc jj = jjMax;
657 1.1 alc currPower = pMax;
658 1.1 alc for (ii = 63; ii >= 0; ii--) {
659 1.1 alc while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {
660 1.1 alc jj--;
661 1.1 alc }
662 1.1 alc if (jj == 0) {
663 1.1 alc while (ii >= 0) {
664 1.1 alc retVals[ii] = retVals[ii + 1];
665 1.1 alc ii--;
666 1.1 alc }
667 1.1 alc break;
668 1.1 alc }
669 1.1 alc retVals[ii] = jj;
670 1.1 alc currPower -= 2; // corresponds to a 0.5dB step
671 1.1 alc }
672 1.1 alc return pMin;
673 1.1 alc }
674 1.1 alc
675 1.1 alc /*
676 1.1 alc * Combines the XPD curves from two calibration sets into a single
677 1.1 alc * power table and adjusts the power table so the max power is relative
678 1.1 alc * to the maximum index in the power table
679 1.1 alc *
680 1.1 alc * WARNING: rates must be adjusted for this relative power table
681 1.1 alc */
682 1.1 alc static int16_t
683 1.1 alc getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
684 1.1 alc int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)
685 1.1 alc {
686 1.1 alc int16_t ii, jj, jjMax;
687 1.1 alc int16_t pMin, pMax, currPower;
688 1.1 alc int16_t *pwrTableT4;
689 1.1 alc uint16_t msbFlag = 0x40; // turns on the 7th bit of the pcdac
690 1.1 alc
691 1.1 alc /* If the spread is > 31.5dB, keep the upper 31.5dB range */
692 1.1 alc if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {
693 1.1 alc pMin = pwrTableLXpdT4[63] - 126;
694 1.1 alc } else {
695 1.1 alc pMin = pwrTableHXpdT4[0];
696 1.1 alc }
697 1.1 alc
698 1.1 alc pMax = pwrTableLXpdT4[63];
699 1.1 alc jjMax = 63;
700 1.1 alc /* Search for highest pcdac 0.25dB below maxPower */
701 1.1 alc while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){
702 1.1 alc jjMax--;
703 1.1 alc }
704 1.1 alc
705 1.1 alc *pMid = pwrTableHXpdT4[63];
706 1.1 alc jj = jjMax;
707 1.1 alc ii = 63;
708 1.1 alc currPower = pMax;
709 1.1 alc pwrTableT4 = &(pwrTableLXpdT4[0]);
710 1.1 alc while (ii >= 0) {
711 1.1 alc if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){
712 1.1 alc msbFlag = 0x00;
713 1.1 alc pwrTableT4 = &(pwrTableHXpdT4[0]);
714 1.1 alc jj = 63;
715 1.1 alc }
716 1.1 alc while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {
717 1.1 alc jj--;
718 1.1 alc }
719 1.1 alc if ((jj == 0) && (msbFlag == 0x00)) {
720 1.1 alc while (ii >= 0) {
721 1.1 alc retVals[ii] = retVals[ii+1];
722 1.1 alc ii--;
723 1.1 alc }
724 1.1 alc break;
725 1.1 alc }
726 1.1 alc retVals[ii] = jj | msbFlag;
727 1.1 alc currPower -= 2; // corresponds to a 0.5dB step
728 1.1 alc ii--;
729 1.1 alc }
730 1.1 alc return pMin;
731 1.1 alc }
732 1.1 alc
733 1.1 alc static int16_t
734 1.1 alc ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)
735 1.1 alc {
736 1.1 alc int i, minIndex;
737 1.1 alc int16_t minGain,minPwr,minPcdac,retVal;
738 1.1 alc
739 1.1 alc /* Assume NUM_POINTS_XPD0 > 0 */
740 1.1 alc minGain = data->pDataPerXPD[0].xpd_gain;
741 1.1 alc for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
742 1.1 alc if (data->pDataPerXPD[i].xpd_gain < minGain) {
743 1.1 alc minIndex = i;
744 1.1 alc minGain = data->pDataPerXPD[i].xpd_gain;
745 1.1 alc }
746 1.1 alc }
747 1.1 alc minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
748 1.1 alc minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
749 1.1 alc for (i=1; i<NUM_POINTS_XPD0; i++) {
750 1.1 alc if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
751 1.1 alc minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
752 1.1 alc minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
753 1.1 alc }
754 1.1 alc }
755 1.1 alc retVal = minPwr - (minPcdac*2);
756 1.1 alc return(retVal);
757 1.1 alc }
758 1.1 alc
759 1.1 alc static HAL_BOOL
760 1.1 alc ar5112GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
761 1.1 alc int16_t *maxPow, int16_t *minPow)
762 1.1 alc {
763 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
764 1.1 alc int numChannels=0,i,last;
765 1.1 alc int totalD, totalF,totalMin;
766 1.1 alc const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
767 1.1 alc const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
768 1.1 alc
769 1.1 alc *maxPow = 0;
770 1.1 alc if (IS_CHAN_A(chan)) {
771 1.1 alc powerArray = ee->ee_modePowerArray5112;
772 1.1 alc data = powerArray[headerInfo11A].pDataPerChannel;
773 1.1 alc numChannels = powerArray[headerInfo11A].numChannels;
774 1.1 alc } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
775 1.1 alc /* XXX - is this correct? Should we also use the same power for turbo G? */
776 1.1 alc powerArray = ee->ee_modePowerArray5112;
777 1.1 alc data = powerArray[headerInfo11G].pDataPerChannel;
778 1.1 alc numChannels = powerArray[headerInfo11G].numChannels;
779 1.1 alc } else if (IS_CHAN_B(chan)) {
780 1.1 alc powerArray = ee->ee_modePowerArray5112;
781 1.1 alc data = powerArray[headerInfo11B].pDataPerChannel;
782 1.1 alc numChannels = powerArray[headerInfo11B].numChannels;
783 1.1 alc } else {
784 1.1 alc return (AH_TRUE);
785 1.1 alc }
786 1.1 alc /* Make sure the channel is in the range of the TP values
787 1.1 alc * (freq piers)
788 1.1 alc */
789 1.1 alc if (numChannels < 1)
790 1.1 alc return(AH_FALSE);
791 1.1 alc
792 1.1 alc if ((chan->channel < data[0].channelValue) ||
793 1.1 alc (chan->channel > data[numChannels-1].channelValue)) {
794 1.1 alc if (chan->channel < data[0].channelValue) {
795 1.1 alc *maxPow = data[0].maxPower_t4;
796 1.1 alc *minPow = ar5112GetMinPower(ah, &data[0]);
797 1.1 alc return(AH_TRUE);
798 1.1 alc } else {
799 1.1 alc *maxPow = data[numChannels - 1].maxPower_t4;
800 1.1 alc *minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);
801 1.1 alc return(AH_TRUE);
802 1.1 alc }
803 1.1 alc }
804 1.1 alc
805 1.1 alc /* Linearly interpolate the power value now */
806 1.1 alc for (last=0,i=0;
807 1.1 alc (i<numChannels) && (chan->channel > data[i].channelValue);
808 1.1 alc last=i++);
809 1.1 alc totalD = data[i].channelValue - data[last].channelValue;
810 1.1 alc if (totalD > 0) {
811 1.1 alc totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
812 1.1 alc *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
813 1.1 alc
814 1.1 alc totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);
815 1.1 alc *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);
816 1.1 alc return (AH_TRUE);
817 1.1 alc } else {
818 1.1 alc if (chan->channel == data[i].channelValue) {
819 1.1 alc *maxPow = data[i].maxPower_t4;
820 1.1 alc *minPow = ar5112GetMinPower(ah, &data[i]);
821 1.1 alc return(AH_TRUE);
822 1.1 alc } else
823 1.1 alc return(AH_FALSE);
824 1.1 alc }
825 1.1 alc }
826 1.1 alc
827 1.1 alc /*
828 1.1 alc * Free memory for analog bank scratch buffers
829 1.1 alc */
830 1.1 alc static void
831 1.1 alc ar5112RfDetach(struct ath_hal *ah)
832 1.1 alc {
833 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
834 1.1 alc
835 1.1 alc HALASSERT(ahp->ah_rfHal != AH_NULL);
836 1.1 alc ath_hal_free(ahp->ah_rfHal);
837 1.1 alc ahp->ah_rfHal = AH_NULL;
838 1.1 alc }
839 1.1 alc
840 1.1 alc /*
841 1.1 alc * Allocate memory for analog bank scratch buffers
842 1.1 alc * Scratch Buffer will be reinitialized every reset so no need to zero now
843 1.1 alc */
844 1.1 alc static HAL_BOOL
845 1.1 alc ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)
846 1.1 alc {
847 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
848 1.1 alc struct ar5112State *priv;
849 1.1 alc
850 1.1 alc HALASSERT(ah->ah_magic == AR5212_MAGIC);
851 1.1 alc
852 1.1 alc HALASSERT(ahp->ah_rfHal == AH_NULL);
853 1.1 alc priv = ath_hal_malloc(sizeof(struct ar5112State));
854 1.1 alc if (priv == AH_NULL) {
855 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
856 1.1 alc "%s: cannot allocate private state\n", __func__);
857 1.1 alc *status = HAL_ENOMEM; /* XXX */
858 1.1 alc return AH_FALSE;
859 1.1 alc }
860 1.1 alc priv->base.rfDetach = ar5112RfDetach;
861 1.1 alc priv->base.writeRegs = ar5112WriteRegs;
862 1.1 alc priv->base.getRfBank = ar5112GetRfBank;
863 1.1 alc priv->base.setChannel = ar5112SetChannel;
864 1.1 alc priv->base.setRfRegs = ar5112SetRfRegs;
865 1.1 alc priv->base.setPowerTable = ar5112SetPowerTable;
866 1.1 alc priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;
867 1.1 alc priv->base.getNfAdjust = ar5212GetNfAdjust;
868 1.1 alc
869 1.1 alc ahp->ah_pcdacTable = priv->pcdacTable;
870 1.1 alc ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
871 1.1 alc ahp->ah_rfHal = &priv->base;
872 1.1 alc
873 1.1 alc return AH_TRUE;
874 1.1 alc }
875 1.1 alc
876 1.1 alc static HAL_BOOL
877 1.1 alc ar5112Probe(struct ath_hal *ah)
878 1.1 alc {
879 1.1 alc return IS_RAD5112(ah);
880 1.1 alc }
881 1.1 alc AH_RF(RF5112, ar5112Probe, ar5112RfAttach);
882