Home | History | Annotate | Line # | Download | only in ar5212
      1  1.1  alc /*
      2  1.1  alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  1.1  alc  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  1.1  alc  *
      5  1.1  alc  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.1  alc  * purpose with or without fee is hereby granted, provided that the above
      7  1.1  alc  * copyright notice and this permission notice appear in all copies.
      8  1.1  alc  *
      9  1.1  alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.1  alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.1  alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.1  alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.1  alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.1  alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.1  alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.1  alc  *
     17  1.1  alc  * $Id: ar5212_keycache.c,v 1.1.1.1 2008/12/11 04:46:40 alc Exp $
     18  1.1  alc  */
     19  1.1  alc #include "opt_ah.h"
     20  1.1  alc 
     21  1.1  alc #include "ah.h"
     22  1.1  alc #include "ah_internal.h"
     23  1.1  alc 
     24  1.1  alc #include "ar5212/ar5212.h"
     25  1.1  alc #include "ar5212/ar5212reg.h"
     26  1.1  alc #include "ar5212/ar5212desc.h"
     27  1.1  alc 
     28  1.1  alc /*
     29  1.1  alc  * Note: The key cache hardware requires that each double-word
     30  1.1  alc  * pair be written in even/odd order (since the destination is
     31  1.1  alc  * a 64-bit register).  Don't reorder the writes in this code
     32  1.1  alc  * w/o considering this!
     33  1.1  alc  */
     34  1.1  alc #define	KEY_XOR			0xaa
     35  1.1  alc 
     36  1.1  alc #define	IS_MIC_ENABLED(ah) \
     37  1.1  alc 	(AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE)
     38  1.1  alc 
     39  1.1  alc /*
     40  1.1  alc  * Return the size of the hardware key cache.
     41  1.1  alc  */
     42  1.1  alc uint32_t
     43  1.1  alc ar5212GetKeyCacheSize(struct ath_hal *ah)
     44  1.1  alc {
     45  1.1  alc 	return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
     46  1.1  alc }
     47  1.1  alc 
     48  1.1  alc /*
     49  1.1  alc  * Return true if the specific key cache entry is valid.
     50  1.1  alc  */
     51  1.1  alc HAL_BOOL
     52  1.1  alc ar5212IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
     53  1.1  alc {
     54  1.1  alc 	if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
     55  1.1  alc 		uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
     56  1.1  alc 		if (val & AR_KEYTABLE_VALID)
     57  1.1  alc 			return AH_TRUE;
     58  1.1  alc 	}
     59  1.1  alc 	return AH_FALSE;
     60  1.1  alc }
     61  1.1  alc 
     62  1.1  alc /*
     63  1.1  alc  * Clear the specified key cache entry and any associated MIC entry.
     64  1.1  alc  */
     65  1.1  alc HAL_BOOL
     66  1.1  alc ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
     67  1.1  alc {
     68  1.1  alc 	uint32_t keyType;
     69  1.1  alc 
     70  1.1  alc 	if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
     71  1.1  alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
     72  1.1  alc 		    __func__, entry);
     73  1.1  alc 		return AH_FALSE;
     74  1.1  alc 	}
     75  1.1  alc 	keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
     76  1.1  alc 
     77  1.1  alc 	/* XXX why not clear key type/valid bit first? */
     78  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
     79  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
     80  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
     81  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
     82  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
     83  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
     84  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
     85  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
     86  1.1  alc 	if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
     87  1.1  alc 		uint16_t micentry = entry+64;	/* MIC goes at slot+64 */
     88  1.1  alc 
     89  1.1  alc 		HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
     90  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
     91  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
     92  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
     93  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
     94  1.1  alc 		/* NB: key type and MAC are known to be ok */
     95  1.1  alc 	}
     96  1.1  alc 	return AH_TRUE;
     97  1.1  alc }
     98  1.1  alc 
     99  1.1  alc /*
    100  1.1  alc  * Sets the mac part of the specified key cache entry (and any
    101  1.1  alc  * associated MIC entry) and mark them valid.
    102  1.1  alc  */
    103  1.1  alc HAL_BOOL
    104  1.1  alc ar5212SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
    105  1.1  alc {
    106  1.1  alc 	uint32_t macHi, macLo;
    107  1.1  alc 
    108  1.1  alc 	if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
    109  1.1  alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
    110  1.1  alc 		    __func__, entry);
    111  1.1  alc 		return AH_FALSE;
    112  1.1  alc 	}
    113  1.1  alc 	/*
    114  1.1  alc 	 * Set MAC address -- shifted right by 1.  MacLo is
    115  1.1  alc 	 * the 4 MSBs, and MacHi is the 2 LSBs.
    116  1.1  alc 	 */
    117  1.1  alc 	if (mac != AH_NULL) {
    118  1.1  alc 		macHi = (mac[5] << 8) | mac[4];
    119  1.1  alc 		macLo = (mac[3] << 24)| (mac[2] << 16)
    120  1.1  alc 		      | (mac[1] << 8) | mac[0];
    121  1.1  alc 		macLo >>= 1;
    122  1.1  alc 		macLo |= (macHi & 1) << 31;	/* carry */
    123  1.1  alc 		macHi >>= 1;
    124  1.1  alc 	} else {
    125  1.1  alc 		macLo = macHi = 0;
    126  1.1  alc 	}
    127  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
    128  1.1  alc 	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
    129  1.1  alc 	return AH_TRUE;
    130  1.1  alc }
    131  1.1  alc 
    132  1.1  alc /*
    133  1.1  alc  * Sets the contents of the specified key cache entry
    134  1.1  alc  * and any associated MIC entry.
    135  1.1  alc  */
    136  1.1  alc HAL_BOOL
    137  1.1  alc ar5212SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
    138  1.1  alc                        const HAL_KEYVAL *k, const uint8_t *mac,
    139  1.1  alc                        int xorKey)
    140  1.1  alc {
    141  1.1  alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    142  1.1  alc 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
    143  1.1  alc 	uint32_t key0, key1, key2, key3, key4;
    144  1.1  alc 	uint32_t keyType;
    145  1.1  alc 	uint32_t xorMask = xorKey ?
    146  1.1  alc 		(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
    147  1.1  alc 
    148  1.1  alc 	if (entry >= pCap->halKeyCacheSize) {
    149  1.1  alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
    150  1.1  alc 		    __func__, entry);
    151  1.1  alc 		return AH_FALSE;
    152  1.1  alc 	}
    153  1.1  alc 	switch (k->kv_type) {
    154  1.1  alc 	case HAL_CIPHER_AES_OCB:
    155  1.1  alc 		keyType = AR_KEYTABLE_TYPE_AES;
    156  1.1  alc 		break;
    157  1.1  alc 	case HAL_CIPHER_AES_CCM:
    158  1.1  alc 		if (!pCap->halCipherAesCcmSupport) {
    159  1.1  alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
    160  1.1  alc 			    "%s: AES-CCM not supported by mac rev 0x%x\n",
    161  1.1  alc 			    __func__, AH_PRIVATE(ah)->ah_macRev);
    162  1.1  alc 			return AH_FALSE;
    163  1.1  alc 		}
    164  1.1  alc 		keyType = AR_KEYTABLE_TYPE_CCM;
    165  1.1  alc 		break;
    166  1.1  alc 	case HAL_CIPHER_TKIP:
    167  1.1  alc 		keyType = AR_KEYTABLE_TYPE_TKIP;
    168  1.1  alc 		if (IS_MIC_ENABLED(ah) && entry+64 >= pCap->halKeyCacheSize) {
    169  1.1  alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
    170  1.1  alc 			    "%s: entry %u inappropriate for TKIP\n",
    171  1.1  alc 			    __func__, entry);
    172  1.1  alc 			return AH_FALSE;
    173  1.1  alc 		}
    174  1.1  alc 		break;
    175  1.1  alc 	case HAL_CIPHER_WEP:
    176  1.1  alc 		if (k->kv_len < 40 / NBBY) {
    177  1.1  alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
    178  1.1  alc 			    "%s: WEP key length %u too small\n",
    179  1.1  alc 			    __func__, k->kv_len);
    180  1.1  alc 			return AH_FALSE;
    181  1.1  alc 		}
    182  1.1  alc 		if (k->kv_len <= 40 / NBBY)
    183  1.1  alc 			keyType = AR_KEYTABLE_TYPE_40;
    184  1.1  alc 		else if (k->kv_len <= 104 / NBBY)
    185  1.1  alc 			keyType = AR_KEYTABLE_TYPE_104;
    186  1.1  alc 		else
    187  1.1  alc 			keyType = AR_KEYTABLE_TYPE_128;
    188  1.1  alc 		break;
    189  1.1  alc 	case HAL_CIPHER_CLR:
    190  1.1  alc 		keyType = AR_KEYTABLE_TYPE_CLR;
    191  1.1  alc 		break;
    192  1.1  alc 	default:
    193  1.1  alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
    194  1.1  alc 		    __func__, k->kv_type);
    195  1.1  alc 		return AH_FALSE;
    196  1.1  alc 	}
    197  1.1  alc 
    198  1.1  alc 	key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
    199  1.1  alc 	key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
    200  1.1  alc 	key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
    201  1.1  alc 	key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
    202  1.1  alc 	key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
    203  1.1  alc 	if (k->kv_len <= 104 / NBBY)
    204  1.1  alc 		key4 &= 0xff;
    205  1.1  alc 
    206  1.1  alc 	/*
    207  1.1  alc 	 * Note: key cache hardware requires that each double-word
    208  1.1  alc 	 * pair be written in even/odd order (since the destination is
    209  1.1  alc 	 * a 64-bit register).  Don't reorder these writes w/o
    210  1.1  alc 	 * considering this!
    211  1.1  alc 	 */
    212  1.1  alc 	if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
    213  1.1  alc 		uint16_t micentry = entry+64;	/* MIC goes at slot+64 */
    214  1.1  alc 		uint32_t mic0, mic1, mic2, mic3, mic4;
    215  1.1  alc 
    216  1.1  alc 		/*
    217  1.1  alc 		 * Invalidate the encrypt/decrypt key until the MIC
    218  1.1  alc 		 * key is installed so pending rx frames will fail
    219  1.1  alc 		 * with decrypt errors rather than a MIC error.
    220  1.1  alc 		 */
    221  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
    222  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
    223  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
    224  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
    225  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
    226  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
    227  1.1  alc 		(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
    228  1.1  alc 
    229  1.1  alc 
    230  1.1  alc 		/*
    231  1.1  alc 		 * Write MIC entry according to new or old key layout.
    232  1.1  alc 		 * The MISC_MODE register is assumed already set so
    233  1.1  alc 		 * these writes will be handled properly (happens on
    234  1.1  alc 		 * attach and at every reset).
    235  1.1  alc 		 */
    236  1.1  alc 		/* RX mic */
    237  1.1  alc 		mic0 = LE_READ_4(k->kv_mic+0);
    238  1.1  alc 		mic2 = LE_READ_4(k->kv_mic+4);
    239  1.1  alc 		if (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) {
    240  1.1  alc 			/*
    241  1.1  alc 			 * Both RX and TX mic values can be combined into
    242  1.1  alc 			 * one cache slot entry:
    243  1.1  alc 			 *  8*N + 800         31:0    RX Michael key 0
    244  1.1  alc 			 *  8*N + 804         15:0    TX Michael key 0 [31:16]
    245  1.1  alc 			 *  8*N + 808         31:0    RX Michael key 1
    246  1.1  alc 			 *  8*N + 80C         15:0    TX Michael key 0 [15:0]
    247  1.1  alc 			 *  8*N + 810         31:0    TX Michael key 1
    248  1.1  alc 			 *  8*N + 814         15:0    reserved
    249  1.1  alc 			 *  8*N + 818         31:0    reserved
    250  1.1  alc 			 *  8*N + 81C         14:0    reserved
    251  1.1  alc 			 *                    15      key valid == 0
    252  1.1  alc 			 */
    253  1.1  alc 			/* TX mic */
    254  1.1  alc 			mic1 = LE_READ_2(k->kv_txmic+2) & 0xffff;
    255  1.1  alc 			mic3 = LE_READ_2(k->kv_txmic+0) & 0xffff;
    256  1.1  alc 			mic4 = LE_READ_4(k->kv_txmic+4);
    257  1.1  alc 		} else {
    258  1.1  alc 			mic1 = mic3 = mic4 = 0;
    259  1.1  alc 		}
    260  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
    261  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
    262  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
    263  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
    264  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
    265  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
    266  1.1  alc 			AR_KEYTABLE_TYPE_CLR);
    267  1.1  alc 		/* NB: MIC key is not marked valid and has no MAC address */
    268  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
    269  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
    270  1.1  alc 
    271  1.1  alc 		/* correct intentionally corrupted key */
    272  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
    273  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
    274  1.1  alc 	} else {
    275  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
    276  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
    277  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
    278  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
    279  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
    280  1.1  alc 		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
    281  1.1  alc 
    282  1.1  alc 		(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
    283  1.1  alc 	}
    284  1.1  alc 	return AH_TRUE;
    285  1.1  alc }
    286