Home | History | Annotate | Line # | Download | only in ar5212
      1  1.1       alc /*
      2  1.1       alc  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  1.1       alc  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  1.1       alc  *
      5  1.1       alc  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.1       alc  * purpose with or without fee is hereby granted, provided that the above
      7  1.1       alc  * copyright notice and this permission notice appear in all copies.
      8  1.1       alc  *
      9  1.1       alc  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.1       alc  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.1       alc  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.1       alc  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.1       alc  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.1       alc  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.1       alc  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.1       alc  *
     17  1.5     joerg  * $Id: ar5212_reset.c,v 1.5 2014/02/27 01:31:09 joerg Exp $
     18  1.1       alc  */
     19  1.1       alc #include "opt_ah.h"
     20  1.1       alc 
     21  1.1       alc #include "ah.h"
     22  1.1       alc #include "ah_internal.h"
     23  1.1       alc #include "ah_devid.h"
     24  1.1       alc 
     25  1.1       alc #include "ar5212/ar5212.h"
     26  1.1       alc #include "ar5212/ar5212reg.h"
     27  1.1       alc #include "ar5212/ar5212phy.h"
     28  1.1       alc 
     29  1.1       alc #include "ah_eeprom_v3.h"
     30  1.1       alc 
     31  1.1       alc /* Additional Time delay to wait after activiting the Base band */
     32  1.1       alc #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
     33  1.1       alc #define PLL_SETTLE_DELAY	300	/* 300 usec */
     34  1.1       alc 
     35  1.1       alc static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
     36  1.1       alc /* NB: public for 5312 use */
     37  1.1       alc HAL_BOOL	ar5212IsSpurChannel(struct ath_hal *, HAL_CHANNEL *);
     38  1.1       alc HAL_BOOL	ar5212ChannelChange(struct ath_hal *, HAL_CHANNEL *);
     39  1.1       alc int16_t		ar5212GetNf(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
     40  1.1       alc HAL_BOOL	ar5212SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
     41  1.1       alc void		ar5212SetDeltaSlope(struct ath_hal *, HAL_CHANNEL *);
     42  1.1       alc HAL_BOOL	ar5212SetTransmitPower(struct ath_hal *ah,
     43  1.1       alc 		HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
     44  1.1       alc static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
     45  1.1       alc 		   HAL_CHANNEL *, int16_t tpcScaleReduction, int16_t powerLimit,
     46  1.1       alc 		   HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
     47  1.1       alc static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
     48  1.1       alc static void ar5212GetTargetPowers(struct ath_hal *, HAL_CHANNEL *,
     49  1.1       alc 		   const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
     50  1.1       alc 		   TRGT_POWER_INFO *pNewPower);
     51  1.1       alc static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
     52  1.1       alc 		   const RD_EDGES_POWER  *pRdEdgesPower);
     53  1.1       alc void		ar5212SetRateDurationTable(struct ath_hal *, HAL_CHANNEL *);
     54  1.1       alc void		ar5212SetIFSTiming(struct ath_hal *, HAL_CHANNEL *);
     55  1.1       alc 
     56  1.1       alc /* NB: public for RF backend use */
     57  1.1       alc void		ar5212GetLowerUpperValues(uint16_t value,
     58  1.1       alc 		   uint16_t *pList, uint16_t listSize,
     59  1.1       alc 		   uint16_t *pLowerValue, uint16_t *pUpperValue);
     60  1.1       alc void		ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     61  1.1       alc 		   uint32_t numBits, uint32_t firstBit, uint32_t column);
     62  1.1       alc 
     63  1.1       alc static int
     64  1.1       alc write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
     65  1.1       alc 	HAL_BOOL bChannelChange, int writes)
     66  1.1       alc {
     67  1.1       alc #define IS_NO_RESET_TIMER_ADDR(x)                      \
     68  1.1       alc     ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
     69  1.1       alc       (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
     70  1.1       alc #define	V(r, c)	(ia)->data[((r)*(ia)->cols) + (c)]
     71  1.1       alc 	int r;
     72  1.1       alc 
     73  1.1       alc 	/* Write Common Array Parameters */
     74  1.1       alc 	for (r = 0; r < ia->rows; r++) {
     75  1.1       alc 		uint32_t reg = V(r, 0);
     76  1.1       alc 		/* XXX timer/beacon setup registers? */
     77  1.1       alc 		/* On channel change, don't reset the PCU registers */
     78  1.1       alc 		if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
     79  1.1       alc 			OS_REG_WRITE(ah, reg, V(r, 1));
     80  1.1       alc 			DMA_YIELD(writes);
     81  1.1       alc 		}
     82  1.1       alc 	}
     83  1.1       alc 	return writes;
     84  1.1       alc #undef IS_NO_RESET_TIMER_ADDR
     85  1.1       alc #undef V
     86  1.1       alc }
     87  1.1       alc 
     88  1.1       alc #define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
     89  1.1       alc 
     90  1.1       alc /*
     91  1.1       alc  * Places the device in and out of reset and then places sane
     92  1.1       alc  * values in the registers based on EEPROM config, initialization
     93  1.1       alc  * vectors (as determined by the mode), and station configuration
     94  1.1       alc  *
     95  1.1       alc  * bChannelChange is used to preserve DMA/PCU registers across
     96  1.1       alc  * a HW Reset during channel change.
     97  1.1       alc  */
     98  1.1       alc HAL_BOOL
     99  1.1       alc ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
    100  1.1       alc 	HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
    101  1.1       alc {
    102  1.1       alc #define	N(a)	(sizeof (a) / sizeof (a[0]))
    103  1.1       alc #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
    104  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    105  1.1       alc 	HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
    106  1.1       alc 	const HAL_EEPROM *ee;
    107  1.1       alc 	uint32_t softLedCfg, softLedState;
    108  1.1       alc 	uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
    109  1.1       alc 	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
    110  1.1       alc 	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
    111  1.1       alc 	int16_t cckOfdmPwrDelta = 0;
    112  1.1       alc 	u_int modesIndex, freqIndex;
    113  1.1       alc 	HAL_STATUS ecode;
    114  1.1       alc 	int i, regWrites;
    115  1.1       alc 	uint32_t testReg, powerVal;
    116  1.1       alc 	int8_t twiceAntennaGain, twiceAntennaReduction;
    117  1.1       alc 	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
    118  1.1       alc 	HAL_BOOL isBmode = AH_FALSE;
    119  1.1       alc 	HAL_BOOL ichan_isBmode = AH_FALSE;
    120  1.1       alc 
    121  1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    122  1.1       alc 	ee = AH_PRIVATE(ah)->ah_eeprom;
    123  1.1       alc 
    124  1.1       alc 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
    125  1.1       alc #define	IS(_c,_f)	(((_c)->channelFlags & _f) || 0)
    126  1.1       alc 	if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
    127  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    128  1.1       alc 		    "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
    129  1.1       alc 		    __func__, chan->channel, chan->channelFlags);
    130  1.1       alc 		FAIL(HAL_EINVAL);
    131  1.1       alc 	}
    132  1.1       alc 	if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
    133  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    134  1.1       alc 		    "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
    135  1.1       alc 		    __func__, chan->channel, chan->channelFlags);
    136  1.1       alc 		FAIL(HAL_EINVAL);
    137  1.1       alc 	}
    138  1.1       alc #undef IS
    139  1.1       alc 
    140  1.1       alc 	/* Bring out of sleep mode */
    141  1.1       alc 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
    142  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
    143  1.1       alc 		    __func__);
    144  1.1       alc 		FAIL(HAL_EIO);
    145  1.1       alc 	}
    146  1.1       alc 
    147  1.1       alc 	/*
    148  1.1       alc 	 * Map public channel to private.
    149  1.1       alc 	 */
    150  1.1       alc 	ichan = ath_hal_checkchannel(ah, chan);
    151  1.1       alc 	if (ichan == AH_NULL) {
    152  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    153  1.1       alc 		    "%s: invalid channel %u/0x%x; no mapping\n",
    154  1.1       alc 		    __func__, chan->channel, chan->channelFlags);
    155  1.1       alc 		FAIL(HAL_EINVAL);
    156  1.1       alc 	}
    157  1.1       alc 	switch (opmode) {
    158  1.1       alc 	case HAL_M_STA:
    159  1.1       alc 	case HAL_M_IBSS:
    160  1.1       alc 	case HAL_M_HOSTAP:
    161  1.1       alc 	case HAL_M_MONITOR:
    162  1.1       alc 		break;
    163  1.1       alc 	default:
    164  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
    165  1.1       alc 		    __func__, opmode);
    166  1.1       alc 		FAIL(HAL_EINVAL);
    167  1.1       alc 		break;
    168  1.1       alc 	}
    169  1.1       alc 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
    170  1.1       alc 
    171  1.1       alc 	SAVE_CCK(ah, ichan, ichan_isBmode);
    172  1.1       alc 	SAVE_CCK(ah, chan, isBmode);
    173  1.1       alc 
    174  1.1       alc 	/* Preserve certain DMA hardware registers on a channel change */
    175  1.1       alc 	if (bChannelChange) {
    176  1.1       alc 		/*
    177  1.1       alc 		 * On Venice, the TSF is almost preserved across a reset;
    178  1.1       alc 		 * it requires doubling writes to the RESET_TSF
    179  1.1       alc 		 * bit in the AR_BEACON register; it also has the quirk
    180  1.1       alc 		 * of the TSF going back in time on the station (station
    181  1.1       alc 		 * latches onto the last beacon's tsf during a reset 50%
    182  1.1       alc 		 * of the times); the latter is not a problem for adhoc
    183  1.1       alc 		 * stations since as long as the TSF is behind, it will
    184  1.1       alc 		 * get resynchronized on receiving the next beacon; the
    185  1.1       alc 		 * TSF going backwards in time could be a problem for the
    186  1.1       alc 		 * sleep operation (supported on infrastructure stations
    187  1.1       alc 		 * only) - the best and most general fix for this situation
    188  1.1       alc 		 * is to resynchronize the various sleep/beacon timers on
    189  1.1       alc 		 * the receipt of the next beacon i.e. when the TSF itself
    190  1.1       alc 		 * gets resynchronized to the AP's TSF - power save is
    191  1.1       alc 		 * needed to be temporarily disabled until that time
    192  1.1       alc 		 *
    193  1.1       alc 		 * Need to save the sequence number to restore it after
    194  1.1       alc 		 * the reset!
    195  1.1       alc 		 */
    196  1.1       alc 		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
    197  1.1       alc 	} else
    198  1.1       alc 		saveFrameSeqCount = 0;		/* NB: silence compiler */
    199  1.1       alc #if 0
    200  1.1       alc 	/*
    201  1.1       alc 	 * XXX disable for now; this appears to sometimes cause OFDM
    202  1.1       alc 	 * XXX timing error floods when ani is enabled and bg scanning
    203  1.1       alc 	 * XXX kicks in
    204  1.1       alc 	 */
    205  1.1       alc 	/* If the channel change is across the same mode - perform a fast channel change */
    206  1.1       alc 	if (IS_2413(ah) || IS_5413(ah)) {
    207  1.1       alc 		/*
    208  1.1       alc 		 * Fast channel change can only be used when:
    209  1.1       alc 		 *  -channel change requested - so it's not the initial reset.
    210  1.1       alc 		 *  -it's not a change to the current channel -
    211  1.1       alc 		 *	often called when switching modes on a channel
    212  1.1       alc 		 *  -the modes of the previous and requested channel are the
    213  1.1       alc 		 *	same
    214  1.1       alc 		 * XXX opmode shouldn't change either?
    215  1.1       alc 		 */
    216  1.1       alc 		if (bChannelChange &&
    217  1.1       alc 		    (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
    218  1.1       alc 		    (chan->channel != AH_PRIVATE(ah)->ah_curchan->channel) &&
    219  1.1       alc 		    ((chan->channelFlags & CHANNEL_ALL) ==
    220  1.1       alc 		     (AH_PRIVATE(ah)->ah_curchan->channelFlags & CHANNEL_ALL))) {
    221  1.1       alc 			if (ar5212ChannelChange(ah, chan)) {
    222  1.1       alc 				/* If ChannelChange completed - skip the rest of reset */
    223  1.1       alc 				/* XXX ani? */
    224  1.1       alc 				return AH_TRUE;
    225  1.1       alc 			}
    226  1.1       alc 		}
    227  1.1       alc 	}
    228  1.1       alc #endif
    229  1.1       alc 	/*
    230  1.1       alc 	 * Preserve the antenna on a channel change
    231  1.1       alc 	 */
    232  1.1       alc 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
    233  1.1       alc 	if (saveDefAntenna == 0)		/* XXX magic constants */
    234  1.1       alc 		saveDefAntenna = 1;
    235  1.1       alc 
    236  1.1       alc 	/* Save hardware flag before chip reset clears the register */
    237  1.1       alc 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
    238  1.1       alc 		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
    239  1.1       alc 
    240  1.1       alc 	/* Save led state from pci config register */
    241  1.1       alc 	saveLedState = OS_REG_READ(ah, AR_PCICFG) &
    242  1.1       alc 		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
    243  1.1       alc 		 AR_PCICFG_LEDSLOW);
    244  1.1       alc 	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
    245  1.1       alc 	softLedState = OS_REG_READ(ah, AR_GPIODO);
    246  1.1       alc 
    247  1.1       alc 	ar5212RestoreClock(ah, opmode);		/* move to refclk operation */
    248  1.1       alc 
    249  1.1       alc 	/*
    250  1.1       alc 	 * Adjust gain parameters before reset if
    251  1.1       alc 	 * there's an outstanding gain updated.
    252  1.1       alc 	 */
    253  1.1       alc 	(void) ar5212GetRfgain(ah);
    254  1.1       alc 
    255  1.1       alc 	if (!ar5212ChipReset(ah, chan)) {
    256  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
    257  1.1       alc 		FAIL(HAL_EIO);
    258  1.1       alc 	}
    259  1.1       alc 
    260  1.1       alc 	/* Setup the indices for the next set of register array writes */
    261  1.1       alc 	switch (chan->channelFlags & CHANNEL_ALL) {
    262  1.1       alc 	case CHANNEL_A:
    263  1.1       alc 		modesIndex = 1;
    264  1.1       alc 		freqIndex  = 1;
    265  1.1       alc 		break;
    266  1.1       alc 	case CHANNEL_T:
    267  1.1       alc 		modesIndex = 2;
    268  1.1       alc 		freqIndex  = 1;
    269  1.1       alc 		break;
    270  1.1       alc 	case CHANNEL_B:
    271  1.1       alc 		modesIndex = 3;
    272  1.1       alc 		freqIndex  = 2;
    273  1.1       alc 		break;
    274  1.1       alc 	case CHANNEL_PUREG:
    275  1.1       alc 		modesIndex = 4;
    276  1.1       alc 		freqIndex  = 2;
    277  1.1       alc 		break;
    278  1.1       alc 	case CHANNEL_108G:
    279  1.1       alc 		modesIndex = 5;
    280  1.1       alc 		freqIndex  = 2;
    281  1.1       alc 		break;
    282  1.1       alc 	default:
    283  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    284  1.1       alc 		    __func__, chan->channelFlags);
    285  1.1       alc 		FAIL(HAL_EINVAL);
    286  1.1       alc 	}
    287  1.1       alc 
    288  1.1       alc 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    289  1.1       alc 
    290  1.1       alc 	/* Set correct Baseband to analog shift setting to access analog chips. */
    291  1.1       alc 	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
    292  1.1       alc 
    293  1.1       alc 	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
    294  1.1       alc 	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
    295  1.1       alc 		regWrites);
    296  1.1       alc 	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
    297  1.1       alc 
    298  1.1       alc 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    299  1.1       alc 
    300  1.1       alc 	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) {
    301  1.1       alc 		ar5212SetIFSTiming(ah, chan);
    302  1.1       alc 		if (IS_5413(ah)) {
    303  1.1       alc 			/*
    304  1.1       alc 			 * Force window_length for 1/2 and 1/4 rate channels,
    305  1.1       alc 			 * the ini file sets this to zero otherwise.
    306  1.1       alc 			 */
    307  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
    308  1.1       alc 				AR_PHY_FRAME_CTL_WINLEN, 3);
    309  1.1       alc 		}
    310  1.1       alc 	}
    311  1.1       alc 
    312  1.1       alc 	/* Overwrite INI values for revised chipsets */
    313  1.1       alc 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
    314  1.1       alc 		/* ADC_CTL */
    315  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
    316  1.1       alc 			SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
    317  1.1       alc 			SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
    318  1.1       alc 			AR_PHY_ADC_CTL_OFF_PWDDAC |
    319  1.1       alc 			AR_PHY_ADC_CTL_OFF_PWDADC);
    320  1.1       alc 
    321  1.1       alc 		/* TX_PWR_ADJ */
    322  1.1       alc 		if (chan->channel == 2484) {
    323  1.1       alc 			cckOfdmPwrDelta = SCALE_OC_DELTA(
    324  1.1       alc 			    ee->ee_cckOfdmPwrDelta -
    325  1.1       alc 			    ee->ee_scaledCh14FilterCckDelta);
    326  1.1       alc 		} else {
    327  1.1       alc 			cckOfdmPwrDelta = SCALE_OC_DELTA(
    328  1.1       alc 			    ee->ee_cckOfdmPwrDelta);
    329  1.1       alc 		}
    330  1.1       alc 
    331  1.1       alc 		if (IS_CHAN_G(chan)) {
    332  1.1       alc 		    OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
    333  1.1       alc 			SM((ee->ee_cckOfdmPwrDelta*-1),
    334  1.1       alc 			    AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
    335  1.1       alc 			SM((cckOfdmPwrDelta*-1),
    336  1.1       alc 			    AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
    337  1.1       alc 		} else {
    338  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
    339  1.1       alc 		}
    340  1.1       alc 
    341  1.1       alc 		/* Add barker RSSI thresh enable as disabled */
    342  1.1       alc 		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
    343  1.1       alc 			AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
    344  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
    345  1.1       alc 			AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
    346  1.1       alc 
    347  1.1       alc 		/* Set the mute mask to the correct default */
    348  1.1       alc 		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
    349  1.1       alc 	}
    350  1.1       alc 
    351  1.1       alc 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
    352  1.1       alc 		/* Clear reg to alllow RX_CLEAR line debug */
    353  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
    354  1.1       alc 	}
    355  1.1       alc 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
    356  1.1       alc #ifdef notyet
    357  1.1       alc 		/* Enable burst prefetch for the data queues */
    358  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
    359  1.1       alc 		/* Enable double-buffering */
    360  1.1       alc 		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
    361  1.1       alc #endif
    362  1.1       alc 	}
    363  1.1       alc 
    364  1.1       alc 	/* Set ADC/DAC select values */
    365  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
    366  1.1       alc 
    367  1.1       alc 	if (IS_5413(ah) || IS_2417(ah)) {
    368  1.1       alc 		uint32_t newReg=1;
    369  1.1       alc 		if (IS_DISABLE_FAST_ADC_CHAN(chan->channel))
    370  1.1       alc 			newReg = 0;
    371  1.1       alc 		/* As it's a clock changing register, only write when the value needs to be changed */
    372  1.1       alc 		if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
    373  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
    374  1.1       alc 	}
    375  1.1       alc 
    376  1.1       alc 	/* Setup the transmit power values. */
    377  1.1       alc 	if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
    378  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    379  1.1       alc 		    "%s: error init'ing transmit power\n", __func__);
    380  1.1       alc 		FAIL(HAL_EIO);
    381  1.1       alc 	}
    382  1.1       alc 
    383  1.1       alc 	/* Write the analog registers */
    384  1.1       alc 	if (!ahp->ah_rfHal->setRfRegs(ah, ichan, modesIndex, rfXpdGain)) {
    385  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
    386  1.1       alc 		    __func__);
    387  1.1       alc 		FAIL(HAL_EIO);
    388  1.1       alc 	}
    389  1.1       alc 
    390  1.1       alc 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
    391  1.1       alc 	if (IS_CHAN_OFDM(chan)) {
    392  1.1       alc 		if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
    393  1.1       alc 		    (!IS_CHAN_B(chan)))
    394  1.1       alc 			ar5212SetSpurMitigation(ah, ichan);
    395  1.1       alc 		ar5212SetDeltaSlope(ah, chan);
    396  1.1       alc 	}
    397  1.1       alc 
    398  1.1       alc 	/* Setup board specific options for EEPROM version 3 */
    399  1.1       alc 	if (!ar5212SetBoardValues(ah, ichan)) {
    400  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    401  1.1       alc 		    "%s: error setting board options\n", __func__);
    402  1.1       alc 		FAIL(HAL_EIO);
    403  1.1       alc 	}
    404  1.1       alc 
    405  1.1       alc 	/* Restore certain DMA hardware registers on a channel change */
    406  1.1       alc 	if (bChannelChange)
    407  1.1       alc 		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
    408  1.1       alc 
    409  1.1       alc 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    410  1.1       alc 
    411  1.1       alc 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
    412  1.1       alc 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
    413  1.1       alc 		| macStaId1
    414  1.1       alc 		| AR_STA_ID1_RTS_USE_DEF
    415  1.1       alc 		| ahp->ah_staId1Defaults
    416  1.1       alc 	);
    417  1.1       alc 	ar5212SetOperatingMode(ah, opmode);
    418  1.1       alc 
    419  1.1       alc 	/* Set Venice BSSID mask according to current state */
    420  1.1       alc 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
    421  1.1       alc 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
    422  1.1       alc 
    423  1.1       alc 	/* Restore previous led state */
    424  1.1       alc 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
    425  1.1       alc 
    426  1.1       alc 	/* Restore soft Led state to GPIO */
    427  1.1       alc 	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
    428  1.1       alc 	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
    429  1.1       alc 
    430  1.1       alc 	/* Restore previous antenna */
    431  1.1       alc 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
    432  1.1       alc 
    433  1.1       alc 	/* then our BSSID */
    434  1.1       alc 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
    435  1.1       alc 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
    436  1.1       alc 
    437  1.1       alc 	/* Restore bmiss rssi & count thresholds */
    438  1.1       alc 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
    439  1.1       alc 
    440  1.1       alc 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
    441  1.1       alc 
    442  1.1       alc 	if (!ar5212SetChannel(ah, ichan))
    443  1.1       alc 		FAIL(HAL_EIO);
    444  1.1       alc 
    445  1.1       alc 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    446  1.1       alc 
    447  1.1       alc 	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
    448  1.1       alc 
    449  1.1       alc 	ar5212SetRateDurationTable(ah, chan);
    450  1.1       alc 
    451  1.1       alc 	/* Set Tx frame start to tx data start delay */
    452  1.1       alc 	if (IS_RAD5112_ANY(ah) &&
    453  1.1       alc 	    (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan) ||
    454  1.1       alc 	     IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan))) {
    455  1.1       alc 		txFrm2TxDStart =
    456  1.1       alc 			(IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) ?
    457  1.1       alc 					TX_FRAME_D_START_HALF_RATE:
    458  1.1       alc 					TX_FRAME_D_START_QUARTER_RATE;
    459  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
    460  1.1       alc 			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
    461  1.1       alc 	}
    462  1.1       alc 
    463  1.1       alc 	/*
    464  1.1       alc 	 * Setup fast diversity.
    465  1.1       alc 	 * Fast diversity can be enabled or disabled via regadd.txt.
    466  1.1       alc 	 * Default is enabled.
    467  1.1       alc 	 * For reference,
    468  1.1       alc 	 *    Disable: reg        val
    469  1.1       alc 	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
    470  1.1       alc 	 *             0x00009970 0x192bb514
    471  1.1       alc 	 *             0x0000a208 0xd03e4648
    472  1.1       alc 	 *
    473  1.1       alc 	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
    474  1.1       alc 	 *             0x00009970 0x192fb514
    475  1.1       alc 	 *             0x0000a208 0xd03e6788
    476  1.1       alc 	 */
    477  1.1       alc 
    478  1.1       alc 	/* XXX Setup pre PHY ENABLE EAR additions */
    479  1.1       alc 	/*
    480  1.1       alc 	 * Wait for the frequency synth to settle (synth goes on
    481  1.1       alc 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
    482  1.1       alc 	 * Value is in 100ns increments.
    483  1.1       alc 	 */
    484  1.1       alc 	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
    485  1.1       alc 	if (IS_CHAN_CCK(chan)) {
    486  1.1       alc 		synthDelay = (4 * synthDelay) / 22;
    487  1.1       alc 	} else {
    488  1.1       alc 		synthDelay /= 10;
    489  1.1       alc 	}
    490  1.1       alc 
    491  1.1       alc 	/* Activate the PHY (includes baseband activate and synthesizer on) */
    492  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
    493  1.1       alc 
    494  1.1       alc 	/*
    495  1.1       alc 	 * There is an issue if the AP starts the calibration before
    496  1.1       alc 	 * the base band timeout completes.  This could result in the
    497  1.1       alc 	 * rx_clear false triggering.  As a workaround we add delay an
    498  1.1       alc 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
    499  1.1       alc 	 * does not happen.
    500  1.1       alc 	 */
    501  1.1       alc 	if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
    502  1.1       alc 		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
    503  1.1       alc 	} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
    504  1.1       alc 		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
    505  1.1       alc 	} else {
    506  1.1       alc 		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
    507  1.1       alc 	}
    508  1.1       alc 
    509  1.1       alc 	/*
    510  1.1       alc 	 * The udelay method is not reliable with notebooks.
    511  1.1       alc 	 * Need to check to see if the baseband is ready
    512  1.1       alc 	 */
    513  1.1       alc 	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
    514  1.1       alc 	/* Selects the Tx hold */
    515  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
    516  1.1       alc 	i = 0;
    517  1.1       alc 	while ((i++ < 20) &&
    518  1.1       alc 	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
    519  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
    520  1.1       alc 
    521  1.1       alc 	/* Calibrate the AGC and start a NF calculation */
    522  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
    523  1.1       alc 		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
    524  1.1       alc 		| AR_PHY_AGC_CONTROL_CAL
    525  1.1       alc 		| AR_PHY_AGC_CONTROL_NF);
    526  1.1       alc 
    527  1.1       alc 	if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
    528  1.1       alc 		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
    529  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
    530  1.1       alc 			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
    531  1.1       alc 			INIT_IQCAL_LOG_COUNT_MAX);
    532  1.1       alc 		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
    533  1.1       alc 			AR_PHY_TIMING_CTRL4_DO_IQCAL);
    534  1.1       alc 		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
    535  1.1       alc 	} else
    536  1.1       alc 		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
    537  1.1       alc 
    538  1.1       alc 	/* Setup compression registers */
    539  1.1       alc 	ar5212SetCompRegs(ah);
    540  1.1       alc 
    541  1.1       alc 	/* Set 1:1 QCU to DCU mapping for all queues */
    542  1.1       alc 	for (i = 0; i < AR_NUM_DCU; i++)
    543  1.1       alc 		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
    544  1.1       alc 
    545  1.1       alc 	ahp->ah_intrTxqs = 0;
    546  1.1       alc 	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
    547  1.1       alc 		ar5212ResetTxQueue(ah, i);
    548  1.1       alc 
    549  1.1       alc 	/*
    550  1.1       alc 	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
    551  1.1       alc 	 * manipulates the secondary IMR's as queues are enabled
    552  1.1       alc 	 * and disabled.  This is done with RMW ops to insure the
    553  1.1       alc 	 * settings we make here are preserved.
    554  1.1       alc 	 */
    555  1.1       alc 	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
    556  1.1       alc 			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
    557  1.1       alc 			| AR_IMR_HIUERR
    558  1.1       alc 			;
    559  1.1       alc 	if (opmode == HAL_M_HOSTAP)
    560  1.1       alc 		ahp->ah_maskReg |= AR_IMR_MIB;
    561  1.1       alc 	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
    562  1.1       alc 	/* Enable bus errors that are OR'd to set the HIUERR bit */
    563  1.1       alc 	OS_REG_WRITE(ah, AR_IMR_S2,
    564  1.1       alc 		OS_REG_READ(ah, AR_IMR_S2)
    565  1.1       alc 		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
    566  1.1       alc 
    567  1.1       alc 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
    568  1.1       alc 		ar5212EnableRfKill(ah);
    569  1.1       alc 
    570  1.1       alc 	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
    571  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    572  1.1       alc 		    "%s: offset calibration failed to complete in 1ms;"
    573  1.1       alc 		    " noisy environment?\n", __func__);
    574  1.1       alc 	}
    575  1.1       alc 
    576  1.1       alc 	/*
    577  1.1       alc 	 * Set clocks back to 32kHz if they had been using refClk, then
    578  1.1       alc 	 * use an external 32kHz crystal when sleeping, if one exists.
    579  1.1       alc 	 */
    580  1.1       alc 	ar5212SetupClock(ah, opmode);
    581  1.1       alc 
    582  1.1       alc 	/*
    583  1.1       alc 	 * Writing to AR_BEACON will start timers. Hence it should
    584  1.1       alc 	 * be the last register to be written. Do not reset tsf, do
    585  1.1       alc 	 * not enable beacons at this point, but preserve other values
    586  1.1       alc 	 * like beaconInterval.
    587  1.1       alc 	 */
    588  1.1       alc 	OS_REG_WRITE(ah, AR_BEACON,
    589  1.1       alc 		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
    590  1.1       alc 
    591  1.1       alc 	/* XXX Setup post reset EAR additions */
    592  1.1       alc 
    593  1.1       alc 	/* QoS support */
    594  1.1       alc 	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
    595  1.1       alc 	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
    596  1.1       alc 	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
    597  1.1       alc 		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
    598  1.1       alc 		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
    599  1.1       alc 	}
    600  1.1       alc 
    601  1.1       alc 	/* Turn on NOACK Support for QoS packets */
    602  1.1       alc 	OS_REG_WRITE(ah, AR_NOACK,
    603  1.1       alc 		SM(2, AR_NOACK_2BIT_VALUE) |
    604  1.1       alc 		SM(5, AR_NOACK_BIT_OFFSET) |
    605  1.1       alc 		SM(0, AR_NOACK_BYTE_OFFSET));
    606  1.1       alc 
    607  1.1       alc 	/* Get Antenna Gain reduction */
    608  1.1       alc 	if (IS_CHAN_5GHZ(chan)) {
    609  1.1       alc 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
    610  1.1       alc 	} else {
    611  1.1       alc 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
    612  1.1       alc 	}
    613  1.1       alc 	twiceAntennaReduction =
    614  1.1       alc 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
    615  1.1       alc 
    616  1.1       alc 	/* TPC for self-generated frames */
    617  1.1       alc 
    618  1.1       alc 	ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
    619  1.1       alc 	if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
    620  1.1       alc 		ackTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
    621  1.1       alc 
    622  1.1       alc 	if (ackTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
    623  1.1       alc 		ackTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
    624  1.1       alc 			+ ahp->ah_txPowerIndexOffset;
    625  1.1       alc 
    626  1.1       alc 	ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
    627  1.1       alc 	if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
    628  1.1       alc 		ctsTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
    629  1.1       alc 
    630  1.1       alc 	if (ctsTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
    631  1.1       alc 		ctsTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
    632  1.1       alc 			+ ahp->ah_txPowerIndexOffset;
    633  1.1       alc 
    634  1.1       alc 	chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
    635  1.1       alc 	if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
    636  1.1       alc 		chirpTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
    637  1.1       alc 
    638  1.1       alc 	if (chirpTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
    639  1.1       alc 		chirpTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
    640  1.1       alc 			+ ahp->ah_txPowerIndexOffset;
    641  1.1       alc 
    642  1.1       alc 	if (ackTpcPow > 63)
    643  1.1       alc 		ackTpcPow = 63;
    644  1.1       alc 	if (ctsTpcPow > 63)
    645  1.1       alc 		ctsTpcPow = 63;
    646  1.1       alc 	if (chirpTpcPow > 63)
    647  1.1       alc 		chirpTpcPow = 63;
    648  1.1       alc 
    649  1.1       alc 	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
    650  1.1       alc 		SM(ctsTpcPow, AR_TPC_CTS) |
    651  1.1       alc 		SM(chirpTpcPow, AR_TPC_CHIRP);
    652  1.1       alc 
    653  1.1       alc 	OS_REG_WRITE(ah, AR_TPC, powerVal);
    654  1.1       alc 
    655  1.1       alc 	/* Restore user-specified settings */
    656  1.1       alc 	if (ahp->ah_miscMode != 0)
    657  1.1       alc 		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
    658  1.1       alc 	if (ahp->ah_sifstime != (u_int) -1)
    659  1.1       alc 		ar5212SetSifsTime(ah, ahp->ah_sifstime);
    660  1.1       alc 	if (ahp->ah_slottime != (u_int) -1)
    661  1.1       alc 		ar5212SetSlotTime(ah, ahp->ah_slottime);
    662  1.1       alc 	if (ahp->ah_acktimeout != (u_int) -1)
    663  1.1       alc 		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
    664  1.1       alc 	if (ahp->ah_ctstimeout != (u_int) -1)
    665  1.1       alc 		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
    666  1.1       alc 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
    667  1.1       alc 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
    668  1.1       alc 
    669  1.1       alc 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
    670  1.1       alc 
    671  1.1       alc 	if (bChannelChange) {
    672  1.1       alc 		if (!(ichan->privFlags & CHANNEL_DFS))
    673  1.1       alc 			ichan->privFlags &= ~CHANNEL_INTERFERENCE;
    674  1.1       alc 		chan->channelFlags = ichan->channelFlags;
    675  1.1       alc 		chan->privFlags = ichan->privFlags;
    676  1.1       alc 		chan->maxRegTxPower = ichan->maxRegTxPower;
    677  1.1       alc 		chan->maxTxPower = ichan->maxTxPower;
    678  1.1       alc 		chan->minTxPower = ichan->minTxPower;
    679  1.1       alc 	}
    680  1.1       alc 
    681  1.1       alc 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
    682  1.1       alc 
    683  1.1       alc 	RESTORE_CCK(ah, ichan, ichan_isBmode);
    684  1.1       alc 	RESTORE_CCK(ah, chan, isBmode);
    685  1.1       alc 
    686  1.1       alc 	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
    687  1.1       alc 
    688  1.1       alc 	return AH_TRUE;
    689  1.1       alc bad:
    690  1.1       alc 	if (ichan != AH_NULL)
    691  1.1       alc 		RESTORE_CCK(ah, ichan, ichan_isBmode);
    692  1.1       alc 	RESTORE_CCK(ah, chan, isBmode);
    693  1.1       alc 
    694  1.1       alc 	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
    695  1.4    cegger 	if (status != AH_NULL)
    696  1.1       alc 		*status = ecode;
    697  1.1       alc 	return AH_FALSE;
    698  1.1       alc #undef FAIL
    699  1.1       alc #undef N
    700  1.1       alc }
    701  1.1       alc 
    702  1.1       alc /*
    703  1.1       alc  * Call the rf backend to change the channel.
    704  1.1       alc  */
    705  1.1       alc HAL_BOOL
    706  1.1       alc ar5212SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
    707  1.1       alc {
    708  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    709  1.1       alc 
    710  1.1       alc 	/* Change the synth */
    711  1.1       alc 	if (!ahp->ah_rfHal->setChannel(ah, chan))
    712  1.1       alc 		return AH_FALSE;
    713  1.1       alc 	return AH_TRUE;
    714  1.1       alc }
    715  1.1       alc 
    716  1.1       alc /*
    717  1.1       alc  * This channel change evaluates whether the selected hardware can
    718  1.1       alc  * perform a synthesizer-only channel change (no reset).  If the
    719  1.1       alc  * TX is not stopped, or the RFBus cannot be granted in the given
    720  1.1       alc  * time, the function returns false as a reset is necessary
    721  1.1       alc  */
    722  1.1       alc HAL_BOOL
    723  1.1       alc ar5212ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
    724  1.1       alc {
    725  1.1       alc 	uint32_t       ulCount;
    726  1.1       alc 	uint32_t   data, synthDelay, qnum;
    727  1.1       alc 	uint16_t   rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
    728  1.1       alc 	HAL_BOOL    txStopped = AH_TRUE;
    729  1.1       alc 	HAL_CHANNEL_INTERNAL *ichan;
    730  1.1       alc 
    731  1.1       alc 	/*
    732  1.1       alc 	 * Map public channel to private.
    733  1.1       alc 	 */
    734  1.1       alc 	ichan = ath_hal_checkchannel(ah, chan);
    735  1.1       alc 
    736  1.1       alc 	/* TX must be stopped or RF Bus grant will not work */
    737  1.1       alc 	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
    738  1.1       alc 		if (ar5212NumTxPending(ah, qnum)) {
    739  1.1       alc 			txStopped = AH_FALSE;
    740  1.1       alc 			break;
    741  1.1       alc 		}
    742  1.1       alc 	}
    743  1.1       alc 	if (!txStopped)
    744  1.1       alc 		return AH_FALSE;
    745  1.1       alc 
    746  1.1       alc 	/* Kill last Baseband Rx Frame */
    747  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
    748  1.1       alc 	for (ulCount = 0; ulCount < 100; ulCount++) {
    749  1.1       alc 		if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
    750  1.1       alc 			break;
    751  1.1       alc 		OS_DELAY(5);
    752  1.1       alc 	}
    753  1.1       alc 	if (ulCount >= 100)
    754  1.1       alc 		return AH_FALSE;
    755  1.1       alc 
    756  1.1       alc 	/* Change the synth */
    757  1.1       alc 	if (!ar5212SetChannel(ah, ichan))
    758  1.1       alc 		return AH_FALSE;
    759  1.1       alc 
    760  1.1       alc 	/*
    761  1.1       alc 	 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
    762  1.1       alc 	 * Read the phy active delay register. Value is in 100ns increments.
    763  1.1       alc 	 */
    764  1.1       alc 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
    765  1.1       alc 	if (IS_CHAN_CCK(ichan)) {
    766  1.1       alc 		synthDelay = (4 * data) / 22;
    767  1.1       alc 	} else {
    768  1.1       alc 		synthDelay = data / 10;
    769  1.1       alc 	}
    770  1.1       alc 	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
    771  1.1       alc 
    772  1.1       alc 	/* Setup the transmit power values. */
    773  1.1       alc 	if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
    774  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    775  1.1       alc 		    "%s: error init'ing transmit power\n", __func__);
    776  1.1       alc 		return AH_FALSE;
    777  1.1       alc 	}
    778  1.1       alc 
    779  1.1       alc 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
    780  1.1       alc 	if (IS_CHAN_OFDM(ichan)) {
    781  1.1       alc 		if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
    782  1.1       alc 		    (!IS_CHAN_B(chan)))
    783  1.1       alc 			ar5212SetSpurMitigation(ah, ichan);
    784  1.1       alc 		ar5212SetDeltaSlope(ah, chan);
    785  1.1       alc 	}
    786  1.1       alc 
    787  1.1       alc 	/* Release the RFBus Grant */
    788  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
    789  1.1       alc 
    790  1.1       alc 	/* Start Noise Floor Cal */
    791  1.1       alc 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
    792  1.1       alc 
    793  1.1       alc 	if (!(ichan->privFlags & CHANNEL_DFS))
    794  1.1       alc 		ichan->privFlags &= ~CHANNEL_INTERFERENCE;
    795  1.1       alc 	chan->channelFlags = ichan->channelFlags;
    796  1.1       alc 	chan->privFlags = ichan->privFlags;
    797  1.1       alc 	chan->maxRegTxPower = ichan->maxRegTxPower;
    798  1.1       alc 	chan->maxTxPower = ichan->maxTxPower;
    799  1.1       alc 	chan->minTxPower = ichan->minTxPower;
    800  1.1       alc 	return AH_TRUE;
    801  1.1       alc }
    802  1.1       alc 
    803  1.1       alc void
    804  1.1       alc ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
    805  1.1       alc {
    806  1.1       alc 	uint32_t val;
    807  1.1       alc 
    808  1.1       alc 	val = OS_REG_READ(ah, AR_STA_ID1);
    809  1.1       alc 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
    810  1.1       alc 	switch (opmode) {
    811  1.1       alc 	case HAL_M_HOSTAP:
    812  1.1       alc 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
    813  1.1       alc 					| AR_STA_ID1_KSRCH_MODE);
    814  1.1       alc 		OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
    815  1.1       alc 		break;
    816  1.1       alc 	case HAL_M_IBSS:
    817  1.1       alc 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
    818  1.1       alc 					| AR_STA_ID1_KSRCH_MODE);
    819  1.1       alc 		OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
    820  1.1       alc 		break;
    821  1.1       alc 	case HAL_M_STA:
    822  1.1       alc 	case HAL_M_MONITOR:
    823  1.1       alc 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
    824  1.1       alc 		break;
    825  1.1       alc 	}
    826  1.1       alc }
    827  1.1       alc 
    828  1.1       alc /*
    829  1.1       alc  * Places the PHY and Radio chips into reset.  A full reset
    830  1.1       alc  * must be called to leave this state.  The PCI/MAC/PCU are
    831  1.1       alc  * not placed into reset as we must receive interrupt to
    832  1.1       alc  * re-enable the hardware.
    833  1.1       alc  */
    834  1.1       alc HAL_BOOL
    835  1.1       alc ar5212PhyDisable(struct ath_hal *ah)
    836  1.1       alc {
    837  1.1       alc 	return ar5212SetResetReg(ah, AR_RC_BB);
    838  1.1       alc }
    839  1.1       alc 
    840  1.1       alc /*
    841  1.1       alc  * Places all of hardware into reset
    842  1.1       alc  */
    843  1.1       alc HAL_BOOL
    844  1.1       alc ar5212Disable(struct ath_hal *ah)
    845  1.1       alc {
    846  1.1       alc 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
    847  1.1       alc 		return AH_FALSE;
    848  1.1       alc 	/*
    849  1.1       alc 	 * Reset the HW - PCI must be reset after the rest of the
    850  1.1       alc 	 * device has been reset.
    851  1.1       alc 	 */
    852  1.1       alc 	return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
    853  1.1       alc }
    854  1.1       alc 
    855  1.1       alc /*
    856  1.1       alc  * Places the hardware into reset and then pulls it out of reset
    857  1.1       alc  *
    858  1.1       alc  * TODO: Only write the PLL if we're changing to or from CCK mode
    859  1.1       alc  *
    860  1.1       alc  * WARNING: The order of the PLL and mode registers must be correct.
    861  1.1       alc  */
    862  1.1       alc HAL_BOOL
    863  1.1       alc ar5212ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
    864  1.1       alc {
    865  1.1       alc 
    866  1.1       alc 	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
    867  1.1       alc 
    868  1.1       alc 	/*
    869  1.1       alc 	 * Reset the HW - PCI must be reset after the rest of the
    870  1.1       alc 	 * device has been reset
    871  1.1       alc 	 */
    872  1.1       alc 	if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
    873  1.1       alc 		return AH_FALSE;
    874  1.1       alc 
    875  1.1       alc 	/* Bring out of sleep mode (AGAIN) */
    876  1.1       alc 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
    877  1.1       alc 		return AH_FALSE;
    878  1.1       alc 
    879  1.1       alc 	/* Clear warm reset register */
    880  1.1       alc 	if (!ar5212SetResetReg(ah, 0))
    881  1.1       alc 		return AH_FALSE;
    882  1.1       alc 
    883  1.1       alc 	/*
    884  1.1       alc 	 * Perform warm reset before the mode/PLL/turbo registers
    885  1.1       alc 	 * are changed in order to deactivate the radio.  Mode changes
    886  1.1       alc 	 * with an active radio can result in corrupted shifts to the
    887  1.1       alc 	 * radio device.
    888  1.1       alc 	 */
    889  1.1       alc 
    890  1.1       alc 	/*
    891  1.1       alc 	 * Set CCK and Turbo modes correctly.
    892  1.1       alc 	 */
    893  1.1       alc 	if (chan != AH_NULL) {		/* NB: can be null during attach */
    894  1.1       alc 		uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
    895  1.1       alc 
    896  1.1       alc 		if (IS_5413(ah)) {	/* NB: =>'s 5424 also */
    897  1.1       alc 			rfMode = AR_PHY_MODE_AR5112;
    898  1.1       alc 			if (IS_CHAN_HALF_RATE(chan))
    899  1.1       alc 				rfMode |= AR_PHY_MODE_HALF;
    900  1.1       alc 			else if (IS_CHAN_QUARTER_RATE(chan))
    901  1.1       alc 				rfMode |= AR_PHY_MODE_QUARTER;
    902  1.1       alc 
    903  1.1       alc 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
    904  1.1       alc 				phyPLL = AR_PHY_PLL_CTL_44_5112;
    905  1.1       alc 			else
    906  1.1       alc 				phyPLL = AR_PHY_PLL_CTL_40_5413;
    907  1.1       alc 		} else if (IS_RAD5111(ah)) {
    908  1.1       alc 			rfMode = AR_PHY_MODE_AR5111;
    909  1.1       alc 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
    910  1.1       alc 				phyPLL = AR_PHY_PLL_CTL_44;
    911  1.1       alc 			else
    912  1.1       alc 				phyPLL = AR_PHY_PLL_CTL_40;
    913  1.1       alc 			if (IS_CHAN_HALF_RATE(chan))
    914  1.1       alc 				phyPLL = AR_PHY_PLL_CTL_HALF;
    915  1.1       alc 			else if (IS_CHAN_QUARTER_RATE(chan))
    916  1.1       alc 				phyPLL = AR_PHY_PLL_CTL_QUARTER;
    917  1.1       alc 		} else {		/* 5112, 2413, 2316, 2317 */
    918  1.1       alc 			rfMode = AR_PHY_MODE_AR5112;
    919  1.1       alc 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
    920  1.1       alc 				phyPLL = AR_PHY_PLL_CTL_44_5112;
    921  1.1       alc 			else
    922  1.1       alc 				phyPLL = AR_PHY_PLL_CTL_40_5112;
    923  1.1       alc 			if (IS_CHAN_HALF_RATE(chan))
    924  1.1       alc 				phyPLL |= AR_PHY_PLL_CTL_HALF;
    925  1.1       alc 			else if (IS_CHAN_QUARTER_RATE(chan))
    926  1.1       alc 				phyPLL |= AR_PHY_PLL_CTL_QUARTER;
    927  1.1       alc 		}
    928  1.1       alc 		if (IS_CHAN_OFDM(chan) && (IS_CHAN_CCK(chan) ||
    929  1.1       alc 					   IS_CHAN_G(chan)))
    930  1.1       alc 			rfMode |= AR_PHY_MODE_DYNAMIC;
    931  1.1       alc 		else if (IS_CHAN_OFDM(chan))
    932  1.1       alc 			rfMode |= AR_PHY_MODE_OFDM;
    933  1.1       alc 		else
    934  1.1       alc 			rfMode |= AR_PHY_MODE_CCK;
    935  1.1       alc 		if (IS_CHAN_5GHZ(chan))
    936  1.1       alc 			rfMode |= AR_PHY_MODE_RF5GHZ;
    937  1.1       alc 		else
    938  1.1       alc 			rfMode |= AR_PHY_MODE_RF2GHZ;
    939  1.1       alc 		turbo = IS_CHAN_TURBO(chan) ?
    940  1.1       alc 			(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
    941  1.1       alc 		curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
    942  1.1       alc 		/*
    943  1.1       alc 		 * PLL, Mode, and Turbo values must be written in the correct
    944  1.1       alc 		 * order to ensure:
    945  1.1       alc 		 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
    946  1.1       alc 		 *   mode bit is set
    947  1.1       alc 		 * - Turbo cannot be set at the same time as CCK or DYNAMIC
    948  1.1       alc 		 */
    949  1.1       alc 		if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
    950  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
    951  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
    952  1.1       alc 			if (curPhyPLL != phyPLL) {
    953  1.1       alc 				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
    954  1.1       alc 				/* Wait for the PLL to settle */
    955  1.1       alc 				OS_DELAY(PLL_SETTLE_DELAY);
    956  1.1       alc 			}
    957  1.1       alc 		} else {
    958  1.1       alc 			if (curPhyPLL != phyPLL) {
    959  1.1       alc 				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
    960  1.1       alc 				/* Wait for the PLL to settle */
    961  1.1       alc 				OS_DELAY(PLL_SETTLE_DELAY);
    962  1.1       alc 			}
    963  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
    964  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
    965  1.1       alc 		}
    966  1.1       alc 	}
    967  1.1       alc 	return AH_TRUE;
    968  1.1       alc }
    969  1.1       alc 
    970  1.1       alc /*
    971  1.1       alc  * Recalibrate the lower PHY chips to account for temperature/environment
    972  1.1       alc  * changes.
    973  1.1       alc  */
    974  1.1       alc HAL_BOOL
    975  1.1       alc ar5212PerCalibrationN(struct ath_hal *ah,  HAL_CHANNEL *chan, u_int chainMask,
    976  1.1       alc 	HAL_BOOL longCal, HAL_BOOL *isCalDone)
    977  1.1       alc {
    978  1.1       alc #define IQ_CAL_TRIES    10
    979  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
    980  1.1       alc 	HAL_CHANNEL_INTERNAL *ichan;
    981  1.1       alc 	int32_t qCoff, qCoffDenom;
    982  1.1       alc 	int32_t iqCorrMeas, iCoff, iCoffDenom;
    983  1.1       alc 	uint32_t powerMeasQ, powerMeasI;
    984  1.1       alc 	HAL_BOOL ichan_isBmode = AH_FALSE;
    985  1.1       alc 	HAL_BOOL isBmode = AH_FALSE;
    986  1.1       alc 
    987  1.1       alc 	OS_MARK(ah, AH_MARK_PERCAL, chan->channel);
    988  1.1       alc 	*isCalDone = AH_FALSE;
    989  1.1       alc 	ichan = ath_hal_checkchannel(ah, chan);
    990  1.1       alc 	if (ichan == AH_NULL) {
    991  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
    992  1.1       alc 		    "%s: invalid channel %u/0x%x; no mapping\n",
    993  1.1       alc 		    __func__, chan->channel, chan->channelFlags);
    994  1.1       alc 		return AH_FALSE;
    995  1.1       alc 	}
    996  1.1       alc 	SAVE_CCK(ah, ichan, ichan_isBmode);
    997  1.1       alc 	SAVE_CCK(ah, chan, isBmode);
    998  1.1       alc 
    999  1.1       alc 	if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
   1000  1.1       alc 	    ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
   1001  1.1       alc 		*isCalDone = AH_TRUE;
   1002  1.1       alc 
   1003  1.1       alc 	/* IQ calibration in progress. Check to see if it has finished. */
   1004  1.1       alc 	if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
   1005  1.1       alc 	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
   1006  1.1       alc 		int i;
   1007  1.1       alc 
   1008  1.1       alc 		/* IQ Calibration has finished. */
   1009  1.1       alc 		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
   1010  1.1       alc 		*isCalDone = AH_TRUE;
   1011  1.1       alc 
   1012  1.1       alc 		/* workaround for misgated IQ Cal results */
   1013  1.1       alc 		i = 0;
   1014  1.1       alc 		do {
   1015  1.1       alc 			/* Read calibration results. */
   1016  1.1       alc 			powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
   1017  1.1       alc 			powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
   1018  1.1       alc 			iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
   1019  1.1       alc 			if (powerMeasI && powerMeasQ)
   1020  1.1       alc 				break;
   1021  1.1       alc 			/* Do we really need this??? */
   1022  1.1       alc 			OS_REG_WRITE (ah,  AR_PHY_TIMING_CTRL4,
   1023  1.1       alc 				      OS_REG_READ(ah,  AR_PHY_TIMING_CTRL4) |
   1024  1.1       alc 				      AR_PHY_TIMING_CTRL4_DO_IQCAL);
   1025  1.1       alc 		} while (++i < IQ_CAL_TRIES);
   1026  1.1       alc 
   1027  1.1       alc 		/*
   1028  1.1       alc 		 * Prescale these values to remove 64-bit operation
   1029  1.1       alc 		 * requirement at the loss of a little precision.
   1030  1.1       alc 		 */
   1031  1.1       alc 		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
   1032  1.1       alc 		qCoffDenom = powerMeasQ / 128;
   1033  1.1       alc 
   1034  1.1       alc 		/* Protect against divide-by-0 and loss of sign bits. */
   1035  1.1       alc 		if (iCoffDenom != 0 && qCoffDenom >= 2) {
   1036  1.1       alc 			iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
   1037  1.1       alc 			/* IQCORR_Q_I_COFF is a signed 6 bit number */
   1038  1.1       alc 			if (iCoff < -32) {
   1039  1.1       alc 				iCoff = -32;
   1040  1.1       alc 			} else if (iCoff > 31) {
   1041  1.1       alc 				iCoff = 31;
   1042  1.1       alc 			}
   1043  1.1       alc 
   1044  1.1       alc 			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
   1045  1.1       alc 			qCoff = (powerMeasI / qCoffDenom) - 128;
   1046  1.1       alc 			if (qCoff < -16) {
   1047  1.1       alc 				qCoff = -16;
   1048  1.1       alc 			} else if (qCoff > 15) {
   1049  1.1       alc 				qCoff = 15;
   1050  1.1       alc 			}
   1051  1.1       alc 
   1052  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1053  1.1       alc 			    "****************** MISGATED IQ CAL! *******************\n");
   1054  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1055  1.1       alc 			    "time       = %d, i = %d, \n", OS_GETUPTIME(ah), i);
   1056  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1057  1.1       alc 			    "powerMeasI = 0x%08x\n", powerMeasI);
   1058  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1059  1.1       alc 			    "powerMeasQ = 0x%08x\n", powerMeasQ);
   1060  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1061  1.1       alc 			    "iqCorrMeas = 0x%08x\n", iqCorrMeas);
   1062  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1063  1.1       alc 			    "iCoff      = %d\n", iCoff);
   1064  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1065  1.1       alc 			    "qCoff      = %d\n", qCoff);
   1066  1.1       alc 
   1067  1.1       alc 			/* Write values and enable correction */
   1068  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1069  1.1       alc 				AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
   1070  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1071  1.1       alc 				AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
   1072  1.1       alc 			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
   1073  1.1       alc 				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
   1074  1.1       alc 
   1075  1.1       alc 			ahp->ah_bIQCalibration = IQ_CAL_DONE;
   1076  1.1       alc 			ichan->iqCalValid = AH_TRUE;
   1077  1.1       alc 			ichan->iCoff = iCoff;
   1078  1.1       alc 			ichan->qCoff = qCoff;
   1079  1.1       alc 		}
   1080  1.1       alc 	} else if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration == IQ_CAL_DONE &&
   1081  1.1       alc 	    !ichan->iqCalValid) {
   1082  1.1       alc 		/*
   1083  1.1       alc 		 * Start IQ calibration if configured channel has changed.
   1084  1.1       alc 		 * Use a magic number of 15 based on default value.
   1085  1.1       alc 		 */
   1086  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1087  1.1       alc 			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
   1088  1.1       alc 			INIT_IQCAL_LOG_COUNT_MAX);
   1089  1.1       alc 		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
   1090  1.1       alc 			AR_PHY_TIMING_CTRL4_DO_IQCAL);
   1091  1.1       alc 		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
   1092  1.1       alc 	}
   1093  1.1       alc 	/* XXX EAR */
   1094  1.1       alc 
   1095  1.1       alc 	if (longCal) {
   1096  1.1       alc 		/* Check noise floor results */
   1097  1.1       alc 		ar5212GetNf(ah, ichan);
   1098  1.1       alc 
   1099  1.1       alc 		if ((ichan->channelFlags & CHANNEL_CW_INT) == 0) {
   1100  1.1       alc 			/* Perform cal for 5Ghz channels and any OFDM on 5112 */
   1101  1.1       alc 			if (IS_CHAN_5GHZ(chan) ||
   1102  1.1       alc 			    (IS_RAD5112(ah) && IS_CHAN_OFDM(chan)))
   1103  1.1       alc 				ar5212RequestRfgain(ah);
   1104  1.1       alc 		} else {
   1105  1.1       alc 			/* report up and clear internal state */
   1106  1.1       alc 			chan->channelFlags |= CHANNEL_CW_INT;
   1107  1.1       alc 			ichan->channelFlags &= ~CHANNEL_CW_INT;
   1108  1.1       alc 		}
   1109  1.1       alc 	}
   1110  1.1       alc 	RESTORE_CCK(ah, ichan, ichan_isBmode);
   1111  1.1       alc 	RESTORE_CCK(ah, chan, isBmode);
   1112  1.1       alc 
   1113  1.1       alc 	return AH_TRUE;
   1114  1.1       alc #undef IQ_CAL_TRIES
   1115  1.1       alc }
   1116  1.1       alc 
   1117  1.1       alc HAL_BOOL
   1118  1.1       alc ar5212PerCalibration(struct ath_hal *ah,  HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
   1119  1.1       alc {
   1120  1.1       alc 	return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
   1121  1.1       alc }
   1122  1.1       alc 
   1123  1.1       alc HAL_BOOL
   1124  1.1       alc ar5212ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
   1125  1.1       alc {
   1126  1.1       alc 	/* XXX */
   1127  1.1       alc 	return AH_TRUE;
   1128  1.1       alc }
   1129  1.1       alc 
   1130  1.1       alc /*
   1131  1.1       alc  * Write the given reset bit mask into the reset register
   1132  1.1       alc  */
   1133  1.1       alc static HAL_BOOL
   1134  1.1       alc ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
   1135  1.1       alc {
   1136  1.1       alc 	uint32_t mask = resetMask ? resetMask : ~0;
   1137  1.1       alc 	HAL_BOOL rt;
   1138  1.1       alc 
   1139  1.1       alc 	/* XXX ar5212MacStop & co. */
   1140  1.1       alc 
   1141  1.3  jmcneill 	if (AH_PRIVATE(ah)->ah_ispcie) {
   1142  1.1       alc 		resetMask &= ~AR_RC_PCI;
   1143  1.1       alc 	}
   1144  1.1       alc 
   1145  1.1       alc 	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
   1146  1.1       alc 	OS_REG_WRITE(ah, AR_RC, resetMask);
   1147  1.1       alc 	OS_DELAY(15);			/* need to wait at least 128 clocks
   1148  1.1       alc 					   when reseting PCI before read */
   1149  1.1       alc 	mask &= (AR_RC_MAC | AR_RC_BB);
   1150  1.1       alc 	resetMask &= (AR_RC_MAC | AR_RC_BB);
   1151  1.1       alc 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
   1152  1.1       alc         if ((resetMask & AR_RC_MAC) == 0) {
   1153  1.1       alc 		if (isBigEndian()) {
   1154  1.1       alc 			/*
   1155  1.1       alc 			 * Set CFG, little-endian for register
   1156  1.1       alc 			 * and descriptor accesses.
   1157  1.1       alc 			 */
   1158  1.1       alc 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
   1159  1.1       alc #ifndef AH_NEED_DESC_SWAP
   1160  1.1       alc 			mask |= AR_CFG_SWTD;
   1161  1.1       alc #endif
   1162  1.1       alc 			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
   1163  1.1       alc 		} else
   1164  1.1       alc 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
   1165  1.1       alc 		if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
   1166  1.1       alc 			(void) OS_REG_READ(ah, AR_ISR_RAC);
   1167  1.1       alc 	}
   1168  1.1       alc 
   1169  1.1       alc 	/* track PHY power state so we don't try to r/w BB registers */
   1170  1.1       alc 	AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
   1171  1.1       alc 	return rt;
   1172  1.1       alc }
   1173  1.1       alc 
   1174  1.1       alc int16_t
   1175  1.1       alc ar5212GetNoiseFloor(struct ath_hal *ah)
   1176  1.1       alc {
   1177  1.1       alc 	int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
   1178  1.1       alc 	if (nf & 0x100)
   1179  1.1       alc 		nf = 0 - ((nf ^ 0x1ff) + 1);
   1180  1.1       alc 	return nf;
   1181  1.1       alc }
   1182  1.1       alc 
   1183  1.1       alc static HAL_BOOL
   1184  1.1       alc getNoiseFloorThresh(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *chan,
   1185  1.1       alc 	int16_t *nft)
   1186  1.1       alc {
   1187  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1188  1.1       alc 
   1189  1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   1190  1.1       alc 
   1191  1.1       alc 	switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
   1192  1.1       alc 	case CHANNEL_A:
   1193  1.1       alc 		*nft = ee->ee_noiseFloorThresh[headerInfo11A];
   1194  1.1       alc 		break;
   1195  1.1       alc 	case CHANNEL_B:
   1196  1.1       alc 		*nft = ee->ee_noiseFloorThresh[headerInfo11B];
   1197  1.1       alc 		break;
   1198  1.1       alc 	case CHANNEL_PUREG:
   1199  1.1       alc 		*nft = ee->ee_noiseFloorThresh[headerInfo11G];
   1200  1.1       alc 		break;
   1201  1.1       alc 	default:
   1202  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
   1203  1.1       alc 		    __func__, chan->channelFlags);
   1204  1.1       alc 		return AH_FALSE;
   1205  1.1       alc 	}
   1206  1.1       alc 	return AH_TRUE;
   1207  1.1       alc }
   1208  1.1       alc 
   1209  1.1       alc /*
   1210  1.1       alc  * Setup the noise floor cal history buffer.
   1211  1.1       alc  */
   1212  1.1       alc void
   1213  1.1       alc ar5212InitNfCalHistBuffer(struct ath_hal *ah)
   1214  1.1       alc {
   1215  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   1216  1.1       alc 	int i;
   1217  1.1       alc 
   1218  1.1       alc 	ahp->ah_nfCalHist.first_run = 1;
   1219  1.1       alc 	ahp->ah_nfCalHist.currIndex = 0;
   1220  1.1       alc 	ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
   1221  1.1       alc 	ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
   1222  1.1       alc 	for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
   1223  1.1       alc 		ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
   1224  1.1       alc }
   1225  1.1       alc 
   1226  1.1       alc /*
   1227  1.1       alc  * Add a noise floor value to the ring buffer.
   1228  1.1       alc  */
   1229  1.1       alc static __inline void
   1230  1.1       alc updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
   1231  1.1       alc {
   1232  1.1       alc  	h->nfCalBuffer[h->currIndex] = nf;
   1233  1.1       alc      	if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
   1234  1.1       alc 		h->currIndex = 0;
   1235  1.1       alc }
   1236  1.1       alc 
   1237  1.1       alc /*
   1238  1.1       alc  * Return the median noise floor value in the ring buffer.
   1239  1.1       alc  */
   1240  1.1       alc int16_t
   1241  1.1       alc ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
   1242  1.1       alc {
   1243  1.1       alc 	int16_t sort[AR512_NF_CAL_HIST_MAX];
   1244  1.1       alc 	int i, j;
   1245  1.1       alc 
   1246  1.1       alc 	OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
   1247  1.1       alc 	for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
   1248  1.1       alc 		for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
   1249  1.1       alc 			if (sort[j] > sort[j-1]) {
   1250  1.1       alc 				int16_t nf = sort[j];
   1251  1.1       alc 				sort[j] = sort[j-1];
   1252  1.1       alc 				sort[j-1] = nf;
   1253  1.1       alc 			}
   1254  1.1       alc 		}
   1255  1.1       alc 	}
   1256  1.1       alc 	return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
   1257  1.1       alc }
   1258  1.1       alc 
   1259  1.1       alc /*
   1260  1.1       alc  * Read the NF and check it against the noise floor threshhold
   1261  1.1       alc  */
   1262  1.1       alc int16_t
   1263  1.1       alc ar5212GetNf(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
   1264  1.1       alc {
   1265  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   1266  1.1       alc 	struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
   1267  1.1       alc 	int16_t nf, nfThresh;
   1268  1.1       alc  	int32_t val;
   1269  1.1       alc 
   1270  1.1       alc 	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
   1271  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY,
   1272  1.1       alc 		    "%s: NF did not complete in calibration window\n", __func__);
   1273  1.1       alc 		chan->rawNoiseFloor = h->privNF;	/* most recent value */
   1274  1.1       alc 		return chan->rawNoiseFloor;
   1275  1.1       alc 	}
   1276  1.1       alc 
   1277  1.1       alc 	/*
   1278  1.1       alc 	 * Finished NF cal, check against threshold.
   1279  1.1       alc 	 */
   1280  1.1       alc 	nf = ar5212GetNoiseFloor(ah);
   1281  1.1       alc 	if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
   1282  1.1       alc 		if (nf > nfThresh) {
   1283  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
   1284  1.1       alc 			    "%s: noise floor failed detected; detected %u, "
   1285  1.1       alc 			    "threshold %u\n", __func__, nf, nfThresh);
   1286  1.1       alc 			/*
   1287  1.1       alc 			 * NB: Don't discriminate 2.4 vs 5Ghz, if this
   1288  1.1       alc 			 *     happens it indicates a problem regardless
   1289  1.1       alc 			 *     of the band.
   1290  1.1       alc 			 */
   1291  1.1       alc 			chan->channelFlags |= CHANNEL_CW_INT;
   1292  1.1       alc 			nf = 0;
   1293  1.1       alc 		}
   1294  1.1       alc 	} else
   1295  1.1       alc 		nf = 0;
   1296  1.1       alc 
   1297  1.1       alc 	/*
   1298  1.1       alc 	 * Pass through histogram and write median value as
   1299  1.1       alc 	 * calculated from the accrued window.  We require a
   1300  1.1       alc 	 * full window of in-range values to be seen before we
   1301  1.1       alc 	 * start using the history.
   1302  1.1       alc 	 */
   1303  1.1       alc 	updateNFHistBuff(h, nf);
   1304  1.1       alc 	if (h->first_run) {
   1305  1.1       alc 		if (nf < AR5212_CCA_MIN_BAD_VALUE ||
   1306  1.1       alc 		    nf > AR5212_CCA_MAX_HIGH_VALUE) {
   1307  1.1       alc 			nf = AR5212_CCA_MAX_GOOD_VALUE;
   1308  1.1       alc 			h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
   1309  1.1       alc 		} else if (--(h->invalidNFcount) == 0) {
   1310  1.1       alc 			h->first_run = 0;
   1311  1.1       alc 			h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
   1312  1.1       alc 		} else {
   1313  1.1       alc 			nf = AR5212_CCA_MAX_GOOD_VALUE;
   1314  1.1       alc 		}
   1315  1.1       alc 	} else {
   1316  1.1       alc 		h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
   1317  1.1       alc 	}
   1318  1.1       alc 
   1319  1.1       alc 	val = OS_REG_READ(ah, AR_PHY(25));
   1320  1.1       alc 	val &= 0xFFFFFE00;
   1321  1.1       alc 	val |= (((uint32_t)nf << 1) & 0x1FF);
   1322  1.1       alc 	OS_REG_WRITE(ah, AR_PHY(25), val);
   1323  1.1       alc 	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   1324  1.1       alc 	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   1325  1.1       alc 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   1326  1.1       alc 
   1327  1.1       alc 	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
   1328  1.1       alc #ifdef AH_DEBUG
   1329  1.1       alc 		ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
   1330  1.1       alc 		    __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
   1331  1.1       alc #endif
   1332  1.1       alc 	}
   1333  1.1       alc 
   1334  1.1       alc 	/*
   1335  1.1       alc 	 * Now load a high maxCCAPower value again so that we're
   1336  1.1       alc 	 * not capped by the median we just loaded
   1337  1.1       alc 	 */
   1338  1.1       alc 	val &= 0xFFFFFE00;
   1339  1.1       alc 	val |= (((uint32_t)(-50) << 1) & 0x1FF);
   1340  1.1       alc 	OS_REG_WRITE(ah, AR_PHY(25), val);
   1341  1.1       alc 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   1342  1.1       alc 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   1343  1.1       alc 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   1344  1.1       alc 
   1345  1.1       alc 	return (chan->rawNoiseFloor = nf);
   1346  1.1       alc }
   1347  1.1       alc 
   1348  1.1       alc /*
   1349  1.1       alc  * Set up compression configuration registers
   1350  1.1       alc  */
   1351  1.1       alc void
   1352  1.1       alc ar5212SetCompRegs(struct ath_hal *ah)
   1353  1.1       alc {
   1354  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   1355  1.1       alc 	int i;
   1356  1.1       alc 
   1357  1.1       alc         /* Check if h/w supports compression */
   1358  1.1       alc 	if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
   1359  1.1       alc 		return;
   1360  1.1       alc 
   1361  1.1       alc 	OS_REG_WRITE(ah, AR_DCCFG, 1);
   1362  1.1       alc 
   1363  1.1       alc 	OS_REG_WRITE(ah, AR_CCFG,
   1364  1.1       alc 		(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
   1365  1.1       alc 
   1366  1.1       alc 	OS_REG_WRITE(ah, AR_CCFG,
   1367  1.1       alc 		OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
   1368  1.1       alc 	OS_REG_WRITE(ah, AR_CCUCFG,
   1369  1.1       alc 		AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
   1370  1.1       alc 
   1371  1.1       alc 	OS_REG_WRITE(ah, AR_CPCOVF, 0);
   1372  1.1       alc 
   1373  1.1       alc 	/* reset decompression mask */
   1374  1.1       alc 	for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
   1375  1.1       alc 		OS_REG_WRITE(ah, AR_DCM_A, i);
   1376  1.1       alc 		OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
   1377  1.1       alc 	}
   1378  1.1       alc }
   1379  1.1       alc 
   1380  1.1       alc HAL_BOOL
   1381  1.1       alc ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
   1382  1.1       alc 	const HAL_CHANNEL_INTERNAL *chan)
   1383  1.1       alc {
   1384  1.1       alc #define	ANT_SWITCH_TABLE1	AR_PHY(88)
   1385  1.1       alc #define	ANT_SWITCH_TABLE2	AR_PHY(89)
   1386  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   1387  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1388  1.1       alc 	uint32_t antSwitchA, antSwitchB;
   1389  1.1       alc 	int ix;
   1390  1.1       alc 	HAL_BOOL isBmode = AH_FALSE;
   1391  1.1       alc 	/* NB: need local copy for SAVE/RESTORE 'cuz chan is const */
   1392  1.1       alc 	HAL_CHANNEL_INTERNAL ichan = *chan;
   1393  1.1       alc 
   1394  1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   1395  1.1       alc 	HALASSERT(ahp->ah_phyPowerOn);
   1396  1.1       alc 
   1397  1.1       alc 	SAVE_CCK(ah, &ichan, isBmode);
   1398  1.1       alc 	switch (ichan.channelFlags & CHANNEL_ALL_NOTURBO) {
   1399  1.1       alc 	case CHANNEL_A:		ix = 0; break;
   1400  1.1       alc 	case CHANNEL_B:		ix = 1; break;
   1401  1.1       alc 	case CHANNEL_PUREG:	ix = 2; break;
   1402  1.1       alc 	default:
   1403  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
   1404  1.1       alc 		    __func__, ichan.channelFlags);
   1405  1.1       alc 		RESTORE_CCK(ah, &ichan, isBmode);
   1406  1.1       alc 		return AH_FALSE;
   1407  1.1       alc 	}
   1408  1.1       alc 	RESTORE_CCK(ah, &ichan, isBmode);
   1409  1.1       alc 
   1410  1.1       alc 	antSwitchA =  ee->ee_antennaControl[1][ix]
   1411  1.1       alc 		   | (ee->ee_antennaControl[2][ix] << 6)
   1412  1.1       alc 		   | (ee->ee_antennaControl[3][ix] << 12)
   1413  1.1       alc 		   | (ee->ee_antennaControl[4][ix] << 18)
   1414  1.1       alc 		   | (ee->ee_antennaControl[5][ix] << 24)
   1415  1.1       alc 		   ;
   1416  1.1       alc 	antSwitchB =  ee->ee_antennaControl[6][ix]
   1417  1.1       alc 		   | (ee->ee_antennaControl[7][ix] << 6)
   1418  1.1       alc 		   | (ee->ee_antennaControl[8][ix] << 12)
   1419  1.1       alc 		   | (ee->ee_antennaControl[9][ix] << 18)
   1420  1.1       alc 		   | (ee->ee_antennaControl[10][ix] << 24)
   1421  1.1       alc 		   ;
   1422  1.1       alc 	/*
   1423  1.1       alc 	 * For fixed antenna, give the same setting for both switch banks
   1424  1.1       alc 	 */
   1425  1.1       alc 	switch (settings) {
   1426  1.1       alc 	case HAL_ANT_FIXED_A:
   1427  1.1       alc 		antSwitchB = antSwitchA;
   1428  1.1       alc 		break;
   1429  1.1       alc 	case HAL_ANT_FIXED_B:
   1430  1.1       alc 		antSwitchA = antSwitchB;
   1431  1.1       alc 		break;
   1432  1.1       alc 	case HAL_ANT_VARIABLE:
   1433  1.1       alc 		break;
   1434  1.1       alc 	default:
   1435  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
   1436  1.1       alc 		    __func__, settings);
   1437  1.1       alc 		return AH_FALSE;
   1438  1.1       alc 	}
   1439  1.1       alc 	if (antSwitchB == antSwitchA) {
   1440  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
   1441  1.1       alc 		    "%s: Setting fast diversity off.\n", __func__);
   1442  1.1       alc 		OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
   1443  1.1       alc 			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
   1444  1.1       alc 		ahp->ah_diversity = AH_FALSE;
   1445  1.1       alc 	} else {
   1446  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
   1447  1.1       alc 		    "%s: Setting fast diversity on.\n", __func__);
   1448  1.1       alc 		OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
   1449  1.1       alc 			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
   1450  1.1       alc 		ahp->ah_diversity = AH_TRUE;
   1451  1.1       alc 	}
   1452  1.1       alc 	ahp->ah_antControl = settings;
   1453  1.1       alc 
   1454  1.1       alc 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
   1455  1.1       alc 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
   1456  1.1       alc 
   1457  1.1       alc 	return AH_TRUE;
   1458  1.1       alc #undef ANT_SWITCH_TABLE2
   1459  1.1       alc #undef ANT_SWITCH_TABLE1
   1460  1.1       alc }
   1461  1.1       alc 
   1462  1.1       alc HAL_BOOL
   1463  1.1       alc ar5212IsSpurChannel(struct ath_hal *ah, HAL_CHANNEL *chan)
   1464  1.1       alc {
   1465  1.1       alc     uint32_t clockFreq =
   1466  1.1       alc 	((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
   1467  1.1       alc     return ( ((chan->channel % clockFreq) != 0)
   1468  1.1       alc           && (((chan->channel % clockFreq) < 10)
   1469  1.1       alc          || (((chan->channel) % clockFreq) > 22)) );
   1470  1.1       alc }
   1471  1.1       alc 
   1472  1.1       alc /*
   1473  1.1       alc  * Read EEPROM header info and program the device for correct operation
   1474  1.1       alc  * given the channel value.
   1475  1.1       alc  */
   1476  1.1       alc HAL_BOOL
   1477  1.1       alc ar5212SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
   1478  1.1       alc {
   1479  1.1       alc #define NO_FALSE_DETECT_BACKOFF   2
   1480  1.1       alc #define CB22_FALSE_DETECT_BACKOFF 6
   1481  1.1       alc #define	AR_PHY_BIS(_ah, _reg, _mask, _val) \
   1482  1.1       alc 	OS_REG_WRITE(_ah, AR_PHY(_reg), \
   1483  1.1       alc 		(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
   1484  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   1485  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1486  1.1       alc 	int arrayMode, falseDectectBackoff;
   1487  1.1       alc 	int is2GHz = IS_CHAN_2GHZ(chan);
   1488  1.1       alc 	int8_t adcDesiredSize, pgaDesiredSize;
   1489  1.1       alc 	uint16_t switchSettling, txrxAtten, rxtxMargin;
   1490  1.1       alc 	int iCoff, qCoff;
   1491  1.1       alc 
   1492  1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   1493  1.1       alc 
   1494  1.1       alc 	switch (chan->channelFlags & CHANNEL_ALL) {
   1495  1.1       alc 	case CHANNEL_A:
   1496  1.1       alc 	case CHANNEL_T:
   1497  1.1       alc 		arrayMode = headerInfo11A;
   1498  1.1       alc 		if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
   1499  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
   1500  1.1       alc 				AR_PHY_FRAME_CTL_TX_CLIP,
   1501  1.1       alc 				ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
   1502  1.1       alc 		break;
   1503  1.1       alc 	case CHANNEL_B:
   1504  1.1       alc 		arrayMode = headerInfo11B;
   1505  1.1       alc 		break;
   1506  1.1       alc 	case CHANNEL_G:
   1507  1.1       alc 	case CHANNEL_108G:
   1508  1.1       alc 		arrayMode = headerInfo11G;
   1509  1.1       alc 		break;
   1510  1.1       alc 	default:
   1511  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
   1512  1.1       alc 		    __func__, chan->channelFlags);
   1513  1.1       alc 		return AH_FALSE;
   1514  1.1       alc 	}
   1515  1.1       alc 
   1516  1.1       alc 	/* Set the antenna register(s) correctly for the chip revision */
   1517  1.1       alc 	AR_PHY_BIS(ah, 68, 0xFFFFFC06,
   1518  1.1       alc 		(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
   1519  1.1       alc 
   1520  1.1       alc 	ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
   1521  1.1       alc 
   1522  1.1       alc 	/* Set the Noise Floor Thresh on ar5211 devices */
   1523  1.1       alc 	OS_REG_WRITE(ah, AR_PHY(90),
   1524  1.1       alc 		(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
   1525  1.1       alc 		| (1 << 9));
   1526  1.1       alc 
   1527  1.1       alc 	if (ee->ee_version >= AR_EEPROM_VER5_0 && IS_CHAN_TURBO(chan)) {
   1528  1.1       alc 		switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
   1529  1.1       alc 		adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
   1530  1.1       alc 		pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
   1531  1.1       alc 		txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
   1532  1.1       alc 		rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
   1533  1.1       alc 	} else {
   1534  1.1       alc 		switchSettling = ee->ee_switchSettling[arrayMode];
   1535  1.1       alc 		adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
   1536  1.1       alc 		pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
   1537  1.1       alc 		txrxAtten = ee->ee_txrxAtten[is2GHz];
   1538  1.1       alc 		rxtxMargin = ee->ee_rxtxMargin[is2GHz];
   1539  1.1       alc 	}
   1540  1.1       alc 
   1541  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
   1542  1.1       alc 			 AR_PHY_SETTLING_SWITCH, switchSettling);
   1543  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
   1544  1.1       alc 			 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
   1545  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
   1546  1.1       alc 			 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
   1547  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
   1548  1.1       alc 			 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
   1549  1.1       alc 	OS_REG_WRITE(ah, AR_PHY(13),
   1550  1.1       alc 		(ee->ee_txEndToXPAOff[arrayMode] << 24)
   1551  1.1       alc 		| (ee->ee_txEndToXPAOff[arrayMode] << 16)
   1552  1.1       alc 		| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
   1553  1.1       alc 		| ee->ee_txFrameToXPAOn[arrayMode]);
   1554  1.1       alc 	AR_PHY_BIS(ah, 10, 0xFFFF00FF,
   1555  1.1       alc 		ee->ee_txEndToXLNAOn[arrayMode] << 8);
   1556  1.1       alc 	AR_PHY_BIS(ah, 25, 0xFFF80FFF,
   1557  1.1       alc 		(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
   1558  1.1       alc 
   1559  1.1       alc 	/*
   1560  1.1       alc 	 * False detect backoff - suspected 32 MHz spur causes false
   1561  1.1       alc 	 * detects in OFDM, causing Tx Hangs.  Decrease weak signal
   1562  1.1       alc 	 * sensitivity for this card.
   1563  1.1       alc 	 */
   1564  1.1       alc 	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
   1565  1.1       alc 	if (ee->ee_version < AR_EEPROM_VER3_3) {
   1566  1.1       alc 		/* XXX magic number */
   1567  1.1       alc 		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
   1568  1.1       alc 		    IS_CHAN_OFDM(chan))
   1569  1.1       alc 			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
   1570  1.1       alc 	} else {
   1571  1.1       alc 		if (ar5212IsSpurChannel(ah, (HAL_CHANNEL *)chan)) {
   1572  1.1       alc 			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
   1573  1.1       alc 		}
   1574  1.1       alc 	}
   1575  1.1       alc 	AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
   1576  1.1       alc 
   1577  1.1       alc 	if (chan->iqCalValid) {
   1578  1.1       alc 		iCoff = chan->iCoff;
   1579  1.1       alc 		qCoff = chan->qCoff;
   1580  1.1       alc 	} else {
   1581  1.1       alc 		iCoff = ee->ee_iqCalI[is2GHz];
   1582  1.1       alc 		qCoff = ee->ee_iqCalQ[is2GHz];
   1583  1.1       alc 	}
   1584  1.1       alc 
   1585  1.1       alc 	/* write previous IQ results */
   1586  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1587  1.1       alc 		AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
   1588  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1589  1.1       alc 		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
   1590  1.1       alc 	OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
   1591  1.1       alc 		AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
   1592  1.1       alc 
   1593  1.1       alc 	if (ee->ee_version >= AR_EEPROM_VER4_1) {
   1594  1.1       alc 		if (!IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
   1595  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
   1596  1.1       alc 				AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
   1597  1.1       alc 	}
   1598  1.1       alc 	if (ee->ee_version >= AR_EEPROM_VER5_1) {
   1599  1.1       alc 		/* for now always disabled */
   1600  1.1       alc 		OS_REG_WRITE(ah,  AR_PHY_HEAVY_CLIP_ENABLE,  0);
   1601  1.1       alc 	}
   1602  1.1       alc 
   1603  1.1       alc 	return AH_TRUE;
   1604  1.1       alc #undef AR_PHY_BIS
   1605  1.1       alc #undef NO_FALSE_DETECT_BACKOFF
   1606  1.1       alc #undef CB22_FALSE_DETECT_BACKOFF
   1607  1.1       alc }
   1608  1.1       alc 
   1609  1.1       alc /*
   1610  1.1       alc  * Apply Spur Immunity to Boards that require it.
   1611  1.1       alc  * Applies only to OFDM RX operation.
   1612  1.1       alc  */
   1613  1.1       alc 
   1614  1.1       alc void
   1615  1.1       alc ar5212SetSpurMitigation(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
   1616  1.1       alc {
   1617  1.1       alc 	uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
   1618  1.1       alc 	uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
   1619  1.1       alc 	int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
   1620  1.1       alc 	int16_t numBinOffsets;
   1621  1.1       alc 	static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
   1622  1.1       alc 	static const uint16_t magMapFor3[3] = {1, 2, 1};
   1623  1.1       alc 	const uint16_t *pMagMap;
   1624  1.1       alc 	HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
   1625  1.1       alc 	uint32_t val;
   1626  1.1       alc 
   1627  1.1       alc #define CHAN_TO_SPUR(_f, _freq)   ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
   1628  1.1       alc 	if (IS_2417(ah)) {
   1629  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
   1630  1.1       alc 		    __func__);
   1631  1.1       alc 		return;
   1632  1.1       alc 	}
   1633  1.1       alc 
   1634  1.1       alc 	curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
   1635  1.1       alc 
   1636  1.1       alc 	if (ichan->mainSpur) {
   1637  1.1       alc 		/* Pull out the saved spur value */
   1638  1.1       alc 		finalSpur = ichan->mainSpur;
   1639  1.1       alc 	} else {
   1640  1.1       alc 		/*
   1641  1.1       alc 		 * Check if spur immunity should be performed for this channel
   1642  1.1       alc 		 * Should only be performed once per channel and then saved
   1643  1.1       alc 		 */
   1644  1.1       alc 		finalSpur = AR_NO_SPUR;
   1645  1.1       alc 		spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
   1646  1.1       alc 		if (IS_CHAN_TURBO(ichan))
   1647  1.1       alc 			spurDetectWidth *= 2;
   1648  1.1       alc 
   1649  1.1       alc 		/* Decide if any spur affects the current channel */
   1650  1.1       alc 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
   1651  1.1       alc 			spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
   1652  1.1       alc 			if (spurChan == AR_NO_SPUR) {
   1653  1.1       alc 				break;
   1654  1.1       alc 			}
   1655  1.1       alc 			if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
   1656  1.1       alc 			    (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
   1657  1.1       alc 				finalSpur = spurChan & HAL_SPUR_VAL_MASK;
   1658  1.1       alc 				break;
   1659  1.1       alc 			}
   1660  1.1       alc 		}
   1661  1.1       alc 		/* Save detected spur (or no spur) for this channel */
   1662  1.1       alc 		ichan->mainSpur = finalSpur;
   1663  1.1       alc 	}
   1664  1.1       alc 
   1665  1.1       alc 	/* Write spur immunity data */
   1666  1.1       alc 	if (finalSpur == AR_NO_SPUR) {
   1667  1.1       alc 		/* Disable Spur Immunity Regs if they appear set */
   1668  1.1       alc 		if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
   1669  1.1       alc 			/* Clear Spur Delta Phase, Spur Freq, and enable bits */
   1670  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
   1671  1.1       alc 			val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
   1672  1.1       alc 			val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
   1673  1.1       alc 				 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
   1674  1.1       alc 				 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
   1675  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
   1676  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
   1677  1.1       alc 
   1678  1.1       alc 			/* Clear pilot masks */
   1679  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
   1680  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
   1681  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
   1682  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
   1683  1.1       alc 
   1684  1.1       alc 			/* Clear magnitude masks */
   1685  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
   1686  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
   1687  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
   1688  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
   1689  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
   1690  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
   1691  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
   1692  1.1       alc 			OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
   1693  1.1       alc 		}
   1694  1.1       alc 	} else {
   1695  1.1       alc 		spurOffset = finalSpur - curChanAsSpur;
   1696  1.1       alc 		/*
   1697  1.1       alc 		 * Spur calculations:
   1698  1.1       alc 		 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
   1699  1.1       alc 		 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
   1700  1.1       alc 		 */
   1701  1.1       alc 		switch (ichan->channelFlags & CHANNEL_ALL) {
   1702  1.1       alc 		case CHANNEL_A: /* Chip Frequency & sampleFrequency are 40 MHz */
   1703  1.1       alc 			spurDeltaPhase = (spurOffset << 17) / 25;
   1704  1.1       alc 			spurFreqSd = spurDeltaPhase >> 10;
   1705  1.1       alc 			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
   1706  1.1       alc 			break;
   1707  1.1       alc 		case CHANNEL_G: /* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
   1708  1.1       alc 			spurFreqSd = (spurOffset << 8) / 55;
   1709  1.1       alc 			spurDeltaPhase = (spurOffset << 17) / 25;
   1710  1.1       alc 			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
   1711  1.1       alc 			break;
   1712  1.1       alc 		case CHANNEL_T: /* Chip Frequency & sampleFrequency are 80 MHz */
   1713  1.1       alc 		case CHANNEL_108G:
   1714  1.1       alc 			spurDeltaPhase = (spurOffset << 16) / 25;
   1715  1.1       alc 			spurFreqSd = spurDeltaPhase >> 10;
   1716  1.1       alc 			binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
   1717  1.1       alc 			break;
   1718  1.1       alc 		}
   1719  1.1       alc 
   1720  1.1       alc 		/* Compute Pilot Mask */
   1721  1.1       alc 		binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
   1722  1.1       alc 		/* The spur is on a bin if it's remainder at times 16 is 0 */
   1723  1.1       alc 		if (binOffsetNumT16 & 0xF) {
   1724  1.1       alc 			numBinOffsets = 4;
   1725  1.1       alc 			pMagMap = magMapFor4;
   1726  1.1       alc 		} else {
   1727  1.1       alc 			numBinOffsets = 3;
   1728  1.1       alc 			pMagMap = magMapFor3;
   1729  1.1       alc 		}
   1730  1.1       alc 		for (i = 0; i < numBinOffsets; i++) {
   1731  1.1       alc 			if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
   1732  1.1       alc 				HALDEBUG(ah, HAL_DEBUG_ANY,
   1733  1.1       alc 				    "Too man bins in spur mitigation\n");
   1734  1.1       alc 				return;
   1735  1.1       alc 			}
   1736  1.1       alc 
   1737  1.1       alc 			/* Get Pilot Mask values */
   1738  1.1       alc 			curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
   1739  1.1       alc 			if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
   1740  1.1       alc 				if (curBinOffset <= 25)
   1741  1.1       alc 					pilotMask[0] |= 1 << curBinOffset;
   1742  1.1       alc 				else if (curBinOffset >= 27)
   1743  1.1       alc 					pilotMask[0] |= 1 << (curBinOffset - 1);
   1744  1.1       alc 			} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
   1745  1.1       alc 				pilotMask[1] |= 1 << (curBinOffset - 33);
   1746  1.1       alc 
   1747  1.1       alc 			/* Get viterbi values */
   1748  1.1       alc 			if ((curBinOffset >= -1) && (curBinOffset <= 14))
   1749  1.1       alc 				binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
   1750  1.1       alc 			else if ((curBinOffset >= 15) && (curBinOffset <= 30))
   1751  1.1       alc 				binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
   1752  1.1       alc 			else if ((curBinOffset >= 31) && (curBinOffset <= 46))
   1753  1.1       alc 				binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
   1754  1.1       alc 			else if((curBinOffset >= 47) && (curBinOffset <= 53))
   1755  1.1       alc 				binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
   1756  1.1       alc 		}
   1757  1.1       alc 
   1758  1.1       alc 		/* Write Spur Delta Phase, Spur Freq, and enable bits */
   1759  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
   1760  1.1       alc 		val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
   1761  1.1       alc 		val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
   1762  1.1       alc 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
   1763  1.1       alc 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
   1764  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
   1765  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
   1766  1.1       alc 			     SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
   1767  1.1       alc 			     SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
   1768  1.1       alc 
   1769  1.1       alc 		/* Write pilot masks */
   1770  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
   1771  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
   1772  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
   1773  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
   1774  1.1       alc 
   1775  1.1       alc 		/* Write magnitude masks */
   1776  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
   1777  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
   1778  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
   1779  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
   1780  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
   1781  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
   1782  1.1       alc 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
   1783  1.1       alc 		OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
   1784  1.1       alc 	}
   1785  1.1       alc #undef CHAN_TO_SPUR
   1786  1.1       alc }
   1787  1.1       alc 
   1788  1.1       alc 
   1789  1.1       alc /*
   1790  1.1       alc  * Delta slope coefficient computation.
   1791  1.1       alc  * Required for OFDM operation.
   1792  1.1       alc  */
   1793  1.1       alc void
   1794  1.1       alc ar5212SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL *chan)
   1795  1.1       alc {
   1796  1.1       alc #define COEF_SCALE_S 24
   1797  1.1       alc #define INIT_CLOCKMHZSCALED	0x64000000
   1798  1.1       alc 	unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
   1799  1.1       alc 	unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
   1800  1.1       alc 
   1801  1.1       alc 	if (IS_CHAN_TURBO(chan))
   1802  1.1       alc 		clockMhzScaled *= 2;
   1803  1.1       alc 	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
   1804  1.1       alc 	/* scale for selected channel bandwidth */
   1805  1.1       alc 	if (IS_CHAN_HALF_RATE(chan)) {
   1806  1.1       alc 		clockMhzScaled = clockMhzScaled >> 1;
   1807  1.1       alc 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
   1808  1.1       alc 		clockMhzScaled = clockMhzScaled >> 2;
   1809  1.1       alc 	}
   1810  1.1       alc 
   1811  1.1       alc 	/*
   1812  1.1       alc 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
   1813  1.1       alc 	 * scaled coef to provide precision for this floating calculation
   1814  1.1       alc 	 */
   1815  1.1       alc 	coef_scaled = clockMhzScaled / chan->channel;
   1816  1.1       alc 
   1817  1.1       alc 	/*
   1818  1.1       alc 	 * ALGO -> coef_exp = 14-floor(log2(coef));
   1819  1.1       alc 	 * floor(log2(x)) is the highest set bit position
   1820  1.1       alc 	 */
   1821  1.1       alc 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
   1822  1.1       alc 		if ((coef_scaled >> coef_exp) & 0x1)
   1823  1.1       alc 			break;
   1824  1.1       alc 	/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
   1825  1.1       alc 	HALASSERT(coef_exp);
   1826  1.1       alc 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
   1827  1.1       alc 
   1828  1.1       alc 	/*
   1829  1.1       alc 	 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
   1830  1.1       alc 	 * The coefficient is already shifted up for scaling
   1831  1.1       alc 	 */
   1832  1.1       alc 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
   1833  1.1       alc 	ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
   1834  1.1       alc 	ds_coef_exp = coef_exp - 16;
   1835  1.1       alc 
   1836  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
   1837  1.1       alc 		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
   1838  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
   1839  1.1       alc 		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
   1840  1.1       alc #undef INIT_CLOCKMHZSCALED
   1841  1.1       alc #undef COEF_SCALE_S
   1842  1.1       alc }
   1843  1.1       alc 
   1844  1.1       alc /*
   1845  1.1       alc  * Set a limit on the overall output power.  Used for dynamic
   1846  1.1       alc  * transmit power control and the like.
   1847  1.1       alc  *
   1848  1.1       alc  * NB: limit is in units of 0.5 dbM.
   1849  1.1       alc  */
   1850  1.1       alc HAL_BOOL
   1851  1.1       alc ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
   1852  1.1       alc {
   1853  1.1       alc 	uint16_t dummyXpdGains[2];
   1854  1.1       alc 	HAL_BOOL ret, isBmode = AH_FALSE;
   1855  1.1       alc 
   1856  1.1       alc 	SAVE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
   1857  1.1       alc 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
   1858  1.1       alc 	ret = ar5212SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
   1859  1.1       alc 			dummyXpdGains);
   1860  1.1       alc 	RESTORE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
   1861  1.1       alc 	return ret;
   1862  1.1       alc }
   1863  1.1       alc 
   1864  1.1       alc /*
   1865  1.1       alc  * Set the transmit power in the baseband for the given
   1866  1.1       alc  * operating channel and mode.
   1867  1.1       alc  */
   1868  1.1       alc HAL_BOOL
   1869  1.1       alc ar5212SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
   1870  1.1       alc 	uint16_t *rfXpdGain)
   1871  1.1       alc {
   1872  1.1       alc #define	POW_OFDM(_r, _s)	(((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
   1873  1.1       alc #define	POW_CCK(_r, _s)		(((_r) & 0x3f) << (_s))
   1874  1.1       alc #define	N(a)			(sizeof (a) / sizeof (a[0]))
   1875  1.1       alc 	static const uint16_t tpcScaleReductionTable[5] =
   1876  1.1       alc 		{ 0, 3, 6, 9, MAX_RATE_POWER };
   1877  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   1878  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1879  1.1       alc 	int16_t minPower, maxPower, tpcInDb, powerLimit;
   1880  1.1       alc 	int i;
   1881  1.1       alc 
   1882  1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   1883  1.1       alc 
   1884  1.1       alc 	OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
   1885  1.1       alc 	OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
   1886  1.1       alc 
   1887  1.1       alc 	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
   1888  1.1       alc 	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
   1889  1.1       alc 		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
   1890  1.1       alc 	else
   1891  1.1       alc 		tpcInDb = 0;
   1892  1.1       alc 	if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
   1893  1.1       alc 				AH_TRUE, &minPower, &maxPower)) {
   1894  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
   1895  1.1       alc 		    __func__);
   1896  1.1       alc 		return AH_FALSE;
   1897  1.1       alc 	}
   1898  1.1       alc 	if (!ahp->ah_rfHal->setPowerTable(ah,
   1899  1.1       alc 		&minPower, &maxPower, chan, rfXpdGain)) {
   1900  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
   1901  1.1       alc 		    __func__);
   1902  1.1       alc 		return AH_FALSE;
   1903  1.1       alc 	}
   1904  1.1       alc 
   1905  1.1       alc 	/*
   1906  1.1       alc 	 * Adjust XR power/rate up by 2 dB to account for greater peak
   1907  1.1       alc 	 * to avg ratio - except in newer avg power designs
   1908  1.1       alc 	 */
   1909  1.1       alc 	if (!IS_2413(ah) && !IS_5413(ah))
   1910  1.1       alc 		ahp->ah_ratesArray[15] += 4;
   1911  1.1       alc 	/*
   1912  1.1       alc 	 * txPowerIndexOffset is set by the SetPowerTable() call -
   1913  1.1       alc 	 *  adjust the rate table
   1914  1.1       alc 	 */
   1915  1.1       alc 	for (i = 0; i < N(ahp->ah_ratesArray); i++) {
   1916  1.1       alc 		ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
   1917  1.1       alc 		if (ahp->ah_ratesArray[i] > 63)
   1918  1.1       alc 			ahp->ah_ratesArray[i] = 63;
   1919  1.1       alc 	}
   1920  1.1       alc 
   1921  1.1       alc 	if (ee->ee_eepMap < 2) {
   1922  1.1       alc 		/*
   1923  1.1       alc 		 * Correct gain deltas for 5212 G operation -
   1924  1.1       alc 		 * Removed with revised chipset
   1925  1.1       alc 		 */
   1926  1.1       alc 		if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
   1927  1.1       alc 		    IS_CHAN_G(chan)) {
   1928  1.1       alc 			uint16_t cckOfdmPwrDelta;
   1929  1.1       alc 
   1930  1.1       alc 			if (chan->channel == 2484)
   1931  1.1       alc 				cckOfdmPwrDelta = SCALE_OC_DELTA(
   1932  1.1       alc 					ee->ee_cckOfdmPwrDelta -
   1933  1.1       alc 					ee->ee_scaledCh14FilterCckDelta);
   1934  1.1       alc 			else
   1935  1.1       alc 				cckOfdmPwrDelta = SCALE_OC_DELTA(
   1936  1.1       alc 					ee->ee_cckOfdmPwrDelta);
   1937  1.1       alc 			ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
   1938  1.1       alc 		}
   1939  1.1       alc 		/*
   1940  1.1       alc 		 * Finally, write the power values into the
   1941  1.1       alc 		 * baseband power table
   1942  1.1       alc 		 */
   1943  1.1       alc 		for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
   1944  1.1       alc 			OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
   1945  1.1       alc 				 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
   1946  1.1       alc 				| (((ahp->ah_pcdacTable[2*i]     << 8) | 0xff) & 0xffff)
   1947  1.1       alc 			);
   1948  1.1       alc 		}
   1949  1.1       alc 	}
   1950  1.1       alc 
   1951  1.1       alc 	/* Write the OFDM power per rate set */
   1952  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
   1953  1.1       alc 		POW_OFDM(ahp->ah_ratesArray[3], 24)
   1954  1.1       alc 	      | POW_OFDM(ahp->ah_ratesArray[2], 16)
   1955  1.1       alc 	      | POW_OFDM(ahp->ah_ratesArray[1],  8)
   1956  1.1       alc 	      | POW_OFDM(ahp->ah_ratesArray[0],  0)
   1957  1.1       alc 	);
   1958  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
   1959  1.1       alc 		POW_OFDM(ahp->ah_ratesArray[7], 24)
   1960  1.1       alc 	      | POW_OFDM(ahp->ah_ratesArray[6], 16)
   1961  1.1       alc 	      | POW_OFDM(ahp->ah_ratesArray[5],  8)
   1962  1.1       alc 	      | POW_OFDM(ahp->ah_ratesArray[4],  0)
   1963  1.1       alc 	);
   1964  1.1       alc 
   1965  1.1       alc 	/* Write the CCK power per rate set */
   1966  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
   1967  1.1       alc 		POW_CCK(ahp->ah_ratesArray[10], 24)
   1968  1.1       alc 	      | POW_CCK(ahp->ah_ratesArray[9],  16)
   1969  1.1       alc 	      | POW_CCK(ahp->ah_ratesArray[15],  8)	/* XR target power */
   1970  1.1       alc 	      | POW_CCK(ahp->ah_ratesArray[8],   0)
   1971  1.1       alc 	);
   1972  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
   1973  1.1       alc 		POW_CCK(ahp->ah_ratesArray[14], 24)
   1974  1.1       alc 	      | POW_CCK(ahp->ah_ratesArray[13], 16)
   1975  1.1       alc 	      | POW_CCK(ahp->ah_ratesArray[12],  8)
   1976  1.1       alc 	      | POW_CCK(ahp->ah_ratesArray[11],  0)
   1977  1.1       alc 	);
   1978  1.1       alc 
   1979  1.1       alc 	/*
   1980  1.1       alc 	 * Set max power to 30 dBm and, optionally,
   1981  1.1       alc 	 * enable TPC in tx descriptors.
   1982  1.1       alc 	 */
   1983  1.1       alc 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
   1984  1.1       alc 		(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
   1985  1.1       alc 
   1986  1.1       alc 	return AH_TRUE;
   1987  1.1       alc #undef N
   1988  1.1       alc #undef POW_CCK
   1989  1.1       alc #undef POW_OFDM
   1990  1.1       alc }
   1991  1.1       alc 
   1992  1.1       alc /*
   1993  1.1       alc  * Sets the transmit power in the baseband for the given
   1994  1.1       alc  * operating channel and mode.
   1995  1.1       alc  */
   1996  1.1       alc static HAL_BOOL
   1997  1.1       alc ar5212SetRateTable(struct ath_hal *ah, HAL_CHANNEL *chan,
   1998  1.1       alc 		   int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
   1999  1.1       alc                    int16_t *pMinPower, int16_t *pMaxPower)
   2000  1.1       alc {
   2001  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   2002  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   2003  1.1       alc 	uint16_t *rpow = ahp->ah_ratesArray;
   2004  1.1       alc 	uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
   2005  1.1       alc 	uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
   2006  1.1       alc 	uint16_t twiceMaxRDPower = MAX_RATE_POWER;
   2007  1.1       alc 	int i;
   2008  1.1       alc 	uint8_t cfgCtl;
   2009  1.1       alc 	int8_t twiceAntennaGain, twiceAntennaReduction;
   2010  1.1       alc 	const RD_EDGES_POWER *rep;
   2011  1.1       alc 	TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
   2012  1.1       alc 	int16_t scaledPower, maxAvailPower = 0;
   2013  1.1       alc 	int16_t r13, r9, r7, r0;
   2014  1.1       alc 
   2015  1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   2016  1.1       alc 
   2017  1.1       alc 	twiceMaxRDPower = chan->maxRegTxPower * 2;
   2018  1.1       alc 	*pMaxPower = -MAX_RATE_POWER;
   2019  1.1       alc 	*pMinPower = MAX_RATE_POWER;
   2020  1.1       alc 
   2021  1.1       alc 	/* Get conformance test limit maximum for this channel */
   2022  1.1       alc 	cfgCtl = ath_hal_getctl(ah, chan);
   2023  1.1       alc 	for (i = 0; i < ee->ee_numCtls; i++) {
   2024  1.1       alc 		uint16_t twiceMinEdgePower;
   2025  1.1       alc 
   2026  1.1       alc 		if (ee->ee_ctl[i] == 0)
   2027  1.1       alc 			continue;
   2028  1.1       alc 		if (ee->ee_ctl[i] == cfgCtl ||
   2029  1.1       alc 		    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
   2030  1.1       alc 			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
   2031  1.1       alc 			twiceMinEdgePower = ar5212GetMaxEdgePower(chan->channel, rep);
   2032  1.1       alc 			if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
   2033  1.1       alc 				/* Find the minimum of all CTL edge powers that apply to this channel */
   2034  1.1       alc 				twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
   2035  1.1       alc 			} else {
   2036  1.1       alc 				twiceMaxEdgePower = twiceMinEdgePower;
   2037  1.1       alc 				break;
   2038  1.1       alc 			}
   2039  1.1       alc 		}
   2040  1.1       alc 	}
   2041  1.1       alc 
   2042  1.1       alc 	if (IS_CHAN_G(chan)) {
   2043  1.1       alc 		/* Check for a CCK CTL for 11G CCK powers */
   2044  1.1       alc 		cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
   2045  1.1       alc 		for (i = 0; i < ee->ee_numCtls; i++) {
   2046  1.1       alc 			uint16_t twiceMinEdgePowerCck;
   2047  1.1       alc 
   2048  1.1       alc 			if (ee->ee_ctl[i] == 0)
   2049  1.1       alc 				continue;
   2050  1.1       alc 			if (ee->ee_ctl[i] == cfgCtl ||
   2051  1.1       alc 			    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
   2052  1.1       alc 				rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
   2053  1.1       alc 				twiceMinEdgePowerCck = ar5212GetMaxEdgePower(chan->channel, rep);
   2054  1.1       alc 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
   2055  1.1       alc 					/* Find the minimum of all CTL edge powers that apply to this channel */
   2056  1.1       alc 					twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
   2057  1.1       alc 				} else {
   2058  1.1       alc 					twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
   2059  1.1       alc 					break;
   2060  1.1       alc 				}
   2061  1.1       alc 			}
   2062  1.1       alc 		}
   2063  1.1       alc 	} else {
   2064  1.1       alc 		/* Set the 11B cck edge power to the one found before */
   2065  1.1       alc 		twiceMaxEdgePowerCck = twiceMaxEdgePower;
   2066  1.1       alc 	}
   2067  1.1       alc 
   2068  1.1       alc 	/* Get Antenna Gain reduction */
   2069  1.1       alc 	if (IS_CHAN_5GHZ(chan)) {
   2070  1.1       alc 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
   2071  1.1       alc 	} else {
   2072  1.1       alc 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
   2073  1.1       alc 	}
   2074  1.1       alc 	twiceAntennaReduction =
   2075  1.1       alc 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
   2076  1.1       alc 
   2077  1.1       alc 	if (IS_CHAN_OFDM(chan)) {
   2078  1.1       alc 		/* Get final OFDM target powers */
   2079  1.1       alc 		if (IS_CHAN_2GHZ(chan)) {
   2080  1.1       alc 			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
   2081  1.1       alc 				ee->ee_numTargetPwr_11g, &targetPowerOfdm);
   2082  1.1       alc 		} else {
   2083  1.1       alc 			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
   2084  1.1       alc 				ee->ee_numTargetPwr_11a, &targetPowerOfdm);
   2085  1.1       alc 		}
   2086  1.1       alc 
   2087  1.1       alc 		/* Get Maximum OFDM power */
   2088  1.1       alc 		/* Minimum of target and edge powers */
   2089  1.1       alc 		scaledPower = AH_MIN(twiceMaxEdgePower,
   2090  1.1       alc 				twiceMaxRDPower - twiceAntennaReduction);
   2091  1.1       alc 
   2092  1.1       alc 		/*
   2093  1.1       alc 		 * If turbo is set, reduce power to keep power
   2094  1.1       alc 		 * consumption under 2 Watts.  Note that we always do
   2095  1.1       alc 		 * this unless specially configured.  Then we limit
   2096  1.1       alc 		 * power only for non-AP operation.
   2097  1.1       alc 		 */
   2098  1.1       alc 		if (IS_CHAN_TURBO(chan)
   2099  1.1       alc #ifdef AH_ENABLE_AP_SUPPORT
   2100  1.1       alc 		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
   2101  1.1       alc #endif
   2102  1.1       alc 		) {
   2103  1.1       alc 			/*
   2104  1.1       alc 			 * If turbo is set, reduce power to keep power
   2105  1.1       alc 			 * consumption under 2 Watts
   2106  1.1       alc 			 */
   2107  1.1       alc 			if (ee->ee_version >= AR_EEPROM_VER3_1)
   2108  1.1       alc 				scaledPower = AH_MIN(scaledPower,
   2109  1.1       alc 					ee->ee_turbo2WMaxPower5);
   2110  1.1       alc 			/*
   2111  1.1       alc 			 * EEPROM version 4.0 added an additional
   2112  1.1       alc 			 * constraint on 2.4GHz channels.
   2113  1.1       alc 			 */
   2114  1.1       alc 			if (ee->ee_version >= AR_EEPROM_VER4_0 &&
   2115  1.1       alc 			    IS_CHAN_2GHZ(chan))
   2116  1.1       alc 				scaledPower = AH_MIN(scaledPower,
   2117  1.1       alc 					ee->ee_turbo2WMaxPower2);
   2118  1.1       alc 		}
   2119  1.1       alc 
   2120  1.1       alc 		maxAvailPower = AH_MIN(scaledPower,
   2121  1.1       alc 					targetPowerOfdm.twicePwr6_24);
   2122  1.1       alc 
   2123  1.1       alc 		/* Reduce power by max regulatory domain allowed restrictions */
   2124  1.1       alc 		scaledPower = maxAvailPower - (tpcScaleReduction * 2);
   2125  1.1       alc 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
   2126  1.1       alc 		scaledPower = AH_MIN(scaledPower, powerLimit);
   2127  1.1       alc 
   2128  1.1       alc 		if (commit) {
   2129  1.1       alc 			/* Set OFDM rates 9, 12, 18, 24 */
   2130  1.1       alc 			r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
   2131  1.1       alc 
   2132  1.1       alc 			/* Set OFDM rates 36, 48, 54, XR */
   2133  1.1       alc 			rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
   2134  1.1       alc 			rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
   2135  1.1       alc 			r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
   2136  1.1       alc 
   2137  1.1       alc 			if (ee->ee_version >= AR_EEPROM_VER4_0) {
   2138  1.1       alc 				/* Setup XR target power from EEPROM */
   2139  1.1       alc 				rpow[15] = AH_MIN(scaledPower, IS_CHAN_2GHZ(chan) ?
   2140  1.1       alc 						  ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
   2141  1.1       alc 			} else {
   2142  1.1       alc 				/* XR uses 6mb power */
   2143  1.1       alc 				rpow[15] = rpow[0];
   2144  1.1       alc 			}
   2145  1.1       alc 			ahp->ah_ofdmTxPower = *pMaxPower;
   2146  1.1       alc 
   2147  1.1       alc 		} else {
   2148  1.1       alc 			r0 = scaledPower;
   2149  1.1       alc 			r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
   2150  1.1       alc 		}
   2151  1.1       alc 		*pMinPower = r7;
   2152  1.1       alc 		*pMaxPower = r0;
   2153  1.1       alc 
   2154  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
   2155  1.1       alc 		    "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
   2156  1.1       alc 		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
   2157  1.1       alc 		    __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
   2158  1.1       alc 		    twiceMaxEdgePower, tpcScaleReduction * 2,
   2159  1.1       alc 		    chan->channel, chan->channelFlags,
   2160  1.1       alc 		    maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
   2161  1.1       alc 	}
   2162  1.1       alc 
   2163  1.1       alc 	if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
   2164  1.1       alc 		/* Get final CCK target powers */
   2165  1.1       alc 		ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
   2166  1.1       alc 			ee->ee_numTargetPwr_11b, &targetPowerCck);
   2167  1.1       alc 
   2168  1.1       alc 		/* Reduce power by max regulatory domain allowed restrictions */
   2169  1.1       alc 		scaledPower = AH_MIN(twiceMaxEdgePowerCck,
   2170  1.1       alc 			twiceMaxRDPower - twiceAntennaReduction);
   2171  1.1       alc 		if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
   2172  1.1       alc 			maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
   2173  1.1       alc 
   2174  1.1       alc 		/* Reduce power by user selection */
   2175  1.1       alc 		scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
   2176  1.1       alc 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
   2177  1.1       alc 		scaledPower = AH_MIN(scaledPower, powerLimit);
   2178  1.1       alc 
   2179  1.1       alc 		if (commit) {
   2180  1.1       alc 			/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
   2181  1.1       alc 			rpow[8]  = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
   2182  1.1       alc 			r9 = rpow[9]  = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
   2183  1.1       alc 			rpow[10] = rpow[9];
   2184  1.1       alc 			rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
   2185  1.1       alc 			rpow[12] = rpow[11];
   2186  1.1       alc 			r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
   2187  1.1       alc 			rpow[14] = rpow[13];
   2188  1.1       alc 		} else {
   2189  1.1       alc 			r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
   2190  1.1       alc 			r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
   2191  1.1       alc 		}
   2192  1.1       alc 
   2193  1.1       alc 		/* Set min/max power based off OFDM values or initialization */
   2194  1.1       alc 		if (r13 < *pMinPower)
   2195  1.1       alc 			*pMinPower = r13;
   2196  1.1       alc 		if (r9 > *pMaxPower)
   2197  1.1       alc 			*pMaxPower = r9;
   2198  1.1       alc 
   2199  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
   2200  1.1       alc 		    "%s: cck: MaxRD: %d MaxCTL: %d "
   2201  1.1       alc 		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
   2202  1.1       alc 		    __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
   2203  1.1       alc 		    tpcScaleReduction * 2, chan->channel, chan->channelFlags,
   2204  1.1       alc 		    maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
   2205  1.1       alc 	}
   2206  1.1       alc 	if (commit) {
   2207  1.1       alc 		ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
   2208  1.1       alc 		AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
   2209  1.1       alc 	}
   2210  1.1       alc 	return AH_TRUE;
   2211  1.1       alc }
   2212  1.1       alc 
   2213  1.1       alc HAL_BOOL
   2214  1.1       alc ar5212GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
   2215  1.1       alc {
   2216  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   2217  1.1       alc 	static const uint16_t tpcScaleReductionTable[5] =
   2218  1.1       alc 		{ 0, 3, 6, 9, MAX_RATE_POWER };
   2219  1.1       alc 	int16_t minPower, maxPower, tpcInDb, powerLimit;
   2220  1.1       alc 	HAL_CHANNEL *chan;
   2221  1.1       alc 	int i;
   2222  1.1       alc 
   2223  1.1       alc 	/*
   2224  1.1       alc 	 * Get Pier table max and min powers.
   2225  1.1       alc 	 */
   2226  1.1       alc 	for (i = 0; i < nchans; i++) {
   2227  1.1       alc 		chan = &chans[i];
   2228  1.1       alc 		if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
   2229  1.1       alc 			/* NB: rf code returns 1/4 dBm units, convert */
   2230  1.1       alc 			chan->maxTxPower = maxPower / 2;
   2231  1.1       alc 			chan->minTxPower = minPower / 2;
   2232  1.1       alc 		} else {
   2233  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
   2234  1.1       alc 			    "%s: no min/max power for %u/0x%x\n",
   2235  1.1       alc 			    __func__, chan->channel, chan->channelFlags);
   2236  1.1       alc 			chan->maxTxPower = MAX_RATE_POWER;
   2237  1.1       alc 			chan->minTxPower = 0;
   2238  1.1       alc 		}
   2239  1.1       alc 	}
   2240  1.1       alc 	/*
   2241  1.1       alc 	 * Now adjust to reflect any global scale and/or CTL's.
   2242  1.1       alc 	 * (XXX is that correct?)
   2243  1.1       alc 	 */
   2244  1.1       alc 	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
   2245  1.1       alc 	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
   2246  1.1       alc 		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
   2247  1.1       alc 	else
   2248  1.1       alc 		tpcInDb = 0;
   2249  1.1       alc 	for (i=0; i<nchans; i++) {
   2250  1.1       alc 		chan = &chans[i];
   2251  1.1       alc 		if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
   2252  1.1       alc 					AH_FALSE, &minPower, &maxPower)) {
   2253  1.1       alc 			HALDEBUG(ah, HAL_DEBUG_ANY,
   2254  1.1       alc 			    "%s: unable to find max/min power\n",__func__);
   2255  1.1       alc 			return AH_FALSE;
   2256  1.1       alc 		}
   2257  1.1       alc 		if (maxPower < chan->maxTxPower)
   2258  1.1       alc 			chan->maxTxPower = maxPower;
   2259  1.1       alc 		if (minPower < chan->minTxPower)
   2260  1.1       alc 			chan->minTxPower = minPower;
   2261  1.1       alc 	}
   2262  1.1       alc #ifdef AH_DEBUG
   2263  1.1       alc 	for (i=0; i<nchans; i++) {
   2264  1.1       alc 		HALDEBUG(ah, HAL_DEBUG_RESET,
   2265  1.1       alc 		    "Chan %d: MaxPow = %d MinPow = %d\n",
   2266  1.1       alc 		    chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
   2267  1.1       alc 	}
   2268  1.1       alc #endif
   2269  1.1       alc 	return AH_TRUE;
   2270  1.1       alc }
   2271  1.1       alc 
   2272  1.1       alc /*
   2273  1.1       alc  * Correct for the gain-delta between ofdm and cck mode target
   2274  1.1       alc  * powers. Write the results to the rate table and the power table.
   2275  1.1       alc  *
   2276  1.1       alc  *   Conventions :
   2277  1.1       alc  *   1. rpow[ii] is the integer value of 2*(desired power
   2278  1.1       alc  *    for the rate ii in dBm) to provide 0.5dB resolution. rate
   2279  1.1       alc  *    mapping is as following :
   2280  1.1       alc  *     [0..7]  --> ofdm 6, 9, .. 48, 54
   2281  1.1       alc  *     [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
   2282  1.1       alc  *     [15]    --> XR (all rates get the same power)
   2283  1.1       alc  *   2. powv[ii]  is the pcdac corresponding to ii/2 dBm.
   2284  1.1       alc  */
   2285  1.1       alc static void
   2286  1.1       alc ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
   2287  1.1       alc {
   2288  1.1       alc #define	N(_a)	(sizeof(_a) / sizeof(_a[0]))
   2289  1.1       alc 	struct ath_hal_5212 *ahp = AH5212(ah);
   2290  1.1       alc 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   2291  1.1       alc 	int16_t ratesIndex[N(ahp->ah_ratesArray)];
   2292  1.1       alc 	uint16_t ii, jj, iter;
   2293  1.1       alc 	int32_t cckIndex;
   2294  1.1       alc 	int16_t gainDeltaAdjust;
   2295  1.1       alc 
   2296  1.1       alc 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   2297  1.1       alc 
   2298  1.1       alc 	gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
   2299  1.1       alc 
   2300  1.1       alc 	/* make a local copy of desired powers as initial indices */
   2301  1.1       alc 	OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
   2302  1.1       alc 
   2303  1.1       alc 	/* fix only the CCK indices */
   2304  1.1       alc 	for (ii = 8; ii < 15; ii++) {
   2305  1.1       alc 		/* apply a gain_delta correction of -15 for CCK */
   2306  1.1       alc 		ratesIndex[ii] -= gainDeltaAdjust;
   2307  1.1       alc 
   2308  1.1       alc 		/* Now check for contention with all ofdm target powers */
   2309  1.1       alc 		jj = 0;
   2310  1.1       alc 		iter = 0;
   2311  1.1       alc 		/* indicates not all ofdm rates checked forcontention yet */
   2312  1.1       alc 		while (jj < 16) {
   2313  1.1       alc 			if (ratesIndex[ii] < 0)
   2314  1.1       alc 				ratesIndex[ii] = 0;
   2315  1.1       alc 			if (jj == 8) {		/* skip CCK rates */
   2316  1.1       alc 				jj = 15;
   2317  1.1       alc 				continue;
   2318  1.1       alc 			}
   2319  1.1       alc 			if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
   2320  1.1       alc 				if (ahp->ah_ratesArray[jj] == 0)
   2321  1.1       alc 					ratesIndex[ii]++;
   2322  1.1       alc 				else if (iter > 50) {
   2323  1.1       alc 					/*
   2324  1.1       alc 					 * To avoid pathological case of of
   2325  1.1       alc 					 * dm target powers 0 and 0.5dBm
   2326  1.1       alc 					 */
   2327  1.1       alc 					ratesIndex[ii]++;
   2328  1.1       alc 				} else
   2329  1.1       alc 					ratesIndex[ii]--;
   2330  1.1       alc 				/* check with all rates again */
   2331  1.1       alc 				jj = 0;
   2332  1.1       alc 				iter++;
   2333  1.1       alc 			} else
   2334  1.1       alc 				jj++;
   2335  1.1       alc 		}
   2336  1.1       alc 		if (ratesIndex[ii] >= PWR_TABLE_SIZE)
   2337  1.1       alc 			ratesIndex[ii] = PWR_TABLE_SIZE -1;
   2338  1.1       alc 		cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
   2339  1.1       alc 		if (cckIndex < 0)
   2340  1.1       alc 			cckIndex = 0;
   2341  1.1       alc 
   2342  1.1       alc 		/*
   2343  1.1       alc 		 * Validate that the indexes for the powv are not
   2344  1.1       alc 		 * out of bounds.
   2345  1.1       alc 		 */
   2346  1.1       alc 		HALASSERT(cckIndex < PWR_TABLE_SIZE);
   2347  1.1       alc 		HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
   2348  1.1       alc 		ahp->ah_pcdacTable[ratesIndex[ii]] =
   2349  1.1       alc 			ahp->ah_pcdacTable[cckIndex];
   2350  1.1       alc 	}
   2351  1.1       alc 	/* Override rate per power table with new values */
   2352  1.1       alc 	for (ii = 8; ii < 15; ii++)
   2353  1.1       alc 		ahp->ah_ratesArray[ii] = ratesIndex[ii];
   2354  1.1       alc #undef N
   2355  1.1       alc }
   2356  1.1       alc 
   2357  1.1       alc /*
   2358  1.1       alc  * Find the maximum conformance test limit for the given channel and CTL info
   2359  1.1       alc  */
   2360  1.1       alc static uint16_t
   2361  1.1       alc ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
   2362  1.1       alc {
   2363  1.1       alc 	/* temp array for holding edge channels */
   2364  1.1       alc 	uint16_t tempChannelList[NUM_EDGES];
   2365  1.2       mrg 	uint16_t clo = 0, chi = 0, twiceMaxEdgePower;
   2366  1.1       alc 	int i, numEdges;
   2367  1.1       alc 
   2368  1.1       alc 	/* Get the edge power */
   2369  1.1       alc 	for (i = 0; i < NUM_EDGES; i++) {
   2370  1.1       alc 		if (pRdEdgesPower[i].rdEdge == 0)
   2371  1.1       alc 			break;
   2372  1.1       alc 		tempChannelList[i] = pRdEdgesPower[i].rdEdge;
   2373  1.1       alc 	}
   2374  1.1       alc 	numEdges = i;
   2375  1.1       alc 
   2376  1.1       alc 	ar5212GetLowerUpperValues(channel, tempChannelList,
   2377  1.1       alc 		numEdges, &clo, &chi);
   2378  1.1       alc 	/* Get the index for the lower channel */
   2379  1.1       alc 	for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
   2380  1.1       alc 		;
   2381  1.1       alc 	/* Is lower channel ever outside the rdEdge? */
   2382  1.1       alc 	HALASSERT(i != numEdges);
   2383  1.1       alc 
   2384  1.1       alc 	if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
   2385  1.1       alc 		/*
   2386  1.1       alc 		 * If there's an exact channel match or an inband flag set
   2387  1.1       alc 		 * on the lower channel use the given rdEdgePower
   2388  1.1       alc 		 */
   2389  1.1       alc 		twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
   2390  1.1       alc 		HALASSERT(twiceMaxEdgePower > 0);
   2391  1.1       alc 	} else
   2392  1.1       alc 		twiceMaxEdgePower = MAX_RATE_POWER;
   2393  1.1       alc 	return twiceMaxEdgePower;
   2394  1.1       alc }
   2395  1.1       alc 
   2396  1.1       alc /*
   2397  1.1       alc  * Returns interpolated or the scaled up interpolated value
   2398  1.1       alc  */
   2399  1.1       alc static uint16_t
   2400  1.1       alc interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
   2401  1.1       alc 	uint16_t targetLeft, uint16_t targetRight)
   2402  1.1       alc {
   2403  1.1       alc 	uint16_t rv;
   2404  1.1       alc 	int16_t lRatio;
   2405  1.1       alc 
   2406  1.1       alc 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
   2407  1.1       alc 	if ((targetLeft * targetRight) == 0)
   2408  1.1       alc 		return 0;
   2409  1.1       alc 
   2410  1.1       alc 	if (srcRight != srcLeft) {
   2411  1.1       alc 		/*
   2412  1.1       alc 		 * Note the ratio always need to be scaled,
   2413  1.1       alc 		 * since it will be a fraction.
   2414  1.1       alc 		 */
   2415  1.1       alc 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
   2416  1.1       alc 		if (lRatio < 0) {
   2417  1.1       alc 		    /* Return as Left target if value would be negative */
   2418  1.1       alc 		    rv = targetLeft;
   2419  1.1       alc 		} else if (lRatio > EEP_SCALE) {
   2420  1.1       alc 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
   2421  1.1       alc 		    rv = targetRight;
   2422  1.1       alc 		} else {
   2423  1.1       alc 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
   2424  1.1       alc 					targetLeft) / EEP_SCALE;
   2425  1.1       alc 		}
   2426  1.1       alc 	} else {
   2427  1.1       alc 		rv = targetLeft;
   2428  1.1       alc 	}
   2429  1.1       alc 	return rv;
   2430  1.1       alc }
   2431  1.1       alc 
   2432  1.1       alc /*
   2433  1.1       alc  * Return the four rates of target power for the given target power table
   2434  1.1       alc  * channel, and number of channels
   2435  1.1       alc  */
   2436  1.1       alc static void
   2437  1.1       alc ar5212GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL *chan,
   2438  1.1       alc 	const TRGT_POWER_INFO *powInfo,
   2439  1.1       alc 	uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
   2440  1.1       alc {
   2441  1.1       alc 	/* temp array for holding target power channels */
   2442  1.1       alc 	uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
   2443  1.2       mrg 	uint16_t clo = 0, chi = 0, ixlo, ixhi;
   2444  1.1       alc 	int i;
   2445  1.1       alc 
   2446  1.1       alc 	/* Copy the target powers into the temp channel list */
   2447  1.1       alc 	for (i = 0; i < numChannels; i++)
   2448  1.1       alc 		tempChannelList[i] = powInfo[i].testChannel;
   2449  1.1       alc 
   2450  1.1       alc 	ar5212GetLowerUpperValues(chan->channel, tempChannelList,
   2451  1.1       alc 		numChannels, &clo, &chi);
   2452  1.1       alc 
   2453  1.1       alc 	/* Get the indices for the channel */
   2454  1.1       alc 	ixlo = ixhi = 0;
   2455  1.1       alc 	for (i = 0; i < numChannels; i++) {
   2456  1.1       alc 		if (clo == tempChannelList[i]) {
   2457  1.1       alc 			ixlo = i;
   2458  1.1       alc 		}
   2459  1.1       alc 		if (chi == tempChannelList[i]) {
   2460  1.1       alc 			ixhi = i;
   2461  1.1       alc 			break;
   2462  1.1       alc 		}
   2463  1.1       alc 	}
   2464  1.1       alc 
   2465  1.1       alc 	/*
   2466  1.1       alc 	 * Get the lower and upper channels, target powers,
   2467  1.1       alc 	 * and interpolate between them.
   2468  1.1       alc 	 */
   2469  1.1       alc 	pNewPower->twicePwr6_24 = interpolate(chan->channel, clo, chi,
   2470  1.1       alc 		powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
   2471  1.1       alc 	pNewPower->twicePwr36 = interpolate(chan->channel, clo, chi,
   2472  1.1       alc 		powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
   2473  1.1       alc 	pNewPower->twicePwr48 = interpolate(chan->channel, clo, chi,
   2474  1.1       alc 		powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
   2475  1.1       alc 	pNewPower->twicePwr54 = interpolate(chan->channel, clo, chi,
   2476  1.1       alc 		powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
   2477  1.1       alc }
   2478  1.1       alc 
   2479  1.1       alc /*
   2480  1.1       alc  * Search a list for a specified value v that is within
   2481  1.1       alc  * EEP_DELTA of the search values.  Return the closest
   2482  1.1       alc  * values in the list above and below the desired value.
   2483  1.1       alc  * EEP_DELTA is a factional value; everything is scaled
   2484  1.1       alc  * so only integer arithmetic is used.
   2485  1.1       alc  *
   2486  1.1       alc  * NB: the input list is assumed to be sorted in ascending order
   2487  1.1       alc  */
   2488  1.1       alc void
   2489  1.1       alc ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
   2490  1.1       alc                           uint16_t *vlo, uint16_t *vhi)
   2491  1.1       alc {
   2492  1.1       alc 	uint32_t target = v * EEP_SCALE;
   2493  1.1       alc 	uint16_t *ep = lp+listSize;
   2494  1.1       alc 
   2495  1.1       alc 	/*
   2496  1.1       alc 	 * Check first and last elements for out-of-bounds conditions.
   2497  1.1       alc 	 */
   2498  1.1       alc 	if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
   2499  1.1       alc 		*vlo = *vhi = lp[0];
   2500  1.1       alc 		return;
   2501  1.1       alc 	}
   2502  1.1       alc 	if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
   2503  1.1       alc 		*vlo = *vhi = ep[-1];
   2504  1.1       alc 		return;
   2505  1.1       alc 	}
   2506  1.1       alc 
   2507  1.1       alc 	/* look for value being near or between 2 values in list */
   2508  1.1       alc 	for (; lp < ep; lp++) {
   2509  1.1       alc 		/*
   2510  1.1       alc 		 * If value is close to the current value of the list
   2511  1.1       alc 		 * then target is not between values, it is one of the values
   2512  1.1       alc 		 */
   2513  1.5     joerg 		if (lp[0] * EEP_SCALE - target < EEP_DELTA) {
   2514  1.1       alc 			*vlo = *vhi = lp[0];
   2515  1.1       alc 			return;
   2516  1.1       alc 		}
   2517  1.1       alc 		/*
   2518  1.1       alc 		 * Look for value being between current value and next value
   2519  1.1       alc 		 * if so return these 2 values
   2520  1.1       alc 		 */
   2521  1.1       alc 		if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
   2522  1.1       alc 			*vlo = lp[0];
   2523  1.1       alc 			*vhi = lp[1];
   2524  1.1       alc 			return;
   2525  1.1       alc 		}
   2526  1.1       alc 	}
   2527  1.1       alc 	HALASSERT(AH_FALSE);		/* should not reach here */
   2528  1.1       alc }
   2529  1.1       alc 
   2530  1.1       alc /*
   2531  1.1       alc  * Perform analog "swizzling" of parameters into their location
   2532  1.1       alc  *
   2533  1.1       alc  * NB: used by RF backends
   2534  1.1       alc  */
   2535  1.1       alc void
   2536  1.1       alc ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
   2537  1.1       alc                      uint32_t firstBit, uint32_t column)
   2538  1.1       alc {
   2539  1.1       alc #define	MAX_ANALOG_START	319		/* XXX */
   2540  1.1       alc 	uint32_t tmp32, mask, arrayEntry, lastBit;
   2541  1.1       alc 	int32_t bitPosition, bitsLeft;
   2542  1.1       alc 
   2543  1.1       alc 	HALASSERT(column <= 3);
   2544  1.1       alc 	HALASSERT(numBits <= 32);
   2545  1.1       alc 	HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
   2546  1.1       alc 
   2547  1.1       alc 	tmp32 = ath_hal_reverseBits(reg32, numBits);
   2548  1.1       alc 	arrayEntry = (firstBit - 1) / 8;
   2549  1.1       alc 	bitPosition = (firstBit - 1) % 8;
   2550  1.1       alc 	bitsLeft = numBits;
   2551  1.1       alc 	while (bitsLeft > 0) {
   2552  1.1       alc 		lastBit = (bitPosition + bitsLeft > 8) ?
   2553  1.1       alc 			8 : bitPosition + bitsLeft;
   2554  1.1       alc 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
   2555  1.1       alc 			(column * 8);
   2556  1.1       alc 		rfBuf[arrayEntry] &= ~mask;
   2557  1.1       alc 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
   2558  1.1       alc 			(column * 8)) & mask;
   2559  1.1       alc 		bitsLeft -= 8 - bitPosition;
   2560  1.1       alc 		tmp32 = tmp32 >> (8 - bitPosition);
   2561  1.1       alc 		bitPosition = 0;
   2562  1.1       alc 		arrayEntry++;
   2563  1.1       alc 	}
   2564  1.1       alc #undef MAX_ANALOG_START
   2565  1.1       alc }
   2566  1.1       alc 
   2567  1.1       alc /*
   2568  1.1       alc  * Sets the rate to duration values in MAC - used for multi-
   2569  1.1       alc  * rate retry.
   2570  1.1       alc  * The rate duration table needs to cover all valid rate codes;
   2571  1.1       alc  * the 11g table covers all ofdm rates, while the 11b table
   2572  1.1       alc  * covers all cck rates => all valid rates get covered between
   2573  1.1       alc  * these two mode's ratetables!
   2574  1.1       alc  * But if we're turbo, the ofdm phy is replaced by the turbo phy
   2575  1.1       alc  * and cck is not valid with turbo => all rates get covered
   2576  1.1       alc  * by the turbo ratetable only
   2577  1.1       alc  */
   2578  1.1       alc void
   2579  1.1       alc ar5212SetRateDurationTable(struct ath_hal *ah, HAL_CHANNEL *chan)
   2580  1.1       alc {
   2581  1.1       alc 	const HAL_RATE_TABLE *rt;
   2582  1.1       alc 	int i;
   2583  1.1       alc 
   2584  1.1       alc 	/* NB: band doesn't matter for 1/2 and 1/4 rate */
   2585  1.1       alc 	if (IS_CHAN_HALF_RATE(chan)) {
   2586  1.1       alc 		rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
   2587  1.1       alc 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
   2588  1.1       alc 		rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
   2589  1.1       alc 	} else {
   2590  1.1       alc 		rt = ar5212GetRateTable(ah,
   2591  1.1       alc 			IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
   2592  1.1       alc 	}
   2593  1.1       alc 
   2594  1.1       alc 	for (i = 0; i < rt->rateCount; ++i)
   2595  1.1       alc 		OS_REG_WRITE(ah,
   2596  1.1       alc 			AR_RATE_DURATION(rt->info[i].rateCode),
   2597  1.1       alc 			ath_hal_computetxtime(ah, rt,
   2598  1.1       alc 				WLAN_CTRL_FRAME_SIZE,
   2599  1.1       alc 				rt->info[i].controlRate, AH_FALSE));
   2600  1.1       alc 	if (!IS_CHAN_TURBO(chan)) {
   2601  1.1       alc 		/* 11g Table is used to cover the CCK rates. */
   2602  1.1       alc 		rt = ar5212GetRateTable(ah, HAL_MODE_11G);
   2603  1.1       alc 		for (i = 0; i < rt->rateCount; ++i) {
   2604  1.1       alc 			uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
   2605  1.1       alc 
   2606  1.1       alc 			if (rt->info[i].phy != IEEE80211_T_CCK)
   2607  1.1       alc 				continue;
   2608  1.1       alc 
   2609  1.1       alc 			OS_REG_WRITE(ah, reg,
   2610  1.1       alc 				ath_hal_computetxtime(ah, rt,
   2611  1.1       alc 					WLAN_CTRL_FRAME_SIZE,
   2612  1.1       alc 					rt->info[i].controlRate, AH_FALSE));
   2613  1.1       alc 			/* cck rates have short preamble option also */
   2614  1.1       alc 			if (rt->info[i].shortPreamble) {
   2615  1.1       alc 				reg += rt->info[i].shortPreamble << 2;
   2616  1.1       alc 				OS_REG_WRITE(ah, reg,
   2617  1.1       alc 					ath_hal_computetxtime(ah, rt,
   2618  1.1       alc 						WLAN_CTRL_FRAME_SIZE,
   2619  1.1       alc 						rt->info[i].controlRate,
   2620  1.1       alc 						AH_TRUE));
   2621  1.1       alc 			}
   2622  1.1       alc 		}
   2623  1.1       alc 	}
   2624  1.1       alc }
   2625  1.1       alc 
   2626  1.1       alc /* Adjust various register settings based on half/quarter rate clock setting.
   2627  1.1       alc  * This includes: +USEC, TX/RX latency,
   2628  1.1       alc  *                + IFS params: slot, eifs, misc etc.
   2629  1.1       alc  */
   2630  1.1       alc void
   2631  1.1       alc ar5212SetIFSTiming(struct ath_hal *ah, HAL_CHANNEL *chan)
   2632  1.1       alc {
   2633  1.1       alc 	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
   2634  1.1       alc 
   2635  1.1       alc 	HALASSERT(IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan));
   2636  1.1       alc 
   2637  1.1       alc 	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
   2638  1.1       alc 	if (IS_CHAN_HALF_RATE(chan)) {
   2639  1.1       alc 		slot = IFS_SLOT_HALF_RATE;
   2640  1.1       alc 		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
   2641  1.1       alc 		txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
   2642  1.1       alc 		usec = HALF_RATE_USEC;
   2643  1.1       alc 		eifs = IFS_EIFS_HALF_RATE;
   2644  1.1       alc 		init_usec = INIT_USEC >> 1;
   2645  1.1       alc 	} else { /* quarter rate */
   2646  1.1       alc 		slot = IFS_SLOT_QUARTER_RATE;
   2647  1.1       alc 		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
   2648  1.1       alc 		txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
   2649  1.1       alc 		usec = QUARTER_RATE_USEC;
   2650  1.1       alc 		eifs = IFS_EIFS_QUARTER_RATE;
   2651  1.1       alc 		init_usec = INIT_USEC >> 2;
   2652  1.1       alc 	}
   2653  1.1       alc 
   2654  1.1       alc 	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
   2655  1.1       alc 	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
   2656  1.1       alc 	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
   2657  1.1       alc 	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
   2658  1.1       alc 				AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
   2659  1.1       alc }
   2660