ar5413.c revision 1.2.14.1 1 1.1 alc /*
2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 1.1 alc * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 1.1 alc *
5 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any
6 1.1 alc * purpose with or without fee is hereby granted, provided that the above
7 1.1 alc * copyright notice and this permission notice appear in all copies.
8 1.1 alc *
9 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 1.1 alc *
17 1.2.14.1 rmind * $Id: ar5413.c,v 1.2.14.1 2011/03/05 20:55:01 rmind Exp $
18 1.1 alc */
19 1.1 alc #include "opt_ah.h"
20 1.1 alc
21 1.1 alc #include "ah.h"
22 1.1 alc #include "ah_internal.h"
23 1.1 alc
24 1.1 alc #include "ah_eeprom_v3.h"
25 1.1 alc
26 1.1 alc #include "ar5212/ar5212.h"
27 1.1 alc #include "ar5212/ar5212reg.h"
28 1.1 alc #include "ar5212/ar5212phy.h"
29 1.1 alc
30 1.1 alc #define AH_5212_5413
31 1.1 alc #include "ar5212/ar5212.ini"
32 1.1 alc
33 1.1 alc #define N(a) (sizeof(a)/sizeof(a[0]))
34 1.1 alc
35 1.1 alc struct ar5413State {
36 1.1 alc RF_HAL_FUNCS base; /* public state, must be first */
37 1.1 alc uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
38 1.1 alc
39 1.1 alc uint32_t Bank1Data[N(ar5212Bank1_5413)];
40 1.1 alc uint32_t Bank2Data[N(ar5212Bank2_5413)];
41 1.1 alc uint32_t Bank3Data[N(ar5212Bank3_5413)];
42 1.1 alc uint32_t Bank6Data[N(ar5212Bank6_5413)];
43 1.1 alc uint32_t Bank7Data[N(ar5212Bank7_5413)];
44 1.1 alc
45 1.1 alc /*
46 1.1 alc * Private state for reduced stack usage.
47 1.1 alc */
48 1.1 alc /* filled out Vpd table for all pdGains (chanL) */
49 1.1 alc uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 1.1 alc [MAX_PWR_RANGE_IN_HALF_DB];
51 1.1 alc /* filled out Vpd table for all pdGains (chanR) */
52 1.1 alc uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 1.1 alc [MAX_PWR_RANGE_IN_HALF_DB];
54 1.1 alc /* filled out Vpd table for all pdGains (interpolated) */
55 1.1 alc uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 1.1 alc [MAX_PWR_RANGE_IN_HALF_DB];
57 1.1 alc };
58 1.1 alc #define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal)
59 1.1 alc
60 1.1 alc extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 1.1 alc uint32_t numBits, uint32_t firstBit, uint32_t column);
62 1.1 alc
63 1.1 alc static void
64 1.1 alc ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 1.1 alc int writes)
66 1.1 alc {
67 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
68 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
69 1.1 alc HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
70 1.1 alc }
71 1.1 alc
72 1.1 alc /*
73 1.1 alc * Take the MHz channel value and set the Channel value
74 1.1 alc *
75 1.1 alc * ASSUMES: Writes enabled to analog bus
76 1.1 alc */
77 1.1 alc static HAL_BOOL
78 1.1 alc ar5413SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
79 1.1 alc {
80 1.1 alc uint32_t channelSel = 0;
81 1.1 alc uint32_t bModeSynth = 0;
82 1.1 alc uint32_t aModeRefSel = 0;
83 1.1 alc uint32_t reg32 = 0;
84 1.1 alc uint16_t freq;
85 1.1 alc
86 1.1 alc OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
87 1.1 alc
88 1.1 alc if (chan->channel < 4800) {
89 1.1 alc uint32_t txctl;
90 1.1 alc
91 1.1 alc if (((chan->channel - 2192) % 5) == 0) {
92 1.1 alc channelSel = ((chan->channel - 672) * 2 - 3040)/10;
93 1.1 alc bModeSynth = 0;
94 1.1 alc } else if (((chan->channel - 2224) % 5) == 0) {
95 1.1 alc channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
96 1.1 alc bModeSynth = 1;
97 1.1 alc } else {
98 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
99 1.1 alc "%s: invalid channel %u MHz\n",
100 1.1 alc __func__, chan->channel);
101 1.1 alc return AH_FALSE;
102 1.1 alc }
103 1.1 alc
104 1.1 alc channelSel = (channelSel << 2) & 0xff;
105 1.1 alc channelSel = ath_hal_reverseBits(channelSel, 8);
106 1.1 alc
107 1.1 alc txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 1.1 alc if (chan->channel == 2484) {
109 1.1 alc /* Enable channel spreading for channel 14 */
110 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 1.1 alc txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 1.1 alc } else {
113 1.1 alc OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 1.1 alc txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 1.1 alc }
116 1.1 alc } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
117 1.1 alc freq = chan->channel - 2; /* Align to even 5MHz raster */
118 1.1 alc channelSel = ath_hal_reverseBits(
119 1.1 alc (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120 1.1 alc aModeRefSel = ath_hal_reverseBits(0, 2);
121 1.1 alc } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
122 1.1 alc channelSel = ath_hal_reverseBits(
123 1.1 alc ((chan->channel - 4800) / 20 << 2), 8);
124 1.1 alc aModeRefSel = ath_hal_reverseBits(1, 2);
125 1.1 alc } else if ((chan->channel % 10) == 0) {
126 1.1 alc channelSel = ath_hal_reverseBits(
127 1.1 alc ((chan->channel - 4800) / 10 << 1), 8);
128 1.1 alc aModeRefSel = ath_hal_reverseBits(1, 2);
129 1.1 alc } else if ((chan->channel % 5) == 0) {
130 1.1 alc channelSel = ath_hal_reverseBits(
131 1.1 alc (chan->channel - 4800) / 5, 8);
132 1.1 alc aModeRefSel = ath_hal_reverseBits(1, 2);
133 1.1 alc } else {
134 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 1.1 alc __func__, chan->channel);
136 1.1 alc return AH_FALSE;
137 1.1 alc }
138 1.1 alc
139 1.1 alc reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 1.1 alc (1 << 12) | 0x1;
141 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142 1.1 alc
143 1.1 alc reg32 >>= 8;
144 1.1 alc OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145 1.1 alc
146 1.1 alc AH_PRIVATE(ah)->ah_curchan = chan;
147 1.1 alc return AH_TRUE;
148 1.1 alc }
149 1.1 alc
150 1.1 alc /*
151 1.1 alc * Reads EEPROM header info from device structure and programs
152 1.1 alc * all rf registers
153 1.1 alc *
154 1.1 alc * REQUIRES: Access to the analog rf device
155 1.1 alc */
156 1.1 alc static HAL_BOOL
157 1.1 alc ar5413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
158 1.1 alc {
159 1.1 alc #define RF_BANK_SETUP(_priv, _ix, _col) do { \
160 1.1 alc int i; \
161 1.1 alc for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \
162 1.1 alc (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
163 1.1 alc } while (0)
164 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
165 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
166 1.1 alc uint16_t ob5GHz = 0, db5GHz = 0;
167 1.1 alc uint16_t ob2GHz = 0, db2GHz = 0;
168 1.1 alc struct ar5413State *priv = AR5413(ah);
169 1.1 alc int regWrites = 0;
170 1.1 alc
171 1.1 alc HALDEBUG(ah, HAL_DEBUG_RFPARAM,
172 1.1 alc "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
173 1.1 alc __func__, chan->channel, chan->channelFlags, modesIndex);
174 1.1 alc
175 1.1 alc HALASSERT(priv != AH_NULL);
176 1.1 alc
177 1.1 alc /* Setup rf parameters */
178 1.1 alc switch (chan->channelFlags & CHANNEL_ALL) {
179 1.1 alc case CHANNEL_A:
180 1.1 alc case CHANNEL_T:
181 1.1 alc if (chan->channel > 4000 && chan->channel < 5260) {
182 1.1 alc ob5GHz = ee->ee_ob1;
183 1.1 alc db5GHz = ee->ee_db1;
184 1.1 alc } else if (chan->channel >= 5260 && chan->channel < 5500) {
185 1.1 alc ob5GHz = ee->ee_ob2;
186 1.1 alc db5GHz = ee->ee_db2;
187 1.1 alc } else if (chan->channel >= 5500 && chan->channel < 5725) {
188 1.1 alc ob5GHz = ee->ee_ob3;
189 1.1 alc db5GHz = ee->ee_db3;
190 1.1 alc } else if (chan->channel >= 5725) {
191 1.1 alc ob5GHz = ee->ee_ob4;
192 1.1 alc db5GHz = ee->ee_db4;
193 1.1 alc } else {
194 1.1 alc /* XXX else */
195 1.1 alc }
196 1.1 alc break;
197 1.1 alc case CHANNEL_B:
198 1.1 alc ob2GHz = ee->ee_obFor24;
199 1.1 alc db2GHz = ee->ee_dbFor24;
200 1.1 alc break;
201 1.1 alc case CHANNEL_G:
202 1.1 alc case CHANNEL_108G:
203 1.1 alc ob2GHz = ee->ee_obFor24g;
204 1.1 alc db2GHz = ee->ee_dbFor24g;
205 1.1 alc break;
206 1.1 alc default:
207 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
208 1.1 alc __func__, chan->channelFlags);
209 1.1 alc return AH_FALSE;
210 1.1 alc }
211 1.1 alc
212 1.1 alc /* Bank 1 Write */
213 1.1 alc RF_BANK_SETUP(priv, 1, 1);
214 1.1 alc
215 1.1 alc /* Bank 2 Write */
216 1.1 alc RF_BANK_SETUP(priv, 2, modesIndex);
217 1.1 alc
218 1.1 alc /* Bank 3 Write */
219 1.1 alc RF_BANK_SETUP(priv, 3, modesIndex);
220 1.1 alc
221 1.1 alc /* Bank 6 Write */
222 1.1 alc RF_BANK_SETUP(priv, 6, modesIndex);
223 1.1 alc
224 1.1 alc /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
225 1.1 alc if (IS_CHAN_2GHZ(chan)) {
226 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
227 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
228 1.1 alc
229 1.1 alc /* TODO - only for Eagle 1.0 2GHz - remove for production */
230 1.1 alc /* XXX: but without this bit G doesn't work. */
231 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
232 1.1 alc
233 1.1 alc /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
234 1.2.14.1 rmind if (AH_PRIVATE(ah)->ah_ispcie) {
235 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
236 1.1 alc 3, 131, 3);
237 1.1 alc }
238 1.1 alc } else {
239 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
240 1.1 alc ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
241 1.1 alc
242 1.1 alc }
243 1.1 alc
244 1.1 alc /* Bank 7 Setup */
245 1.1 alc RF_BANK_SETUP(priv, 7, modesIndex);
246 1.1 alc
247 1.1 alc /* Write Analog registers */
248 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
249 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
250 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
251 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
252 1.1 alc HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
253 1.1 alc
254 1.1 alc /* Now that we have reprogrammed rfgain value, clear the flag. */
255 1.1 alc ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
256 1.1 alc
257 1.1 alc return AH_TRUE;
258 1.1 alc #undef RF_BANK_SETUP
259 1.1 alc }
260 1.1 alc
261 1.1 alc /*
262 1.1 alc * Return a reference to the requested RF Bank.
263 1.1 alc */
264 1.1 alc static uint32_t *
265 1.1 alc ar5413GetRfBank(struct ath_hal *ah, int bank)
266 1.1 alc {
267 1.1 alc struct ar5413State *priv = AR5413(ah);
268 1.1 alc
269 1.1 alc HALASSERT(priv != AH_NULL);
270 1.1 alc switch (bank) {
271 1.1 alc case 1: return priv->Bank1Data;
272 1.1 alc case 2: return priv->Bank2Data;
273 1.1 alc case 3: return priv->Bank3Data;
274 1.1 alc case 6: return priv->Bank6Data;
275 1.1 alc case 7: return priv->Bank7Data;
276 1.1 alc }
277 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
278 1.1 alc __func__, bank);
279 1.1 alc return AH_NULL;
280 1.1 alc }
281 1.1 alc
282 1.1 alc /*
283 1.1 alc * Return indices surrounding the value in sorted integer lists.
284 1.1 alc *
285 1.1 alc * NB: the input list is assumed to be sorted in ascending order
286 1.1 alc */
287 1.1 alc static void
288 1.1 alc GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
289 1.1 alc uint32_t *vlo, uint32_t *vhi)
290 1.1 alc {
291 1.1 alc int16_t target = v;
292 1.1 alc const uint16_t *ep = lp+listSize;
293 1.1 alc const uint16_t *tp;
294 1.1 alc
295 1.1 alc /*
296 1.1 alc * Check first and last elements for out-of-bounds conditions.
297 1.1 alc */
298 1.1 alc if (target < lp[0]) {
299 1.1 alc *vlo = *vhi = 0;
300 1.1 alc return;
301 1.1 alc }
302 1.1 alc if (target >= ep[-1]) {
303 1.1 alc *vlo = *vhi = listSize - 1;
304 1.1 alc return;
305 1.1 alc }
306 1.1 alc
307 1.1 alc /* look for value being near or between 2 values in list */
308 1.1 alc for (tp = lp; tp < ep; tp++) {
309 1.1 alc /*
310 1.1 alc * If value is close to the current value of the list
311 1.1 alc * then target is not between values, it is one of the values
312 1.1 alc */
313 1.1 alc if (*tp == target) {
314 1.1 alc *vlo = *vhi = tp - (const uint16_t *) lp;
315 1.1 alc return;
316 1.1 alc }
317 1.1 alc /*
318 1.1 alc * Look for value being between current value and next value
319 1.1 alc * if so return these 2 values
320 1.1 alc */
321 1.1 alc if (target < tp[1]) {
322 1.1 alc *vlo = tp - (const uint16_t *) lp;
323 1.1 alc *vhi = *vlo + 1;
324 1.1 alc return;
325 1.1 alc }
326 1.1 alc }
327 1.1 alc }
328 1.1 alc
329 1.1 alc /*
330 1.1 alc * Fill the Vpdlist for indices Pmax-Pmin
331 1.1 alc */
332 1.1 alc static HAL_BOOL
333 1.1 alc ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
334 1.1 alc const int16_t *pwrList, const uint16_t *VpdList,
335 1.1 alc uint16_t numIntercepts,
336 1.1 alc uint16_t retVpdList[][64])
337 1.1 alc {
338 1.1 alc uint16_t ii, jj, kk;
339 1.1 alc int16_t currPwr = (int16_t)(2*Pmin);
340 1.1 alc /* since Pmin is pwr*2 and pwrList is 4*pwr */
341 1.2 mrg uint32_t idxL = 0, idxR = 0;
342 1.1 alc
343 1.1 alc ii = 0;
344 1.1 alc jj = 0;
345 1.1 alc
346 1.1 alc if (numIntercepts < 2)
347 1.1 alc return AH_FALSE;
348 1.1 alc
349 1.1 alc while (ii <= (uint16_t)(Pmax - Pmin)) {
350 1.1 alc GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
351 1.1 alc numIntercepts, &(idxL), &(idxR));
352 1.1 alc if (idxR < 1)
353 1.1 alc idxR = 1; /* extrapolate below */
354 1.1 alc if (idxL == (uint32_t)(numIntercepts - 1))
355 1.1 alc idxL = numIntercepts - 2; /* extrapolate above */
356 1.1 alc if (pwrList[idxL] == pwrList[idxR])
357 1.1 alc kk = VpdList[idxL];
358 1.1 alc else
359 1.1 alc kk = (uint16_t)
360 1.1 alc (((currPwr - pwrList[idxL])*VpdList[idxR]+
361 1.1 alc (pwrList[idxR] - currPwr)*VpdList[idxL])/
362 1.1 alc (pwrList[idxR] - pwrList[idxL]));
363 1.1 alc retVpdList[pdGainIdx][ii] = kk;
364 1.1 alc ii++;
365 1.1 alc currPwr += 2; /* half dB steps */
366 1.1 alc }
367 1.1 alc
368 1.1 alc return AH_TRUE;
369 1.1 alc }
370 1.1 alc
371 1.1 alc /*
372 1.1 alc * Returns interpolated or the scaled up interpolated value
373 1.1 alc */
374 1.1 alc static int16_t
375 1.1 alc interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
376 1.1 alc int16_t targetLeft, int16_t targetRight)
377 1.1 alc {
378 1.1 alc int16_t rv;
379 1.1 alc
380 1.1 alc if (srcRight != srcLeft) {
381 1.1 alc rv = ((target - srcLeft)*targetRight +
382 1.1 alc (srcRight - target)*targetLeft) / (srcRight - srcLeft);
383 1.1 alc } else {
384 1.1 alc rv = targetLeft;
385 1.1 alc }
386 1.1 alc return rv;
387 1.1 alc }
388 1.1 alc
389 1.1 alc /*
390 1.1 alc * Uses the data points read from EEPROM to reconstruct the pdadc power table
391 1.1 alc * Called by ar5413SetPowerTable()
392 1.1 alc */
393 1.1 alc static int
394 1.1 alc ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
395 1.1 alc const RAW_DATA_STRUCT_2413 *pRawDataset,
396 1.1 alc uint16_t pdGainOverlap_t2,
397 1.1 alc int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
398 1.1 alc uint16_t pPdGainValues[], uint16_t pPDADCValues[])
399 1.1 alc {
400 1.1 alc struct ar5413State *priv = AR5413(ah);
401 1.1 alc #define VpdTable_L priv->vpdTable_L
402 1.1 alc #define VpdTable_R priv->vpdTable_R
403 1.1 alc #define VpdTable_I priv->vpdTable_I
404 1.1 alc uint32_t ii, jj, kk;
405 1.1 alc int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
406 1.2 mrg uint32_t idxL = 0, idxR = 0;
407 1.1 alc uint32_t numPdGainsUsed = 0;
408 1.1 alc /*
409 1.1 alc * If desired to support -ve power levels in future, just
410 1.1 alc * change pwr_I_0 to signed 5-bits.
411 1.1 alc */
412 1.1 alc int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
413 1.1 alc /* to accomodate -ve power levels later on. */
414 1.1 alc int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
415 1.1 alc /* to accomodate -ve power levels later on */
416 1.1 alc uint16_t numVpd = 0;
417 1.1 alc uint16_t Vpd_step;
418 1.1 alc int16_t tmpVal ;
419 1.1 alc uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
420 1.1 alc
421 1.1 alc /* Get upper lower index */
422 1.1 alc GetLowerUpperIndex(channel, pRawDataset->pChannels,
423 1.1 alc pRawDataset->numChannels, &(idxL), &(idxR));
424 1.1 alc
425 1.1 alc for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
426 1.1 alc jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
427 1.1 alc /* work backwards 'cause highest pdGain for lowest power */
428 1.1 alc numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
429 1.1 alc if (numVpd > 0) {
430 1.1 alc pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
431 1.1 alc Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
432 1.1 alc if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
433 1.1 alc Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
434 1.1 alc }
435 1.1 alc Pmin_t2[numPdGainsUsed] = (int16_t)
436 1.1 alc (Pmin_t2[numPdGainsUsed] / 2);
437 1.1 alc Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
438 1.1 alc if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
439 1.1 alc Pmax_t2[numPdGainsUsed] =
440 1.1 alc pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
441 1.1 alc Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
442 1.1 alc ar5413FillVpdTable(
443 1.1 alc numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
444 1.1 alc &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
445 1.1 alc &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
446 1.1 alc );
447 1.1 alc ar5413FillVpdTable(
448 1.1 alc numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
449 1.1 alc &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
450 1.1 alc &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
451 1.1 alc );
452 1.1 alc for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
453 1.1 alc VpdTable_I[numPdGainsUsed][kk] =
454 1.1 alc interpolate_signed(
455 1.1 alc channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
456 1.1 alc (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
457 1.1 alc }
458 1.1 alc /* fill VpdTable_I for this pdGain */
459 1.1 alc numPdGainsUsed++;
460 1.1 alc }
461 1.1 alc /* if this pdGain is used */
462 1.1 alc }
463 1.1 alc
464 1.1 alc *pMinCalPower = Pmin_t2[0];
465 1.1 alc kk = 0; /* index for the final table */
466 1.1 alc for (ii = 0; ii < numPdGainsUsed; ii++) {
467 1.1 alc if (ii == (numPdGainsUsed - 1))
468 1.1 alc pPdGainBoundaries[ii] = Pmax_t2[ii] +
469 1.1 alc PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
470 1.1 alc else
471 1.1 alc pPdGainBoundaries[ii] = (uint16_t)
472 1.1 alc ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
473 1.1 alc if (pPdGainBoundaries[ii] > 63) {
474 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
475 1.1 alc "%s: clamp pPdGainBoundaries[%d] %d\n",
476 1.1 alc __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
477 1.1 alc pPdGainBoundaries[ii] = 63;
478 1.1 alc }
479 1.1 alc
480 1.1 alc /* Find starting index for this pdGain */
481 1.1 alc if (ii == 0)
482 1.1 alc ss = 0; /* for the first pdGain, start from index 0 */
483 1.1 alc else
484 1.1 alc ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
485 1.1 alc pdGainOverlap_t2;
486 1.1 alc Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
487 1.1 alc Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
488 1.1 alc /*
489 1.1 alc *-ve ss indicates need to extrapolate data below for this pdGain
490 1.1 alc */
491 1.1 alc while (ss < 0) {
492 1.1 alc tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
493 1.1 alc pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
494 1.1 alc ss++;
495 1.1 alc }
496 1.1 alc
497 1.1 alc sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
498 1.1 alc tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
499 1.1 alc maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
500 1.1 alc
501 1.1 alc while (ss < (int16_t)maxIndex)
502 1.1 alc pPDADCValues[kk++] = VpdTable_I[ii][ss++];
503 1.1 alc
504 1.1 alc Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
505 1.1 alc VpdTable_I[ii][sizeCurrVpdTable-2]);
506 1.1 alc Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
507 1.1 alc /*
508 1.1 alc * for last gain, pdGainBoundary == Pmax_t2, so will
509 1.1 alc * have to extrapolate
510 1.1 alc */
511 1.1 alc if (tgtIndex > maxIndex) { /* need to extrapolate above */
512 1.1 alc while(ss < (int16_t)tgtIndex) {
513 1.1 alc tmpVal = (uint16_t)
514 1.1 alc (VpdTable_I[ii][sizeCurrVpdTable-1] +
515 1.1 alc (ss-maxIndex)*Vpd_step);
516 1.1 alc pPDADCValues[kk++] = (tmpVal > 127) ?
517 1.1 alc 127 : tmpVal;
518 1.1 alc ss++;
519 1.1 alc }
520 1.1 alc } /* extrapolated above */
521 1.1 alc } /* for all pdGainUsed */
522 1.1 alc
523 1.1 alc while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
524 1.1 alc pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
525 1.1 alc ii++;
526 1.1 alc }
527 1.1 alc while (kk < 128) {
528 1.1 alc pPDADCValues[kk] = pPDADCValues[kk-1];
529 1.1 alc kk++;
530 1.1 alc }
531 1.1 alc
532 1.1 alc return numPdGainsUsed;
533 1.1 alc #undef VpdTable_L
534 1.1 alc #undef VpdTable_R
535 1.1 alc #undef VpdTable_I
536 1.1 alc }
537 1.1 alc
538 1.1 alc static HAL_BOOL
539 1.1 alc ar5413SetPowerTable(struct ath_hal *ah,
540 1.1 alc int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
541 1.1 alc uint16_t *rfXpdGain)
542 1.1 alc {
543 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
544 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
545 1.1 alc const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
546 1.1 alc uint16_t pdGainOverlap_t2;
547 1.1 alc int16_t minCalPower5413_t2;
548 1.1 alc uint16_t *pdadcValues = ahp->ah_pcdacTable;
549 1.1 alc uint16_t gainBoundaries[4];
550 1.1 alc uint32_t reg32, regoffset;
551 1.1 alc int i, numPdGainsUsed;
552 1.1 alc #ifndef AH_USE_INIPDGAIN
553 1.1 alc uint32_t tpcrg1;
554 1.1 alc #endif
555 1.1 alc
556 1.1 alc HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
557 1.1 alc __func__, chan->channel,chan->channelFlags);
558 1.1 alc
559 1.1 alc if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
560 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
561 1.1 alc else if (IS_CHAN_B(chan))
562 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
563 1.1 alc else {
564 1.1 alc HALASSERT(IS_CHAN_5GHZ(chan));
565 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
566 1.1 alc }
567 1.1 alc
568 1.1 alc pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
569 1.1 alc AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
570 1.1 alc
571 1.1 alc numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
572 1.1 alc chan->channel, pRawDataset, pdGainOverlap_t2,
573 1.1 alc &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
574 1.1 alc HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
575 1.1 alc
576 1.1 alc #ifdef AH_USE_INIPDGAIN
577 1.1 alc /*
578 1.1 alc * Use pd_gains curve from eeprom; Atheros always uses
579 1.1 alc * the default curve from the ini file but some vendors
580 1.1 alc * (e.g. Zcomax) want to override this curve and not
581 1.1 alc * honoring their settings results in tx power 5dBm low.
582 1.1 alc */
583 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
584 1.1 alc (pRawDataset->pDataPerChannel[0].numPdGains - 1));
585 1.1 alc #else
586 1.1 alc tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
587 1.1 alc tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
588 1.1 alc | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
589 1.1 alc switch (numPdGainsUsed) {
590 1.1 alc case 3:
591 1.1 alc tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
592 1.1 alc tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
593 1.1 alc /* fall thru... */
594 1.1 alc case 2:
595 1.1 alc tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
596 1.1 alc tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
597 1.1 alc /* fall thru... */
598 1.1 alc case 1:
599 1.1 alc tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
600 1.1 alc tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
601 1.1 alc break;
602 1.1 alc }
603 1.1 alc #ifdef AH_DEBUG
604 1.1 alc if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
605 1.1 alc HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
606 1.1 alc "pd_gains (default 0x%x, calculated 0x%x)\n",
607 1.1 alc __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
608 1.1 alc #endif
609 1.1 alc OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
610 1.1 alc #endif
611 1.1 alc
612 1.1 alc /*
613 1.1 alc * Note the pdadc table may not start at 0 dBm power, could be
614 1.1 alc * negative or greater than 0. Need to offset the power
615 1.1 alc * values by the amount of minPower for griffin
616 1.1 alc */
617 1.1 alc if (minCalPower5413_t2 != 0)
618 1.1 alc ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
619 1.1 alc else
620 1.1 alc ahp->ah_txPowerIndexOffset = 0;
621 1.1 alc
622 1.1 alc /* Finally, write the power values into the baseband power table */
623 1.1 alc regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
624 1.1 alc for (i = 0; i < 32; i++) {
625 1.1 alc reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
626 1.1 alc ((pdadcValues[4*i + 1] & 0xFF) << 8) |
627 1.1 alc ((pdadcValues[4*i + 2] & 0xFF) << 16) |
628 1.1 alc ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
629 1.1 alc OS_REG_WRITE(ah, regoffset, reg32);
630 1.1 alc regoffset += 4;
631 1.1 alc }
632 1.1 alc
633 1.1 alc OS_REG_WRITE(ah, AR_PHY_TPCRG5,
634 1.1 alc SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
635 1.1 alc SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
636 1.1 alc SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
637 1.1 alc SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
638 1.1 alc SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
639 1.1 alc
640 1.1 alc return AH_TRUE;
641 1.1 alc }
642 1.1 alc
643 1.1 alc static int16_t
644 1.1 alc ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
645 1.1 alc {
646 1.1 alc uint32_t ii,jj;
647 1.1 alc uint16_t Pmin=0,numVpd;
648 1.1 alc
649 1.1 alc for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
650 1.1 alc jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
651 1.1 alc /* work backwards 'cause highest pdGain for lowest power */
652 1.1 alc numVpd = data->pDataPerPDGain[jj].numVpd;
653 1.1 alc if (numVpd > 0) {
654 1.1 alc Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
655 1.1 alc return(Pmin);
656 1.1 alc }
657 1.1 alc }
658 1.1 alc return(Pmin);
659 1.1 alc }
660 1.1 alc
661 1.1 alc static int16_t
662 1.1 alc ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
663 1.1 alc {
664 1.1 alc uint32_t ii;
665 1.1 alc uint16_t Pmax=0,numVpd;
666 1.1 alc
667 1.1 alc for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
668 1.1 alc /* work forwards cuase lowest pdGain for highest power */
669 1.1 alc numVpd = data->pDataPerPDGain[ii].numVpd;
670 1.1 alc if (numVpd > 0) {
671 1.1 alc Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
672 1.1 alc return(Pmax);
673 1.1 alc }
674 1.1 alc }
675 1.1 alc return(Pmax);
676 1.1 alc }
677 1.1 alc
678 1.1 alc static HAL_BOOL
679 1.1 alc ar5413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
680 1.1 alc int16_t *maxPow, int16_t *minPow)
681 1.1 alc {
682 1.1 alc const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
683 1.1 alc const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
684 1.1 alc const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
685 1.1 alc uint16_t numChannels;
686 1.1 alc int totalD,totalF, totalMin,last, i;
687 1.1 alc
688 1.1 alc *maxPow = 0;
689 1.1 alc
690 1.1 alc if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
691 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
692 1.1 alc else if (IS_CHAN_B(chan))
693 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
694 1.1 alc else {
695 1.1 alc HALASSERT(IS_CHAN_5GHZ(chan));
696 1.1 alc pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
697 1.1 alc }
698 1.1 alc
699 1.1 alc numChannels = pRawDataset->numChannels;
700 1.1 alc data = pRawDataset->pDataPerChannel;
701 1.1 alc
702 1.1 alc /* Make sure the channel is in the range of the TP values
703 1.1 alc * (freq piers)
704 1.1 alc */
705 1.1 alc if (numChannels < 1)
706 1.1 alc return(AH_FALSE);
707 1.1 alc
708 1.1 alc if ((chan->channel < data[0].channelValue) ||
709 1.1 alc (chan->channel > data[numChannels-1].channelValue)) {
710 1.1 alc if (chan->channel < data[0].channelValue) {
711 1.1 alc *maxPow = ar5413GetMaxPower(ah, &data[0]);
712 1.1 alc *minPow = ar5413GetMinPower(ah, &data[0]);
713 1.1 alc return(AH_TRUE);
714 1.1 alc } else {
715 1.1 alc *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
716 1.1 alc *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
717 1.1 alc return(AH_TRUE);
718 1.1 alc }
719 1.1 alc }
720 1.1 alc
721 1.1 alc /* Linearly interpolate the power value now */
722 1.1 alc for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
723 1.1 alc last = i++);
724 1.1 alc totalD = data[i].channelValue - data[last].channelValue;
725 1.1 alc if (totalD > 0) {
726 1.1 alc totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
727 1.1 alc *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
728 1.1 alc ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
729 1.1 alc totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
730 1.1 alc *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
731 1.1 alc ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
732 1.1 alc return(AH_TRUE);
733 1.1 alc } else {
734 1.1 alc if (chan->channel == data[i].channelValue) {
735 1.1 alc *maxPow = ar5413GetMaxPower(ah, &data[i]);
736 1.1 alc *minPow = ar5413GetMinPower(ah, &data[i]);
737 1.1 alc return(AH_TRUE);
738 1.1 alc } else
739 1.1 alc return(AH_FALSE);
740 1.1 alc }
741 1.1 alc }
742 1.1 alc
743 1.1 alc /*
744 1.1 alc * Free memory for analog bank scratch buffers
745 1.1 alc */
746 1.1 alc static void
747 1.1 alc ar5413RfDetach(struct ath_hal *ah)
748 1.1 alc {
749 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
750 1.1 alc
751 1.1 alc HALASSERT(ahp->ah_rfHal != AH_NULL);
752 1.1 alc ath_hal_free(ahp->ah_rfHal);
753 1.1 alc ahp->ah_rfHal = AH_NULL;
754 1.1 alc }
755 1.1 alc
756 1.1 alc /*
757 1.1 alc * Allocate memory for analog bank scratch buffers
758 1.1 alc * Scratch Buffer will be reinitialized every reset so no need to zero now
759 1.1 alc */
760 1.1 alc static HAL_BOOL
761 1.1 alc ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
762 1.1 alc {
763 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah);
764 1.1 alc struct ar5413State *priv;
765 1.1 alc
766 1.1 alc HALASSERT(ah->ah_magic == AR5212_MAGIC);
767 1.1 alc
768 1.1 alc HALASSERT(ahp->ah_rfHal == AH_NULL);
769 1.1 alc priv = ath_hal_malloc(sizeof(struct ar5413State));
770 1.1 alc if (priv == AH_NULL) {
771 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY,
772 1.1 alc "%s: cannot allocate private state\n", __func__);
773 1.1 alc *status = HAL_ENOMEM; /* XXX */
774 1.1 alc return AH_FALSE;
775 1.1 alc }
776 1.1 alc priv->base.rfDetach = ar5413RfDetach;
777 1.1 alc priv->base.writeRegs = ar5413WriteRegs;
778 1.1 alc priv->base.getRfBank = ar5413GetRfBank;
779 1.1 alc priv->base.setChannel = ar5413SetChannel;
780 1.1 alc priv->base.setRfRegs = ar5413SetRfRegs;
781 1.1 alc priv->base.setPowerTable = ar5413SetPowerTable;
782 1.1 alc priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
783 1.1 alc priv->base.getNfAdjust = ar5212GetNfAdjust;
784 1.1 alc
785 1.1 alc ahp->ah_pcdacTable = priv->pcdacTable;
786 1.1 alc ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
787 1.1 alc ahp->ah_rfHal = &priv->base;
788 1.1 alc
789 1.1 alc return AH_TRUE;
790 1.1 alc }
791 1.1 alc
792 1.1 alc static HAL_BOOL
793 1.1 alc ar5413Probe(struct ath_hal *ah)
794 1.1 alc {
795 1.1 alc return IS_5413(ah);
796 1.1 alc }
797 1.1 alc AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
798