Home | History | Annotate | Line # | Download | only in ar5212
ar5413.c revision 1.2.16.2
      1 /*
      2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  *
      5  * Permission to use, copy, modify, and/or distribute this software for any
      6  * purpose with or without fee is hereby granted, provided that the above
      7  * copyright notice and this permission notice appear in all copies.
      8  *
      9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  *
     17  * $Id: ar5413.c,v 1.2.16.2 2010/04/21 00:28:10 matt Exp $
     18  */
     19 #include "opt_ah.h"
     20 
     21 #include "ah.h"
     22 #include "ah_internal.h"
     23 
     24 #include "ah_eeprom_v3.h"
     25 
     26 #include "ar5212/ar5212.h"
     27 #include "ar5212/ar5212reg.h"
     28 #include "ar5212/ar5212phy.h"
     29 
     30 #define AH_5212_5413
     31 #include "ar5212/ar5212.ini"
     32 
     33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
     34 
     35 struct ar5413State {
     36 	RF_HAL_FUNCS	base;		/* public state, must be first */
     37 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
     38 
     39 	uint32_t	Bank1Data[N(ar5212Bank1_5413)];
     40 	uint32_t	Bank2Data[N(ar5212Bank2_5413)];
     41 	uint32_t	Bank3Data[N(ar5212Bank3_5413)];
     42 	uint32_t	Bank6Data[N(ar5212Bank6_5413)];
     43 	uint32_t	Bank7Data[N(ar5212Bank7_5413)];
     44 
     45 	/*
     46 	 * Private state for reduced stack usage.
     47 	 */
     48 	/* filled out Vpd table for all pdGains (chanL) */
     49 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
     50 			    [MAX_PWR_RANGE_IN_HALF_DB];
     51 	/* filled out Vpd table for all pdGains (chanR) */
     52 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
     53 			    [MAX_PWR_RANGE_IN_HALF_DB];
     54 	/* filled out Vpd table for all pdGains (interpolated) */
     55 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
     56 			    [MAX_PWR_RANGE_IN_HALF_DB];
     57 };
     58 #define	AR5413(ah)	((struct ar5413State *) AH5212(ah)->ah_rfHal)
     59 
     60 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     61 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     62 
     63 static void
     64 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     65 	int writes)
     66 {
     67 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
     68 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
     69 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
     70 }
     71 
     72 /*
     73  * Take the MHz channel value and set the Channel value
     74  *
     75  * ASSUMES: Writes enabled to analog bus
     76  */
     77 static HAL_BOOL
     78 ar5413SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     79 {
     80 	uint32_t channelSel  = 0;
     81 	uint32_t bModeSynth  = 0;
     82 	uint32_t aModeRefSel = 0;
     83 	uint32_t reg32       = 0;
     84 	uint16_t freq;
     85 
     86 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     87 
     88 	if (chan->channel < 4800) {
     89 		uint32_t txctl;
     90 
     91 		if (((chan->channel - 2192) % 5) == 0) {
     92 			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
     93 			bModeSynth = 0;
     94 		} else if (((chan->channel - 2224) % 5) == 0) {
     95 			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
     96 			bModeSynth = 1;
     97 		} else {
     98 			HALDEBUG(ah, HAL_DEBUG_ANY,
     99 			    "%s: invalid channel %u MHz\n",
    100 			    __func__, chan->channel);
    101 			return AH_FALSE;
    102 		}
    103 
    104 		channelSel = (channelSel << 2) & 0xff;
    105 		channelSel = ath_hal_reverseBits(channelSel, 8);
    106 
    107 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    108 		if (chan->channel == 2484) {
    109 			/* Enable channel spreading for channel 14 */
    110 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    111 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    112 		} else {
    113 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    114 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    115 		}
    116 	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
    117 		freq = chan->channel - 2; /* Align to even 5MHz raster */
    118 		channelSel = ath_hal_reverseBits(
    119 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
    120             	aModeRefSel = ath_hal_reverseBits(0, 2);
    121 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    122 		channelSel = ath_hal_reverseBits(
    123 			((chan->channel - 4800) / 20 << 2), 8);
    124 		aModeRefSel = ath_hal_reverseBits(1, 2);
    125 	} else if ((chan->channel % 10) == 0) {
    126 		channelSel = ath_hal_reverseBits(
    127 			((chan->channel - 4800) / 10 << 1), 8);
    128 		aModeRefSel = ath_hal_reverseBits(1, 2);
    129 	} else if ((chan->channel % 5) == 0) {
    130 		channelSel = ath_hal_reverseBits(
    131 			(chan->channel - 4800) / 5, 8);
    132 		aModeRefSel = ath_hal_reverseBits(1, 2);
    133 	} else {
    134 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    135 		    __func__, chan->channel);
    136 		return AH_FALSE;
    137 	}
    138 
    139 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    140 			(1 << 12) | 0x1;
    141 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    142 
    143 	reg32 >>= 8;
    144 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    145 
    146 	AH_PRIVATE(ah)->ah_curchan = chan;
    147 	return AH_TRUE;
    148 }
    149 
    150 /*
    151  * Reads EEPROM header info from device structure and programs
    152  * all rf registers
    153  *
    154  * REQUIRES: Access to the analog rf device
    155  */
    156 static HAL_BOOL
    157 ar5413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    158 {
    159 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    160 	int i;								    \
    161 	for (i = 0; i < N(ar5212Bank##_ix##_5413); i++)			    \
    162 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
    163 } while (0)
    164 	struct ath_hal_5212 *ahp = AH5212(ah);
    165 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    166 	uint16_t ob5GHz = 0, db5GHz = 0;
    167 	uint16_t ob2GHz = 0, db2GHz = 0;
    168 	struct ar5413State *priv = AR5413(ah);
    169 	int regWrites = 0;
    170 
    171 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    172 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
    173 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    174 
    175 	HALASSERT(priv != AH_NULL);
    176 
    177 	/* Setup rf parameters */
    178 	switch (chan->channelFlags & CHANNEL_ALL) {
    179 	case CHANNEL_A:
    180 	case CHANNEL_T:
    181 		if (chan->channel > 4000 && chan->channel < 5260) {
    182 			ob5GHz = ee->ee_ob1;
    183 			db5GHz = ee->ee_db1;
    184 		} else if (chan->channel >= 5260 && chan->channel < 5500) {
    185 			ob5GHz = ee->ee_ob2;
    186 			db5GHz = ee->ee_db2;
    187 		} else if (chan->channel >= 5500 && chan->channel < 5725) {
    188 			ob5GHz = ee->ee_ob3;
    189 			db5GHz = ee->ee_db3;
    190 		} else if (chan->channel >= 5725) {
    191 			ob5GHz = ee->ee_ob4;
    192 			db5GHz = ee->ee_db4;
    193 		} else {
    194 			/* XXX else */
    195 		}
    196 		break;
    197 	case CHANNEL_B:
    198 		ob2GHz = ee->ee_obFor24;
    199 		db2GHz = ee->ee_dbFor24;
    200 		break;
    201 	case CHANNEL_G:
    202 	case CHANNEL_108G:
    203 		ob2GHz = ee->ee_obFor24g;
    204 		db2GHz = ee->ee_dbFor24g;
    205 		break;
    206 	default:
    207 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    208 		    __func__, chan->channelFlags);
    209 		return AH_FALSE;
    210 	}
    211 
    212 	/* Bank 1 Write */
    213 	RF_BANK_SETUP(priv, 1, 1);
    214 
    215 	/* Bank 2 Write */
    216 	RF_BANK_SETUP(priv, 2, modesIndex);
    217 
    218 	/* Bank 3 Write */
    219 	RF_BANK_SETUP(priv, 3, modesIndex);
    220 
    221 	/* Bank 6 Write */
    222 	RF_BANK_SETUP(priv, 6, modesIndex);
    223 
    224     	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
    225 	if (IS_CHAN_2GHZ(chan)) {
    226         	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
    227         	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
    228 
    229 			/* TODO - only for Eagle 1.0 2GHz - remove for production */
    230 			/* XXX: but without this bit G doesn't work. */
    231 			ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
    232 
    233 			/* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
    234 			if (IS_PCIE(ah)) {
    235 				ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
    236 						 3, 131, 3);
    237 			}
    238 	} else {
    239         	ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
    240         	ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
    241 
    242 	}
    243 
    244 	/* Bank 7 Setup */
    245 	RF_BANK_SETUP(priv, 7, modesIndex);
    246 
    247 	/* Write Analog registers */
    248 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
    249 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
    250 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
    251 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
    252 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
    253 
    254 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    255 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    256 
    257 	return AH_TRUE;
    258 #undef	RF_BANK_SETUP
    259 }
    260 
    261 /*
    262  * Return a reference to the requested RF Bank.
    263  */
    264 static uint32_t *
    265 ar5413GetRfBank(struct ath_hal *ah, int bank)
    266 {
    267 	struct ar5413State *priv = AR5413(ah);
    268 
    269 	HALASSERT(priv != AH_NULL);
    270 	switch (bank) {
    271 	case 1: return priv->Bank1Data;
    272 	case 2: return priv->Bank2Data;
    273 	case 3: return priv->Bank3Data;
    274 	case 6: return priv->Bank6Data;
    275 	case 7: return priv->Bank7Data;
    276 	}
    277 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    278 	    __func__, bank);
    279 	return AH_NULL;
    280 }
    281 
    282 /*
    283  * Return indices surrounding the value in sorted integer lists.
    284  *
    285  * NB: the input list is assumed to be sorted in ascending order
    286  */
    287 static void
    288 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    289                           uint32_t *vlo, uint32_t *vhi)
    290 {
    291 	int16_t target = v;
    292 	const uint16_t *ep = lp+listSize;
    293 	const uint16_t *tp;
    294 
    295 	/*
    296 	 * Check first and last elements for out-of-bounds conditions.
    297 	 */
    298 	if (target < lp[0]) {
    299 		*vlo = *vhi = 0;
    300 		return;
    301 	}
    302 	if (target >= ep[-1]) {
    303 		*vlo = *vhi = listSize - 1;
    304 		return;
    305 	}
    306 
    307 	/* look for value being near or between 2 values in list */
    308 	for (tp = lp; tp < ep; tp++) {
    309 		/*
    310 		 * If value is close to the current value of the list
    311 		 * then target is not between values, it is one of the values
    312 		 */
    313 		if (*tp == target) {
    314 			*vlo = *vhi = tp - (const uint16_t *) lp;
    315 			return;
    316 		}
    317 		/*
    318 		 * Look for value being between current value and next value
    319 		 * if so return these 2 values
    320 		 */
    321 		if (target < tp[1]) {
    322 			*vlo = tp - (const uint16_t *) lp;
    323 			*vhi = *vlo + 1;
    324 			return;
    325 		}
    326 	}
    327 }
    328 
    329 /*
    330  * Fill the Vpdlist for indices Pmax-Pmin
    331  */
    332 static HAL_BOOL
    333 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    334 		   const int16_t *pwrList, const uint16_t *VpdList,
    335 		   uint16_t numIntercepts,
    336 		   uint16_t retVpdList[][64])
    337 {
    338 	uint16_t ii, jj, kk;
    339 	int16_t currPwr = (int16_t)(2*Pmin);
    340 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    341 	uint32_t  idxL = 0, idxR = 0;
    342 
    343 	ii = 0;
    344 	jj = 0;
    345 
    346 	if (numIntercepts < 2)
    347 		return AH_FALSE;
    348 
    349 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    350 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
    351 				   numIntercepts, &(idxL), &(idxR));
    352 		if (idxR < 1)
    353 			idxR = 1;			/* extrapolate below */
    354 		if (idxL == (uint32_t)(numIntercepts - 1))
    355 			idxL = numIntercepts - 2;	/* extrapolate above */
    356 		if (pwrList[idxL] == pwrList[idxR])
    357 			kk = VpdList[idxL];
    358 		else
    359 			kk = (uint16_t)
    360 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    361 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    362 				 (pwrList[idxR] - pwrList[idxL]));
    363 		retVpdList[pdGainIdx][ii] = kk;
    364 		ii++;
    365 		currPwr += 2;				/* half dB steps */
    366 	}
    367 
    368 	return AH_TRUE;
    369 }
    370 
    371 /*
    372  * Returns interpolated or the scaled up interpolated value
    373  */
    374 static int16_t
    375 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    376 	int16_t targetLeft, int16_t targetRight)
    377 {
    378 	int16_t rv;
    379 
    380 	if (srcRight != srcLeft) {
    381 		rv = ((target - srcLeft)*targetRight +
    382 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    383 	} else {
    384 		rv = targetLeft;
    385 	}
    386 	return rv;
    387 }
    388 
    389 /*
    390  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    391  * Called by ar5413SetPowerTable()
    392  */
    393 static int
    394 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    395 		const RAW_DATA_STRUCT_2413 *pRawDataset,
    396 		uint16_t pdGainOverlap_t2,
    397 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    398 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    399 {
    400 	struct ar5413State *priv = AR5413(ah);
    401 #define	VpdTable_L	priv->vpdTable_L
    402 #define	VpdTable_R	priv->vpdTable_R
    403 #define	VpdTable_I	priv->vpdTable_I
    404 	uint32_t ii, jj, kk;
    405 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    406 	uint32_t idxL = 0, idxR = 0;
    407 	uint32_t numPdGainsUsed = 0;
    408 	/*
    409 	 * If desired to support -ve power levels in future, just
    410 	 * change pwr_I_0 to signed 5-bits.
    411 	 */
    412 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    413 	/* to accomodate -ve power levels later on. */
    414 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    415 	/* to accomodate -ve power levels later on */
    416 	uint16_t numVpd = 0;
    417 	uint16_t Vpd_step;
    418 	int16_t tmpVal ;
    419 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    420 
    421 	/* Get upper lower index */
    422 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    423 				 pRawDataset->numChannels, &(idxL), &(idxR));
    424 
    425 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    426 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    427 		/* work backwards 'cause highest pdGain for lowest power */
    428 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    429 		if (numVpd > 0) {
    430 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    431 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    432 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    433 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    434 			}
    435 			Pmin_t2[numPdGainsUsed] = (int16_t)
    436 				(Pmin_t2[numPdGainsUsed] / 2);
    437 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    438 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    439 				Pmax_t2[numPdGainsUsed] =
    440 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    441 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    442 			ar5413FillVpdTable(
    443 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    444 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    445 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    446 					   );
    447 			ar5413FillVpdTable(
    448 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    449 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    450 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    451 					   );
    452 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    453 				VpdTable_I[numPdGainsUsed][kk] =
    454 					interpolate_signed(
    455 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    456 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    457 			}
    458 			/* fill VpdTable_I for this pdGain */
    459 			numPdGainsUsed++;
    460 		}
    461 		/* if this pdGain is used */
    462 	}
    463 
    464 	*pMinCalPower = Pmin_t2[0];
    465 	kk = 0; /* index for the final table */
    466 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    467 		if (ii == (numPdGainsUsed - 1))
    468 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    469 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    470 		else
    471 			pPdGainBoundaries[ii] = (uint16_t)
    472 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    473 		if (pPdGainBoundaries[ii] > 63) {
    474 			HALDEBUG(ah, HAL_DEBUG_ANY,
    475 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
    476 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
    477 			pPdGainBoundaries[ii] = 63;
    478 		}
    479 
    480 		/* Find starting index for this pdGain */
    481 		if (ii == 0)
    482 			ss = 0; /* for the first pdGain, start from index 0 */
    483 		else
    484 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    485 				pdGainOverlap_t2;
    486 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    487 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    488 		/*
    489 		 *-ve ss indicates need to extrapolate data below for this pdGain
    490 		 */
    491 		while (ss < 0) {
    492 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    493 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    494 			ss++;
    495 		}
    496 
    497 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    498 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    499 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    500 
    501 		while (ss < (int16_t)maxIndex)
    502 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    503 
    504 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    505 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    506 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    507 		/*
    508 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    509 		 * have to extrapolate
    510 		 */
    511 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    512 			while(ss < (int16_t)tgtIndex) {
    513 				tmpVal = (uint16_t)
    514 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    515 					 (ss-maxIndex)*Vpd_step);
    516 				pPDADCValues[kk++] = (tmpVal > 127) ?
    517 					127 : tmpVal;
    518 				ss++;
    519 			}
    520 		}				/* extrapolated above */
    521 	}					/* for all pdGainUsed */
    522 
    523 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    524 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    525 		ii++;
    526 	}
    527 	while (kk < 128) {
    528 		pPDADCValues[kk] = pPDADCValues[kk-1];
    529 		kk++;
    530 	}
    531 
    532 	return numPdGainsUsed;
    533 #undef VpdTable_L
    534 #undef VpdTable_R
    535 #undef VpdTable_I
    536 }
    537 
    538 static HAL_BOOL
    539 ar5413SetPowerTable(struct ath_hal *ah,
    540 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    541 	uint16_t *rfXpdGain)
    542 {
    543 	struct ath_hal_5212 *ahp = AH5212(ah);
    544 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    545 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    546 	uint16_t pdGainOverlap_t2;
    547 	int16_t minCalPower5413_t2;
    548 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    549 	uint16_t gainBoundaries[4];
    550 	uint32_t reg32, regoffset;
    551 	int i, numPdGainsUsed;
    552 #ifndef AH_USE_INIPDGAIN
    553 	uint32_t tpcrg1;
    554 #endif
    555 
    556 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
    557 	    __func__, chan->channel,chan->channelFlags);
    558 
    559 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    560 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    561 	else if (IS_CHAN_B(chan))
    562 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    563 	else {
    564 		HALASSERT(IS_CHAN_5GHZ(chan));
    565 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
    566 	}
    567 
    568 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    569 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    570 
    571 	numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
    572 		chan->channel, pRawDataset, pdGainOverlap_t2,
    573 		&minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
    574 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
    575 
    576 #ifdef AH_USE_INIPDGAIN
    577 	/*
    578 	 * Use pd_gains curve from eeprom; Atheros always uses
    579 	 * the default curve from the ini file but some vendors
    580 	 * (e.g. Zcomax) want to override this curve and not
    581 	 * honoring their settings results in tx power 5dBm low.
    582 	 */
    583 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    584 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    585 #else
    586 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
    587 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
    588 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
    589 	switch (numPdGainsUsed) {
    590 	case 3:
    591 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
    592 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
    593 		/* fall thru... */
    594 	case 2:
    595 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
    596 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
    597 		/* fall thru... */
    598 	case 1:
    599 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
    600 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
    601 		break;
    602 	}
    603 #ifdef AH_DEBUG
    604 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
    605 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
    606 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
    607 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
    608 #endif
    609 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
    610 #endif
    611 
    612 	/*
    613 	 * Note the pdadc table may not start at 0 dBm power, could be
    614 	 * negative or greater than 0.  Need to offset the power
    615 	 * values by the amount of minPower for griffin
    616 	 */
    617 	if (minCalPower5413_t2 != 0)
    618 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
    619 	else
    620 		ahp->ah_txPowerIndexOffset = 0;
    621 
    622 	/* Finally, write the power values into the baseband power table */
    623 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    624 	for (i = 0; i < 32; i++) {
    625 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    626 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    627 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    628 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    629 		OS_REG_WRITE(ah, regoffset, reg32);
    630 		regoffset += 4;
    631 	}
    632 
    633 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    634 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    635 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    636 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    637 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    638 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    639 
    640 	return AH_TRUE;
    641 }
    642 
    643 static int16_t
    644 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    645 {
    646 	uint32_t ii,jj;
    647 	uint16_t Pmin=0,numVpd;
    648 
    649 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    650 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    651 		/* work backwards 'cause highest pdGain for lowest power */
    652 		numVpd = data->pDataPerPDGain[jj].numVpd;
    653 		if (numVpd > 0) {
    654 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    655 			return(Pmin);
    656 		}
    657 	}
    658 	return(Pmin);
    659 }
    660 
    661 static int16_t
    662 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
    663 {
    664 	uint32_t ii;
    665 	uint16_t Pmax=0,numVpd;
    666 
    667 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    668 		/* work forwards cuase lowest pdGain for highest power */
    669 		numVpd = data->pDataPerPDGain[ii].numVpd;
    670 		if (numVpd > 0) {
    671 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    672 			return(Pmax);
    673 		}
    674 	}
    675 	return(Pmax);
    676 }
    677 
    678 static HAL_BOOL
    679 ar5413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    680 	int16_t *maxPow, int16_t *minPow)
    681 {
    682 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    683 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
    684 	const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
    685 	uint16_t numChannels;
    686 	int totalD,totalF, totalMin,last, i;
    687 
    688 	*maxPow = 0;
    689 
    690 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    691 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    692 	else if (IS_CHAN_B(chan))
    693 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    694 	else {
    695 		HALASSERT(IS_CHAN_5GHZ(chan));
    696 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
    697 	}
    698 
    699 	numChannels = pRawDataset->numChannels;
    700 	data = pRawDataset->pDataPerChannel;
    701 
    702 	/* Make sure the channel is in the range of the TP values
    703 	 *  (freq piers)
    704 	 */
    705 	if (numChannels < 1)
    706 		return(AH_FALSE);
    707 
    708 	if ((chan->channel < data[0].channelValue) ||
    709 	    (chan->channel > data[numChannels-1].channelValue)) {
    710 		if (chan->channel < data[0].channelValue) {
    711 			*maxPow = ar5413GetMaxPower(ah, &data[0]);
    712 			*minPow = ar5413GetMinPower(ah, &data[0]);
    713 			return(AH_TRUE);
    714 		} else {
    715 			*maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
    716 			*minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
    717 			return(AH_TRUE);
    718 		}
    719 	}
    720 
    721 	/* Linearly interpolate the power value now */
    722 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    723 	     last = i++);
    724 	totalD = data[i].channelValue - data[last].channelValue;
    725 	if (totalD > 0) {
    726 		totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
    727 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    728 				     ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
    729 		totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
    730 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    731 				     ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
    732 		return(AH_TRUE);
    733 	} else {
    734 		if (chan->channel == data[i].channelValue) {
    735 			*maxPow = ar5413GetMaxPower(ah, &data[i]);
    736 			*minPow = ar5413GetMinPower(ah, &data[i]);
    737 			return(AH_TRUE);
    738 		} else
    739 			return(AH_FALSE);
    740 	}
    741 }
    742 
    743 /*
    744  * Free memory for analog bank scratch buffers
    745  */
    746 static void
    747 ar5413RfDetach(struct ath_hal *ah)
    748 {
    749 	struct ath_hal_5212 *ahp = AH5212(ah);
    750 
    751 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    752 	ath_hal_free(ahp->ah_rfHal);
    753 	ahp->ah_rfHal = AH_NULL;
    754 }
    755 
    756 /*
    757  * Allocate memory for analog bank scratch buffers
    758  * Scratch Buffer will be reinitialized every reset so no need to zero now
    759  */
    760 static HAL_BOOL
    761 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    762 {
    763 	struct ath_hal_5212 *ahp = AH5212(ah);
    764 	struct ar5413State *priv;
    765 
    766 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    767 
    768 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    769 	priv = ath_hal_malloc(sizeof(struct ar5413State));
    770 	if (priv == AH_NULL) {
    771 		HALDEBUG(ah, HAL_DEBUG_ANY,
    772 		    "%s: cannot allocate private state\n", __func__);
    773 		*status = HAL_ENOMEM;		/* XXX */
    774 		return AH_FALSE;
    775 	}
    776 	priv->base.rfDetach		= ar5413RfDetach;
    777 	priv->base.writeRegs		= ar5413WriteRegs;
    778 	priv->base.getRfBank		= ar5413GetRfBank;
    779 	priv->base.setChannel		= ar5413SetChannel;
    780 	priv->base.setRfRegs		= ar5413SetRfRegs;
    781 	priv->base.setPowerTable	= ar5413SetPowerTable;
    782 	priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
    783 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    784 
    785 	ahp->ah_pcdacTable = priv->pcdacTable;
    786 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    787 	ahp->ah_rfHal = &priv->base;
    788 
    789 	return AH_TRUE;
    790 }
    791 
    792 static HAL_BOOL
    793 ar5413Probe(struct ath_hal *ah)
    794 {
    795 	return IS_5413(ah);
    796 }
    797 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
    798