1 1.1 alc /* 2 1.1 alc * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 3 1.1 alc * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 1.1 alc * 5 1.1 alc * Permission to use, copy, modify, and/or distribute this software for any 6 1.1 alc * purpose with or without fee is hereby granted, provided that the above 7 1.1 alc * copyright notice and this permission notice appear in all copies. 8 1.1 alc * 9 1.1 alc * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 1.1 alc * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 1.1 alc * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 1.1 alc * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 1.1 alc * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 1.1 alc * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 1.1 alc * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 1.1 alc * 17 1.2 cegger * $Id: ar5416_ani.c,v 1.2 2011/03/07 11:25:44 cegger Exp $ 18 1.1 alc */ 19 1.1 alc #include "opt_ah.h" 20 1.1 alc 21 1.1 alc /* 22 1.1 alc * XXX this is virtually the same code as for 5212; we reuse 23 1.1 alc * storage in the 5212 state block; need to refactor. 24 1.1 alc */ 25 1.1 alc #include "ah.h" 26 1.1 alc #include "ah_internal.h" 27 1.1 alc #include "ah_desc.h" 28 1.1 alc 29 1.1 alc #include "ar5416/ar5416.h" 30 1.1 alc #include "ar5416/ar5416reg.h" 31 1.1 alc #include "ar5416/ar5416phy.h" 32 1.1 alc 33 1.1 alc /* 34 1.1 alc * Anti noise immunity support. We track phy errors and react 35 1.1 alc * to excessive errors by adjusting the noise immunity parameters. 36 1.1 alc */ 37 1.1 alc 38 1.1 alc #define HAL_EP_RND(x, mul) \ 39 1.1 alc ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 40 1.1 alc #define BEACON_RSSI(ahp) \ 41 1.1 alc HAL_EP_RND(ahp->ah_stats.ast_nodestats.ns_avgbrssi, \ 42 1.1 alc HAL_RSSI_EP_MULTIPLIER) 43 1.1 alc 44 1.1 alc /* 45 1.1 alc * ANI processing tunes radio parameters according to PHY errors 46 1.1 alc * and related information. This is done for for noise and spur 47 1.1 alc * immunity in all operating modes if the device indicates it's 48 1.1 alc * capable at attach time. In addition, when there is a reference 49 1.1 alc * rssi value (e.g. beacon frames from an ap in station mode) 50 1.1 alc * further tuning is done. 51 1.1 alc * 52 1.1 alc * ANI_ENA indicates whether any ANI processing should be done; 53 1.1 alc * this is specified at attach time. 54 1.1 alc * 55 1.1 alc * ANI_ENA_RSSI indicates whether rssi-based processing should 56 1.1 alc * done, this is enabled based on operating mode and is meaningful 57 1.1 alc * only if ANI_ENA is true. 58 1.1 alc * 59 1.1 alc * ANI parameters are typically controlled only by the hal. The 60 1.1 alc * AniControl interface however permits manual tuning through the 61 1.1 alc * diagnostic api. 62 1.1 alc */ 63 1.1 alc #define ANI_ENA(ah) \ 64 1.1 alc (AH5212(ah)->ah_procPhyErr & HAL_ANI_ENA) 65 1.1 alc #define ANI_ENA_RSSI(ah) \ 66 1.1 alc (AH5212(ah)->ah_procPhyErr & HAL_RSSI_ANI_ENA) 67 1.1 alc 68 1.1 alc #define ah_mibStats ah_stats.ast_mibstats 69 1.1 alc 70 1.1 alc static void 71 1.1 alc enableAniMIBCounters(struct ath_hal *ah, const struct ar5212AniParams *params) 72 1.1 alc { 73 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 74 1.1 alc 75 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANI, "%s: Enable mib counters: " 76 1.1 alc "OfdmPhyErrBase 0x%x cckPhyErrBase 0x%x\n", 77 1.1 alc __func__, params->ofdmPhyErrBase, params->cckPhyErrBase); 78 1.1 alc 79 1.1 alc OS_REG_WRITE(ah, AR_FILTOFDM, 0); 80 1.1 alc OS_REG_WRITE(ah, AR_FILTCCK, 0); 81 1.1 alc 82 1.1 alc OS_REG_WRITE(ah, AR_PHYCNT1, params->ofdmPhyErrBase); 83 1.1 alc OS_REG_WRITE(ah, AR_PHYCNT2, params->cckPhyErrBase); 84 1.1 alc OS_REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); 85 1.1 alc OS_REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); 86 1.1 alc 87 1.1 alc ar5212UpdateMibCounters(ah, &ahp->ah_mibStats); /* save+clear counters*/ 88 1.1 alc ar5212EnableMibCounters(ah); /* enable everything */ 89 1.1 alc } 90 1.1 alc 91 1.1 alc static void 92 1.1 alc disableAniMIBCounters(struct ath_hal *ah) 93 1.1 alc { 94 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 95 1.1 alc 96 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANI, "Disable MIB counters\n"); 97 1.1 alc 98 1.1 alc ar5212UpdateMibCounters(ah, &ahp->ah_mibStats); /* save stats */ 99 1.1 alc ar5212DisableMibCounters(ah); /* disable everything */ 100 1.1 alc 101 1.1 alc OS_REG_WRITE(ah, AR_PHY_ERR_MASK_1, 0); 102 1.1 alc OS_REG_WRITE(ah, AR_PHY_ERR_MASK_2, 0); 103 1.1 alc } 104 1.1 alc 105 1.1 alc /* 106 1.1 alc * This routine returns the index into the aniState array that 107 1.1 alc * corresponds to the channel in *chan. If no match is found and the 108 1.1 alc * array is still not fully utilized, a new entry is created for the 109 1.1 alc * channel. We assume the attach function has already initialized the 110 1.1 alc * ah_ani values and only the channel field needs to be set. 111 1.1 alc */ 112 1.1 alc static int 113 1.1 alc ar5416GetAniChannelIndex(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) 114 1.1 alc { 115 1.1 alc #define N(a) (sizeof(a) / sizeof(a[0])) 116 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 117 1.1 alc int i; 118 1.1 alc 119 1.1 alc for (i = 0; i < N(ahp->ah_ani); i++) { 120 1.1 alc struct ar5212AniState *asp = &ahp->ah_ani[i]; 121 1.1 alc if (asp->c.channel == chan->channel) 122 1.1 alc return i; 123 1.1 alc if (asp->c.channel == 0) { 124 1.1 alc asp->c.channel = chan->channel; 125 1.1 alc asp->c.channelFlags = chan->channelFlags; 126 1.1 alc asp->c.privFlags = chan->privFlags; 127 1.1 alc asp->isSetup = AH_FALSE; 128 1.1 alc if (IS_CHAN_2GHZ(chan)) 129 1.1 alc asp->params = &ahp->ah_aniParams24; 130 1.1 alc else 131 1.1 alc asp->params = &ahp->ah_aniParams5; 132 1.1 alc return i; 133 1.1 alc } 134 1.1 alc } 135 1.1 alc /* XXX statistic */ 136 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 137 1.1 alc "No more channel states left. Using channel 0\n"); 138 1.1 alc return 0; /* XXX gotta return something valid */ 139 1.1 alc #undef N 140 1.1 alc } 141 1.1 alc 142 1.1 alc static void 143 1.1 alc setPhyErrBase(struct ath_hal *ah, struct ar5212AniParams *params) 144 1.1 alc { 145 1.1 alc if (params->ofdmTrigHigh >= AR_PHY_COUNTMAX) { 146 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 147 1.1 alc "OFDM Trigger %d is too high for hw counters, using max\n", 148 1.1 alc params->ofdmTrigHigh); 149 1.1 alc params->ofdmPhyErrBase = 0; 150 1.1 alc } else 151 1.1 alc params->ofdmPhyErrBase = AR_PHY_COUNTMAX - params->ofdmTrigHigh; 152 1.1 alc if (params->cckTrigHigh >= AR_PHY_COUNTMAX) { 153 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 154 1.1 alc "CCK Trigger %d is too high for hw counters, using max\n", 155 1.1 alc params->cckTrigHigh); 156 1.1 alc params->cckPhyErrBase = 0; 157 1.1 alc } else 158 1.1 alc params->cckPhyErrBase = AR_PHY_COUNTMAX - params->cckTrigHigh; 159 1.1 alc } 160 1.1 alc 161 1.1 alc /* 162 1.1 alc * Setup ANI handling. Sets all thresholds and reset the 163 1.1 alc * channel statistics. Note that ar5416AniReset should be 164 1.1 alc * called by ar5416Reset before anything else happens and 165 1.1 alc * that's where we force initial settings. 166 1.1 alc */ 167 1.1 alc void 168 1.1 alc ar5416AniAttach(struct ath_hal *ah, const struct ar5212AniParams *params24, 169 1.1 alc const struct ar5212AniParams *params5, HAL_BOOL enable) 170 1.1 alc { 171 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 172 1.1 alc 173 1.1 alc if (params24 != AH_NULL) { 174 1.1 alc OS_MEMCPY(&ahp->ah_aniParams24, params24, sizeof(*params24)); 175 1.1 alc setPhyErrBase(ah, &ahp->ah_aniParams24); 176 1.1 alc } 177 1.1 alc if (params5 != AH_NULL) { 178 1.1 alc OS_MEMCPY(&ahp->ah_aniParams5, params5, sizeof(*params5)); 179 1.1 alc setPhyErrBase(ah, &ahp->ah_aniParams5); 180 1.1 alc } 181 1.1 alc 182 1.1 alc OS_MEMZERO(ahp->ah_ani, sizeof(ahp->ah_ani)); 183 1.1 alc /* Enable MIB Counters */ 184 1.1 alc enableAniMIBCounters(ah, &ahp->ah_aniParams24 /*XXX*/); 185 1.1 alc 186 1.1 alc if (enable) { /* Enable ani now */ 187 1.1 alc HALASSERT(params24 != AH_NULL && params5 != AH_NULL); 188 1.1 alc ahp->ah_procPhyErr |= HAL_ANI_ENA; 189 1.1 alc } else { 190 1.1 alc ahp->ah_procPhyErr &= ~HAL_ANI_ENA; 191 1.1 alc } 192 1.1 alc } 193 1.1 alc 194 1.1 alc /* 195 1.1 alc * Cleanup any ANI state setup. 196 1.1 alc */ 197 1.1 alc void 198 1.1 alc ar5416AniDetach(struct ath_hal *ah) 199 1.1 alc { 200 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANI, "Detaching Ani\n"); 201 1.1 alc disableAniMIBCounters(ah); 202 1.1 alc } 203 1.1 alc 204 1.1 alc /* 205 1.1 alc * Control Adaptive Noise Immunity Parameters 206 1.1 alc */ 207 1.1 alc HAL_BOOL 208 1.1 alc ar5416AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param) 209 1.1 alc { 210 1.1 alc typedef int TABLE[]; 211 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 212 1.1 alc struct ar5212AniState *aniState = ahp->ah_curani; 213 1.1 alc const struct ar5212AniParams *params = aniState->params; 214 1.1 alc 215 1.1 alc OS_MARK(ah, AH_MARK_ANI_CONTROL, cmd); 216 1.1 alc 217 1.1 alc switch (cmd) { 218 1.1 alc case HAL_ANI_NOISE_IMMUNITY_LEVEL: { 219 1.1 alc u_int level = param; 220 1.1 alc 221 1.1 alc if (level >= params->maxNoiseImmunityLevel) { 222 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 223 1.2 cegger "%s: immunity level out of range (%u > %u)\n", 224 1.1 alc __func__, level, params->maxNoiseImmunityLevel); 225 1.1 alc return AH_FALSE; 226 1.1 alc } 227 1.1 alc 228 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, 229 1.1 alc AR_PHY_DESIRED_SZ_TOT_DES, params->totalSizeDesired[level]); 230 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1, 231 1.1 alc AR_PHY_AGC_CTL1_COARSE_LOW, params->coarseLow[level]); 232 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1, 233 1.1 alc AR_PHY_AGC_CTL1_COARSE_HIGH, params->coarseHigh[level]); 234 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, 235 1.1 alc AR_PHY_FIND_SIG_FIRPWR, params->firpwr[level]); 236 1.1 alc 237 1.1 alc if (level > aniState->noiseImmunityLevel) 238 1.1 alc ahp->ah_stats.ast_ani_niup++; 239 1.1 alc else if (level < aniState->noiseImmunityLevel) 240 1.1 alc ahp->ah_stats.ast_ani_nidown++; 241 1.1 alc aniState->noiseImmunityLevel = level; 242 1.1 alc break; 243 1.1 alc } 244 1.1 alc case HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION: { 245 1.1 alc static const TABLE m1ThreshLow = { 127, 50 }; 246 1.1 alc static const TABLE m2ThreshLow = { 127, 40 }; 247 1.1 alc static const TABLE m1Thresh = { 127, 0x4d }; 248 1.1 alc static const TABLE m2Thresh = { 127, 0x40 }; 249 1.1 alc static const TABLE m2CountThr = { 31, 16 }; 250 1.1 alc static const TABLE m2CountThrLow = { 63, 48 }; 251 1.1 alc u_int on = param ? 1 : 0; 252 1.1 alc 253 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 254 1.1 alc AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1ThreshLow[on]); 255 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 256 1.1 alc AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2ThreshLow[on]); 257 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR, 258 1.1 alc AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]); 259 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR, 260 1.1 alc AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]); 261 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR, 262 1.1 alc AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]); 263 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 264 1.1 alc AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2CountThrLow[on]); 265 1.1 alc 266 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 267 1.1 alc AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLow[on]); 268 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 269 1.1 alc AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLow[on]); 270 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 271 1.1 alc AR_PHY_SFCORR_EXT_M1_THRESH, m1Thresh[on]); 272 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 273 1.1 alc AR_PHY_SFCORR_EXT_M2_THRESH, m2Thresh[on]); 274 1.1 alc 275 1.1 alc if (on) { 276 1.1 alc OS_REG_SET_BIT(ah, AR_PHY_SFCORR_LOW, 277 1.1 alc AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 278 1.1 alc } else { 279 1.1 alc OS_REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW, 280 1.1 alc AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 281 1.1 alc } 282 1.1 alc if (on) 283 1.1 alc ahp->ah_stats.ast_ani_ofdmon++; 284 1.1 alc else 285 1.1 alc ahp->ah_stats.ast_ani_ofdmoff++; 286 1.1 alc aniState->ofdmWeakSigDetectOff = !on; 287 1.1 alc break; 288 1.1 alc } 289 1.1 alc case HAL_ANI_CCK_WEAK_SIGNAL_THR: { 290 1.1 alc static const TABLE weakSigThrCck = { 8, 6 }; 291 1.1 alc u_int high = param ? 1 : 0; 292 1.1 alc 293 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT, 294 1.1 alc AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, weakSigThrCck[high]); 295 1.1 alc if (high) 296 1.1 alc ahp->ah_stats.ast_ani_cckhigh++; 297 1.1 alc else 298 1.1 alc ahp->ah_stats.ast_ani_ccklow++; 299 1.1 alc aniState->cckWeakSigThreshold = high; 300 1.1 alc break; 301 1.1 alc } 302 1.1 alc case HAL_ANI_FIRSTEP_LEVEL: { 303 1.1 alc u_int level = param; 304 1.1 alc 305 1.1 alc if (level >= params->maxFirstepLevel) { 306 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 307 1.2 cegger "%s: firstep level out of range (%u > %u)\n", 308 1.1 alc __func__, level, params->maxFirstepLevel); 309 1.1 alc return AH_FALSE; 310 1.1 alc } 311 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, 312 1.1 alc AR_PHY_FIND_SIG_FIRSTEP, params->firstep[level]); 313 1.1 alc if (level > aniState->firstepLevel) 314 1.1 alc ahp->ah_stats.ast_ani_stepup++; 315 1.1 alc else if (level < aniState->firstepLevel) 316 1.1 alc ahp->ah_stats.ast_ani_stepdown++; 317 1.1 alc aniState->firstepLevel = level; 318 1.1 alc break; 319 1.1 alc } 320 1.1 alc case HAL_ANI_SPUR_IMMUNITY_LEVEL: { 321 1.1 alc u_int level = param; 322 1.1 alc 323 1.1 alc if (level >= params->maxSpurImmunityLevel) { 324 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, 325 1.2 cegger "%s: spur level out of range (%u > %u)\n", 326 1.1 alc __func__, level, params->maxSpurImmunityLevel); 327 1.1 alc return AH_FALSE; 328 1.1 alc } 329 1.1 alc OS_REG_RMW_FIELD(ah, AR_PHY_TIMING5, 330 1.1 alc AR_PHY_TIMING5_CYCPWR_THR1, params->cycPwrThr1[level]); 331 1.1 alc if (level > aniState->spurImmunityLevel) 332 1.1 alc ahp->ah_stats.ast_ani_spurup++; 333 1.1 alc else if (level < aniState->spurImmunityLevel) 334 1.1 alc ahp->ah_stats.ast_ani_spurdown++; 335 1.1 alc aniState->spurImmunityLevel = level; 336 1.1 alc break; 337 1.1 alc } 338 1.1 alc case HAL_ANI_PRESENT: 339 1.1 alc break; 340 1.1 alc case HAL_ANI_MODE: 341 1.1 alc if (param == 0) { 342 1.1 alc ahp->ah_procPhyErr &= ~HAL_ANI_ENA; 343 1.1 alc /* Turn off HW counters if we have them */ 344 1.1 alc ar5416AniDetach(ah); 345 1.1 alc ar5212SetRxFilter(ah, 346 1.1 alc ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR); 347 1.1 alc } else { /* normal/auto mode */ 348 1.1 alc /* don't mess with state if already enabled */ 349 1.1 alc if (ahp->ah_procPhyErr & HAL_ANI_ENA) 350 1.1 alc break; 351 1.1 alc ar5212SetRxFilter(ah, 352 1.1 alc ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR); 353 1.1 alc /* Enable MIB Counters */ 354 1.1 alc enableAniMIBCounters(ah, ahp->ah_curani != AH_NULL ? 355 1.1 alc ahp->ah_curani->params: &ahp->ah_aniParams24 /*XXX*/); 356 1.1 alc ahp->ah_procPhyErr |= HAL_ANI_ENA; 357 1.1 alc } 358 1.1 alc break; 359 1.1 alc #ifdef AH_PRIVATE_DIAG 360 1.1 alc case HAL_ANI_PHYERR_RESET: 361 1.1 alc ahp->ah_stats.ast_ani_ofdmerrs = 0; 362 1.1 alc ahp->ah_stats.ast_ani_cckerrs = 0; 363 1.1 alc break; 364 1.1 alc #endif /* AH_PRIVATE_DIAG */ 365 1.1 alc default: 366 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid cmd %u\n", 367 1.1 alc __func__, cmd); 368 1.1 alc return AH_FALSE; 369 1.1 alc } 370 1.1 alc return AH_TRUE; 371 1.1 alc } 372 1.1 alc 373 1.1 alc static void 374 1.1 alc ar5416AniOfdmErrTrigger(struct ath_hal *ah) 375 1.1 alc { 376 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 377 1.1 alc HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan; 378 1.1 alc struct ar5212AniState *aniState; 379 1.1 alc const struct ar5212AniParams *params; 380 1.1 alc 381 1.1 alc HALASSERT(chan != AH_NULL); 382 1.1 alc 383 1.1 alc if (!ANI_ENA(ah)) 384 1.1 alc return; 385 1.1 alc 386 1.1 alc aniState = ahp->ah_curani; 387 1.1 alc params = aniState->params; 388 1.1 alc /* First, raise noise immunity level, up to max */ 389 1.1 alc if (aniState->noiseImmunityLevel+1 < params->maxNoiseImmunityLevel) { 390 1.1 alc ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, 391 1.1 alc aniState->noiseImmunityLevel + 1); 392 1.1 alc return; 393 1.1 alc } 394 1.1 alc /* then, raise spur immunity level, up to max */ 395 1.1 alc if (aniState->spurImmunityLevel+1 < params->maxSpurImmunityLevel) { 396 1.1 alc ar5416AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL, 397 1.1 alc aniState->spurImmunityLevel + 1); 398 1.1 alc return; 399 1.1 alc } 400 1.1 alc 401 1.1 alc if (ANI_ENA_RSSI(ah)) { 402 1.1 alc int32_t rssi = BEACON_RSSI(ahp); 403 1.1 alc if (rssi > params->rssiThrHigh) { 404 1.1 alc /* 405 1.1 alc * Beacon rssi is high, can turn off ofdm 406 1.1 alc * weak sig detect. 407 1.1 alc */ 408 1.1 alc if (!aniState->ofdmWeakSigDetectOff) { 409 1.1 alc ar5416AniControl(ah, 410 1.1 alc HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, 411 1.1 alc AH_FALSE); 412 1.1 alc ar5416AniControl(ah, 413 1.1 alc HAL_ANI_SPUR_IMMUNITY_LEVEL, 0); 414 1.1 alc return; 415 1.1 alc } 416 1.1 alc /* 417 1.1 alc * If weak sig detect is already off, as last resort, 418 1.1 alc * raise firstep level 419 1.1 alc */ 420 1.1 alc if (aniState->firstepLevel+1 < params->maxFirstepLevel) { 421 1.1 alc ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 422 1.1 alc aniState->firstepLevel + 1); 423 1.1 alc return; 424 1.1 alc } 425 1.1 alc } else if (rssi > params->rssiThrLow) { 426 1.1 alc /* 427 1.1 alc * Beacon rssi in mid range, need ofdm weak signal 428 1.1 alc * detect, but we can raise firststepLevel. 429 1.1 alc */ 430 1.1 alc if (aniState->ofdmWeakSigDetectOff) 431 1.1 alc ar5416AniControl(ah, 432 1.1 alc HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, 433 1.1 alc AH_TRUE); 434 1.1 alc if (aniState->firstepLevel+1 < params->maxFirstepLevel) 435 1.1 alc ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 436 1.1 alc aniState->firstepLevel + 1); 437 1.1 alc return; 438 1.1 alc } else { 439 1.1 alc /* 440 1.1 alc * Beacon rssi is low, if in 11b/g mode, turn off ofdm 441 1.1 alc * weak signal detection and zero firstepLevel to 442 1.1 alc * maximize CCK sensitivity 443 1.1 alc */ 444 1.1 alc /* XXX can optimize */ 445 1.1 alc if (IS_CHAN_B(chan) || IS_CHAN_G(chan)) { 446 1.1 alc if (!aniState->ofdmWeakSigDetectOff) 447 1.1 alc ar5416AniControl(ah, 448 1.1 alc HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, 449 1.1 alc AH_FALSE); 450 1.1 alc if (aniState->firstepLevel > 0) 451 1.1 alc ar5416AniControl(ah, 452 1.1 alc HAL_ANI_FIRSTEP_LEVEL, 0); 453 1.1 alc return; 454 1.1 alc } 455 1.1 alc } 456 1.1 alc } 457 1.1 alc } 458 1.1 alc 459 1.1 alc static void 460 1.1 alc ar5416AniCckErrTrigger(struct ath_hal *ah) 461 1.1 alc { 462 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 463 1.1 alc HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan; 464 1.1 alc struct ar5212AniState *aniState; 465 1.1 alc const struct ar5212AniParams *params; 466 1.1 alc 467 1.1 alc HALASSERT(chan != AH_NULL); 468 1.1 alc 469 1.1 alc if (!ANI_ENA(ah)) 470 1.1 alc return; 471 1.1 alc 472 1.1 alc /* first, raise noise immunity level, up to max */ 473 1.1 alc aniState = ahp->ah_curani; 474 1.1 alc params = aniState->params; 475 1.1 alc if (aniState->noiseImmunityLevel+1 < params->maxNoiseImmunityLevel) { 476 1.1 alc ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, 477 1.1 alc aniState->noiseImmunityLevel + 1); 478 1.1 alc return; 479 1.1 alc } 480 1.1 alc 481 1.1 alc if (ANI_ENA_RSSI(ah)) { 482 1.1 alc int32_t rssi = BEACON_RSSI(ahp); 483 1.1 alc if (rssi > params->rssiThrLow) { 484 1.1 alc /* 485 1.1 alc * Beacon signal in mid and high range, 486 1.1 alc * raise firstep level. 487 1.1 alc */ 488 1.1 alc if (aniState->firstepLevel+1 < params->maxFirstepLevel) 489 1.1 alc ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 490 1.1 alc aniState->firstepLevel + 1); 491 1.1 alc } else { 492 1.1 alc /* 493 1.1 alc * Beacon rssi is low, zero firstep level to maximize 494 1.1 alc * CCK sensitivity in 11b/g mode. 495 1.1 alc */ 496 1.1 alc /* XXX can optimize */ 497 1.1 alc if (IS_CHAN_B(chan) || IS_CHAN_G(chan)) { 498 1.1 alc if (aniState->firstepLevel > 0) 499 1.1 alc ar5416AniControl(ah, 500 1.1 alc HAL_ANI_FIRSTEP_LEVEL, 0); 501 1.1 alc } 502 1.1 alc } 503 1.1 alc } 504 1.1 alc } 505 1.1 alc 506 1.1 alc static void 507 1.1 alc ar5416AniRestart(struct ath_hal *ah, struct ar5212AniState *aniState) 508 1.1 alc { 509 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 510 1.1 alc const struct ar5212AniParams *params = aniState->params; 511 1.1 alc 512 1.1 alc aniState->listenTime = 0; 513 1.1 alc /* 514 1.1 alc * NB: these are written on reset based on the 515 1.1 alc * ini so we must re-write them! 516 1.1 alc */ 517 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANI, 518 1.1 alc "%s: Writing ofdmbase=%u cckbase=%u\n", __func__, 519 1.1 alc params->ofdmPhyErrBase, params->cckPhyErrBase); 520 1.1 alc OS_REG_WRITE(ah, AR_PHY_ERR_1, params->ofdmPhyErrBase); 521 1.1 alc OS_REG_WRITE(ah, AR_PHY_ERR_2, params->cckPhyErrBase); 522 1.1 alc OS_REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); 523 1.1 alc OS_REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_CCK_TIMING); 524 1.1 alc 525 1.1 alc /* Clear the mib counters and save them in the stats */ 526 1.1 alc ar5212UpdateMibCounters(ah, &ahp->ah_mibStats); 527 1.1 alc aniState->ofdmPhyErrCount = 0; 528 1.1 alc aniState->cckPhyErrCount = 0; 529 1.1 alc } 530 1.1 alc 531 1.1 alc /* 532 1.1 alc * Restore/reset the ANI parameters and reset the statistics. 533 1.1 alc * This routine must be called for every channel change. 534 1.1 alc * 535 1.1 alc * NOTE: This is where ah_curani is set; other ani code assumes 536 1.1 alc * it is setup to reflect the current channel. 537 1.1 alc */ 538 1.1 alc void 539 1.1 alc ar5416AniReset(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, 540 1.1 alc HAL_OPMODE opmode, int restore) 541 1.1 alc { 542 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 543 1.1 alc struct ar5212AniState *aniState; 544 1.1 alc uint32_t rxfilter; 545 1.1 alc int index; 546 1.1 alc 547 1.1 alc index = ar5416GetAniChannelIndex(ah, chan); 548 1.1 alc aniState = &ahp->ah_ani[index]; 549 1.1 alc ahp->ah_curani = aniState; 550 1.1 alc #if 0 551 1.1 alc ath_hal_printf(ah,"%s: chan %u/0x%x restore %d setup %d opmode %u\n", 552 1.1 alc __func__, chan->channel, chan->channelFlags, restore, 553 1.1 alc aniState->isSetup, opmode); 554 1.1 alc #else 555 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANI, 556 1.1 alc "%s: chan %u/0x%x restore %d setup %d opmode %u\n", 557 1.1 alc __func__, chan->channel, chan->channelFlags, restore, 558 1.1 alc aniState->isSetup, opmode); 559 1.1 alc #endif 560 1.1 alc OS_MARK(ah, AH_MARK_ANI_RESET, opmode); 561 1.1 alc 562 1.1 alc /* 563 1.1 alc * Turn off PHY error frame delivery while we futz with settings. 564 1.1 alc */ 565 1.1 alc rxfilter = ar5212GetRxFilter(ah); 566 1.1 alc ar5212SetRxFilter(ah, rxfilter &~ HAL_RX_FILTER_PHYERR); 567 1.1 alc /* 568 1.1 alc * Automatic processing is done only in station mode right now. 569 1.1 alc */ 570 1.1 alc if (opmode == HAL_M_STA) 571 1.1 alc ahp->ah_procPhyErr |= HAL_RSSI_ANI_ENA; 572 1.1 alc else 573 1.1 alc ahp->ah_procPhyErr &= ~HAL_RSSI_ANI_ENA; 574 1.1 alc /* 575 1.1 alc * Set all ani parameters. We either set them to initial 576 1.1 alc * values or restore the previous ones for the channel. 577 1.1 alc * XXX if ANI follows hardware, we don't care what mode we're 578 1.1 alc * XXX in, we should keep the ani parameters 579 1.1 alc */ 580 1.1 alc if (restore && aniState->isSetup) { 581 1.1 alc ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, 582 1.1 alc aniState->noiseImmunityLevel); 583 1.1 alc ar5416AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL, 584 1.1 alc aniState->spurImmunityLevel); 585 1.1 alc ar5416AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, 586 1.1 alc !aniState->ofdmWeakSigDetectOff); 587 1.1 alc ar5416AniControl(ah, HAL_ANI_CCK_WEAK_SIGNAL_THR, 588 1.1 alc aniState->cckWeakSigThreshold); 589 1.1 alc ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 590 1.1 alc aniState->firstepLevel); 591 1.1 alc } else { 592 1.1 alc ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, 0); 593 1.1 alc ar5416AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL, 0); 594 1.1 alc ar5416AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, 595 1.1 alc AH_TRUE); 596 1.1 alc ar5416AniControl(ah, HAL_ANI_CCK_WEAK_SIGNAL_THR, AH_FALSE); 597 1.1 alc ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 0); 598 1.1 alc aniState->isSetup = AH_TRUE; 599 1.1 alc } 600 1.1 alc ar5416AniRestart(ah, aniState); 601 1.1 alc 602 1.1 alc /* restore RX filter mask */ 603 1.1 alc ar5212SetRxFilter(ah, rxfilter); 604 1.1 alc } 605 1.1 alc 606 1.1 alc /* 607 1.1 alc * Process a MIB interrupt. We may potentially be invoked because 608 1.1 alc * any of the MIB counters overflow/trigger so don't assume we're 609 1.1 alc * here because a PHY error counter triggered. 610 1.1 alc */ 611 1.1 alc void 612 1.1 alc ar5416ProcessMibIntr(struct ath_hal *ah, const HAL_NODE_STATS *stats) 613 1.1 alc { 614 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 615 1.1 alc uint32_t phyCnt1, phyCnt2; 616 1.1 alc 617 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANI, "%s: mibc 0x%x phyCnt1 0x%x phyCnt2 0x%x " 618 1.1 alc "filtofdm 0x%x filtcck 0x%x\n", 619 1.1 alc __func__, OS_REG_READ(ah, AR_MIBC), 620 1.1 alc OS_REG_READ(ah, AR_PHYCNT1), OS_REG_READ(ah, AR_PHYCNT2), 621 1.1 alc OS_REG_READ(ah, AR_FILTOFDM), OS_REG_READ(ah, AR_FILTCCK)); 622 1.1 alc 623 1.1 alc /* 624 1.1 alc * First order of business is to clear whatever caused 625 1.1 alc * the interrupt so we don't keep getting interrupted. 626 1.1 alc * We have the usual mib counters that are reset-on-read 627 1.1 alc * and the additional counters that appeared starting in 628 1.1 alc * Hainan. We collect the mib counters and explicitly 629 1.1 alc * zero additional counters we are not using. Anything 630 1.1 alc * else is reset only if it caused the interrupt. 631 1.1 alc */ 632 1.1 alc /* NB: these are not reset-on-read */ 633 1.1 alc phyCnt1 = OS_REG_READ(ah, AR_PHY_ERR_1); 634 1.1 alc phyCnt2 = OS_REG_READ(ah, AR_PHY_ERR_2); 635 1.1 alc /* not used, always reset them in case they are the cause */ 636 1.1 alc OS_REG_WRITE(ah, AR_FILTOFDM, 0); 637 1.1 alc OS_REG_WRITE(ah, AR_FILTCCK, 0); 638 1.1 alc if ((OS_REG_READ(ah, AR_SLP_MIB_CTRL) & AR_SLP_MIB_PENDING) == 0) 639 1.1 alc OS_REG_WRITE(ah, AR_SLP_MIB_CTRL, AR_SLP_MIB_CLEAR); 640 1.1 alc 641 1.1 alc /* Clear the mib counters and save them in the stats */ 642 1.1 alc ar5212UpdateMibCounters(ah, &ahp->ah_mibStats); 643 1.1 alc ahp->ah_stats.ast_nodestats = *stats; 644 1.1 alc 645 1.1 alc /* 646 1.1 alc * Check for an ani stat hitting the trigger threshold. 647 1.1 alc * When this happens we get a MIB interrupt and the top 648 1.1 alc * 2 bits of the counter register will be 0b11, hence 649 1.1 alc * the mask check of phyCnt?. 650 1.1 alc */ 651 1.1 alc if (((phyCnt1 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK) || 652 1.1 alc ((phyCnt2 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK)) { 653 1.1 alc struct ar5212AniState *aniState = ahp->ah_curani; 654 1.1 alc const struct ar5212AniParams *params = aniState->params; 655 1.1 alc uint32_t ofdmPhyErrCnt, cckPhyErrCnt; 656 1.1 alc 657 1.1 alc ofdmPhyErrCnt = phyCnt1 - params->ofdmPhyErrBase; 658 1.1 alc ahp->ah_stats.ast_ani_ofdmerrs += 659 1.1 alc ofdmPhyErrCnt - aniState->ofdmPhyErrCount; 660 1.1 alc aniState->ofdmPhyErrCount = ofdmPhyErrCnt; 661 1.1 alc 662 1.1 alc cckPhyErrCnt = phyCnt2 - params->cckPhyErrBase; 663 1.1 alc ahp->ah_stats.ast_ani_cckerrs += 664 1.1 alc cckPhyErrCnt - aniState->cckPhyErrCount; 665 1.1 alc aniState->cckPhyErrCount = cckPhyErrCnt; 666 1.1 alc 667 1.1 alc /* 668 1.1 alc * NB: figure out which counter triggered. If both 669 1.1 alc * trigger we'll only deal with one as the processing 670 1.1 alc * clobbers the error counter so the trigger threshold 671 1.1 alc * check will never be true. 672 1.1 alc */ 673 1.1 alc if (aniState->ofdmPhyErrCount > params->ofdmTrigHigh) 674 1.1 alc ar5416AniOfdmErrTrigger(ah); 675 1.1 alc if (aniState->cckPhyErrCount > params->cckTrigHigh) 676 1.1 alc ar5416AniCckErrTrigger(ah); 677 1.1 alc /* NB: always restart to insure the h/w counters are reset */ 678 1.1 alc ar5416AniRestart(ah, aniState); 679 1.1 alc } 680 1.1 alc } 681 1.1 alc 682 1.1 alc static void 683 1.1 alc ar5416AniLowerImmunity(struct ath_hal *ah) 684 1.1 alc { 685 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 686 1.1 alc struct ar5212AniState *aniState; 687 1.1 alc const struct ar5212AniParams *params; 688 1.1 alc 689 1.1 alc HALASSERT(ANI_ENA(ah)); 690 1.1 alc 691 1.1 alc aniState = ahp->ah_curani; 692 1.1 alc params = aniState->params; 693 1.1 alc if (ANI_ENA_RSSI(ah)) { 694 1.1 alc int32_t rssi = BEACON_RSSI(ahp); 695 1.1 alc if (rssi > params->rssiThrHigh) { 696 1.1 alc /* 697 1.1 alc * Beacon signal is high, leave ofdm weak signal 698 1.1 alc * detection off or it may oscillate. Let it fall 699 1.1 alc * through. 700 1.1 alc */ 701 1.1 alc } else if (rssi > params->rssiThrLow) { 702 1.1 alc /* 703 1.1 alc * Beacon rssi in mid range, turn on ofdm weak signal 704 1.1 alc * detection or lower firstep level. 705 1.1 alc */ 706 1.1 alc if (aniState->ofdmWeakSigDetectOff) { 707 1.1 alc ar5416AniControl(ah, 708 1.1 alc HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, 709 1.1 alc AH_TRUE); 710 1.1 alc return; 711 1.1 alc } 712 1.1 alc if (aniState->firstepLevel > 0) { 713 1.1 alc ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 714 1.1 alc aniState->firstepLevel - 1); 715 1.1 alc return; 716 1.1 alc } 717 1.1 alc } else { 718 1.1 alc /* 719 1.1 alc * Beacon rssi is low, reduce firstep level. 720 1.1 alc */ 721 1.1 alc if (aniState->firstepLevel > 0) { 722 1.1 alc ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 723 1.1 alc aniState->firstepLevel - 1); 724 1.1 alc return; 725 1.1 alc } 726 1.1 alc } 727 1.1 alc } 728 1.1 alc /* then lower spur immunity level, down to zero */ 729 1.1 alc if (aniState->spurImmunityLevel > 0) { 730 1.1 alc ar5416AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL, 731 1.1 alc aniState->spurImmunityLevel - 1); 732 1.1 alc return; 733 1.1 alc } 734 1.1 alc /* 735 1.1 alc * if all else fails, lower noise immunity level down to a min value 736 1.1 alc * zero for now 737 1.1 alc */ 738 1.1 alc if (aniState->noiseImmunityLevel > 0) { 739 1.1 alc ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, 740 1.1 alc aniState->noiseImmunityLevel - 1); 741 1.1 alc return; 742 1.1 alc } 743 1.1 alc } 744 1.1 alc 745 1.1 alc #define CLOCK_RATE 44000 /* XXX use mac_usec or similar */ 746 1.1 alc /* convert HW counter values to ms using 11g clock rate, goo9d enough 747 1.1 alc for 11a and Turbo */ 748 1.1 alc 749 1.1 alc /* 750 1.1 alc * Return an approximation of the time spent ``listening'' by 751 1.1 alc * deducting the cycles spent tx'ing and rx'ing from the total 752 1.1 alc * cycle count since our last call. A return value <0 indicates 753 1.1 alc * an invalid/inconsistent time. 754 1.1 alc */ 755 1.1 alc static int32_t 756 1.1 alc ar5416AniGetListenTime(struct ath_hal *ah) 757 1.1 alc { 758 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 759 1.1 alc struct ar5212AniState *aniState; 760 1.1 alc uint32_t txFrameCount, rxFrameCount, cycleCount; 761 1.1 alc int32_t listenTime; 762 1.1 alc 763 1.1 alc txFrameCount = OS_REG_READ(ah, AR_TFCNT); 764 1.1 alc rxFrameCount = OS_REG_READ(ah, AR_RFCNT); 765 1.1 alc cycleCount = OS_REG_READ(ah, AR_CCCNT); 766 1.1 alc 767 1.1 alc aniState = ahp->ah_curani; 768 1.1 alc if (aniState->cycleCount == 0 || aniState->cycleCount > cycleCount) { 769 1.1 alc /* 770 1.1 alc * Cycle counter wrap (or initial call); it's not possible 771 1.1 alc * to accurately calculate a value because the registers 772 1.1 alc * right shift rather than wrap--so punt and return 0. 773 1.1 alc */ 774 1.1 alc listenTime = 0; 775 1.1 alc ahp->ah_stats.ast_ani_lzero++; 776 1.1 alc } else { 777 1.1 alc int32_t ccdelta = cycleCount - aniState->cycleCount; 778 1.1 alc int32_t rfdelta = rxFrameCount - aniState->rxFrameCount; 779 1.1 alc int32_t tfdelta = txFrameCount - aniState->txFrameCount; 780 1.1 alc listenTime = (ccdelta - rfdelta - tfdelta) / CLOCK_RATE; 781 1.1 alc } 782 1.1 alc aniState->cycleCount = cycleCount; 783 1.1 alc aniState->txFrameCount = txFrameCount; 784 1.1 alc aniState->rxFrameCount = rxFrameCount; 785 1.1 alc return listenTime; 786 1.1 alc } 787 1.1 alc 788 1.1 alc /* 789 1.1 alc * Update ani stats in preparation for listen time processing. 790 1.1 alc */ 791 1.1 alc static void 792 1.1 alc updateMIBStats(struct ath_hal *ah, struct ar5212AniState *aniState) 793 1.1 alc { 794 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 795 1.1 alc const struct ar5212AniParams *params = aniState->params; 796 1.1 alc uint32_t phyCnt1, phyCnt2; 797 1.1 alc int32_t ofdmPhyErrCnt, cckPhyErrCnt; 798 1.1 alc 799 1.1 alc /* Clear the mib counters and save them in the stats */ 800 1.1 alc ar5212UpdateMibCounters(ah, &ahp->ah_mibStats); 801 1.1 alc 802 1.1 alc /* NB: these are not reset-on-read */ 803 1.1 alc phyCnt1 = OS_REG_READ(ah, AR_PHY_ERR_1); 804 1.1 alc phyCnt2 = OS_REG_READ(ah, AR_PHY_ERR_2); 805 1.1 alc 806 1.1 alc /* NB: these are spec'd to never roll-over */ 807 1.1 alc ofdmPhyErrCnt = phyCnt1 - params->ofdmPhyErrBase; 808 1.1 alc if (ofdmPhyErrCnt < 0) { 809 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANI, "OFDM phyErrCnt %d phyCnt1 0x%x\n", 810 1.1 alc ofdmPhyErrCnt, phyCnt1); 811 1.1 alc ofdmPhyErrCnt = AR_PHY_COUNTMAX; 812 1.1 alc } 813 1.1 alc ahp->ah_stats.ast_ani_ofdmerrs += 814 1.1 alc ofdmPhyErrCnt - aniState->ofdmPhyErrCount; 815 1.1 alc aniState->ofdmPhyErrCount = ofdmPhyErrCnt; 816 1.1 alc 817 1.1 alc cckPhyErrCnt = phyCnt2 - params->cckPhyErrBase; 818 1.1 alc if (cckPhyErrCnt < 0) { 819 1.1 alc HALDEBUG(ah, HAL_DEBUG_ANI, "CCK phyErrCnt %d phyCnt2 0x%x\n", 820 1.1 alc cckPhyErrCnt, phyCnt2); 821 1.1 alc cckPhyErrCnt = AR_PHY_COUNTMAX; 822 1.1 alc } 823 1.1 alc ahp->ah_stats.ast_ani_cckerrs += 824 1.1 alc cckPhyErrCnt - aniState->cckPhyErrCount; 825 1.1 alc aniState->cckPhyErrCount = cckPhyErrCnt; 826 1.1 alc } 827 1.1 alc 828 1.1 alc /* 829 1.1 alc * Do periodic processing. This routine is called from the 830 1.1 alc * driver's rx interrupt handler after processing frames. 831 1.1 alc */ 832 1.1 alc void 833 1.1 alc ar5416AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, 834 1.1 alc HAL_CHANNEL *chan) 835 1.1 alc { 836 1.1 alc struct ath_hal_5212 *ahp = AH5212(ah); 837 1.1 alc struct ar5212AniState *aniState = ahp->ah_curani; 838 1.1 alc const struct ar5212AniParams *params; 839 1.1 alc int32_t listenTime; 840 1.1 alc 841 1.1 alc ahp->ah_stats.ast_nodestats.ns_avgbrssi = stats->ns_avgbrssi; 842 1.1 alc 843 1.1 alc /* XXX can aniState be null? */ 844 1.1 alc if (aniState == AH_NULL) 845 1.1 alc return; 846 1.1 alc if (!ANI_ENA(ah)) 847 1.1 alc return; 848 1.1 alc 849 1.1 alc listenTime = ar5416AniGetListenTime(ah); 850 1.1 alc if (listenTime < 0) { 851 1.1 alc ahp->ah_stats.ast_ani_lneg++; 852 1.1 alc /* restart ANI period if listenTime is invalid */ 853 1.1 alc ar5416AniRestart(ah, aniState); 854 1.1 alc } 855 1.1 alc /* XXX beware of overflow? */ 856 1.1 alc aniState->listenTime += listenTime; 857 1.1 alc 858 1.1 alc OS_MARK(ah, AH_MARK_ANI_POLL, aniState->listenTime); 859 1.1 alc 860 1.1 alc params = aniState->params; 861 1.1 alc if (aniState->listenTime > 5*params->period) { 862 1.1 alc /* 863 1.1 alc * Check to see if need to lower immunity if 864 1.1 alc * 5 aniPeriods have passed 865 1.1 alc */ 866 1.1 alc updateMIBStats(ah, aniState); 867 1.1 alc if (aniState->ofdmPhyErrCount <= aniState->listenTime * 868 1.1 alc params->ofdmTrigLow/1000 && 869 1.1 alc aniState->cckPhyErrCount <= aniState->listenTime * 870 1.1 alc params->cckTrigLow/1000) 871 1.1 alc ar5416AniLowerImmunity(ah); 872 1.1 alc ar5416AniRestart(ah, aniState); 873 1.1 alc } else if (aniState->listenTime > params->period) { 874 1.1 alc updateMIBStats(ah, aniState); 875 1.1 alc /* check to see if need to raise immunity */ 876 1.1 alc if (aniState->ofdmPhyErrCount > aniState->listenTime * 877 1.1 alc params->ofdmTrigHigh / 1000) { 878 1.1 alc ar5416AniOfdmErrTrigger(ah); 879 1.1 alc ar5416AniRestart(ah, aniState); 880 1.1 alc } else if (aniState->cckPhyErrCount > aniState->listenTime * 881 1.1 alc params->cckTrigHigh / 1000) { 882 1.1 alc ar5416AniCckErrTrigger(ah); 883 1.1 alc ar5416AniRestart(ah, aniState); 884 1.1 alc } 885 1.1 alc } 886 1.1 alc } 887