Home | History | Annotate | Line # | Download | only in ar5416
      1  1.1  cegger /*
      2  1.1  cegger  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
      3  1.1  cegger  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  1.1  cegger  *
      5  1.1  cegger  * Permission to use, copy, modify, and/or distribute this software for any
      6  1.1  cegger  * purpose with or without fee is hereby granted, provided that the above
      7  1.1  cegger  * copyright notice and this permission notice appear in all copies.
      8  1.1  cegger  *
      9  1.1  cegger  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  1.1  cegger  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  1.1  cegger  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  1.1  cegger  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  1.1  cegger  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  1.1  cegger  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  1.1  cegger  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  1.1  cegger  *
     17  1.1  cegger  * $FreeBSD: src/sys/dev/ath/ath_hal/ar5416/ar9285_reset.c,v 1.4 2010/08/14 15:29:21 adrian Exp $
     18  1.1  cegger  */
     19  1.1  cegger 
     20  1.1  cegger /*
     21  1.1  cegger  * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
     22  1.1  cegger  * supports only 2Ghz operation.
     23  1.1  cegger  */
     24  1.1  cegger 
     25  1.1  cegger #include "opt_ah.h"
     26  1.1  cegger 
     27  1.1  cegger #include "ah.h"
     28  1.1  cegger #include "ah_internal.h"
     29  1.1  cegger #include "ah_devid.h"
     30  1.1  cegger 
     31  1.1  cegger #include "ah_eeprom_v14.h"
     32  1.1  cegger #include "ah_eeprom_v4k.h"
     33  1.1  cegger 
     34  1.1  cegger #include "ar5416/ar9285.h"
     35  1.1  cegger #include "ar5416/ar5416.h"
     36  1.1  cegger #include "ar5416/ar5416reg.h"
     37  1.1  cegger #include "ar5416/ar5416phy.h"
     38  1.1  cegger 
     39  1.1  cegger /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
     40  1.1  cegger #define	EEP_MINOR(_ah) \
     41  1.1  cegger 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
     42  1.1  cegger #define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
     43  1.1  cegger #define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
     44  1.1  cegger 
     45  1.1  cegger /* Additional Time delay to wait after activiting the Base band */
     46  1.1  cegger #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
     47  1.1  cegger #define PLL_SETTLE_DELAY	300	/* 300 usec */
     48  1.1  cegger #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
     49  1.1  cegger 
     50  1.1  cegger static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
     51  1.1  cegger 	struct ar5416eeprom_4k *pEepData,
     52  1.1  cegger 	HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
     53  1.1  cegger 	uint16_t cfgCtl, uint16_t AntennaReduction,
     54  1.1  cegger 	uint16_t twiceMaxRegulatoryPower,
     55  1.1  cegger 	uint16_t powerLimit);
     56  1.1  cegger static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
     57  1.1  cegger 	struct ar5416eeprom_4k *pEepData,
     58  1.1  cegger 	HAL_CHANNEL_INTERNAL *chan,
     59  1.1  cegger 	int16_t *pTxPowerIndexOffset);
     60  1.1  cegger static int16_t interpolate(uint16_t target, uint16_t srcLeft,
     61  1.1  cegger 	uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
     62  1.1  cegger static HAL_BOOL ar9285FillVpdTable(uint8_t, uint8_t, uint8_t *, uint8_t *,
     63  1.1  cegger 		                   uint16_t, uint8_t *);
     64  1.1  cegger static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
     65  1.1  cegger 	HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
     66  1.1  cegger 	uint8_t * bChans, uint16_t availPiers,
     67  1.1  cegger 	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
     68  1.1  cegger 	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
     69  1.1  cegger 	uint16_t numXpdGains);
     70  1.1  cegger static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
     71  1.1  cegger 	uint16_t listSize,  uint16_t *indexL, uint16_t *indexR);
     72  1.1  cegger static uint16_t ar9285GetMaxEdgePower(uint16_t, CAL_CTL_EDGES *);
     73  1.1  cegger 
     74  1.1  cegger /* XXX gag, this is sick */
     75  1.1  cegger typedef enum Ar5416_Rates {
     76  1.1  cegger 	rate6mb,  rate9mb,  rate12mb, rate18mb,
     77  1.1  cegger 	rate24mb, rate36mb, rate48mb, rate54mb,
     78  1.1  cegger 	rate1l,   rate2l,   rate2s,   rate5_5l,
     79  1.1  cegger 	rate5_5s, rate11l,  rate11s,  rateXr,
     80  1.1  cegger 	rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
     81  1.1  cegger 	rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
     82  1.1  cegger 	rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
     83  1.1  cegger 	rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
     84  1.1  cegger 	rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
     85  1.1  cegger 	Ar5416RateSize
     86  1.1  cegger } AR5416_RATES;
     87  1.1  cegger 
     88  1.1  cegger HAL_BOOL
     89  1.1  cegger ar9285SetTransmitPower(struct ath_hal *ah,
     90  1.1  cegger 	HAL_CHANNEL *chan, uint16_t *rfXpdGain)
     91  1.1  cegger {
     92  1.1  cegger #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
     93  1.1  cegger #define N(a)            (sizeof (a) / sizeof (a[0]))
     94  1.1  cegger 
     95  1.1  cegger     HAL_CHANNEL_INTERNAL *ichan;
     96  1.1  cegger     MODAL_EEP4K_HEADER	*pModal;
     97  1.1  cegger     struct ath_hal_5212 *ahp = AH5212(ah);
     98  1.1  cegger     int16_t		ratesArray[Ar5416RateSize];
     99  1.1  cegger     int16_t		txPowerIndexOffset = 0;
    100  1.1  cegger     uint8_t		ht40PowerIncForPdadc = 2;
    101  1.1  cegger     int			i;
    102  1.1  cegger 
    103  1.1  cegger     uint16_t		cfgCtl;
    104  1.1  cegger     uint16_t		powerLimit;
    105  1.1  cegger     uint16_t		twiceAntennaReduction;
    106  1.1  cegger     uint16_t		twiceMaxRegulatoryPower;
    107  1.1  cegger     int16_t		maxPower;
    108  1.1  cegger     HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
    109  1.1  cegger     struct ar5416eeprom_4k *pEepData = &ee->ee_base;
    110  1.1  cegger 
    111  1.1  cegger     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
    112  1.1  cegger     ichan = ath_hal_checkchannel(ah, chan);
    113  1.1  cegger 
    114  1.1  cegger     /* Setup info for the actual eeprom */
    115  1.1  cegger     OS_MEMZERO(ratesArray, sizeof(ratesArray));
    116  1.1  cegger     cfgCtl = ath_hal_getctl(ah, chan);
    117  1.1  cegger     powerLimit = ichan->maxRegTxPower * 2;
    118  1.1  cegger     twiceAntennaReduction = ichan->antennaMax;
    119  1.1  cegger     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
    120  1.1  cegger     pModal = &pEepData->modalHeader;
    121  1.1  cegger     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
    122  1.2  cegger 	__func__,chan->channel, cfgCtl );
    123  1.1  cegger 
    124  1.1  cegger     if (IS_EEP_MINOR_V2(ah)) {
    125  1.1  cegger         ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
    126  1.1  cegger     }
    127  1.1  cegger 
    128  1.1  cegger     if (!ar9285SetPowerPerRateTable(ah, pEepData, ichan,
    129  1.1  cegger                                     &ratesArray[0],cfgCtl,
    130  1.1  cegger                                     twiceAntennaReduction,
    131  1.1  cegger 				    twiceMaxRegulatoryPower, powerLimit)) {
    132  1.1  cegger         HALDEBUG(ah, HAL_DEBUG_ANY,
    133  1.1  cegger 	    "%s: unable to set tx power per rate table\n", __func__);
    134  1.1  cegger         return AH_FALSE;
    135  1.1  cegger     }
    136  1.1  cegger 
    137  1.1  cegger     if (!ar9285SetPowerCalTable(ah,  pEepData, ichan, &txPowerIndexOffset)) {
    138  1.1  cegger         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
    139  1.1  cegger 	    __func__);
    140  1.1  cegger         return AH_FALSE;
    141  1.1  cegger     }
    142  1.1  cegger 
    143  1.1  cegger     maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
    144  1.1  cegger     maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
    145  1.1  cegger 
    146  1.1  cegger     if (IS_CHAN_HT40(chan)) {
    147  1.1  cegger         maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
    148  1.1  cegger     }
    149  1.1  cegger 
    150  1.1  cegger     ahp->ah_tx6PowerInHalfDbm = maxPower;
    151  1.1  cegger     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
    152  1.1  cegger     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
    153  1.1  cegger 
    154  1.1  cegger     /*
    155  1.1  cegger      * txPowerIndexOffset is set by the SetPowerTable() call -
    156  1.1  cegger      *  adjust the rate table (0 offset if rates EEPROM not loaded)
    157  1.1  cegger      */
    158  1.1  cegger     for (i = 0; i < N(ratesArray); i++) {
    159  1.1  cegger         ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
    160  1.1  cegger         if (ratesArray[i] > AR5416_MAX_RATE_POWER)
    161  1.1  cegger             ratesArray[i] = AR5416_MAX_RATE_POWER;
    162  1.1  cegger 	ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
    163  1.1  cegger     }
    164  1.1  cegger 
    165  1.1  cegger #ifdef AH_EEPROM_DUMP
    166  1.1  cegger     ar5416PrintPowerPerRate(ah, ratesArray);
    167  1.1  cegger #endif
    168  1.1  cegger 
    169  1.1  cegger     /* Write the OFDM power per rate set */
    170  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
    171  1.1  cegger         POW_SM(ratesArray[rate18mb], 24)
    172  1.1  cegger           | POW_SM(ratesArray[rate12mb], 16)
    173  1.1  cegger           | POW_SM(ratesArray[rate9mb], 8)
    174  1.1  cegger           | POW_SM(ratesArray[rate6mb], 0)
    175  1.1  cegger     );
    176  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
    177  1.1  cegger         POW_SM(ratesArray[rate54mb], 24)
    178  1.1  cegger           | POW_SM(ratesArray[rate48mb], 16)
    179  1.1  cegger           | POW_SM(ratesArray[rate36mb], 8)
    180  1.1  cegger           | POW_SM(ratesArray[rate24mb], 0)
    181  1.1  cegger     );
    182  1.1  cegger 
    183  1.1  cegger     /* Write the CCK power per rate set */
    184  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
    185  1.1  cegger         POW_SM(ratesArray[rate2s], 24)
    186  1.1  cegger           | POW_SM(ratesArray[rate2l],  16)
    187  1.1  cegger           | POW_SM(ratesArray[rateXr],  8) /* XR target power */
    188  1.1  cegger           | POW_SM(ratesArray[rate1l],   0)
    189  1.1  cegger     );
    190  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
    191  1.1  cegger         POW_SM(ratesArray[rate11s], 24)
    192  1.1  cegger           | POW_SM(ratesArray[rate11l], 16)
    193  1.1  cegger           | POW_SM(ratesArray[rate5_5s], 8)
    194  1.1  cegger           | POW_SM(ratesArray[rate5_5l], 0)
    195  1.1  cegger     );
    196  1.1  cegger     HALDEBUG(ah, HAL_DEBUG_RESET,
    197  1.1  cegger 	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
    198  1.1  cegger 	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
    199  1.1  cegger 	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
    200  1.1  cegger 
    201  1.1  cegger     /* Write the HT20 power per rate set */
    202  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
    203  1.1  cegger         POW_SM(ratesArray[rateHt20_3], 24)
    204  1.1  cegger           | POW_SM(ratesArray[rateHt20_2], 16)
    205  1.1  cegger           | POW_SM(ratesArray[rateHt20_1], 8)
    206  1.1  cegger           | POW_SM(ratesArray[rateHt20_0], 0)
    207  1.1  cegger     );
    208  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
    209  1.1  cegger         POW_SM(ratesArray[rateHt20_7], 24)
    210  1.1  cegger           | POW_SM(ratesArray[rateHt20_6], 16)
    211  1.1  cegger           | POW_SM(ratesArray[rateHt20_5], 8)
    212  1.1  cegger           | POW_SM(ratesArray[rateHt20_4], 0)
    213  1.1  cegger     );
    214  1.1  cegger 
    215  1.1  cegger     if (IS_CHAN_HT40(chan)) {
    216  1.1  cegger         /* Write the HT40 power per rate set */
    217  1.1  cegger 	/* Correct PAR difference between HT40 and HT20/LEGACY */
    218  1.1  cegger         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
    219  1.1  cegger             POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
    220  1.1  cegger               | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
    221  1.1  cegger               | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
    222  1.1  cegger               | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
    223  1.1  cegger         );
    224  1.1  cegger         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
    225  1.1  cegger             POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
    226  1.1  cegger               | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
    227  1.1  cegger               | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
    228  1.1  cegger               | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
    229  1.1  cegger         );
    230  1.1  cegger         /* Write the Dup/Ext 40 power per rate set */
    231  1.1  cegger         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
    232  1.1  cegger             POW_SM(ratesArray[rateExtOfdm], 24)
    233  1.1  cegger               | POW_SM(ratesArray[rateExtCck], 16)
    234  1.1  cegger               | POW_SM(ratesArray[rateDupOfdm], 8)
    235  1.1  cegger               | POW_SM(ratesArray[rateDupCck], 0)
    236  1.1  cegger         );
    237  1.1  cegger     }
    238  1.1  cegger 
    239  1.1  cegger     return AH_TRUE;
    240  1.1  cegger #undef POW_SM
    241  1.1  cegger #undef N
    242  1.1  cegger }
    243  1.1  cegger 
    244  1.1  cegger HAL_BOOL
    245  1.1  cegger ar9285SetBoardValues(struct ath_hal *ah, HAL_CHANNEL *_chan)
    246  1.1  cegger {
    247  1.1  cegger     HAL_CHANNEL_INTERNAL *chan;
    248  1.1  cegger     const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
    249  1.1  cegger     const struct ar5416eeprom_4k *eep = &ee->ee_base;
    250  1.1  cegger     const MODAL_EEP4K_HEADER *pModal;
    251  1.1  cegger     uint8_t	txRxAttenLocal = 23;
    252  1.1  cegger 
    253  1.1  cegger     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
    254  1.1  cegger     chan = ath_hal_checkchannel(ah, _chan);
    255  1.1  cegger     pModal = &eep->modalHeader;
    256  1.1  cegger 
    257  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
    258  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0, pModal->antCtrlChain[0]);
    259  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
    260  1.1  cegger         	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) &
    261  1.1  cegger         	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
    262  1.1  cegger         	SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
    263  1.1  cegger         	SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
    264  1.1  cegger 
    265  1.1  cegger     if (IS_EEP_MINOR_V3(ah)) {
    266  1.1  cegger 	if (IS_CHAN_HT40(chan)) {
    267  1.1  cegger 		/* Overwrite switch settling with HT40 value */
    268  1.1  cegger 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
    269  1.1  cegger 		    pModal->swSettleHt40);
    270  1.1  cegger 	}
    271  1.1  cegger 	txRxAttenLocal = pModal->txRxAttenCh[0];
    272  1.1  cegger 
    273  1.1  cegger         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
    274  1.1  cegger 	    pModal->bswMargin[0]);
    275  1.1  cegger         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
    276  1.1  cegger 	    pModal->bswAtten[0]);
    277  1.1  cegger 	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
    278  1.1  cegger 	    pModal->xatten2Margin[0]);
    279  1.1  cegger 	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
    280  1.1  cegger 	    pModal->xatten2Db[0]);
    281  1.1  cegger 
    282  1.1  cegger 	/* block 1 has the same values as block 0 */
    283  1.1  cegger         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
    284  1.1  cegger 	    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
    285  1.1  cegger         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
    286  1.1  cegger 	    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
    287  1.1  cegger 	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
    288  1.1  cegger 	    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
    289  1.1  cegger 	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
    290  1.1  cegger 	    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
    291  1.1  cegger 
    292  1.1  cegger     }
    293  1.1  cegger     OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
    294  1.1  cegger         AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
    295  1.1  cegger     OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
    296  1.1  cegger         AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
    297  1.1  cegger 
    298  1.1  cegger     OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
    299  1.1  cegger         AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
    300  1.1  cegger     OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
    301  1.1  cegger         AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
    302  1.1  cegger 
    303  1.1  cegger     if (AR_SREV_KITE_11(ah))
    304  1.1  cegger 	    OS_REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
    305  1.1  cegger 
    306  1.1  cegger     return AH_TRUE;
    307  1.1  cegger }
    308  1.1  cegger 
    309  1.1  cegger /*
    310  1.1  cegger  * Helper functions common for AP/CB/XB
    311  1.1  cegger  */
    312  1.1  cegger 
    313  1.1  cegger static HAL_BOOL
    314  1.1  cegger ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
    315  1.1  cegger 			   HAL_CHANNEL_INTERNAL *chan,
    316  1.1  cegger                            int16_t *ratesArray, uint16_t cfgCtl,
    317  1.1  cegger                            uint16_t AntennaReduction,
    318  1.1  cegger                            uint16_t twiceMaxRegulatoryPower,
    319  1.1  cegger                            uint16_t powerLimit)
    320  1.1  cegger {
    321  1.1  cegger #define	N(a)	(sizeof(a)/sizeof(a[0]))
    322  1.1  cegger /* Local defines to distinguish between extension and control CTL's */
    323  1.1  cegger #define EXT_ADDITIVE (0x8000)
    324  1.1  cegger #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
    325  1.1  cegger #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
    326  1.1  cegger 
    327  1.1  cegger 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
    328  1.1  cegger 	int i;
    329  1.1  cegger 	int16_t  twiceLargestAntenna;
    330  1.1  cegger 	CAL_CTL_DATA_4K *rep;
    331  1.1  cegger 	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
    332  1.1  cegger 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
    333  1.1  cegger 	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
    334  1.1  cegger 	int16_t scaledPower, minCtlPower;
    335  1.1  cegger 
    336  1.1  cegger #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
    337  1.1  cegger 	static const uint16_t ctlModesFor11g[] = {
    338  1.1  cegger 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
    339  1.1  cegger 	};
    340  1.1  cegger 	const uint16_t *pCtlMode;
    341  1.1  cegger 	uint16_t numCtlModes, ctlMode, freq;
    342  1.1  cegger 	CHAN_CENTERS centers;
    343  1.1  cegger 
    344  1.1  cegger 	ar5416GetChannelCenters(ah,  chan, &centers);
    345  1.1  cegger 
    346  1.1  cegger 	/* Compute TxPower reduction due to Antenna Gain */
    347  1.1  cegger 
    348  1.1  cegger 	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
    349  1.1  cegger 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
    350  1.1  cegger 
    351  1.1  cegger 	/* XXX setup for 5212 use (really used?) */
    352  1.1  cegger 	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
    353  1.1  cegger 
    354  1.1  cegger 	/*
    355  1.1  cegger 	 * scaledPower is the minimum of the user input power level and
    356  1.1  cegger 	 * the regulatory allowed power level
    357  1.1  cegger 	 */
    358  1.1  cegger 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
    359  1.1  cegger 
    360  1.1  cegger 	/* Get target powers from EEPROM - our baseline for TX Power */
    361  1.1  cegger 	/* Setup for CTL modes */
    362  1.1  cegger 	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
    363  1.1  cegger 	pCtlMode = ctlModesFor11g;
    364  1.1  cegger 
    365  1.1  cegger 	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
    366  1.1  cegger 			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
    367  1.1  cegger 	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
    368  1.1  cegger 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
    369  1.1  cegger 	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
    370  1.1  cegger 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
    371  1.1  cegger 
    372  1.1  cegger 	if (IS_CHAN_HT40(chan)) {
    373  1.1  cegger 		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
    374  1.1  cegger 
    375  1.1  cegger 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
    376  1.1  cegger 			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
    377  1.1  cegger 		/* Get target powers for extension channels */
    378  1.1  cegger 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
    379  1.1  cegger 			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
    380  1.1  cegger 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
    381  1.1  cegger 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
    382  1.1  cegger 	}
    383  1.1  cegger 
    384  1.1  cegger 	/*
    385  1.1  cegger 	 * For MIMO, need to apply regulatory caps individually across dynamically
    386  1.1  cegger 	 * running modes: CCK, OFDM, HT20, HT40
    387  1.1  cegger 	 *
    388  1.1  cegger 	 * The outer loop walks through each possible applicable runtime mode.
    389  1.1  cegger 	 * The inner loop walks through each ctlIndex entry in EEPROM.
    390  1.1  cegger 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
    391  1.1  cegger 	 *
    392  1.1  cegger 	 */
    393  1.1  cegger 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
    394  1.1  cegger 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
    395  1.1  cegger 		    (pCtlMode[ctlMode] == CTL_2GHT40);
    396  1.1  cegger 		if (isHt40CtlMode) {
    397  1.1  cegger 			freq = centers.ctl_center;
    398  1.1  cegger 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
    399  1.1  cegger 			freq = centers.ext_center;
    400  1.1  cegger 		} else {
    401  1.1  cegger 			freq = centers.ctl_center;
    402  1.1  cegger 		}
    403  1.1  cegger 
    404  1.1  cegger 		/* walk through each CTL index stored in EEPROM */
    405  1.1  cegger 		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
    406  1.1  cegger 			uint16_t twiceMinEdgePower;
    407  1.1  cegger 
    408  1.1  cegger 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
    409  1.1  cegger 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
    410  1.1  cegger 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
    411  1.1  cegger 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
    412  1.1  cegger 				rep = &(pEepData->ctlData[i]);
    413  1.1  cegger 				twiceMinEdgePower = ar9285GetMaxEdgePower(freq,
    414  1.1  cegger 							rep->ctlEdges[
    415  1.1  cegger 							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1]);
    416  1.1  cegger 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
    417  1.1  cegger 					/* Find the minimum of all CTL edge powers that apply to this channel */
    418  1.1  cegger 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
    419  1.1  cegger 				} else {
    420  1.1  cegger 					/* specific */
    421  1.1  cegger 					twiceMaxEdgePower = twiceMinEdgePower;
    422  1.1  cegger 					break;
    423  1.1  cegger 				}
    424  1.1  cegger 			}
    425  1.1  cegger 		}
    426  1.1  cegger 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
    427  1.1  cegger 		/* Apply ctl mode to correct target power set */
    428  1.1  cegger 		switch(pCtlMode[ctlMode]) {
    429  1.1  cegger 		case CTL_11B:
    430  1.1  cegger 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
    431  1.1  cegger 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
    432  1.1  cegger 			}
    433  1.1  cegger 			break;
    434  1.1  cegger 		case CTL_11A:
    435  1.1  cegger 		case CTL_11G:
    436  1.1  cegger 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
    437  1.1  cegger 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
    438  1.1  cegger 			}
    439  1.1  cegger 			break;
    440  1.1  cegger 		case CTL_5GHT20:
    441  1.1  cegger 		case CTL_2GHT20:
    442  1.1  cegger 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
    443  1.1  cegger 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
    444  1.1  cegger 			}
    445  1.1  cegger 			break;
    446  1.1  cegger 		case CTL_11B_EXT:
    447  1.1  cegger 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
    448  1.1  cegger 			break;
    449  1.1  cegger 		case CTL_11G_EXT:
    450  1.1  cegger 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
    451  1.1  cegger 			break;
    452  1.1  cegger 		case CTL_5GHT40:
    453  1.1  cegger 		case CTL_2GHT40:
    454  1.1  cegger 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
    455  1.1  cegger 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
    456  1.1  cegger 			}
    457  1.1  cegger 			break;
    458  1.1  cegger 		default:
    459  1.1  cegger 			return AH_FALSE;
    460  1.1  cegger 			break;
    461  1.1  cegger 		}
    462  1.1  cegger 	} /* end ctl mode checking */
    463  1.1  cegger 
    464  1.1  cegger 	/* Set rates Array from collected data */
    465  1.1  cegger 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
    466  1.1  cegger 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
    467  1.1  cegger 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
    468  1.1  cegger 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
    469  1.1  cegger 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
    470  1.1  cegger 
    471  1.1  cegger 	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
    472  1.1  cegger 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
    473  1.1  cegger 	}
    474  1.1  cegger 
    475  1.1  cegger 	ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
    476  1.1  cegger 	ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
    477  1.1  cegger 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
    478  1.1  cegger 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
    479  1.1  cegger 	if (IS_CHAN_HT40(chan)) {
    480  1.1  cegger 		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
    481  1.1  cegger 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
    482  1.1  cegger 		}
    483  1.1  cegger 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
    484  1.1  cegger 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
    485  1.1  cegger 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
    486  1.1  cegger 		if (IS_CHAN_2GHZ(chan)) {
    487  1.1  cegger 			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
    488  1.1  cegger 		}
    489  1.1  cegger 	}
    490  1.1  cegger 	return AH_TRUE;
    491  1.1  cegger #undef EXT_ADDITIVE
    492  1.1  cegger #undef CTL_11G_EXT
    493  1.1  cegger #undef CTL_11B_EXT
    494  1.1  cegger #undef SUB_NUM_CTL_MODES_AT_2G_40
    495  1.1  cegger #undef N
    496  1.1  cegger }
    497  1.1  cegger 
    498  1.1  cegger /**************************************************************************
    499  1.1  cegger  * fbin2freq
    500  1.1  cegger  *
    501  1.1  cegger  * Get channel value from binary representation held in eeprom
    502  1.1  cegger  * RETURNS: the frequency in MHz
    503  1.1  cegger  */
    504  1.1  cegger static uint16_t
    505  1.1  cegger fbin2freq(uint8_t fbin)
    506  1.1  cegger {
    507  1.1  cegger     /*
    508  1.1  cegger      * Reserved value 0xFF provides an empty definition both as
    509  1.1  cegger      * an fbin and as a frequency - do not convert
    510  1.1  cegger      */
    511  1.1  cegger     if (fbin == AR5416_BCHAN_UNUSED) {
    512  1.1  cegger         return fbin;
    513  1.1  cegger     }
    514  1.1  cegger 
    515  1.1  cegger     return (uint16_t)(2300 + fbin);
    516  1.1  cegger }
    517  1.1  cegger 
    518  1.1  cegger /*
    519  1.1  cegger  * XXX almost the same as ar5416GetMaxEdgePower.
    520  1.1  cegger  */
    521  1.1  cegger static uint16_t
    522  1.1  cegger ar9285GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower)
    523  1.1  cegger {
    524  1.1  cegger     uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
    525  1.1  cegger     int      i;
    526  1.1  cegger 
    527  1.1  cegger     /* Get the edge power */
    528  1.1  cegger     for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
    529  1.1  cegger         /*
    530  1.1  cegger          * If there's an exact channel match or an inband flag set
    531  1.1  cegger          * on the lower channel use the given rdEdgePower
    532  1.1  cegger          */
    533  1.1  cegger         if (freq == fbin2freq(pRdEdgesPower[i].bChannel)) {
    534  1.1  cegger             twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
    535  1.1  cegger             break;
    536  1.1  cegger         } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel))) {
    537  1.1  cegger             if (fbin2freq(pRdEdgesPower[i - 1].bChannel) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
    538  1.1  cegger                 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
    539  1.1  cegger             }
    540  1.1  cegger             /* Leave loop - no more affecting edges possible in this monotonic increasing list */
    541  1.1  cegger             break;
    542  1.1  cegger         }
    543  1.1  cegger     }
    544  1.1  cegger     HALASSERT(twiceMaxEdgePower > 0);
    545  1.1  cegger     return twiceMaxEdgePower;
    546  1.1  cegger }
    547  1.1  cegger 
    548  1.1  cegger 
    549  1.1  cegger 
    550  1.1  cegger static HAL_BOOL
    551  1.1  cegger ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
    552  1.1  cegger 	HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
    553  1.1  cegger {
    554  1.1  cegger     CAL_DATA_PER_FREQ_4K *pRawDataset;
    555  1.1  cegger     uint8_t  *pCalBChans = AH_NULL;
    556  1.1  cegger     uint16_t pdGainOverlap_t2;
    557  1.1  cegger     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
    558  1.1  cegger     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
    559  1.1  cegger     uint16_t numPiers, i, j;
    560  1.1  cegger     int16_t  tMinCalPower;
    561  1.1  cegger     uint16_t numXpdGain, xpdMask;
    562  1.1  cegger     uint16_t xpdGainValues[AR5416_4K_NUM_PD_GAINS];
    563  1.1  cegger     uint32_t reg32, regOffset, regChainOffset;
    564  1.1  cegger 
    565  1.1  cegger     OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
    566  1.1  cegger 
    567  1.1  cegger     xpdMask = pEepData->modalHeader.xpdGain;
    568  1.1  cegger 
    569  1.1  cegger     if (IS_EEP_MINOR_V2(ah)) {
    570  1.1  cegger         pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
    571  1.1  cegger     } else {
    572  1.1  cegger     	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
    573  1.1  cegger     }
    574  1.1  cegger 
    575  1.1  cegger     pCalBChans = pEepData->calFreqPier2G;
    576  1.1  cegger     numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
    577  1.1  cegger     numXpdGain = 0;
    578  1.1  cegger     /* Calculate the value of xpdgains from the xpdGain Mask */
    579  1.1  cegger     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
    580  1.1  cegger         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
    581  1.1  cegger             if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
    582  1.1  cegger                 HALASSERT(0);
    583  1.1  cegger                 break;
    584  1.1  cegger             }
    585  1.1  cegger             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
    586  1.1  cegger             numXpdGain++;
    587  1.1  cegger         }
    588  1.1  cegger     }
    589  1.1  cegger 
    590  1.1  cegger     /* Write the detector gain biases and their number */
    591  1.1  cegger     OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
    592  1.1  cegger     	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
    593  1.1  cegger 	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
    594  1.1  cegger 	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(0, AR_PHY_TPCRG1_PD_GAIN_3));
    595  1.1  cegger 
    596  1.1  cegger     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
    597  1.1  cegger 
    598  1.1  cegger             if (AR_SREV_OWL_20_OR_LATER(ah) &&
    599  1.1  cegger             ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
    600  1.1  cegger             /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
    601  1.1  cegger              * only chains 0 and 2 populated
    602  1.1  cegger              */
    603  1.1  cegger             regChainOffset = (i == 1) ? 0x2000 : 0x1000;
    604  1.1  cegger         } else {
    605  1.1  cegger             regChainOffset = i * 0x1000;
    606  1.1  cegger         }
    607  1.1  cegger 
    608  1.1  cegger         if (pEepData->baseEepHeader.txMask & (1 << i)) {
    609  1.1  cegger             pRawDataset = pEepData->calPierData2G[i];
    610  1.1  cegger 
    611  1.1  cegger             ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
    612  1.1  cegger                                              pCalBChans, numPiers,
    613  1.1  cegger                                              pdGainOverlap_t2,
    614  1.1  cegger                                              &tMinCalPower, gainBoundaries,
    615  1.1  cegger                                              pdadcValues, numXpdGain);
    616  1.1  cegger 
    617  1.1  cegger             if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
    618  1.1  cegger                 /*
    619  1.1  cegger                  * Note the pdadc table may not start at 0 dBm power, could be
    620  1.1  cegger                  * negative or greater than 0.  Need to offset the power
    621  1.1  cegger                  * values by the amount of minPower for griffin
    622  1.1  cegger                  */
    623  1.1  cegger 
    624  1.1  cegger                 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
    625  1.1  cegger                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    626  1.1  cegger                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
    627  1.1  cegger                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
    628  1.1  cegger                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
    629  1.1  cegger                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    630  1.1  cegger             }
    631  1.1  cegger 
    632  1.1  cegger             /* Write the power values into the baseband power table */
    633  1.1  cegger             regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
    634  1.1  cegger 
    635  1.1  cegger             for (j = 0; j < 32; j++) {
    636  1.1  cegger                 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
    637  1.1  cegger                     ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
    638  1.1  cegger                     ((pdadcValues[4*j + 2] & 0xFF) << 16) |
    639  1.1  cegger                     ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
    640  1.1  cegger                 OS_REG_WRITE(ah, regOffset, reg32);
    641  1.1  cegger 
    642  1.1  cegger #ifdef PDADC_DUMP
    643  1.1  cegger 		ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
    644  1.1  cegger 			       i,
    645  1.1  cegger 			       4*j, pdadcValues[4*j],
    646  1.1  cegger 			       4*j+1, pdadcValues[4*j + 1],
    647  1.1  cegger 			       4*j+2, pdadcValues[4*j + 2],
    648  1.1  cegger 			       4*j+3, pdadcValues[4*j + 3]);
    649  1.1  cegger #endif
    650  1.1  cegger                 regOffset += 4;
    651  1.1  cegger             }
    652  1.1  cegger         }
    653  1.1  cegger     }
    654  1.1  cegger     *pTxPowerIndexOffset = 0;
    655  1.1  cegger 
    656  1.1  cegger     return AH_TRUE;
    657  1.1  cegger }
    658  1.1  cegger 
    659  1.1  cegger static void
    660  1.1  cegger ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
    661  1.1  cegger 				 HAL_CHANNEL_INTERNAL *chan,
    662  1.1  cegger 				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
    663  1.1  cegger                                  uint8_t * bChans,  uint16_t availPiers,
    664  1.1  cegger                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
    665  1.1  cegger                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
    666  1.1  cegger {
    667  1.1  cegger 
    668  1.1  cegger     int       i, j, k;
    669  1.1  cegger     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
    670  1.1  cegger     uint16_t  idxL, idxR, numPiers; /* Pier indexes */
    671  1.1  cegger 
    672  1.1  cegger     /* filled out Vpd table for all pdGains (chanL) */
    673  1.1  cegger     static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
    674  1.1  cegger 
    675  1.1  cegger     /* filled out Vpd table for all pdGains (chanR) */
    676  1.1  cegger     static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
    677  1.1  cegger 
    678  1.1  cegger     /* filled out Vpd table for all pdGains (interpolated) */
    679  1.1  cegger     static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
    680  1.1  cegger 
    681  1.1  cegger     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
    682  1.1  cegger     uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
    683  1.1  cegger     uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
    684  1.1  cegger     int16_t   vpdStep;
    685  1.1  cegger     int16_t   tmpVal;
    686  1.1  cegger     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
    687  1.1  cegger     HAL_BOOL    match;
    688  1.1  cegger     int16_t  minDelta = 0;
    689  1.1  cegger     CHAN_CENTERS centers;
    690  1.1  cegger 
    691  1.1  cegger     ar5416GetChannelCenters(ah, chan, &centers);
    692  1.1  cegger 
    693  1.1  cegger     /* Trim numPiers for the number of populated channel Piers */
    694  1.1  cegger     for (numPiers = 0; numPiers < availPiers; numPiers++) {
    695  1.1  cegger         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
    696  1.1  cegger             break;
    697  1.1  cegger         }
    698  1.1  cegger     }
    699  1.1  cegger 
    700  1.1  cegger     /* Find pier indexes around the current channel */
    701  1.1  cegger     match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
    702  1.1  cegger 			bChans, numPiers, &idxL, &idxR);
    703  1.1  cegger 
    704  1.1  cegger     if (match) {
    705  1.1  cegger         /* Directly fill both vpd tables from the matching index */
    706  1.1  cegger         for (i = 0; i < numXpdGains; i++) {
    707  1.1  cegger             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
    708  1.1  cegger             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
    709  1.1  cegger             ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i],
    710  1.1  cegger 			       pRawDataSet[idxL].pwrPdg[i],
    711  1.1  cegger                                pRawDataSet[idxL].vpdPdg[i],
    712  1.1  cegger 			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
    713  1.1  cegger         }
    714  1.1  cegger     } else {
    715  1.1  cegger         for (i = 0; i < numXpdGains; i++) {
    716  1.1  cegger             pVpdL = pRawDataSet[idxL].vpdPdg[i];
    717  1.1  cegger             pPwrL = pRawDataSet[idxL].pwrPdg[i];
    718  1.1  cegger             pVpdR = pRawDataSet[idxR].vpdPdg[i];
    719  1.1  cegger             pPwrR = pRawDataSet[idxR].pwrPdg[i];
    720  1.1  cegger 
    721  1.1  cegger             /* Start Vpd interpolation from the max of the minimum powers */
    722  1.1  cegger             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
    723  1.1  cegger 
    724  1.1  cegger             /* End Vpd interpolation from the min of the max powers */
    725  1.1  cegger             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
    726  1.1  cegger             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
    727  1.1  cegger 
    728  1.1  cegger             /* Fill pier Vpds */
    729  1.1  cegger             ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
    730  1.1  cegger 			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
    731  1.1  cegger             ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
    732  1.1  cegger 			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
    733  1.1  cegger 
    734  1.1  cegger             /* Interpolate the final vpd */
    735  1.1  cegger             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
    736  1.1  cegger                 vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
    737  1.1  cegger                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
    738  1.1  cegger             }
    739  1.1  cegger         }
    740  1.1  cegger     }
    741  1.1  cegger     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
    742  1.1  cegger 
    743  1.1  cegger     k = 0; /* index for the final table */
    744  1.1  cegger     for (i = 0; i < numXpdGains; i++) {
    745  1.1  cegger         if (i == (numXpdGains - 1)) {
    746  1.1  cegger             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
    747  1.1  cegger         } else {
    748  1.1  cegger             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
    749  1.1  cegger         }
    750  1.1  cegger 
    751  1.1  cegger         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
    752  1.1  cegger 
    753  1.1  cegger 	/* NB: only applies to owl 1.0 */
    754  1.1  cegger         if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
    755  1.1  cegger 	    /*
    756  1.1  cegger              * fix the gain delta, but get a delta that can be applied to min to
    757  1.1  cegger              * keep the upper power values accurate, don't think max needs to
    758  1.1  cegger              * be adjusted because should not be at that area of the table?
    759  1.1  cegger 	     */
    760  1.1  cegger             minDelta = pPdGainBoundaries[0] - 23;
    761  1.1  cegger             pPdGainBoundaries[0] = 23;
    762  1.1  cegger         }
    763  1.1  cegger         else {
    764  1.1  cegger             minDelta = 0;
    765  1.1  cegger         }
    766  1.1  cegger 
    767  1.1  cegger         /* Find starting index for this pdGain */
    768  1.1  cegger         if (i == 0) {
    769  1.1  cegger             ss = 0; /* for the first pdGain, start from index 0 */
    770  1.1  cegger         } else {
    771  1.1  cegger 	    /* need overlap entries extrapolated below. */
    772  1.1  cegger             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
    773  1.1  cegger         }
    774  1.1  cegger         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
    775  1.1  cegger         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
    776  1.1  cegger         /*
    777  1.1  cegger          *-ve ss indicates need to extrapolate data below for this pdGain
    778  1.1  cegger          */
    779  1.1  cegger         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
    780  1.1  cegger             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
    781  1.1  cegger             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
    782  1.1  cegger             ss++;
    783  1.1  cegger         }
    784  1.1  cegger 
    785  1.1  cegger         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
    786  1.1  cegger         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
    787  1.1  cegger         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    788  1.1  cegger 
    789  1.1  cegger         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
    790  1.1  cegger             pPDADCValues[k++] = vpdTableI[i][ss++];
    791  1.1  cegger         }
    792  1.1  cegger 
    793  1.1  cegger         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
    794  1.1  cegger         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
    795  1.1  cegger         /*
    796  1.1  cegger          * for last gain, pdGainBoundary == Pmax_t2, so will
    797  1.1  cegger          * have to extrapolate
    798  1.1  cegger          */
    799  1.1  cegger         if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
    800  1.1  cegger             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
    801  1.1  cegger                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
    802  1.1  cegger                           (ss - maxIndex +1) * vpdStep));
    803  1.1  cegger                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
    804  1.1  cegger                 ss++;
    805  1.1  cegger             }
    806  1.1  cegger         }               /* extrapolated above */
    807  1.1  cegger     }                   /* for all pdGainUsed */
    808  1.1  cegger 
    809  1.1  cegger     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
    810  1.1  cegger     while (i < AR5416_PD_GAINS_IN_MASK) {
    811  1.1  cegger         pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
    812  1.1  cegger         i++;
    813  1.1  cegger     }
    814  1.1  cegger 
    815  1.1  cegger     while (k < AR5416_NUM_PDADC_VALUES) {
    816  1.1  cegger         pPDADCValues[k] = pPDADCValues[k-1];
    817  1.1  cegger         k++;
    818  1.1  cegger     }
    819  1.1  cegger     return;
    820  1.1  cegger }
    821  1.1  cegger /*
    822  1.1  cegger  * XXX same as ar5416FillVpdTable
    823  1.1  cegger  */
    824  1.1  cegger static HAL_BOOL
    825  1.1  cegger ar9285FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
    826  1.1  cegger                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
    827  1.1  cegger {
    828  1.1  cegger     uint16_t  i, k;
    829  1.1  cegger     uint8_t   currPwr = pwrMin;
    830  1.1  cegger     uint16_t  idxL, idxR;
    831  1.1  cegger 
    832  1.1  cegger     HALASSERT(pwrMax > pwrMin);
    833  1.1  cegger     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
    834  1.1  cegger         getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
    835  1.1  cegger                            &(idxL), &(idxR));
    836  1.1  cegger         if (idxR < 1)
    837  1.1  cegger             idxR = 1;           /* extrapolate below */
    838  1.1  cegger         if (idxL == numIntercepts - 1)
    839  1.1  cegger             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
    840  1.1  cegger         if (pPwrList[idxL] == pPwrList[idxR])
    841  1.1  cegger             k = pVpdList[idxL];
    842  1.1  cegger         else
    843  1.1  cegger             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
    844  1.1  cegger                   (pPwrList[idxR] - pPwrList[idxL]) );
    845  1.1  cegger         HALASSERT(k < 256);
    846  1.1  cegger         pRetVpdList[i] = (uint8_t)k;
    847  1.1  cegger         currPwr += 2;               /* half dB steps */
    848  1.1  cegger     }
    849  1.1  cegger 
    850  1.1  cegger     return AH_TRUE;
    851  1.1  cegger }
    852  1.1  cegger static int16_t
    853  1.1  cegger interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    854  1.1  cegger             int16_t targetLeft, int16_t targetRight)
    855  1.1  cegger {
    856  1.1  cegger     int16_t rv;
    857  1.1  cegger 
    858  1.1  cegger     if (srcRight == srcLeft) {
    859  1.1  cegger         rv = targetLeft;
    860  1.1  cegger     } else {
    861  1.1  cegger         rv = (int16_t)( ((target - srcLeft) * targetRight +
    862  1.1  cegger               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
    863  1.1  cegger     }
    864  1.1  cegger     return rv;
    865  1.1  cegger }
    866  1.1  cegger 
    867  1.1  cegger HAL_BOOL
    868  1.1  cegger getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
    869  1.1  cegger                    uint16_t *indexL, uint16_t *indexR)
    870  1.1  cegger {
    871  1.1  cegger     uint16_t i;
    872  1.1  cegger 
    873  1.1  cegger     /*
    874  1.1  cegger      * Check first and last elements for beyond ordered array cases.
    875  1.1  cegger      */
    876  1.1  cegger     if (target <= pList[0]) {
    877  1.1  cegger         *indexL = *indexR = 0;
    878  1.1  cegger         return AH_TRUE;
    879  1.1  cegger     }
    880  1.1  cegger     if (target >= pList[listSize-1]) {
    881  1.1  cegger         *indexL = *indexR = (uint16_t)(listSize - 1);
    882  1.1  cegger         return AH_TRUE;
    883  1.1  cegger     }
    884  1.1  cegger 
    885  1.1  cegger     /* look for value being near or between 2 values in list */
    886  1.1  cegger     for (i = 0; i < listSize - 1; i++) {
    887  1.1  cegger         /*
    888  1.1  cegger          * If value is close to the current value of the list
    889  1.1  cegger          * then target is not between values, it is one of the values
    890  1.1  cegger          */
    891  1.1  cegger         if (pList[i] == target) {
    892  1.1  cegger             *indexL = *indexR = i;
    893  1.1  cegger             return AH_TRUE;
    894  1.1  cegger         }
    895  1.1  cegger         /*
    896  1.1  cegger          * Look for value being between current value and next value
    897  1.1  cegger          * if so return these 2 values
    898  1.1  cegger          */
    899  1.1  cegger         if (target < pList[i + 1]) {
    900  1.1  cegger             *indexL = i;
    901  1.1  cegger             *indexR = (uint16_t)(i + 1);
    902  1.1  cegger             return AH_FALSE;
    903  1.1  cegger         }
    904  1.1  cegger     }
    905  1.1  cegger     HALASSERT(0);
    906  1.1  cegger     *indexL = *indexR = 0;
    907  1.1  cegger     return AH_FALSE;
    908  1.1  cegger }
    909