efs_subr.c revision 1.1 1 1.1 rumble /* $NetBSD: efs_subr.c,v 1.1 2007/06/29 23:30:29 rumble Exp $ */
2 1.1 rumble
3 1.1 rumble /*
4 1.1 rumble * Copyright (c) 2006 Stephen M. Rumble <rumble (at) ephemeral.org>
5 1.1 rumble *
6 1.1 rumble * Permission to use, copy, modify, and distribute this software for any
7 1.1 rumble * purpose with or without fee is hereby granted, provided that the above
8 1.1 rumble * copyright notice and this permission notice appear in all copies.
9 1.1 rumble *
10 1.1 rumble * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 1.1 rumble * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 1.1 rumble * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 1.1 rumble * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 1.1 rumble * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 1.1 rumble * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 1.1 rumble * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 1.1 rumble */
18 1.1 rumble
19 1.1 rumble #include <sys/cdefs.h>
20 1.1 rumble __KERNEL_RCSID(0, "$NetBSD: efs_subr.c,v 1.1 2007/06/29 23:30:29 rumble Exp $");
21 1.1 rumble
22 1.1 rumble #include <sys/param.h>
23 1.1 rumble #include <sys/kauth.h>
24 1.1 rumble #include <sys/lwp.h>
25 1.1 rumble #include <sys/proc.h>
26 1.1 rumble #include <sys/buf.h>
27 1.1 rumble #include <sys/mount.h>
28 1.1 rumble #include <sys/vnode.h>
29 1.1 rumble #include <sys/namei.h>
30 1.1 rumble #include <sys/stat.h>
31 1.1 rumble #include <sys/malloc.h>
32 1.1 rumble
33 1.1 rumble #include <miscfs/genfs/genfs_node.h>
34 1.1 rumble
35 1.1 rumble #include <fs/efs/efs.h>
36 1.1 rumble #include <fs/efs/efs_sb.h>
37 1.1 rumble #include <fs/efs/efs_dir.h>
38 1.1 rumble #include <fs/efs/efs_genfs.h>
39 1.1 rumble #include <fs/efs/efs_mount.h>
40 1.1 rumble #include <fs/efs/efs_extent.h>
41 1.1 rumble #include <fs/efs/efs_dinode.h>
42 1.1 rumble #include <fs/efs/efs_inode.h>
43 1.1 rumble #include <fs/efs/efs_subr.h>
44 1.1 rumble
45 1.1 rumble MALLOC_DECLARE(M_EFSTMP);
46 1.1 rumble
47 1.1 rumble struct pool efs_inode_pool;
48 1.1 rumble
49 1.1 rumble /*
50 1.1 rumble * Calculate a checksum for the provided superblock in __host byte order__.
51 1.1 rumble *
52 1.1 rumble * At some point SGI changed the checksum algorithm slightly, which can be
53 1.1 rumble * enabled with the 'new' flag.
54 1.1 rumble *
55 1.1 rumble * Presumably this change occured on or before 24 Oct 1988 (around IRIX 3.1),
56 1.1 rumble * so we're pretty unlikely to ever actually see an old checksum. Further, it
57 1.1 rumble * means that EFS_NEWMAGIC filesystems (IRIX >= 3.3) must match the new
58 1.1 rumble * checksum whereas EFS_MAGIC filesystems could potentially use either
59 1.1 rumble * algorithm.
60 1.1 rumble *
61 1.1 rumble * See comp.sys.sgi <1991Aug9.050838.16876 (at) odin.corp.sgi.com>
62 1.1 rumble */
63 1.1 rumble int32_t
64 1.1 rumble efs_sb_checksum(struct efs_sb *esb, int new)
65 1.1 rumble {
66 1.1 rumble int i;
67 1.1 rumble int32_t cksum;
68 1.1 rumble int16_t *sbarray = (int16_t *)esb;
69 1.1 rumble
70 1.1 rumble KASSERT((EFS_SB_CHECKSUM_SIZE % 2) == 0);
71 1.1 rumble
72 1.1 rumble for (i = cksum = 0; i < (EFS_SB_CHECKSUM_SIZE / 2); i++) {
73 1.1 rumble cksum ^= be16toh(sbarray[i]);
74 1.1 rumble cksum = (cksum << 1) | (new && cksum < 0);
75 1.1 rumble }
76 1.1 rumble
77 1.1 rumble return (cksum);
78 1.1 rumble }
79 1.1 rumble
80 1.1 rumble /*
81 1.1 rumble * Determine if the superblock is valid.
82 1.1 rumble *
83 1.1 rumble * Returns 0 if valid, else invalid. If invalid, 'why' is set to an
84 1.1 rumble * explanation.
85 1.1 rumble */
86 1.1 rumble int
87 1.1 rumble efs_sb_validate(struct efs_sb *esb, const char **why)
88 1.1 rumble {
89 1.1 rumble uint32_t ocksum, ncksum;
90 1.1 rumble
91 1.1 rumble *why = NULL;
92 1.1 rumble
93 1.1 rumble if (be32toh(esb->sb_magic) != EFS_SB_MAGIC &&
94 1.1 rumble be32toh(esb->sb_magic != EFS_SB_NEWMAGIC)) {
95 1.1 rumble *why = "sb_magic invalid";
96 1.1 rumble return (1);
97 1.1 rumble }
98 1.1 rumble
99 1.1 rumble ocksum = htobe32(efs_sb_checksum(esb, 0));
100 1.1 rumble ncksum = htobe32(efs_sb_checksum(esb, 1));
101 1.1 rumble if (esb->sb_checksum != ocksum && esb->sb_checksum != ncksum) {
102 1.1 rumble *why = "sb_checksum invalid";
103 1.1 rumble return (1);
104 1.1 rumble }
105 1.1 rumble
106 1.1 rumble if (be32toh(esb->sb_size) > EFS_SIZE_MAX) {
107 1.1 rumble *why = "sb_size > EFS_SIZE_MAX";
108 1.1 rumble return (1);
109 1.1 rumble }
110 1.1 rumble
111 1.1 rumble if (be32toh(esb->sb_firstcg) <= EFS_BB_BITMAP) {
112 1.1 rumble *why = "sb_firstcg <= EFS_BB_BITMAP";
113 1.1 rumble return (1);
114 1.1 rumble }
115 1.1 rumble
116 1.1 rumble /* XXX - add better sb consistency checks here */
117 1.1 rumble if (esb->sb_cgfsize == 0 ||
118 1.1 rumble esb->sb_cgisize == 0 ||
119 1.1 rumble esb->sb_ncg == 0 ||
120 1.1 rumble esb->sb_bmsize == 0) {
121 1.1 rumble *why = "something bad happened";
122 1.1 rumble return (1);
123 1.1 rumble }
124 1.1 rumble
125 1.1 rumble return (0);
126 1.1 rumble }
127 1.1 rumble
128 1.1 rumble /*
129 1.1 rumble * Determine the basic block offset and inode index within that block, given
130 1.1 rumble * the inode 'ino' and filesystem parameters _in host byte order_. The inode
131 1.1 rumble * will live at byte address 'bboff' * EFS_BB_SIZE + 'index' * EFS_DINODE_SIZE.
132 1.1 rumble */
133 1.1 rumble void
134 1.1 rumble efs_locate_inode(ino_t ino, struct efs_sb *sbp, uint32_t *bboff, int *index)
135 1.1 rumble {
136 1.1 rumble uint32_t cgfsize, firstcg;
137 1.1 rumble uint16_t cgisize;
138 1.1 rumble
139 1.1 rumble cgisize = be16toh(sbp->sb_cgisize);
140 1.1 rumble cgfsize = be32toh(sbp->sb_cgfsize);
141 1.1 rumble firstcg = be32toh(sbp->sb_firstcg),
142 1.1 rumble
143 1.1 rumble *bboff = firstcg + ((ino / (cgisize * EFS_DINODES_PER_BB)) * cgfsize) +
144 1.1 rumble ((ino % (cgisize * EFS_DINODES_PER_BB)) / EFS_DINODES_PER_BB);
145 1.1 rumble *index = ino & (EFS_DINODES_PER_BB - 1);
146 1.1 rumble }
147 1.1 rumble
148 1.1 rumble /*
149 1.1 rumble * Read in an inode from disk.
150 1.1 rumble *
151 1.1 rumble * We actually take in four inodes at a time. Hopefully these will stick
152 1.1 rumble * around in the buffer cache and get used without going to disk.
153 1.1 rumble *
154 1.1 rumble * Returns 0 on success.
155 1.1 rumble */
156 1.1 rumble int
157 1.1 rumble efs_read_inode(struct efs_mount *emp, ino_t ino, struct lwp *l,
158 1.1 rumble struct efs_dinode *di)
159 1.1 rumble {
160 1.1 rumble struct efs_sb *sbp;
161 1.1 rumble struct buf *bp;
162 1.1 rumble int index, err;
163 1.1 rumble uint32_t bboff;
164 1.1 rumble
165 1.1 rumble sbp = &emp->em_sb;
166 1.1 rumble efs_locate_inode(ino, sbp, &bboff, &index);
167 1.1 rumble
168 1.1 rumble err = efs_bread(emp, bboff, EFS_BY2BB(EFS_DINODE_SIZE), l, &bp);
169 1.1 rumble if (err) {
170 1.1 rumble brelse(bp);
171 1.1 rumble return (err);
172 1.1 rumble }
173 1.1 rumble memcpy(di, ((struct efs_dinode *)bp->b_data) + index, sizeof(*di));
174 1.1 rumble brelse(bp);
175 1.1 rumble
176 1.1 rumble return (0);
177 1.1 rumble }
178 1.1 rumble
179 1.1 rumble /*
180 1.1 rumble * Perform a read from our device handling the potential DEV_BSIZE
181 1.1 rumble * messiness (although as of 19.2.2006, all ports appear to use 512) as
182 1.1 rumble * we as EFS block sizing.
183 1.1 rumble *
184 1.1 rumble * bboff: basic block offset
185 1.1 rumble * nbb: number of basic blocks to be read
186 1.1 rumble *
187 1.1 rumble * Returns 0 on success.
188 1.1 rumble */
189 1.1 rumble int
190 1.1 rumble efs_bread(struct efs_mount *emp, uint32_t bboff, int nbb, struct lwp *l,
191 1.1 rumble struct buf **bp)
192 1.1 rumble {
193 1.1 rumble KASSERT(nbb > 0);
194 1.1 rumble KASSERT(bboff < EFS_SIZE_MAX);
195 1.1 rumble
196 1.1 rumble return (bread(emp->em_devvp, (daddr_t)bboff * (EFS_BB_SIZE / DEV_BSIZE),
197 1.1 rumble nbb * EFS_BB_SIZE, (l == NULL) ? NOCRED : l->l_cred, bp));
198 1.1 rumble }
199 1.1 rumble
200 1.1 rumble /*
201 1.1 rumble * Synchronise the in-core, host ordered and typed inode fields with their
202 1.1 rumble * corresponding on-disk, EFS ordered and typed copies.
203 1.1 rumble *
204 1.1 rumble * This is the inverse of efs_dinode_sync_inode(), and should be called when
205 1.1 rumble * an inode is loaded from disk.
206 1.1 rumble */
207 1.1 rumble void
208 1.1 rumble efs_sync_dinode_to_inode(struct efs_inode *ei)
209 1.1 rumble {
210 1.1 rumble
211 1.1 rumble ei->ei_mode = be16toh(ei->ei_di.di_mode); /*same as nbsd*/
212 1.1 rumble ei->ei_nlink = be16toh(ei->ei_di.di_nlink);
213 1.1 rumble ei->ei_uid = be16toh(ei->ei_di.di_uid);
214 1.1 rumble ei->ei_gid = be16toh(ei->ei_di.di_gid);
215 1.1 rumble ei->ei_size = be32toh(ei->ei_di.di_size);
216 1.1 rumble ei->ei_atime = be32toh(ei->ei_di.di_atime);
217 1.1 rumble ei->ei_mtime = be32toh(ei->ei_di.di_mtime);
218 1.1 rumble ei->ei_ctime = be32toh(ei->ei_di.di_ctime);
219 1.1 rumble ei->ei_gen = be32toh(ei->ei_di.di_gen);
220 1.1 rumble ei->ei_numextents = be16toh(ei->ei_di.di_numextents);
221 1.1 rumble ei->ei_version = ei->ei_di.di_version;
222 1.1 rumble }
223 1.1 rumble
224 1.1 rumble /*
225 1.1 rumble * Synchronise the on-disk, EFS ordered and typed inode fields with their
226 1.1 rumble * corresponding in-core, host ordered and typed copies.
227 1.1 rumble *
228 1.1 rumble * This is the inverse of efs_inode_sync_dinode(), and should be called before
229 1.1 rumble * an inode is flushed to disk.
230 1.1 rumble */
231 1.1 rumble void
232 1.1 rumble efs_sync_inode_to_dinode(struct efs_inode *ei)
233 1.1 rumble {
234 1.1 rumble
235 1.1 rumble panic("readonly -- no need to call me");
236 1.1 rumble }
237 1.1 rumble
238 1.1 rumble #ifdef DIAGNOSTIC
239 1.1 rumble /*
240 1.1 rumble * Ensure that the in-core inode's host cached fields match its on-disk copy.
241 1.1 rumble *
242 1.1 rumble * Returns 0 if they match.
243 1.1 rumble */
244 1.1 rumble static int
245 1.1 rumble efs_is_inode_synced(struct efs_inode *ei)
246 1.1 rumble {
247 1.1 rumble int s;
248 1.1 rumble
249 1.1 rumble s = 0;
250 1.1 rumble /* XXX -- see above remarks about assumption */
251 1.1 rumble s += (ei->ei_mode != be16toh(ei->ei_di.di_mode));
252 1.1 rumble s += (ei->ei_nlink != be16toh(ei->ei_di.di_nlink));
253 1.1 rumble s += (ei->ei_uid != be16toh(ei->ei_di.di_uid));
254 1.1 rumble s += (ei->ei_gid != be16toh(ei->ei_di.di_gid));
255 1.1 rumble s += (ei->ei_size != be32toh(ei->ei_di.di_size));
256 1.1 rumble s += (ei->ei_atime != be32toh(ei->ei_di.di_atime));
257 1.1 rumble s += (ei->ei_mtime != be32toh(ei->ei_di.di_mtime));
258 1.1 rumble s += (ei->ei_ctime != be32toh(ei->ei_di.di_ctime));
259 1.1 rumble s += (ei->ei_gen != be32toh(ei->ei_di.di_gen));
260 1.1 rumble s += (ei->ei_numextents != be16toh(ei->ei_di.di_numextents));
261 1.1 rumble s += (ei->ei_version != ei->ei_di.di_version);
262 1.1 rumble
263 1.1 rumble return (s);
264 1.1 rumble }
265 1.1 rumble #endif
266 1.1 rumble
267 1.1 rumble /*
268 1.1 rumble * Given an efs_dirblk structure and a componentname to search for, return the
269 1.1 rumble * corresponding inode if it is found.
270 1.1 rumble *
271 1.1 rumble * Returns 0 on success.
272 1.1 rumble */
273 1.1 rumble static int
274 1.1 rumble efs_dirblk_lookup(struct efs_dirblk *dir, struct componentname *cn,
275 1.1 rumble ino_t *inode)
276 1.1 rumble {
277 1.1 rumble struct efs_dirent *de;
278 1.1 rumble int i, slot, offset;
279 1.1 rumble
280 1.1 rumble KASSERT(cn->cn_namelen <= EFS_DIRENT_NAMELEN_MAX);
281 1.1 rumble
282 1.1 rumble slot = offset = 0;
283 1.1 rumble
284 1.1 rumble for (i = 0; i < dir->db_slots; i++) {
285 1.1 rumble offset = EFS_DIRENT_OFF_EXPND(dir->db_space[i]);
286 1.1 rumble
287 1.1 rumble if (offset == EFS_DIRBLK_SLOT_FREE)
288 1.1 rumble continue;
289 1.1 rumble
290 1.1 rumble de = (struct efs_dirent *)((char *)dir + offset);
291 1.1 rumble if (de->de_namelen == cn->cn_namelen &&
292 1.1 rumble (strncmp(cn->cn_nameptr, de->de_name, cn->cn_namelen) == 0)){
293 1.1 rumble slot = i;
294 1.1 rumble break;
295 1.1 rumble }
296 1.1 rumble }
297 1.1 rumble if (i == dir->db_slots)
298 1.1 rumble return (ENOENT);
299 1.1 rumble
300 1.1 rumble KASSERT(slot < offset && offset < EFS_DIRBLK_SPACE_SIZE);
301 1.1 rumble de = (struct efs_dirent *)((char *)dir + offset);
302 1.1 rumble *inode = be32toh(de->de_inumber);
303 1.1 rumble
304 1.1 rumble return (0);
305 1.1 rumble }
306 1.1 rumble
307 1.1 rumble /*
308 1.1 rumble * Given an extent descriptor that represents a directory, look up
309 1.1 rumble * componentname within its efs_dirblk's. If it is found, return the
310 1.1 rumble * corresponding inode in 'ino'.
311 1.1 rumble *
312 1.1 rumble * Returns 0 on success.
313 1.1 rumble */
314 1.1 rumble static int
315 1.1 rumble efs_extent_lookup(struct efs_mount *emp, struct efs_extent *ex,
316 1.1 rumble struct componentname *cn, ino_t *ino)
317 1.1 rumble {
318 1.1 rumble struct efs_dirblk *db;
319 1.1 rumble struct buf *bp;
320 1.1 rumble int i, err;
321 1.1 rumble
322 1.1 rumble /*
323 1.1 rumble * Read in the entire extent, evaluating all of the dirblks until we
324 1.1 rumble * find our entry. If we don't, return ENOENT.
325 1.1 rumble */
326 1.1 rumble err = efs_bread(emp, ex->ex_bn, ex->ex_length, NULL, &bp);
327 1.1 rumble if (err) {
328 1.1 rumble printf("efs: warning: invalid extent descriptor\n");
329 1.1 rumble brelse(bp);
330 1.1 rumble return (err);
331 1.1 rumble }
332 1.1 rumble
333 1.1 rumble for (i = 0; i < ex->ex_length; i++) {
334 1.1 rumble db = ((struct efs_dirblk *)bp->b_data) + i;
335 1.1 rumble if (efs_dirblk_lookup(db, cn, ino) == 0) {
336 1.1 rumble brelse(bp);
337 1.1 rumble return (0);
338 1.1 rumble }
339 1.1 rumble }
340 1.1 rumble
341 1.1 rumble brelse(bp);
342 1.1 rumble return (ENOENT);
343 1.1 rumble }
344 1.1 rumble
345 1.1 rumble /*
346 1.1 rumble * Given the provided in-core inode, look up the pathname requested. If
347 1.1 rumble * we find it, 'ino' reflects its corresponding on-disk inode number.
348 1.1 rumble *
349 1.1 rumble * Returns 0 on success.
350 1.1 rumble */
351 1.1 rumble int
352 1.1 rumble efs_inode_lookup(struct efs_mount *emp, struct efs_inode *ei,
353 1.1 rumble struct componentname *cn, ino_t *ino)
354 1.1 rumble {
355 1.1 rumble struct efs_extent ex;
356 1.1 rumble struct efs_extent_iterator exi;
357 1.1 rumble int ret;
358 1.1 rumble
359 1.1 rumble KASSERT(VOP_ISLOCKED(ei->ei_vp));
360 1.1 rumble KASSERT(efs_is_inode_synced(ei) == 0);
361 1.1 rumble KASSERT((ei->ei_mode & S_IFMT) == S_IFDIR);
362 1.1 rumble
363 1.1 rumble efs_extent_iterator_init(&exi, ei);
364 1.1 rumble while ((ret = efs_extent_iterator_next(&exi, &ex)) == 0) {
365 1.1 rumble if (efs_extent_lookup(emp, &ex, cn, ino) == 0) {
366 1.1 rumble efs_extent_iterator_free(&exi);
367 1.1 rumble return (0);
368 1.1 rumble }
369 1.1 rumble }
370 1.1 rumble efs_extent_iterator_free(&exi);
371 1.1 rumble
372 1.1 rumble return ((ret == -1) ? ENOENT : ret);
373 1.1 rumble }
374 1.1 rumble
375 1.1 rumble /*
376 1.1 rumble * Convert on-disk extent structure to in-core format.
377 1.1 rumble */
378 1.1 rumble void
379 1.1 rumble efs_dextent_to_extent(struct efs_dextent *dex, struct efs_extent *ex)
380 1.1 rumble {
381 1.1 rumble
382 1.1 rumble KASSERT(dex != NULL && ex != NULL);
383 1.1 rumble
384 1.1 rumble ex->ex_magic = dex->ex_bytes[0];
385 1.1 rumble ex->ex_bn = be32toh(dex->ex_words[0]) & 0x00ffffff;
386 1.1 rumble ex->ex_length = dex->ex_bytes[4];
387 1.1 rumble ex->ex_offset = be32toh(dex->ex_words[1]) & 0x00ffffff;
388 1.1 rumble }
389 1.1 rumble
390 1.1 rumble /*
391 1.1 rumble * Convert in-core extent format to on-disk structure.
392 1.1 rumble */
393 1.1 rumble void
394 1.1 rumble efs_extent_to_dextent(struct efs_extent *ex, struct efs_dextent *dex)
395 1.1 rumble {
396 1.1 rumble
397 1.1 rumble KASSERT(ex != NULL && dex != NULL);
398 1.1 rumble KASSERT(ex->ex_magic == EFS_EXTENT_MAGIC);
399 1.1 rumble KASSERT((ex->ex_bn & ~EFS_EXTENT_BN_MASK) == 0);
400 1.1 rumble KASSERT((ex->ex_offset & ~EFS_EXTENT_OFFSET_MASK) == 0);
401 1.1 rumble
402 1.1 rumble dex->ex_words[0] = htobe32(ex->ex_bn);
403 1.1 rumble dex->ex_bytes[0] = ex->ex_magic;
404 1.1 rumble dex->ex_words[1] = htobe32(ex->ex_offset);
405 1.1 rumble dex->ex_bytes[4] = ex->ex_length;
406 1.1 rumble }
407 1.1 rumble
408 1.1 rumble /*
409 1.1 rumble * Initialise an extent iterator.
410 1.1 rumble */
411 1.1 rumble void
412 1.1 rumble efs_extent_iterator_init(struct efs_extent_iterator *exi, struct efs_inode *eip)
413 1.1 rumble {
414 1.1 rumble
415 1.1 rumble exi->exi_eip = eip;
416 1.1 rumble exi->exi_next = 0;
417 1.1 rumble exi->exi_dnext = 0;
418 1.1 rumble exi->exi_innext = 0;
419 1.1 rumble exi->exi_incache = NULL;
420 1.1 rumble exi->exi_nincache = 0;
421 1.1 rumble }
422 1.1 rumble
423 1.1 rumble /*
424 1.1 rumble * Return the next EFS extent.
425 1.1 rumble *
426 1.1 rumble * Returns 0 if another extent was iterated, -1 if we've exhausted all
427 1.1 rumble * extents, or an error number. If 'exi' is non-NULL, the next extent is
428 1.1 rumble * written to it (should it exist).
429 1.1 rumble */
430 1.1 rumble int
431 1.1 rumble efs_extent_iterator_next(struct efs_extent_iterator *exi,
432 1.1 rumble struct efs_extent *exp)
433 1.1 rumble {
434 1.1 rumble struct efs_inode *eip = exi->exi_eip;
435 1.1 rumble
436 1.1 rumble if (exi->exi_next++ >= eip->ei_numextents)
437 1.1 rumble return (-1);
438 1.1 rumble
439 1.1 rumble /* direct or indirect extents? */
440 1.1 rumble if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
441 1.1 rumble if (exp != NULL) {
442 1.1 rumble efs_dextent_to_extent(
443 1.1 rumble &eip->ei_di.di_extents[exi->exi_dnext++], exp);
444 1.1 rumble }
445 1.1 rumble } else {
446 1.1 rumble /*
447 1.1 rumble * Cache a full indirect extent worth of extent descriptors.
448 1.1 rumble * This is maximally 124KB (248 * 512).
449 1.1 rumble */
450 1.1 rumble if (exi->exi_incache == NULL) {
451 1.1 rumble struct efs_extent ex;
452 1.1 rumble struct buf *bp;
453 1.1 rumble int err;
454 1.1 rumble
455 1.1 rumble efs_dextent_to_extent(
456 1.1 rumble &eip->ei_di.di_extents[exi->exi_dnext], &ex);
457 1.1 rumble
458 1.1 rumble err = efs_bread(VFSTOEFS(eip->ei_vp->v_mount),
459 1.1 rumble ex.ex_bn, ex.ex_length, NULL, &bp);
460 1.1 rumble if (err) {
461 1.1 rumble EFS_DPRINTF(("efs_extent_iterator_next: "
462 1.1 rumble "efs_bread failed: %d\n", err));
463 1.1 rumble brelse(bp);
464 1.1 rumble return (err);
465 1.1 rumble }
466 1.1 rumble
467 1.1 rumble exi->exi_incache = malloc(ex.ex_length * EFS_BB_SIZE,
468 1.1 rumble M_EFSTMP, M_WAITOK);
469 1.1 rumble exi->exi_nincache = ex.ex_length * EFS_BB_SIZE /
470 1.1 rumble sizeof(struct efs_dextent);
471 1.1 rumble memcpy(exi->exi_incache, bp->b_data,
472 1.1 rumble ex.ex_length * EFS_BB_SIZE);
473 1.1 rumble brelse(bp);
474 1.1 rumble }
475 1.1 rumble
476 1.1 rumble if (exp != NULL) {
477 1.1 rumble efs_dextent_to_extent(
478 1.1 rumble &exi->exi_incache[exi->exi_innext++], exp);
479 1.1 rumble }
480 1.1 rumble
481 1.1 rumble /* if this is the last one, ditch the cache */
482 1.1 rumble if (exi->exi_innext >= exi->exi_nincache) {
483 1.1 rumble exi->exi_innext = 0;
484 1.1 rumble exi->exi_nincache = 0;
485 1.1 rumble free(exi->exi_incache, M_EFSTMP);
486 1.1 rumble exi->exi_incache = NULL;
487 1.1 rumble exi->exi_dnext++;
488 1.1 rumble }
489 1.1 rumble }
490 1.1 rumble
491 1.1 rumble return (0);
492 1.1 rumble }
493 1.1 rumble
494 1.1 rumble /*
495 1.1 rumble * Clean up the extent iterator.
496 1.1 rumble */
497 1.1 rumble void
498 1.1 rumble efs_extent_iterator_free(struct efs_extent_iterator *exi)
499 1.1 rumble {
500 1.1 rumble
501 1.1 rumble if (exi->exi_incache != NULL)
502 1.1 rumble free(exi->exi_incache, M_EFSTMP);
503 1.1 rumble efs_extent_iterator_init(exi, NULL);
504 1.1 rumble }
505