efs_subr.c revision 1.13 1 1.13 christos /* $NetBSD: efs_subr.c,v 1.13 2020/09/07 00:11:47 christos Exp $ */
2 1.1 rumble
3 1.1 rumble /*
4 1.1 rumble * Copyright (c) 2006 Stephen M. Rumble <rumble (at) ephemeral.org>
5 1.1 rumble *
6 1.1 rumble * Permission to use, copy, modify, and distribute this software for any
7 1.1 rumble * purpose with or without fee is hereby granted, provided that the above
8 1.1 rumble * copyright notice and this permission notice appear in all copies.
9 1.1 rumble *
10 1.1 rumble * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 1.1 rumble * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 1.1 rumble * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 1.1 rumble * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 1.1 rumble * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 1.1 rumble * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 1.1 rumble * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 1.1 rumble */
18 1.1 rumble
19 1.1 rumble #include <sys/cdefs.h>
20 1.13 christos __KERNEL_RCSID(0, "$NetBSD: efs_subr.c,v 1.13 2020/09/07 00:11:47 christos Exp $");
21 1.1 rumble
22 1.1 rumble #include <sys/param.h>
23 1.1 rumble #include <sys/kauth.h>
24 1.1 rumble #include <sys/lwp.h>
25 1.1 rumble #include <sys/proc.h>
26 1.1 rumble #include <sys/buf.h>
27 1.1 rumble #include <sys/mount.h>
28 1.1 rumble #include <sys/vnode.h>
29 1.1 rumble #include <sys/namei.h>
30 1.1 rumble #include <sys/stat.h>
31 1.1 rumble #include <sys/malloc.h>
32 1.1 rumble
33 1.1 rumble #include <miscfs/genfs/genfs_node.h>
34 1.1 rumble
35 1.1 rumble #include <fs/efs/efs.h>
36 1.1 rumble #include <fs/efs/efs_sb.h>
37 1.1 rumble #include <fs/efs/efs_dir.h>
38 1.1 rumble #include <fs/efs/efs_genfs.h>
39 1.1 rumble #include <fs/efs/efs_mount.h>
40 1.1 rumble #include <fs/efs/efs_extent.h>
41 1.1 rumble #include <fs/efs/efs_dinode.h>
42 1.1 rumble #include <fs/efs/efs_inode.h>
43 1.1 rumble #include <fs/efs/efs_subr.h>
44 1.1 rumble
45 1.1 rumble struct pool efs_inode_pool;
46 1.1 rumble
47 1.1 rumble /*
48 1.1 rumble * Calculate a checksum for the provided superblock in __host byte order__.
49 1.1 rumble *
50 1.1 rumble * At some point SGI changed the checksum algorithm slightly, which can be
51 1.1 rumble * enabled with the 'new' flag.
52 1.1 rumble *
53 1.1 rumble * Presumably this change occured on or before 24 Oct 1988 (around IRIX 3.1),
54 1.1 rumble * so we're pretty unlikely to ever actually see an old checksum. Further, it
55 1.1 rumble * means that EFS_NEWMAGIC filesystems (IRIX >= 3.3) must match the new
56 1.1 rumble * checksum whereas EFS_MAGIC filesystems could potentially use either
57 1.1 rumble * algorithm.
58 1.1 rumble *
59 1.1 rumble * See comp.sys.sgi <1991Aug9.050838.16876 (at) odin.corp.sgi.com>
60 1.1 rumble */
61 1.1 rumble int32_t
62 1.1 rumble efs_sb_checksum(struct efs_sb *esb, int new)
63 1.1 rumble {
64 1.1 rumble int i;
65 1.1 rumble int32_t cksum;
66 1.13 christos uint8_t *sbarray = (uint8_t *)esb;
67 1.1 rumble
68 1.1 rumble KASSERT((EFS_SB_CHECKSUM_SIZE % 2) == 0);
69 1.1 rumble
70 1.13 christos for (i = cksum = 0; i < EFS_SB_CHECKSUM_SIZE; i += 2) {
71 1.13 christos uint16_t v;
72 1.13 christos memcpy(&v, &sbarray[i], sizeof(v));
73 1.13 christos cksum ^= be16toh(v);
74 1.1 rumble cksum = (cksum << 1) | (new && cksum < 0);
75 1.1 rumble }
76 1.1 rumble
77 1.1 rumble return (cksum);
78 1.1 rumble }
79 1.1 rumble
80 1.1 rumble /*
81 1.1 rumble * Determine if the superblock is valid.
82 1.1 rumble *
83 1.1 rumble * Returns 0 if valid, else invalid. If invalid, 'why' is set to an
84 1.1 rumble * explanation.
85 1.1 rumble */
86 1.1 rumble int
87 1.1 rumble efs_sb_validate(struct efs_sb *esb, const char **why)
88 1.1 rumble {
89 1.1 rumble uint32_t ocksum, ncksum;
90 1.1 rumble
91 1.1 rumble *why = NULL;
92 1.1 rumble
93 1.1 rumble if (be32toh(esb->sb_magic) != EFS_SB_MAGIC &&
94 1.5 rumble be32toh(esb->sb_magic) != EFS_SB_NEWMAGIC) {
95 1.1 rumble *why = "sb_magic invalid";
96 1.1 rumble return (1);
97 1.1 rumble }
98 1.1 rumble
99 1.1 rumble ocksum = htobe32(efs_sb_checksum(esb, 0));
100 1.1 rumble ncksum = htobe32(efs_sb_checksum(esb, 1));
101 1.1 rumble if (esb->sb_checksum != ocksum && esb->sb_checksum != ncksum) {
102 1.1 rumble *why = "sb_checksum invalid";
103 1.1 rumble return (1);
104 1.1 rumble }
105 1.1 rumble
106 1.1 rumble if (be32toh(esb->sb_size) > EFS_SIZE_MAX) {
107 1.1 rumble *why = "sb_size > EFS_SIZE_MAX";
108 1.1 rumble return (1);
109 1.1 rumble }
110 1.1 rumble
111 1.1 rumble if (be32toh(esb->sb_firstcg) <= EFS_BB_BITMAP) {
112 1.1 rumble *why = "sb_firstcg <= EFS_BB_BITMAP";
113 1.1 rumble return (1);
114 1.1 rumble }
115 1.1 rumble
116 1.1 rumble /* XXX - add better sb consistency checks here */
117 1.1 rumble if (esb->sb_cgfsize == 0 ||
118 1.1 rumble esb->sb_cgisize == 0 ||
119 1.1 rumble esb->sb_ncg == 0 ||
120 1.1 rumble esb->sb_bmsize == 0) {
121 1.1 rumble *why = "something bad happened";
122 1.1 rumble return (1);
123 1.1 rumble }
124 1.1 rumble
125 1.1 rumble return (0);
126 1.1 rumble }
127 1.1 rumble
128 1.1 rumble /*
129 1.1 rumble * Determine the basic block offset and inode index within that block, given
130 1.1 rumble * the inode 'ino' and filesystem parameters _in host byte order_. The inode
131 1.1 rumble * will live at byte address 'bboff' * EFS_BB_SIZE + 'index' * EFS_DINODE_SIZE.
132 1.1 rumble */
133 1.1 rumble void
134 1.1 rumble efs_locate_inode(ino_t ino, struct efs_sb *sbp, uint32_t *bboff, int *index)
135 1.1 rumble {
136 1.1 rumble uint32_t cgfsize, firstcg;
137 1.1 rumble uint16_t cgisize;
138 1.1 rumble
139 1.1 rumble cgisize = be16toh(sbp->sb_cgisize);
140 1.1 rumble cgfsize = be32toh(sbp->sb_cgfsize);
141 1.12 maxv firstcg = be32toh(sbp->sb_firstcg);
142 1.1 rumble
143 1.1 rumble *bboff = firstcg + ((ino / (cgisize * EFS_DINODES_PER_BB)) * cgfsize) +
144 1.1 rumble ((ino % (cgisize * EFS_DINODES_PER_BB)) / EFS_DINODES_PER_BB);
145 1.1 rumble *index = ino & (EFS_DINODES_PER_BB - 1);
146 1.1 rumble }
147 1.1 rumble
148 1.1 rumble /*
149 1.1 rumble * Read in an inode from disk.
150 1.1 rumble *
151 1.1 rumble * We actually take in four inodes at a time. Hopefully these will stick
152 1.1 rumble * around in the buffer cache and get used without going to disk.
153 1.1 rumble *
154 1.1 rumble * Returns 0 on success.
155 1.1 rumble */
156 1.1 rumble int
157 1.1 rumble efs_read_inode(struct efs_mount *emp, ino_t ino, struct lwp *l,
158 1.1 rumble struct efs_dinode *di)
159 1.1 rumble {
160 1.1 rumble struct efs_sb *sbp;
161 1.1 rumble struct buf *bp;
162 1.1 rumble int index, err;
163 1.1 rumble uint32_t bboff;
164 1.1 rumble
165 1.1 rumble sbp = &emp->em_sb;
166 1.1 rumble efs_locate_inode(ino, sbp, &bboff, &index);
167 1.1 rumble
168 1.2 rumble err = efs_bread(emp, bboff, l, &bp);
169 1.1 rumble if (err) {
170 1.1 rumble return (err);
171 1.1 rumble }
172 1.1 rumble memcpy(di, ((struct efs_dinode *)bp->b_data) + index, sizeof(*di));
173 1.6 ad brelse(bp, 0);
174 1.1 rumble
175 1.1 rumble return (0);
176 1.1 rumble }
177 1.1 rumble
178 1.1 rumble /*
179 1.1 rumble * Perform a read from our device handling the potential DEV_BSIZE
180 1.1 rumble * messiness (although as of 19.2.2006, all ports appear to use 512) as
181 1.1 rumble * we as EFS block sizing.
182 1.1 rumble *
183 1.1 rumble * bboff: basic block offset
184 1.1 rumble *
185 1.1 rumble * Returns 0 on success.
186 1.1 rumble */
187 1.1 rumble int
188 1.2 rumble efs_bread(struct efs_mount *emp, uint32_t bboff, struct lwp *l, struct buf **bp)
189 1.1 rumble {
190 1.1 rumble KASSERT(bboff < EFS_SIZE_MAX);
191 1.1 rumble
192 1.1 rumble return (bread(emp->em_devvp, (daddr_t)bboff * (EFS_BB_SIZE / DEV_BSIZE),
193 1.11 maxv EFS_BB_SIZE, 0, bp));
194 1.1 rumble }
195 1.1 rumble
196 1.1 rumble /*
197 1.1 rumble * Synchronise the in-core, host ordered and typed inode fields with their
198 1.1 rumble * corresponding on-disk, EFS ordered and typed copies.
199 1.1 rumble *
200 1.1 rumble * This is the inverse of efs_dinode_sync_inode(), and should be called when
201 1.1 rumble * an inode is loaded from disk.
202 1.1 rumble */
203 1.1 rumble void
204 1.1 rumble efs_sync_dinode_to_inode(struct efs_inode *ei)
205 1.1 rumble {
206 1.1 rumble
207 1.1 rumble ei->ei_mode = be16toh(ei->ei_di.di_mode); /*same as nbsd*/
208 1.1 rumble ei->ei_nlink = be16toh(ei->ei_di.di_nlink);
209 1.1 rumble ei->ei_uid = be16toh(ei->ei_di.di_uid);
210 1.1 rumble ei->ei_gid = be16toh(ei->ei_di.di_gid);
211 1.1 rumble ei->ei_size = be32toh(ei->ei_di.di_size);
212 1.1 rumble ei->ei_atime = be32toh(ei->ei_di.di_atime);
213 1.1 rumble ei->ei_mtime = be32toh(ei->ei_di.di_mtime);
214 1.1 rumble ei->ei_ctime = be32toh(ei->ei_di.di_ctime);
215 1.1 rumble ei->ei_gen = be32toh(ei->ei_di.di_gen);
216 1.1 rumble ei->ei_numextents = be16toh(ei->ei_di.di_numextents);
217 1.1 rumble ei->ei_version = ei->ei_di.di_version;
218 1.1 rumble }
219 1.1 rumble
220 1.1 rumble /*
221 1.1 rumble * Synchronise the on-disk, EFS ordered and typed inode fields with their
222 1.1 rumble * corresponding in-core, host ordered and typed copies.
223 1.1 rumble *
224 1.1 rumble * This is the inverse of efs_inode_sync_dinode(), and should be called before
225 1.1 rumble * an inode is flushed to disk.
226 1.1 rumble */
227 1.1 rumble void
228 1.1 rumble efs_sync_inode_to_dinode(struct efs_inode *ei)
229 1.1 rumble {
230 1.1 rumble
231 1.1 rumble panic("readonly -- no need to call me");
232 1.1 rumble }
233 1.1 rumble
234 1.1 rumble #ifdef DIAGNOSTIC
235 1.1 rumble /*
236 1.1 rumble * Ensure that the in-core inode's host cached fields match its on-disk copy.
237 1.1 rumble *
238 1.1 rumble * Returns 0 if they match.
239 1.1 rumble */
240 1.1 rumble static int
241 1.1 rumble efs_is_inode_synced(struct efs_inode *ei)
242 1.1 rumble {
243 1.1 rumble int s;
244 1.1 rumble
245 1.1 rumble s = 0;
246 1.1 rumble /* XXX -- see above remarks about assumption */
247 1.1 rumble s += (ei->ei_mode != be16toh(ei->ei_di.di_mode));
248 1.1 rumble s += (ei->ei_nlink != be16toh(ei->ei_di.di_nlink));
249 1.1 rumble s += (ei->ei_uid != be16toh(ei->ei_di.di_uid));
250 1.1 rumble s += (ei->ei_gid != be16toh(ei->ei_di.di_gid));
251 1.1 rumble s += (ei->ei_size != be32toh(ei->ei_di.di_size));
252 1.1 rumble s += (ei->ei_atime != be32toh(ei->ei_di.di_atime));
253 1.1 rumble s += (ei->ei_mtime != be32toh(ei->ei_di.di_mtime));
254 1.1 rumble s += (ei->ei_ctime != be32toh(ei->ei_di.di_ctime));
255 1.1 rumble s += (ei->ei_gen != be32toh(ei->ei_di.di_gen));
256 1.1 rumble s += (ei->ei_numextents != be16toh(ei->ei_di.di_numextents));
257 1.1 rumble s += (ei->ei_version != ei->ei_di.di_version);
258 1.1 rumble
259 1.1 rumble return (s);
260 1.1 rumble }
261 1.1 rumble #endif
262 1.1 rumble
263 1.1 rumble /*
264 1.1 rumble * Given an efs_dirblk structure and a componentname to search for, return the
265 1.1 rumble * corresponding inode if it is found.
266 1.1 rumble *
267 1.1 rumble * Returns 0 on success.
268 1.1 rumble */
269 1.1 rumble static int
270 1.1 rumble efs_dirblk_lookup(struct efs_dirblk *dir, struct componentname *cn,
271 1.1 rumble ino_t *inode)
272 1.1 rumble {
273 1.1 rumble struct efs_dirent *de;
274 1.10 mrg int i, slot __diagused, offset;
275 1.1 rumble
276 1.1 rumble KASSERT(cn->cn_namelen <= EFS_DIRENT_NAMELEN_MAX);
277 1.1 rumble
278 1.1 rumble slot = offset = 0;
279 1.1 rumble
280 1.1 rumble for (i = 0; i < dir->db_slots; i++) {
281 1.1 rumble offset = EFS_DIRENT_OFF_EXPND(dir->db_space[i]);
282 1.1 rumble
283 1.1 rumble if (offset == EFS_DIRBLK_SLOT_FREE)
284 1.1 rumble continue;
285 1.1 rumble
286 1.1 rumble de = (struct efs_dirent *)((char *)dir + offset);
287 1.1 rumble if (de->de_namelen == cn->cn_namelen &&
288 1.1 rumble (strncmp(cn->cn_nameptr, de->de_name, cn->cn_namelen) == 0)){
289 1.1 rumble slot = i;
290 1.1 rumble break;
291 1.1 rumble }
292 1.1 rumble }
293 1.1 rumble if (i == dir->db_slots)
294 1.1 rumble return (ENOENT);
295 1.1 rumble
296 1.1 rumble KASSERT(slot < offset && offset < EFS_DIRBLK_SPACE_SIZE);
297 1.1 rumble de = (struct efs_dirent *)((char *)dir + offset);
298 1.1 rumble *inode = be32toh(de->de_inumber);
299 1.1 rumble
300 1.1 rumble return (0);
301 1.1 rumble }
302 1.1 rumble
303 1.1 rumble /*
304 1.1 rumble * Given an extent descriptor that represents a directory, look up
305 1.1 rumble * componentname within its efs_dirblk's. If it is found, return the
306 1.1 rumble * corresponding inode in 'ino'.
307 1.1 rumble *
308 1.1 rumble * Returns 0 on success.
309 1.1 rumble */
310 1.1 rumble static int
311 1.1 rumble efs_extent_lookup(struct efs_mount *emp, struct efs_extent *ex,
312 1.1 rumble struct componentname *cn, ino_t *ino)
313 1.1 rumble {
314 1.1 rumble struct efs_dirblk *db;
315 1.1 rumble struct buf *bp;
316 1.1 rumble int i, err;
317 1.1 rumble
318 1.1 rumble /*
319 1.2 rumble * Read in each of the dirblks until we find our entry.
320 1.2 rumble * If we don't, return ENOENT.
321 1.1 rumble */
322 1.2 rumble for (i = 0; i < ex->ex_length; i++) {
323 1.2 rumble err = efs_bread(emp, ex->ex_bn + i, NULL, &bp);
324 1.2 rumble if (err) {
325 1.2 rumble printf("efs: warning: invalid extent descriptor\n");
326 1.2 rumble return (err);
327 1.2 rumble }
328 1.1 rumble
329 1.2 rumble db = (struct efs_dirblk *)bp->b_data;
330 1.1 rumble if (efs_dirblk_lookup(db, cn, ino) == 0) {
331 1.6 ad brelse(bp, 0);
332 1.1 rumble return (0);
333 1.1 rumble }
334 1.6 ad brelse(bp, 0);
335 1.1 rumble }
336 1.1 rumble
337 1.1 rumble return (ENOENT);
338 1.1 rumble }
339 1.1 rumble
340 1.1 rumble /*
341 1.1 rumble * Given the provided in-core inode, look up the pathname requested. If
342 1.1 rumble * we find it, 'ino' reflects its corresponding on-disk inode number.
343 1.1 rumble *
344 1.1 rumble * Returns 0 on success.
345 1.1 rumble */
346 1.1 rumble int
347 1.1 rumble efs_inode_lookup(struct efs_mount *emp, struct efs_inode *ei,
348 1.1 rumble struct componentname *cn, ino_t *ino)
349 1.1 rumble {
350 1.1 rumble struct efs_extent ex;
351 1.1 rumble struct efs_extent_iterator exi;
352 1.1 rumble int ret;
353 1.1 rumble
354 1.1 rumble KASSERT(VOP_ISLOCKED(ei->ei_vp));
355 1.9 christos #ifdef DIAGNOSTIC
356 1.1 rumble KASSERT(efs_is_inode_synced(ei) == 0);
357 1.9 christos #endif
358 1.1 rumble KASSERT((ei->ei_mode & S_IFMT) == S_IFDIR);
359 1.1 rumble
360 1.2 rumble efs_extent_iterator_init(&exi, ei, 0);
361 1.1 rumble while ((ret = efs_extent_iterator_next(&exi, &ex)) == 0) {
362 1.1 rumble if (efs_extent_lookup(emp, &ex, cn, ino) == 0) {
363 1.1 rumble return (0);
364 1.1 rumble }
365 1.1 rumble }
366 1.1 rumble
367 1.1 rumble return ((ret == -1) ? ENOENT : ret);
368 1.1 rumble }
369 1.1 rumble
370 1.1 rumble /*
371 1.1 rumble * Convert on-disk extent structure to in-core format.
372 1.1 rumble */
373 1.1 rumble void
374 1.1 rumble efs_dextent_to_extent(struct efs_dextent *dex, struct efs_extent *ex)
375 1.1 rumble {
376 1.1 rumble
377 1.1 rumble KASSERT(dex != NULL && ex != NULL);
378 1.1 rumble
379 1.1 rumble ex->ex_magic = dex->ex_bytes[0];
380 1.1 rumble ex->ex_bn = be32toh(dex->ex_words[0]) & 0x00ffffff;
381 1.1 rumble ex->ex_length = dex->ex_bytes[4];
382 1.1 rumble ex->ex_offset = be32toh(dex->ex_words[1]) & 0x00ffffff;
383 1.1 rumble }
384 1.1 rumble
385 1.1 rumble /*
386 1.1 rumble * Convert in-core extent format to on-disk structure.
387 1.1 rumble */
388 1.1 rumble void
389 1.1 rumble efs_extent_to_dextent(struct efs_extent *ex, struct efs_dextent *dex)
390 1.1 rumble {
391 1.1 rumble
392 1.1 rumble KASSERT(ex != NULL && dex != NULL);
393 1.1 rumble KASSERT(ex->ex_magic == EFS_EXTENT_MAGIC);
394 1.1 rumble KASSERT((ex->ex_bn & ~EFS_EXTENT_BN_MASK) == 0);
395 1.1 rumble KASSERT((ex->ex_offset & ~EFS_EXTENT_OFFSET_MASK) == 0);
396 1.1 rumble
397 1.1 rumble dex->ex_words[0] = htobe32(ex->ex_bn);
398 1.1 rumble dex->ex_bytes[0] = ex->ex_magic;
399 1.1 rumble dex->ex_words[1] = htobe32(ex->ex_offset);
400 1.1 rumble dex->ex_bytes[4] = ex->ex_length;
401 1.1 rumble }
402 1.1 rumble
403 1.1 rumble /*
404 1.1 rumble * Initialise an extent iterator.
405 1.2 rumble *
406 1.2 rumble * If start_hint is non-0, attempt to set up the iterator beginning with the
407 1.2 rumble * extent descriptor in which the start_hint'th byte exists. Callers must not
408 1.2 rumble * expect success (this is simply an optimisation), so we reserve the right
409 1.2 rumble * to start from the beginning.
410 1.1 rumble */
411 1.1 rumble void
412 1.2 rumble efs_extent_iterator_init(struct efs_extent_iterator *exi, struct efs_inode *eip,
413 1.2 rumble off_t start_hint)
414 1.1 rumble {
415 1.2 rumble struct efs_extent ex, ex2;
416 1.2 rumble struct buf *bp;
417 1.2 rumble struct efs_mount *emp = VFSTOEFS(eip->ei_vp->v_mount);
418 1.2 rumble off_t offset, length, next;
419 1.2 rumble int i, err, numextents, numinextents;
420 1.2 rumble int hi, lo, mid;
421 1.2 rumble int indir;
422 1.1 rumble
423 1.2 rumble exi->exi_eip = eip;
424 1.2 rumble exi->exi_next = 0;
425 1.2 rumble exi->exi_dnext = 0;
426 1.2 rumble exi->exi_innext = 0;
427 1.2 rumble
428 1.2 rumble if (start_hint == 0)
429 1.2 rumble return;
430 1.2 rumble
431 1.2 rumble /* force iterator to end if hint is too big */
432 1.2 rumble if (start_hint >= eip->ei_size) {
433 1.2 rumble exi->exi_next = eip->ei_numextents;
434 1.2 rumble return;
435 1.2 rumble }
436 1.2 rumble
437 1.2 rumble /*
438 1.2 rumble * Use start_hint to jump to the right extent descriptor. We'll
439 1.2 rumble * iterate over the 12 indirect extents because it's cheap, then
440 1.2 rumble * bring the appropriate vector into core and binary search it.
441 1.2 rumble */
442 1.2 rumble
443 1.2 rumble /*
444 1.2 rumble * Handle the small file case separately first...
445 1.2 rumble */
446 1.2 rumble if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
447 1.2 rumble for (i = 0; i < eip->ei_numextents; i++) {
448 1.2 rumble efs_dextent_to_extent(&eip->ei_di.di_extents[i], &ex);
449 1.2 rumble
450 1.2 rumble offset = ex.ex_offset * EFS_BB_SIZE;
451 1.2 rumble length = ex.ex_length * EFS_BB_SIZE;
452 1.2 rumble
453 1.2 rumble if (start_hint >= offset &&
454 1.2 rumble start_hint < (offset + length)) {
455 1.2 rumble exi->exi_next = exi->exi_dnext = i;
456 1.2 rumble return;
457 1.2 rumble }
458 1.2 rumble }
459 1.2 rumble
460 1.2 rumble /* shouldn't get here, no? */
461 1.2 rumble EFS_DPRINTF(("efs_extent_iterator_init: bad direct extents\n"));
462 1.2 rumble return;
463 1.2 rumble }
464 1.2 rumble
465 1.2 rumble /*
466 1.2 rumble * Now do the large files with indirect extents...
467 1.2 rumble *
468 1.2 rumble * The first indirect extent's ex_offset field contains the
469 1.2 rumble * number of indirect extents used.
470 1.2 rumble */
471 1.2 rumble efs_dextent_to_extent(&eip->ei_di.di_extents[0], &ex);
472 1.2 rumble
473 1.2 rumble numinextents = ex.ex_offset;
474 1.2 rumble if (numinextents < 1 || numinextents >= EFS_DIRECTEXTENTS) {
475 1.2 rumble EFS_DPRINTF(("efs_extent_iterator_init: bad ex.ex_offset\n"));
476 1.2 rumble return;
477 1.2 rumble }
478 1.2 rumble
479 1.2 rumble next = 0;
480 1.2 rumble indir = -1;
481 1.2 rumble numextents = 0;
482 1.2 rumble for (i = 0; i < numinextents; i++) {
483 1.2 rumble efs_dextent_to_extent(&eip->ei_di.di_extents[i], &ex);
484 1.2 rumble
485 1.2 rumble err = efs_bread(emp, ex.ex_bn, NULL, &bp);
486 1.2 rumble if (err) {
487 1.2 rumble return;
488 1.2 rumble }
489 1.2 rumble
490 1.2 rumble efs_dextent_to_extent((struct efs_dextent *)bp->b_data, &ex2);
491 1.6 ad brelse(bp, 0);
492 1.2 rumble
493 1.2 rumble offset = ex2.ex_offset * EFS_BB_SIZE;
494 1.2 rumble
495 1.2 rumble if (offset > start_hint) {
496 1.2 rumble indir = MAX(0, i - 1);
497 1.2 rumble break;
498 1.2 rumble }
499 1.2 rumble
500 1.3 rumble /* number of extents prior to this indirect vector of extents */
501 1.2 rumble next += numextents;
502 1.2 rumble
503 1.3 rumble /* number of extents within this indirect vector of extents */
504 1.2 rumble numextents = ex.ex_length * EFS_EXTENTS_PER_BB;
505 1.3 rumble numextents = MIN(numextents, eip->ei_numextents - next);
506 1.2 rumble }
507 1.2 rumble
508 1.2 rumble /*
509 1.2 rumble * We hit the end, so assume it's in the last extent.
510 1.2 rumble */
511 1.2 rumble if (indir == -1)
512 1.2 rumble indir = numinextents - 1;
513 1.2 rumble
514 1.2 rumble /*
515 1.2 rumble * Binary search to find our desired direct extent.
516 1.2 rumble */
517 1.2 rumble lo = 0;
518 1.2 rumble mid = 0;
519 1.2 rumble hi = numextents - 1;
520 1.2 rumble efs_dextent_to_extent(&eip->ei_di.di_extents[indir], &ex);
521 1.2 rumble while (lo <= hi) {
522 1.2 rumble int bboff;
523 1.2 rumble int index;
524 1.2 rumble
525 1.2 rumble mid = (lo + hi) / 2;
526 1.2 rumble
527 1.2 rumble bboff = mid / EFS_EXTENTS_PER_BB;
528 1.2 rumble index = mid % EFS_EXTENTS_PER_BB;
529 1.2 rumble
530 1.2 rumble err = efs_bread(emp, ex.ex_bn + bboff, NULL, &bp);
531 1.2 rumble if (err) {
532 1.2 rumble EFS_DPRINTF(("efs_extent_iterator_init: bsrch read\n"));
533 1.2 rumble return;
534 1.2 rumble }
535 1.2 rumble
536 1.2 rumble efs_dextent_to_extent((struct efs_dextent *)bp->b_data + index,
537 1.2 rumble &ex2);
538 1.6 ad brelse(bp, 0);
539 1.2 rumble
540 1.2 rumble offset = ex2.ex_offset * EFS_BB_SIZE;
541 1.2 rumble length = ex2.ex_length * EFS_BB_SIZE;
542 1.2 rumble
543 1.2 rumble if (start_hint >= offset && start_hint < (offset + length))
544 1.2 rumble break;
545 1.2 rumble
546 1.2 rumble if (start_hint < offset)
547 1.2 rumble hi = mid - 1;
548 1.2 rumble else
549 1.2 rumble lo = mid + 1;
550 1.2 rumble }
551 1.2 rumble
552 1.2 rumble /*
553 1.2 rumble * This is bad. Either the hint is bogus (which shouldn't
554 1.2 rumble * happen) or the extent list must be screwed up. We
555 1.2 rumble * have to abort.
556 1.2 rumble */
557 1.2 rumble if (lo > hi) {
558 1.2 rumble EFS_DPRINTF(("efs_extent_iterator_init: bsearch "
559 1.2 rumble "failed to find extent\n"));
560 1.2 rumble return;
561 1.2 rumble }
562 1.2 rumble
563 1.2 rumble exi->exi_next = next + mid;
564 1.2 rumble exi->exi_dnext = indir;
565 1.2 rumble exi->exi_innext = mid;
566 1.1 rumble }
567 1.1 rumble
568 1.1 rumble /*
569 1.1 rumble * Return the next EFS extent.
570 1.1 rumble *
571 1.1 rumble * Returns 0 if another extent was iterated, -1 if we've exhausted all
572 1.1 rumble * extents, or an error number. If 'exi' is non-NULL, the next extent is
573 1.1 rumble * written to it (should it exist).
574 1.1 rumble */
575 1.1 rumble int
576 1.1 rumble efs_extent_iterator_next(struct efs_extent_iterator *exi,
577 1.1 rumble struct efs_extent *exp)
578 1.1 rumble {
579 1.2 rumble struct efs_extent ex;
580 1.2 rumble struct efs_dextent *dexp;
581 1.1 rumble struct efs_inode *eip = exi->exi_eip;
582 1.2 rumble struct buf *bp;
583 1.2 rumble int err, bboff, index;
584 1.1 rumble
585 1.1 rumble if (exi->exi_next++ >= eip->ei_numextents)
586 1.1 rumble return (-1);
587 1.1 rumble
588 1.1 rumble /* direct or indirect extents? */
589 1.1 rumble if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
590 1.1 rumble if (exp != NULL) {
591 1.2 rumble dexp = &eip->ei_di.di_extents[exi->exi_dnext++];
592 1.2 rumble efs_dextent_to_extent(dexp, exp);
593 1.1 rumble }
594 1.1 rumble } else {
595 1.2 rumble efs_dextent_to_extent(
596 1.2 rumble &eip->ei_di.di_extents[exi->exi_dnext], &ex);
597 1.2 rumble
598 1.2 rumble bboff = exi->exi_innext / EFS_EXTENTS_PER_BB;
599 1.2 rumble index = exi->exi_innext % EFS_EXTENTS_PER_BB;
600 1.1 rumble
601 1.2 rumble err = efs_bread(VFSTOEFS(eip->ei_vp->v_mount),
602 1.2 rumble ex.ex_bn + bboff, NULL, &bp);
603 1.2 rumble if (err) {
604 1.2 rumble EFS_DPRINTF(("efs_extent_iterator_next: "
605 1.2 rumble "efs_bread failed: %d\n", err));
606 1.2 rumble return (err);
607 1.1 rumble }
608 1.1 rumble
609 1.1 rumble if (exp != NULL) {
610 1.2 rumble dexp = (struct efs_dextent *)bp->b_data + index;
611 1.2 rumble efs_dextent_to_extent(dexp, exp);
612 1.1 rumble }
613 1.6 ad brelse(bp, 0);
614 1.1 rumble
615 1.2 rumble bboff = exi->exi_innext++ / EFS_EXTENTS_PER_BB;
616 1.2 rumble if (bboff >= ex.ex_length) {
617 1.1 rumble exi->exi_innext = 0;
618 1.1 rumble exi->exi_dnext++;
619 1.1 rumble }
620 1.1 rumble }
621 1.1 rumble
622 1.1 rumble return (0);
623 1.1 rumble }
624