efs_subr.c revision 1.3.4.1 1 /* $NetBSD: efs_subr.c,v 1.3.4.1 2007/08/15 13:48:55 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2006 Stephen M. Rumble <rumble (at) ephemeral.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 #include <sys/cdefs.h>
20 __KERNEL_RCSID(0, "$NetBSD: efs_subr.c,v 1.3.4.1 2007/08/15 13:48:55 skrll Exp $");
21
22 #include <sys/param.h>
23 #include <sys/kauth.h>
24 #include <sys/lwp.h>
25 #include <sys/proc.h>
26 #include <sys/buf.h>
27 #include <sys/mount.h>
28 #include <sys/vnode.h>
29 #include <sys/namei.h>
30 #include <sys/stat.h>
31 #include <sys/malloc.h>
32
33 #include <miscfs/genfs/genfs_node.h>
34
35 #include <fs/efs/efs.h>
36 #include <fs/efs/efs_sb.h>
37 #include <fs/efs/efs_dir.h>
38 #include <fs/efs/efs_genfs.h>
39 #include <fs/efs/efs_mount.h>
40 #include <fs/efs/efs_extent.h>
41 #include <fs/efs/efs_dinode.h>
42 #include <fs/efs/efs_inode.h>
43 #include <fs/efs/efs_subr.h>
44
45 struct pool efs_inode_pool;
46
47 /*
48 * Calculate a checksum for the provided superblock in __host byte order__.
49 *
50 * At some point SGI changed the checksum algorithm slightly, which can be
51 * enabled with the 'new' flag.
52 *
53 * Presumably this change occured on or before 24 Oct 1988 (around IRIX 3.1),
54 * so we're pretty unlikely to ever actually see an old checksum. Further, it
55 * means that EFS_NEWMAGIC filesystems (IRIX >= 3.3) must match the new
56 * checksum whereas EFS_MAGIC filesystems could potentially use either
57 * algorithm.
58 *
59 * See comp.sys.sgi <1991Aug9.050838.16876 (at) odin.corp.sgi.com>
60 */
61 int32_t
62 efs_sb_checksum(struct efs_sb *esb, int new)
63 {
64 int i;
65 int32_t cksum;
66 uint16_t *sbarray = (uint16_t *)esb;
67
68 KASSERT((EFS_SB_CHECKSUM_SIZE % 2) == 0);
69
70 for (i = cksum = 0; i < (EFS_SB_CHECKSUM_SIZE / 2); i++) {
71 cksum ^= be16toh(sbarray[i]);
72 cksum = (cksum << 1) | (new && cksum < 0);
73 }
74
75 return (cksum);
76 }
77
78 /*
79 * Determine if the superblock is valid.
80 *
81 * Returns 0 if valid, else invalid. If invalid, 'why' is set to an
82 * explanation.
83 */
84 int
85 efs_sb_validate(struct efs_sb *esb, const char **why)
86 {
87 uint32_t ocksum, ncksum;
88
89 *why = NULL;
90
91 if (be32toh(esb->sb_magic) != EFS_SB_MAGIC &&
92 be32toh(esb->sb_magic) != EFS_SB_NEWMAGIC) {
93 *why = "sb_magic invalid";
94 return (1);
95 }
96
97 ocksum = htobe32(efs_sb_checksum(esb, 0));
98 ncksum = htobe32(efs_sb_checksum(esb, 1));
99 if (esb->sb_checksum != ocksum && esb->sb_checksum != ncksum) {
100 *why = "sb_checksum invalid";
101 return (1);
102 }
103
104 if (be32toh(esb->sb_size) > EFS_SIZE_MAX) {
105 *why = "sb_size > EFS_SIZE_MAX";
106 return (1);
107 }
108
109 if (be32toh(esb->sb_firstcg) <= EFS_BB_BITMAP) {
110 *why = "sb_firstcg <= EFS_BB_BITMAP";
111 return (1);
112 }
113
114 /* XXX - add better sb consistency checks here */
115 if (esb->sb_cgfsize == 0 ||
116 esb->sb_cgisize == 0 ||
117 esb->sb_ncg == 0 ||
118 esb->sb_bmsize == 0) {
119 *why = "something bad happened";
120 return (1);
121 }
122
123 return (0);
124 }
125
126 /*
127 * Determine the basic block offset and inode index within that block, given
128 * the inode 'ino' and filesystem parameters _in host byte order_. The inode
129 * will live at byte address 'bboff' * EFS_BB_SIZE + 'index' * EFS_DINODE_SIZE.
130 */
131 void
132 efs_locate_inode(ino_t ino, struct efs_sb *sbp, uint32_t *bboff, int *index)
133 {
134 uint32_t cgfsize, firstcg;
135 uint16_t cgisize;
136
137 cgisize = be16toh(sbp->sb_cgisize);
138 cgfsize = be32toh(sbp->sb_cgfsize);
139 firstcg = be32toh(sbp->sb_firstcg),
140
141 *bboff = firstcg + ((ino / (cgisize * EFS_DINODES_PER_BB)) * cgfsize) +
142 ((ino % (cgisize * EFS_DINODES_PER_BB)) / EFS_DINODES_PER_BB);
143 *index = ino & (EFS_DINODES_PER_BB - 1);
144 }
145
146 /*
147 * Read in an inode from disk.
148 *
149 * We actually take in four inodes at a time. Hopefully these will stick
150 * around in the buffer cache and get used without going to disk.
151 *
152 * Returns 0 on success.
153 */
154 int
155 efs_read_inode(struct efs_mount *emp, ino_t ino, struct lwp *l,
156 struct efs_dinode *di)
157 {
158 struct efs_sb *sbp;
159 struct buf *bp;
160 int index, err;
161 uint32_t bboff;
162
163 sbp = &emp->em_sb;
164 efs_locate_inode(ino, sbp, &bboff, &index);
165
166 err = efs_bread(emp, bboff, l, &bp);
167 if (err) {
168 brelse(bp);
169 return (err);
170 }
171 memcpy(di, ((struct efs_dinode *)bp->b_data) + index, sizeof(*di));
172 brelse(bp);
173
174 return (0);
175 }
176
177 /*
178 * Perform a read from our device handling the potential DEV_BSIZE
179 * messiness (although as of 19.2.2006, all ports appear to use 512) as
180 * we as EFS block sizing.
181 *
182 * bboff: basic block offset
183 *
184 * Returns 0 on success.
185 */
186 int
187 efs_bread(struct efs_mount *emp, uint32_t bboff, struct lwp *l, struct buf **bp)
188 {
189 KASSERT(bboff < EFS_SIZE_MAX);
190
191 return (bread(emp->em_devvp, (daddr_t)bboff * (EFS_BB_SIZE / DEV_BSIZE),
192 EFS_BB_SIZE, (l == NULL) ? NOCRED : l->l_cred, bp));
193 }
194
195 /*
196 * Synchronise the in-core, host ordered and typed inode fields with their
197 * corresponding on-disk, EFS ordered and typed copies.
198 *
199 * This is the inverse of efs_dinode_sync_inode(), and should be called when
200 * an inode is loaded from disk.
201 */
202 void
203 efs_sync_dinode_to_inode(struct efs_inode *ei)
204 {
205
206 ei->ei_mode = be16toh(ei->ei_di.di_mode); /*same as nbsd*/
207 ei->ei_nlink = be16toh(ei->ei_di.di_nlink);
208 ei->ei_uid = be16toh(ei->ei_di.di_uid);
209 ei->ei_gid = be16toh(ei->ei_di.di_gid);
210 ei->ei_size = be32toh(ei->ei_di.di_size);
211 ei->ei_atime = be32toh(ei->ei_di.di_atime);
212 ei->ei_mtime = be32toh(ei->ei_di.di_mtime);
213 ei->ei_ctime = be32toh(ei->ei_di.di_ctime);
214 ei->ei_gen = be32toh(ei->ei_di.di_gen);
215 ei->ei_numextents = be16toh(ei->ei_di.di_numextents);
216 ei->ei_version = ei->ei_di.di_version;
217 }
218
219 /*
220 * Synchronise the on-disk, EFS ordered and typed inode fields with their
221 * corresponding in-core, host ordered and typed copies.
222 *
223 * This is the inverse of efs_inode_sync_dinode(), and should be called before
224 * an inode is flushed to disk.
225 */
226 void
227 efs_sync_inode_to_dinode(struct efs_inode *ei)
228 {
229
230 panic("readonly -- no need to call me");
231 }
232
233 #ifdef DIAGNOSTIC
234 /*
235 * Ensure that the in-core inode's host cached fields match its on-disk copy.
236 *
237 * Returns 0 if they match.
238 */
239 static int
240 efs_is_inode_synced(struct efs_inode *ei)
241 {
242 int s;
243
244 s = 0;
245 /* XXX -- see above remarks about assumption */
246 s += (ei->ei_mode != be16toh(ei->ei_di.di_mode));
247 s += (ei->ei_nlink != be16toh(ei->ei_di.di_nlink));
248 s += (ei->ei_uid != be16toh(ei->ei_di.di_uid));
249 s += (ei->ei_gid != be16toh(ei->ei_di.di_gid));
250 s += (ei->ei_size != be32toh(ei->ei_di.di_size));
251 s += (ei->ei_atime != be32toh(ei->ei_di.di_atime));
252 s += (ei->ei_mtime != be32toh(ei->ei_di.di_mtime));
253 s += (ei->ei_ctime != be32toh(ei->ei_di.di_ctime));
254 s += (ei->ei_gen != be32toh(ei->ei_di.di_gen));
255 s += (ei->ei_numextents != be16toh(ei->ei_di.di_numextents));
256 s += (ei->ei_version != ei->ei_di.di_version);
257
258 return (s);
259 }
260 #endif
261
262 /*
263 * Given an efs_dirblk structure and a componentname to search for, return the
264 * corresponding inode if it is found.
265 *
266 * Returns 0 on success.
267 */
268 static int
269 efs_dirblk_lookup(struct efs_dirblk *dir, struct componentname *cn,
270 ino_t *inode)
271 {
272 struct efs_dirent *de;
273 int i, slot, offset;
274
275 KASSERT(cn->cn_namelen <= EFS_DIRENT_NAMELEN_MAX);
276
277 slot = offset = 0;
278
279 for (i = 0; i < dir->db_slots; i++) {
280 offset = EFS_DIRENT_OFF_EXPND(dir->db_space[i]);
281
282 if (offset == EFS_DIRBLK_SLOT_FREE)
283 continue;
284
285 de = (struct efs_dirent *)((char *)dir + offset);
286 if (de->de_namelen == cn->cn_namelen &&
287 (strncmp(cn->cn_nameptr, de->de_name, cn->cn_namelen) == 0)){
288 slot = i;
289 break;
290 }
291 }
292 if (i == dir->db_slots)
293 return (ENOENT);
294
295 KASSERT(slot < offset && offset < EFS_DIRBLK_SPACE_SIZE);
296 de = (struct efs_dirent *)((char *)dir + offset);
297 *inode = be32toh(de->de_inumber);
298
299 return (0);
300 }
301
302 /*
303 * Given an extent descriptor that represents a directory, look up
304 * componentname within its efs_dirblk's. If it is found, return the
305 * corresponding inode in 'ino'.
306 *
307 * Returns 0 on success.
308 */
309 static int
310 efs_extent_lookup(struct efs_mount *emp, struct efs_extent *ex,
311 struct componentname *cn, ino_t *ino)
312 {
313 struct efs_dirblk *db;
314 struct buf *bp;
315 int i, err;
316
317 /*
318 * Read in each of the dirblks until we find our entry.
319 * If we don't, return ENOENT.
320 */
321 for (i = 0; i < ex->ex_length; i++) {
322 err = efs_bread(emp, ex->ex_bn + i, NULL, &bp);
323 if (err) {
324 printf("efs: warning: invalid extent descriptor\n");
325 brelse(bp);
326 return (err);
327 }
328
329 db = (struct efs_dirblk *)bp->b_data;
330 if (efs_dirblk_lookup(db, cn, ino) == 0) {
331 brelse(bp);
332 return (0);
333 }
334 brelse(bp);
335 }
336
337 return (ENOENT);
338 }
339
340 /*
341 * Given the provided in-core inode, look up the pathname requested. If
342 * we find it, 'ino' reflects its corresponding on-disk inode number.
343 *
344 * Returns 0 on success.
345 */
346 int
347 efs_inode_lookup(struct efs_mount *emp, struct efs_inode *ei,
348 struct componentname *cn, ino_t *ino)
349 {
350 struct efs_extent ex;
351 struct efs_extent_iterator exi;
352 int ret;
353
354 KASSERT(VOP_ISLOCKED(ei->ei_vp));
355 KASSERT(efs_is_inode_synced(ei) == 0);
356 KASSERT((ei->ei_mode & S_IFMT) == S_IFDIR);
357
358 efs_extent_iterator_init(&exi, ei, 0);
359 while ((ret = efs_extent_iterator_next(&exi, &ex)) == 0) {
360 if (efs_extent_lookup(emp, &ex, cn, ino) == 0) {
361 return (0);
362 }
363 }
364
365 return ((ret == -1) ? ENOENT : ret);
366 }
367
368 /*
369 * Convert on-disk extent structure to in-core format.
370 */
371 void
372 efs_dextent_to_extent(struct efs_dextent *dex, struct efs_extent *ex)
373 {
374
375 KASSERT(dex != NULL && ex != NULL);
376
377 ex->ex_magic = dex->ex_bytes[0];
378 ex->ex_bn = be32toh(dex->ex_words[0]) & 0x00ffffff;
379 ex->ex_length = dex->ex_bytes[4];
380 ex->ex_offset = be32toh(dex->ex_words[1]) & 0x00ffffff;
381 }
382
383 /*
384 * Convert in-core extent format to on-disk structure.
385 */
386 void
387 efs_extent_to_dextent(struct efs_extent *ex, struct efs_dextent *dex)
388 {
389
390 KASSERT(ex != NULL && dex != NULL);
391 KASSERT(ex->ex_magic == EFS_EXTENT_MAGIC);
392 KASSERT((ex->ex_bn & ~EFS_EXTENT_BN_MASK) == 0);
393 KASSERT((ex->ex_offset & ~EFS_EXTENT_OFFSET_MASK) == 0);
394
395 dex->ex_words[0] = htobe32(ex->ex_bn);
396 dex->ex_bytes[0] = ex->ex_magic;
397 dex->ex_words[1] = htobe32(ex->ex_offset);
398 dex->ex_bytes[4] = ex->ex_length;
399 }
400
401 /*
402 * Initialise an extent iterator.
403 *
404 * If start_hint is non-0, attempt to set up the iterator beginning with the
405 * extent descriptor in which the start_hint'th byte exists. Callers must not
406 * expect success (this is simply an optimisation), so we reserve the right
407 * to start from the beginning.
408 */
409 void
410 efs_extent_iterator_init(struct efs_extent_iterator *exi, struct efs_inode *eip,
411 off_t start_hint)
412 {
413 struct efs_extent ex, ex2;
414 struct buf *bp;
415 struct efs_mount *emp = VFSTOEFS(eip->ei_vp->v_mount);
416 off_t offset, length, next;
417 int i, err, numextents, numinextents;
418 int hi, lo, mid;
419 int indir;
420
421 exi->exi_eip = eip;
422 exi->exi_next = 0;
423 exi->exi_dnext = 0;
424 exi->exi_innext = 0;
425
426 if (start_hint == 0)
427 return;
428
429 /* force iterator to end if hint is too big */
430 if (start_hint >= eip->ei_size) {
431 exi->exi_next = eip->ei_numextents;
432 return;
433 }
434
435 /*
436 * Use start_hint to jump to the right extent descriptor. We'll
437 * iterate over the 12 indirect extents because it's cheap, then
438 * bring the appropriate vector into core and binary search it.
439 */
440
441 /*
442 * Handle the small file case separately first...
443 */
444 if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
445 for (i = 0; i < eip->ei_numextents; i++) {
446 efs_dextent_to_extent(&eip->ei_di.di_extents[i], &ex);
447
448 offset = ex.ex_offset * EFS_BB_SIZE;
449 length = ex.ex_length * EFS_BB_SIZE;
450
451 if (start_hint >= offset &&
452 start_hint < (offset + length)) {
453 exi->exi_next = exi->exi_dnext = i;
454 return;
455 }
456 }
457
458 /* shouldn't get here, no? */
459 EFS_DPRINTF(("efs_extent_iterator_init: bad direct extents\n"));
460 return;
461 }
462
463 /*
464 * Now do the large files with indirect extents...
465 *
466 * The first indirect extent's ex_offset field contains the
467 * number of indirect extents used.
468 */
469 efs_dextent_to_extent(&eip->ei_di.di_extents[0], &ex);
470
471 numinextents = ex.ex_offset;
472 if (numinextents < 1 || numinextents >= EFS_DIRECTEXTENTS) {
473 EFS_DPRINTF(("efs_extent_iterator_init: bad ex.ex_offset\n"));
474 return;
475 }
476
477 next = 0;
478 indir = -1;
479 numextents = 0;
480 for (i = 0; i < numinextents; i++) {
481 efs_dextent_to_extent(&eip->ei_di.di_extents[i], &ex);
482
483 err = efs_bread(emp, ex.ex_bn, NULL, &bp);
484 if (err) {
485 brelse(bp);
486 return;
487 }
488
489 efs_dextent_to_extent((struct efs_dextent *)bp->b_data, &ex2);
490 brelse(bp);
491
492 offset = ex2.ex_offset * EFS_BB_SIZE;
493
494 if (offset > start_hint) {
495 indir = MAX(0, i - 1);
496 break;
497 }
498
499 /* number of extents prior to this indirect vector of extents */
500 next += numextents;
501
502 /* number of extents within this indirect vector of extents */
503 numextents = ex.ex_length * EFS_EXTENTS_PER_BB;
504 numextents = MIN(numextents, eip->ei_numextents - next);
505 }
506
507 /*
508 * We hit the end, so assume it's in the last extent.
509 */
510 if (indir == -1)
511 indir = numinextents - 1;
512
513 /*
514 * Binary search to find our desired direct extent.
515 */
516 lo = 0;
517 mid = 0;
518 hi = numextents - 1;
519 efs_dextent_to_extent(&eip->ei_di.di_extents[indir], &ex);
520 while (lo <= hi) {
521 int bboff;
522 int index;
523
524 mid = (lo + hi) / 2;
525
526 bboff = mid / EFS_EXTENTS_PER_BB;
527 index = mid % EFS_EXTENTS_PER_BB;
528
529 err = efs_bread(emp, ex.ex_bn + bboff, NULL, &bp);
530 if (err) {
531 brelse(bp);
532 EFS_DPRINTF(("efs_extent_iterator_init: bsrch read\n"));
533 return;
534 }
535
536 efs_dextent_to_extent((struct efs_dextent *)bp->b_data + index,
537 &ex2);
538 brelse(bp);
539
540 offset = ex2.ex_offset * EFS_BB_SIZE;
541 length = ex2.ex_length * EFS_BB_SIZE;
542
543 if (start_hint >= offset && start_hint < (offset + length))
544 break;
545
546 if (start_hint < offset)
547 hi = mid - 1;
548 else
549 lo = mid + 1;
550 }
551
552 /*
553 * This is bad. Either the hint is bogus (which shouldn't
554 * happen) or the extent list must be screwed up. We
555 * have to abort.
556 */
557 if (lo > hi) {
558 EFS_DPRINTF(("efs_extent_iterator_init: bsearch "
559 "failed to find extent\n"));
560 return;
561 }
562
563 exi->exi_next = next + mid;
564 exi->exi_dnext = indir;
565 exi->exi_innext = mid;
566 }
567
568 /*
569 * Return the next EFS extent.
570 *
571 * Returns 0 if another extent was iterated, -1 if we've exhausted all
572 * extents, or an error number. If 'exi' is non-NULL, the next extent is
573 * written to it (should it exist).
574 */
575 int
576 efs_extent_iterator_next(struct efs_extent_iterator *exi,
577 struct efs_extent *exp)
578 {
579 struct efs_extent ex;
580 struct efs_dextent *dexp;
581 struct efs_inode *eip = exi->exi_eip;
582 struct buf *bp;
583 int err, bboff, index;
584
585 if (exi->exi_next++ >= eip->ei_numextents)
586 return (-1);
587
588 /* direct or indirect extents? */
589 if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
590 if (exp != NULL) {
591 dexp = &eip->ei_di.di_extents[exi->exi_dnext++];
592 efs_dextent_to_extent(dexp, exp);
593 }
594 } else {
595 efs_dextent_to_extent(
596 &eip->ei_di.di_extents[exi->exi_dnext], &ex);
597
598 bboff = exi->exi_innext / EFS_EXTENTS_PER_BB;
599 index = exi->exi_innext % EFS_EXTENTS_PER_BB;
600
601 err = efs_bread(VFSTOEFS(eip->ei_vp->v_mount),
602 ex.ex_bn + bboff, NULL, &bp);
603 if (err) {
604 EFS_DPRINTF(("efs_extent_iterator_next: "
605 "efs_bread failed: %d\n", err));
606 brelse(bp);
607 return (err);
608 }
609
610 if (exp != NULL) {
611 dexp = (struct efs_dextent *)bp->b_data + index;
612 efs_dextent_to_extent(dexp, exp);
613 }
614 brelse(bp);
615
616 bboff = exi->exi_innext++ / EFS_EXTENTS_PER_BB;
617 if (bboff >= ex.ex_length) {
618 exi->exi_innext = 0;
619 exi->exi_dnext++;
620 }
621 }
622
623 return (0);
624 }
625