libhfs.c revision 1.2 1 1.2 dillo /* $NetBSD: libhfs.c,v 1.2 2007/03/06 11:28:48 dillo Exp $ */
2 1.1 dillo
3 1.1 dillo /*-
4 1.1 dillo * Copyright (c) 2005, 2007 The NetBSD Foundation, Inc.
5 1.1 dillo * All rights reserved.
6 1.1 dillo *
7 1.1 dillo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 dillo * by Yevgeny Binder and Dieter Baron.
9 1.1 dillo *
10 1.1 dillo * Redistribution and use in source and binary forms, with or without
11 1.1 dillo * modification, are permitted provided that the following conditions
12 1.1 dillo * are met:
13 1.1 dillo * 1. Redistributions of source code must retain the above copyright
14 1.1 dillo * notice, this list of conditions and the following disclaimer.
15 1.1 dillo * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 dillo * notice, this list of conditions and the following disclaimer in the
17 1.1 dillo * documentation and/or other materials provided with the distribution.
18 1.1 dillo *
19 1.1 dillo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 dillo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 dillo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 dillo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 dillo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 dillo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 dillo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 dillo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 dillo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 dillo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 dillo * POSSIBILITY OF SUCH DAMAGE.
30 1.1 dillo */
31 1.1 dillo
32 1.1 dillo /*
33 1.2 dillo * All functions and variable types have the prefix "hfs_". All constants
34 1.2 dillo * have the prefix "HFS_".
35 1.1 dillo *
36 1.1 dillo * Naming convention for functions which read/write raw, linear data
37 1.1 dillo * into/from a structured form:
38 1.1 dillo *
39 1.2 dillo * hfs_read/write[d][a]_foo_bar
40 1.1 dillo * [d] - read/write from/to [d]isk instead of a memory buffer
41 1.1 dillo * [a] - [a]llocate output buffer instead of using an existing one
42 1.1 dillo * (not applicable for writing functions)
43 1.1 dillo *
44 1.1 dillo * Most functions do not have either of these options, so they will read from
45 1.1 dillo * or write to a memory buffer, which has been previously allocated by the
46 1.1 dillo * caller.
47 1.1 dillo */
48 1.1 dillo
49 1.2 dillo #include "libhfs.h"
50 1.1 dillo
51 1.1 dillo /* global private file/folder keys */
52 1.2 dillo hfs_catalog_key_t hfs_gMetadataDirectoryKey; /* contains HFS+ inodes */
53 1.2 dillo hfs_catalog_key_t hfs_gJournalInfoBlockFileKey;
54 1.2 dillo hfs_catalog_key_t hfs_gJournalBufferFileKey;
55 1.2 dillo hfs_catalog_key_t* hfs_gPrivateObjectKeys[4] = {
56 1.2 dillo &hfs_gMetadataDirectoryKey,
57 1.2 dillo &hfs_gJournalInfoBlockFileKey,
58 1.2 dillo &hfs_gJournalBufferFileKey,
59 1.1 dillo NULL};
60 1.1 dillo
61 1.1 dillo
62 1.1 dillo extern uint16_t be16tohp(void** inout_ptr);
63 1.1 dillo extern uint32_t be32tohp(void** inout_ptr);
64 1.1 dillo extern uint64_t be64tohp(void** inout_ptr);
65 1.1 dillo
66 1.2 dillo int hfslib_create_casefolding_table(void);
67 1.1 dillo
68 1.1 dillo #ifdef DLO_DEBUG
69 1.1 dillo #include <stdio.h>
70 1.1 dillo void
71 1.2 dillo dlo_print_key(hfs_catalog_key_t *key)
72 1.1 dillo {
73 1.1 dillo int i;
74 1.1 dillo
75 1.1 dillo printf("%ld:[", (long)key->parent_cnid);
76 1.1 dillo for (i=0; i<key->name.length; i++) {
77 1.1 dillo if (key->name.unicode[i] < 256
78 1.1 dillo && isprint(key->name.unicode[i]))
79 1.1 dillo putchar(key->name.unicode[i]);
80 1.1 dillo else
81 1.1 dillo printf("<%04x>", key->name.unicode[i]);
82 1.1 dillo }
83 1.1 dillo printf("]");
84 1.1 dillo }
85 1.1 dillo #endif
86 1.1 dillo
87 1.1 dillo void
88 1.2 dillo hfslib_init(hfs_callbacks* in_callbacks)
89 1.1 dillo {
90 1.1 dillo unichar_t temp[256];
91 1.1 dillo
92 1.1 dillo if(in_callbacks!=NULL)
93 1.2 dillo memcpy(&hfs_gcb, in_callbacks, sizeof(hfs_callbacks));
94 1.1 dillo
95 1.2 dillo hfs_gcft = NULL;
96 1.1 dillo
97 1.1 dillo /*
98 1.1 dillo * Create keys for the HFS+ "private" files so we can reuse them whenever
99 1.1 dillo * we perform a user-visible operation, such as listing directory contents.
100 1.1 dillo */
101 1.1 dillo
102 1.1 dillo #define ATOU(str, len) /* quick & dirty ascii-to-unicode conversion */ \
103 1.1 dillo do{ int i; for(i=0; i<len; i++) temp[i]=str[i]; } \
104 1.1 dillo while( /*CONSTCOND*/ 0)
105 1.1 dillo
106 1.1 dillo ATOU("\0\0\0\0HFS+ Private Data", 21);
107 1.2 dillo hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 21, temp,
108 1.2 dillo &hfs_gMetadataDirectoryKey);
109 1.1 dillo
110 1.1 dillo ATOU(".journal_info_block", 19);
111 1.2 dillo hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 19, temp,
112 1.2 dillo &hfs_gJournalInfoBlockFileKey);
113 1.1 dillo
114 1.1 dillo ATOU(".journal", 8);
115 1.2 dillo hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 8, temp,
116 1.2 dillo &hfs_gJournalBufferFileKey);
117 1.1 dillo
118 1.1 dillo #undef ATOU
119 1.1 dillo }
120 1.1 dillo
121 1.1 dillo void
122 1.2 dillo hfslib_done(void)
123 1.1 dillo {
124 1.2 dillo hfs_callback_args cbargs;
125 1.1 dillo
126 1.2 dillo if(hfs_gcft!=NULL) {
127 1.2 dillo hfslib_init_cbargs(&cbargs);
128 1.2 dillo hfslib_free(hfs_gcft, &cbargs);
129 1.2 dillo hfs_gcft = NULL;
130 1.1 dillo }
131 1.1 dillo
132 1.1 dillo return;
133 1.1 dillo }
134 1.1 dillo
135 1.1 dillo void
136 1.2 dillo hfslib_init_cbargs(hfs_callback_args* ptr)
137 1.1 dillo {
138 1.2 dillo memset(ptr, 0, sizeof(hfs_callback_args));
139 1.1 dillo }
140 1.1 dillo
141 1.1 dillo #if 0
142 1.1 dillo #pragma mark -
143 1.1 dillo #pragma mark High-Level Routines
144 1.1 dillo #endif
145 1.1 dillo
146 1.1 dillo int
147 1.2 dillo hfslib_open_volume(
148 1.1 dillo const char* in_device,
149 1.1 dillo uint64_t in_offset, /* given in BYTES, not BLOCKS */
150 1.1 dillo int in_readonly,
151 1.2 dillo hfs_volume* out_vol,
152 1.2 dillo hfs_callback_args* cbargs)
153 1.1 dillo {
154 1.2 dillo hfs_node_descriptor_t nd; /* node descriptor for some node we're reading */
155 1.2 dillo hfs_catalog_key_t rootkey;
156 1.2 dillo hfs_thread_record_t rootthread;
157 1.1 dillo uint16_t* node_rec_sizes;
158 1.1 dillo void* buffer;
159 1.1 dillo void* buffer2; /* used as temporary pointer for realloc() */
160 1.1 dillo void** node_recs;
161 1.1 dillo int result;
162 1.1 dillo
163 1.1 dillo result = 1;
164 1.1 dillo buffer = NULL;
165 1.1 dillo node_recs = NULL;
166 1.1 dillo node_rec_sizes = NULL;
167 1.1 dillo
168 1.1 dillo if(in_device==NULL || out_vol==NULL)
169 1.1 dillo return 1;
170 1.1 dillo
171 1.1 dillo out_vol->readonly = in_readonly;
172 1.1 dillo
173 1.2 dillo if(hfslib_openvoldevice(out_vol, in_device, in_offset, cbargs) != 0)
174 1.2 dillo HFS_LIBERR("could not open device");
175 1.1 dillo
176 1.1 dillo /*
177 1.1 dillo * Read the volume header.
178 1.1 dillo */
179 1.2 dillo buffer = hfslib_malloc(sizeof(hfs_volume_header_t), cbargs);
180 1.1 dillo if(buffer==NULL)
181 1.2 dillo HFS_LIBERR("could not allocate volume header");
182 1.1 dillo
183 1.2 dillo if(hfslib_readd(out_vol, buffer, sizeof(hfs_volume_header_t),
184 1.2 dillo HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs)!=0)
185 1.2 dillo HFS_LIBERR("could not read volume header");
186 1.2 dillo if(hfslib_read_volume_header(buffer, &(out_vol->vh))==0)
187 1.2 dillo HFS_LIBERR("could not parse volume header");
188 1.1 dillo
189 1.1 dillo /*
190 1.1 dillo * Check the volume signature to see if this is a legitimate HFS+ or HFSX
191 1.1 dillo * volume. If so, set the key comparison function pointers appropriately.
192 1.1 dillo */
193 1.1 dillo switch(out_vol->vh.signature)
194 1.1 dillo {
195 1.2 dillo case HFS_SIG_HFSP:
196 1.2 dillo out_vol->keycmp = hfslib_compare_catalog_keys_cf;
197 1.1 dillo break;
198 1.1 dillo
199 1.2 dillo case HFS_SIG_HFSX:
200 1.1 dillo out_vol->keycmp = NULL; /* will be set below */
201 1.1 dillo break;
202 1.1 dillo
203 1.2 dillo case HFS_SIG_HFS:
204 1.2 dillo HFS_LIBERR("HFS volumes and HFS+ volumes with HFS wrappers are"
205 1.1 dillo "not currently supported");
206 1.1 dillo break;
207 1.1 dillo
208 1.1 dillo default:
209 1.2 dillo HFS_LIBERR("unrecognized volume format");
210 1.1 dillo }
211 1.1 dillo
212 1.1 dillo
213 1.1 dillo /*
214 1.1 dillo * Read the catalog header.
215 1.1 dillo */
216 1.2 dillo buffer2 = hfslib_realloc(buffer,
217 1.1 dillo out_vol->vh.catalog_file.extents[0].block_count *
218 1.1 dillo out_vol->vh.block_size, cbargs);
219 1.1 dillo if(buffer2==NULL)
220 1.2 dillo HFS_LIBERR("could not allocate catalog header node");
221 1.1 dillo buffer = buffer2;
222 1.1 dillo
223 1.2 dillo /* We don't use hfslib_readd_with_extents() here because we don't know
224 1.1 dillo * the size of this node ahead of time. Besides, we only need the first
225 1.1 dillo * extent in order to get the header and root nodes. */
226 1.2 dillo if(hfslib_readd(out_vol, buffer,
227 1.1 dillo out_vol->vh.catalog_file.extents[0].block_count*out_vol->vh.block_size,
228 1.1 dillo out_vol->vh.catalog_file.extents[0].start_block*out_vol->vh.block_size,
229 1.1 dillo cbargs) != 0)
230 1.2 dillo HFS_LIBERR("could not read catalog header node");
231 1.1 dillo
232 1.2 dillo if(hfslib_reada_node(buffer, &nd, &node_recs, &node_rec_sizes,
233 1.2 dillo HFS_CATALOG_FILE, out_vol, cbargs)==0)
234 1.2 dillo HFS_LIBERR("could not read catalog header node");
235 1.1 dillo
236 1.2 dillo if(hfslib_read_header_node(node_recs, node_rec_sizes, nd.num_recs,
237 1.1 dillo &out_vol->chr, NULL, NULL)==0)
238 1.2 dillo HFS_LIBERR("could not parse catalog header node");
239 1.1 dillo
240 1.1 dillo /* If this is an HFSX volume, the catalog header specifies the type of
241 1.1 dillo * key comparison method (case-folding or binary compare) we should use. */
242 1.1 dillo if(out_vol->keycmp == NULL)
243 1.1 dillo {
244 1.2 dillo if(out_vol->chr.keycomp_type == HFS_KEY_CASEFOLD)
245 1.2 dillo out_vol->keycmp = hfslib_compare_catalog_keys_cf;
246 1.2 dillo else if(out_vol->chr.keycomp_type == HFS_KEY_BINARY)
247 1.2 dillo out_vol->keycmp = hfslib_compare_catalog_keys_bc;
248 1.1 dillo else
249 1.2 dillo HFS_LIBERR("undefined key compare method");
250 1.1 dillo }
251 1.1 dillo
252 1.1 dillo /*
253 1.1 dillo * Read the extent overflow header.
254 1.1 dillo */
255 1.2 dillo buffer2 = hfslib_realloc(buffer,
256 1.1 dillo out_vol->vh.extents_file.extents[0].block_count *
257 1.1 dillo out_vol->vh.block_size, cbargs);
258 1.1 dillo if(buffer2==NULL)
259 1.2 dillo HFS_LIBERR("could not allocate extent header node");
260 1.1 dillo buffer = buffer2;
261 1.1 dillo
262 1.2 dillo /* We don't use hfslib_readd_with_extents() here because we don't know
263 1.1 dillo * the size of this node ahead of time. Besides, we only need the first
264 1.1 dillo * extent in order to get the header and root nodes. */
265 1.2 dillo if(hfslib_readd(out_vol, buffer,
266 1.1 dillo out_vol->vh.extents_file.extents[0].block_count*out_vol->vh.block_size,
267 1.1 dillo out_vol->vh.extents_file.extents[0].start_block*out_vol->vh.block_size,
268 1.1 dillo cbargs) != 0)
269 1.2 dillo HFS_LIBERR("could not read extent header node");
270 1.1 dillo
271 1.2 dillo if(hfslib_reada_node(buffer, &nd, &node_recs, &node_rec_sizes,
272 1.2 dillo HFS_EXTENTS_FILE, out_vol, cbargs)==0)
273 1.2 dillo HFS_LIBERR("could not read extent header node");
274 1.1 dillo
275 1.2 dillo if(hfslib_read_header_node(node_recs, node_rec_sizes, nd.num_recs,
276 1.1 dillo &out_vol->ehr, NULL, NULL)==0)
277 1.2 dillo HFS_LIBERR("could not parse extent header node");
278 1.1 dillo
279 1.1 dillo /*
280 1.1 dillo * Read the journal info block and journal header (if volume journaled).
281 1.1 dillo */
282 1.2 dillo if(out_vol->vh.attributes & (1<<HFS_VOL_JOURNALED))
283 1.1 dillo {
284 1.1 dillo /* journal info block */
285 1.2 dillo buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_info_t), cbargs);
286 1.1 dillo if(buffer2==NULL)
287 1.2 dillo HFS_LIBERR("could not allocate journal info block");
288 1.1 dillo buffer = buffer2;
289 1.1 dillo
290 1.2 dillo if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_info_t),
291 1.1 dillo out_vol->vh.journal_info_block * out_vol->vh.block_size,
292 1.1 dillo cbargs) != 0)
293 1.2 dillo HFS_LIBERR("could not read journal info block");
294 1.1 dillo
295 1.2 dillo if(hfslib_read_journal_info(buffer, &out_vol->jib)==0)
296 1.2 dillo HFS_LIBERR("could not parse journal info block");
297 1.1 dillo
298 1.1 dillo /* journal header */
299 1.2 dillo buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_header_t),cbargs);
300 1.1 dillo if(buffer2==NULL)
301 1.2 dillo HFS_LIBERR("could not allocate journal header");
302 1.1 dillo buffer = buffer2;
303 1.1 dillo
304 1.2 dillo if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_header_t),
305 1.1 dillo out_vol->jib.offset, cbargs) != 0)
306 1.2 dillo HFS_LIBERR("could not read journal header");
307 1.1 dillo
308 1.2 dillo if(hfslib_read_journal_header(buffer, &out_vol->jh)==0)
309 1.2 dillo HFS_LIBERR("could not parse journal header");
310 1.1 dillo
311 1.1 dillo out_vol->journaled = 1;
312 1.1 dillo }
313 1.1 dillo else
314 1.1 dillo {
315 1.1 dillo out_vol->journaled = 0;
316 1.1 dillo }
317 1.1 dillo
318 1.1 dillo /*
319 1.1 dillo * If this volume uses case-folding comparison and the folding table hasn't
320 1.2 dillo * been created yet, do that here. (We don't do this in hfslib_init()
321 1.1 dillo * because the table is large and we might never even need to use it.)
322 1.1 dillo */
323 1.2 dillo if(out_vol->keycmp==hfslib_compare_catalog_keys_cf && hfs_gcft==NULL)
324 1.2 dillo result = hfslib_create_casefolding_table();
325 1.1 dillo else
326 1.1 dillo result = 0;
327 1.1 dillo
328 1.1 dillo /*
329 1.1 dillo * Find and store the volume name.
330 1.1 dillo */
331 1.2 dillo if(hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 0, NULL, &rootkey)==0)
332 1.2 dillo HFS_LIBERR("could not make root search key");
333 1.1 dillo
334 1.2 dillo if(hfslib_find_catalog_record_with_key(out_vol, &rootkey,
335 1.2 dillo (hfs_catalog_keyed_record_t*)&rootthread, cbargs)!=0)
336 1.2 dillo HFS_LIBERR("could not find root parent");
337 1.1 dillo
338 1.2 dillo memcpy(&out_vol->name, &rootthread.name, sizeof(hfs_unistr255_t));
339 1.1 dillo
340 1.1 dillo
341 1.1 dillo /* FALLTHROUGH */
342 1.1 dillo error:
343 1.1 dillo if(buffer!=NULL)
344 1.2 dillo hfslib_free(buffer, cbargs);
345 1.1 dillo
346 1.2 dillo hfslib_free_recs(&node_recs, &node_rec_sizes, &nd.num_recs, cbargs);
347 1.1 dillo
348 1.1 dillo return result;
349 1.1 dillo }
350 1.1 dillo
351 1.1 dillo void
352 1.2 dillo hfslib_close_volume(hfs_volume* in_vol, hfs_callback_args* cbargs)
353 1.1 dillo {
354 1.1 dillo if(in_vol==NULL)
355 1.1 dillo return;
356 1.1 dillo
357 1.2 dillo hfslib_closevoldevice(in_vol, cbargs);
358 1.1 dillo }
359 1.1 dillo
360 1.1 dillo int
361 1.2 dillo hfslib_path_to_cnid(hfs_volume* in_vol,
362 1.2 dillo hfs_cnid_t in_cnid,
363 1.1 dillo char** out_unicode,
364 1.1 dillo uint16_t* out_length,
365 1.2 dillo hfs_callback_args* cbargs)
366 1.1 dillo {
367 1.2 dillo hfs_thread_record_t parent_thread;
368 1.2 dillo hfs_cnid_t parent_cnid, child_cnid;
369 1.1 dillo char* newpath;
370 1.1 dillo char* path;
371 1.1 dillo int path_offset = 0;
372 1.1 dillo int result;
373 1.1 dillo uint16_t* ptr; /* dummy var */
374 1.1 dillo uint16_t uchar; /* dummy var */
375 1.1 dillo uint16_t total_path_length;
376 1.1 dillo
377 1.1 dillo if(in_vol==NULL || in_cnid==0 || out_unicode==NULL || out_length==NULL)
378 1.1 dillo return 1;
379 1.1 dillo
380 1.1 dillo result = 1;
381 1.1 dillo *out_unicode = NULL;
382 1.1 dillo *out_length = 0;
383 1.1 dillo path = NULL;
384 1.1 dillo total_path_length = 0;
385 1.1 dillo
386 1.2 dillo path = hfslib_malloc(514, cbargs); /* 256 unichars plus a forward slash */
387 1.1 dillo if(path==NULL)
388 1.1 dillo return 1;
389 1.1 dillo
390 1.1 dillo child_cnid = in_cnid;
391 1.1 dillo parent_cnid = child_cnid; /* skips loop in case in_cnid is root id */
392 1.2 dillo while(parent_cnid != HFS_CNID_ROOT_FOLDER
393 1.2 dillo && parent_cnid != HFS_CNID_ROOT_PARENT)
394 1.1 dillo {
395 1.1 dillo if(child_cnid!=in_cnid)
396 1.1 dillo {
397 1.2 dillo newpath = hfslib_realloc(path, 514 + total_path_length*2, cbargs);
398 1.1 dillo
399 1.1 dillo if(newpath==NULL)
400 1.1 dillo goto exit;
401 1.1 dillo path = newpath;
402 1.1 dillo
403 1.1 dillo memmove(path + 514, path + path_offset, total_path_length*2);
404 1.1 dillo }
405 1.1 dillo
406 1.2 dillo parent_cnid = hfslib_find_parent_thread(in_vol, child_cnid,
407 1.1 dillo &parent_thread, cbargs);
408 1.1 dillo if(parent_cnid==0)
409 1.1 dillo goto exit;
410 1.1 dillo
411 1.1 dillo path_offset = 512 - parent_thread.name.length*2;
412 1.1 dillo
413 1.1 dillo memcpy(path + path_offset, parent_thread.name.unicode,
414 1.1 dillo parent_thread.name.length*2);
415 1.1 dillo
416 1.1 dillo /* Add a forward slash. The unicode string was specified in big endian
417 1.1 dillo * format, so convert to core format if necessary. */
418 1.1 dillo path[512]=0x00;
419 1.1 dillo path[513]=0x2F;
420 1.1 dillo
421 1.1 dillo ptr = (uint16_t*)path + 256;
422 1.1 dillo uchar = be16tohp((void*)&ptr);
423 1.1 dillo *(ptr-1) = uchar;
424 1.1 dillo
425 1.1 dillo total_path_length += parent_thread.name.length + 1;
426 1.1 dillo
427 1.1 dillo child_cnid = parent_cnid;
428 1.1 dillo }
429 1.1 dillo
430 1.1 dillo /*
431 1.1 dillo * At this point, 'path' holds a sequence of unicode characters which
432 1.1 dillo * represent the absolute path to the given cnid. This string is missing
433 1.1 dillo * a terminating null char and an initial forward slash that represents
434 1.1 dillo * the root of the filesystem. It most likely also has extra space in
435 1.1 dillo * the beginning, due to the fact that we reserve 512 bytes for each path
436 1.1 dillo * component and won't usually use all that space. So, we allocate the
437 1.1 dillo * final string based on the actual length of the absolute path, plus four
438 1.1 dillo * additional bytes (two unichars) for the forward slash and the null char.
439 1.1 dillo */
440 1.1 dillo
441 1.2 dillo *out_unicode = hfslib_malloc((total_path_length+2)*2, cbargs);
442 1.1 dillo if(*out_unicode == NULL)
443 1.1 dillo goto exit;
444 1.1 dillo
445 1.1 dillo /* copy only the bytes that are actually used */
446 1.1 dillo memcpy(*out_unicode+2, path + path_offset, total_path_length*2);
447 1.1 dillo
448 1.1 dillo /* insert forward slash at start */
449 1.1 dillo (*out_unicode)[0] = 0x00;
450 1.1 dillo (*out_unicode)[1] = 0x2F;
451 1.1 dillo ptr = (uint16_t*)*out_unicode;
452 1.1 dillo uchar = be16tohp((void*)&ptr);
453 1.1 dillo *(ptr-1) = uchar;
454 1.1 dillo
455 1.1 dillo /* insert null char at end */
456 1.1 dillo (*out_unicode)[total_path_length*2+2] = 0x00;
457 1.1 dillo (*out_unicode)[total_path_length*2+3] = 0x00;
458 1.1 dillo
459 1.1 dillo *out_length = total_path_length + 1 /* extra for forward slash */ ;
460 1.1 dillo
461 1.1 dillo result = 0;
462 1.1 dillo
463 1.1 dillo exit:
464 1.1 dillo if(path!=NULL)
465 1.2 dillo hfslib_free(path, cbargs);
466 1.1 dillo
467 1.1 dillo return result;
468 1.1 dillo }
469 1.1 dillo
470 1.2 dillo hfs_cnid_t
471 1.2 dillo hfslib_find_parent_thread(
472 1.2 dillo hfs_volume* in_vol,
473 1.2 dillo hfs_cnid_t in_child,
474 1.2 dillo hfs_thread_record_t* out_thread,
475 1.2 dillo hfs_callback_args* cbargs)
476 1.1 dillo {
477 1.2 dillo hfs_catalog_key_t childkey;
478 1.1 dillo
479 1.1 dillo if(in_vol==NULL || in_child==0 || out_thread==NULL)
480 1.1 dillo return 0;
481 1.1 dillo
482 1.2 dillo if(hfslib_make_catalog_key(in_child, 0, NULL, &childkey)==0)
483 1.1 dillo return 0;
484 1.1 dillo
485 1.2 dillo if(hfslib_find_catalog_record_with_key(in_vol, &childkey,
486 1.2 dillo (hfs_catalog_keyed_record_t*)out_thread, cbargs)!=0)
487 1.1 dillo return 0;
488 1.1 dillo
489 1.1 dillo return out_thread->parent_cnid;
490 1.1 dillo }
491 1.1 dillo
492 1.1 dillo /*
493 1.2 dillo * hfslib_find_catalog_record_with_cnid()
494 1.1 dillo *
495 1.2 dillo * Looks up a catalog record by calling hfslib_find_parent_thread() and
496 1.2 dillo * hfslib_find_catalog_record_with_key(). out_key may be NULL; if not, the key
497 1.1 dillo * corresponding to this cnid is stuffed in it. Returns 0 on success.
498 1.1 dillo */
499 1.1 dillo int
500 1.2 dillo hfslib_find_catalog_record_with_cnid(
501 1.2 dillo hfs_volume* in_vol,
502 1.2 dillo hfs_cnid_t in_cnid,
503 1.2 dillo hfs_catalog_keyed_record_t* out_rec,
504 1.2 dillo hfs_catalog_key_t* out_key,
505 1.2 dillo hfs_callback_args* cbargs)
506 1.2 dillo {
507 1.2 dillo hfs_cnid_t parentcnid;
508 1.2 dillo hfs_thread_record_t parentthread;
509 1.2 dillo hfs_catalog_key_t key;
510 1.1 dillo
511 1.1 dillo if(in_vol==NULL || in_cnid==0 || out_rec==NULL)
512 1.1 dillo return 0;
513 1.1 dillo
514 1.1 dillo parentcnid =
515 1.2 dillo hfslib_find_parent_thread(in_vol, in_cnid, &parentthread, cbargs);
516 1.1 dillo if(parentcnid == 0)
517 1.2 dillo HFS_LIBERR("could not find parent thread for cnid %i", in_cnid);
518 1.1 dillo
519 1.2 dillo if(hfslib_make_catalog_key(parentthread.parent_cnid,
520 1.1 dillo parentthread.name.length, parentthread.name.unicode, &key) == 0)
521 1.2 dillo HFS_LIBERR("could not make catalog search key");
522 1.1 dillo
523 1.1 dillo if(out_key!=NULL)
524 1.1 dillo memcpy(out_key, &key, sizeof(key));
525 1.1 dillo
526 1.2 dillo return hfslib_find_catalog_record_with_key(in_vol, &key, out_rec, cbargs);
527 1.1 dillo
528 1.1 dillo error:
529 1.1 dillo return 1;
530 1.1 dillo }
531 1.1 dillo
532 1.1 dillo /* Returns 0 on success, 1 on error, and -1 if record was not found. */
533 1.1 dillo int
534 1.2 dillo hfslib_find_catalog_record_with_key(
535 1.2 dillo hfs_volume* in_vol,
536 1.2 dillo hfs_catalog_key_t* in_key,
537 1.2 dillo hfs_catalog_keyed_record_t* out_rec,
538 1.2 dillo hfs_callback_args* cbargs)
539 1.2 dillo {
540 1.2 dillo hfs_node_descriptor_t nd;
541 1.2 dillo hfs_extent_descriptor_t* extents;
542 1.2 dillo hfs_catalog_keyed_record_t lastrec;
543 1.2 dillo hfs_catalog_key_t* curkey;
544 1.1 dillo void** recs;
545 1.1 dillo void* buffer;
546 1.1 dillo uint64_t bytesread;
547 1.1 dillo uint32_t curnode;
548 1.1 dillo uint16_t* recsizes;
549 1.1 dillo uint16_t numextents;
550 1.1 dillo uint16_t recnum;
551 1.1 dillo int16_t leaftype;
552 1.1 dillo int keycompare;
553 1.1 dillo int result;
554 1.1 dillo
555 1.1 dillo if(in_key==NULL || out_rec==NULL || in_vol==NULL)
556 1.1 dillo return 1;
557 1.1 dillo
558 1.1 dillo result = 1;
559 1.1 dillo buffer = NULL;
560 1.1 dillo curkey = NULL;
561 1.1 dillo extents = NULL;
562 1.1 dillo recs = NULL;
563 1.1 dillo recsizes = NULL;
564 1.1 dillo
565 1.1 dillo /* The key takes up over half a kb of ram, which is a lot for the BSD
566 1.1 dillo * kernel stack. So allocate it in the heap instead to play it safe. */
567 1.2 dillo curkey = hfslib_malloc(sizeof(hfs_catalog_key_t), cbargs);
568 1.1 dillo if(curkey==NULL)
569 1.2 dillo HFS_LIBERR("could not allocate catalog search key");
570 1.1 dillo
571 1.2 dillo buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
572 1.1 dillo if(buffer==NULL)
573 1.2 dillo HFS_LIBERR("could not allocate node buffer");
574 1.1 dillo
575 1.2 dillo numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
576 1.2 dillo HFS_DATAFORK, &extents, cbargs);
577 1.1 dillo if(numextents==0)
578 1.2 dillo HFS_LIBERR("could not locate fork extents");
579 1.1 dillo
580 1.1 dillo nd.num_recs = 0;
581 1.1 dillo curnode = in_vol->chr.root_node;
582 1.1 dillo
583 1.1 dillo #ifdef DLO_DEBUG
584 1.1 dillo printf("-> key ");
585 1.1 dillo dlo_print_key(in_key);
586 1.1 dillo printf("\n");
587 1.1 dillo #endif
588 1.1 dillo
589 1.1 dillo do
590 1.1 dillo {
591 1.1 dillo #ifdef DLO_DEBUG
592 1.1 dillo printf("--> node %d\n", curnode);
593 1.1 dillo #endif
594 1.1 dillo
595 1.2 dillo if(hfslib_readd_with_extents(in_vol, buffer,
596 1.1 dillo &bytesread,in_vol->chr.node_size, curnode * in_vol->chr.node_size,
597 1.1 dillo extents, numextents, cbargs)!=0)
598 1.2 dillo HFS_LIBERR("could not read catalog node #%i", curnode);
599 1.1 dillo
600 1.2 dillo if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
601 1.1 dillo in_vol, cbargs)==0)
602 1.2 dillo HFS_LIBERR("could not parse catalog node #%i", curnode);
603 1.1 dillo
604 1.1 dillo for(recnum=0; recnum<nd.num_recs; recnum++)
605 1.1 dillo {
606 1.1 dillo leaftype = nd.kind;
607 1.2 dillo if(hfslib_read_catalog_keyed_record(recs[recnum], out_rec,
608 1.1 dillo &leaftype, curkey, in_vol)==0)
609 1.2 dillo HFS_LIBERR("could not read catalog record #%i",recnum);
610 1.1 dillo
611 1.1 dillo #ifdef DLO_DEBUG
612 1.1 dillo printf("---> record %d: ", recnum);
613 1.1 dillo dlo_print_key(curkey);
614 1.1 dillo fflush(stdout);
615 1.1 dillo #endif
616 1.1 dillo keycompare = in_vol->keycmp(in_key, curkey);
617 1.1 dillo #ifdef DLO_DEBUG
618 1.1 dillo printf(" %c\n",
619 1.1 dillo keycompare < 0 ? '<'
620 1.1 dillo : keycompare == 0 ? '=' : '>');
621 1.1 dillo #endif
622 1.1 dillo
623 1.1 dillo if(keycompare < 0)
624 1.1 dillo {
625 1.1 dillo /* Check if key is less than *every* record, which should never
626 1.1 dillo * happen if the volume is consistent and the key legit. */
627 1.1 dillo if(recnum==0)
628 1.2 dillo HFS_LIBERR("all records greater than key");
629 1.1 dillo
630 1.1 dillo /* Otherwise, we've found the first record that exceeds our key,
631 1.1 dillo * so retrieve the previous record, which is still less... */
632 1.1 dillo memcpy(out_rec, &lastrec,
633 1.2 dillo sizeof(hfs_catalog_keyed_record_t));
634 1.1 dillo
635 1.1 dillo /* ...unless this is a leaf node, which means we've gone from
636 1.1 dillo * a key which is smaller than the search key, in the previous
637 1.1 dillo * loop, to a key which is larger, in this loop, and that
638 1.1 dillo * implies that our search key does not exist on the volume. */
639 1.2 dillo if(nd.kind==HFS_LEAFNODE)
640 1.1 dillo result = -1;
641 1.1 dillo
642 1.1 dillo break;
643 1.1 dillo }
644 1.1 dillo else if(keycompare == 0)
645 1.1 dillo {
646 1.1 dillo /* If leaf node, found an exact match. */
647 1.1 dillo result = 0;
648 1.1 dillo break;
649 1.1 dillo }
650 1.1 dillo else if(recnum==nd.num_recs-1 && keycompare > 0)
651 1.1 dillo {
652 1.1 dillo /* If leaf node, we've reached the last record with no match,
653 1.1 dillo * which means this key is not present on the volume. */
654 1.1 dillo result = -1;
655 1.1 dillo break;
656 1.1 dillo }
657 1.1 dillo
658 1.2 dillo memcpy(&lastrec, out_rec, sizeof(hfs_catalog_keyed_record_t));
659 1.1 dillo }
660 1.1 dillo
661 1.2 dillo if(nd.kind==HFS_INDEXNODE)
662 1.1 dillo curnode = out_rec->child;
663 1.2 dillo else if(nd.kind==HFS_LEAFNODE)
664 1.1 dillo break;
665 1.1 dillo
666 1.2 dillo hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
667 1.1 dillo }
668 1.2 dillo while(nd.kind!=HFS_LEAFNODE);
669 1.1 dillo
670 1.1 dillo /* FALLTHROUGH */
671 1.1 dillo error:
672 1.1 dillo if(extents!=NULL)
673 1.2 dillo hfslib_free(extents, cbargs);
674 1.2 dillo hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
675 1.1 dillo if(curkey!=NULL)
676 1.2 dillo hfslib_free(curkey, cbargs);
677 1.1 dillo if(buffer!=NULL)
678 1.2 dillo hfslib_free(buffer, cbargs);
679 1.1 dillo
680 1.1 dillo return result;
681 1.1 dillo }
682 1.1 dillo
683 1.1 dillo /* returns 0 on success */
684 1.1 dillo /* XXX Need to look this over and make sure it gracefully handles cases where
685 1.1 dillo * XXX the key is not found. */
686 1.1 dillo int
687 1.2 dillo hfslib_find_extent_record_with_key(hfs_volume* in_vol,
688 1.2 dillo hfs_extent_key_t* in_key,
689 1.2 dillo hfs_extent_record_t* out_rec,
690 1.2 dillo hfs_callback_args* cbargs)
691 1.2 dillo {
692 1.2 dillo hfs_node_descriptor_t nd;
693 1.2 dillo hfs_extent_descriptor_t* extents;
694 1.2 dillo hfs_extent_record_t lastrec;
695 1.2 dillo hfs_extent_key_t curkey;
696 1.1 dillo void** recs;
697 1.1 dillo void* buffer;
698 1.1 dillo uint64_t bytesread;
699 1.1 dillo uint32_t curnode;
700 1.1 dillo uint16_t* recsizes;
701 1.1 dillo uint16_t numextents;
702 1.1 dillo uint16_t recnum;
703 1.1 dillo int keycompare;
704 1.1 dillo int result;
705 1.1 dillo
706 1.1 dillo if(in_vol==NULL || in_key==NULL || out_rec==NULL)
707 1.1 dillo return 1;
708 1.1 dillo
709 1.1 dillo result = 1;
710 1.1 dillo buffer = NULL;
711 1.1 dillo extents = NULL;
712 1.1 dillo recs = NULL;
713 1.1 dillo recsizes = NULL;
714 1.1 dillo
715 1.2 dillo buffer = hfslib_malloc(in_vol->ehr.node_size, cbargs);
716 1.1 dillo if(buffer==NULL)
717 1.2 dillo HFS_LIBERR("could not allocate node buffer");
718 1.1 dillo
719 1.2 dillo numextents = hfslib_get_file_extents(in_vol, HFS_CNID_EXTENTS,
720 1.2 dillo HFS_DATAFORK, &extents, cbargs);
721 1.1 dillo if(numextents==0)
722 1.2 dillo HFS_LIBERR("could not locate fork extents");
723 1.1 dillo
724 1.1 dillo nd.num_recs = 0;
725 1.1 dillo curnode = in_vol->ehr.root_node;
726 1.1 dillo
727 1.1 dillo do
728 1.1 dillo {
729 1.2 dillo hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
730 1.1 dillo recnum = 0;
731 1.1 dillo
732 1.2 dillo if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
733 1.1 dillo in_vol->ehr.node_size, curnode * in_vol->ehr.node_size, extents,
734 1.1 dillo numextents, cbargs)!=0)
735 1.2 dillo HFS_LIBERR("could not read extents overflow node #%i", curnode);
736 1.1 dillo
737 1.2 dillo if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_EXTENTS_FILE,
738 1.1 dillo in_vol, cbargs)==0)
739 1.2 dillo HFS_LIBERR("could not parse extents overflow node #%i",curnode);
740 1.1 dillo
741 1.1 dillo for(recnum=0; recnum<nd.num_recs; recnum++)
742 1.1 dillo {
743 1.2 dillo memcpy(&lastrec, out_rec, sizeof(hfs_extent_record_t));
744 1.1 dillo
745 1.2 dillo if(hfslib_read_extent_record(recs[recnum], out_rec, nd.kind,
746 1.1 dillo &curkey, in_vol)==0)
747 1.2 dillo HFS_LIBERR("could not read extents record #%i",recnum);
748 1.1 dillo
749 1.2 dillo keycompare = hfslib_compare_extent_keys(in_key, &curkey);
750 1.1 dillo if(keycompare < 0)
751 1.1 dillo {
752 1.1 dillo /* this should never happen for any legitimate key */
753 1.1 dillo if(recnum==0)
754 1.1 dillo return 1;
755 1.1 dillo
756 1.2 dillo memcpy(out_rec, &lastrec, sizeof(hfs_extent_record_t));
757 1.1 dillo
758 1.1 dillo break;
759 1.1 dillo }
760 1.1 dillo else if(keycompare == 0 ||
761 1.1 dillo (recnum==nd.num_recs-1 && keycompare > 0))
762 1.1 dillo break;
763 1.1 dillo }
764 1.1 dillo
765 1.2 dillo if(nd.kind==HFS_INDEXNODE)
766 1.1 dillo curnode = *((uint32_t *)out_rec); /* out_rec is a node ptr in this case */
767 1.2 dillo else if(nd.kind==HFS_LEAFNODE)
768 1.1 dillo break;
769 1.1 dillo else
770 1.2 dillo HFS_LIBERR("unknwon node type for extents overflow node #%i",curnode);
771 1.1 dillo }
772 1.2 dillo while(nd.kind!=HFS_LEAFNODE);
773 1.1 dillo
774 1.1 dillo result = 0;
775 1.1 dillo
776 1.1 dillo /* FALLTHROUGH */
777 1.1 dillo
778 1.1 dillo error:
779 1.1 dillo if(buffer!=NULL)
780 1.2 dillo hfslib_free(buffer, cbargs);
781 1.1 dillo if(extents!=NULL)
782 1.2 dillo hfslib_free(extents, cbargs);
783 1.2 dillo hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
784 1.1 dillo
785 1.1 dillo return result;
786 1.1 dillo }
787 1.1 dillo
788 1.1 dillo /* out_extents may be NULL. */
789 1.1 dillo uint16_t
790 1.2 dillo hfslib_get_file_extents(hfs_volume* in_vol,
791 1.2 dillo hfs_cnid_t in_cnid,
792 1.1 dillo uint8_t in_forktype,
793 1.2 dillo hfs_extent_descriptor_t** out_extents,
794 1.2 dillo hfs_callback_args* cbargs)
795 1.1 dillo {
796 1.2 dillo hfs_extent_descriptor_t* dummy;
797 1.2 dillo hfs_extent_key_t extentkey;
798 1.2 dillo hfs_file_record_t file;
799 1.2 dillo hfs_catalog_key_t filekey;
800 1.2 dillo hfs_thread_record_t fileparent;
801 1.2 dillo hfs_fork_t fork;
802 1.2 dillo hfs_extent_record_t nextextentrec;
803 1.1 dillo uint32_t numblocks;
804 1.1 dillo uint16_t numextents, n;
805 1.1 dillo
806 1.1 dillo if(in_vol==NULL || in_cnid==0)
807 1.1 dillo return 0;
808 1.1 dillo
809 1.1 dillo if(out_extents!=NULL)
810 1.1 dillo {
811 1.2 dillo *out_extents = hfslib_malloc(sizeof(hfs_extent_descriptor_t), cbargs);
812 1.1 dillo if(*out_extents==NULL)
813 1.1 dillo return 0;
814 1.1 dillo }
815 1.1 dillo
816 1.1 dillo switch(in_cnid)
817 1.1 dillo {
818 1.2 dillo case HFS_CNID_CATALOG:
819 1.1 dillo fork = in_vol->vh.catalog_file;
820 1.1 dillo break;
821 1.1 dillo
822 1.2 dillo case HFS_CNID_EXTENTS:
823 1.1 dillo fork = in_vol->vh.extents_file;
824 1.1 dillo break;
825 1.1 dillo
826 1.2 dillo case HFS_CNID_ALLOCATION:
827 1.1 dillo fork = in_vol->vh.allocation_file;
828 1.1 dillo break;
829 1.1 dillo
830 1.2 dillo case HFS_CNID_ATTRIBUTES:
831 1.1 dillo fork = in_vol->vh.attributes_file;
832 1.1 dillo break;
833 1.1 dillo
834 1.2 dillo case HFS_CNID_STARTUP:
835 1.1 dillo fork = in_vol->vh.startup_file;
836 1.1 dillo break;
837 1.1 dillo
838 1.1 dillo default:
839 1.2 dillo if(hfslib_find_parent_thread(in_vol, in_cnid, &fileparent,
840 1.1 dillo cbargs)==0)
841 1.1 dillo goto error;
842 1.1 dillo
843 1.2 dillo if(hfslib_make_catalog_key(fileparent.parent_cnid,
844 1.1 dillo fileparent.name.length, fileparent.name.unicode, &filekey)==0)
845 1.1 dillo goto error;
846 1.1 dillo
847 1.2 dillo if(hfslib_find_catalog_record_with_key(in_vol, &filekey,
848 1.2 dillo (hfs_catalog_keyed_record_t*)&file, cbargs)!=0)
849 1.1 dillo goto error;
850 1.1 dillo
851 1.1 dillo /* only files have extents, not folders or threads */
852 1.2 dillo if(file.rec_type!=HFS_REC_FILE)
853 1.1 dillo goto error;
854 1.1 dillo
855 1.2 dillo if(in_forktype==HFS_DATAFORK)
856 1.1 dillo fork = file.data_fork;
857 1.2 dillo else if(in_forktype==HFS_RSRCFORK)
858 1.1 dillo fork = file.rsrc_fork;
859 1.1 dillo }
860 1.1 dillo
861 1.1 dillo numextents = 0;
862 1.1 dillo numblocks = 0;
863 1.2 dillo memcpy(&nextextentrec, &fork.extents, sizeof(hfs_extent_record_t));
864 1.1 dillo
865 1.1 dillo while(1)
866 1.1 dillo {
867 1.1 dillo for(n=0; n<8; n++)
868 1.1 dillo {
869 1.1 dillo if(nextextentrec[n].block_count==0)
870 1.1 dillo break;
871 1.1 dillo
872 1.1 dillo numblocks += nextextentrec[n].block_count;
873 1.1 dillo }
874 1.1 dillo
875 1.1 dillo if(out_extents!=NULL)
876 1.1 dillo {
877 1.2 dillo dummy = hfslib_realloc(*out_extents,
878 1.2 dillo (numextents+n) * sizeof(hfs_extent_descriptor_t),
879 1.1 dillo cbargs);
880 1.1 dillo if(dummy==NULL)
881 1.1 dillo goto error;
882 1.1 dillo *out_extents = dummy;
883 1.1 dillo
884 1.1 dillo memcpy(*out_extents + numextents,
885 1.2 dillo &nextextentrec, n*sizeof(hfs_extent_descriptor_t));
886 1.1 dillo }
887 1.1 dillo numextents += n;
888 1.1 dillo
889 1.1 dillo if(numblocks >= fork.total_blocks)
890 1.1 dillo break;
891 1.1 dillo
892 1.2 dillo if(hfslib_make_extent_key(in_cnid, in_forktype, numblocks,
893 1.1 dillo &extentkey)==0)
894 1.1 dillo goto error;
895 1.1 dillo
896 1.2 dillo if(hfslib_find_extent_record_with_key(in_vol, &extentkey,
897 1.1 dillo &nextextentrec, cbargs)!=0)
898 1.1 dillo goto error;
899 1.1 dillo }
900 1.1 dillo
901 1.1 dillo goto exit;
902 1.1 dillo
903 1.1 dillo error:
904 1.1 dillo if(out_extents!=NULL && *out_extents!=NULL)
905 1.1 dillo {
906 1.2 dillo hfslib_free(*out_extents, cbargs);
907 1.1 dillo *out_extents = NULL;
908 1.1 dillo }
909 1.1 dillo return 0;
910 1.1 dillo
911 1.1 dillo exit:
912 1.1 dillo return numextents;
913 1.1 dillo }
914 1.1 dillo
915 1.1 dillo /*
916 1.2 dillo * hfslib_get_directory_contents()
917 1.1 dillo *
918 1.1 dillo * Finds the immediate children of a given directory CNID and places their
919 1.1 dillo * CNIDs in an array allocated here. The first child is found by doing a
920 1.1 dillo * catalog search that only compares parent CNIDs (ignoring file/folder names)
921 1.1 dillo * and skips over thread records. Then the remaining children are listed in
922 1.1 dillo * ascending order by name, according to the HFS+ spec, so just read off each
923 1.1 dillo * successive leaf node until a different parent CNID is found.
924 1.1 dillo *
925 1.1 dillo * If out_childnames is not NULL, it will be allocated and set to an array of
926 1.2 dillo * hfs_unistr255_t's which correspond to the name of the child with that same
927 1.1 dillo * index.
928 1.1 dillo *
929 1.1 dillo * out_children may be NULL.
930 1.1 dillo *
931 1.1 dillo * Returns 0 on success.
932 1.1 dillo */
933 1.1 dillo int
934 1.2 dillo hfslib_get_directory_contents(
935 1.2 dillo hfs_volume* in_vol,
936 1.2 dillo hfs_cnid_t in_dir,
937 1.2 dillo hfs_catalog_keyed_record_t** out_children,
938 1.2 dillo hfs_unistr255_t** out_childnames,
939 1.1 dillo uint32_t* out_numchildren,
940 1.2 dillo hfs_callback_args* cbargs)
941 1.1 dillo {
942 1.2 dillo hfs_node_descriptor_t nd;
943 1.2 dillo hfs_extent_descriptor_t* extents;
944 1.2 dillo hfs_catalog_keyed_record_t currec;
945 1.2 dillo hfs_catalog_key_t curkey;
946 1.1 dillo void** recs;
947 1.1 dillo void* buffer;
948 1.1 dillo void* ptr; /* temporary pointer for realloc() */
949 1.1 dillo uint64_t bytesread;
950 1.1 dillo uint32_t curnode;
951 1.1 dillo uint32_t lastnode;
952 1.1 dillo uint16_t* recsizes;
953 1.1 dillo uint16_t numextents;
954 1.1 dillo uint16_t recnum;
955 1.1 dillo int16_t leaftype;
956 1.1 dillo int keycompare;
957 1.1 dillo int result;
958 1.1 dillo
959 1.1 dillo if(in_vol==NULL || in_dir==0 || out_numchildren==NULL)
960 1.1 dillo return 1;
961 1.1 dillo
962 1.1 dillo result = 1;
963 1.1 dillo buffer = NULL;
964 1.1 dillo extents = NULL;
965 1.1 dillo lastnode = 0;
966 1.1 dillo recs = NULL;
967 1.1 dillo recsizes = NULL;
968 1.1 dillo *out_numchildren = 0;
969 1.1 dillo if(out_children!=NULL)
970 1.1 dillo *out_children = NULL;
971 1.1 dillo if(out_childnames!=NULL)
972 1.1 dillo *out_childnames = NULL;
973 1.1 dillo
974 1.2 dillo buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
975 1.1 dillo if(buffer==NULL)
976 1.2 dillo HFS_LIBERR("could not allocate node buffer");
977 1.1 dillo
978 1.2 dillo numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
979 1.2 dillo HFS_DATAFORK, &extents, cbargs);
980 1.1 dillo if(numextents==0)
981 1.2 dillo HFS_LIBERR("could not locate fork extents");
982 1.1 dillo
983 1.1 dillo nd.num_recs = 0;
984 1.1 dillo curnode = in_vol->chr.root_node;
985 1.1 dillo
986 1.1 dillo while(1)
987 1.1 dillo {
988 1.2 dillo hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
989 1.1 dillo recnum = 0;
990 1.1 dillo
991 1.2 dillo if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
992 1.1 dillo in_vol->chr.node_size, curnode * in_vol->chr.node_size, extents,
993 1.1 dillo numextents, cbargs)!=0)
994 1.2 dillo HFS_LIBERR("could not read catalog node #%i", curnode);
995 1.1 dillo
996 1.2 dillo if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
997 1.1 dillo in_vol, cbargs)==0)
998 1.2 dillo HFS_LIBERR("could not parse catalog node #%i", curnode);
999 1.1 dillo
1000 1.1 dillo for(recnum=0; recnum<nd.num_recs; recnum++)
1001 1.1 dillo {
1002 1.1 dillo leaftype = nd.kind; /* needed b/c leaftype might be modified now */
1003 1.2 dillo if(hfslib_read_catalog_keyed_record(recs[recnum], &currec,
1004 1.1 dillo &leaftype, &curkey, in_vol)==0)
1005 1.2 dillo HFS_LIBERR("could not read cat record %i:%i", curnode, recnum);
1006 1.1 dillo
1007 1.2 dillo if(nd.kind==HFS_INDEXNODE)
1008 1.1 dillo {
1009 1.1 dillo keycompare = in_dir - curkey.parent_cnid;
1010 1.1 dillo if(keycompare < 0)
1011 1.1 dillo {
1012 1.1 dillo /* Check if key is less than *every* record, which should
1013 1.1 dillo * never happen if the volume and key are good. */
1014 1.1 dillo if(recnum==0)
1015 1.2 dillo HFS_LIBERR("all records greater than key");
1016 1.1 dillo
1017 1.1 dillo /* Otherwise, we've found the first record that exceeds our
1018 1.1 dillo * key, so retrieve the previous, lesser record. */
1019 1.1 dillo curnode = lastnode;
1020 1.1 dillo break;
1021 1.1 dillo }
1022 1.1 dillo else if(keycompare == 0)
1023 1.1 dillo {
1024 1.1 dillo /*
1025 1.1 dillo * Normally, if we were doing a typical catalog lookup with
1026 1.1 dillo * both a parent cnid AND a name, keycompare==0 would be an
1027 1.1 dillo * exact match. However, since we are ignoring object names
1028 1.1 dillo * in this case and only comparing parent cnids, a direct
1029 1.1 dillo * match on only a parent cnid could mean that we've found
1030 1.1 dillo * an object with that parent cnid BUT which is NOT the
1031 1.1 dillo * first object (according to the HFS+ spec) with that
1032 1.1 dillo * parent cnid. Thus, when we find a parent cnid match, we
1033 1.1 dillo * still go back to the previously found leaf node and start
1034 1.1 dillo * checking it for a possible prior instance of an object
1035 1.1 dillo * with our desired parent cnid.
1036 1.1 dillo */
1037 1.1 dillo curnode = lastnode;
1038 1.1 dillo break;
1039 1.1 dillo }
1040 1.1 dillo else if (recnum==nd.num_recs-1 && keycompare > 0)
1041 1.1 dillo {
1042 1.1 dillo /* Descend to child node if we found an exact match, or if
1043 1.1 dillo * this is the last pointer record. */
1044 1.1 dillo curnode = currec.child;
1045 1.1 dillo break;
1046 1.1 dillo }
1047 1.1 dillo
1048 1.1 dillo lastnode = currec.child;
1049 1.1 dillo }
1050 1.1 dillo else
1051 1.1 dillo {
1052 1.1 dillo /*
1053 1.1 dillo * We have now descended down the hierarchy of index nodes into
1054 1.1 dillo * the leaf node that contains the first catalog record with a
1055 1.1 dillo * matching parent CNID. Since all leaf nodes are chained
1056 1.1 dillo * through their flink/blink, we can simply walk forward through
1057 1.1 dillo * this chain, copying every matching non-thread record, until
1058 1.1 dillo * we hit a record with a different parent CNID. At that point,
1059 1.1 dillo * we've retrieved all of our directory's items, if any.
1060 1.1 dillo */
1061 1.1 dillo curnode = nd.flink;
1062 1.1 dillo
1063 1.1 dillo if(curkey.parent_cnid<in_dir)
1064 1.1 dillo continue;
1065 1.1 dillo else if(curkey.parent_cnid==in_dir)
1066 1.1 dillo {
1067 1.1 dillo /* Hide files/folders which are supposed to be invisible
1068 1.1 dillo * to users, according to the hfs+ spec. */
1069 1.2 dillo if(hfslib_is_private_file(&curkey))
1070 1.1 dillo continue;
1071 1.1 dillo
1072 1.1 dillo /* leaftype has now been set to the catalog record type */
1073 1.2 dillo if(leaftype==HFS_REC_FLDR || leaftype==HFS_REC_FILE)
1074 1.1 dillo {
1075 1.1 dillo (*out_numchildren)++;
1076 1.1 dillo
1077 1.1 dillo if(out_children!=NULL)
1078 1.1 dillo {
1079 1.2 dillo ptr = hfslib_realloc(*out_children,
1080 1.1 dillo *out_numchildren *
1081 1.2 dillo sizeof(hfs_catalog_keyed_record_t), cbargs);
1082 1.1 dillo if(ptr==NULL)
1083 1.2 dillo HFS_LIBERR("could not allocate child record");
1084 1.1 dillo *out_children = ptr;
1085 1.1 dillo
1086 1.1 dillo memcpy(&((*out_children)[*out_numchildren-1]),
1087 1.2 dillo &currec, sizeof(hfs_catalog_keyed_record_t));
1088 1.1 dillo }
1089 1.1 dillo
1090 1.1 dillo if(out_childnames!=NULL)
1091 1.1 dillo {
1092 1.2 dillo ptr = hfslib_realloc(*out_childnames,
1093 1.2 dillo *out_numchildren * sizeof(hfs_unistr255_t),
1094 1.1 dillo cbargs);
1095 1.1 dillo if(ptr==NULL)
1096 1.2 dillo HFS_LIBERR("could not allocate child name");
1097 1.1 dillo *out_childnames = ptr;
1098 1.1 dillo
1099 1.1 dillo memcpy(&((*out_childnames)[*out_numchildren-1]),
1100 1.2 dillo &curkey.name, sizeof(hfs_unistr255_t));
1101 1.1 dillo }
1102 1.1 dillo }
1103 1.1 dillo } else {
1104 1.1 dillo result = 0;
1105 1.1 dillo /* We have just now passed the last item in the desired
1106 1.1 dillo * folder (or the folder was empty), so exit. */
1107 1.1 dillo goto exit;
1108 1.1 dillo }
1109 1.1 dillo }
1110 1.1 dillo }
1111 1.1 dillo }
1112 1.1 dillo
1113 1.1 dillo result = 0;
1114 1.1 dillo
1115 1.1 dillo goto exit;
1116 1.1 dillo
1117 1.1 dillo error:
1118 1.1 dillo if(out_children!=NULL && *out_children!=NULL)
1119 1.2 dillo hfslib_free(*out_children, cbargs);
1120 1.1 dillo if(out_childnames!=NULL && *out_childnames!=NULL)
1121 1.2 dillo hfslib_free(*out_childnames, cbargs);
1122 1.1 dillo
1123 1.1 dillo /* FALLTHROUGH */
1124 1.1 dillo
1125 1.1 dillo exit:
1126 1.1 dillo if(extents!=NULL)
1127 1.2 dillo hfslib_free(extents, cbargs);
1128 1.2 dillo hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
1129 1.1 dillo if(buffer!=NULL)
1130 1.2 dillo hfslib_free(buffer, cbargs);
1131 1.1 dillo
1132 1.1 dillo return result;
1133 1.1 dillo }
1134 1.1 dillo
1135 1.1 dillo int
1136 1.2 dillo hfslib_is_journal_clean(hfs_volume* in_vol)
1137 1.1 dillo {
1138 1.1 dillo if(in_vol==NULL)
1139 1.1 dillo return 0;
1140 1.1 dillo
1141 1.1 dillo /* return true if no journal */
1142 1.2 dillo if(!(in_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)))
1143 1.1 dillo return 1;
1144 1.1 dillo
1145 1.1 dillo return (in_vol->jh.start == in_vol->jh.end);
1146 1.1 dillo }
1147 1.1 dillo
1148 1.1 dillo /*
1149 1.2 dillo * hfslib_is_private_file()
1150 1.1 dillo *
1151 1.1 dillo * Given a file/folder's key and parent CNID, determines if it should be hidden
1152 1.1 dillo * from the user (e.g., the journal header file or the HFS+ Private Data folder)
1153 1.1 dillo */
1154 1.1 dillo int
1155 1.2 dillo hfslib_is_private_file(hfs_catalog_key_t *filekey)
1156 1.1 dillo {
1157 1.2 dillo hfs_catalog_key_t* curkey = NULL;
1158 1.1 dillo int i = 0;
1159 1.1 dillo
1160 1.1 dillo /*
1161 1.1 dillo * According to the HFS+ spec to date, all special objects are located in
1162 1.1 dillo * the root directory of the volume, so don't bother going further if the
1163 1.1 dillo * requested object is not.
1164 1.1 dillo */
1165 1.2 dillo if(filekey->parent_cnid != HFS_CNID_ROOT_FOLDER)
1166 1.1 dillo return 0;
1167 1.1 dillo
1168 1.2 dillo while((curkey = hfs_gPrivateObjectKeys[i]) != NULL)
1169 1.1 dillo {
1170 1.1 dillo /* XXX Always use binary compare here, or use volume's specific key
1171 1.1 dillo * XXX comparison routine? */
1172 1.1 dillo if(filekey->name.length == curkey->name.length
1173 1.1 dillo && memcmp(filekey->name.unicode, curkey->name.unicode,
1174 1.1 dillo 2 * curkey->name.length)==0)
1175 1.1 dillo return 1;
1176 1.1 dillo
1177 1.1 dillo i++;
1178 1.1 dillo }
1179 1.1 dillo
1180 1.1 dillo return 0;
1181 1.1 dillo }
1182 1.1 dillo
1183 1.1 dillo
1184 1.1 dillo /* bool
1185 1.2 dillo hfslib_is_journal_valid(hfs_volume* in_vol)
1186 1.1 dillo {
1187 1.1 dillo - check magic numbers
1188 1.1 dillo - check Other Things
1189 1.1 dillo }*/
1190 1.1 dillo
1191 1.1 dillo #if 0
1192 1.1 dillo #pragma mark -
1193 1.1 dillo #pragma mark Major Structures
1194 1.1 dillo #endif
1195 1.1 dillo
1196 1.1 dillo /*
1197 1.2 dillo * hfslib_read_volume_header()
1198 1.1 dillo *
1199 1.1 dillo * Reads in_bytes, formats the data appropriately, and places the result
1200 1.1 dillo * in out_header, which is assumed to be previously allocated. Returns number
1201 1.1 dillo * of bytes read, 0 if failed.
1202 1.1 dillo */
1203 1.1 dillo
1204 1.1 dillo size_t
1205 1.2 dillo hfslib_read_volume_header(void* in_bytes, hfs_volume_header_t* out_header)
1206 1.1 dillo {
1207 1.1 dillo void* ptr;
1208 1.1 dillo size_t last_bytes_read;
1209 1.1 dillo int i;
1210 1.1 dillo
1211 1.1 dillo if(in_bytes==NULL || out_header==NULL)
1212 1.1 dillo return 0;
1213 1.1 dillo
1214 1.1 dillo ptr = in_bytes;
1215 1.1 dillo
1216 1.1 dillo out_header->signature = be16tohp(&ptr);
1217 1.1 dillo out_header->version = be16tohp(&ptr);
1218 1.1 dillo out_header->attributes = be32tohp(&ptr);
1219 1.1 dillo out_header->last_mounting_version = be32tohp(&ptr);
1220 1.1 dillo out_header->journal_info_block = be32tohp(&ptr);
1221 1.1 dillo
1222 1.1 dillo out_header->date_created = be32tohp(&ptr);
1223 1.1 dillo out_header->date_modified = be32tohp(&ptr);
1224 1.1 dillo out_header->date_backedup = be32tohp(&ptr);
1225 1.1 dillo out_header->date_checked = be32tohp(&ptr);
1226 1.1 dillo
1227 1.1 dillo out_header->file_count = be32tohp(&ptr);
1228 1.1 dillo out_header->folder_count = be32tohp(&ptr);
1229 1.1 dillo
1230 1.1 dillo out_header->block_size = be32tohp(&ptr);
1231 1.1 dillo out_header->total_blocks = be32tohp(&ptr);
1232 1.1 dillo out_header->free_blocks = be32tohp(&ptr);
1233 1.1 dillo out_header->next_alloc_block = be32tohp(&ptr);
1234 1.1 dillo out_header->rsrc_clump_size = be32tohp(&ptr);
1235 1.1 dillo out_header->data_clump_size = be32tohp(&ptr);
1236 1.1 dillo out_header->next_cnid = be32tohp(&ptr);
1237 1.1 dillo
1238 1.1 dillo out_header->write_count = be32tohp(&ptr);
1239 1.1 dillo out_header->encodings = be64tohp(&ptr);
1240 1.1 dillo
1241 1.1 dillo for(i=0;i<8;i++)
1242 1.1 dillo out_header->finder_info[i] = be32tohp(&ptr);
1243 1.1 dillo
1244 1.2 dillo if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1245 1.1 dillo &out_header->allocation_file))==0)
1246 1.1 dillo return 0;
1247 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1248 1.1 dillo
1249 1.2 dillo if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1250 1.1 dillo &out_header->extents_file))==0)
1251 1.1 dillo return 0;
1252 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1253 1.1 dillo
1254 1.2 dillo if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1255 1.1 dillo &out_header->catalog_file))==0)
1256 1.1 dillo return 0;
1257 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1258 1.1 dillo
1259 1.2 dillo if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1260 1.1 dillo &out_header->attributes_file))==0)
1261 1.1 dillo return 0;
1262 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1263 1.1 dillo
1264 1.2 dillo if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1265 1.1 dillo &out_header->startup_file))==0)
1266 1.1 dillo return 0;
1267 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1268 1.1 dillo
1269 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1270 1.1 dillo }
1271 1.1 dillo
1272 1.1 dillo /*
1273 1.2 dillo * hfslib_reada_node()
1274 1.1 dillo *
1275 1.1 dillo * Given the pointer to and size of a buffer containing the entire, raw
1276 1.1 dillo * contents of any b-tree node from the disk, this function will:
1277 1.1 dillo *
1278 1.1 dillo * 1. determine the type of node and read its contents
1279 1.1 dillo * 2. allocate memory for each record and fill it appropriately
1280 1.1 dillo * 3. set out_record_ptrs_array to point to an array (which it allocates)
1281 1.1 dillo * which has out_node_descriptor->num_recs many pointers to the
1282 1.1 dillo * records themselves
1283 1.1 dillo * 4. allocate out_record_ptr_sizes_array and fill it with the sizes of
1284 1.1 dillo * each record
1285 1.1 dillo * 5. return the number of bytes read (i.e., the size of the node)
1286 1.1 dillo * or 0 on failure
1287 1.1 dillo *
1288 1.1 dillo * out_node_descriptor must be allocated by the caller and may not be NULL.
1289 1.1 dillo *
1290 1.1 dillo * out_record_ptrs_array and out_record_ptr_sizes_array must both be specified,
1291 1.1 dillo * or both be NULL if the caller is not interested in reading the records.
1292 1.1 dillo *
1293 1.1 dillo * out_record_ptr_sizes_array may be NULL if the caller is not interested in
1294 1.1 dillo * reading the records, but must not be NULL if out_record_ptrs_array is not.
1295 1.1 dillo *
1296 1.2 dillo * in_parent_file is HFS_CATALOG_FILE, HFS_EXTENTS_FILE, or
1297 1.2 dillo * HFS_ATTRIBUTES_FILE, depending on the special file in which this node
1298 1.1 dillo * resides.
1299 1.1 dillo *
1300 1.1 dillo * inout_volume must have its catnodesize or extnodesize field (depending on
1301 1.1 dillo * the parent file) set to the correct value if this is an index, leaf, or map
1302 1.1 dillo * node. If this is a header node, the field will be set to its correct value.
1303 1.1 dillo */
1304 1.1 dillo size_t
1305 1.2 dillo hfslib_reada_node(void* in_bytes,
1306 1.2 dillo hfs_node_descriptor_t* out_node_descriptor,
1307 1.1 dillo void** out_record_ptrs_array[],
1308 1.1 dillo uint16_t* out_record_ptr_sizes_array[],
1309 1.2 dillo hfs_btree_file_type in_parent_file,
1310 1.2 dillo hfs_volume* inout_volume,
1311 1.2 dillo hfs_callback_args* cbargs)
1312 1.1 dillo {
1313 1.1 dillo void* ptr;
1314 1.1 dillo uint16_t* rec_offsets;
1315 1.1 dillo size_t last_bytes_read;
1316 1.1 dillo uint16_t nodesize;
1317 1.1 dillo uint16_t numrecords;
1318 1.1 dillo uint16_t free_space_offset; /* offset to free space in node */
1319 1.1 dillo int keysizefieldsize;
1320 1.1 dillo int i;
1321 1.1 dillo
1322 1.1 dillo numrecords = 0;
1323 1.1 dillo rec_offsets = NULL;
1324 1.1 dillo if(out_record_ptrs_array!=NULL)
1325 1.1 dillo *out_record_ptrs_array = NULL;
1326 1.1 dillo if(out_record_ptr_sizes_array!=NULL)
1327 1.1 dillo *out_record_ptr_sizes_array = NULL;
1328 1.1 dillo
1329 1.1 dillo if(in_bytes==NULL || inout_volume==NULL || out_node_descriptor==NULL
1330 1.1 dillo || (out_record_ptrs_array==NULL && out_record_ptr_sizes_array!=NULL)
1331 1.1 dillo || (out_record_ptrs_array!=NULL && out_record_ptr_sizes_array==NULL) )
1332 1.1 dillo goto error;
1333 1.1 dillo
1334 1.1 dillo ptr = in_bytes;
1335 1.1 dillo
1336 1.1 dillo out_node_descriptor->flink = be32tohp(&ptr);
1337 1.1 dillo out_node_descriptor->blink = be32tohp(&ptr);
1338 1.1 dillo out_node_descriptor->kind = *(((int8_t*)ptr));
1339 1.1 dillo ptr = (uint8_t*)ptr + 1;
1340 1.1 dillo out_node_descriptor->height = *(((uint8_t*)ptr));
1341 1.1 dillo ptr = (uint8_t*)ptr + 1;
1342 1.1 dillo out_node_descriptor->num_recs = be16tohp(&ptr);
1343 1.1 dillo out_node_descriptor->reserved = be16tohp(&ptr);
1344 1.1 dillo
1345 1.1 dillo numrecords = out_node_descriptor->num_recs;
1346 1.1 dillo
1347 1.1 dillo /*
1348 1.1 dillo * To go any further, we will need to know the size of this node, as well
1349 1.1 dillo * as the width of keyed records' key_len parameters for this btree. If
1350 1.1 dillo * this is an index, leaf, or map node, inout_volume already has the node
1351 1.1 dillo * size set in its catnodesize or extnodesize field and the key length set
1352 1.1 dillo * in the catkeysizefieldsize or extkeysizefieldsize for catalog files and
1353 1.1 dillo * extent files, respectively. However, if this is a header node, this
1354 1.1 dillo * information has not yet been determined, so this is the place to do it.
1355 1.1 dillo */
1356 1.2 dillo if(out_node_descriptor->kind == HFS_HEADERNODE)
1357 1.1 dillo {
1358 1.2 dillo hfs_header_record_t hr;
1359 1.1 dillo void* header_rec_offset[1];
1360 1.1 dillo uint16_t header_rec_size[1];
1361 1.1 dillo
1362 1.1 dillo /* sanity check to ensure this is a good header node */
1363 1.1 dillo if(numrecords!=3)
1364 1.2 dillo HFS_LIBERR("header node does not have exactly 3 records");
1365 1.1 dillo
1366 1.1 dillo header_rec_offset[0] = ptr;
1367 1.2 dillo header_rec_size[0] = sizeof(hfs_header_record_t);
1368 1.1 dillo
1369 1.2 dillo last_bytes_read = hfslib_read_header_node(header_rec_offset,
1370 1.1 dillo header_rec_size, 1, &hr, NULL, NULL);
1371 1.1 dillo if(last_bytes_read==0)
1372 1.2 dillo HFS_LIBERR("could not read header node");
1373 1.1 dillo
1374 1.1 dillo switch(in_parent_file)
1375 1.1 dillo {
1376 1.2 dillo case HFS_CATALOG_FILE:
1377 1.1 dillo inout_volume->chr.node_size = hr.node_size;
1378 1.1 dillo inout_volume->catkeysizefieldsize =
1379 1.2 dillo (hr.attributes & HFS_BIG_KEYS_MASK) ?
1380 1.1 dillo sizeof(uint16_t):sizeof(uint8_t);
1381 1.1 dillo break;
1382 1.1 dillo
1383 1.2 dillo case HFS_EXTENTS_FILE:
1384 1.1 dillo inout_volume->ehr.node_size = hr.node_size;
1385 1.1 dillo inout_volume->extkeysizefieldsize =
1386 1.2 dillo (hr.attributes & HFS_BIG_KEYS_MASK) ?
1387 1.1 dillo sizeof(uint16_t):sizeof(uint8_t);
1388 1.1 dillo break;
1389 1.1 dillo
1390 1.2 dillo case HFS_ATTRIBUTES_FILE:
1391 1.1 dillo default:
1392 1.2 dillo HFS_LIBERR("invalid parent file type specified");
1393 1.1 dillo /* NOTREACHED */
1394 1.1 dillo }
1395 1.1 dillo }
1396 1.1 dillo
1397 1.1 dillo switch(in_parent_file)
1398 1.1 dillo {
1399 1.2 dillo case HFS_CATALOG_FILE:
1400 1.1 dillo nodesize = inout_volume->chr.node_size;
1401 1.1 dillo keysizefieldsize = inout_volume->catkeysizefieldsize;
1402 1.1 dillo break;
1403 1.1 dillo
1404 1.2 dillo case HFS_EXTENTS_FILE:
1405 1.1 dillo nodesize = inout_volume->ehr.node_size;
1406 1.1 dillo keysizefieldsize = inout_volume->extkeysizefieldsize;
1407 1.1 dillo break;
1408 1.1 dillo
1409 1.2 dillo case HFS_ATTRIBUTES_FILE:
1410 1.1 dillo default:
1411 1.2 dillo HFS_LIBERR("invalid parent file type specified");
1412 1.1 dillo /* NOTREACHED */
1413 1.1 dillo }
1414 1.1 dillo
1415 1.1 dillo /*
1416 1.1 dillo * Don't care about records so just exit after getting the node descriptor.
1417 1.1 dillo * Note: This happens after the header node code, and not before it, in
1418 1.1 dillo * case the caller calls this function and ignores the record data just to
1419 1.1 dillo * get at the node descriptor, but then tries to call it again on a non-
1420 1.1 dillo * header node without first setting inout_volume->cat/extnodesize.
1421 1.1 dillo */
1422 1.1 dillo if(out_record_ptrs_array==NULL)
1423 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1424 1.1 dillo
1425 1.2 dillo rec_offsets = hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1426 1.1 dillo *out_record_ptr_sizes_array =
1427 1.2 dillo hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1428 1.1 dillo if(rec_offsets==NULL || *out_record_ptr_sizes_array==NULL)
1429 1.2 dillo HFS_LIBERR("could not allocate node record offsets");
1430 1.1 dillo
1431 1.2 dillo *out_record_ptrs_array = hfslib_malloc(numrecords * sizeof(void*), cbargs);
1432 1.1 dillo if(*out_record_ptrs_array==NULL)
1433 1.2 dillo HFS_LIBERR("could not allocate node records");
1434 1.1 dillo
1435 1.2 dillo last_bytes_read = hfslib_reada_node_offsets((uint8_t*)in_bytes + nodesize -
1436 1.1 dillo numrecords * sizeof(uint16_t), rec_offsets);
1437 1.1 dillo if(last_bytes_read==0)
1438 1.2 dillo HFS_LIBERR("could not read node record offsets");
1439 1.1 dillo
1440 1.1 dillo /* The size of the last record (i.e. the first one listed in the offsets)
1441 1.1 dillo * must be determined using the offset to the node's free space. */
1442 1.1 dillo free_space_offset = be16toh(*(uint16_t*)((uint8_t*)in_bytes + nodesize -
1443 1.1 dillo (numrecords+1) * sizeof(uint16_t)));
1444 1.1 dillo
1445 1.1 dillo (*out_record_ptr_sizes_array)[numrecords-1] =
1446 1.1 dillo free_space_offset - rec_offsets[0];
1447 1.1 dillo for(i=1;i<numrecords;i++)
1448 1.1 dillo {
1449 1.1 dillo (*out_record_ptr_sizes_array)[numrecords-i-1] =
1450 1.1 dillo rec_offsets[i-1] - rec_offsets[i];
1451 1.1 dillo }
1452 1.1 dillo
1453 1.1 dillo for(i=0;i<numrecords;i++)
1454 1.1 dillo {
1455 1.1 dillo (*out_record_ptrs_array)[i] =
1456 1.2 dillo hfslib_malloc((*out_record_ptr_sizes_array)[i], cbargs);
1457 1.1 dillo
1458 1.1 dillo if((*out_record_ptrs_array)[i]==NULL)
1459 1.2 dillo HFS_LIBERR("could not allocate node record #%i",i);
1460 1.1 dillo
1461 1.1 dillo /*
1462 1.1 dillo * If this is a keyed node (i.e., a leaf or index node), there are two
1463 1.1 dillo * boundary rules that each record must obey:
1464 1.1 dillo *
1465 1.1 dillo * 1. A pad byte must be placed between the key and data if the
1466 1.1 dillo * size of the key plus the size of the key_len field is odd.
1467 1.1 dillo *
1468 1.1 dillo * 2. A pad byte must be placed after the data if the data size
1469 1.1 dillo * is odd.
1470 1.1 dillo *
1471 1.1 dillo * So in the first case we increment the starting point of the data
1472 1.1 dillo * and correspondingly decrement the record size. In the second case
1473 1.1 dillo * we decrement the record size.
1474 1.1 dillo */
1475 1.2 dillo if(out_node_descriptor->kind == HFS_LEAFNODE ||
1476 1.2 dillo out_node_descriptor->kind == HFS_INDEXNODE)
1477 1.1 dillo {
1478 1.2 dillo hfs_catalog_key_t reckey;
1479 1.1 dillo uint16_t rectype;
1480 1.1 dillo
1481 1.1 dillo rectype = out_node_descriptor->kind;
1482 1.2 dillo last_bytes_read = hfslib_read_catalog_keyed_record(ptr, NULL,
1483 1.1 dillo &rectype, &reckey, inout_volume);
1484 1.1 dillo if(last_bytes_read==0)
1485 1.2 dillo HFS_LIBERR("could not read node record");
1486 1.1 dillo
1487 1.1 dillo if((reckey.key_len + keysizefieldsize) % 2 == 1)
1488 1.1 dillo {
1489 1.1 dillo ptr = (uint8_t*)ptr + 1;
1490 1.1 dillo (*out_record_ptr_sizes_array)[i]--;
1491 1.1 dillo }
1492 1.1 dillo
1493 1.1 dillo if((*out_record_ptr_sizes_array)[i] % 2 == 1)
1494 1.1 dillo (*out_record_ptr_sizes_array)[i]--;
1495 1.1 dillo }
1496 1.1 dillo
1497 1.1 dillo memcpy((*out_record_ptrs_array)[i], ptr,
1498 1.1 dillo (*out_record_ptr_sizes_array)[i]);
1499 1.1 dillo ptr = (uint8_t*)ptr + (*out_record_ptr_sizes_array)[i];
1500 1.1 dillo }
1501 1.1 dillo
1502 1.1 dillo goto exit;
1503 1.1 dillo
1504 1.1 dillo error:
1505 1.2 dillo hfslib_free_recs(out_record_ptrs_array, out_record_ptr_sizes_array,
1506 1.1 dillo &numrecords, cbargs);
1507 1.1 dillo
1508 1.1 dillo ptr = in_bytes;
1509 1.1 dillo
1510 1.2 dillo /* warn("error occurred in hfslib_reada_node()"); */
1511 1.1 dillo
1512 1.1 dillo /* FALLTHROUGH */
1513 1.1 dillo
1514 1.1 dillo exit:
1515 1.1 dillo if(rec_offsets!=NULL)
1516 1.2 dillo hfslib_free(rec_offsets, cbargs);
1517 1.1 dillo
1518 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1519 1.1 dillo }
1520 1.1 dillo
1521 1.1 dillo /*
1522 1.2 dillo * hfslib_reada_node_offsets()
1523 1.1 dillo *
1524 1.1 dillo * Sets out_offset_array to contain the offsets to each record in the node,
1525 1.1 dillo * in reverse order. Does not read the free space offset.
1526 1.1 dillo */
1527 1.1 dillo size_t
1528 1.2 dillo hfslib_reada_node_offsets(void* in_bytes, uint16_t* out_offset_array)
1529 1.1 dillo {
1530 1.1 dillo void* ptr;
1531 1.1 dillo
1532 1.1 dillo if(in_bytes==NULL || out_offset_array==NULL)
1533 1.1 dillo return 0;
1534 1.1 dillo
1535 1.1 dillo ptr = in_bytes;
1536 1.1 dillo
1537 1.1 dillo /*
1538 1.1 dillo * The offset for record 0 (which is the very last offset in the node) is
1539 1.1 dillo * always equal to 14, the size of the node descriptor. So, once we hit
1540 1.1 dillo * offset=14, we know this is the last offset. In this way, we don't need
1541 1.1 dillo * to know the number of records beforehand.
1542 1.1 dillo */
1543 1.1 dillo out_offset_array--;
1544 1.1 dillo do
1545 1.1 dillo {
1546 1.1 dillo out_offset_array++;
1547 1.1 dillo *out_offset_array = be16tohp(&ptr);
1548 1.1 dillo }
1549 1.1 dillo while(*out_offset_array != (uint16_t)14);
1550 1.1 dillo
1551 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1552 1.1 dillo }
1553 1.1 dillo
1554 1.2 dillo /* hfslib_read_header_node()
1555 1.1 dillo *
1556 1.1 dillo * out_header_record and/or out_map_record may be NULL if the caller doesn't
1557 1.1 dillo * care about their contents.
1558 1.1 dillo */
1559 1.1 dillo size_t
1560 1.2 dillo hfslib_read_header_node(void** in_recs,
1561 1.1 dillo uint16_t* in_rec_sizes,
1562 1.1 dillo uint16_t in_num_recs,
1563 1.2 dillo hfs_header_record_t* out_hr,
1564 1.1 dillo void* out_userdata,
1565 1.1 dillo void* out_map)
1566 1.1 dillo {
1567 1.1 dillo void* ptr;
1568 1.1 dillo int i;
1569 1.1 dillo
1570 1.1 dillo if(in_recs==NULL || in_rec_sizes==NULL)
1571 1.1 dillo return 0;
1572 1.1 dillo
1573 1.1 dillo if(out_hr!=NULL)
1574 1.1 dillo {
1575 1.1 dillo ptr = in_recs[0];
1576 1.1 dillo
1577 1.1 dillo out_hr->tree_depth = be16tohp(&ptr);
1578 1.1 dillo out_hr->root_node = be32tohp(&ptr);
1579 1.1 dillo out_hr->leaf_recs = be32tohp(&ptr);
1580 1.1 dillo out_hr->first_leaf = be32tohp(&ptr);
1581 1.1 dillo out_hr->last_leaf = be32tohp(&ptr);
1582 1.1 dillo out_hr->node_size = be16tohp(&ptr);
1583 1.1 dillo out_hr->max_key_len = be16tohp(&ptr);
1584 1.1 dillo out_hr->total_nodes = be32tohp(&ptr);
1585 1.1 dillo out_hr->free_nodes = be32tohp(&ptr);
1586 1.1 dillo out_hr->reserved = be16tohp(&ptr);
1587 1.1 dillo out_hr->clump_size = be32tohp(&ptr);
1588 1.1 dillo out_hr->btree_type = *(((uint8_t*)ptr));
1589 1.1 dillo ptr = (uint8_t*)ptr + 1;
1590 1.1 dillo out_hr->keycomp_type = *(((uint8_t*)ptr));
1591 1.1 dillo ptr = (uint8_t*)ptr + 1;
1592 1.1 dillo out_hr->attributes = be32tohp(&ptr);
1593 1.1 dillo for(i=0;i<16;i++)
1594 1.1 dillo out_hr->reserved2[i] = be32tohp(&ptr);
1595 1.1 dillo }
1596 1.1 dillo
1597 1.1 dillo if(out_userdata!=NULL)
1598 1.1 dillo {
1599 1.1 dillo memcpy(out_userdata, in_recs[1], in_rec_sizes[1]);
1600 1.1 dillo }
1601 1.1 dillo ptr = (uint8_t*)ptr + in_rec_sizes[1]; /* size of user data record */
1602 1.1 dillo
1603 1.1 dillo if(out_map!=NULL)
1604 1.1 dillo {
1605 1.1 dillo memcpy(out_map, in_recs[2], in_rec_sizes[2]);
1606 1.1 dillo }
1607 1.1 dillo ptr = (uint8_t*)ptr + in_rec_sizes[2]; /* size of map record */
1608 1.1 dillo
1609 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_recs[0]);
1610 1.1 dillo }
1611 1.1 dillo
1612 1.1 dillo /*
1613 1.2 dillo * hfslib_read_catalog_keyed_record()
1614 1.1 dillo *
1615 1.2 dillo * out_recdata can be NULL. inout_rectype must be set to either HFS_LEAFNODE
1616 1.2 dillo * or HFS_INDEXNODE upon calling this function, and will be set by the
1617 1.2 dillo * function to one of HFS_REC_FLDR, HFS_REC_FILE, HFS_REC_FLDR_THREAD, or
1618 1.2 dillo * HFS_REC_FLDR_THREAD upon return if the node is a leaf node. If it is an
1619 1.1 dillo * index node, inout_rectype will not be changed.
1620 1.1 dillo */
1621 1.1 dillo size_t
1622 1.2 dillo hfslib_read_catalog_keyed_record(
1623 1.1 dillo void* in_bytes,
1624 1.2 dillo hfs_catalog_keyed_record_t* out_recdata,
1625 1.1 dillo int16_t* inout_rectype,
1626 1.2 dillo hfs_catalog_key_t* out_key,
1627 1.2 dillo hfs_volume* in_volume)
1628 1.1 dillo {
1629 1.1 dillo void* ptr;
1630 1.1 dillo size_t last_bytes_read;
1631 1.1 dillo
1632 1.1 dillo if(in_bytes==NULL || out_key==NULL || inout_rectype==NULL)
1633 1.1 dillo return 0;
1634 1.1 dillo
1635 1.1 dillo ptr = in_bytes;
1636 1.1 dillo
1637 1.1 dillo /* For HFS+, the key length is always a 2-byte number. This is indicated
1638 1.2 dillo * by the HFS_BIG_KEYS_MASK bit in the attributes field of the catalog
1639 1.1 dillo * header record. However, we just assume this bit is set, since all HFS+
1640 1.1 dillo * volumes should have it set anyway. */
1641 1.1 dillo if(in_volume->catkeysizefieldsize == sizeof(uint16_t))
1642 1.1 dillo out_key->key_len = be16tohp(&ptr);
1643 1.1 dillo else if (in_volume->catkeysizefieldsize == sizeof(uint8_t)) {
1644 1.1 dillo out_key->key_len = *(((uint8_t*)ptr));
1645 1.1 dillo ptr = (uint8_t*)ptr + 1;
1646 1.1 dillo }
1647 1.1 dillo
1648 1.1 dillo out_key->parent_cnid = be32tohp(&ptr);
1649 1.1 dillo
1650 1.2 dillo last_bytes_read = hfslib_read_unistr255(ptr, &out_key->name);
1651 1.1 dillo if(last_bytes_read==0)
1652 1.1 dillo return 0;
1653 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1654 1.1 dillo
1655 1.1 dillo /* don't waste time if the user just wanted the key and/or record type */
1656 1.1 dillo if(out_recdata==NULL)
1657 1.1 dillo {
1658 1.2 dillo if(*inout_rectype == HFS_LEAFNODE)
1659 1.1 dillo *inout_rectype = be16tohp(&ptr);
1660 1.2 dillo else if(*inout_rectype != HFS_INDEXNODE)
1661 1.1 dillo return 0; /* should not happen if we were given valid arguments */
1662 1.1 dillo
1663 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1664 1.1 dillo }
1665 1.1 dillo
1666 1.2 dillo if(*inout_rectype == HFS_INDEXNODE)
1667 1.1 dillo {
1668 1.1 dillo out_recdata->child = be32tohp(&ptr);
1669 1.1 dillo }
1670 1.1 dillo else
1671 1.1 dillo {
1672 1.1 dillo /* first need to determine what kind of record this is */
1673 1.1 dillo *inout_rectype = be16tohp(&ptr);
1674 1.1 dillo out_recdata->type = *inout_rectype;
1675 1.1 dillo
1676 1.1 dillo switch(out_recdata->type)
1677 1.1 dillo {
1678 1.2 dillo case HFS_REC_FLDR:
1679 1.1 dillo {
1680 1.1 dillo out_recdata->folder.flags = be16tohp(&ptr);
1681 1.1 dillo out_recdata->folder.valence = be32tohp(&ptr);
1682 1.1 dillo out_recdata->folder.cnid = be32tohp(&ptr);
1683 1.1 dillo out_recdata->folder.date_created = be32tohp(&ptr);
1684 1.1 dillo out_recdata->folder.date_content_mod = be32tohp(&ptr);
1685 1.1 dillo out_recdata->folder.date_attrib_mod = be32tohp(&ptr);
1686 1.1 dillo out_recdata->folder.date_accessed = be32tohp(&ptr);
1687 1.1 dillo out_recdata->folder.date_backedup = be32tohp(&ptr);
1688 1.1 dillo
1689 1.2 dillo last_bytes_read = hfslib_read_bsd_data(ptr,
1690 1.1 dillo &out_recdata->folder.bsd);
1691 1.1 dillo if(last_bytes_read==0)
1692 1.1 dillo return 0;
1693 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1694 1.1 dillo
1695 1.2 dillo last_bytes_read = hfslib_read_folder_userinfo(ptr,
1696 1.1 dillo &out_recdata->folder.user_info);
1697 1.1 dillo if(last_bytes_read==0)
1698 1.1 dillo return 0;
1699 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1700 1.1 dillo
1701 1.2 dillo last_bytes_read = hfslib_read_folder_finderinfo(ptr,
1702 1.1 dillo &out_recdata->folder.finder_info);
1703 1.1 dillo if(last_bytes_read==0)
1704 1.1 dillo return 0;
1705 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1706 1.1 dillo
1707 1.1 dillo out_recdata->folder.text_encoding = be32tohp(&ptr);
1708 1.1 dillo out_recdata->folder.reserved = be32tohp(&ptr);
1709 1.1 dillo }
1710 1.1 dillo break;
1711 1.1 dillo
1712 1.2 dillo case HFS_REC_FILE:
1713 1.1 dillo {
1714 1.1 dillo out_recdata->file.flags = be16tohp(&ptr);
1715 1.1 dillo out_recdata->file.reserved = be32tohp(&ptr);
1716 1.1 dillo out_recdata->file.cnid = be32tohp(&ptr);
1717 1.1 dillo out_recdata->file.date_created = be32tohp(&ptr);
1718 1.1 dillo out_recdata->file.date_content_mod = be32tohp(&ptr);
1719 1.1 dillo out_recdata->file.date_attrib_mod = be32tohp(&ptr);
1720 1.1 dillo out_recdata->file.date_accessed = be32tohp(&ptr);
1721 1.1 dillo out_recdata->file.date_backedup = be32tohp(&ptr);
1722 1.1 dillo
1723 1.2 dillo last_bytes_read = hfslib_read_bsd_data(ptr,
1724 1.1 dillo &out_recdata->file.bsd);
1725 1.1 dillo if(last_bytes_read==0)
1726 1.1 dillo return 0;
1727 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1728 1.1 dillo
1729 1.2 dillo last_bytes_read = hfslib_read_file_userinfo(ptr,
1730 1.1 dillo &out_recdata->file.user_info);
1731 1.1 dillo if(last_bytes_read==0)
1732 1.1 dillo return 0;
1733 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1734 1.1 dillo
1735 1.2 dillo last_bytes_read = hfslib_read_file_finderinfo(ptr,
1736 1.1 dillo &out_recdata->file.finder_info);
1737 1.1 dillo if(last_bytes_read==0)
1738 1.1 dillo return 0;
1739 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1740 1.1 dillo
1741 1.1 dillo out_recdata->file.text_encoding = be32tohp(&ptr);
1742 1.1 dillo out_recdata->file.reserved2 = be32tohp(&ptr);
1743 1.1 dillo
1744 1.2 dillo last_bytes_read = hfslib_read_fork_descriptor(ptr,
1745 1.1 dillo &out_recdata->file.data_fork);
1746 1.1 dillo if(last_bytes_read==0)
1747 1.1 dillo return 0;
1748 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1749 1.1 dillo
1750 1.2 dillo last_bytes_read = hfslib_read_fork_descriptor(ptr,
1751 1.1 dillo &out_recdata->file.rsrc_fork);
1752 1.1 dillo if(last_bytes_read==0)
1753 1.1 dillo return 0;
1754 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1755 1.1 dillo }
1756 1.1 dillo break;
1757 1.1 dillo
1758 1.2 dillo case HFS_REC_FLDR_THREAD:
1759 1.2 dillo case HFS_REC_FILE_THREAD:
1760 1.1 dillo {
1761 1.1 dillo out_recdata->thread.reserved = be16tohp(&ptr);
1762 1.1 dillo out_recdata->thread.parent_cnid = be32tohp(&ptr);
1763 1.1 dillo
1764 1.2 dillo last_bytes_read = hfslib_read_unistr255(ptr,
1765 1.1 dillo &out_recdata->thread.name);
1766 1.1 dillo if(last_bytes_read==0)
1767 1.1 dillo return 0;
1768 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1769 1.1 dillo }
1770 1.1 dillo break;
1771 1.1 dillo
1772 1.1 dillo default:
1773 1.1 dillo return 1;
1774 1.1 dillo /* NOTREACHED */
1775 1.1 dillo }
1776 1.1 dillo }
1777 1.1 dillo
1778 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1779 1.1 dillo }
1780 1.1 dillo
1781 1.1 dillo /* out_rec may be NULL */
1782 1.1 dillo size_t
1783 1.2 dillo hfslib_read_extent_record(
1784 1.1 dillo void* in_bytes,
1785 1.2 dillo hfs_extent_record_t* out_rec,
1786 1.2 dillo hfs_node_kind in_nodekind,
1787 1.2 dillo hfs_extent_key_t* out_key,
1788 1.2 dillo hfs_volume* in_volume)
1789 1.1 dillo {
1790 1.1 dillo void* ptr;
1791 1.1 dillo size_t last_bytes_read;
1792 1.1 dillo
1793 1.1 dillo if(in_bytes==NULL || out_key==NULL
1794 1.2 dillo || (in_nodekind!=HFS_LEAFNODE && in_nodekind!=HFS_INDEXNODE))
1795 1.1 dillo return 0;
1796 1.1 dillo
1797 1.1 dillo ptr = in_bytes;
1798 1.1 dillo
1799 1.1 dillo /* For HFS+, the key length is always a 2-byte number. This is indicated
1800 1.2 dillo * by the HFS_BIG_KEYS_MASK bit in the attributes field of the extent
1801 1.1 dillo * overflow header record. However, we just assume this bit is set, since
1802 1.1 dillo * all HFS+ volumes should have it set anyway. */
1803 1.1 dillo if(in_volume->extkeysizefieldsize == sizeof(uint16_t))
1804 1.1 dillo out_key->key_length = be16tohp(&ptr);
1805 1.1 dillo else if (in_volume->extkeysizefieldsize == sizeof(uint8_t)) {
1806 1.1 dillo out_key->key_length = *(((uint8_t*)ptr));
1807 1.1 dillo ptr = (uint8_t*)ptr + 1;
1808 1.1 dillo }
1809 1.1 dillo
1810 1.1 dillo out_key->fork_type = *(((uint8_t*)ptr));
1811 1.1 dillo ptr = (uint8_t*)ptr + 1;
1812 1.1 dillo out_key->padding = *(((uint8_t*)ptr));
1813 1.1 dillo ptr = (uint8_t*)ptr + 1;
1814 1.1 dillo out_key->file_cnid = be32tohp(&ptr);
1815 1.1 dillo out_key->start_block = be32tohp(&ptr);
1816 1.1 dillo
1817 1.1 dillo /* don't waste time if the user just wanted the key */
1818 1.1 dillo if(out_rec==NULL)
1819 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1820 1.1 dillo
1821 1.2 dillo if(in_nodekind==HFS_LEAFNODE)
1822 1.1 dillo {
1823 1.2 dillo last_bytes_read = hfslib_read_extent_descriptors(ptr, out_rec);
1824 1.1 dillo if(last_bytes_read==0)
1825 1.1 dillo return 0;
1826 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1827 1.1 dillo }
1828 1.1 dillo else
1829 1.1 dillo {
1830 1.1 dillo /* XXX: this is completely bogus */
1831 1.1 dillo /* (uint32_t*)*out_rec = be32tohp(&ptr); */
1832 1.1 dillo uint32_t *ptr_32 = (uint32_t *)out_rec;
1833 1.1 dillo *ptr_32 = be32tohp(&ptr);
1834 1.1 dillo /* (*out_rec)[0].start_block = be32tohp(&ptr); */
1835 1.1 dillo }
1836 1.1 dillo
1837 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1838 1.1 dillo }
1839 1.1 dillo
1840 1.1 dillo void
1841 1.2 dillo hfslib_free_recs(
1842 1.1 dillo void*** inout_node_recs,
1843 1.1 dillo uint16_t** inout_rec_sizes,
1844 1.1 dillo uint16_t* inout_num_recs,
1845 1.2 dillo hfs_callback_args* cbargs)
1846 1.1 dillo {
1847 1.1 dillo uint16_t i;
1848 1.1 dillo
1849 1.1 dillo if(inout_num_recs==NULL || *inout_num_recs==0)
1850 1.1 dillo return;
1851 1.1 dillo
1852 1.1 dillo if(inout_node_recs!=NULL && *inout_node_recs!=NULL)
1853 1.1 dillo {
1854 1.1 dillo for(i=0;i<*inout_num_recs;i++)
1855 1.1 dillo {
1856 1.1 dillo if((*inout_node_recs)[i]!=NULL)
1857 1.1 dillo {
1858 1.2 dillo hfslib_free((*inout_node_recs)[i], cbargs);
1859 1.1 dillo (*inout_node_recs)[i] = NULL;
1860 1.1 dillo }
1861 1.1 dillo }
1862 1.1 dillo
1863 1.2 dillo hfslib_free(*inout_node_recs, cbargs);
1864 1.1 dillo *inout_node_recs = NULL;
1865 1.1 dillo }
1866 1.1 dillo
1867 1.1 dillo if(inout_rec_sizes!=NULL && *inout_rec_sizes!=NULL)
1868 1.1 dillo {
1869 1.2 dillo hfslib_free(*inout_rec_sizes, cbargs);
1870 1.1 dillo *inout_rec_sizes = NULL;
1871 1.1 dillo }
1872 1.1 dillo
1873 1.1 dillo *inout_num_recs = 0;
1874 1.1 dillo }
1875 1.1 dillo
1876 1.1 dillo #if 0
1877 1.1 dillo #pragma mark -
1878 1.1 dillo #pragma mark Individual Fields
1879 1.1 dillo #endif
1880 1.1 dillo
1881 1.1 dillo size_t
1882 1.2 dillo hfslib_read_fork_descriptor(void* in_bytes, hfs_fork_t* out_forkdata)
1883 1.1 dillo {
1884 1.1 dillo void* ptr;
1885 1.1 dillo size_t last_bytes_read;
1886 1.1 dillo
1887 1.1 dillo if(in_bytes==NULL || out_forkdata==NULL)
1888 1.1 dillo return 0;
1889 1.1 dillo
1890 1.1 dillo ptr = in_bytes;
1891 1.1 dillo
1892 1.1 dillo out_forkdata->logical_size = be64tohp(&ptr);
1893 1.1 dillo out_forkdata->clump_size = be32tohp(&ptr);
1894 1.1 dillo out_forkdata->total_blocks = be32tohp(&ptr);
1895 1.1 dillo
1896 1.2 dillo if((last_bytes_read = hfslib_read_extent_descriptors(ptr,
1897 1.1 dillo &out_forkdata->extents))==0)
1898 1.1 dillo return 0;
1899 1.1 dillo ptr = (uint8_t*)ptr + last_bytes_read;
1900 1.1 dillo
1901 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1902 1.1 dillo }
1903 1.1 dillo
1904 1.1 dillo size_t
1905 1.2 dillo hfslib_read_extent_descriptors(
1906 1.1 dillo void* in_bytes,
1907 1.2 dillo hfs_extent_record_t* out_extentrecord)
1908 1.1 dillo {
1909 1.1 dillo void* ptr;
1910 1.1 dillo int i;
1911 1.1 dillo
1912 1.1 dillo if(in_bytes==NULL || out_extentrecord==NULL)
1913 1.1 dillo return 0;
1914 1.1 dillo
1915 1.1 dillo ptr = in_bytes;
1916 1.1 dillo
1917 1.1 dillo for(i=0;i<8;i++)
1918 1.1 dillo {
1919 1.2 dillo (((hfs_extent_descriptor_t*)*out_extentrecord)[i]).start_block =
1920 1.1 dillo be32tohp(&ptr);
1921 1.2 dillo (((hfs_extent_descriptor_t*)*out_extentrecord)[i]).block_count =
1922 1.1 dillo be32tohp(&ptr);
1923 1.1 dillo }
1924 1.1 dillo
1925 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1926 1.1 dillo }
1927 1.1 dillo
1928 1.1 dillo size_t
1929 1.2 dillo hfslib_read_unistr255(void* in_bytes, hfs_unistr255_t* out_string)
1930 1.1 dillo {
1931 1.1 dillo void* ptr;
1932 1.1 dillo uint16_t i, length;
1933 1.1 dillo
1934 1.1 dillo if(in_bytes==NULL || out_string==NULL)
1935 1.1 dillo return 0;
1936 1.1 dillo
1937 1.1 dillo ptr = in_bytes;
1938 1.1 dillo
1939 1.1 dillo length = be16tohp(&ptr);
1940 1.1 dillo if(length>255)
1941 1.1 dillo length = 255; /* hfs+ folder/file names have a limit of 255 chars */
1942 1.1 dillo out_string->length = length;
1943 1.1 dillo
1944 1.1 dillo for(i=0; i<length; i++)
1945 1.1 dillo {
1946 1.1 dillo out_string->unicode[i] = be16tohp(&ptr);
1947 1.1 dillo }
1948 1.1 dillo
1949 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1950 1.1 dillo }
1951 1.1 dillo
1952 1.1 dillo size_t
1953 1.2 dillo hfslib_read_bsd_data(void* in_bytes, hfs_bsd_data_t* out_perms)
1954 1.1 dillo {
1955 1.1 dillo void* ptr;
1956 1.1 dillo
1957 1.1 dillo if(in_bytes==NULL || out_perms==NULL)
1958 1.1 dillo return 0;
1959 1.1 dillo
1960 1.1 dillo ptr = in_bytes;
1961 1.1 dillo
1962 1.1 dillo out_perms->owner_id = be32tohp(&ptr);
1963 1.1 dillo out_perms->group_id = be32tohp(&ptr);
1964 1.1 dillo out_perms->admin_flags = *(((uint8_t*)ptr));
1965 1.1 dillo ptr = (uint8_t*)ptr + 1;
1966 1.1 dillo out_perms->owner_flags = *(((uint8_t*)ptr));
1967 1.1 dillo ptr = (uint8_t*)ptr + 1;
1968 1.1 dillo out_perms->file_mode = be16tohp(&ptr);
1969 1.1 dillo out_perms->special.inode_num = be32tohp(&ptr); /* this field is a union */
1970 1.1 dillo
1971 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1972 1.1 dillo }
1973 1.1 dillo
1974 1.1 dillo size_t
1975 1.2 dillo hfslib_read_file_userinfo(void* in_bytes, hfs_macos_file_info_t* out_info)
1976 1.1 dillo {
1977 1.1 dillo void* ptr;
1978 1.1 dillo
1979 1.1 dillo if(in_bytes==NULL || out_info==NULL)
1980 1.1 dillo return 0;
1981 1.1 dillo
1982 1.1 dillo ptr = in_bytes;
1983 1.1 dillo
1984 1.1 dillo out_info->file_type = be32tohp(&ptr);
1985 1.1 dillo out_info->file_creator = be32tohp(&ptr);
1986 1.1 dillo out_info->finder_flags = be16tohp(&ptr);
1987 1.1 dillo out_info->location.v = be16tohp(&ptr);
1988 1.1 dillo out_info->location.h = be16tohp(&ptr);
1989 1.1 dillo out_info->reserved = be16tohp(&ptr);
1990 1.1 dillo
1991 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1992 1.1 dillo }
1993 1.1 dillo
1994 1.1 dillo size_t
1995 1.2 dillo hfslib_read_file_finderinfo(
1996 1.1 dillo void* in_bytes,
1997 1.2 dillo hfs_macos_extended_file_info_t* out_info)
1998 1.1 dillo {
1999 1.1 dillo void* ptr;
2000 1.1 dillo
2001 1.1 dillo if(in_bytes==NULL || out_info==NULL)
2002 1.1 dillo return 0;
2003 1.1 dillo
2004 1.1 dillo ptr = in_bytes;
2005 1.1 dillo
2006 1.1 dillo #if 0
2007 1.1 dillo #pragma warn Fill in with real code!
2008 1.1 dillo #endif
2009 1.1 dillo /* FIXME: Fill in with real code! */
2010 1.1 dillo memset(out_info, 0, sizeof(*out_info));
2011 1.2 dillo ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_file_info_t);
2012 1.1 dillo
2013 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2014 1.1 dillo }
2015 1.1 dillo
2016 1.1 dillo size_t
2017 1.2 dillo hfslib_read_folder_userinfo(void* in_bytes, hfs_macos_folder_info_t* out_info)
2018 1.1 dillo {
2019 1.1 dillo void* ptr;
2020 1.1 dillo
2021 1.1 dillo if(in_bytes==NULL || out_info==NULL)
2022 1.1 dillo return 0;
2023 1.1 dillo
2024 1.1 dillo ptr = in_bytes;
2025 1.1 dillo
2026 1.1 dillo #if 0
2027 1.1 dillo #pragma warn Fill in with real code!
2028 1.1 dillo #endif
2029 1.1 dillo /* FIXME: Fill in with real code! */
2030 1.1 dillo memset(out_info, 0, sizeof(*out_info));
2031 1.2 dillo ptr = (uint8_t*)ptr + sizeof(hfs_macos_folder_info_t);
2032 1.1 dillo
2033 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2034 1.1 dillo }
2035 1.1 dillo
2036 1.1 dillo size_t
2037 1.2 dillo hfslib_read_folder_finderinfo(
2038 1.1 dillo void* in_bytes,
2039 1.2 dillo hfs_macos_extended_folder_info_t* out_info)
2040 1.1 dillo {
2041 1.1 dillo void* ptr;
2042 1.1 dillo
2043 1.1 dillo if(in_bytes==NULL || out_info==NULL)
2044 1.1 dillo return 0;
2045 1.1 dillo
2046 1.1 dillo ptr = in_bytes;
2047 1.1 dillo
2048 1.1 dillo #if 0
2049 1.1 dillo #pragma warn Fill in with real code!
2050 1.1 dillo #endif
2051 1.1 dillo /* FIXME: Fill in with real code! */
2052 1.1 dillo memset(out_info, 0, sizeof(*out_info));
2053 1.2 dillo ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_folder_info_t);
2054 1.1 dillo
2055 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2056 1.1 dillo }
2057 1.1 dillo
2058 1.1 dillo size_t
2059 1.2 dillo hfslib_read_journal_info(void* in_bytes, hfs_journal_info_t* out_info)
2060 1.1 dillo {
2061 1.1 dillo void* ptr;
2062 1.1 dillo int i;
2063 1.1 dillo
2064 1.1 dillo if(in_bytes==NULL || out_info==NULL)
2065 1.1 dillo return 0;
2066 1.1 dillo
2067 1.1 dillo ptr = in_bytes;
2068 1.1 dillo
2069 1.1 dillo out_info->flags = be32tohp(&ptr);
2070 1.1 dillo for(i=0; i<8; i++)
2071 1.1 dillo {
2072 1.1 dillo out_info->device_signature[i] = be32tohp(&ptr);
2073 1.1 dillo }
2074 1.1 dillo out_info->offset = be64tohp(&ptr);
2075 1.1 dillo out_info->size = be64tohp(&ptr);
2076 1.1 dillo for(i=0; i<32; i++)
2077 1.1 dillo {
2078 1.1 dillo out_info->reserved[i] = be64tohp(&ptr);
2079 1.1 dillo }
2080 1.1 dillo
2081 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2082 1.1 dillo }
2083 1.1 dillo
2084 1.1 dillo size_t
2085 1.2 dillo hfslib_read_journal_header(void* in_bytes, hfs_journal_header_t* out_header)
2086 1.1 dillo {
2087 1.1 dillo void* ptr;
2088 1.1 dillo
2089 1.1 dillo if(in_bytes==NULL || out_header==NULL)
2090 1.1 dillo return 0;
2091 1.1 dillo
2092 1.1 dillo ptr = in_bytes;
2093 1.1 dillo
2094 1.1 dillo out_header->magic = be32tohp(&ptr);
2095 1.1 dillo out_header->endian = be32tohp(&ptr);
2096 1.1 dillo out_header->start = be64tohp(&ptr);
2097 1.1 dillo out_header->end = be64tohp(&ptr);
2098 1.1 dillo out_header->size = be64tohp(&ptr);
2099 1.1 dillo out_header->blocklist_header_size = be32tohp(&ptr);
2100 1.1 dillo out_header->checksum = be32tohp(&ptr);
2101 1.1 dillo out_header->journal_header_size = be32tohp(&ptr);
2102 1.1 dillo
2103 1.1 dillo return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2104 1.1 dillo }
2105 1.1 dillo
2106 1.1 dillo #if 0
2107 1.1 dillo #pragma mark -
2108 1.1 dillo #pragma mark Disk Access
2109 1.1 dillo #endif
2110 1.1 dillo
2111 1.1 dillo /*
2112 1.2 dillo * hfslib_readd_with_extents()
2113 1.1 dillo *
2114 1.1 dillo * This function reads the contents of a file from the volume, given an array
2115 1.1 dillo * of extent descriptors which specify where every extent of the file is
2116 1.1 dillo * located (in addition to the usual pread() arguments). out_bytes is presumed
2117 1.1 dillo * to exist and be large enough to hold in_length number of bytes. Returns 0
2118 1.1 dillo * on success.
2119 1.1 dillo */
2120 1.1 dillo int
2121 1.2 dillo hfslib_readd_with_extents(
2122 1.2 dillo hfs_volume* in_vol,
2123 1.1 dillo void* out_bytes,
2124 1.1 dillo uint64_t* out_bytesread,
2125 1.1 dillo uint64_t in_length,
2126 1.1 dillo uint64_t in_offset,
2127 1.2 dillo hfs_extent_descriptor_t in_extents[],
2128 1.1 dillo uint16_t in_numextents,
2129 1.2 dillo hfs_callback_args* cbargs)
2130 1.1 dillo {
2131 1.1 dillo uint64_t ext_length, last_offset;
2132 1.1 dillo uint16_t i;
2133 1.1 dillo int error;
2134 1.1 dillo
2135 1.1 dillo if(in_vol==NULL || out_bytes==NULL || in_extents==NULL || in_numextents==0
2136 1.1 dillo || out_bytesread==NULL)
2137 1.1 dillo return -1;
2138 1.1 dillo
2139 1.1 dillo *out_bytesread = 0;
2140 1.1 dillo last_offset = 0;
2141 1.1 dillo
2142 1.1 dillo for(i=0; i<in_numextents; i++)
2143 1.1 dillo {
2144 1.1 dillo if(in_extents[i].block_count==0)
2145 1.1 dillo continue;
2146 1.1 dillo
2147 1.1 dillo ext_length = in_extents[i].block_count * in_vol->vh.block_size;
2148 1.1 dillo
2149 1.1 dillo if(in_offset < last_offset+ext_length
2150 1.1 dillo && in_offset+in_length >= last_offset)
2151 1.1 dillo {
2152 1.1 dillo uint64_t isect_start, isect_end;
2153 1.1 dillo
2154 1.1 dillo isect_start = max(in_offset, last_offset);
2155 1.1 dillo isect_end = min(in_offset+in_length, last_offset+ext_length);
2156 1.2 dillo error = hfslib_readd(in_vol, out_bytes, isect_end-isect_start,
2157 1.1 dillo isect_start - last_offset + (uint64_t)in_extents[i].start_block
2158 1.1 dillo * in_vol->vh.block_size, cbargs);
2159 1.1 dillo
2160 1.1 dillo if(error!=0)
2161 1.1 dillo return error;
2162 1.1 dillo
2163 1.1 dillo *out_bytesread += isect_end-isect_start;
2164 1.1 dillo out_bytes = (uint8_t*)out_bytes + isect_end-isect_start;
2165 1.1 dillo }
2166 1.1 dillo
2167 1.1 dillo last_offset += ext_length;
2168 1.1 dillo }
2169 1.1 dillo
2170 1.1 dillo
2171 1.1 dillo return 0;
2172 1.1 dillo }
2173 1.1 dillo
2174 1.1 dillo #if 0
2175 1.1 dillo #pragma mark -
2176 1.1 dillo #pragma mark Callback Wrappers
2177 1.1 dillo #endif
2178 1.1 dillo
2179 1.1 dillo void
2180 1.2 dillo hfslib_error(const char* in_format, const char* in_file, int in_line, ...)
2181 1.1 dillo {
2182 1.1 dillo va_list ap;
2183 1.1 dillo
2184 1.1 dillo if(in_format==NULL)
2185 1.1 dillo return;
2186 1.1 dillo
2187 1.2 dillo if(hfs_gcb.error!=NULL)
2188 1.1 dillo {
2189 1.1 dillo va_start(ap, in_line);
2190 1.1 dillo
2191 1.2 dillo hfs_gcb.error(in_format, in_file, in_line, ap);
2192 1.1 dillo
2193 1.1 dillo va_end(ap);
2194 1.1 dillo }
2195 1.1 dillo }
2196 1.1 dillo
2197 1.1 dillo void*
2198 1.2 dillo hfslib_malloc(size_t size, hfs_callback_args* cbargs)
2199 1.1 dillo {
2200 1.2 dillo if(hfs_gcb.allocmem!=NULL)
2201 1.2 dillo return hfs_gcb.allocmem(size, cbargs);
2202 1.1 dillo
2203 1.1 dillo return NULL;
2204 1.1 dillo }
2205 1.1 dillo
2206 1.1 dillo void*
2207 1.2 dillo hfslib_realloc(void* ptr, size_t size, hfs_callback_args* cbargs)
2208 1.1 dillo {
2209 1.2 dillo if(hfs_gcb.reallocmem!=NULL)
2210 1.2 dillo return hfs_gcb.reallocmem(ptr, size, cbargs);
2211 1.1 dillo
2212 1.1 dillo return NULL;
2213 1.1 dillo }
2214 1.1 dillo
2215 1.1 dillo void
2216 1.2 dillo hfslib_free(void* ptr, hfs_callback_args* cbargs)
2217 1.1 dillo {
2218 1.2 dillo if(hfs_gcb.freemem!=NULL && ptr!=NULL)
2219 1.2 dillo hfs_gcb.freemem(ptr, cbargs);
2220 1.1 dillo }
2221 1.1 dillo
2222 1.1 dillo int
2223 1.2 dillo hfslib_openvoldevice(
2224 1.2 dillo hfs_volume* in_vol,
2225 1.1 dillo const char* in_device,
2226 1.1 dillo uint64_t in_offset,
2227 1.2 dillo hfs_callback_args* cbargs)
2228 1.1 dillo {
2229 1.2 dillo if(hfs_gcb.openvol!=NULL && in_device!=NULL)
2230 1.2 dillo return hfs_gcb.openvol(in_vol, in_device, in_offset, cbargs);
2231 1.1 dillo
2232 1.1 dillo return 1;
2233 1.1 dillo }
2234 1.1 dillo
2235 1.1 dillo void
2236 1.2 dillo hfslib_closevoldevice(hfs_volume* in_vol, hfs_callback_args* cbargs)
2237 1.1 dillo {
2238 1.2 dillo if(hfs_gcb.closevol!=NULL)
2239 1.2 dillo hfs_gcb.closevol(in_vol, cbargs);
2240 1.1 dillo }
2241 1.1 dillo
2242 1.1 dillo int
2243 1.2 dillo hfslib_readd(
2244 1.2 dillo hfs_volume* in_vol,
2245 1.1 dillo void* out_bytes,
2246 1.1 dillo uint64_t in_length,
2247 1.1 dillo uint64_t in_offset,
2248 1.2 dillo hfs_callback_args* cbargs)
2249 1.1 dillo {
2250 1.1 dillo if(in_vol==NULL || out_bytes==NULL)
2251 1.1 dillo return -1;
2252 1.1 dillo
2253 1.2 dillo if(hfs_gcb.read!=NULL)
2254 1.2 dillo return hfs_gcb.read(in_vol, out_bytes, in_length, in_offset, cbargs);
2255 1.1 dillo
2256 1.1 dillo return -1;
2257 1.1 dillo }
2258 1.1 dillo
2259 1.1 dillo #if 0
2260 1.1 dillo #pragma mark -
2261 1.1 dillo #pragma mark Other
2262 1.1 dillo #endif
2263 1.1 dillo
2264 1.1 dillo /* returns key length */
2265 1.1 dillo uint16_t
2266 1.2 dillo hfslib_make_catalog_key(
2267 1.2 dillo hfs_cnid_t in_parent_cnid,
2268 1.1 dillo uint16_t in_name_len,
2269 1.1 dillo unichar_t* in_unicode,
2270 1.2 dillo hfs_catalog_key_t* out_key)
2271 1.1 dillo {
2272 1.1 dillo if(in_parent_cnid==0 || (in_name_len>0 && in_unicode==NULL) || out_key==0)
2273 1.1 dillo return 0;
2274 1.1 dillo
2275 1.1 dillo if(in_name_len>255)
2276 1.1 dillo in_name_len = 255;
2277 1.1 dillo
2278 1.1 dillo out_key->key_len = 6 + 2 * in_name_len;
2279 1.1 dillo out_key->parent_cnid = in_parent_cnid;
2280 1.1 dillo out_key->name.length = in_name_len;
2281 1.1 dillo if(in_name_len>0)
2282 1.1 dillo memcpy(&out_key->name.unicode, in_unicode, in_name_len*2);
2283 1.1 dillo
2284 1.1 dillo return out_key->key_len;
2285 1.1 dillo }
2286 1.1 dillo
2287 1.1 dillo /* returns key length */
2288 1.1 dillo uint16_t
2289 1.2 dillo hfslib_make_extent_key(
2290 1.2 dillo hfs_cnid_t in_cnid,
2291 1.1 dillo uint8_t in_forktype,
2292 1.1 dillo uint32_t in_startblock,
2293 1.2 dillo hfs_extent_key_t* out_key)
2294 1.1 dillo {
2295 1.1 dillo if(in_cnid==0 || out_key==0)
2296 1.1 dillo return 0;
2297 1.1 dillo
2298 1.2 dillo out_key->key_length = HFS_MAX_EXT_KEY_LEN;
2299 1.1 dillo out_key->fork_type = in_forktype;
2300 1.1 dillo out_key->padding = 0;
2301 1.1 dillo out_key->file_cnid = in_cnid;
2302 1.1 dillo out_key->start_block = in_startblock;
2303 1.1 dillo
2304 1.1 dillo return out_key->key_length;
2305 1.1 dillo }
2306 1.1 dillo
2307 1.1 dillo /* case-folding */
2308 1.1 dillo int
2309 1.2 dillo hfslib_compare_catalog_keys_cf (
2310 1.1 dillo const void *ap,
2311 1.1 dillo const void *bp)
2312 1.1 dillo {
2313 1.2 dillo const hfs_catalog_key_t *a, *b;
2314 1.1 dillo unichar_t ac, bc; /* current character from a, b */
2315 1.1 dillo unichar_t lc; /* lowercase version of current character */
2316 1.1 dillo uint8_t apos, bpos; /* current character indices */
2317 1.1 dillo
2318 1.2 dillo a = (const hfs_catalog_key_t*)ap;
2319 1.2 dillo b = (const hfs_catalog_key_t*)bp;
2320 1.1 dillo
2321 1.1 dillo if(a->parent_cnid != b->parent_cnid)
2322 1.1 dillo {
2323 1.1 dillo return (a->parent_cnid - b->parent_cnid);
2324 1.1 dillo }
2325 1.1 dillo else
2326 1.1 dillo {
2327 1.1 dillo /*
2328 1.1 dillo * The following code implements the pseudocode suggested by
2329 1.1 dillo * the HFS+ technote.
2330 1.1 dillo */
2331 1.1 dillo
2332 1.1 dillo /*
2333 1.1 dillo * XXX These need to be revised to be endian-independent!
2334 1.1 dillo */
2335 1.1 dillo #define hbyte(x) ((x) >> 8)
2336 1.1 dillo #define lbyte(x) ((x) & 0x00FF)
2337 1.1 dillo
2338 1.1 dillo apos = bpos = 0;
2339 1.1 dillo while(1)
2340 1.1 dillo {
2341 1.1 dillo /* get next valid character from a */
2342 1.1 dillo for (lc=0; lc == 0 && apos < a->name.length; apos++) {
2343 1.1 dillo ac = a->name.unicode[apos];
2344 1.2 dillo lc = hfs_gcft[hbyte(ac)];
2345 1.1 dillo if(lc==0)
2346 1.1 dillo lc = ac;
2347 1.1 dillo else
2348 1.2 dillo lc = hfs_gcft[lc + lbyte(ac)];
2349 1.1 dillo };
2350 1.1 dillo ac=lc;
2351 1.1 dillo
2352 1.1 dillo /* get next valid character from b */
2353 1.1 dillo for (lc=0; lc == 0 && bpos < b->name.length; bpos++) {
2354 1.1 dillo bc = b->name.unicode[bpos];
2355 1.2 dillo lc = hfs_gcft[hbyte(bc)];
2356 1.1 dillo if(lc==0)
2357 1.1 dillo lc = bc;
2358 1.1 dillo else
2359 1.2 dillo lc = hfs_gcft[lc + lbyte(bc)];
2360 1.1 dillo };
2361 1.1 dillo bc=lc;
2362 1.1 dillo
2363 1.1 dillo /* on end of string ac/bc are 0, otherwise > 0 */
2364 1.1 dillo if (ac != bc || (ac == 0 && bc == 0))
2365 1.1 dillo return ac - bc;
2366 1.1 dillo }
2367 1.1 dillo #undef hbyte
2368 1.1 dillo #undef lbyte
2369 1.1 dillo }
2370 1.1 dillo }
2371 1.1 dillo
2372 1.1 dillo /* binary compare (i.e., not case folding) */
2373 1.1 dillo int
2374 1.2 dillo hfslib_compare_catalog_keys_bc (
2375 1.1 dillo const void *a,
2376 1.1 dillo const void *b)
2377 1.1 dillo {
2378 1.2 dillo if(((const hfs_catalog_key_t*)a)->parent_cnid
2379 1.2 dillo == ((const hfs_catalog_key_t*)b)->parent_cnid)
2380 1.1 dillo {
2381 1.2 dillo if(((const hfs_catalog_key_t*)a)->name.length == 0 &&
2382 1.2 dillo ((const hfs_catalog_key_t*)b)->name.length == 0)
2383 1.1 dillo return 0;
2384 1.1 dillo
2385 1.2 dillo if(((const hfs_catalog_key_t*)a)->name.length == 0)
2386 1.1 dillo return -1;
2387 1.2 dillo if(((const hfs_catalog_key_t*)b)->name.length == 0)
2388 1.1 dillo return 1;
2389 1.1 dillo
2390 1.1 dillo /* FIXME: This does a byte-per-byte comparison, whereas the HFS spec
2391 1.1 dillo * mandates a uint16_t chunk comparison. */
2392 1.2 dillo return memcmp(((const hfs_catalog_key_t*)a)->name.unicode,
2393 1.2 dillo ((const hfs_catalog_key_t*)b)->name.unicode,
2394 1.2 dillo min(((const hfs_catalog_key_t*)a)->name.length,
2395 1.2 dillo ((const hfs_catalog_key_t*)b)->name.length));
2396 1.1 dillo }
2397 1.1 dillo else
2398 1.1 dillo {
2399 1.2 dillo return (((const hfs_catalog_key_t*)a)->parent_cnid -
2400 1.2 dillo ((const hfs_catalog_key_t*)b)->parent_cnid);
2401 1.1 dillo }
2402 1.1 dillo }
2403 1.1 dillo
2404 1.1 dillo int
2405 1.2 dillo hfslib_compare_extent_keys (
2406 1.1 dillo const void *a,
2407 1.1 dillo const void *b)
2408 1.1 dillo {
2409 1.1 dillo /*
2410 1.1 dillo * Comparison order, in descending importance:
2411 1.1 dillo *
2412 1.1 dillo * CNID -> fork type -> start block
2413 1.1 dillo */
2414 1.1 dillo
2415 1.2 dillo if(((const hfs_extent_key_t*)a)->file_cnid
2416 1.2 dillo == ((const hfs_extent_key_t*)b)->file_cnid)
2417 1.1 dillo {
2418 1.2 dillo if(((const hfs_extent_key_t*)a)->fork_type
2419 1.2 dillo == ((const hfs_extent_key_t*)b)->fork_type)
2420 1.1 dillo {
2421 1.2 dillo if(((const hfs_extent_key_t*)a)->start_block
2422 1.2 dillo == ((const hfs_extent_key_t*)b)->start_block)
2423 1.1 dillo {
2424 1.1 dillo return 0;
2425 1.1 dillo }
2426 1.1 dillo else
2427 1.1 dillo {
2428 1.2 dillo return (((const hfs_extent_key_t*)a)->start_block -
2429 1.2 dillo ((const hfs_extent_key_t*)b)->start_block);
2430 1.1 dillo }
2431 1.1 dillo }
2432 1.1 dillo else
2433 1.1 dillo {
2434 1.2 dillo return (((const hfs_extent_key_t*)a)->fork_type -
2435 1.2 dillo ((const hfs_extent_key_t*)b)->fork_type);
2436 1.1 dillo }
2437 1.1 dillo }
2438 1.1 dillo else
2439 1.1 dillo {
2440 1.2 dillo return (((const hfs_extent_key_t*)a)->file_cnid -
2441 1.2 dillo ((const hfs_extent_key_t*)b)->file_cnid);
2442 1.1 dillo }
2443 1.1 dillo }
2444 1.1 dillo
2445 1.1 dillo /* 1+10 tables of 16 rows and 16 columns, each 2 bytes wide = 5632 bytes */
2446 1.1 dillo int
2447 1.2 dillo hfslib_create_casefolding_table(void)
2448 1.1 dillo {
2449 1.2 dillo hfs_callback_args cbargs;
2450 1.1 dillo unichar_t* t; /* convenience */
2451 1.1 dillo uint16_t s; /* current subtable * 256 */
2452 1.1 dillo uint16_t i; /* current subtable index (0 to 255) */
2453 1.1 dillo
2454 1.2 dillo if(hfs_gcft!=NULL)
2455 1.1 dillo return 0; /* no sweat, table already exists */
2456 1.1 dillo
2457 1.2 dillo hfslib_init_cbargs(&cbargs);
2458 1.2 dillo hfs_gcft = hfslib_malloc(5632, &cbargs);
2459 1.2 dillo if(hfs_gcft==NULL)
2460 1.2 dillo HFS_LIBERR("could not allocate case folding table");
2461 1.1 dillo
2462 1.2 dillo t = hfs_gcft; /* easier to type :) */
2463 1.1 dillo
2464 1.1 dillo /*
2465 1.1 dillo * high byte indices
2466 1.1 dillo */
2467 1.1 dillo s = 0 * 256;
2468 1.1 dillo memset(t, 0x00, 512);
2469 1.1 dillo t[s+ 0] = 0x0100;
2470 1.1 dillo t[s+ 1] = 0x0200;
2471 1.1 dillo t[s+ 3] = 0x0300;
2472 1.1 dillo t[s+ 4] = 0x0400;
2473 1.1 dillo t[s+ 5] = 0x0500;
2474 1.1 dillo t[s+ 16] = 0x0600;
2475 1.1 dillo t[s+ 32] = 0x0700;
2476 1.1 dillo t[s+ 33] = 0x0800;
2477 1.1 dillo t[s+254] = 0x0900;
2478 1.1 dillo t[s+255] = 0x0a00;
2479 1.1 dillo
2480 1.1 dillo /*
2481 1.1 dillo * table 1 (high byte 0x00)
2482 1.1 dillo */
2483 1.1 dillo s = 1 * 256;
2484 1.1 dillo for(i=0; i<65; i++)
2485 1.1 dillo t[s+i] = i;
2486 1.1 dillo t[s+ 0] = 0xffff;
2487 1.1 dillo for(i=65; i<91; i++)
2488 1.1 dillo t[s+i] = i + 0x20;
2489 1.1 dillo for(i=91; i<256; i++)
2490 1.1 dillo t[s+i] = i;
2491 1.1 dillo t[s+198] = 0x00e6;
2492 1.1 dillo t[s+208] = 0x00f0;
2493 1.1 dillo t[s+216] = 0x00f8;
2494 1.1 dillo t[s+222] = 0x00fe;
2495 1.1 dillo
2496 1.1 dillo /*
2497 1.1 dillo * table 2 (high byte 0x01)
2498 1.1 dillo */
2499 1.1 dillo s = 2 * 256;
2500 1.1 dillo for(i=0; i<256; i++)
2501 1.1 dillo t[s+i] = i + 0x0100;
2502 1.1 dillo t[s+ 16] = 0x0111;
2503 1.1 dillo t[s+ 38] = 0x0127;
2504 1.1 dillo t[s+ 50] = 0x0133;
2505 1.1 dillo t[s+ 63] = 0x0140;
2506 1.1 dillo t[s+ 65] = 0x0142;
2507 1.1 dillo t[s+ 74] = 0x014b;
2508 1.1 dillo t[s+ 82] = 0x0153;
2509 1.1 dillo t[s+102] = 0x0167;
2510 1.1 dillo t[s+129] = 0x0253;
2511 1.1 dillo t[s+130] = 0x0183;
2512 1.1 dillo t[s+132] = 0x0185;
2513 1.1 dillo t[s+134] = 0x0254;
2514 1.1 dillo t[s+135] = 0x0188;
2515 1.1 dillo t[s+137] = 0x0256;
2516 1.1 dillo t[s+138] = 0x0257;
2517 1.1 dillo t[s+139] = 0x018c;
2518 1.1 dillo t[s+142] = 0x01dd;
2519 1.1 dillo t[s+143] = 0x0259;
2520 1.1 dillo t[s+144] = 0x025b;
2521 1.1 dillo t[s+145] = 0x0192;
2522 1.1 dillo t[s+147] = 0x0260;
2523 1.1 dillo t[s+148] = 0x0263;
2524 1.1 dillo t[s+150] = 0x0269;
2525 1.1 dillo t[s+151] = 0x0268;
2526 1.1 dillo t[s+152] = 0x0199;
2527 1.1 dillo t[s+156] = 0x026f;
2528 1.1 dillo t[s+157] = 0x0272;
2529 1.1 dillo t[s+159] = 0x0275;
2530 1.1 dillo t[s+162] = 0x01a3;
2531 1.1 dillo t[s+164] = 0x01a5;
2532 1.1 dillo t[s+167] = 0x01a8;
2533 1.1 dillo t[s+169] = 0x0283;
2534 1.1 dillo t[s+172] = 0x01ad;
2535 1.1 dillo t[s+174] = 0x0288;
2536 1.1 dillo t[s+177] = 0x028a;
2537 1.1 dillo t[s+178] = 0x028b;
2538 1.1 dillo t[s+179] = 0x01b4;
2539 1.1 dillo t[s+181] = 0x01b6;
2540 1.1 dillo t[s+183] = 0x0292;
2541 1.1 dillo t[s+184] = 0x01b9;
2542 1.1 dillo t[s+188] = 0x01bd;
2543 1.1 dillo t[s+196] = 0x01c6;
2544 1.1 dillo t[s+197] = 0x01c6;
2545 1.1 dillo t[s+199] = 0x01c9;
2546 1.1 dillo t[s+200] = 0x01c9;
2547 1.1 dillo t[s+202] = 0x01cc;
2548 1.1 dillo t[s+203] = 0x01cc;
2549 1.1 dillo t[s+228] = 0x01e5;
2550 1.1 dillo t[s+241] = 0x01f3;
2551 1.1 dillo t[s+242] = 0x01f3;
2552 1.1 dillo
2553 1.1 dillo /*
2554 1.1 dillo * table 3 (high byte 0x03)
2555 1.1 dillo */
2556 1.1 dillo s = 3 * 256;
2557 1.1 dillo for(i=0; i<145; i++)
2558 1.1 dillo t[s+i] = i + 0x0300;
2559 1.1 dillo for(i=145; i<170; i++)
2560 1.1 dillo t[s+i] = i + 0x0320;
2561 1.1 dillo t[s+162] = 0x03a2;
2562 1.1 dillo for(i=170; i<256; i++)
2563 1.1 dillo t[s+i] = i + 0x0300;
2564 1.1 dillo
2565 1.1 dillo for(i=226; i<239; i+=2)
2566 1.1 dillo t[s+i] = i + 0x0301;
2567 1.1 dillo
2568 1.1 dillo /*
2569 1.1 dillo * table 4 (high byte 0x04)
2570 1.1 dillo */
2571 1.1 dillo s = 4 * 256;
2572 1.1 dillo for(i=0; i<16; i++)
2573 1.1 dillo t[s+i] = i + 0x0400;
2574 1.1 dillo t[s+ 2] = 0x0452;
2575 1.1 dillo t[s+ 4] = 0x0454;
2576 1.1 dillo t[s+ 5] = 0x0455;
2577 1.1 dillo t[s+ 6] = 0x0456;
2578 1.1 dillo t[s+ 8] = 0x0458;
2579 1.1 dillo t[s+ 9] = 0x0459;
2580 1.1 dillo t[s+ 10] = 0x045a;
2581 1.1 dillo t[s+ 11] = 0x045b;
2582 1.1 dillo t[s+ 15] = 0x045f;
2583 1.1 dillo
2584 1.1 dillo for(i=16; i<48; i++)
2585 1.1 dillo t[s+i] = i + 0x0420;
2586 1.1 dillo t[s+ 25] = 0x0419;
2587 1.1 dillo for(i=48; i<256; i++)
2588 1.1 dillo t[s+i] = i + 0x0400;
2589 1.1 dillo t[s+195] = 0x04c4;
2590 1.1 dillo t[s+199] = 0x04c8;
2591 1.1 dillo t[s+203] = 0x04cc;
2592 1.1 dillo
2593 1.1 dillo for(i=96; i<129; i+=2)
2594 1.1 dillo t[s+i] = i + 0x0401;
2595 1.1 dillo t[s+118] = 0x0476;
2596 1.1 dillo for(i=144; i<191; i+=2)
2597 1.1 dillo t[s+i] = i + 0x0401;
2598 1.1 dillo
2599 1.1 dillo /*
2600 1.1 dillo * table 5 (high byte 0x05)
2601 1.1 dillo */
2602 1.1 dillo s = 5 * 256;
2603 1.1 dillo for(i=0; i<49; i++)
2604 1.1 dillo t[s+i] = i + 0x0500;
2605 1.1 dillo for(i=49; i<87; i++)
2606 1.1 dillo t[s+i] = i + 0x0530;
2607 1.1 dillo for(i=87; i<256; i++)
2608 1.1 dillo t[s+i] = i + 0x0500;
2609 1.1 dillo
2610 1.1 dillo /*
2611 1.1 dillo * table 6 (high byte 0x10)
2612 1.1 dillo */
2613 1.1 dillo s = 6 * 256;
2614 1.1 dillo for(i=0; i<160; i++)
2615 1.1 dillo t[s+i] = i + 0x1000;
2616 1.1 dillo for(i=160; i<198; i++)
2617 1.1 dillo t[s+i] = i + 0x1030;
2618 1.1 dillo for(i=198; i<256; i++)
2619 1.1 dillo t[s+i] = i + 0x1000;
2620 1.1 dillo
2621 1.1 dillo /*
2622 1.1 dillo * table 7 (high byte 0x20)
2623 1.1 dillo */
2624 1.1 dillo s = 7 * 256;
2625 1.1 dillo for(i=0; i<256; i++)
2626 1.1 dillo t[s+i] = i + 0x2000;
2627 1.1 dillo {
2628 1.1 dillo uint8_t zi[15] = { 12, 13, 14, 15,
2629 1.1 dillo 42, 43, 44, 45, 46,
2630 1.1 dillo 106, 107, 108, 109, 110, 111};
2631 1.1 dillo
2632 1.1 dillo for(i=0; i<15; i++)
2633 1.1 dillo t[s+zi[i]] = 0x0000;
2634 1.1 dillo }
2635 1.1 dillo
2636 1.1 dillo /*
2637 1.1 dillo * table 8 (high byte 0x21)
2638 1.1 dillo */
2639 1.1 dillo s = 8 * 256;
2640 1.1 dillo for(i=0; i<96; i++)
2641 1.1 dillo t[s+i] = i + 0x2100;
2642 1.1 dillo for(i=96; i<112; i++)
2643 1.1 dillo t[s+i] = i + 0x2110;
2644 1.1 dillo for(i=112; i<256; i++)
2645 1.1 dillo t[s+i] = i + 0x2100;
2646 1.1 dillo
2647 1.1 dillo /*
2648 1.1 dillo * table 9 (high byte 0xFE)
2649 1.1 dillo */
2650 1.1 dillo s = 9 * 256;
2651 1.1 dillo for(i=0; i<256; i++)
2652 1.1 dillo t[s+i] = i + 0xFE00;
2653 1.1 dillo t[s+255] = 0x0000;
2654 1.1 dillo
2655 1.1 dillo /*
2656 1.1 dillo * table 10 (high byte 0xFF)
2657 1.1 dillo */
2658 1.1 dillo s = 10 * 256;
2659 1.1 dillo for(i=0; i<33; i++)
2660 1.1 dillo t[s+i] = i + 0xFF00;
2661 1.1 dillo for(i=33; i<59; i++)
2662 1.1 dillo t[s+i] = i + 0xFF20;
2663 1.1 dillo for(i=59; i<256; i++)
2664 1.1 dillo t[s+i] = i + 0xFF00;
2665 1.1 dillo
2666 1.1 dillo return 0;
2667 1.1 dillo
2668 1.1 dillo error:
2669 1.1 dillo return 1;
2670 1.1 dillo }
2671 1.1 dillo
2672 1.1 dillo int
2673 1.2 dillo hfslib_get_hardlink(hfs_volume *vol, uint32_t inode_num,
2674 1.2 dillo hfs_catalog_keyed_record_t *rec,
2675 1.2 dillo hfs_callback_args *cbargs)
2676 1.1 dillo {
2677 1.2 dillo hfs_catalog_keyed_record_t metadata;
2678 1.2 dillo hfs_catalog_key_t key;
2679 1.1 dillo char name[16];
2680 1.1 dillo unichar_t name_uni[16];
2681 1.1 dillo int i, len;
2682 1.1 dillo
2683 1.1 dillo /* XXX: cache this */
2684 1.2 dillo if (hfslib_find_catalog_record_with_key(vol,
2685 1.2 dillo &hfs_gMetadataDirectoryKey,
2686 1.1 dillo &metadata, cbargs) != 0
2687 1.2 dillo || metadata.type != HFS_REC_FLDR)
2688 1.1 dillo return -1;
2689 1.1 dillo
2690 1.1 dillo len = snprintf(name, sizeof(name), "iNode%d", inode_num);
2691 1.1 dillo for (i=0; i<len; i++)
2692 1.1 dillo name_uni[i] = name[i];
2693 1.1 dillo
2694 1.2 dillo if (hfslib_make_catalog_key(metadata.folder.cnid, len, name_uni,
2695 1.1 dillo &key) == 0)
2696 1.1 dillo return -1;
2697 1.1 dillo
2698 1.2 dillo return hfslib_find_catalog_record_with_key(vol, &key, rec, cbargs);
2699 1.1 dillo }
2700