Home | History | Annotate | Line # | Download | only in hfs
libhfs.c revision 1.2
      1 /*	$NetBSD: libhfs.c,v 1.2 2007/03/06 11:28:48 dillo Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2005, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Yevgeny Binder and Dieter Baron.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *  All functions and variable types have the prefix "hfs_". All constants
     34  *  have the prefix "HFS_".
     35  *
     36  *  Naming convention for functions which read/write raw, linear data
     37  *	into/from a structured form:
     38  *
     39  *  hfs_read/write[d][a]_foo_bar
     40  *      [d] - read/write from/to [d]isk instead of a memory buffer
     41  *      [a] - [a]llocate output buffer instead of using an existing one
     42  *            (not applicable for writing functions)
     43  *
     44  *  Most functions do not have either of these options, so they will read from
     45  *	or write to a memory buffer, which has been previously allocated by the
     46  *	caller.
     47  */
     48 
     49 #include "libhfs.h"
     50 
     51 /* global private file/folder keys */
     52 hfs_catalog_key_t hfs_gMetadataDirectoryKey; /* contains HFS+ inodes */
     53 hfs_catalog_key_t hfs_gJournalInfoBlockFileKey;
     54 hfs_catalog_key_t hfs_gJournalBufferFileKey;
     55 hfs_catalog_key_t* hfs_gPrivateObjectKeys[4] = {
     56 	&hfs_gMetadataDirectoryKey,
     57 	&hfs_gJournalInfoBlockFileKey,
     58 	&hfs_gJournalBufferFileKey,
     59 	NULL};
     60 
     61 
     62 extern uint16_t be16tohp(void** inout_ptr);
     63 extern uint32_t be32tohp(void** inout_ptr);
     64 extern uint64_t be64tohp(void** inout_ptr);
     65 
     66 int hfslib_create_casefolding_table(void);
     67 
     68 #ifdef DLO_DEBUG
     69 #include <stdio.h>
     70 void
     71 dlo_print_key(hfs_catalog_key_t *key)
     72 {
     73 	int i;
     74 
     75 	printf("%ld:[", (long)key->parent_cnid);
     76 	for (i=0; i<key->name.length; i++) {
     77 		if (key->name.unicode[i] < 256
     78 		    && isprint(key->name.unicode[i]))
     79 			putchar(key->name.unicode[i]);
     80 		else
     81 			printf("<%04x>", key->name.unicode[i]);
     82 	}
     83 	printf("]");
     84 }
     85 #endif
     86 
     87 void
     88 hfslib_init(hfs_callbacks* in_callbacks)
     89 {
     90 	unichar_t	temp[256];
     91 
     92 	if(in_callbacks!=NULL)
     93 		memcpy(&hfs_gcb, in_callbacks, sizeof(hfs_callbacks));
     94 
     95 	hfs_gcft = NULL;
     96 
     97 	/*
     98 	 * Create keys for the HFS+ "private" files so we can reuse them whenever
     99 	 * we perform a user-visible operation, such as listing directory contents.
    100 	 */
    101 
    102 #define ATOU(str, len) /* quick & dirty ascii-to-unicode conversion */ \
    103 	do{ int i; for(i=0; i<len; i++) temp[i]=str[i]; } \
    104 	while( /*CONSTCOND*/ 0)
    105 
    106 	ATOU("\0\0\0\0HFS+ Private Data", 21);
    107 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 21, temp,
    108 		&hfs_gMetadataDirectoryKey);
    109 
    110 	ATOU(".journal_info_block", 19);
    111 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 19, temp,
    112 		&hfs_gJournalInfoBlockFileKey);
    113 
    114 	ATOU(".journal", 8);
    115 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 8, temp,
    116 		&hfs_gJournalBufferFileKey);
    117 
    118 #undef ATOU
    119 }
    120 
    121 void
    122 hfslib_done(void)
    123 {
    124 	hfs_callback_args	cbargs;
    125 
    126 	if(hfs_gcft!=NULL) {
    127 		hfslib_init_cbargs(&cbargs);
    128 		hfslib_free(hfs_gcft, &cbargs);
    129 		hfs_gcft = NULL;
    130 	}
    131 
    132 	return;
    133 }
    134 
    135 void
    136 hfslib_init_cbargs(hfs_callback_args* ptr)
    137 {
    138 	memset(ptr, 0, sizeof(hfs_callback_args));
    139 }
    140 
    141 #if 0
    142 #pragma mark -
    143 #pragma mark High-Level Routines
    144 #endif
    145 
    146 int
    147 hfslib_open_volume(
    148 	const char* in_device,
    149 	uint64_t in_offset, /* given in BYTES, not BLOCKS */
    150 	int in_readonly,
    151 	hfs_volume* out_vol,
    152 	hfs_callback_args* cbargs)
    153 {
    154 	hfs_node_descriptor_t nd; /* node descriptor for some node we're reading */
    155 	hfs_catalog_key_t		rootkey;
    156 	hfs_thread_record_t	rootthread;
    157 	uint16_t*	node_rec_sizes;
    158 	void*		buffer;
    159 	void*		buffer2;	/* used as temporary pointer for realloc() */
    160 	void**		node_recs;
    161 	int			result;
    162 
    163 	result = 1;
    164 	buffer = NULL;
    165 	node_recs = NULL;
    166 	node_rec_sizes = NULL;
    167 
    168 	if(in_device==NULL || out_vol==NULL)
    169 		return 1;
    170 
    171 	out_vol->readonly = in_readonly;
    172 
    173 	if(hfslib_openvoldevice(out_vol, in_device, in_offset, cbargs) != 0)
    174 		HFS_LIBERR("could not open device");
    175 
    176 	/*
    177 	 *	Read the volume header.
    178 	 */
    179 	buffer = hfslib_malloc(sizeof(hfs_volume_header_t), cbargs);
    180 	if(buffer==NULL)
    181 		HFS_LIBERR("could not allocate volume header");
    182 
    183 	if(hfslib_readd(out_vol, buffer, sizeof(hfs_volume_header_t),
    184 		HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs)!=0)
    185 		HFS_LIBERR("could not read volume header");
    186 	if(hfslib_read_volume_header(buffer, &(out_vol->vh))==0)
    187 		HFS_LIBERR("could not parse volume header");
    188 
    189 	/*
    190 	 * Check the volume signature to see if this is a legitimate HFS+ or HFSX
    191 	 * volume. If so, set the key comparison function pointers appropriately.
    192 	 */
    193 	switch(out_vol->vh.signature)
    194 	{
    195 		case HFS_SIG_HFSP:
    196 			out_vol->keycmp = hfslib_compare_catalog_keys_cf;
    197 			break;
    198 
    199 		case HFS_SIG_HFSX:
    200 			out_vol->keycmp = NULL; /* will be set below */
    201 			break;
    202 
    203 		case HFS_SIG_HFS:
    204 			HFS_LIBERR("HFS volumes and HFS+ volumes with HFS wrappers are"
    205 						"not currently supported");
    206 			break;
    207 
    208 		default:
    209 			HFS_LIBERR("unrecognized volume format");
    210 	}
    211 
    212 
    213 	/*
    214 	 *	Read the catalog header.
    215 	 */
    216 	buffer2 = hfslib_realloc(buffer,
    217 		out_vol->vh.catalog_file.extents[0].block_count *
    218 		out_vol->vh.block_size, cbargs);
    219 	if(buffer2==NULL)
    220 		HFS_LIBERR("could not allocate catalog header node");
    221 	buffer = buffer2;
    222 
    223 	/*	We don't use hfslib_readd_with_extents() here because we don't know
    224 	 *	the size of this node ahead of time. Besides, we only need the first
    225 	 *	extent in order to get the header and root nodes. */
    226 	if(hfslib_readd(out_vol, buffer,
    227 		out_vol->vh.catalog_file.extents[0].block_count*out_vol->vh.block_size,
    228 		out_vol->vh.catalog_file.extents[0].start_block*out_vol->vh.block_size,
    229 		cbargs) != 0)
    230 		HFS_LIBERR("could not read catalog header node");
    231 
    232 	if(hfslib_reada_node(buffer, &nd, &node_recs, &node_rec_sizes,
    233 		HFS_CATALOG_FILE, out_vol, cbargs)==0)
    234 		HFS_LIBERR("could not read catalog header node");
    235 
    236 	if(hfslib_read_header_node(node_recs, node_rec_sizes, nd.num_recs,
    237 		&out_vol->chr, NULL, NULL)==0)
    238 		HFS_LIBERR("could not parse catalog header node");
    239 
    240 	/* If this is an HFSX volume, the catalog header specifies the type of
    241 	 * key comparison method (case-folding or binary compare) we should use. */
    242 	if(out_vol->keycmp == NULL)
    243 	{
    244 		if(out_vol->chr.keycomp_type == HFS_KEY_CASEFOLD)
    245 			out_vol->keycmp = hfslib_compare_catalog_keys_cf;
    246 		else if(out_vol->chr.keycomp_type == HFS_KEY_BINARY)
    247 			out_vol->keycmp = hfslib_compare_catalog_keys_bc;
    248 		else
    249 			HFS_LIBERR("undefined key compare method");
    250 	}
    251 
    252 	/*
    253 	 *	Read the extent overflow header.
    254 	 */
    255 	buffer2 = hfslib_realloc(buffer,
    256 		out_vol->vh.extents_file.extents[0].block_count *
    257 		out_vol->vh.block_size, cbargs);
    258 	if(buffer2==NULL)
    259 		HFS_LIBERR("could not allocate extent header node");
    260 	buffer = buffer2;
    261 
    262 	/*	We don't use hfslib_readd_with_extents() here because we don't know
    263 	 *	the size of this node ahead of time. Besides, we only need the first
    264 	 *	extent in order to get the header and root nodes. */
    265 	if(hfslib_readd(out_vol, buffer,
    266 		out_vol->vh.extents_file.extents[0].block_count*out_vol->vh.block_size,
    267 		out_vol->vh.extents_file.extents[0].start_block*out_vol->vh.block_size,
    268 		cbargs) != 0)
    269 		HFS_LIBERR("could not read extent header node");
    270 
    271 	if(hfslib_reada_node(buffer, &nd, &node_recs, &node_rec_sizes,
    272 		HFS_EXTENTS_FILE, out_vol, cbargs)==0)
    273 		HFS_LIBERR("could not read extent header node");
    274 
    275 	if(hfslib_read_header_node(node_recs, node_rec_sizes, nd.num_recs,
    276 		&out_vol->ehr, NULL, NULL)==0)
    277 		HFS_LIBERR("could not parse extent header node");
    278 
    279 	/*
    280 	 * Read the journal info block and journal header (if volume journaled).
    281 	 */
    282 	if(out_vol->vh.attributes & (1<<HFS_VOL_JOURNALED))
    283 	{
    284 		/* journal info block */
    285 		buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_info_t), cbargs);
    286 		if(buffer2==NULL)
    287 			HFS_LIBERR("could not allocate journal info block");
    288 		buffer = buffer2;
    289 
    290 		if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_info_t),
    291 			out_vol->vh.journal_info_block * out_vol->vh.block_size,
    292 			cbargs) != 0)
    293 			HFS_LIBERR("could not read journal info block");
    294 
    295 		if(hfslib_read_journal_info(buffer, &out_vol->jib)==0)
    296 			HFS_LIBERR("could not parse journal info block");
    297 
    298 		/* journal header */
    299 		buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_header_t),cbargs);
    300 		if(buffer2==NULL)
    301 			HFS_LIBERR("could not allocate journal header");
    302 		buffer = buffer2;
    303 
    304 		if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_header_t),
    305 			out_vol->jib.offset, cbargs) != 0)
    306 			HFS_LIBERR("could not read journal header");
    307 
    308 		if(hfslib_read_journal_header(buffer, &out_vol->jh)==0)
    309 			HFS_LIBERR("could not parse journal header");
    310 
    311 		out_vol->journaled = 1;
    312 	}
    313 	else
    314 	{
    315 		out_vol->journaled = 0;
    316 	}
    317 
    318 	/*
    319 	 * If this volume uses case-folding comparison and the folding table hasn't
    320 	 * been created yet, do that here. (We don't do this in hfslib_init()
    321 	 * because the table is large and we might never even need to use it.)
    322 	 */
    323 	if(out_vol->keycmp==hfslib_compare_catalog_keys_cf && hfs_gcft==NULL)
    324 		result = hfslib_create_casefolding_table();
    325 	else
    326 		result = 0;
    327 
    328 	/*
    329 	 * Find and store the volume name.
    330 	 */
    331 	if(hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 0, NULL, &rootkey)==0)
    332 		HFS_LIBERR("could not make root search key");
    333 
    334 	if(hfslib_find_catalog_record_with_key(out_vol, &rootkey,
    335 		(hfs_catalog_keyed_record_t*)&rootthread, cbargs)!=0)
    336 		HFS_LIBERR("could not find root parent");
    337 
    338 	memcpy(&out_vol->name, &rootthread.name, sizeof(hfs_unistr255_t));
    339 
    340 
    341 	/* FALLTHROUGH */
    342 error:
    343 	if(buffer!=NULL)
    344 		hfslib_free(buffer, cbargs);
    345 
    346 	hfslib_free_recs(&node_recs, &node_rec_sizes, &nd.num_recs, cbargs);
    347 
    348 	return result;
    349 }
    350 
    351 void
    352 hfslib_close_volume(hfs_volume* in_vol, hfs_callback_args* cbargs)
    353 {
    354 	if(in_vol==NULL)
    355 		return;
    356 
    357 	hfslib_closevoldevice(in_vol, cbargs);
    358 }
    359 
    360 int
    361 hfslib_path_to_cnid(hfs_volume* in_vol,
    362 	hfs_cnid_t in_cnid,
    363 	char** out_unicode,
    364 	uint16_t* out_length,
    365 	hfs_callback_args* cbargs)
    366 {
    367 	hfs_thread_record_t	parent_thread;
    368 	hfs_cnid_t	parent_cnid, child_cnid;
    369 	char*		newpath;
    370 	char*		path;
    371 	int			path_offset = 0;
    372 	int			result;
    373 	uint16_t*	ptr;	/* dummy var */
    374 	uint16_t	uchar;	/* dummy var */
    375 	uint16_t	total_path_length;
    376 
    377 	if(in_vol==NULL || in_cnid==0 || out_unicode==NULL || out_length==NULL)
    378 		return 1;
    379 
    380 	result = 1;
    381 	*out_unicode = NULL;
    382 	*out_length = 0;
    383 	path = NULL;
    384 	total_path_length = 0;
    385 
    386 	path = hfslib_malloc(514, cbargs); /* 256 unichars plus a forward slash */
    387 	if(path==NULL)
    388 		return 1;
    389 
    390 	child_cnid = in_cnid;
    391 	parent_cnid = child_cnid; /* skips loop in case in_cnid is root id */
    392 	while(parent_cnid != HFS_CNID_ROOT_FOLDER
    393 		&& parent_cnid != HFS_CNID_ROOT_PARENT)
    394 	{
    395 		if(child_cnid!=in_cnid)
    396 		{
    397 			newpath = hfslib_realloc(path, 514 + total_path_length*2, cbargs);
    398 
    399 			if(newpath==NULL)
    400 				goto exit;
    401 			path = newpath;
    402 
    403 			memmove(path + 514, path + path_offset, total_path_length*2);
    404 		}
    405 
    406 		parent_cnid = hfslib_find_parent_thread(in_vol, child_cnid,
    407 			&parent_thread, cbargs);
    408 		if(parent_cnid==0)
    409 			goto exit;
    410 
    411 		path_offset = 512 - parent_thread.name.length*2;
    412 
    413 		memcpy(path + path_offset, parent_thread.name.unicode,
    414 			parent_thread.name.length*2);
    415 
    416 		/*	Add a forward slash. The unicode string was specified in big endian
    417 		 *	format, so convert to core format if necessary. */
    418 		path[512]=0x00;
    419 		path[513]=0x2F;
    420 
    421 		ptr = (uint16_t*)path + 256;
    422 		uchar = be16tohp((void*)&ptr);
    423 		*(ptr-1) = uchar;
    424 
    425 		total_path_length += parent_thread.name.length + 1;
    426 
    427 		child_cnid = parent_cnid;
    428 	}
    429 
    430 	/*
    431 	 *	At this point, 'path' holds a sequence of unicode characters which
    432 	 *	represent the absolute path to the given cnid. This string is missing
    433 	 *	a terminating null char and an initial forward slash that represents
    434 	 *	the root of the filesystem. It most likely also has extra space in
    435 	 *	the beginning, due to the fact that we reserve 512 bytes for each path
    436 	 *	component and won't usually use all that space. So, we allocate the
    437 	 *	final string based on the actual length of the absolute path, plus four
    438 	 *	additional bytes (two unichars) for the forward slash and the null char.
    439 	 */
    440 
    441 	*out_unicode = hfslib_malloc((total_path_length+2)*2, cbargs);
    442 	if(*out_unicode == NULL)
    443 		goto exit;
    444 
    445 	/* copy only the bytes that are actually used */
    446 	memcpy(*out_unicode+2, path + path_offset, total_path_length*2);
    447 
    448 	/* insert forward slash at start */
    449 	(*out_unicode)[0] = 0x00;
    450 	(*out_unicode)[1] = 0x2F;
    451 	ptr = (uint16_t*)*out_unicode;
    452 	uchar = be16tohp((void*)&ptr);
    453 	*(ptr-1) = uchar;
    454 
    455 	/* insert null char at end */
    456 	(*out_unicode)[total_path_length*2+2] = 0x00;
    457 	(*out_unicode)[total_path_length*2+3] = 0x00;
    458 
    459 	*out_length = total_path_length + 1 /* extra for forward slash */ ;
    460 
    461 	result = 0;
    462 
    463 exit:
    464 	if(path!=NULL)
    465 		hfslib_free(path, cbargs);
    466 
    467 	return result;
    468 }
    469 
    470 hfs_cnid_t
    471 hfslib_find_parent_thread(
    472 	hfs_volume* in_vol,
    473 	hfs_cnid_t in_child,
    474 	hfs_thread_record_t* out_thread,
    475 	hfs_callback_args* cbargs)
    476 {
    477 	hfs_catalog_key_t	childkey;
    478 
    479 	if(in_vol==NULL || in_child==0 || out_thread==NULL)
    480 		return 0;
    481 
    482 	if(hfslib_make_catalog_key(in_child, 0, NULL, &childkey)==0)
    483 		return 0;
    484 
    485 	if(hfslib_find_catalog_record_with_key(in_vol, &childkey,
    486 		(hfs_catalog_keyed_record_t*)out_thread, cbargs)!=0)
    487 		return 0;
    488 
    489 	return out_thread->parent_cnid;
    490 }
    491 
    492 /*
    493  * hfslib_find_catalog_record_with_cnid()
    494  *
    495  * Looks up a catalog record by calling hfslib_find_parent_thread() and
    496  * hfslib_find_catalog_record_with_key(). out_key may be NULL; if not, the key
    497  * corresponding to this cnid is stuffed in it. Returns 0 on success.
    498  */
    499 int
    500 hfslib_find_catalog_record_with_cnid(
    501 	hfs_volume* in_vol,
    502 	hfs_cnid_t in_cnid,
    503 	hfs_catalog_keyed_record_t* out_rec,
    504 	hfs_catalog_key_t* out_key,
    505 	hfs_callback_args* cbargs)
    506 {
    507 	hfs_cnid_t					parentcnid;
    508 	hfs_thread_record_t		parentthread;
    509 	hfs_catalog_key_t			key;
    510 
    511 	if(in_vol==NULL || in_cnid==0 || out_rec==NULL)
    512 		return 0;
    513 
    514 	parentcnid =
    515 		hfslib_find_parent_thread(in_vol, in_cnid, &parentthread, cbargs);
    516 	if(parentcnid == 0)
    517 		HFS_LIBERR("could not find parent thread for cnid %i", in_cnid);
    518 
    519 	if(hfslib_make_catalog_key(parentthread.parent_cnid,
    520 		parentthread.name.length, parentthread.name.unicode, &key) == 0)
    521 		HFS_LIBERR("could not make catalog search key");
    522 
    523 	if(out_key!=NULL)
    524 		memcpy(out_key, &key, sizeof(key));
    525 
    526 	return hfslib_find_catalog_record_with_key(in_vol, &key, out_rec, cbargs);
    527 
    528 error:
    529 	return 1;
    530 }
    531 
    532 /* Returns 0 on success, 1 on error, and -1 if record was not found. */
    533 int
    534 hfslib_find_catalog_record_with_key(
    535 	hfs_volume* in_vol,
    536 	hfs_catalog_key_t* in_key,
    537 	hfs_catalog_keyed_record_t* out_rec,
    538 	hfs_callback_args* cbargs)
    539 {
    540 	hfs_node_descriptor_t			nd;
    541 	hfs_extent_descriptor_t*		extents;
    542 	hfs_catalog_keyed_record_t		lastrec;
    543 	hfs_catalog_key_t*	curkey;
    544 	void**				recs;
    545 	void*				buffer;
    546 	uint64_t			bytesread;
    547 	uint32_t			curnode;
    548 	uint16_t*			recsizes;
    549 	uint16_t			numextents;
    550 	uint16_t			recnum;
    551 	int16_t				leaftype;
    552 	int					keycompare;
    553 	int					result;
    554 
    555 	if(in_key==NULL || out_rec==NULL || in_vol==NULL)
    556 		return 1;
    557 
    558 	result = 1;
    559 	buffer = NULL;
    560 	curkey = NULL;
    561 	extents = NULL;
    562 	recs = NULL;
    563 	recsizes = NULL;
    564 
    565 	/* The key takes up over half a kb of ram, which is a lot for the BSD
    566 	 * kernel stack. So allocate it in the heap instead to play it safe. */
    567 	curkey = hfslib_malloc(sizeof(hfs_catalog_key_t), cbargs);
    568 	if(curkey==NULL)
    569 		HFS_LIBERR("could not allocate catalog search key");
    570 
    571 	buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
    572 	if(buffer==NULL)
    573 		HFS_LIBERR("could not allocate node buffer");
    574 
    575 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
    576 		HFS_DATAFORK, &extents, cbargs);
    577 	if(numextents==0)
    578 		HFS_LIBERR("could not locate fork extents");
    579 
    580 	nd.num_recs = 0;
    581 	curnode = in_vol->chr.root_node;
    582 
    583 #ifdef DLO_DEBUG
    584 	printf("-> key ");
    585 	dlo_print_key(in_key);
    586 	printf("\n");
    587 #endif
    588 
    589 	do
    590 	{
    591 #ifdef DLO_DEBUG
    592 		printf("--> node %d\n", curnode);
    593 #endif
    594 
    595 		if(hfslib_readd_with_extents(in_vol, buffer,
    596 			&bytesread,in_vol->chr.node_size, curnode * in_vol->chr.node_size,
    597 			extents, numextents, cbargs)!=0)
    598 			HFS_LIBERR("could not read catalog node #%i", curnode);
    599 
    600 		if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
    601 			in_vol, cbargs)==0)
    602 			HFS_LIBERR("could not parse catalog node #%i", curnode);
    603 
    604 		for(recnum=0; recnum<nd.num_recs; recnum++)
    605 		{
    606 			leaftype = nd.kind;
    607 			if(hfslib_read_catalog_keyed_record(recs[recnum], out_rec,
    608 				&leaftype, curkey, in_vol)==0)
    609 				HFS_LIBERR("could not read catalog record #%i",recnum);
    610 
    611 #ifdef DLO_DEBUG
    612 			printf("---> record %d: ", recnum);
    613 			dlo_print_key(curkey);
    614 			fflush(stdout);
    615 #endif
    616 			keycompare = in_vol->keycmp(in_key, curkey);
    617 #ifdef DLO_DEBUG
    618 			printf(" %c\n",
    619 			       keycompare < 0 ? '<'
    620 			       : keycompare == 0 ? '=' : '>');
    621 #endif
    622 
    623 			if(keycompare < 0)
    624 			{
    625 				/* Check if key is less than *every* record, which should never
    626 				 * happen if the volume is consistent and the key legit. */
    627 				if(recnum==0)
    628 					HFS_LIBERR("all records greater than key");
    629 
    630 				/* Otherwise, we've found the first record that exceeds our key,
    631 				 * so retrieve the previous record, which is still less... */
    632 				memcpy(out_rec, &lastrec,
    633 					sizeof(hfs_catalog_keyed_record_t));
    634 
    635 				/* ...unless this is a leaf node, which means we've gone from
    636 				 * a key which is smaller than the search key, in the previous
    637 				 * loop, to a key which is larger, in this loop, and that
    638 				 * implies that our search key does not exist on the volume. */
    639 				if(nd.kind==HFS_LEAFNODE)
    640 					result = -1;
    641 
    642 				break;
    643 			}
    644 			else if(keycompare == 0)
    645 			{
    646 				/* If leaf node, found an exact match. */
    647 				result = 0;
    648 				break;
    649 			}
    650 			else if(recnum==nd.num_recs-1 && keycompare > 0)
    651 			{
    652 				/* If leaf node, we've reached the last record with no match,
    653 				 * which means this key is not present on the volume. */
    654 				result = -1;
    655 				break;
    656 			}
    657 
    658 			memcpy(&lastrec, out_rec, sizeof(hfs_catalog_keyed_record_t));
    659 		}
    660 
    661 		if(nd.kind==HFS_INDEXNODE)
    662 			curnode = out_rec->child;
    663 		else if(nd.kind==HFS_LEAFNODE)
    664 			break;
    665 
    666 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
    667 	}
    668 	while(nd.kind!=HFS_LEAFNODE);
    669 
    670 	/* FALLTHROUGH */
    671 error:
    672 	if(extents!=NULL)
    673 		hfslib_free(extents, cbargs);
    674 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
    675 	if(curkey!=NULL)
    676 		hfslib_free(curkey, cbargs);
    677 	if(buffer!=NULL)
    678 		hfslib_free(buffer, cbargs);
    679 
    680 	return result;
    681 }
    682 
    683 /* returns 0 on success */
    684 /* XXX Need to look this over and make sure it gracefully handles cases where
    685  * XXX the key is not found. */
    686 int
    687 hfslib_find_extent_record_with_key(hfs_volume* in_vol,
    688 	hfs_extent_key_t* in_key,
    689 	hfs_extent_record_t* out_rec,
    690 	hfs_callback_args* cbargs)
    691 {
    692 	hfs_node_descriptor_t		nd;
    693 	hfs_extent_descriptor_t*	extents;
    694 	hfs_extent_record_t		lastrec;
    695 	hfs_extent_key_t	curkey;
    696 	void**				recs;
    697 	void*				buffer;
    698 	uint64_t			bytesread;
    699 	uint32_t			curnode;
    700 	uint16_t*			recsizes;
    701 	uint16_t			numextents;
    702 	uint16_t			recnum;
    703 	int					keycompare;
    704 	int					result;
    705 
    706 	if(in_vol==NULL || in_key==NULL || out_rec==NULL)
    707 		return 1;
    708 
    709 	result = 1;
    710 	buffer = NULL;
    711 	extents = NULL;
    712 	recs = NULL;
    713 	recsizes = NULL;
    714 
    715 	buffer = hfslib_malloc(in_vol->ehr.node_size, cbargs);
    716 	if(buffer==NULL)
    717 		HFS_LIBERR("could not allocate node buffer");
    718 
    719 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_EXTENTS,
    720 		HFS_DATAFORK, &extents, cbargs);
    721 	if(numextents==0)
    722 		HFS_LIBERR("could not locate fork extents");
    723 
    724 	nd.num_recs = 0;
    725 	curnode = in_vol->ehr.root_node;
    726 
    727 	do
    728 	{
    729 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
    730 		recnum = 0;
    731 
    732 		if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
    733 			in_vol->ehr.node_size, curnode * in_vol->ehr.node_size, extents,
    734 			numextents, cbargs)!=0)
    735 			HFS_LIBERR("could not read extents overflow node #%i", curnode);
    736 
    737 		if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_EXTENTS_FILE,
    738 			in_vol, cbargs)==0)
    739 			HFS_LIBERR("could not parse extents overflow node #%i",curnode);
    740 
    741 		for(recnum=0; recnum<nd.num_recs; recnum++)
    742 		{
    743 			memcpy(&lastrec, out_rec, sizeof(hfs_extent_record_t));
    744 
    745 			if(hfslib_read_extent_record(recs[recnum], out_rec, nd.kind,
    746 				&curkey, in_vol)==0)
    747 				HFS_LIBERR("could not read extents record #%i",recnum);
    748 
    749 			keycompare = hfslib_compare_extent_keys(in_key, &curkey);
    750 			if(keycompare < 0)
    751 			{
    752 				/* this should never happen for any legitimate key */
    753 				if(recnum==0)
    754 					return 1;
    755 
    756 				memcpy(out_rec, &lastrec, sizeof(hfs_extent_record_t));
    757 
    758 				break;
    759 			}
    760 			else if(keycompare == 0 ||
    761 				(recnum==nd.num_recs-1 && keycompare > 0))
    762 				break;
    763 		}
    764 
    765 		if(nd.kind==HFS_INDEXNODE)
    766 			curnode = *((uint32_t *)out_rec); /* out_rec is a node ptr in this case */
    767 		else if(nd.kind==HFS_LEAFNODE)
    768 			break;
    769 		else
    770 		    HFS_LIBERR("unknwon node type for extents overflow node #%i",curnode);
    771 	}
    772 	while(nd.kind!=HFS_LEAFNODE);
    773 
    774 	result = 0;
    775 
    776 	/* FALLTHROUGH */
    777 
    778 error:
    779 	if(buffer!=NULL)
    780 		hfslib_free(buffer, cbargs);
    781 	if(extents!=NULL)
    782 		hfslib_free(extents, cbargs);
    783 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
    784 
    785 	return result;
    786 }
    787 
    788 /* out_extents may be NULL. */
    789 uint16_t
    790 hfslib_get_file_extents(hfs_volume* in_vol,
    791 	hfs_cnid_t in_cnid,
    792 	uint8_t in_forktype,
    793 	hfs_extent_descriptor_t** out_extents,
    794 	hfs_callback_args* cbargs)
    795 {
    796 	hfs_extent_descriptor_t*	dummy;
    797 	hfs_extent_key_t		extentkey;
    798 	hfs_file_record_t		file;
    799 	hfs_catalog_key_t		filekey;
    800 	hfs_thread_record_t	fileparent;
    801 	hfs_fork_t				fork;
    802 	hfs_extent_record_t	nextextentrec;
    803 	uint32_t	numblocks;
    804 	uint16_t	numextents, n;
    805 
    806 	if(in_vol==NULL || in_cnid==0)
    807 		return 0;
    808 
    809 	if(out_extents!=NULL)
    810 	{
    811 		*out_extents = hfslib_malloc(sizeof(hfs_extent_descriptor_t), cbargs);
    812 		if(*out_extents==NULL)
    813 			return 0;
    814 	}
    815 
    816 	switch(in_cnid)
    817 	{
    818 		case HFS_CNID_CATALOG:
    819 			fork = in_vol->vh.catalog_file;
    820 			break;
    821 
    822 		case HFS_CNID_EXTENTS:
    823 			fork = in_vol->vh.extents_file;
    824 			break;
    825 
    826 		case HFS_CNID_ALLOCATION:
    827 			fork = in_vol->vh.allocation_file;
    828 			break;
    829 
    830 		case HFS_CNID_ATTRIBUTES:
    831 			fork = in_vol->vh.attributes_file;
    832 			break;
    833 
    834 		case HFS_CNID_STARTUP:
    835 			fork = in_vol->vh.startup_file;
    836 			break;
    837 
    838 		default:
    839 			if(hfslib_find_parent_thread(in_vol, in_cnid, &fileparent,
    840 				cbargs)==0)
    841 				goto error;
    842 
    843 			if(hfslib_make_catalog_key(fileparent.parent_cnid,
    844 				fileparent.name.length, fileparent.name.unicode, &filekey)==0)
    845 				goto error;
    846 
    847 			if(hfslib_find_catalog_record_with_key(in_vol, &filekey,
    848 				(hfs_catalog_keyed_record_t*)&file, cbargs)!=0)
    849 				goto error;
    850 
    851 			/* only files have extents, not folders or threads */
    852 			if(file.rec_type!=HFS_REC_FILE)
    853 				goto error;
    854 
    855 			if(in_forktype==HFS_DATAFORK)
    856 				fork = file.data_fork;
    857 			else if(in_forktype==HFS_RSRCFORK)
    858 				fork = file.rsrc_fork;
    859 	}
    860 
    861 	numextents = 0;
    862 	numblocks = 0;
    863 	memcpy(&nextextentrec, &fork.extents, sizeof(hfs_extent_record_t));
    864 
    865 	while(1)
    866 	{
    867 		for(n=0; n<8; n++)
    868 		{
    869 			if(nextextentrec[n].block_count==0)
    870 				break;
    871 
    872 			numblocks += nextextentrec[n].block_count;
    873 		}
    874 
    875 		if(out_extents!=NULL)
    876 		{
    877 			dummy = hfslib_realloc(*out_extents,
    878 			    (numextents+n) * sizeof(hfs_extent_descriptor_t),
    879 			    cbargs);
    880 			if(dummy==NULL)
    881 				goto error;
    882 			*out_extents = dummy;
    883 
    884 			memcpy(*out_extents + numextents,
    885 			    &nextextentrec, n*sizeof(hfs_extent_descriptor_t));
    886 		}
    887 		numextents += n;
    888 
    889 		if(numblocks >= fork.total_blocks)
    890 			break;
    891 
    892 		if(hfslib_make_extent_key(in_cnid, in_forktype, numblocks,
    893 			&extentkey)==0)
    894 			goto error;
    895 
    896 		if(hfslib_find_extent_record_with_key(in_vol, &extentkey,
    897 			&nextextentrec, cbargs)!=0)
    898 			goto error;
    899 	}
    900 
    901 	goto exit;
    902 
    903 error:
    904 	if(out_extents!=NULL && *out_extents!=NULL)
    905 	{
    906 		hfslib_free(*out_extents, cbargs);
    907 		*out_extents = NULL;
    908 	}
    909 	return 0;
    910 
    911 exit:
    912 	return numextents;
    913 }
    914 
    915 /*
    916  * hfslib_get_directory_contents()
    917  *
    918  * Finds the immediate children of a given directory CNID and places their
    919  * CNIDs in an array allocated here. The first child is found by doing a
    920  * catalog search that only compares parent CNIDs (ignoring file/folder names)
    921  * and skips over thread records. Then the remaining children are listed in
    922  * ascending order by name, according to the HFS+ spec, so just read off each
    923  * successive leaf node until a different parent CNID is found.
    924  *
    925  * If out_childnames is not NULL, it will be allocated and set to an array of
    926  * hfs_unistr255_t's which correspond to the name of the child with that same
    927  * index.
    928  *
    929  * out_children may be NULL.
    930  *
    931  * Returns 0 on success.
    932  */
    933 int
    934 hfslib_get_directory_contents(
    935 	hfs_volume* in_vol,
    936 	hfs_cnid_t in_dir,
    937 	hfs_catalog_keyed_record_t** out_children,
    938 	hfs_unistr255_t** out_childnames,
    939 	uint32_t* out_numchildren,
    940 	hfs_callback_args* cbargs)
    941 {
    942 	hfs_node_descriptor_t			nd;
    943 	hfs_extent_descriptor_t*		extents;
    944 	hfs_catalog_keyed_record_t		currec;
    945 	hfs_catalog_key_t	curkey;
    946 	void**				recs;
    947 	void*				buffer;
    948 	void*				ptr; /* temporary pointer for realloc() */
    949 	uint64_t			bytesread;
    950 	uint32_t			curnode;
    951 	uint32_t			lastnode;
    952 	uint16_t*			recsizes;
    953 	uint16_t			numextents;
    954 	uint16_t			recnum;
    955 	int16_t				leaftype;
    956 	int					keycompare;
    957 	int					result;
    958 
    959 	if(in_vol==NULL || in_dir==0 || out_numchildren==NULL)
    960 		return 1;
    961 
    962 	result = 1;
    963 	buffer = NULL;
    964 	extents = NULL;
    965 	lastnode = 0;
    966 	recs = NULL;
    967 	recsizes = NULL;
    968 	*out_numchildren = 0;
    969 	if(out_children!=NULL)
    970 		*out_children = NULL;
    971 	if(out_childnames!=NULL)
    972 		*out_childnames = NULL;
    973 
    974 	buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
    975 	if(buffer==NULL)
    976 		HFS_LIBERR("could not allocate node buffer");
    977 
    978 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
    979 		HFS_DATAFORK, &extents, cbargs);
    980 	if(numextents==0)
    981 		HFS_LIBERR("could not locate fork extents");
    982 
    983 	nd.num_recs = 0;
    984 	curnode = in_vol->chr.root_node;
    985 
    986 	while(1)
    987 	{
    988 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
    989 		recnum = 0;
    990 
    991 		if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
    992 			in_vol->chr.node_size, curnode * in_vol->chr.node_size, extents,
    993 			numextents, cbargs)!=0)
    994 			HFS_LIBERR("could not read catalog node #%i", curnode);
    995 
    996 		if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
    997 			in_vol, cbargs)==0)
    998 			HFS_LIBERR("could not parse catalog node #%i", curnode);
    999 
   1000 		for(recnum=0; recnum<nd.num_recs; recnum++)
   1001 		{
   1002 			leaftype = nd.kind; /* needed b/c leaftype might be modified now */
   1003 			if(hfslib_read_catalog_keyed_record(recs[recnum], &currec,
   1004 				&leaftype, &curkey, in_vol)==0)
   1005 				HFS_LIBERR("could not read cat record %i:%i", curnode, recnum);
   1006 
   1007 			if(nd.kind==HFS_INDEXNODE)
   1008 			{
   1009 				keycompare = in_dir - curkey.parent_cnid;
   1010 				if(keycompare < 0)
   1011 				{
   1012 					/* Check if key is less than *every* record, which should
   1013 					 * never happen if the volume and key are good. */
   1014 					if(recnum==0)
   1015 						HFS_LIBERR("all records greater than key");
   1016 
   1017 					/* Otherwise, we've found the first record that exceeds our
   1018 					 * key, so retrieve the previous, lesser record. */
   1019 					curnode = lastnode;
   1020 					break;
   1021 				}
   1022 				else if(keycompare == 0)
   1023 				{
   1024 					/*
   1025 					 * Normally, if we were doing a typical catalog lookup with
   1026 					 * both a parent cnid AND a name, keycompare==0 would be an
   1027 					 * exact match. However, since we are ignoring object names
   1028 					 * in this case and only comparing parent cnids, a direct
   1029 					 * match on only a parent cnid could mean that we've found
   1030 					 * an object with that parent cnid BUT which is NOT the
   1031 					 * first object (according to the HFS+ spec) with that
   1032 					 * parent cnid. Thus, when we find a parent cnid match, we
   1033 					 * still go back to the previously found leaf node and start
   1034 					 * checking it for a possible prior instance of an object
   1035 					 * with our desired parent cnid.
   1036 					 */
   1037 					curnode = lastnode;
   1038 					break;
   1039 				}
   1040 				else if (recnum==nd.num_recs-1 && keycompare > 0)
   1041 				{
   1042 					/* Descend to child node if we found an exact match, or if
   1043 					 * this is the last pointer record. */
   1044 					curnode = currec.child;
   1045 					break;
   1046 				}
   1047 
   1048 				lastnode = currec.child;
   1049 			}
   1050 			else
   1051 			{
   1052 				/*
   1053 				 * We have now descended down the hierarchy of index nodes into
   1054 				 * the leaf node that contains the first catalog record with a
   1055 				 * matching parent CNID. Since all leaf nodes are chained
   1056 				 * through their flink/blink, we can simply walk forward through
   1057 				 * this chain, copying every matching non-thread record, until
   1058 				 * we hit a record with a different parent CNID. At that point,
   1059 				 * we've retrieved all of our directory's items, if any.
   1060 				 */
   1061 				curnode = nd.flink;
   1062 
   1063 				if(curkey.parent_cnid<in_dir)
   1064 					continue;
   1065 				else if(curkey.parent_cnid==in_dir)
   1066 				{
   1067 					/* Hide files/folders which are supposed to be invisible
   1068 					 * to users, according to the hfs+ spec. */
   1069 					if(hfslib_is_private_file(&curkey))
   1070 						continue;
   1071 
   1072 					/* leaftype has now been set to the catalog record type */
   1073 					if(leaftype==HFS_REC_FLDR || leaftype==HFS_REC_FILE)
   1074 					{
   1075 						(*out_numchildren)++;
   1076 
   1077 						if(out_children!=NULL)
   1078 						{
   1079 							ptr = hfslib_realloc(*out_children,
   1080 								*out_numchildren *
   1081 								sizeof(hfs_catalog_keyed_record_t), cbargs);
   1082 							if(ptr==NULL)
   1083 								HFS_LIBERR("could not allocate child record");
   1084 							*out_children = ptr;
   1085 
   1086 							memcpy(&((*out_children)[*out_numchildren-1]),
   1087 								&currec, sizeof(hfs_catalog_keyed_record_t));
   1088 						}
   1089 
   1090 						if(out_childnames!=NULL)
   1091 						{
   1092 							ptr = hfslib_realloc(*out_childnames,
   1093 								*out_numchildren * sizeof(hfs_unistr255_t),
   1094 								cbargs);
   1095 							if(ptr==NULL)
   1096 								HFS_LIBERR("could not allocate child name");
   1097 							*out_childnames = ptr;
   1098 
   1099 							memcpy(&((*out_childnames)[*out_numchildren-1]),
   1100 								&curkey.name, sizeof(hfs_unistr255_t));
   1101 						}
   1102 					}
   1103 				} else {
   1104 					result = 0;
   1105 					/* We have just now passed the last item in the desired
   1106 					 * folder (or the folder was empty), so exit. */
   1107 					goto exit;
   1108 				}
   1109 			}
   1110 		}
   1111 	}
   1112 
   1113 	result = 0;
   1114 
   1115 	goto exit;
   1116 
   1117 error:
   1118 	if(out_children!=NULL && *out_children!=NULL)
   1119 		hfslib_free(*out_children, cbargs);
   1120 	if(out_childnames!=NULL && *out_childnames!=NULL)
   1121 		hfslib_free(*out_childnames, cbargs);
   1122 
   1123 	/* FALLTHROUGH */
   1124 
   1125 exit:
   1126 	if(extents!=NULL)
   1127 		hfslib_free(extents, cbargs);
   1128 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
   1129 	if(buffer!=NULL)
   1130 		hfslib_free(buffer, cbargs);
   1131 
   1132 	return result;
   1133 }
   1134 
   1135 int
   1136 hfslib_is_journal_clean(hfs_volume* in_vol)
   1137 {
   1138 	if(in_vol==NULL)
   1139 		return 0;
   1140 
   1141 	/* return true if no journal */
   1142 	if(!(in_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)))
   1143 		return 1;
   1144 
   1145 	return (in_vol->jh.start == in_vol->jh.end);
   1146 }
   1147 
   1148 /*
   1149  * hfslib_is_private_file()
   1150  *
   1151  * Given a file/folder's key and parent CNID, determines if it should be hidden
   1152  * from the user (e.g., the journal header file or the HFS+ Private Data folder)
   1153  */
   1154 int
   1155 hfslib_is_private_file(hfs_catalog_key_t *filekey)
   1156 {
   1157 	hfs_catalog_key_t* curkey = NULL;
   1158 	int i = 0;
   1159 
   1160 	/*
   1161 	 * According to the HFS+ spec to date, all special objects are located in
   1162 	 * the root directory of the volume, so don't bother going further if the
   1163 	 * requested object is not.
   1164 	 */
   1165 	if(filekey->parent_cnid != HFS_CNID_ROOT_FOLDER)
   1166 		return 0;
   1167 
   1168 	while((curkey = hfs_gPrivateObjectKeys[i]) != NULL)
   1169 	{
   1170 		/* XXX Always use binary compare here, or use volume's specific key
   1171 		 * XXX comparison routine? */
   1172 		if(filekey->name.length == curkey->name.length
   1173 			&& memcmp(filekey->name.unicode, curkey->name.unicode,
   1174 				2 * curkey->name.length)==0)
   1175 			return 1;
   1176 
   1177 		i++;
   1178 	}
   1179 
   1180 	return 0;
   1181 }
   1182 
   1183 
   1184 /* bool
   1185 hfslib_is_journal_valid(hfs_volume* in_vol)
   1186 {
   1187 	- check magic numbers
   1188 	- check Other Things
   1189 }*/
   1190 
   1191 #if 0
   1192 #pragma mark -
   1193 #pragma mark Major Structures
   1194 #endif
   1195 
   1196 /*
   1197  *	hfslib_read_volume_header()
   1198  *
   1199  *	Reads in_bytes, formats the data appropriately, and places the result
   1200  *	in out_header, which is assumed to be previously allocated. Returns number
   1201  *	of bytes read, 0 if failed.
   1202  */
   1203 
   1204 size_t
   1205 hfslib_read_volume_header(void* in_bytes, hfs_volume_header_t* out_header)
   1206 {
   1207 	void*	ptr;
   1208 	size_t	last_bytes_read;
   1209 	int		i;
   1210 
   1211 	if(in_bytes==NULL || out_header==NULL)
   1212 		return 0;
   1213 
   1214 	ptr = in_bytes;
   1215 
   1216 	out_header->signature = be16tohp(&ptr);
   1217 	out_header->version = be16tohp(&ptr);
   1218 	out_header->attributes = be32tohp(&ptr);
   1219 	out_header->last_mounting_version = be32tohp(&ptr);
   1220 	out_header->journal_info_block = be32tohp(&ptr);
   1221 
   1222 	out_header->date_created = be32tohp(&ptr);
   1223 	out_header->date_modified = be32tohp(&ptr);
   1224 	out_header->date_backedup = be32tohp(&ptr);
   1225 	out_header->date_checked = be32tohp(&ptr);
   1226 
   1227 	out_header->file_count = be32tohp(&ptr);
   1228 	out_header->folder_count = be32tohp(&ptr);
   1229 
   1230 	out_header->block_size = be32tohp(&ptr);
   1231 	out_header->total_blocks = be32tohp(&ptr);
   1232 	out_header->free_blocks = be32tohp(&ptr);
   1233 	out_header->next_alloc_block = be32tohp(&ptr);
   1234 	out_header->rsrc_clump_size = be32tohp(&ptr);
   1235 	out_header->data_clump_size = be32tohp(&ptr);
   1236 	out_header->next_cnid = be32tohp(&ptr);
   1237 
   1238 	out_header->write_count = be32tohp(&ptr);
   1239 	out_header->encodings = be64tohp(&ptr);
   1240 
   1241 	for(i=0;i<8;i++)
   1242 		out_header->finder_info[i] = be32tohp(&ptr);
   1243 
   1244 	if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
   1245 		&out_header->allocation_file))==0)
   1246 		return 0;
   1247 	ptr = (uint8_t*)ptr + last_bytes_read;
   1248 
   1249 	if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
   1250 		&out_header->extents_file))==0)
   1251 		return 0;
   1252 	ptr = (uint8_t*)ptr + last_bytes_read;
   1253 
   1254 	if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
   1255 		&out_header->catalog_file))==0)
   1256 		return 0;
   1257 	ptr = (uint8_t*)ptr + last_bytes_read;
   1258 
   1259 	if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
   1260 		&out_header->attributes_file))==0)
   1261 		return 0;
   1262 	ptr = (uint8_t*)ptr + last_bytes_read;
   1263 
   1264 	if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
   1265 		&out_header->startup_file))==0)
   1266 		return 0;
   1267 	ptr = (uint8_t*)ptr + last_bytes_read;
   1268 
   1269 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1270 }
   1271 
   1272 /*
   1273  *	hfslib_reada_node()
   1274  *
   1275  *	Given the pointer to and size of a buffer containing the entire, raw
   1276  *	contents of any b-tree node from the disk, this function will:
   1277  *
   1278  *		1.	determine the type of node and read its contents
   1279  *		2.	allocate memory for each record and fill it appropriately
   1280  *		3.	set out_record_ptrs_array to point to an array (which it allocates)
   1281  *			which has out_node_descriptor->num_recs many pointers to the
   1282  *			records themselves
   1283  *		4.	allocate out_record_ptr_sizes_array and fill it with the sizes of
   1284  *			each record
   1285  *		5.	return the number of bytes read (i.e., the size of the node)
   1286  *			or 0 on failure
   1287  *
   1288  *	out_node_descriptor must be allocated by the caller and may not be NULL.
   1289  *
   1290  *	out_record_ptrs_array and out_record_ptr_sizes_array must both be specified,
   1291  *	or both be NULL if the caller is not interested in reading the records.
   1292  *
   1293  *	out_record_ptr_sizes_array may be NULL if the caller is not interested in
   1294  *	reading the records, but must not be NULL if out_record_ptrs_array is not.
   1295  *
   1296  *	in_parent_file is HFS_CATALOG_FILE, HFS_EXTENTS_FILE, or
   1297  *	HFS_ATTRIBUTES_FILE, depending on the special file in which this node
   1298  *	resides.
   1299  *
   1300  *	inout_volume must have its catnodesize or extnodesize field (depending on
   1301  *	the parent file) set to the correct value if this is an index, leaf, or map
   1302  *	node. If this is a header node, the field will be set to its correct value.
   1303  */
   1304 size_t
   1305 hfslib_reada_node(void* in_bytes,
   1306 	hfs_node_descriptor_t* out_node_descriptor,
   1307 	void** out_record_ptrs_array[],
   1308 	uint16_t* out_record_ptr_sizes_array[],
   1309 	hfs_btree_file_type in_parent_file,
   1310 	hfs_volume* inout_volume,
   1311 	hfs_callback_args* cbargs)
   1312 {
   1313 	void*		ptr;
   1314 	uint16_t*	rec_offsets;
   1315 	size_t		last_bytes_read;
   1316 	uint16_t	nodesize;
   1317 	uint16_t	numrecords;
   1318 	uint16_t	free_space_offset;	/* offset to free space in node */
   1319 	int			keysizefieldsize;
   1320 	int			i;
   1321 
   1322 	numrecords = 0;
   1323 	rec_offsets = NULL;
   1324 	if(out_record_ptrs_array!=NULL)
   1325 		*out_record_ptrs_array = NULL;
   1326 	if(out_record_ptr_sizes_array!=NULL)
   1327 		*out_record_ptr_sizes_array = NULL;
   1328 
   1329 	if(in_bytes==NULL || inout_volume==NULL || out_node_descriptor==NULL
   1330 		|| (out_record_ptrs_array==NULL && out_record_ptr_sizes_array!=NULL)
   1331 		|| (out_record_ptrs_array!=NULL && out_record_ptr_sizes_array==NULL) )
   1332 		goto error;
   1333 
   1334 	ptr = in_bytes;
   1335 
   1336 	out_node_descriptor->flink = be32tohp(&ptr);
   1337 	out_node_descriptor->blink = be32tohp(&ptr);
   1338 	out_node_descriptor->kind = *(((int8_t*)ptr));
   1339 	ptr = (uint8_t*)ptr + 1;
   1340 	out_node_descriptor->height = *(((uint8_t*)ptr));
   1341 	ptr = (uint8_t*)ptr + 1;
   1342 	out_node_descriptor->num_recs = be16tohp(&ptr);
   1343 	out_node_descriptor->reserved = be16tohp(&ptr);
   1344 
   1345 	numrecords = out_node_descriptor->num_recs;
   1346 
   1347 	/*
   1348 	 *	To go any further, we will need to know the size of this node, as well
   1349 	 *	as the width of keyed records' key_len parameters for this btree. If
   1350 	 *	this is an index, leaf, or map node, inout_volume already has the node
   1351 	 *	size set in its catnodesize or extnodesize field and the key length set
   1352 	 *	in the catkeysizefieldsize or extkeysizefieldsize for catalog files and
   1353 	 *	extent files, respectively. However, if this is a header node, this
   1354 	 *	information has not yet been determined, so this is the place to do it.
   1355 	 */
   1356 	if(out_node_descriptor->kind == HFS_HEADERNODE)
   1357 	{
   1358 		hfs_header_record_t	hr;
   1359 		void*		header_rec_offset[1];
   1360 		uint16_t	header_rec_size[1];
   1361 
   1362 		/* sanity check to ensure this is a good header node */
   1363 		if(numrecords!=3)
   1364 			HFS_LIBERR("header node does not have exactly 3 records");
   1365 
   1366 		header_rec_offset[0] = ptr;
   1367 		header_rec_size[0] = sizeof(hfs_header_record_t);
   1368 
   1369 		last_bytes_read = hfslib_read_header_node(header_rec_offset,
   1370 			header_rec_size, 1, &hr, NULL, NULL);
   1371 		if(last_bytes_read==0)
   1372 			HFS_LIBERR("could not read header node");
   1373 
   1374 		switch(in_parent_file)
   1375 		{
   1376 			case HFS_CATALOG_FILE:
   1377 				inout_volume->chr.node_size = hr.node_size;
   1378 				inout_volume->catkeysizefieldsize =
   1379 					(hr.attributes & HFS_BIG_KEYS_MASK) ?
   1380 						sizeof(uint16_t):sizeof(uint8_t);
   1381 				break;
   1382 
   1383 			case HFS_EXTENTS_FILE:
   1384 				inout_volume->ehr.node_size = hr.node_size;
   1385 				inout_volume->extkeysizefieldsize =
   1386 					(hr.attributes & HFS_BIG_KEYS_MASK) ?
   1387 						sizeof(uint16_t):sizeof(uint8_t);
   1388 				break;
   1389 
   1390 			case HFS_ATTRIBUTES_FILE:
   1391 			default:
   1392 				HFS_LIBERR("invalid parent file type specified");
   1393 				/* NOTREACHED */
   1394 		}
   1395 	}
   1396 
   1397 	switch(in_parent_file)
   1398 	{
   1399 		case HFS_CATALOG_FILE:
   1400 			nodesize = inout_volume->chr.node_size;
   1401 			keysizefieldsize = inout_volume->catkeysizefieldsize;
   1402 			break;
   1403 
   1404 		case HFS_EXTENTS_FILE:
   1405 			nodesize = inout_volume->ehr.node_size;
   1406 			keysizefieldsize = inout_volume->extkeysizefieldsize;
   1407 			break;
   1408 
   1409 		case HFS_ATTRIBUTES_FILE:
   1410 		default:
   1411 			HFS_LIBERR("invalid parent file type specified");
   1412 			/* NOTREACHED */
   1413 	}
   1414 
   1415 	/*
   1416 	 *	Don't care about records so just exit after getting the node descriptor.
   1417 	 *	Note: This happens after the header node code, and not before it, in
   1418 	 *	case the caller calls this function and ignores the record data just to
   1419 	 *	get at the node descriptor, but then tries to call it again on a non-
   1420 	 *	header node without first setting inout_volume->cat/extnodesize.
   1421 	 */
   1422 	if(out_record_ptrs_array==NULL)
   1423 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1424 
   1425 	rec_offsets = hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
   1426 	*out_record_ptr_sizes_array =
   1427 		hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
   1428 	if(rec_offsets==NULL || *out_record_ptr_sizes_array==NULL)
   1429 		HFS_LIBERR("could not allocate node record offsets");
   1430 
   1431 	*out_record_ptrs_array = hfslib_malloc(numrecords * sizeof(void*), cbargs);
   1432 	if(*out_record_ptrs_array==NULL)
   1433 		HFS_LIBERR("could not allocate node records");
   1434 
   1435 	last_bytes_read = hfslib_reada_node_offsets((uint8_t*)in_bytes + nodesize -
   1436 			numrecords * sizeof(uint16_t), rec_offsets);
   1437 	if(last_bytes_read==0)
   1438 		HFS_LIBERR("could not read node record offsets");
   1439 
   1440 	/*	The size of the last record (i.e. the first one listed in the offsets)
   1441 	 *	must be determined using the offset to the node's free space. */
   1442 	free_space_offset = be16toh(*(uint16_t*)((uint8_t*)in_bytes + nodesize -
   1443 			(numrecords+1) * sizeof(uint16_t)));
   1444 
   1445 	(*out_record_ptr_sizes_array)[numrecords-1] =
   1446 		free_space_offset - rec_offsets[0];
   1447 	for(i=1;i<numrecords;i++)
   1448 	{
   1449 		(*out_record_ptr_sizes_array)[numrecords-i-1] =
   1450 			rec_offsets[i-1] - rec_offsets[i];
   1451 	}
   1452 
   1453 	for(i=0;i<numrecords;i++)
   1454 	{
   1455 		(*out_record_ptrs_array)[i] =
   1456 			hfslib_malloc((*out_record_ptr_sizes_array)[i], cbargs);
   1457 
   1458 		if((*out_record_ptrs_array)[i]==NULL)
   1459 			HFS_LIBERR("could not allocate node record #%i",i);
   1460 
   1461 		/*
   1462 		 *	If this is a keyed node (i.e., a leaf or index node), there are two
   1463 		 *	boundary rules that each record must obey:
   1464 		 *
   1465 		 *		1.	A pad byte must be placed between the key and data if the
   1466 		 *			size of the key plus the size of the key_len field is odd.
   1467 		 *
   1468 		 *		2.	A pad byte must be placed after the data if the data size
   1469 		 *			is odd.
   1470 		 *
   1471 		 *	So in the first case we increment the starting point of the data
   1472 		 *	and correspondingly decrement the record size. In the second case
   1473 		 *	we decrement the record size.
   1474 		 */
   1475 		if(out_node_descriptor->kind == HFS_LEAFNODE ||
   1476 		   out_node_descriptor->kind == HFS_INDEXNODE)
   1477 		{
   1478 			hfs_catalog_key_t	reckey;
   1479 			uint16_t			rectype;
   1480 
   1481 			rectype = out_node_descriptor->kind;
   1482 			last_bytes_read = hfslib_read_catalog_keyed_record(ptr, NULL,
   1483 				&rectype, &reckey, inout_volume);
   1484 			if(last_bytes_read==0)
   1485 				HFS_LIBERR("could not read node record");
   1486 
   1487 			if((reckey.key_len + keysizefieldsize) % 2 == 1)
   1488 			{
   1489 				ptr = (uint8_t*)ptr + 1;
   1490 				(*out_record_ptr_sizes_array)[i]--;
   1491 			}
   1492 
   1493 			if((*out_record_ptr_sizes_array)[i] % 2 == 1)
   1494 				(*out_record_ptr_sizes_array)[i]--;
   1495 		}
   1496 
   1497 		memcpy((*out_record_ptrs_array)[i], ptr,
   1498 				(*out_record_ptr_sizes_array)[i]);
   1499 		ptr = (uint8_t*)ptr + (*out_record_ptr_sizes_array)[i];
   1500 	}
   1501 
   1502 	goto exit;
   1503 
   1504 error:
   1505 	hfslib_free_recs(out_record_ptrs_array, out_record_ptr_sizes_array,
   1506 		&numrecords, cbargs);
   1507 
   1508 	ptr = in_bytes;
   1509 
   1510 	/* warn("error occurred in hfslib_reada_node()"); */
   1511 
   1512 	/* FALLTHROUGH */
   1513 
   1514 exit:
   1515 	if(rec_offsets!=NULL)
   1516 		hfslib_free(rec_offsets, cbargs);
   1517 
   1518 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1519 }
   1520 
   1521 /*
   1522  *	hfslib_reada_node_offsets()
   1523  *
   1524  *	Sets out_offset_array to contain the offsets to each record in the node,
   1525  *	in reverse order. Does not read the free space offset.
   1526  */
   1527 size_t
   1528 hfslib_reada_node_offsets(void* in_bytes, uint16_t* out_offset_array)
   1529 {
   1530 	void*		ptr;
   1531 
   1532 	if(in_bytes==NULL || out_offset_array==NULL)
   1533 		return 0;
   1534 
   1535 	ptr = in_bytes;
   1536 
   1537 	/*
   1538 	 *	The offset for record 0 (which is the very last offset in the node) is
   1539 	 *	always equal to 14, the size of the node descriptor. So, once we hit
   1540 	 *	offset=14, we know this is the last offset. In this way, we don't need
   1541 	 *	to know the number of records beforehand.
   1542 	*/
   1543 	out_offset_array--;
   1544 	do
   1545 	{
   1546 		out_offset_array++;
   1547 		*out_offset_array = be16tohp(&ptr);
   1548 	}
   1549 	while(*out_offset_array != (uint16_t)14);
   1550 
   1551 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1552 }
   1553 
   1554 /*	hfslib_read_header_node()
   1555  *
   1556  *	out_header_record and/or out_map_record may be NULL if the caller doesn't
   1557  *	care about their contents.
   1558  */
   1559 size_t
   1560 hfslib_read_header_node(void** in_recs,
   1561 	uint16_t* in_rec_sizes,
   1562 	uint16_t in_num_recs,
   1563 	hfs_header_record_t* out_hr,
   1564 	void* out_userdata,
   1565 	void* out_map)
   1566 {
   1567 	void*	ptr;
   1568 	int		i;
   1569 
   1570 	if(in_recs==NULL || in_rec_sizes==NULL)
   1571 		return 0;
   1572 
   1573 	if(out_hr!=NULL)
   1574 	{
   1575 		ptr = in_recs[0];
   1576 
   1577 		out_hr->tree_depth = be16tohp(&ptr);
   1578 		out_hr->root_node = be32tohp(&ptr);
   1579 		out_hr->leaf_recs = be32tohp(&ptr);
   1580 		out_hr->first_leaf = be32tohp(&ptr);
   1581 		out_hr->last_leaf = be32tohp(&ptr);
   1582 		out_hr->node_size = be16tohp(&ptr);
   1583 		out_hr->max_key_len = be16tohp(&ptr);
   1584 		out_hr->total_nodes = be32tohp(&ptr);
   1585 		out_hr->free_nodes = be32tohp(&ptr);
   1586 		out_hr->reserved = be16tohp(&ptr);
   1587 		out_hr->clump_size = be32tohp(&ptr);
   1588 		out_hr->btree_type = *(((uint8_t*)ptr));
   1589 		ptr = (uint8_t*)ptr + 1;
   1590 		out_hr->keycomp_type = *(((uint8_t*)ptr));
   1591 		ptr = (uint8_t*)ptr + 1;
   1592 		out_hr->attributes = be32tohp(&ptr);
   1593 		for(i=0;i<16;i++)
   1594 			out_hr->reserved2[i] = be32tohp(&ptr);
   1595 	}
   1596 
   1597 	if(out_userdata!=NULL)
   1598 	{
   1599 		memcpy(out_userdata, in_recs[1], in_rec_sizes[1]);
   1600 	}
   1601 	ptr = (uint8_t*)ptr + in_rec_sizes[1];	/* size of user data record */
   1602 
   1603 	if(out_map!=NULL)
   1604 	{
   1605 		memcpy(out_map, in_recs[2], in_rec_sizes[2]);
   1606 	}
   1607 	ptr = (uint8_t*)ptr + in_rec_sizes[2];	/* size of map record */
   1608 
   1609 	return ((uint8_t*)ptr - (uint8_t*)in_recs[0]);
   1610 }
   1611 
   1612 /*
   1613  *	hfslib_read_catalog_keyed_record()
   1614  *
   1615  *	out_recdata can be NULL. inout_rectype must be set to either HFS_LEAFNODE
   1616  *	or HFS_INDEXNODE upon calling this function, and will be set by the
   1617  *	function to one of HFS_REC_FLDR, HFS_REC_FILE, HFS_REC_FLDR_THREAD, or
   1618  *	HFS_REC_FLDR_THREAD upon return if the node is a leaf node. If it is an
   1619  *	index node, inout_rectype will not be changed.
   1620  */
   1621 size_t
   1622 hfslib_read_catalog_keyed_record(
   1623 	void* in_bytes,
   1624 	hfs_catalog_keyed_record_t* out_recdata,
   1625 	int16_t* inout_rectype,
   1626 	hfs_catalog_key_t* out_key,
   1627 	hfs_volume* in_volume)
   1628 {
   1629 	void*		ptr;
   1630 	size_t		last_bytes_read;
   1631 
   1632 	if(in_bytes==NULL || out_key==NULL || inout_rectype==NULL)
   1633 		return 0;
   1634 
   1635 	ptr = in_bytes;
   1636 
   1637 	/*	For HFS+, the key length is always a 2-byte number. This is indicated
   1638 	 *	by the HFS_BIG_KEYS_MASK bit in the attributes field of the catalog
   1639 	 *	header record. However, we just assume this bit is set, since all HFS+
   1640 	 *	volumes should have it set anyway. */
   1641 	if(in_volume->catkeysizefieldsize == sizeof(uint16_t))
   1642 		out_key->key_len = be16tohp(&ptr);
   1643 	else if (in_volume->catkeysizefieldsize == sizeof(uint8_t)) {
   1644 		out_key->key_len = *(((uint8_t*)ptr));
   1645 		ptr = (uint8_t*)ptr + 1;
   1646 	}
   1647 
   1648 	out_key->parent_cnid = be32tohp(&ptr);
   1649 
   1650 	last_bytes_read = hfslib_read_unistr255(ptr, &out_key->name);
   1651 	if(last_bytes_read==0)
   1652 		return 0;
   1653 	ptr = (uint8_t*)ptr + last_bytes_read;
   1654 
   1655 	/* don't waste time if the user just wanted the key and/or record type */
   1656 	if(out_recdata==NULL)
   1657 	{
   1658 		if(*inout_rectype == HFS_LEAFNODE)
   1659 			*inout_rectype = be16tohp(&ptr);
   1660 		else if(*inout_rectype != HFS_INDEXNODE)
   1661 			return 0;	/* should not happen if we were given valid arguments */
   1662 
   1663 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1664 	}
   1665 
   1666 	if(*inout_rectype == HFS_INDEXNODE)
   1667 	{
   1668 		out_recdata->child = be32tohp(&ptr);
   1669 	}
   1670 	else
   1671 	{
   1672 		/* first need to determine what kind of record this is */
   1673 		*inout_rectype = be16tohp(&ptr);
   1674 		out_recdata->type = *inout_rectype;
   1675 
   1676 		switch(out_recdata->type)
   1677 		{
   1678 			case HFS_REC_FLDR:
   1679 			{
   1680 				out_recdata->folder.flags = be16tohp(&ptr);
   1681 				out_recdata->folder.valence = be32tohp(&ptr);
   1682 				out_recdata->folder.cnid = be32tohp(&ptr);
   1683 				out_recdata->folder.date_created = be32tohp(&ptr);
   1684 				out_recdata->folder.date_content_mod = be32tohp(&ptr);
   1685 				out_recdata->folder.date_attrib_mod = be32tohp(&ptr);
   1686 				out_recdata->folder.date_accessed = be32tohp(&ptr);
   1687 				out_recdata->folder.date_backedup = be32tohp(&ptr);
   1688 
   1689 				last_bytes_read = hfslib_read_bsd_data(ptr,
   1690 					&out_recdata->folder.bsd);
   1691 				if(last_bytes_read==0)
   1692 					return 0;
   1693 				ptr = (uint8_t*)ptr + last_bytes_read;
   1694 
   1695 				last_bytes_read = hfslib_read_folder_userinfo(ptr,
   1696 					&out_recdata->folder.user_info);
   1697 				if(last_bytes_read==0)
   1698 					return 0;
   1699 				ptr = (uint8_t*)ptr + last_bytes_read;
   1700 
   1701 				last_bytes_read = hfslib_read_folder_finderinfo(ptr,
   1702 					&out_recdata->folder.finder_info);
   1703 				if(last_bytes_read==0)
   1704 					return 0;
   1705 				ptr = (uint8_t*)ptr + last_bytes_read;
   1706 
   1707 				out_recdata->folder.text_encoding = be32tohp(&ptr);
   1708 				out_recdata->folder.reserved = be32tohp(&ptr);
   1709 			}
   1710 			break;
   1711 
   1712 			case HFS_REC_FILE:
   1713 			{
   1714 				out_recdata->file.flags = be16tohp(&ptr);
   1715 				out_recdata->file.reserved = be32tohp(&ptr);
   1716 				out_recdata->file.cnid = be32tohp(&ptr);
   1717 				out_recdata->file.date_created = be32tohp(&ptr);
   1718 				out_recdata->file.date_content_mod = be32tohp(&ptr);
   1719 				out_recdata->file.date_attrib_mod = be32tohp(&ptr);
   1720 				out_recdata->file.date_accessed = be32tohp(&ptr);
   1721 				out_recdata->file.date_backedup = be32tohp(&ptr);
   1722 
   1723 				last_bytes_read = hfslib_read_bsd_data(ptr,
   1724 					&out_recdata->file.bsd);
   1725 				if(last_bytes_read==0)
   1726 					return 0;
   1727 				ptr = (uint8_t*)ptr + last_bytes_read;
   1728 
   1729 				last_bytes_read = hfslib_read_file_userinfo(ptr,
   1730 					&out_recdata->file.user_info);
   1731 				if(last_bytes_read==0)
   1732 					return 0;
   1733 				ptr = (uint8_t*)ptr + last_bytes_read;
   1734 
   1735 				last_bytes_read = hfslib_read_file_finderinfo(ptr,
   1736 					&out_recdata->file.finder_info);
   1737 				if(last_bytes_read==0)
   1738 					return 0;
   1739 				ptr = (uint8_t*)ptr + last_bytes_read;
   1740 
   1741 				out_recdata->file.text_encoding = be32tohp(&ptr);
   1742 				out_recdata->file.reserved2 = be32tohp(&ptr);
   1743 
   1744 				last_bytes_read = hfslib_read_fork_descriptor(ptr,
   1745 					&out_recdata->file.data_fork);
   1746 				if(last_bytes_read==0)
   1747 					return 0;
   1748 				ptr = (uint8_t*)ptr + last_bytes_read;
   1749 
   1750 				last_bytes_read = hfslib_read_fork_descriptor(ptr,
   1751 					&out_recdata->file.rsrc_fork);
   1752 				if(last_bytes_read==0)
   1753 					return 0;
   1754 				ptr = (uint8_t*)ptr + last_bytes_read;
   1755 			}
   1756 			break;
   1757 
   1758 			case HFS_REC_FLDR_THREAD:
   1759 			case HFS_REC_FILE_THREAD:
   1760 			{
   1761 				out_recdata->thread.reserved = be16tohp(&ptr);
   1762 				out_recdata->thread.parent_cnid = be32tohp(&ptr);
   1763 
   1764 				last_bytes_read = hfslib_read_unistr255(ptr,
   1765 					&out_recdata->thread.name);
   1766 				if(last_bytes_read==0)
   1767 					return 0;
   1768 				ptr = (uint8_t*)ptr + last_bytes_read;
   1769 			}
   1770 			break;
   1771 
   1772 			default:
   1773 				return 1;
   1774 				/* NOTREACHED */
   1775 		}
   1776 	}
   1777 
   1778 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1779 }
   1780 
   1781 /* out_rec may be NULL */
   1782 size_t
   1783 hfslib_read_extent_record(
   1784 	void* in_bytes,
   1785 	hfs_extent_record_t* out_rec,
   1786 	hfs_node_kind in_nodekind,
   1787 	hfs_extent_key_t* out_key,
   1788 	hfs_volume* in_volume)
   1789 {
   1790 	void*		ptr;
   1791 	size_t		last_bytes_read;
   1792 
   1793 	if(in_bytes==NULL || out_key==NULL
   1794 		|| (in_nodekind!=HFS_LEAFNODE && in_nodekind!=HFS_INDEXNODE))
   1795 		return 0;
   1796 
   1797 	ptr = in_bytes;
   1798 
   1799 	/*	For HFS+, the key length is always a 2-byte number. This is indicated
   1800 	 *	by the HFS_BIG_KEYS_MASK bit in the attributes field of the extent
   1801 	 *	overflow header record. However, we just assume this bit is set, since
   1802 	 *	all HFS+ volumes should have it set anyway. */
   1803 	if(in_volume->extkeysizefieldsize == sizeof(uint16_t))
   1804 		out_key->key_length = be16tohp(&ptr);
   1805 	else if (in_volume->extkeysizefieldsize == sizeof(uint8_t)) {
   1806 		out_key->key_length = *(((uint8_t*)ptr));
   1807 		ptr = (uint8_t*)ptr + 1;
   1808 	}
   1809 
   1810 	out_key->fork_type = *(((uint8_t*)ptr));
   1811 	ptr = (uint8_t*)ptr + 1;
   1812 	out_key->padding = *(((uint8_t*)ptr));
   1813 	ptr = (uint8_t*)ptr + 1;
   1814 	out_key->file_cnid = be32tohp(&ptr);
   1815 	out_key->start_block = be32tohp(&ptr);
   1816 
   1817 	/* don't waste time if the user just wanted the key */
   1818 	if(out_rec==NULL)
   1819 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1820 
   1821 	if(in_nodekind==HFS_LEAFNODE)
   1822 	{
   1823 		last_bytes_read = hfslib_read_extent_descriptors(ptr, out_rec);
   1824 		if(last_bytes_read==0)
   1825 			return 0;
   1826 		ptr = (uint8_t*)ptr + last_bytes_read;
   1827 	}
   1828 	else
   1829 	{
   1830 		/* XXX: this is completely bogus */
   1831                 /*      (uint32_t*)*out_rec = be32tohp(&ptr); */
   1832 	    uint32_t *ptr_32 = (uint32_t *)out_rec;
   1833 		*ptr_32 = be32tohp(&ptr);
   1834 	        /* (*out_rec)[0].start_block = be32tohp(&ptr); */
   1835 	}
   1836 
   1837 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1838 }
   1839 
   1840 void
   1841 hfslib_free_recs(
   1842 	void*** inout_node_recs,
   1843 	uint16_t** inout_rec_sizes,
   1844 	uint16_t* inout_num_recs,
   1845 	hfs_callback_args* cbargs)
   1846 {
   1847 	uint16_t	i;
   1848 
   1849 	if(inout_num_recs==NULL || *inout_num_recs==0)
   1850 		return;
   1851 
   1852 	if(inout_node_recs!=NULL && *inout_node_recs!=NULL)
   1853 	{
   1854 		for(i=0;i<*inout_num_recs;i++)
   1855 		{
   1856 			if((*inout_node_recs)[i]!=NULL)
   1857 			{
   1858 				hfslib_free((*inout_node_recs)[i], cbargs);
   1859 				(*inout_node_recs)[i] = NULL;
   1860 			}
   1861 		}
   1862 
   1863 		hfslib_free(*inout_node_recs, cbargs);
   1864 		*inout_node_recs = NULL;
   1865 	}
   1866 
   1867 	if(inout_rec_sizes!=NULL && *inout_rec_sizes!=NULL)
   1868 	{
   1869 		hfslib_free(*inout_rec_sizes, cbargs);
   1870 		*inout_rec_sizes = NULL;
   1871 	}
   1872 
   1873 	*inout_num_recs = 0;
   1874 }
   1875 
   1876 #if 0
   1877 #pragma mark -
   1878 #pragma mark Individual Fields
   1879 #endif
   1880 
   1881 size_t
   1882 hfslib_read_fork_descriptor(void* in_bytes, hfs_fork_t* out_forkdata)
   1883 {
   1884 	void*	ptr;
   1885 	size_t	last_bytes_read;
   1886 
   1887 	if(in_bytes==NULL || out_forkdata==NULL)
   1888 		return 0;
   1889 
   1890 	ptr = in_bytes;
   1891 
   1892 	out_forkdata->logical_size = be64tohp(&ptr);
   1893 	out_forkdata->clump_size = be32tohp(&ptr);
   1894 	out_forkdata->total_blocks = be32tohp(&ptr);
   1895 
   1896 	if((last_bytes_read = hfslib_read_extent_descriptors(ptr,
   1897 		&out_forkdata->extents))==0)
   1898 		return 0;
   1899 	ptr = (uint8_t*)ptr + last_bytes_read;
   1900 
   1901 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1902 }
   1903 
   1904 size_t
   1905 hfslib_read_extent_descriptors(
   1906 	void* in_bytes,
   1907 	hfs_extent_record_t* out_extentrecord)
   1908 {
   1909 	void*	ptr;
   1910 	int		i;
   1911 
   1912 	if(in_bytes==NULL || out_extentrecord==NULL)
   1913 		return 0;
   1914 
   1915 	ptr = in_bytes;
   1916 
   1917 	for(i=0;i<8;i++)
   1918 	{
   1919 		(((hfs_extent_descriptor_t*)*out_extentrecord)[i]).start_block =
   1920 			be32tohp(&ptr);
   1921 		(((hfs_extent_descriptor_t*)*out_extentrecord)[i]).block_count =
   1922 			be32tohp(&ptr);
   1923 	}
   1924 
   1925 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1926 }
   1927 
   1928 size_t
   1929 hfslib_read_unistr255(void* in_bytes, hfs_unistr255_t* out_string)
   1930 {
   1931 	void*		ptr;
   1932 	uint16_t	i, length;
   1933 
   1934 	if(in_bytes==NULL || out_string==NULL)
   1935 		return 0;
   1936 
   1937 	ptr = in_bytes;
   1938 
   1939 	length = be16tohp(&ptr);
   1940 	if(length>255)
   1941 		length = 255; /* hfs+ folder/file names have a limit of 255 chars */
   1942 	out_string->length = length;
   1943 
   1944 	for(i=0; i<length; i++)
   1945 	{
   1946 		out_string->unicode[i] = be16tohp(&ptr);
   1947 	}
   1948 
   1949 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1950 }
   1951 
   1952 size_t
   1953 hfslib_read_bsd_data(void* in_bytes, hfs_bsd_data_t* out_perms)
   1954 {
   1955 	void*	ptr;
   1956 
   1957 	if(in_bytes==NULL || out_perms==NULL)
   1958 		return 0;
   1959 
   1960 	ptr = in_bytes;
   1961 
   1962 	out_perms->owner_id = be32tohp(&ptr);
   1963 	out_perms->group_id = be32tohp(&ptr);
   1964 	out_perms->admin_flags = *(((uint8_t*)ptr));
   1965 	ptr = (uint8_t*)ptr + 1;
   1966 	out_perms->owner_flags = *(((uint8_t*)ptr));
   1967 	ptr = (uint8_t*)ptr + 1;
   1968 	out_perms->file_mode = be16tohp(&ptr);
   1969 	out_perms->special.inode_num = be32tohp(&ptr); /* this field is a union */
   1970 
   1971 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1972 }
   1973 
   1974 size_t
   1975 hfslib_read_file_userinfo(void* in_bytes, hfs_macos_file_info_t* out_info)
   1976 {
   1977 	void*	ptr;
   1978 
   1979 	if(in_bytes==NULL || out_info==NULL)
   1980 		return 0;
   1981 
   1982 	ptr = in_bytes;
   1983 
   1984 	out_info->file_type = be32tohp(&ptr);
   1985 	out_info->file_creator = be32tohp(&ptr);
   1986 	out_info->finder_flags = be16tohp(&ptr);
   1987 	out_info->location.v = be16tohp(&ptr);
   1988 	out_info->location.h = be16tohp(&ptr);
   1989 	out_info->reserved = be16tohp(&ptr);
   1990 
   1991 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   1992 }
   1993 
   1994 size_t
   1995 hfslib_read_file_finderinfo(
   1996 	void* in_bytes,
   1997 	hfs_macos_extended_file_info_t* out_info)
   1998 {
   1999 	void*	ptr;
   2000 
   2001 	if(in_bytes==NULL || out_info==NULL)
   2002 		return 0;
   2003 
   2004 	ptr = in_bytes;
   2005 
   2006 #if 0
   2007 	#pragma warn Fill in with real code!
   2008 #endif
   2009 	/* FIXME: Fill in with real code! */
   2010 	memset(out_info, 0, sizeof(*out_info));
   2011 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_file_info_t);
   2012 
   2013 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   2014 }
   2015 
   2016 size_t
   2017 hfslib_read_folder_userinfo(void* in_bytes, hfs_macos_folder_info_t* out_info)
   2018 {
   2019 	void*	ptr;
   2020 
   2021 	if(in_bytes==NULL || out_info==NULL)
   2022 		return 0;
   2023 
   2024 	ptr = in_bytes;
   2025 
   2026 #if 0
   2027 	#pragma warn Fill in with real code!
   2028 #endif
   2029 	/* FIXME: Fill in with real code! */
   2030 	memset(out_info, 0, sizeof(*out_info));
   2031 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_folder_info_t);
   2032 
   2033 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   2034 }
   2035 
   2036 size_t
   2037 hfslib_read_folder_finderinfo(
   2038 	void* in_bytes,
   2039 	hfs_macos_extended_folder_info_t* out_info)
   2040 {
   2041 	void*	ptr;
   2042 
   2043 	if(in_bytes==NULL || out_info==NULL)
   2044 		return 0;
   2045 
   2046 	ptr = in_bytes;
   2047 
   2048 #if 0
   2049 	#pragma warn Fill in with real code!
   2050 #endif
   2051 	/* FIXME: Fill in with real code! */
   2052 	memset(out_info, 0, sizeof(*out_info));
   2053 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_folder_info_t);
   2054 
   2055 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   2056 }
   2057 
   2058 size_t
   2059 hfslib_read_journal_info(void* in_bytes, hfs_journal_info_t* out_info)
   2060 {
   2061 	void*	ptr;
   2062 	int		i;
   2063 
   2064 	if(in_bytes==NULL || out_info==NULL)
   2065 		return 0;
   2066 
   2067 	ptr = in_bytes;
   2068 
   2069 	out_info->flags = be32tohp(&ptr);
   2070 	for(i=0; i<8; i++)
   2071 	{
   2072 		out_info->device_signature[i] = be32tohp(&ptr);
   2073 	}
   2074 	out_info->offset = be64tohp(&ptr);
   2075 	out_info->size = be64tohp(&ptr);
   2076 	for(i=0; i<32; i++)
   2077 	{
   2078 		out_info->reserved[i] = be64tohp(&ptr);
   2079 	}
   2080 
   2081 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   2082 }
   2083 
   2084 size_t
   2085 hfslib_read_journal_header(void* in_bytes, hfs_journal_header_t* out_header)
   2086 {
   2087 	void*	ptr;
   2088 
   2089 	if(in_bytes==NULL || out_header==NULL)
   2090 		return 0;
   2091 
   2092 	ptr = in_bytes;
   2093 
   2094 	out_header->magic = be32tohp(&ptr);
   2095 	out_header->endian = be32tohp(&ptr);
   2096 	out_header->start = be64tohp(&ptr);
   2097 	out_header->end = be64tohp(&ptr);
   2098 	out_header->size = be64tohp(&ptr);
   2099 	out_header->blocklist_header_size = be32tohp(&ptr);
   2100 	out_header->checksum = be32tohp(&ptr);
   2101 	out_header->journal_header_size = be32tohp(&ptr);
   2102 
   2103 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
   2104 }
   2105 
   2106 #if 0
   2107 #pragma mark -
   2108 #pragma mark Disk Access
   2109 #endif
   2110 
   2111 /*
   2112  *	hfslib_readd_with_extents()
   2113  *
   2114  *	This function reads the contents of a file from the volume, given an array
   2115  *	of extent descriptors which specify where every extent of the file is
   2116  *	located (in addition to the usual pread() arguments). out_bytes is presumed
   2117  *  to exist and be large enough to hold in_length number of bytes. Returns 0
   2118  *	on success.
   2119  */
   2120 int
   2121 hfslib_readd_with_extents(
   2122 	hfs_volume*	in_vol,
   2123 	void*		out_bytes,
   2124 	uint64_t*	out_bytesread,
   2125 	uint64_t	in_length,
   2126 	uint64_t	in_offset,
   2127 	hfs_extent_descriptor_t in_extents[],
   2128 	uint16_t	in_numextents,
   2129 	hfs_callback_args*	cbargs)
   2130 {
   2131 	uint64_t	ext_length, last_offset;
   2132 	uint16_t	i;
   2133 	int			error;
   2134 
   2135 	if(in_vol==NULL || out_bytes==NULL || in_extents==NULL || in_numextents==0
   2136 		|| out_bytesread==NULL)
   2137 		return -1;
   2138 
   2139 	*out_bytesread = 0;
   2140 	last_offset = 0;
   2141 
   2142 	for(i=0; i<in_numextents; i++)
   2143 	{
   2144 		if(in_extents[i].block_count==0)
   2145 			continue;
   2146 
   2147 		ext_length = in_extents[i].block_count * in_vol->vh.block_size;
   2148 
   2149 		if(in_offset < last_offset+ext_length
   2150 			&& in_offset+in_length >= last_offset)
   2151 		{
   2152 			uint64_t	isect_start, isect_end;
   2153 
   2154 			isect_start = max(in_offset, last_offset);
   2155 			isect_end = min(in_offset+in_length, last_offset+ext_length);
   2156 			error = hfslib_readd(in_vol, out_bytes, isect_end-isect_start,
   2157 				isect_start - last_offset + (uint64_t)in_extents[i].start_block
   2158 					* in_vol->vh.block_size, cbargs);
   2159 
   2160 			if(error!=0)
   2161 				return error;
   2162 
   2163 			*out_bytesread += isect_end-isect_start;
   2164 			out_bytes = (uint8_t*)out_bytes + isect_end-isect_start;
   2165 		}
   2166 
   2167 		last_offset += ext_length;
   2168 	}
   2169 
   2170 
   2171 	return 0;
   2172 }
   2173 
   2174 #if 0
   2175 #pragma mark -
   2176 #pragma mark Callback Wrappers
   2177 #endif
   2178 
   2179 void
   2180 hfslib_error(const char* in_format, const char* in_file, int in_line, ...)
   2181 {
   2182 	va_list		ap;
   2183 
   2184 	if(in_format==NULL)
   2185 		return;
   2186 
   2187 	if(hfs_gcb.error!=NULL)
   2188 	{
   2189 		va_start(ap, in_line);
   2190 
   2191 		hfs_gcb.error(in_format, in_file, in_line, ap);
   2192 
   2193 		va_end(ap);
   2194 	}
   2195 }
   2196 
   2197 void*
   2198 hfslib_malloc(size_t size, hfs_callback_args* cbargs)
   2199 {
   2200 	if(hfs_gcb.allocmem!=NULL)
   2201 		return hfs_gcb.allocmem(size, cbargs);
   2202 
   2203 	return NULL;
   2204 }
   2205 
   2206 void*
   2207 hfslib_realloc(void* ptr, size_t size, hfs_callback_args* cbargs)
   2208 {
   2209 	if(hfs_gcb.reallocmem!=NULL)
   2210 		return hfs_gcb.reallocmem(ptr, size, cbargs);
   2211 
   2212 	return NULL;
   2213 }
   2214 
   2215 void
   2216 hfslib_free(void* ptr, hfs_callback_args* cbargs)
   2217 {
   2218 	if(hfs_gcb.freemem!=NULL && ptr!=NULL)
   2219 		hfs_gcb.freemem(ptr, cbargs);
   2220 }
   2221 
   2222 int
   2223 hfslib_openvoldevice(
   2224 	hfs_volume* in_vol,
   2225 	const char* in_device,
   2226 	uint64_t in_offset,
   2227 	hfs_callback_args* cbargs)
   2228 {
   2229 	if(hfs_gcb.openvol!=NULL && in_device!=NULL)
   2230 		return hfs_gcb.openvol(in_vol, in_device, in_offset, cbargs);
   2231 
   2232 	return 1;
   2233 }
   2234 
   2235 void
   2236 hfslib_closevoldevice(hfs_volume* in_vol, hfs_callback_args* cbargs)
   2237 {
   2238 	if(hfs_gcb.closevol!=NULL)
   2239 		hfs_gcb.closevol(in_vol, cbargs);
   2240 }
   2241 
   2242 int
   2243 hfslib_readd(
   2244 	hfs_volume* in_vol,
   2245 	void* out_bytes,
   2246 	uint64_t in_length,
   2247 	uint64_t in_offset,
   2248 	hfs_callback_args* cbargs)
   2249 {
   2250 	if(in_vol==NULL || out_bytes==NULL)
   2251 		return -1;
   2252 
   2253 	if(hfs_gcb.read!=NULL)
   2254 		return hfs_gcb.read(in_vol, out_bytes, in_length, in_offset, cbargs);
   2255 
   2256 	return -1;
   2257 }
   2258 
   2259 #if 0
   2260 #pragma mark -
   2261 #pragma mark Other
   2262 #endif
   2263 
   2264 /* returns key length */
   2265 uint16_t
   2266 hfslib_make_catalog_key(
   2267 	hfs_cnid_t in_parent_cnid,
   2268 	uint16_t in_name_len,
   2269 	unichar_t* in_unicode,
   2270 	hfs_catalog_key_t* out_key)
   2271 {
   2272 	if(in_parent_cnid==0 || (in_name_len>0 && in_unicode==NULL) || out_key==0)
   2273 		return 0;
   2274 
   2275 	if(in_name_len>255)
   2276 		in_name_len = 255;
   2277 
   2278 	out_key->key_len = 6 + 2 * in_name_len;
   2279 	out_key->parent_cnid = in_parent_cnid;
   2280 	out_key->name.length = in_name_len;
   2281 	if(in_name_len>0)
   2282 		memcpy(&out_key->name.unicode, in_unicode, in_name_len*2);
   2283 
   2284 	return out_key->key_len;
   2285 }
   2286 
   2287 /* returns key length */
   2288 uint16_t
   2289 hfslib_make_extent_key(
   2290 	hfs_cnid_t in_cnid,
   2291 	uint8_t in_forktype,
   2292 	uint32_t in_startblock,
   2293 	hfs_extent_key_t* out_key)
   2294 {
   2295 	if(in_cnid==0 || out_key==0)
   2296 		return 0;
   2297 
   2298 	out_key->key_length = HFS_MAX_EXT_KEY_LEN;
   2299 	out_key->fork_type = in_forktype;
   2300 	out_key->padding = 0;
   2301 	out_key->file_cnid = in_cnid;
   2302 	out_key->start_block = in_startblock;
   2303 
   2304 	return out_key->key_length;
   2305 }
   2306 
   2307 /* case-folding */
   2308 int
   2309 hfslib_compare_catalog_keys_cf (
   2310 	const void *ap,
   2311 	const void *bp)
   2312 {
   2313 	const hfs_catalog_key_t	*a, *b;
   2314 	unichar_t	ac, bc; /* current character from a, b */
   2315 	unichar_t	lc; /* lowercase version of current character */
   2316 	uint8_t		apos, bpos; /* current character indices */
   2317 
   2318 	a = (const hfs_catalog_key_t*)ap;
   2319 	b = (const hfs_catalog_key_t*)bp;
   2320 
   2321 	if(a->parent_cnid != b->parent_cnid)
   2322 	{
   2323 		return (a->parent_cnid - b->parent_cnid);
   2324 	}
   2325 	else
   2326 	{
   2327 		/*
   2328 		 * The following code implements the pseudocode suggested by
   2329 		 * the HFS+ technote.
   2330 		 */
   2331 
   2332 /*
   2333  * XXX These need to be revised to be endian-independent!
   2334  */
   2335 #define hbyte(x) ((x) >> 8)
   2336 #define lbyte(x) ((x) & 0x00FF)
   2337 
   2338 		apos = bpos = 0;
   2339 		while(1)
   2340 		{
   2341 			/* get next valid character from a */
   2342 			for (lc=0; lc == 0 && apos < a->name.length; apos++) {
   2343 				ac = a->name.unicode[apos];
   2344 				lc = hfs_gcft[hbyte(ac)];
   2345 				if(lc==0)
   2346 					lc = ac;
   2347 				else
   2348 					lc = hfs_gcft[lc + lbyte(ac)];
   2349 			};
   2350 			ac=lc;
   2351 
   2352 			/* get next valid character from b */
   2353 			for (lc=0; lc == 0 && bpos < b->name.length; bpos++) {
   2354 				bc = b->name.unicode[bpos];
   2355 				lc = hfs_gcft[hbyte(bc)];
   2356 				if(lc==0)
   2357 					lc = bc;
   2358 				else
   2359 					lc = hfs_gcft[lc + lbyte(bc)];
   2360 			};
   2361 			bc=lc;
   2362 
   2363 			/* on end of string ac/bc are 0, otherwise > 0 */
   2364 			if (ac != bc || (ac == 0  && bc == 0))
   2365 				return ac - bc;
   2366 		}
   2367 #undef hbyte
   2368 #undef lbyte
   2369 	}
   2370 }
   2371 
   2372 /* binary compare (i.e., not case folding) */
   2373 int
   2374 hfslib_compare_catalog_keys_bc (
   2375 	const void *a,
   2376 	const void *b)
   2377 {
   2378 	if(((const hfs_catalog_key_t*)a)->parent_cnid
   2379 		== ((const hfs_catalog_key_t*)b)->parent_cnid)
   2380 	{
   2381 		if(((const hfs_catalog_key_t*)a)->name.length == 0 &&
   2382 			((const hfs_catalog_key_t*)b)->name.length == 0)
   2383 			return 0;
   2384 
   2385 		if(((const hfs_catalog_key_t*)a)->name.length == 0)
   2386 			return -1;
   2387 		if(((const hfs_catalog_key_t*)b)->name.length == 0)
   2388 			return 1;
   2389 
   2390 		/* FIXME: This does a byte-per-byte comparison, whereas the HFS spec
   2391 		 * mandates a uint16_t chunk comparison. */
   2392 		return memcmp(((const hfs_catalog_key_t*)a)->name.unicode,
   2393 			((const hfs_catalog_key_t*)b)->name.unicode,
   2394 			min(((const hfs_catalog_key_t*)a)->name.length,
   2395 				((const hfs_catalog_key_t*)b)->name.length));
   2396 	}
   2397 	else
   2398 	{
   2399 		return (((const hfs_catalog_key_t*)a)->parent_cnid -
   2400 				((const hfs_catalog_key_t*)b)->parent_cnid);
   2401 	}
   2402 }
   2403 
   2404 int
   2405 hfslib_compare_extent_keys (
   2406 	const void *a,
   2407 	const void *b)
   2408 {
   2409 	/*
   2410 	 *	Comparison order, in descending importance:
   2411 	 *
   2412 	 *		CNID -> fork type -> start block
   2413 	 */
   2414 
   2415 	if(((const hfs_extent_key_t*)a)->file_cnid
   2416 		== ((const hfs_extent_key_t*)b)->file_cnid)
   2417 	{
   2418 		if(((const hfs_extent_key_t*)a)->fork_type
   2419 			== ((const hfs_extent_key_t*)b)->fork_type)
   2420 		{
   2421 			if(((const hfs_extent_key_t*)a)->start_block
   2422 				== ((const hfs_extent_key_t*)b)->start_block)
   2423 			{
   2424 				return 0;
   2425 			}
   2426 			else
   2427 			{
   2428 				return (((const hfs_extent_key_t*)a)->start_block -
   2429 						((const hfs_extent_key_t*)b)->start_block);
   2430 			}
   2431 		}
   2432 		else
   2433 		{
   2434 			return (((const hfs_extent_key_t*)a)->fork_type -
   2435 					((const hfs_extent_key_t*)b)->fork_type);
   2436 		}
   2437 	}
   2438 	else
   2439 	{
   2440 		return (((const hfs_extent_key_t*)a)->file_cnid -
   2441 				((const hfs_extent_key_t*)b)->file_cnid);
   2442 	}
   2443 }
   2444 
   2445 /* 1+10 tables of 16 rows and 16 columns, each 2 bytes wide = 5632 bytes */
   2446 int
   2447 hfslib_create_casefolding_table(void)
   2448 {
   2449 	hfs_callback_args	cbargs;
   2450 	unichar_t*	t; /* convenience */
   2451 	uint16_t	s; /* current subtable * 256 */
   2452 	uint16_t	i; /* current subtable index (0 to 255) */
   2453 
   2454 	if(hfs_gcft!=NULL)
   2455 		return 0; /* no sweat, table already exists */
   2456 
   2457 	hfslib_init_cbargs(&cbargs);
   2458 	hfs_gcft = hfslib_malloc(5632, &cbargs);
   2459 	if(hfs_gcft==NULL)
   2460 		HFS_LIBERR("could not allocate case folding table");
   2461 
   2462 	t = hfs_gcft;	 /* easier to type :) */
   2463 
   2464 	/*
   2465 	 * high byte indices
   2466 	 */
   2467 	s = 0 * 256;
   2468 	memset(t, 0x00, 512);
   2469 	t[s+  0] = 0x0100;
   2470 	t[s+  1] = 0x0200;
   2471 	t[s+  3] = 0x0300;
   2472 	t[s+  4] = 0x0400;
   2473 	t[s+  5] = 0x0500;
   2474 	t[s+ 16] = 0x0600;
   2475 	t[s+ 32] = 0x0700;
   2476 	t[s+ 33] = 0x0800;
   2477 	t[s+254] = 0x0900;
   2478 	t[s+255] = 0x0a00;
   2479 
   2480 	/*
   2481 	 * table 1 (high byte 0x00)
   2482 	 */
   2483 	s = 1 * 256;
   2484 	for(i=0; i<65; i++)
   2485 		t[s+i] = i;
   2486 	t[s+  0] = 0xffff;
   2487 	for(i=65; i<91; i++)
   2488 		t[s+i] = i + 0x20;
   2489 	for(i=91; i<256; i++)
   2490 		t[s+i] = i;
   2491 	t[s+198] = 0x00e6;
   2492 	t[s+208] = 0x00f0;
   2493 	t[s+216] = 0x00f8;
   2494 	t[s+222] = 0x00fe;
   2495 
   2496 	/*
   2497 	 * table 2 (high byte 0x01)
   2498 	 */
   2499 	s = 2 * 256;
   2500 	for(i=0; i<256; i++)
   2501 		t[s+i] = i + 0x0100;
   2502 	t[s+ 16] = 0x0111;
   2503 	t[s+ 38] = 0x0127;
   2504 	t[s+ 50] = 0x0133;
   2505 	t[s+ 63] = 0x0140;
   2506 	t[s+ 65] = 0x0142;
   2507 	t[s+ 74] = 0x014b;
   2508 	t[s+ 82] = 0x0153;
   2509 	t[s+102] = 0x0167;
   2510 	t[s+129] = 0x0253;
   2511 	t[s+130] = 0x0183;
   2512 	t[s+132] = 0x0185;
   2513 	t[s+134] = 0x0254;
   2514 	t[s+135] = 0x0188;
   2515 	t[s+137] = 0x0256;
   2516 	t[s+138] = 0x0257;
   2517 	t[s+139] = 0x018c;
   2518 	t[s+142] = 0x01dd;
   2519 	t[s+143] = 0x0259;
   2520 	t[s+144] = 0x025b;
   2521 	t[s+145] = 0x0192;
   2522 	t[s+147] = 0x0260;
   2523 	t[s+148] = 0x0263;
   2524 	t[s+150] = 0x0269;
   2525 	t[s+151] = 0x0268;
   2526 	t[s+152] = 0x0199;
   2527 	t[s+156] = 0x026f;
   2528 	t[s+157] = 0x0272;
   2529 	t[s+159] = 0x0275;
   2530 	t[s+162] = 0x01a3;
   2531 	t[s+164] = 0x01a5;
   2532 	t[s+167] = 0x01a8;
   2533 	t[s+169] = 0x0283;
   2534 	t[s+172] = 0x01ad;
   2535 	t[s+174] = 0x0288;
   2536 	t[s+177] = 0x028a;
   2537 	t[s+178] = 0x028b;
   2538 	t[s+179] = 0x01b4;
   2539 	t[s+181] = 0x01b6;
   2540 	t[s+183] = 0x0292;
   2541 	t[s+184] = 0x01b9;
   2542 	t[s+188] = 0x01bd;
   2543 	t[s+196] = 0x01c6;
   2544 	t[s+197] = 0x01c6;
   2545 	t[s+199] = 0x01c9;
   2546 	t[s+200] = 0x01c9;
   2547 	t[s+202] = 0x01cc;
   2548 	t[s+203] = 0x01cc;
   2549 	t[s+228] = 0x01e5;
   2550 	t[s+241] = 0x01f3;
   2551 	t[s+242] = 0x01f3;
   2552 
   2553 	/*
   2554 	 * table 3 (high byte 0x03)
   2555 	 */
   2556 	s = 3 * 256;
   2557 	for(i=0; i<145; i++)
   2558 		t[s+i] = i + 0x0300;
   2559 	for(i=145; i<170; i++)
   2560 		t[s+i] = i + 0x0320;
   2561 	t[s+162] = 0x03a2;
   2562 	for(i=170; i<256; i++)
   2563 		t[s+i] = i + 0x0300;
   2564 
   2565 	for(i=226; i<239; i+=2)
   2566 		t[s+i] = i + 0x0301;
   2567 
   2568 	/*
   2569 	 * table 4 (high byte 0x04)
   2570 	 */
   2571 	s = 4 * 256;
   2572 	for(i=0; i<16; i++)
   2573 		t[s+i] = i + 0x0400;
   2574 	t[s+  2] = 0x0452;
   2575 	t[s+  4] = 0x0454;
   2576 	t[s+  5] = 0x0455;
   2577 	t[s+  6] = 0x0456;
   2578 	t[s+  8] = 0x0458;
   2579 	t[s+  9] = 0x0459;
   2580 	t[s+ 10] = 0x045a;
   2581 	t[s+ 11] = 0x045b;
   2582 	t[s+ 15] = 0x045f;
   2583 
   2584 	for(i=16; i<48; i++)
   2585 		t[s+i] = i + 0x0420;
   2586 	t[s+ 25] = 0x0419;
   2587 	for(i=48; i<256; i++)
   2588 		t[s+i] = i + 0x0400;
   2589 	t[s+195] = 0x04c4;
   2590 	t[s+199] = 0x04c8;
   2591 	t[s+203] = 0x04cc;
   2592 
   2593 	for(i=96; i<129; i+=2)
   2594 		t[s+i] = i + 0x0401;
   2595 	t[s+118] = 0x0476;
   2596 	for(i=144; i<191; i+=2)
   2597 		t[s+i] = i + 0x0401;
   2598 
   2599 	/*
   2600 	 * table 5 (high byte 0x05)
   2601 	 */
   2602 	s = 5 * 256;
   2603 	for(i=0; i<49; i++)
   2604 		t[s+i] = i + 0x0500;
   2605 	for(i=49; i<87; i++)
   2606 		t[s+i] = i + 0x0530;
   2607 	for(i=87; i<256; i++)
   2608 		t[s+i] = i + 0x0500;
   2609 
   2610 	/*
   2611 	 * table 6 (high byte 0x10)
   2612 	 */
   2613 	s = 6 * 256;
   2614 	for(i=0; i<160; i++)
   2615 		t[s+i] = i + 0x1000;
   2616 	for(i=160; i<198; i++)
   2617 		t[s+i] = i + 0x1030;
   2618 	for(i=198; i<256; i++)
   2619 		t[s+i] = i + 0x1000;
   2620 
   2621 	/*
   2622 	 * table 7 (high byte 0x20)
   2623 	 */
   2624 	s = 7 * 256;
   2625 	for(i=0; i<256; i++)
   2626 		t[s+i] = i + 0x2000;
   2627 	{
   2628 		uint8_t zi[15] = { 12,  13,  14,  15,
   2629 						   42,  43,  44,  45,  46,
   2630 						  106, 107, 108, 109, 110, 111};
   2631 
   2632 		for(i=0; i<15; i++)
   2633 			t[s+zi[i]] = 0x0000;
   2634 	}
   2635 
   2636 	/*
   2637 	 * table 8 (high byte 0x21)
   2638 	 */
   2639 	s = 8 * 256;
   2640 	for(i=0; i<96; i++)
   2641 		t[s+i] = i + 0x2100;
   2642 	for(i=96; i<112; i++)
   2643 		t[s+i] = i + 0x2110;
   2644 	for(i=112; i<256; i++)
   2645 		t[s+i] = i + 0x2100;
   2646 
   2647 	/*
   2648 	 * table 9 (high byte 0xFE)
   2649 	 */
   2650 	s = 9 * 256;
   2651 	for(i=0; i<256; i++)
   2652 		t[s+i] = i + 0xFE00;
   2653 	t[s+255] = 0x0000;
   2654 
   2655 	/*
   2656 	 * table 10 (high byte 0xFF)
   2657 	 */
   2658 	s = 10 * 256;
   2659 	for(i=0; i<33; i++)
   2660 		t[s+i] = i + 0xFF00;
   2661 	for(i=33; i<59; i++)
   2662 		t[s+i] = i + 0xFF20;
   2663 	for(i=59; i<256; i++)
   2664 		t[s+i] = i + 0xFF00;
   2665 
   2666 	return 0;
   2667 
   2668 error:
   2669 	return 1;
   2670 }
   2671 
   2672 int
   2673 hfslib_get_hardlink(hfs_volume *vol, uint32_t inode_num,
   2674 		     hfs_catalog_keyed_record_t *rec,
   2675 		     hfs_callback_args *cbargs)
   2676 {
   2677 	hfs_catalog_keyed_record_t metadata;
   2678 	hfs_catalog_key_t key;
   2679 	char name[16];
   2680 	unichar_t name_uni[16];
   2681 	int i, len;
   2682 
   2683 	/* XXX: cache this */
   2684 	if (hfslib_find_catalog_record_with_key(vol,
   2685 						 &hfs_gMetadataDirectoryKey,
   2686 						 &metadata, cbargs) != 0
   2687 		|| metadata.type != HFS_REC_FLDR)
   2688 		return -1;
   2689 
   2690 	len = snprintf(name, sizeof(name), "iNode%d", inode_num);
   2691 	for (i=0; i<len; i++)
   2692 		name_uni[i] = name[i];
   2693 
   2694 	if (hfslib_make_catalog_key(metadata.folder.cnid, len, name_uni,
   2695 				     &key) == 0)
   2696 		return -1;
   2697 
   2698 	return hfslib_find_catalog_record_with_key(vol, &key, rec, cbargs);
   2699 }
   2700