libhfs.c revision 1.2 1 /* $NetBSD: libhfs.c,v 1.2 2007/03/06 11:28:48 dillo Exp $ */
2
3 /*-
4 * Copyright (c) 2005, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Yevgeny Binder and Dieter Baron.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * All functions and variable types have the prefix "hfs_". All constants
34 * have the prefix "HFS_".
35 *
36 * Naming convention for functions which read/write raw, linear data
37 * into/from a structured form:
38 *
39 * hfs_read/write[d][a]_foo_bar
40 * [d] - read/write from/to [d]isk instead of a memory buffer
41 * [a] - [a]llocate output buffer instead of using an existing one
42 * (not applicable for writing functions)
43 *
44 * Most functions do not have either of these options, so they will read from
45 * or write to a memory buffer, which has been previously allocated by the
46 * caller.
47 */
48
49 #include "libhfs.h"
50
51 /* global private file/folder keys */
52 hfs_catalog_key_t hfs_gMetadataDirectoryKey; /* contains HFS+ inodes */
53 hfs_catalog_key_t hfs_gJournalInfoBlockFileKey;
54 hfs_catalog_key_t hfs_gJournalBufferFileKey;
55 hfs_catalog_key_t* hfs_gPrivateObjectKeys[4] = {
56 &hfs_gMetadataDirectoryKey,
57 &hfs_gJournalInfoBlockFileKey,
58 &hfs_gJournalBufferFileKey,
59 NULL};
60
61
62 extern uint16_t be16tohp(void** inout_ptr);
63 extern uint32_t be32tohp(void** inout_ptr);
64 extern uint64_t be64tohp(void** inout_ptr);
65
66 int hfslib_create_casefolding_table(void);
67
68 #ifdef DLO_DEBUG
69 #include <stdio.h>
70 void
71 dlo_print_key(hfs_catalog_key_t *key)
72 {
73 int i;
74
75 printf("%ld:[", (long)key->parent_cnid);
76 for (i=0; i<key->name.length; i++) {
77 if (key->name.unicode[i] < 256
78 && isprint(key->name.unicode[i]))
79 putchar(key->name.unicode[i]);
80 else
81 printf("<%04x>", key->name.unicode[i]);
82 }
83 printf("]");
84 }
85 #endif
86
87 void
88 hfslib_init(hfs_callbacks* in_callbacks)
89 {
90 unichar_t temp[256];
91
92 if(in_callbacks!=NULL)
93 memcpy(&hfs_gcb, in_callbacks, sizeof(hfs_callbacks));
94
95 hfs_gcft = NULL;
96
97 /*
98 * Create keys for the HFS+ "private" files so we can reuse them whenever
99 * we perform a user-visible operation, such as listing directory contents.
100 */
101
102 #define ATOU(str, len) /* quick & dirty ascii-to-unicode conversion */ \
103 do{ int i; for(i=0; i<len; i++) temp[i]=str[i]; } \
104 while( /*CONSTCOND*/ 0)
105
106 ATOU("\0\0\0\0HFS+ Private Data", 21);
107 hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 21, temp,
108 &hfs_gMetadataDirectoryKey);
109
110 ATOU(".journal_info_block", 19);
111 hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 19, temp,
112 &hfs_gJournalInfoBlockFileKey);
113
114 ATOU(".journal", 8);
115 hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 8, temp,
116 &hfs_gJournalBufferFileKey);
117
118 #undef ATOU
119 }
120
121 void
122 hfslib_done(void)
123 {
124 hfs_callback_args cbargs;
125
126 if(hfs_gcft!=NULL) {
127 hfslib_init_cbargs(&cbargs);
128 hfslib_free(hfs_gcft, &cbargs);
129 hfs_gcft = NULL;
130 }
131
132 return;
133 }
134
135 void
136 hfslib_init_cbargs(hfs_callback_args* ptr)
137 {
138 memset(ptr, 0, sizeof(hfs_callback_args));
139 }
140
141 #if 0
142 #pragma mark -
143 #pragma mark High-Level Routines
144 #endif
145
146 int
147 hfslib_open_volume(
148 const char* in_device,
149 uint64_t in_offset, /* given in BYTES, not BLOCKS */
150 int in_readonly,
151 hfs_volume* out_vol,
152 hfs_callback_args* cbargs)
153 {
154 hfs_node_descriptor_t nd; /* node descriptor for some node we're reading */
155 hfs_catalog_key_t rootkey;
156 hfs_thread_record_t rootthread;
157 uint16_t* node_rec_sizes;
158 void* buffer;
159 void* buffer2; /* used as temporary pointer for realloc() */
160 void** node_recs;
161 int result;
162
163 result = 1;
164 buffer = NULL;
165 node_recs = NULL;
166 node_rec_sizes = NULL;
167
168 if(in_device==NULL || out_vol==NULL)
169 return 1;
170
171 out_vol->readonly = in_readonly;
172
173 if(hfslib_openvoldevice(out_vol, in_device, in_offset, cbargs) != 0)
174 HFS_LIBERR("could not open device");
175
176 /*
177 * Read the volume header.
178 */
179 buffer = hfslib_malloc(sizeof(hfs_volume_header_t), cbargs);
180 if(buffer==NULL)
181 HFS_LIBERR("could not allocate volume header");
182
183 if(hfslib_readd(out_vol, buffer, sizeof(hfs_volume_header_t),
184 HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs)!=0)
185 HFS_LIBERR("could not read volume header");
186 if(hfslib_read_volume_header(buffer, &(out_vol->vh))==0)
187 HFS_LIBERR("could not parse volume header");
188
189 /*
190 * Check the volume signature to see if this is a legitimate HFS+ or HFSX
191 * volume. If so, set the key comparison function pointers appropriately.
192 */
193 switch(out_vol->vh.signature)
194 {
195 case HFS_SIG_HFSP:
196 out_vol->keycmp = hfslib_compare_catalog_keys_cf;
197 break;
198
199 case HFS_SIG_HFSX:
200 out_vol->keycmp = NULL; /* will be set below */
201 break;
202
203 case HFS_SIG_HFS:
204 HFS_LIBERR("HFS volumes and HFS+ volumes with HFS wrappers are"
205 "not currently supported");
206 break;
207
208 default:
209 HFS_LIBERR("unrecognized volume format");
210 }
211
212
213 /*
214 * Read the catalog header.
215 */
216 buffer2 = hfslib_realloc(buffer,
217 out_vol->vh.catalog_file.extents[0].block_count *
218 out_vol->vh.block_size, cbargs);
219 if(buffer2==NULL)
220 HFS_LIBERR("could not allocate catalog header node");
221 buffer = buffer2;
222
223 /* We don't use hfslib_readd_with_extents() here because we don't know
224 * the size of this node ahead of time. Besides, we only need the first
225 * extent in order to get the header and root nodes. */
226 if(hfslib_readd(out_vol, buffer,
227 out_vol->vh.catalog_file.extents[0].block_count*out_vol->vh.block_size,
228 out_vol->vh.catalog_file.extents[0].start_block*out_vol->vh.block_size,
229 cbargs) != 0)
230 HFS_LIBERR("could not read catalog header node");
231
232 if(hfslib_reada_node(buffer, &nd, &node_recs, &node_rec_sizes,
233 HFS_CATALOG_FILE, out_vol, cbargs)==0)
234 HFS_LIBERR("could not read catalog header node");
235
236 if(hfslib_read_header_node(node_recs, node_rec_sizes, nd.num_recs,
237 &out_vol->chr, NULL, NULL)==0)
238 HFS_LIBERR("could not parse catalog header node");
239
240 /* If this is an HFSX volume, the catalog header specifies the type of
241 * key comparison method (case-folding or binary compare) we should use. */
242 if(out_vol->keycmp == NULL)
243 {
244 if(out_vol->chr.keycomp_type == HFS_KEY_CASEFOLD)
245 out_vol->keycmp = hfslib_compare_catalog_keys_cf;
246 else if(out_vol->chr.keycomp_type == HFS_KEY_BINARY)
247 out_vol->keycmp = hfslib_compare_catalog_keys_bc;
248 else
249 HFS_LIBERR("undefined key compare method");
250 }
251
252 /*
253 * Read the extent overflow header.
254 */
255 buffer2 = hfslib_realloc(buffer,
256 out_vol->vh.extents_file.extents[0].block_count *
257 out_vol->vh.block_size, cbargs);
258 if(buffer2==NULL)
259 HFS_LIBERR("could not allocate extent header node");
260 buffer = buffer2;
261
262 /* We don't use hfslib_readd_with_extents() here because we don't know
263 * the size of this node ahead of time. Besides, we only need the first
264 * extent in order to get the header and root nodes. */
265 if(hfslib_readd(out_vol, buffer,
266 out_vol->vh.extents_file.extents[0].block_count*out_vol->vh.block_size,
267 out_vol->vh.extents_file.extents[0].start_block*out_vol->vh.block_size,
268 cbargs) != 0)
269 HFS_LIBERR("could not read extent header node");
270
271 if(hfslib_reada_node(buffer, &nd, &node_recs, &node_rec_sizes,
272 HFS_EXTENTS_FILE, out_vol, cbargs)==0)
273 HFS_LIBERR("could not read extent header node");
274
275 if(hfslib_read_header_node(node_recs, node_rec_sizes, nd.num_recs,
276 &out_vol->ehr, NULL, NULL)==0)
277 HFS_LIBERR("could not parse extent header node");
278
279 /*
280 * Read the journal info block and journal header (if volume journaled).
281 */
282 if(out_vol->vh.attributes & (1<<HFS_VOL_JOURNALED))
283 {
284 /* journal info block */
285 buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_info_t), cbargs);
286 if(buffer2==NULL)
287 HFS_LIBERR("could not allocate journal info block");
288 buffer = buffer2;
289
290 if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_info_t),
291 out_vol->vh.journal_info_block * out_vol->vh.block_size,
292 cbargs) != 0)
293 HFS_LIBERR("could not read journal info block");
294
295 if(hfslib_read_journal_info(buffer, &out_vol->jib)==0)
296 HFS_LIBERR("could not parse journal info block");
297
298 /* journal header */
299 buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_header_t),cbargs);
300 if(buffer2==NULL)
301 HFS_LIBERR("could not allocate journal header");
302 buffer = buffer2;
303
304 if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_header_t),
305 out_vol->jib.offset, cbargs) != 0)
306 HFS_LIBERR("could not read journal header");
307
308 if(hfslib_read_journal_header(buffer, &out_vol->jh)==0)
309 HFS_LIBERR("could not parse journal header");
310
311 out_vol->journaled = 1;
312 }
313 else
314 {
315 out_vol->journaled = 0;
316 }
317
318 /*
319 * If this volume uses case-folding comparison and the folding table hasn't
320 * been created yet, do that here. (We don't do this in hfslib_init()
321 * because the table is large and we might never even need to use it.)
322 */
323 if(out_vol->keycmp==hfslib_compare_catalog_keys_cf && hfs_gcft==NULL)
324 result = hfslib_create_casefolding_table();
325 else
326 result = 0;
327
328 /*
329 * Find and store the volume name.
330 */
331 if(hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 0, NULL, &rootkey)==0)
332 HFS_LIBERR("could not make root search key");
333
334 if(hfslib_find_catalog_record_with_key(out_vol, &rootkey,
335 (hfs_catalog_keyed_record_t*)&rootthread, cbargs)!=0)
336 HFS_LIBERR("could not find root parent");
337
338 memcpy(&out_vol->name, &rootthread.name, sizeof(hfs_unistr255_t));
339
340
341 /* FALLTHROUGH */
342 error:
343 if(buffer!=NULL)
344 hfslib_free(buffer, cbargs);
345
346 hfslib_free_recs(&node_recs, &node_rec_sizes, &nd.num_recs, cbargs);
347
348 return result;
349 }
350
351 void
352 hfslib_close_volume(hfs_volume* in_vol, hfs_callback_args* cbargs)
353 {
354 if(in_vol==NULL)
355 return;
356
357 hfslib_closevoldevice(in_vol, cbargs);
358 }
359
360 int
361 hfslib_path_to_cnid(hfs_volume* in_vol,
362 hfs_cnid_t in_cnid,
363 char** out_unicode,
364 uint16_t* out_length,
365 hfs_callback_args* cbargs)
366 {
367 hfs_thread_record_t parent_thread;
368 hfs_cnid_t parent_cnid, child_cnid;
369 char* newpath;
370 char* path;
371 int path_offset = 0;
372 int result;
373 uint16_t* ptr; /* dummy var */
374 uint16_t uchar; /* dummy var */
375 uint16_t total_path_length;
376
377 if(in_vol==NULL || in_cnid==0 || out_unicode==NULL || out_length==NULL)
378 return 1;
379
380 result = 1;
381 *out_unicode = NULL;
382 *out_length = 0;
383 path = NULL;
384 total_path_length = 0;
385
386 path = hfslib_malloc(514, cbargs); /* 256 unichars plus a forward slash */
387 if(path==NULL)
388 return 1;
389
390 child_cnid = in_cnid;
391 parent_cnid = child_cnid; /* skips loop in case in_cnid is root id */
392 while(parent_cnid != HFS_CNID_ROOT_FOLDER
393 && parent_cnid != HFS_CNID_ROOT_PARENT)
394 {
395 if(child_cnid!=in_cnid)
396 {
397 newpath = hfslib_realloc(path, 514 + total_path_length*2, cbargs);
398
399 if(newpath==NULL)
400 goto exit;
401 path = newpath;
402
403 memmove(path + 514, path + path_offset, total_path_length*2);
404 }
405
406 parent_cnid = hfslib_find_parent_thread(in_vol, child_cnid,
407 &parent_thread, cbargs);
408 if(parent_cnid==0)
409 goto exit;
410
411 path_offset = 512 - parent_thread.name.length*2;
412
413 memcpy(path + path_offset, parent_thread.name.unicode,
414 parent_thread.name.length*2);
415
416 /* Add a forward slash. The unicode string was specified in big endian
417 * format, so convert to core format if necessary. */
418 path[512]=0x00;
419 path[513]=0x2F;
420
421 ptr = (uint16_t*)path + 256;
422 uchar = be16tohp((void*)&ptr);
423 *(ptr-1) = uchar;
424
425 total_path_length += parent_thread.name.length + 1;
426
427 child_cnid = parent_cnid;
428 }
429
430 /*
431 * At this point, 'path' holds a sequence of unicode characters which
432 * represent the absolute path to the given cnid. This string is missing
433 * a terminating null char and an initial forward slash that represents
434 * the root of the filesystem. It most likely also has extra space in
435 * the beginning, due to the fact that we reserve 512 bytes for each path
436 * component and won't usually use all that space. So, we allocate the
437 * final string based on the actual length of the absolute path, plus four
438 * additional bytes (two unichars) for the forward slash and the null char.
439 */
440
441 *out_unicode = hfslib_malloc((total_path_length+2)*2, cbargs);
442 if(*out_unicode == NULL)
443 goto exit;
444
445 /* copy only the bytes that are actually used */
446 memcpy(*out_unicode+2, path + path_offset, total_path_length*2);
447
448 /* insert forward slash at start */
449 (*out_unicode)[0] = 0x00;
450 (*out_unicode)[1] = 0x2F;
451 ptr = (uint16_t*)*out_unicode;
452 uchar = be16tohp((void*)&ptr);
453 *(ptr-1) = uchar;
454
455 /* insert null char at end */
456 (*out_unicode)[total_path_length*2+2] = 0x00;
457 (*out_unicode)[total_path_length*2+3] = 0x00;
458
459 *out_length = total_path_length + 1 /* extra for forward slash */ ;
460
461 result = 0;
462
463 exit:
464 if(path!=NULL)
465 hfslib_free(path, cbargs);
466
467 return result;
468 }
469
470 hfs_cnid_t
471 hfslib_find_parent_thread(
472 hfs_volume* in_vol,
473 hfs_cnid_t in_child,
474 hfs_thread_record_t* out_thread,
475 hfs_callback_args* cbargs)
476 {
477 hfs_catalog_key_t childkey;
478
479 if(in_vol==NULL || in_child==0 || out_thread==NULL)
480 return 0;
481
482 if(hfslib_make_catalog_key(in_child, 0, NULL, &childkey)==0)
483 return 0;
484
485 if(hfslib_find_catalog_record_with_key(in_vol, &childkey,
486 (hfs_catalog_keyed_record_t*)out_thread, cbargs)!=0)
487 return 0;
488
489 return out_thread->parent_cnid;
490 }
491
492 /*
493 * hfslib_find_catalog_record_with_cnid()
494 *
495 * Looks up a catalog record by calling hfslib_find_parent_thread() and
496 * hfslib_find_catalog_record_with_key(). out_key may be NULL; if not, the key
497 * corresponding to this cnid is stuffed in it. Returns 0 on success.
498 */
499 int
500 hfslib_find_catalog_record_with_cnid(
501 hfs_volume* in_vol,
502 hfs_cnid_t in_cnid,
503 hfs_catalog_keyed_record_t* out_rec,
504 hfs_catalog_key_t* out_key,
505 hfs_callback_args* cbargs)
506 {
507 hfs_cnid_t parentcnid;
508 hfs_thread_record_t parentthread;
509 hfs_catalog_key_t key;
510
511 if(in_vol==NULL || in_cnid==0 || out_rec==NULL)
512 return 0;
513
514 parentcnid =
515 hfslib_find_parent_thread(in_vol, in_cnid, &parentthread, cbargs);
516 if(parentcnid == 0)
517 HFS_LIBERR("could not find parent thread for cnid %i", in_cnid);
518
519 if(hfslib_make_catalog_key(parentthread.parent_cnid,
520 parentthread.name.length, parentthread.name.unicode, &key) == 0)
521 HFS_LIBERR("could not make catalog search key");
522
523 if(out_key!=NULL)
524 memcpy(out_key, &key, sizeof(key));
525
526 return hfslib_find_catalog_record_with_key(in_vol, &key, out_rec, cbargs);
527
528 error:
529 return 1;
530 }
531
532 /* Returns 0 on success, 1 on error, and -1 if record was not found. */
533 int
534 hfslib_find_catalog_record_with_key(
535 hfs_volume* in_vol,
536 hfs_catalog_key_t* in_key,
537 hfs_catalog_keyed_record_t* out_rec,
538 hfs_callback_args* cbargs)
539 {
540 hfs_node_descriptor_t nd;
541 hfs_extent_descriptor_t* extents;
542 hfs_catalog_keyed_record_t lastrec;
543 hfs_catalog_key_t* curkey;
544 void** recs;
545 void* buffer;
546 uint64_t bytesread;
547 uint32_t curnode;
548 uint16_t* recsizes;
549 uint16_t numextents;
550 uint16_t recnum;
551 int16_t leaftype;
552 int keycompare;
553 int result;
554
555 if(in_key==NULL || out_rec==NULL || in_vol==NULL)
556 return 1;
557
558 result = 1;
559 buffer = NULL;
560 curkey = NULL;
561 extents = NULL;
562 recs = NULL;
563 recsizes = NULL;
564
565 /* The key takes up over half a kb of ram, which is a lot for the BSD
566 * kernel stack. So allocate it in the heap instead to play it safe. */
567 curkey = hfslib_malloc(sizeof(hfs_catalog_key_t), cbargs);
568 if(curkey==NULL)
569 HFS_LIBERR("could not allocate catalog search key");
570
571 buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
572 if(buffer==NULL)
573 HFS_LIBERR("could not allocate node buffer");
574
575 numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
576 HFS_DATAFORK, &extents, cbargs);
577 if(numextents==0)
578 HFS_LIBERR("could not locate fork extents");
579
580 nd.num_recs = 0;
581 curnode = in_vol->chr.root_node;
582
583 #ifdef DLO_DEBUG
584 printf("-> key ");
585 dlo_print_key(in_key);
586 printf("\n");
587 #endif
588
589 do
590 {
591 #ifdef DLO_DEBUG
592 printf("--> node %d\n", curnode);
593 #endif
594
595 if(hfslib_readd_with_extents(in_vol, buffer,
596 &bytesread,in_vol->chr.node_size, curnode * in_vol->chr.node_size,
597 extents, numextents, cbargs)!=0)
598 HFS_LIBERR("could not read catalog node #%i", curnode);
599
600 if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
601 in_vol, cbargs)==0)
602 HFS_LIBERR("could not parse catalog node #%i", curnode);
603
604 for(recnum=0; recnum<nd.num_recs; recnum++)
605 {
606 leaftype = nd.kind;
607 if(hfslib_read_catalog_keyed_record(recs[recnum], out_rec,
608 &leaftype, curkey, in_vol)==0)
609 HFS_LIBERR("could not read catalog record #%i",recnum);
610
611 #ifdef DLO_DEBUG
612 printf("---> record %d: ", recnum);
613 dlo_print_key(curkey);
614 fflush(stdout);
615 #endif
616 keycompare = in_vol->keycmp(in_key, curkey);
617 #ifdef DLO_DEBUG
618 printf(" %c\n",
619 keycompare < 0 ? '<'
620 : keycompare == 0 ? '=' : '>');
621 #endif
622
623 if(keycompare < 0)
624 {
625 /* Check if key is less than *every* record, which should never
626 * happen if the volume is consistent and the key legit. */
627 if(recnum==0)
628 HFS_LIBERR("all records greater than key");
629
630 /* Otherwise, we've found the first record that exceeds our key,
631 * so retrieve the previous record, which is still less... */
632 memcpy(out_rec, &lastrec,
633 sizeof(hfs_catalog_keyed_record_t));
634
635 /* ...unless this is a leaf node, which means we've gone from
636 * a key which is smaller than the search key, in the previous
637 * loop, to a key which is larger, in this loop, and that
638 * implies that our search key does not exist on the volume. */
639 if(nd.kind==HFS_LEAFNODE)
640 result = -1;
641
642 break;
643 }
644 else if(keycompare == 0)
645 {
646 /* If leaf node, found an exact match. */
647 result = 0;
648 break;
649 }
650 else if(recnum==nd.num_recs-1 && keycompare > 0)
651 {
652 /* If leaf node, we've reached the last record with no match,
653 * which means this key is not present on the volume. */
654 result = -1;
655 break;
656 }
657
658 memcpy(&lastrec, out_rec, sizeof(hfs_catalog_keyed_record_t));
659 }
660
661 if(nd.kind==HFS_INDEXNODE)
662 curnode = out_rec->child;
663 else if(nd.kind==HFS_LEAFNODE)
664 break;
665
666 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
667 }
668 while(nd.kind!=HFS_LEAFNODE);
669
670 /* FALLTHROUGH */
671 error:
672 if(extents!=NULL)
673 hfslib_free(extents, cbargs);
674 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
675 if(curkey!=NULL)
676 hfslib_free(curkey, cbargs);
677 if(buffer!=NULL)
678 hfslib_free(buffer, cbargs);
679
680 return result;
681 }
682
683 /* returns 0 on success */
684 /* XXX Need to look this over and make sure it gracefully handles cases where
685 * XXX the key is not found. */
686 int
687 hfslib_find_extent_record_with_key(hfs_volume* in_vol,
688 hfs_extent_key_t* in_key,
689 hfs_extent_record_t* out_rec,
690 hfs_callback_args* cbargs)
691 {
692 hfs_node_descriptor_t nd;
693 hfs_extent_descriptor_t* extents;
694 hfs_extent_record_t lastrec;
695 hfs_extent_key_t curkey;
696 void** recs;
697 void* buffer;
698 uint64_t bytesread;
699 uint32_t curnode;
700 uint16_t* recsizes;
701 uint16_t numextents;
702 uint16_t recnum;
703 int keycompare;
704 int result;
705
706 if(in_vol==NULL || in_key==NULL || out_rec==NULL)
707 return 1;
708
709 result = 1;
710 buffer = NULL;
711 extents = NULL;
712 recs = NULL;
713 recsizes = NULL;
714
715 buffer = hfslib_malloc(in_vol->ehr.node_size, cbargs);
716 if(buffer==NULL)
717 HFS_LIBERR("could not allocate node buffer");
718
719 numextents = hfslib_get_file_extents(in_vol, HFS_CNID_EXTENTS,
720 HFS_DATAFORK, &extents, cbargs);
721 if(numextents==0)
722 HFS_LIBERR("could not locate fork extents");
723
724 nd.num_recs = 0;
725 curnode = in_vol->ehr.root_node;
726
727 do
728 {
729 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
730 recnum = 0;
731
732 if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
733 in_vol->ehr.node_size, curnode * in_vol->ehr.node_size, extents,
734 numextents, cbargs)!=0)
735 HFS_LIBERR("could not read extents overflow node #%i", curnode);
736
737 if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_EXTENTS_FILE,
738 in_vol, cbargs)==0)
739 HFS_LIBERR("could not parse extents overflow node #%i",curnode);
740
741 for(recnum=0; recnum<nd.num_recs; recnum++)
742 {
743 memcpy(&lastrec, out_rec, sizeof(hfs_extent_record_t));
744
745 if(hfslib_read_extent_record(recs[recnum], out_rec, nd.kind,
746 &curkey, in_vol)==0)
747 HFS_LIBERR("could not read extents record #%i",recnum);
748
749 keycompare = hfslib_compare_extent_keys(in_key, &curkey);
750 if(keycompare < 0)
751 {
752 /* this should never happen for any legitimate key */
753 if(recnum==0)
754 return 1;
755
756 memcpy(out_rec, &lastrec, sizeof(hfs_extent_record_t));
757
758 break;
759 }
760 else if(keycompare == 0 ||
761 (recnum==nd.num_recs-1 && keycompare > 0))
762 break;
763 }
764
765 if(nd.kind==HFS_INDEXNODE)
766 curnode = *((uint32_t *)out_rec); /* out_rec is a node ptr in this case */
767 else if(nd.kind==HFS_LEAFNODE)
768 break;
769 else
770 HFS_LIBERR("unknwon node type for extents overflow node #%i",curnode);
771 }
772 while(nd.kind!=HFS_LEAFNODE);
773
774 result = 0;
775
776 /* FALLTHROUGH */
777
778 error:
779 if(buffer!=NULL)
780 hfslib_free(buffer, cbargs);
781 if(extents!=NULL)
782 hfslib_free(extents, cbargs);
783 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
784
785 return result;
786 }
787
788 /* out_extents may be NULL. */
789 uint16_t
790 hfslib_get_file_extents(hfs_volume* in_vol,
791 hfs_cnid_t in_cnid,
792 uint8_t in_forktype,
793 hfs_extent_descriptor_t** out_extents,
794 hfs_callback_args* cbargs)
795 {
796 hfs_extent_descriptor_t* dummy;
797 hfs_extent_key_t extentkey;
798 hfs_file_record_t file;
799 hfs_catalog_key_t filekey;
800 hfs_thread_record_t fileparent;
801 hfs_fork_t fork;
802 hfs_extent_record_t nextextentrec;
803 uint32_t numblocks;
804 uint16_t numextents, n;
805
806 if(in_vol==NULL || in_cnid==0)
807 return 0;
808
809 if(out_extents!=NULL)
810 {
811 *out_extents = hfslib_malloc(sizeof(hfs_extent_descriptor_t), cbargs);
812 if(*out_extents==NULL)
813 return 0;
814 }
815
816 switch(in_cnid)
817 {
818 case HFS_CNID_CATALOG:
819 fork = in_vol->vh.catalog_file;
820 break;
821
822 case HFS_CNID_EXTENTS:
823 fork = in_vol->vh.extents_file;
824 break;
825
826 case HFS_CNID_ALLOCATION:
827 fork = in_vol->vh.allocation_file;
828 break;
829
830 case HFS_CNID_ATTRIBUTES:
831 fork = in_vol->vh.attributes_file;
832 break;
833
834 case HFS_CNID_STARTUP:
835 fork = in_vol->vh.startup_file;
836 break;
837
838 default:
839 if(hfslib_find_parent_thread(in_vol, in_cnid, &fileparent,
840 cbargs)==0)
841 goto error;
842
843 if(hfslib_make_catalog_key(fileparent.parent_cnid,
844 fileparent.name.length, fileparent.name.unicode, &filekey)==0)
845 goto error;
846
847 if(hfslib_find_catalog_record_with_key(in_vol, &filekey,
848 (hfs_catalog_keyed_record_t*)&file, cbargs)!=0)
849 goto error;
850
851 /* only files have extents, not folders or threads */
852 if(file.rec_type!=HFS_REC_FILE)
853 goto error;
854
855 if(in_forktype==HFS_DATAFORK)
856 fork = file.data_fork;
857 else if(in_forktype==HFS_RSRCFORK)
858 fork = file.rsrc_fork;
859 }
860
861 numextents = 0;
862 numblocks = 0;
863 memcpy(&nextextentrec, &fork.extents, sizeof(hfs_extent_record_t));
864
865 while(1)
866 {
867 for(n=0; n<8; n++)
868 {
869 if(nextextentrec[n].block_count==0)
870 break;
871
872 numblocks += nextextentrec[n].block_count;
873 }
874
875 if(out_extents!=NULL)
876 {
877 dummy = hfslib_realloc(*out_extents,
878 (numextents+n) * sizeof(hfs_extent_descriptor_t),
879 cbargs);
880 if(dummy==NULL)
881 goto error;
882 *out_extents = dummy;
883
884 memcpy(*out_extents + numextents,
885 &nextextentrec, n*sizeof(hfs_extent_descriptor_t));
886 }
887 numextents += n;
888
889 if(numblocks >= fork.total_blocks)
890 break;
891
892 if(hfslib_make_extent_key(in_cnid, in_forktype, numblocks,
893 &extentkey)==0)
894 goto error;
895
896 if(hfslib_find_extent_record_with_key(in_vol, &extentkey,
897 &nextextentrec, cbargs)!=0)
898 goto error;
899 }
900
901 goto exit;
902
903 error:
904 if(out_extents!=NULL && *out_extents!=NULL)
905 {
906 hfslib_free(*out_extents, cbargs);
907 *out_extents = NULL;
908 }
909 return 0;
910
911 exit:
912 return numextents;
913 }
914
915 /*
916 * hfslib_get_directory_contents()
917 *
918 * Finds the immediate children of a given directory CNID and places their
919 * CNIDs in an array allocated here. The first child is found by doing a
920 * catalog search that only compares parent CNIDs (ignoring file/folder names)
921 * and skips over thread records. Then the remaining children are listed in
922 * ascending order by name, according to the HFS+ spec, so just read off each
923 * successive leaf node until a different parent CNID is found.
924 *
925 * If out_childnames is not NULL, it will be allocated and set to an array of
926 * hfs_unistr255_t's which correspond to the name of the child with that same
927 * index.
928 *
929 * out_children may be NULL.
930 *
931 * Returns 0 on success.
932 */
933 int
934 hfslib_get_directory_contents(
935 hfs_volume* in_vol,
936 hfs_cnid_t in_dir,
937 hfs_catalog_keyed_record_t** out_children,
938 hfs_unistr255_t** out_childnames,
939 uint32_t* out_numchildren,
940 hfs_callback_args* cbargs)
941 {
942 hfs_node_descriptor_t nd;
943 hfs_extent_descriptor_t* extents;
944 hfs_catalog_keyed_record_t currec;
945 hfs_catalog_key_t curkey;
946 void** recs;
947 void* buffer;
948 void* ptr; /* temporary pointer for realloc() */
949 uint64_t bytesread;
950 uint32_t curnode;
951 uint32_t lastnode;
952 uint16_t* recsizes;
953 uint16_t numextents;
954 uint16_t recnum;
955 int16_t leaftype;
956 int keycompare;
957 int result;
958
959 if(in_vol==NULL || in_dir==0 || out_numchildren==NULL)
960 return 1;
961
962 result = 1;
963 buffer = NULL;
964 extents = NULL;
965 lastnode = 0;
966 recs = NULL;
967 recsizes = NULL;
968 *out_numchildren = 0;
969 if(out_children!=NULL)
970 *out_children = NULL;
971 if(out_childnames!=NULL)
972 *out_childnames = NULL;
973
974 buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
975 if(buffer==NULL)
976 HFS_LIBERR("could not allocate node buffer");
977
978 numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
979 HFS_DATAFORK, &extents, cbargs);
980 if(numextents==0)
981 HFS_LIBERR("could not locate fork extents");
982
983 nd.num_recs = 0;
984 curnode = in_vol->chr.root_node;
985
986 while(1)
987 {
988 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
989 recnum = 0;
990
991 if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
992 in_vol->chr.node_size, curnode * in_vol->chr.node_size, extents,
993 numextents, cbargs)!=0)
994 HFS_LIBERR("could not read catalog node #%i", curnode);
995
996 if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
997 in_vol, cbargs)==0)
998 HFS_LIBERR("could not parse catalog node #%i", curnode);
999
1000 for(recnum=0; recnum<nd.num_recs; recnum++)
1001 {
1002 leaftype = nd.kind; /* needed b/c leaftype might be modified now */
1003 if(hfslib_read_catalog_keyed_record(recs[recnum], &currec,
1004 &leaftype, &curkey, in_vol)==0)
1005 HFS_LIBERR("could not read cat record %i:%i", curnode, recnum);
1006
1007 if(nd.kind==HFS_INDEXNODE)
1008 {
1009 keycompare = in_dir - curkey.parent_cnid;
1010 if(keycompare < 0)
1011 {
1012 /* Check if key is less than *every* record, which should
1013 * never happen if the volume and key are good. */
1014 if(recnum==0)
1015 HFS_LIBERR("all records greater than key");
1016
1017 /* Otherwise, we've found the first record that exceeds our
1018 * key, so retrieve the previous, lesser record. */
1019 curnode = lastnode;
1020 break;
1021 }
1022 else if(keycompare == 0)
1023 {
1024 /*
1025 * Normally, if we were doing a typical catalog lookup with
1026 * both a parent cnid AND a name, keycompare==0 would be an
1027 * exact match. However, since we are ignoring object names
1028 * in this case and only comparing parent cnids, a direct
1029 * match on only a parent cnid could mean that we've found
1030 * an object with that parent cnid BUT which is NOT the
1031 * first object (according to the HFS+ spec) with that
1032 * parent cnid. Thus, when we find a parent cnid match, we
1033 * still go back to the previously found leaf node and start
1034 * checking it for a possible prior instance of an object
1035 * with our desired parent cnid.
1036 */
1037 curnode = lastnode;
1038 break;
1039 }
1040 else if (recnum==nd.num_recs-1 && keycompare > 0)
1041 {
1042 /* Descend to child node if we found an exact match, or if
1043 * this is the last pointer record. */
1044 curnode = currec.child;
1045 break;
1046 }
1047
1048 lastnode = currec.child;
1049 }
1050 else
1051 {
1052 /*
1053 * We have now descended down the hierarchy of index nodes into
1054 * the leaf node that contains the first catalog record with a
1055 * matching parent CNID. Since all leaf nodes are chained
1056 * through their flink/blink, we can simply walk forward through
1057 * this chain, copying every matching non-thread record, until
1058 * we hit a record with a different parent CNID. At that point,
1059 * we've retrieved all of our directory's items, if any.
1060 */
1061 curnode = nd.flink;
1062
1063 if(curkey.parent_cnid<in_dir)
1064 continue;
1065 else if(curkey.parent_cnid==in_dir)
1066 {
1067 /* Hide files/folders which are supposed to be invisible
1068 * to users, according to the hfs+ spec. */
1069 if(hfslib_is_private_file(&curkey))
1070 continue;
1071
1072 /* leaftype has now been set to the catalog record type */
1073 if(leaftype==HFS_REC_FLDR || leaftype==HFS_REC_FILE)
1074 {
1075 (*out_numchildren)++;
1076
1077 if(out_children!=NULL)
1078 {
1079 ptr = hfslib_realloc(*out_children,
1080 *out_numchildren *
1081 sizeof(hfs_catalog_keyed_record_t), cbargs);
1082 if(ptr==NULL)
1083 HFS_LIBERR("could not allocate child record");
1084 *out_children = ptr;
1085
1086 memcpy(&((*out_children)[*out_numchildren-1]),
1087 &currec, sizeof(hfs_catalog_keyed_record_t));
1088 }
1089
1090 if(out_childnames!=NULL)
1091 {
1092 ptr = hfslib_realloc(*out_childnames,
1093 *out_numchildren * sizeof(hfs_unistr255_t),
1094 cbargs);
1095 if(ptr==NULL)
1096 HFS_LIBERR("could not allocate child name");
1097 *out_childnames = ptr;
1098
1099 memcpy(&((*out_childnames)[*out_numchildren-1]),
1100 &curkey.name, sizeof(hfs_unistr255_t));
1101 }
1102 }
1103 } else {
1104 result = 0;
1105 /* We have just now passed the last item in the desired
1106 * folder (or the folder was empty), so exit. */
1107 goto exit;
1108 }
1109 }
1110 }
1111 }
1112
1113 result = 0;
1114
1115 goto exit;
1116
1117 error:
1118 if(out_children!=NULL && *out_children!=NULL)
1119 hfslib_free(*out_children, cbargs);
1120 if(out_childnames!=NULL && *out_childnames!=NULL)
1121 hfslib_free(*out_childnames, cbargs);
1122
1123 /* FALLTHROUGH */
1124
1125 exit:
1126 if(extents!=NULL)
1127 hfslib_free(extents, cbargs);
1128 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
1129 if(buffer!=NULL)
1130 hfslib_free(buffer, cbargs);
1131
1132 return result;
1133 }
1134
1135 int
1136 hfslib_is_journal_clean(hfs_volume* in_vol)
1137 {
1138 if(in_vol==NULL)
1139 return 0;
1140
1141 /* return true if no journal */
1142 if(!(in_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)))
1143 return 1;
1144
1145 return (in_vol->jh.start == in_vol->jh.end);
1146 }
1147
1148 /*
1149 * hfslib_is_private_file()
1150 *
1151 * Given a file/folder's key and parent CNID, determines if it should be hidden
1152 * from the user (e.g., the journal header file or the HFS+ Private Data folder)
1153 */
1154 int
1155 hfslib_is_private_file(hfs_catalog_key_t *filekey)
1156 {
1157 hfs_catalog_key_t* curkey = NULL;
1158 int i = 0;
1159
1160 /*
1161 * According to the HFS+ spec to date, all special objects are located in
1162 * the root directory of the volume, so don't bother going further if the
1163 * requested object is not.
1164 */
1165 if(filekey->parent_cnid != HFS_CNID_ROOT_FOLDER)
1166 return 0;
1167
1168 while((curkey = hfs_gPrivateObjectKeys[i]) != NULL)
1169 {
1170 /* XXX Always use binary compare here, or use volume's specific key
1171 * XXX comparison routine? */
1172 if(filekey->name.length == curkey->name.length
1173 && memcmp(filekey->name.unicode, curkey->name.unicode,
1174 2 * curkey->name.length)==0)
1175 return 1;
1176
1177 i++;
1178 }
1179
1180 return 0;
1181 }
1182
1183
1184 /* bool
1185 hfslib_is_journal_valid(hfs_volume* in_vol)
1186 {
1187 - check magic numbers
1188 - check Other Things
1189 }*/
1190
1191 #if 0
1192 #pragma mark -
1193 #pragma mark Major Structures
1194 #endif
1195
1196 /*
1197 * hfslib_read_volume_header()
1198 *
1199 * Reads in_bytes, formats the data appropriately, and places the result
1200 * in out_header, which is assumed to be previously allocated. Returns number
1201 * of bytes read, 0 if failed.
1202 */
1203
1204 size_t
1205 hfslib_read_volume_header(void* in_bytes, hfs_volume_header_t* out_header)
1206 {
1207 void* ptr;
1208 size_t last_bytes_read;
1209 int i;
1210
1211 if(in_bytes==NULL || out_header==NULL)
1212 return 0;
1213
1214 ptr = in_bytes;
1215
1216 out_header->signature = be16tohp(&ptr);
1217 out_header->version = be16tohp(&ptr);
1218 out_header->attributes = be32tohp(&ptr);
1219 out_header->last_mounting_version = be32tohp(&ptr);
1220 out_header->journal_info_block = be32tohp(&ptr);
1221
1222 out_header->date_created = be32tohp(&ptr);
1223 out_header->date_modified = be32tohp(&ptr);
1224 out_header->date_backedup = be32tohp(&ptr);
1225 out_header->date_checked = be32tohp(&ptr);
1226
1227 out_header->file_count = be32tohp(&ptr);
1228 out_header->folder_count = be32tohp(&ptr);
1229
1230 out_header->block_size = be32tohp(&ptr);
1231 out_header->total_blocks = be32tohp(&ptr);
1232 out_header->free_blocks = be32tohp(&ptr);
1233 out_header->next_alloc_block = be32tohp(&ptr);
1234 out_header->rsrc_clump_size = be32tohp(&ptr);
1235 out_header->data_clump_size = be32tohp(&ptr);
1236 out_header->next_cnid = be32tohp(&ptr);
1237
1238 out_header->write_count = be32tohp(&ptr);
1239 out_header->encodings = be64tohp(&ptr);
1240
1241 for(i=0;i<8;i++)
1242 out_header->finder_info[i] = be32tohp(&ptr);
1243
1244 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1245 &out_header->allocation_file))==0)
1246 return 0;
1247 ptr = (uint8_t*)ptr + last_bytes_read;
1248
1249 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1250 &out_header->extents_file))==0)
1251 return 0;
1252 ptr = (uint8_t*)ptr + last_bytes_read;
1253
1254 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1255 &out_header->catalog_file))==0)
1256 return 0;
1257 ptr = (uint8_t*)ptr + last_bytes_read;
1258
1259 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1260 &out_header->attributes_file))==0)
1261 return 0;
1262 ptr = (uint8_t*)ptr + last_bytes_read;
1263
1264 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1265 &out_header->startup_file))==0)
1266 return 0;
1267 ptr = (uint8_t*)ptr + last_bytes_read;
1268
1269 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1270 }
1271
1272 /*
1273 * hfslib_reada_node()
1274 *
1275 * Given the pointer to and size of a buffer containing the entire, raw
1276 * contents of any b-tree node from the disk, this function will:
1277 *
1278 * 1. determine the type of node and read its contents
1279 * 2. allocate memory for each record and fill it appropriately
1280 * 3. set out_record_ptrs_array to point to an array (which it allocates)
1281 * which has out_node_descriptor->num_recs many pointers to the
1282 * records themselves
1283 * 4. allocate out_record_ptr_sizes_array and fill it with the sizes of
1284 * each record
1285 * 5. return the number of bytes read (i.e., the size of the node)
1286 * or 0 on failure
1287 *
1288 * out_node_descriptor must be allocated by the caller and may not be NULL.
1289 *
1290 * out_record_ptrs_array and out_record_ptr_sizes_array must both be specified,
1291 * or both be NULL if the caller is not interested in reading the records.
1292 *
1293 * out_record_ptr_sizes_array may be NULL if the caller is not interested in
1294 * reading the records, but must not be NULL if out_record_ptrs_array is not.
1295 *
1296 * in_parent_file is HFS_CATALOG_FILE, HFS_EXTENTS_FILE, or
1297 * HFS_ATTRIBUTES_FILE, depending on the special file in which this node
1298 * resides.
1299 *
1300 * inout_volume must have its catnodesize or extnodesize field (depending on
1301 * the parent file) set to the correct value if this is an index, leaf, or map
1302 * node. If this is a header node, the field will be set to its correct value.
1303 */
1304 size_t
1305 hfslib_reada_node(void* in_bytes,
1306 hfs_node_descriptor_t* out_node_descriptor,
1307 void** out_record_ptrs_array[],
1308 uint16_t* out_record_ptr_sizes_array[],
1309 hfs_btree_file_type in_parent_file,
1310 hfs_volume* inout_volume,
1311 hfs_callback_args* cbargs)
1312 {
1313 void* ptr;
1314 uint16_t* rec_offsets;
1315 size_t last_bytes_read;
1316 uint16_t nodesize;
1317 uint16_t numrecords;
1318 uint16_t free_space_offset; /* offset to free space in node */
1319 int keysizefieldsize;
1320 int i;
1321
1322 numrecords = 0;
1323 rec_offsets = NULL;
1324 if(out_record_ptrs_array!=NULL)
1325 *out_record_ptrs_array = NULL;
1326 if(out_record_ptr_sizes_array!=NULL)
1327 *out_record_ptr_sizes_array = NULL;
1328
1329 if(in_bytes==NULL || inout_volume==NULL || out_node_descriptor==NULL
1330 || (out_record_ptrs_array==NULL && out_record_ptr_sizes_array!=NULL)
1331 || (out_record_ptrs_array!=NULL && out_record_ptr_sizes_array==NULL) )
1332 goto error;
1333
1334 ptr = in_bytes;
1335
1336 out_node_descriptor->flink = be32tohp(&ptr);
1337 out_node_descriptor->blink = be32tohp(&ptr);
1338 out_node_descriptor->kind = *(((int8_t*)ptr));
1339 ptr = (uint8_t*)ptr + 1;
1340 out_node_descriptor->height = *(((uint8_t*)ptr));
1341 ptr = (uint8_t*)ptr + 1;
1342 out_node_descriptor->num_recs = be16tohp(&ptr);
1343 out_node_descriptor->reserved = be16tohp(&ptr);
1344
1345 numrecords = out_node_descriptor->num_recs;
1346
1347 /*
1348 * To go any further, we will need to know the size of this node, as well
1349 * as the width of keyed records' key_len parameters for this btree. If
1350 * this is an index, leaf, or map node, inout_volume already has the node
1351 * size set in its catnodesize or extnodesize field and the key length set
1352 * in the catkeysizefieldsize or extkeysizefieldsize for catalog files and
1353 * extent files, respectively. However, if this is a header node, this
1354 * information has not yet been determined, so this is the place to do it.
1355 */
1356 if(out_node_descriptor->kind == HFS_HEADERNODE)
1357 {
1358 hfs_header_record_t hr;
1359 void* header_rec_offset[1];
1360 uint16_t header_rec_size[1];
1361
1362 /* sanity check to ensure this is a good header node */
1363 if(numrecords!=3)
1364 HFS_LIBERR("header node does not have exactly 3 records");
1365
1366 header_rec_offset[0] = ptr;
1367 header_rec_size[0] = sizeof(hfs_header_record_t);
1368
1369 last_bytes_read = hfslib_read_header_node(header_rec_offset,
1370 header_rec_size, 1, &hr, NULL, NULL);
1371 if(last_bytes_read==0)
1372 HFS_LIBERR("could not read header node");
1373
1374 switch(in_parent_file)
1375 {
1376 case HFS_CATALOG_FILE:
1377 inout_volume->chr.node_size = hr.node_size;
1378 inout_volume->catkeysizefieldsize =
1379 (hr.attributes & HFS_BIG_KEYS_MASK) ?
1380 sizeof(uint16_t):sizeof(uint8_t);
1381 break;
1382
1383 case HFS_EXTENTS_FILE:
1384 inout_volume->ehr.node_size = hr.node_size;
1385 inout_volume->extkeysizefieldsize =
1386 (hr.attributes & HFS_BIG_KEYS_MASK) ?
1387 sizeof(uint16_t):sizeof(uint8_t);
1388 break;
1389
1390 case HFS_ATTRIBUTES_FILE:
1391 default:
1392 HFS_LIBERR("invalid parent file type specified");
1393 /* NOTREACHED */
1394 }
1395 }
1396
1397 switch(in_parent_file)
1398 {
1399 case HFS_CATALOG_FILE:
1400 nodesize = inout_volume->chr.node_size;
1401 keysizefieldsize = inout_volume->catkeysizefieldsize;
1402 break;
1403
1404 case HFS_EXTENTS_FILE:
1405 nodesize = inout_volume->ehr.node_size;
1406 keysizefieldsize = inout_volume->extkeysizefieldsize;
1407 break;
1408
1409 case HFS_ATTRIBUTES_FILE:
1410 default:
1411 HFS_LIBERR("invalid parent file type specified");
1412 /* NOTREACHED */
1413 }
1414
1415 /*
1416 * Don't care about records so just exit after getting the node descriptor.
1417 * Note: This happens after the header node code, and not before it, in
1418 * case the caller calls this function and ignores the record data just to
1419 * get at the node descriptor, but then tries to call it again on a non-
1420 * header node without first setting inout_volume->cat/extnodesize.
1421 */
1422 if(out_record_ptrs_array==NULL)
1423 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1424
1425 rec_offsets = hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1426 *out_record_ptr_sizes_array =
1427 hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1428 if(rec_offsets==NULL || *out_record_ptr_sizes_array==NULL)
1429 HFS_LIBERR("could not allocate node record offsets");
1430
1431 *out_record_ptrs_array = hfslib_malloc(numrecords * sizeof(void*), cbargs);
1432 if(*out_record_ptrs_array==NULL)
1433 HFS_LIBERR("could not allocate node records");
1434
1435 last_bytes_read = hfslib_reada_node_offsets((uint8_t*)in_bytes + nodesize -
1436 numrecords * sizeof(uint16_t), rec_offsets);
1437 if(last_bytes_read==0)
1438 HFS_LIBERR("could not read node record offsets");
1439
1440 /* The size of the last record (i.e. the first one listed in the offsets)
1441 * must be determined using the offset to the node's free space. */
1442 free_space_offset = be16toh(*(uint16_t*)((uint8_t*)in_bytes + nodesize -
1443 (numrecords+1) * sizeof(uint16_t)));
1444
1445 (*out_record_ptr_sizes_array)[numrecords-1] =
1446 free_space_offset - rec_offsets[0];
1447 for(i=1;i<numrecords;i++)
1448 {
1449 (*out_record_ptr_sizes_array)[numrecords-i-1] =
1450 rec_offsets[i-1] - rec_offsets[i];
1451 }
1452
1453 for(i=0;i<numrecords;i++)
1454 {
1455 (*out_record_ptrs_array)[i] =
1456 hfslib_malloc((*out_record_ptr_sizes_array)[i], cbargs);
1457
1458 if((*out_record_ptrs_array)[i]==NULL)
1459 HFS_LIBERR("could not allocate node record #%i",i);
1460
1461 /*
1462 * If this is a keyed node (i.e., a leaf or index node), there are two
1463 * boundary rules that each record must obey:
1464 *
1465 * 1. A pad byte must be placed between the key and data if the
1466 * size of the key plus the size of the key_len field is odd.
1467 *
1468 * 2. A pad byte must be placed after the data if the data size
1469 * is odd.
1470 *
1471 * So in the first case we increment the starting point of the data
1472 * and correspondingly decrement the record size. In the second case
1473 * we decrement the record size.
1474 */
1475 if(out_node_descriptor->kind == HFS_LEAFNODE ||
1476 out_node_descriptor->kind == HFS_INDEXNODE)
1477 {
1478 hfs_catalog_key_t reckey;
1479 uint16_t rectype;
1480
1481 rectype = out_node_descriptor->kind;
1482 last_bytes_read = hfslib_read_catalog_keyed_record(ptr, NULL,
1483 &rectype, &reckey, inout_volume);
1484 if(last_bytes_read==0)
1485 HFS_LIBERR("could not read node record");
1486
1487 if((reckey.key_len + keysizefieldsize) % 2 == 1)
1488 {
1489 ptr = (uint8_t*)ptr + 1;
1490 (*out_record_ptr_sizes_array)[i]--;
1491 }
1492
1493 if((*out_record_ptr_sizes_array)[i] % 2 == 1)
1494 (*out_record_ptr_sizes_array)[i]--;
1495 }
1496
1497 memcpy((*out_record_ptrs_array)[i], ptr,
1498 (*out_record_ptr_sizes_array)[i]);
1499 ptr = (uint8_t*)ptr + (*out_record_ptr_sizes_array)[i];
1500 }
1501
1502 goto exit;
1503
1504 error:
1505 hfslib_free_recs(out_record_ptrs_array, out_record_ptr_sizes_array,
1506 &numrecords, cbargs);
1507
1508 ptr = in_bytes;
1509
1510 /* warn("error occurred in hfslib_reada_node()"); */
1511
1512 /* FALLTHROUGH */
1513
1514 exit:
1515 if(rec_offsets!=NULL)
1516 hfslib_free(rec_offsets, cbargs);
1517
1518 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1519 }
1520
1521 /*
1522 * hfslib_reada_node_offsets()
1523 *
1524 * Sets out_offset_array to contain the offsets to each record in the node,
1525 * in reverse order. Does not read the free space offset.
1526 */
1527 size_t
1528 hfslib_reada_node_offsets(void* in_bytes, uint16_t* out_offset_array)
1529 {
1530 void* ptr;
1531
1532 if(in_bytes==NULL || out_offset_array==NULL)
1533 return 0;
1534
1535 ptr = in_bytes;
1536
1537 /*
1538 * The offset for record 0 (which is the very last offset in the node) is
1539 * always equal to 14, the size of the node descriptor. So, once we hit
1540 * offset=14, we know this is the last offset. In this way, we don't need
1541 * to know the number of records beforehand.
1542 */
1543 out_offset_array--;
1544 do
1545 {
1546 out_offset_array++;
1547 *out_offset_array = be16tohp(&ptr);
1548 }
1549 while(*out_offset_array != (uint16_t)14);
1550
1551 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1552 }
1553
1554 /* hfslib_read_header_node()
1555 *
1556 * out_header_record and/or out_map_record may be NULL if the caller doesn't
1557 * care about their contents.
1558 */
1559 size_t
1560 hfslib_read_header_node(void** in_recs,
1561 uint16_t* in_rec_sizes,
1562 uint16_t in_num_recs,
1563 hfs_header_record_t* out_hr,
1564 void* out_userdata,
1565 void* out_map)
1566 {
1567 void* ptr;
1568 int i;
1569
1570 if(in_recs==NULL || in_rec_sizes==NULL)
1571 return 0;
1572
1573 if(out_hr!=NULL)
1574 {
1575 ptr = in_recs[0];
1576
1577 out_hr->tree_depth = be16tohp(&ptr);
1578 out_hr->root_node = be32tohp(&ptr);
1579 out_hr->leaf_recs = be32tohp(&ptr);
1580 out_hr->first_leaf = be32tohp(&ptr);
1581 out_hr->last_leaf = be32tohp(&ptr);
1582 out_hr->node_size = be16tohp(&ptr);
1583 out_hr->max_key_len = be16tohp(&ptr);
1584 out_hr->total_nodes = be32tohp(&ptr);
1585 out_hr->free_nodes = be32tohp(&ptr);
1586 out_hr->reserved = be16tohp(&ptr);
1587 out_hr->clump_size = be32tohp(&ptr);
1588 out_hr->btree_type = *(((uint8_t*)ptr));
1589 ptr = (uint8_t*)ptr + 1;
1590 out_hr->keycomp_type = *(((uint8_t*)ptr));
1591 ptr = (uint8_t*)ptr + 1;
1592 out_hr->attributes = be32tohp(&ptr);
1593 for(i=0;i<16;i++)
1594 out_hr->reserved2[i] = be32tohp(&ptr);
1595 }
1596
1597 if(out_userdata!=NULL)
1598 {
1599 memcpy(out_userdata, in_recs[1], in_rec_sizes[1]);
1600 }
1601 ptr = (uint8_t*)ptr + in_rec_sizes[1]; /* size of user data record */
1602
1603 if(out_map!=NULL)
1604 {
1605 memcpy(out_map, in_recs[2], in_rec_sizes[2]);
1606 }
1607 ptr = (uint8_t*)ptr + in_rec_sizes[2]; /* size of map record */
1608
1609 return ((uint8_t*)ptr - (uint8_t*)in_recs[0]);
1610 }
1611
1612 /*
1613 * hfslib_read_catalog_keyed_record()
1614 *
1615 * out_recdata can be NULL. inout_rectype must be set to either HFS_LEAFNODE
1616 * or HFS_INDEXNODE upon calling this function, and will be set by the
1617 * function to one of HFS_REC_FLDR, HFS_REC_FILE, HFS_REC_FLDR_THREAD, or
1618 * HFS_REC_FLDR_THREAD upon return if the node is a leaf node. If it is an
1619 * index node, inout_rectype will not be changed.
1620 */
1621 size_t
1622 hfslib_read_catalog_keyed_record(
1623 void* in_bytes,
1624 hfs_catalog_keyed_record_t* out_recdata,
1625 int16_t* inout_rectype,
1626 hfs_catalog_key_t* out_key,
1627 hfs_volume* in_volume)
1628 {
1629 void* ptr;
1630 size_t last_bytes_read;
1631
1632 if(in_bytes==NULL || out_key==NULL || inout_rectype==NULL)
1633 return 0;
1634
1635 ptr = in_bytes;
1636
1637 /* For HFS+, the key length is always a 2-byte number. This is indicated
1638 * by the HFS_BIG_KEYS_MASK bit in the attributes field of the catalog
1639 * header record. However, we just assume this bit is set, since all HFS+
1640 * volumes should have it set anyway. */
1641 if(in_volume->catkeysizefieldsize == sizeof(uint16_t))
1642 out_key->key_len = be16tohp(&ptr);
1643 else if (in_volume->catkeysizefieldsize == sizeof(uint8_t)) {
1644 out_key->key_len = *(((uint8_t*)ptr));
1645 ptr = (uint8_t*)ptr + 1;
1646 }
1647
1648 out_key->parent_cnid = be32tohp(&ptr);
1649
1650 last_bytes_read = hfslib_read_unistr255(ptr, &out_key->name);
1651 if(last_bytes_read==0)
1652 return 0;
1653 ptr = (uint8_t*)ptr + last_bytes_read;
1654
1655 /* don't waste time if the user just wanted the key and/or record type */
1656 if(out_recdata==NULL)
1657 {
1658 if(*inout_rectype == HFS_LEAFNODE)
1659 *inout_rectype = be16tohp(&ptr);
1660 else if(*inout_rectype != HFS_INDEXNODE)
1661 return 0; /* should not happen if we were given valid arguments */
1662
1663 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1664 }
1665
1666 if(*inout_rectype == HFS_INDEXNODE)
1667 {
1668 out_recdata->child = be32tohp(&ptr);
1669 }
1670 else
1671 {
1672 /* first need to determine what kind of record this is */
1673 *inout_rectype = be16tohp(&ptr);
1674 out_recdata->type = *inout_rectype;
1675
1676 switch(out_recdata->type)
1677 {
1678 case HFS_REC_FLDR:
1679 {
1680 out_recdata->folder.flags = be16tohp(&ptr);
1681 out_recdata->folder.valence = be32tohp(&ptr);
1682 out_recdata->folder.cnid = be32tohp(&ptr);
1683 out_recdata->folder.date_created = be32tohp(&ptr);
1684 out_recdata->folder.date_content_mod = be32tohp(&ptr);
1685 out_recdata->folder.date_attrib_mod = be32tohp(&ptr);
1686 out_recdata->folder.date_accessed = be32tohp(&ptr);
1687 out_recdata->folder.date_backedup = be32tohp(&ptr);
1688
1689 last_bytes_read = hfslib_read_bsd_data(ptr,
1690 &out_recdata->folder.bsd);
1691 if(last_bytes_read==0)
1692 return 0;
1693 ptr = (uint8_t*)ptr + last_bytes_read;
1694
1695 last_bytes_read = hfslib_read_folder_userinfo(ptr,
1696 &out_recdata->folder.user_info);
1697 if(last_bytes_read==0)
1698 return 0;
1699 ptr = (uint8_t*)ptr + last_bytes_read;
1700
1701 last_bytes_read = hfslib_read_folder_finderinfo(ptr,
1702 &out_recdata->folder.finder_info);
1703 if(last_bytes_read==0)
1704 return 0;
1705 ptr = (uint8_t*)ptr + last_bytes_read;
1706
1707 out_recdata->folder.text_encoding = be32tohp(&ptr);
1708 out_recdata->folder.reserved = be32tohp(&ptr);
1709 }
1710 break;
1711
1712 case HFS_REC_FILE:
1713 {
1714 out_recdata->file.flags = be16tohp(&ptr);
1715 out_recdata->file.reserved = be32tohp(&ptr);
1716 out_recdata->file.cnid = be32tohp(&ptr);
1717 out_recdata->file.date_created = be32tohp(&ptr);
1718 out_recdata->file.date_content_mod = be32tohp(&ptr);
1719 out_recdata->file.date_attrib_mod = be32tohp(&ptr);
1720 out_recdata->file.date_accessed = be32tohp(&ptr);
1721 out_recdata->file.date_backedup = be32tohp(&ptr);
1722
1723 last_bytes_read = hfslib_read_bsd_data(ptr,
1724 &out_recdata->file.bsd);
1725 if(last_bytes_read==0)
1726 return 0;
1727 ptr = (uint8_t*)ptr + last_bytes_read;
1728
1729 last_bytes_read = hfslib_read_file_userinfo(ptr,
1730 &out_recdata->file.user_info);
1731 if(last_bytes_read==0)
1732 return 0;
1733 ptr = (uint8_t*)ptr + last_bytes_read;
1734
1735 last_bytes_read = hfslib_read_file_finderinfo(ptr,
1736 &out_recdata->file.finder_info);
1737 if(last_bytes_read==0)
1738 return 0;
1739 ptr = (uint8_t*)ptr + last_bytes_read;
1740
1741 out_recdata->file.text_encoding = be32tohp(&ptr);
1742 out_recdata->file.reserved2 = be32tohp(&ptr);
1743
1744 last_bytes_read = hfslib_read_fork_descriptor(ptr,
1745 &out_recdata->file.data_fork);
1746 if(last_bytes_read==0)
1747 return 0;
1748 ptr = (uint8_t*)ptr + last_bytes_read;
1749
1750 last_bytes_read = hfslib_read_fork_descriptor(ptr,
1751 &out_recdata->file.rsrc_fork);
1752 if(last_bytes_read==0)
1753 return 0;
1754 ptr = (uint8_t*)ptr + last_bytes_read;
1755 }
1756 break;
1757
1758 case HFS_REC_FLDR_THREAD:
1759 case HFS_REC_FILE_THREAD:
1760 {
1761 out_recdata->thread.reserved = be16tohp(&ptr);
1762 out_recdata->thread.parent_cnid = be32tohp(&ptr);
1763
1764 last_bytes_read = hfslib_read_unistr255(ptr,
1765 &out_recdata->thread.name);
1766 if(last_bytes_read==0)
1767 return 0;
1768 ptr = (uint8_t*)ptr + last_bytes_read;
1769 }
1770 break;
1771
1772 default:
1773 return 1;
1774 /* NOTREACHED */
1775 }
1776 }
1777
1778 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1779 }
1780
1781 /* out_rec may be NULL */
1782 size_t
1783 hfslib_read_extent_record(
1784 void* in_bytes,
1785 hfs_extent_record_t* out_rec,
1786 hfs_node_kind in_nodekind,
1787 hfs_extent_key_t* out_key,
1788 hfs_volume* in_volume)
1789 {
1790 void* ptr;
1791 size_t last_bytes_read;
1792
1793 if(in_bytes==NULL || out_key==NULL
1794 || (in_nodekind!=HFS_LEAFNODE && in_nodekind!=HFS_INDEXNODE))
1795 return 0;
1796
1797 ptr = in_bytes;
1798
1799 /* For HFS+, the key length is always a 2-byte number. This is indicated
1800 * by the HFS_BIG_KEYS_MASK bit in the attributes field of the extent
1801 * overflow header record. However, we just assume this bit is set, since
1802 * all HFS+ volumes should have it set anyway. */
1803 if(in_volume->extkeysizefieldsize == sizeof(uint16_t))
1804 out_key->key_length = be16tohp(&ptr);
1805 else if (in_volume->extkeysizefieldsize == sizeof(uint8_t)) {
1806 out_key->key_length = *(((uint8_t*)ptr));
1807 ptr = (uint8_t*)ptr + 1;
1808 }
1809
1810 out_key->fork_type = *(((uint8_t*)ptr));
1811 ptr = (uint8_t*)ptr + 1;
1812 out_key->padding = *(((uint8_t*)ptr));
1813 ptr = (uint8_t*)ptr + 1;
1814 out_key->file_cnid = be32tohp(&ptr);
1815 out_key->start_block = be32tohp(&ptr);
1816
1817 /* don't waste time if the user just wanted the key */
1818 if(out_rec==NULL)
1819 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1820
1821 if(in_nodekind==HFS_LEAFNODE)
1822 {
1823 last_bytes_read = hfslib_read_extent_descriptors(ptr, out_rec);
1824 if(last_bytes_read==0)
1825 return 0;
1826 ptr = (uint8_t*)ptr + last_bytes_read;
1827 }
1828 else
1829 {
1830 /* XXX: this is completely bogus */
1831 /* (uint32_t*)*out_rec = be32tohp(&ptr); */
1832 uint32_t *ptr_32 = (uint32_t *)out_rec;
1833 *ptr_32 = be32tohp(&ptr);
1834 /* (*out_rec)[0].start_block = be32tohp(&ptr); */
1835 }
1836
1837 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1838 }
1839
1840 void
1841 hfslib_free_recs(
1842 void*** inout_node_recs,
1843 uint16_t** inout_rec_sizes,
1844 uint16_t* inout_num_recs,
1845 hfs_callback_args* cbargs)
1846 {
1847 uint16_t i;
1848
1849 if(inout_num_recs==NULL || *inout_num_recs==0)
1850 return;
1851
1852 if(inout_node_recs!=NULL && *inout_node_recs!=NULL)
1853 {
1854 for(i=0;i<*inout_num_recs;i++)
1855 {
1856 if((*inout_node_recs)[i]!=NULL)
1857 {
1858 hfslib_free((*inout_node_recs)[i], cbargs);
1859 (*inout_node_recs)[i] = NULL;
1860 }
1861 }
1862
1863 hfslib_free(*inout_node_recs, cbargs);
1864 *inout_node_recs = NULL;
1865 }
1866
1867 if(inout_rec_sizes!=NULL && *inout_rec_sizes!=NULL)
1868 {
1869 hfslib_free(*inout_rec_sizes, cbargs);
1870 *inout_rec_sizes = NULL;
1871 }
1872
1873 *inout_num_recs = 0;
1874 }
1875
1876 #if 0
1877 #pragma mark -
1878 #pragma mark Individual Fields
1879 #endif
1880
1881 size_t
1882 hfslib_read_fork_descriptor(void* in_bytes, hfs_fork_t* out_forkdata)
1883 {
1884 void* ptr;
1885 size_t last_bytes_read;
1886
1887 if(in_bytes==NULL || out_forkdata==NULL)
1888 return 0;
1889
1890 ptr = in_bytes;
1891
1892 out_forkdata->logical_size = be64tohp(&ptr);
1893 out_forkdata->clump_size = be32tohp(&ptr);
1894 out_forkdata->total_blocks = be32tohp(&ptr);
1895
1896 if((last_bytes_read = hfslib_read_extent_descriptors(ptr,
1897 &out_forkdata->extents))==0)
1898 return 0;
1899 ptr = (uint8_t*)ptr + last_bytes_read;
1900
1901 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1902 }
1903
1904 size_t
1905 hfslib_read_extent_descriptors(
1906 void* in_bytes,
1907 hfs_extent_record_t* out_extentrecord)
1908 {
1909 void* ptr;
1910 int i;
1911
1912 if(in_bytes==NULL || out_extentrecord==NULL)
1913 return 0;
1914
1915 ptr = in_bytes;
1916
1917 for(i=0;i<8;i++)
1918 {
1919 (((hfs_extent_descriptor_t*)*out_extentrecord)[i]).start_block =
1920 be32tohp(&ptr);
1921 (((hfs_extent_descriptor_t*)*out_extentrecord)[i]).block_count =
1922 be32tohp(&ptr);
1923 }
1924
1925 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1926 }
1927
1928 size_t
1929 hfslib_read_unistr255(void* in_bytes, hfs_unistr255_t* out_string)
1930 {
1931 void* ptr;
1932 uint16_t i, length;
1933
1934 if(in_bytes==NULL || out_string==NULL)
1935 return 0;
1936
1937 ptr = in_bytes;
1938
1939 length = be16tohp(&ptr);
1940 if(length>255)
1941 length = 255; /* hfs+ folder/file names have a limit of 255 chars */
1942 out_string->length = length;
1943
1944 for(i=0; i<length; i++)
1945 {
1946 out_string->unicode[i] = be16tohp(&ptr);
1947 }
1948
1949 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1950 }
1951
1952 size_t
1953 hfslib_read_bsd_data(void* in_bytes, hfs_bsd_data_t* out_perms)
1954 {
1955 void* ptr;
1956
1957 if(in_bytes==NULL || out_perms==NULL)
1958 return 0;
1959
1960 ptr = in_bytes;
1961
1962 out_perms->owner_id = be32tohp(&ptr);
1963 out_perms->group_id = be32tohp(&ptr);
1964 out_perms->admin_flags = *(((uint8_t*)ptr));
1965 ptr = (uint8_t*)ptr + 1;
1966 out_perms->owner_flags = *(((uint8_t*)ptr));
1967 ptr = (uint8_t*)ptr + 1;
1968 out_perms->file_mode = be16tohp(&ptr);
1969 out_perms->special.inode_num = be32tohp(&ptr); /* this field is a union */
1970
1971 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1972 }
1973
1974 size_t
1975 hfslib_read_file_userinfo(void* in_bytes, hfs_macos_file_info_t* out_info)
1976 {
1977 void* ptr;
1978
1979 if(in_bytes==NULL || out_info==NULL)
1980 return 0;
1981
1982 ptr = in_bytes;
1983
1984 out_info->file_type = be32tohp(&ptr);
1985 out_info->file_creator = be32tohp(&ptr);
1986 out_info->finder_flags = be16tohp(&ptr);
1987 out_info->location.v = be16tohp(&ptr);
1988 out_info->location.h = be16tohp(&ptr);
1989 out_info->reserved = be16tohp(&ptr);
1990
1991 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1992 }
1993
1994 size_t
1995 hfslib_read_file_finderinfo(
1996 void* in_bytes,
1997 hfs_macos_extended_file_info_t* out_info)
1998 {
1999 void* ptr;
2000
2001 if(in_bytes==NULL || out_info==NULL)
2002 return 0;
2003
2004 ptr = in_bytes;
2005
2006 #if 0
2007 #pragma warn Fill in with real code!
2008 #endif
2009 /* FIXME: Fill in with real code! */
2010 memset(out_info, 0, sizeof(*out_info));
2011 ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_file_info_t);
2012
2013 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2014 }
2015
2016 size_t
2017 hfslib_read_folder_userinfo(void* in_bytes, hfs_macos_folder_info_t* out_info)
2018 {
2019 void* ptr;
2020
2021 if(in_bytes==NULL || out_info==NULL)
2022 return 0;
2023
2024 ptr = in_bytes;
2025
2026 #if 0
2027 #pragma warn Fill in with real code!
2028 #endif
2029 /* FIXME: Fill in with real code! */
2030 memset(out_info, 0, sizeof(*out_info));
2031 ptr = (uint8_t*)ptr + sizeof(hfs_macos_folder_info_t);
2032
2033 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2034 }
2035
2036 size_t
2037 hfslib_read_folder_finderinfo(
2038 void* in_bytes,
2039 hfs_macos_extended_folder_info_t* out_info)
2040 {
2041 void* ptr;
2042
2043 if(in_bytes==NULL || out_info==NULL)
2044 return 0;
2045
2046 ptr = in_bytes;
2047
2048 #if 0
2049 #pragma warn Fill in with real code!
2050 #endif
2051 /* FIXME: Fill in with real code! */
2052 memset(out_info, 0, sizeof(*out_info));
2053 ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_folder_info_t);
2054
2055 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2056 }
2057
2058 size_t
2059 hfslib_read_journal_info(void* in_bytes, hfs_journal_info_t* out_info)
2060 {
2061 void* ptr;
2062 int i;
2063
2064 if(in_bytes==NULL || out_info==NULL)
2065 return 0;
2066
2067 ptr = in_bytes;
2068
2069 out_info->flags = be32tohp(&ptr);
2070 for(i=0; i<8; i++)
2071 {
2072 out_info->device_signature[i] = be32tohp(&ptr);
2073 }
2074 out_info->offset = be64tohp(&ptr);
2075 out_info->size = be64tohp(&ptr);
2076 for(i=0; i<32; i++)
2077 {
2078 out_info->reserved[i] = be64tohp(&ptr);
2079 }
2080
2081 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2082 }
2083
2084 size_t
2085 hfslib_read_journal_header(void* in_bytes, hfs_journal_header_t* out_header)
2086 {
2087 void* ptr;
2088
2089 if(in_bytes==NULL || out_header==NULL)
2090 return 0;
2091
2092 ptr = in_bytes;
2093
2094 out_header->magic = be32tohp(&ptr);
2095 out_header->endian = be32tohp(&ptr);
2096 out_header->start = be64tohp(&ptr);
2097 out_header->end = be64tohp(&ptr);
2098 out_header->size = be64tohp(&ptr);
2099 out_header->blocklist_header_size = be32tohp(&ptr);
2100 out_header->checksum = be32tohp(&ptr);
2101 out_header->journal_header_size = be32tohp(&ptr);
2102
2103 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2104 }
2105
2106 #if 0
2107 #pragma mark -
2108 #pragma mark Disk Access
2109 #endif
2110
2111 /*
2112 * hfslib_readd_with_extents()
2113 *
2114 * This function reads the contents of a file from the volume, given an array
2115 * of extent descriptors which specify where every extent of the file is
2116 * located (in addition to the usual pread() arguments). out_bytes is presumed
2117 * to exist and be large enough to hold in_length number of bytes. Returns 0
2118 * on success.
2119 */
2120 int
2121 hfslib_readd_with_extents(
2122 hfs_volume* in_vol,
2123 void* out_bytes,
2124 uint64_t* out_bytesread,
2125 uint64_t in_length,
2126 uint64_t in_offset,
2127 hfs_extent_descriptor_t in_extents[],
2128 uint16_t in_numextents,
2129 hfs_callback_args* cbargs)
2130 {
2131 uint64_t ext_length, last_offset;
2132 uint16_t i;
2133 int error;
2134
2135 if(in_vol==NULL || out_bytes==NULL || in_extents==NULL || in_numextents==0
2136 || out_bytesread==NULL)
2137 return -1;
2138
2139 *out_bytesread = 0;
2140 last_offset = 0;
2141
2142 for(i=0; i<in_numextents; i++)
2143 {
2144 if(in_extents[i].block_count==0)
2145 continue;
2146
2147 ext_length = in_extents[i].block_count * in_vol->vh.block_size;
2148
2149 if(in_offset < last_offset+ext_length
2150 && in_offset+in_length >= last_offset)
2151 {
2152 uint64_t isect_start, isect_end;
2153
2154 isect_start = max(in_offset, last_offset);
2155 isect_end = min(in_offset+in_length, last_offset+ext_length);
2156 error = hfslib_readd(in_vol, out_bytes, isect_end-isect_start,
2157 isect_start - last_offset + (uint64_t)in_extents[i].start_block
2158 * in_vol->vh.block_size, cbargs);
2159
2160 if(error!=0)
2161 return error;
2162
2163 *out_bytesread += isect_end-isect_start;
2164 out_bytes = (uint8_t*)out_bytes + isect_end-isect_start;
2165 }
2166
2167 last_offset += ext_length;
2168 }
2169
2170
2171 return 0;
2172 }
2173
2174 #if 0
2175 #pragma mark -
2176 #pragma mark Callback Wrappers
2177 #endif
2178
2179 void
2180 hfslib_error(const char* in_format, const char* in_file, int in_line, ...)
2181 {
2182 va_list ap;
2183
2184 if(in_format==NULL)
2185 return;
2186
2187 if(hfs_gcb.error!=NULL)
2188 {
2189 va_start(ap, in_line);
2190
2191 hfs_gcb.error(in_format, in_file, in_line, ap);
2192
2193 va_end(ap);
2194 }
2195 }
2196
2197 void*
2198 hfslib_malloc(size_t size, hfs_callback_args* cbargs)
2199 {
2200 if(hfs_gcb.allocmem!=NULL)
2201 return hfs_gcb.allocmem(size, cbargs);
2202
2203 return NULL;
2204 }
2205
2206 void*
2207 hfslib_realloc(void* ptr, size_t size, hfs_callback_args* cbargs)
2208 {
2209 if(hfs_gcb.reallocmem!=NULL)
2210 return hfs_gcb.reallocmem(ptr, size, cbargs);
2211
2212 return NULL;
2213 }
2214
2215 void
2216 hfslib_free(void* ptr, hfs_callback_args* cbargs)
2217 {
2218 if(hfs_gcb.freemem!=NULL && ptr!=NULL)
2219 hfs_gcb.freemem(ptr, cbargs);
2220 }
2221
2222 int
2223 hfslib_openvoldevice(
2224 hfs_volume* in_vol,
2225 const char* in_device,
2226 uint64_t in_offset,
2227 hfs_callback_args* cbargs)
2228 {
2229 if(hfs_gcb.openvol!=NULL && in_device!=NULL)
2230 return hfs_gcb.openvol(in_vol, in_device, in_offset, cbargs);
2231
2232 return 1;
2233 }
2234
2235 void
2236 hfslib_closevoldevice(hfs_volume* in_vol, hfs_callback_args* cbargs)
2237 {
2238 if(hfs_gcb.closevol!=NULL)
2239 hfs_gcb.closevol(in_vol, cbargs);
2240 }
2241
2242 int
2243 hfslib_readd(
2244 hfs_volume* in_vol,
2245 void* out_bytes,
2246 uint64_t in_length,
2247 uint64_t in_offset,
2248 hfs_callback_args* cbargs)
2249 {
2250 if(in_vol==NULL || out_bytes==NULL)
2251 return -1;
2252
2253 if(hfs_gcb.read!=NULL)
2254 return hfs_gcb.read(in_vol, out_bytes, in_length, in_offset, cbargs);
2255
2256 return -1;
2257 }
2258
2259 #if 0
2260 #pragma mark -
2261 #pragma mark Other
2262 #endif
2263
2264 /* returns key length */
2265 uint16_t
2266 hfslib_make_catalog_key(
2267 hfs_cnid_t in_parent_cnid,
2268 uint16_t in_name_len,
2269 unichar_t* in_unicode,
2270 hfs_catalog_key_t* out_key)
2271 {
2272 if(in_parent_cnid==0 || (in_name_len>0 && in_unicode==NULL) || out_key==0)
2273 return 0;
2274
2275 if(in_name_len>255)
2276 in_name_len = 255;
2277
2278 out_key->key_len = 6 + 2 * in_name_len;
2279 out_key->parent_cnid = in_parent_cnid;
2280 out_key->name.length = in_name_len;
2281 if(in_name_len>0)
2282 memcpy(&out_key->name.unicode, in_unicode, in_name_len*2);
2283
2284 return out_key->key_len;
2285 }
2286
2287 /* returns key length */
2288 uint16_t
2289 hfslib_make_extent_key(
2290 hfs_cnid_t in_cnid,
2291 uint8_t in_forktype,
2292 uint32_t in_startblock,
2293 hfs_extent_key_t* out_key)
2294 {
2295 if(in_cnid==0 || out_key==0)
2296 return 0;
2297
2298 out_key->key_length = HFS_MAX_EXT_KEY_LEN;
2299 out_key->fork_type = in_forktype;
2300 out_key->padding = 0;
2301 out_key->file_cnid = in_cnid;
2302 out_key->start_block = in_startblock;
2303
2304 return out_key->key_length;
2305 }
2306
2307 /* case-folding */
2308 int
2309 hfslib_compare_catalog_keys_cf (
2310 const void *ap,
2311 const void *bp)
2312 {
2313 const hfs_catalog_key_t *a, *b;
2314 unichar_t ac, bc; /* current character from a, b */
2315 unichar_t lc; /* lowercase version of current character */
2316 uint8_t apos, bpos; /* current character indices */
2317
2318 a = (const hfs_catalog_key_t*)ap;
2319 b = (const hfs_catalog_key_t*)bp;
2320
2321 if(a->parent_cnid != b->parent_cnid)
2322 {
2323 return (a->parent_cnid - b->parent_cnid);
2324 }
2325 else
2326 {
2327 /*
2328 * The following code implements the pseudocode suggested by
2329 * the HFS+ technote.
2330 */
2331
2332 /*
2333 * XXX These need to be revised to be endian-independent!
2334 */
2335 #define hbyte(x) ((x) >> 8)
2336 #define lbyte(x) ((x) & 0x00FF)
2337
2338 apos = bpos = 0;
2339 while(1)
2340 {
2341 /* get next valid character from a */
2342 for (lc=0; lc == 0 && apos < a->name.length; apos++) {
2343 ac = a->name.unicode[apos];
2344 lc = hfs_gcft[hbyte(ac)];
2345 if(lc==0)
2346 lc = ac;
2347 else
2348 lc = hfs_gcft[lc + lbyte(ac)];
2349 };
2350 ac=lc;
2351
2352 /* get next valid character from b */
2353 for (lc=0; lc == 0 && bpos < b->name.length; bpos++) {
2354 bc = b->name.unicode[bpos];
2355 lc = hfs_gcft[hbyte(bc)];
2356 if(lc==0)
2357 lc = bc;
2358 else
2359 lc = hfs_gcft[lc + lbyte(bc)];
2360 };
2361 bc=lc;
2362
2363 /* on end of string ac/bc are 0, otherwise > 0 */
2364 if (ac != bc || (ac == 0 && bc == 0))
2365 return ac - bc;
2366 }
2367 #undef hbyte
2368 #undef lbyte
2369 }
2370 }
2371
2372 /* binary compare (i.e., not case folding) */
2373 int
2374 hfslib_compare_catalog_keys_bc (
2375 const void *a,
2376 const void *b)
2377 {
2378 if(((const hfs_catalog_key_t*)a)->parent_cnid
2379 == ((const hfs_catalog_key_t*)b)->parent_cnid)
2380 {
2381 if(((const hfs_catalog_key_t*)a)->name.length == 0 &&
2382 ((const hfs_catalog_key_t*)b)->name.length == 0)
2383 return 0;
2384
2385 if(((const hfs_catalog_key_t*)a)->name.length == 0)
2386 return -1;
2387 if(((const hfs_catalog_key_t*)b)->name.length == 0)
2388 return 1;
2389
2390 /* FIXME: This does a byte-per-byte comparison, whereas the HFS spec
2391 * mandates a uint16_t chunk comparison. */
2392 return memcmp(((const hfs_catalog_key_t*)a)->name.unicode,
2393 ((const hfs_catalog_key_t*)b)->name.unicode,
2394 min(((const hfs_catalog_key_t*)a)->name.length,
2395 ((const hfs_catalog_key_t*)b)->name.length));
2396 }
2397 else
2398 {
2399 return (((const hfs_catalog_key_t*)a)->parent_cnid -
2400 ((const hfs_catalog_key_t*)b)->parent_cnid);
2401 }
2402 }
2403
2404 int
2405 hfslib_compare_extent_keys (
2406 const void *a,
2407 const void *b)
2408 {
2409 /*
2410 * Comparison order, in descending importance:
2411 *
2412 * CNID -> fork type -> start block
2413 */
2414
2415 if(((const hfs_extent_key_t*)a)->file_cnid
2416 == ((const hfs_extent_key_t*)b)->file_cnid)
2417 {
2418 if(((const hfs_extent_key_t*)a)->fork_type
2419 == ((const hfs_extent_key_t*)b)->fork_type)
2420 {
2421 if(((const hfs_extent_key_t*)a)->start_block
2422 == ((const hfs_extent_key_t*)b)->start_block)
2423 {
2424 return 0;
2425 }
2426 else
2427 {
2428 return (((const hfs_extent_key_t*)a)->start_block -
2429 ((const hfs_extent_key_t*)b)->start_block);
2430 }
2431 }
2432 else
2433 {
2434 return (((const hfs_extent_key_t*)a)->fork_type -
2435 ((const hfs_extent_key_t*)b)->fork_type);
2436 }
2437 }
2438 else
2439 {
2440 return (((const hfs_extent_key_t*)a)->file_cnid -
2441 ((const hfs_extent_key_t*)b)->file_cnid);
2442 }
2443 }
2444
2445 /* 1+10 tables of 16 rows and 16 columns, each 2 bytes wide = 5632 bytes */
2446 int
2447 hfslib_create_casefolding_table(void)
2448 {
2449 hfs_callback_args cbargs;
2450 unichar_t* t; /* convenience */
2451 uint16_t s; /* current subtable * 256 */
2452 uint16_t i; /* current subtable index (0 to 255) */
2453
2454 if(hfs_gcft!=NULL)
2455 return 0; /* no sweat, table already exists */
2456
2457 hfslib_init_cbargs(&cbargs);
2458 hfs_gcft = hfslib_malloc(5632, &cbargs);
2459 if(hfs_gcft==NULL)
2460 HFS_LIBERR("could not allocate case folding table");
2461
2462 t = hfs_gcft; /* easier to type :) */
2463
2464 /*
2465 * high byte indices
2466 */
2467 s = 0 * 256;
2468 memset(t, 0x00, 512);
2469 t[s+ 0] = 0x0100;
2470 t[s+ 1] = 0x0200;
2471 t[s+ 3] = 0x0300;
2472 t[s+ 4] = 0x0400;
2473 t[s+ 5] = 0x0500;
2474 t[s+ 16] = 0x0600;
2475 t[s+ 32] = 0x0700;
2476 t[s+ 33] = 0x0800;
2477 t[s+254] = 0x0900;
2478 t[s+255] = 0x0a00;
2479
2480 /*
2481 * table 1 (high byte 0x00)
2482 */
2483 s = 1 * 256;
2484 for(i=0; i<65; i++)
2485 t[s+i] = i;
2486 t[s+ 0] = 0xffff;
2487 for(i=65; i<91; i++)
2488 t[s+i] = i + 0x20;
2489 for(i=91; i<256; i++)
2490 t[s+i] = i;
2491 t[s+198] = 0x00e6;
2492 t[s+208] = 0x00f0;
2493 t[s+216] = 0x00f8;
2494 t[s+222] = 0x00fe;
2495
2496 /*
2497 * table 2 (high byte 0x01)
2498 */
2499 s = 2 * 256;
2500 for(i=0; i<256; i++)
2501 t[s+i] = i + 0x0100;
2502 t[s+ 16] = 0x0111;
2503 t[s+ 38] = 0x0127;
2504 t[s+ 50] = 0x0133;
2505 t[s+ 63] = 0x0140;
2506 t[s+ 65] = 0x0142;
2507 t[s+ 74] = 0x014b;
2508 t[s+ 82] = 0x0153;
2509 t[s+102] = 0x0167;
2510 t[s+129] = 0x0253;
2511 t[s+130] = 0x0183;
2512 t[s+132] = 0x0185;
2513 t[s+134] = 0x0254;
2514 t[s+135] = 0x0188;
2515 t[s+137] = 0x0256;
2516 t[s+138] = 0x0257;
2517 t[s+139] = 0x018c;
2518 t[s+142] = 0x01dd;
2519 t[s+143] = 0x0259;
2520 t[s+144] = 0x025b;
2521 t[s+145] = 0x0192;
2522 t[s+147] = 0x0260;
2523 t[s+148] = 0x0263;
2524 t[s+150] = 0x0269;
2525 t[s+151] = 0x0268;
2526 t[s+152] = 0x0199;
2527 t[s+156] = 0x026f;
2528 t[s+157] = 0x0272;
2529 t[s+159] = 0x0275;
2530 t[s+162] = 0x01a3;
2531 t[s+164] = 0x01a5;
2532 t[s+167] = 0x01a8;
2533 t[s+169] = 0x0283;
2534 t[s+172] = 0x01ad;
2535 t[s+174] = 0x0288;
2536 t[s+177] = 0x028a;
2537 t[s+178] = 0x028b;
2538 t[s+179] = 0x01b4;
2539 t[s+181] = 0x01b6;
2540 t[s+183] = 0x0292;
2541 t[s+184] = 0x01b9;
2542 t[s+188] = 0x01bd;
2543 t[s+196] = 0x01c6;
2544 t[s+197] = 0x01c6;
2545 t[s+199] = 0x01c9;
2546 t[s+200] = 0x01c9;
2547 t[s+202] = 0x01cc;
2548 t[s+203] = 0x01cc;
2549 t[s+228] = 0x01e5;
2550 t[s+241] = 0x01f3;
2551 t[s+242] = 0x01f3;
2552
2553 /*
2554 * table 3 (high byte 0x03)
2555 */
2556 s = 3 * 256;
2557 for(i=0; i<145; i++)
2558 t[s+i] = i + 0x0300;
2559 for(i=145; i<170; i++)
2560 t[s+i] = i + 0x0320;
2561 t[s+162] = 0x03a2;
2562 for(i=170; i<256; i++)
2563 t[s+i] = i + 0x0300;
2564
2565 for(i=226; i<239; i+=2)
2566 t[s+i] = i + 0x0301;
2567
2568 /*
2569 * table 4 (high byte 0x04)
2570 */
2571 s = 4 * 256;
2572 for(i=0; i<16; i++)
2573 t[s+i] = i + 0x0400;
2574 t[s+ 2] = 0x0452;
2575 t[s+ 4] = 0x0454;
2576 t[s+ 5] = 0x0455;
2577 t[s+ 6] = 0x0456;
2578 t[s+ 8] = 0x0458;
2579 t[s+ 9] = 0x0459;
2580 t[s+ 10] = 0x045a;
2581 t[s+ 11] = 0x045b;
2582 t[s+ 15] = 0x045f;
2583
2584 for(i=16; i<48; i++)
2585 t[s+i] = i + 0x0420;
2586 t[s+ 25] = 0x0419;
2587 for(i=48; i<256; i++)
2588 t[s+i] = i + 0x0400;
2589 t[s+195] = 0x04c4;
2590 t[s+199] = 0x04c8;
2591 t[s+203] = 0x04cc;
2592
2593 for(i=96; i<129; i+=2)
2594 t[s+i] = i + 0x0401;
2595 t[s+118] = 0x0476;
2596 for(i=144; i<191; i+=2)
2597 t[s+i] = i + 0x0401;
2598
2599 /*
2600 * table 5 (high byte 0x05)
2601 */
2602 s = 5 * 256;
2603 for(i=0; i<49; i++)
2604 t[s+i] = i + 0x0500;
2605 for(i=49; i<87; i++)
2606 t[s+i] = i + 0x0530;
2607 for(i=87; i<256; i++)
2608 t[s+i] = i + 0x0500;
2609
2610 /*
2611 * table 6 (high byte 0x10)
2612 */
2613 s = 6 * 256;
2614 for(i=0; i<160; i++)
2615 t[s+i] = i + 0x1000;
2616 for(i=160; i<198; i++)
2617 t[s+i] = i + 0x1030;
2618 for(i=198; i<256; i++)
2619 t[s+i] = i + 0x1000;
2620
2621 /*
2622 * table 7 (high byte 0x20)
2623 */
2624 s = 7 * 256;
2625 for(i=0; i<256; i++)
2626 t[s+i] = i + 0x2000;
2627 {
2628 uint8_t zi[15] = { 12, 13, 14, 15,
2629 42, 43, 44, 45, 46,
2630 106, 107, 108, 109, 110, 111};
2631
2632 for(i=0; i<15; i++)
2633 t[s+zi[i]] = 0x0000;
2634 }
2635
2636 /*
2637 * table 8 (high byte 0x21)
2638 */
2639 s = 8 * 256;
2640 for(i=0; i<96; i++)
2641 t[s+i] = i + 0x2100;
2642 for(i=96; i<112; i++)
2643 t[s+i] = i + 0x2110;
2644 for(i=112; i<256; i++)
2645 t[s+i] = i + 0x2100;
2646
2647 /*
2648 * table 9 (high byte 0xFE)
2649 */
2650 s = 9 * 256;
2651 for(i=0; i<256; i++)
2652 t[s+i] = i + 0xFE00;
2653 t[s+255] = 0x0000;
2654
2655 /*
2656 * table 10 (high byte 0xFF)
2657 */
2658 s = 10 * 256;
2659 for(i=0; i<33; i++)
2660 t[s+i] = i + 0xFF00;
2661 for(i=33; i<59; i++)
2662 t[s+i] = i + 0xFF20;
2663 for(i=59; i<256; i++)
2664 t[s+i] = i + 0xFF00;
2665
2666 return 0;
2667
2668 error:
2669 return 1;
2670 }
2671
2672 int
2673 hfslib_get_hardlink(hfs_volume *vol, uint32_t inode_num,
2674 hfs_catalog_keyed_record_t *rec,
2675 hfs_callback_args *cbargs)
2676 {
2677 hfs_catalog_keyed_record_t metadata;
2678 hfs_catalog_key_t key;
2679 char name[16];
2680 unichar_t name_uni[16];
2681 int i, len;
2682
2683 /* XXX: cache this */
2684 if (hfslib_find_catalog_record_with_key(vol,
2685 &hfs_gMetadataDirectoryKey,
2686 &metadata, cbargs) != 0
2687 || metadata.type != HFS_REC_FLDR)
2688 return -1;
2689
2690 len = snprintf(name, sizeof(name), "iNode%d", inode_num);
2691 for (i=0; i<len; i++)
2692 name_uni[i] = name[i];
2693
2694 if (hfslib_make_catalog_key(metadata.folder.cnid, len, name_uni,
2695 &key) == 0)
2696 return -1;
2697
2698 return hfslib_find_catalog_record_with_key(vol, &key, rec, cbargs);
2699 }
2700