libhfs.c revision 1.9 1 /* $NetBSD: libhfs.c,v 1.9 2009/11/27 15:58:39 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2005, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Yevgeny Binder, Dieter Baron, and Pelle Johansson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * All functions and variable types have the prefix "hfs_". All constants
34 * have the prefix "HFS_".
35 *
36 * Naming convention for functions which read/write raw, linear data
37 * into/from a structured form:
38 *
39 * hfs_read/write[d][a]_foo_bar
40 * [d] - read/write from/to [d]isk instead of a memory buffer
41 * [a] - [a]llocate output buffer instead of using an existing one
42 * (not applicable for writing functions)
43 *
44 * Most functions do not have either of these options, so they will read from
45 * or write to a memory buffer, which has been previously allocated by the
46 * caller.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: libhfs.c,v 1.9 2009/11/27 15:58:39 pooka Exp $");
51
52 #include "libhfs.h"
53
54 /* global private file/folder keys */
55 hfs_catalog_key_t hfs_gMetadataDirectoryKey; /* contains HFS+ inodes */
56 hfs_catalog_key_t hfs_gJournalInfoBlockFileKey;
57 hfs_catalog_key_t hfs_gJournalBufferFileKey;
58 hfs_catalog_key_t* hfs_gPrivateObjectKeys[4] = {
59 &hfs_gMetadataDirectoryKey,
60 &hfs_gJournalInfoBlockFileKey,
61 &hfs_gJournalBufferFileKey,
62 NULL};
63
64
65 extern uint16_t be16tohp(void** inout_ptr);
66 extern uint32_t be32tohp(void** inout_ptr);
67 extern uint64_t be64tohp(void** inout_ptr);
68
69 int hfslib_create_casefolding_table(void);
70
71 #ifdef DLO_DEBUG
72 #include <stdio.h>
73 void
74 dlo_print_key(hfs_catalog_key_t *key)
75 {
76 int i;
77
78 printf("%ld:[", (long)key->parent_cnid);
79 for (i=0; i<key->name.length; i++) {
80 if (key->name.unicode[i] < 256
81 && isprint(key->name.unicode[i]))
82 putchar(key->name.unicode[i]);
83 else
84 printf("<%04x>", key->name.unicode[i]);
85 }
86 printf("]");
87 }
88 #endif
89
90 void
91 hfslib_init(hfs_callbacks* in_callbacks)
92 {
93 unichar_t temp[256];
94
95 if(in_callbacks!=NULL)
96 memcpy(&hfs_gcb, in_callbacks, sizeof(hfs_callbacks));
97
98 hfs_gcft = NULL;
99
100 /*
101 * Create keys for the HFS+ "private" files so we can reuse them whenever
102 * we perform a user-visible operation, such as listing directory contents.
103 */
104
105 #define ATOU(str, len) /* quick & dirty ascii-to-unicode conversion */ \
106 do{ int i; for(i=0; i<len; i++) temp[i]=str[i]; } \
107 while( /*CONSTCOND*/ 0)
108
109 ATOU("\0\0\0\0HFS+ Private Data", 21);
110 hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 21, temp,
111 &hfs_gMetadataDirectoryKey);
112
113 ATOU(".journal_info_block", 19);
114 hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 19, temp,
115 &hfs_gJournalInfoBlockFileKey);
116
117 ATOU(".journal", 8);
118 hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 8, temp,
119 &hfs_gJournalBufferFileKey);
120
121 #undef ATOU
122 }
123
124 void
125 hfslib_done(void)
126 {
127 hfs_callback_args cbargs;
128
129 if(hfs_gcft!=NULL) {
130 hfslib_init_cbargs(&cbargs);
131 hfslib_free(hfs_gcft, &cbargs);
132 hfs_gcft = NULL;
133 }
134
135 return;
136 }
137
138 void
139 hfslib_init_cbargs(hfs_callback_args* ptr)
140 {
141 memset(ptr, 0, sizeof(hfs_callback_args));
142 }
143
144 #if 0
145 #pragma mark -
146 #pragma mark High-Level Routines
147 #endif
148
149 int
150 hfslib_open_volume(
151 const char* in_device,
152 int in_readonly,
153 hfs_volume* out_vol,
154 hfs_callback_args* cbargs)
155 {
156 hfs_catalog_key_t rootkey;
157 hfs_thread_record_t rootthread;
158 hfs_hfs_master_directory_block_t mdb;
159 uint16_t node_rec_sizes[1];
160 void* node_recs[1];
161 void* buffer;
162 void* buffer2; /* used as temporary pointer for realloc() */
163 int result;
164 int isopen = 0;
165
166 result = 1;
167 buffer = NULL;
168
169 if(in_device==NULL || out_vol==NULL)
170 return 1;
171
172 out_vol->readonly = in_readonly;
173 out_vol->offset = 0;
174
175 if(hfslib_openvoldevice(out_vol, in_device, cbargs) != 0)
176 HFS_LIBERR("could not open device");
177 isopen = 1;
178
179 /*
180 * Read the volume header.
181 */
182 buffer = hfslib_malloc(max(sizeof(hfs_volume_header_t),
183 sizeof(hfs_hfs_master_directory_block_t)), cbargs);
184 if(buffer==NULL)
185 HFS_LIBERR("could not allocate volume header");
186 if(hfslib_readd(out_vol, buffer, max(sizeof(hfs_volume_header_t),
187 sizeof(hfs_hfs_master_directory_block_t)),
188 HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs)!=0)
189 HFS_LIBERR("could not read volume header");
190
191 if (be16toh(*((uint16_t *)buffer)) == HFS_SIG_HFS) {
192 if (hfslib_read_master_directory_block(buffer, &mdb) == 0)
193 HFS_LIBERR("could not parse master directory block");
194 if (mdb.embedded_signature == HFS_SIG_HFSP)
195 {
196 /* XXX: is 512 always correct? */
197 out_vol->offset =
198 mdb.first_block * 512
199 + mdb.embedded_extent.start_block
200 * (uint64_t)mdb.block_size;
201
202 if(hfslib_readd(out_vol, buffer,
203 sizeof(hfs_volume_header_t),
204 HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs)!=0)
205 HFS_LIBERR("could not read volume header");
206 }
207 else
208 HFS_LIBERR("Plain HFS volumes not currently supported");
209 }
210
211 if(hfslib_read_volume_header(buffer, &(out_vol->vh))==0)
212 HFS_LIBERR("could not parse volume header");
213
214 /*
215 * Check the volume signature to see if this is a legitimate HFS+ or HFSX
216 * volume. If so, set the key comparison function pointers appropriately.
217 */
218 switch(out_vol->vh.signature)
219 {
220 case HFS_SIG_HFSP:
221 out_vol->keycmp = hfslib_compare_catalog_keys_cf;
222 break;
223
224 case HFS_SIG_HFSX:
225 out_vol->keycmp = NULL; /* will be set below */
226 break;
227
228 default:
229 /* HFS_LIBERR("unrecognized volume format"); */
230 goto error;
231 break;
232 }
233
234
235 /*
236 * Read the catalog header.
237 */
238 buffer2 = hfslib_realloc(buffer, 512, cbargs);
239 if(buffer2==NULL)
240 HFS_LIBERR("could not allocate catalog header node");
241 buffer = buffer2;
242
243 /*
244 We are only interested in the node header, so read the first
245 512 bytes and construct the node descriptor by hand.
246 */
247 if(hfslib_readd(out_vol, buffer, 512,
248 out_vol->vh.catalog_file.extents[0].start_block
249 *(uint64_t)out_vol->vh.block_size,
250 cbargs) != 0)
251 HFS_LIBERR("could not read catalog header node");
252 node_recs[0] = (char *)buffer+14;
253 node_rec_sizes[0] = 120;
254 if(hfslib_read_header_node(node_recs, node_rec_sizes, 1,
255 &out_vol->chr, NULL, NULL)==0)
256 HFS_LIBERR("could not parse catalog header node");
257
258 /* If this is an HFSX volume, the catalog header specifies the type of
259 * key comparison method (case-folding or binary compare) we should use. */
260 if(out_vol->keycmp == NULL)
261 {
262 if(out_vol->chr.keycomp_type == HFS_KEY_CASEFOLD)
263 out_vol->keycmp = hfslib_compare_catalog_keys_cf;
264 else if(out_vol->chr.keycomp_type == HFS_KEY_BINARY)
265 out_vol->keycmp = hfslib_compare_catalog_keys_bc;
266 else
267 HFS_LIBERR("undefined key compare method");
268 }
269
270 out_vol->catkeysizefieldsize
271 = (out_vol->chr.attributes & HFS_BIG_KEYS_MASK) ?
272 sizeof(uint16_t) : sizeof(uint8_t);
273
274 /*
275 * Read the extent overflow header.
276 */
277 /*
278 We are only interested in the node header, so read the first
279 512 bytes and construct the node descriptor by hand.
280 buffer is already 512 bytes long.
281 */
282 if(hfslib_readd(out_vol, buffer, 512,
283 out_vol->vh.extents_file.extents[0].start_block
284 *(uint64_t)out_vol->vh.block_size,
285 cbargs) != 0)
286 HFS_LIBERR("could not read extent header node");
287
288 node_recs[0] = (char *)buffer+14;
289 node_rec_sizes[0] = 120;
290 if(hfslib_read_header_node(node_recs, node_rec_sizes, 1,
291 &out_vol->ehr, NULL, NULL)==0)
292 HFS_LIBERR("could not parse extent header node");
293 out_vol->extkeysizefieldsize
294 = (out_vol->ehr.attributes & HFS_BIG_KEYS_MASK) ?
295 sizeof(uint16_t):sizeof(uint8_t);
296 /*
297 * Read the journal info block and journal header (if volume journaled).
298 */
299 if(out_vol->vh.attributes & (1<<HFS_VOL_JOURNALED))
300 {
301 /* journal info block */
302 buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_info_t), cbargs);
303 if(buffer2==NULL)
304 HFS_LIBERR("could not allocate journal info block");
305 buffer = buffer2;
306
307 if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_info_t),
308 out_vol->vh.journal_info_block * out_vol->vh.block_size,
309 cbargs) != 0)
310 HFS_LIBERR("could not read journal info block");
311
312 if(hfslib_read_journal_info(buffer, &out_vol->jib)==0)
313 HFS_LIBERR("could not parse journal info block");
314
315 /* journal header */
316 buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_header_t),cbargs);
317 if(buffer2==NULL)
318 HFS_LIBERR("could not allocate journal header");
319 buffer = buffer2;
320
321 if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_header_t),
322 out_vol->jib.offset, cbargs) != 0)
323 HFS_LIBERR("could not read journal header");
324
325 if(hfslib_read_journal_header(buffer, &out_vol->jh)==0)
326 HFS_LIBERR("could not parse journal header");
327
328 out_vol->journaled = 1;
329 }
330 else
331 {
332 out_vol->journaled = 0;
333 }
334
335 /*
336 * If this volume uses case-folding comparison and the folding table hasn't
337 * been created yet, do that here. (We don't do this in hfslib_init()
338 * because the table is large and we might never even need to use it.)
339 */
340 if(out_vol->keycmp==hfslib_compare_catalog_keys_cf && hfs_gcft==NULL)
341 result = hfslib_create_casefolding_table();
342 else
343 result = 0;
344
345 /*
346 * Find and store the volume name.
347 */
348 if(hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 0, NULL, &rootkey)==0)
349 HFS_LIBERR("could not make root search key");
350
351 if(hfslib_find_catalog_record_with_key(out_vol, &rootkey,
352 (hfs_catalog_keyed_record_t*)&rootthread, cbargs)!=0)
353 HFS_LIBERR("could not find root parent");
354
355 memcpy(&out_vol->name, &rootthread.name, sizeof(hfs_unistr255_t));
356
357
358 /* FALLTHROUGH */
359 error:
360 if (result != 0 && isopen)
361 hfslib_close_volume(out_vol, cbargs);
362 if(buffer!=NULL)
363 hfslib_free(buffer, cbargs);
364
365 return result;
366 }
367
368 void
369 hfslib_close_volume(hfs_volume* in_vol, hfs_callback_args* cbargs)
370 {
371 if(in_vol==NULL)
372 return;
373
374 hfslib_closevoldevice(in_vol, cbargs);
375 }
376
377 int
378 hfslib_path_to_cnid(hfs_volume* in_vol,
379 hfs_cnid_t in_cnid,
380 char** out_unicode,
381 uint16_t* out_length,
382 hfs_callback_args* cbargs)
383 {
384 hfs_thread_record_t parent_thread;
385 hfs_cnid_t parent_cnid, child_cnid;
386 char* newpath;
387 char* path;
388 int path_offset = 0;
389 int result;
390 uint16_t* ptr; /* dummy var */
391 uint16_t uchar; /* dummy var */
392 uint16_t total_path_length;
393
394 if(in_vol==NULL || in_cnid==0 || out_unicode==NULL || out_length==NULL)
395 return 1;
396
397 result = 1;
398 *out_unicode = NULL;
399 *out_length = 0;
400 path = NULL;
401 total_path_length = 0;
402
403 path = hfslib_malloc(514, cbargs); /* 256 unichars plus a forward slash */
404 if(path==NULL)
405 return 1;
406
407 child_cnid = in_cnid;
408 parent_cnid = child_cnid; /* skips loop in case in_cnid is root id */
409 while(parent_cnid != HFS_CNID_ROOT_FOLDER
410 && parent_cnid != HFS_CNID_ROOT_PARENT)
411 {
412 if(child_cnid!=in_cnid)
413 {
414 newpath = hfslib_realloc(path, 514 + total_path_length*2, cbargs);
415
416 if(newpath==NULL)
417 goto exit;
418 path = newpath;
419
420 memmove(path + 514, path + path_offset, total_path_length*2);
421 }
422
423 parent_cnid = hfslib_find_parent_thread(in_vol, child_cnid,
424 &parent_thread, cbargs);
425 if(parent_cnid==0)
426 goto exit;
427
428 path_offset = 512 - parent_thread.name.length*2;
429
430 memcpy(path + path_offset, parent_thread.name.unicode,
431 parent_thread.name.length*2);
432
433 /* Add a forward slash. The unicode string was specified in big endian
434 * format, so convert to core format if necessary. */
435 path[512]=0x00;
436 path[513]=0x2F;
437
438 ptr = (uint16_t*)path + 256;
439 uchar = be16tohp((void*)&ptr);
440 *(ptr-1) = uchar;
441
442 total_path_length += parent_thread.name.length + 1;
443
444 child_cnid = parent_cnid;
445 }
446
447 /*
448 * At this point, 'path' holds a sequence of unicode characters which
449 * represent the absolute path to the given cnid. This string is missing
450 * a terminating null char and an initial forward slash that represents
451 * the root of the filesystem. It most likely also has extra space in
452 * the beginning, due to the fact that we reserve 512 bytes for each path
453 * component and won't usually use all that space. So, we allocate the
454 * final string based on the actual length of the absolute path, plus four
455 * additional bytes (two unichars) for the forward slash and the null char.
456 */
457
458 *out_unicode = hfslib_malloc((total_path_length+2)*2, cbargs);
459 if(*out_unicode == NULL)
460 goto exit;
461
462 /* copy only the bytes that are actually used */
463 memcpy(*out_unicode+2, path + path_offset, total_path_length*2);
464
465 /* insert forward slash at start */
466 (*out_unicode)[0] = 0x00;
467 (*out_unicode)[1] = 0x2F;
468 ptr = (uint16_t*)*out_unicode;
469 uchar = be16tohp((void*)&ptr);
470 *(ptr-1) = uchar;
471
472 /* insert null char at end */
473 (*out_unicode)[total_path_length*2+2] = 0x00;
474 (*out_unicode)[total_path_length*2+3] = 0x00;
475
476 *out_length = total_path_length + 1 /* extra for forward slash */ ;
477
478 result = 0;
479
480 exit:
481 if(path!=NULL)
482 hfslib_free(path, cbargs);
483
484 return result;
485 }
486
487 hfs_cnid_t
488 hfslib_find_parent_thread(
489 hfs_volume* in_vol,
490 hfs_cnid_t in_child,
491 hfs_thread_record_t* out_thread,
492 hfs_callback_args* cbargs)
493 {
494 hfs_catalog_key_t childkey;
495
496 if(in_vol==NULL || in_child==0 || out_thread==NULL)
497 return 0;
498
499 if(hfslib_make_catalog_key(in_child, 0, NULL, &childkey)==0)
500 return 0;
501
502 if(hfslib_find_catalog_record_with_key(in_vol, &childkey,
503 (hfs_catalog_keyed_record_t*)out_thread, cbargs)!=0)
504 return 0;
505
506 return out_thread->parent_cnid;
507 }
508
509 /*
510 * hfslib_find_catalog_record_with_cnid()
511 *
512 * Looks up a catalog record by calling hfslib_find_parent_thread() and
513 * hfslib_find_catalog_record_with_key(). out_key may be NULL; if not, the key
514 * corresponding to this cnid is stuffed in it. Returns 0 on success.
515 */
516 int
517 hfslib_find_catalog_record_with_cnid(
518 hfs_volume* in_vol,
519 hfs_cnid_t in_cnid,
520 hfs_catalog_keyed_record_t* out_rec,
521 hfs_catalog_key_t* out_key,
522 hfs_callback_args* cbargs)
523 {
524 hfs_cnid_t parentcnid;
525 hfs_thread_record_t parentthread;
526 hfs_catalog_key_t key;
527
528 if(in_vol==NULL || in_cnid==0 || out_rec==NULL)
529 return 0;
530
531 parentcnid =
532 hfslib_find_parent_thread(in_vol, in_cnid, &parentthread, cbargs);
533 if(parentcnid == 0)
534 HFS_LIBERR("could not find parent thread for cnid %i", in_cnid);
535
536 if(hfslib_make_catalog_key(parentthread.parent_cnid,
537 parentthread.name.length, parentthread.name.unicode, &key) == 0)
538 HFS_LIBERR("could not make catalog search key");
539
540 if(out_key!=NULL)
541 memcpy(out_key, &key, sizeof(key));
542
543 return hfslib_find_catalog_record_with_key(in_vol, &key, out_rec, cbargs);
544
545 error:
546 return 1;
547 }
548
549 /* Returns 0 on success, 1 on error, and -1 if record was not found. */
550 int
551 hfslib_find_catalog_record_with_key(
552 hfs_volume* in_vol,
553 hfs_catalog_key_t* in_key,
554 hfs_catalog_keyed_record_t* out_rec,
555 hfs_callback_args* cbargs)
556 {
557 hfs_node_descriptor_t nd;
558 hfs_extent_descriptor_t* extents;
559 hfs_catalog_keyed_record_t lastrec;
560 hfs_catalog_key_t* curkey;
561 void** recs;
562 void* buffer;
563 uint64_t bytesread;
564 uint32_t curnode;
565 uint16_t* recsizes;
566 uint16_t numextents;
567 uint16_t recnum;
568 int16_t leaftype;
569 int keycompare;
570 int result;
571
572 if(in_key==NULL || out_rec==NULL || in_vol==NULL)
573 return 1;
574
575 result = 1;
576 buffer = NULL;
577 curkey = NULL;
578 extents = NULL;
579 recs = NULL;
580 recsizes = NULL;
581
582 /* The key takes up over half a kb of ram, which is a lot for the BSD
583 * kernel stack. So allocate it in the heap instead to play it safe. */
584 curkey = hfslib_malloc(sizeof(hfs_catalog_key_t), cbargs);
585 if(curkey==NULL)
586 HFS_LIBERR("could not allocate catalog search key");
587
588 buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
589 if(buffer==NULL)
590 HFS_LIBERR("could not allocate node buffer");
591
592 numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
593 HFS_DATAFORK, &extents, cbargs);
594 if(numextents==0)
595 HFS_LIBERR("could not locate fork extents");
596
597 nd.num_recs = 0;
598 curnode = in_vol->chr.root_node;
599
600 #ifdef DLO_DEBUG
601 printf("-> key ");
602 dlo_print_key(in_key);
603 printf("\n");
604 #endif
605
606 do
607 {
608 #ifdef DLO_DEBUG
609 printf("--> node %d\n", curnode);
610 #endif
611
612 if(hfslib_readd_with_extents(in_vol, buffer,
613 &bytesread,in_vol->chr.node_size, curnode * in_vol->chr.node_size,
614 extents, numextents, cbargs)!=0)
615 HFS_LIBERR("could not read catalog node #%i", curnode);
616
617 if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
618 in_vol, cbargs)==0)
619 HFS_LIBERR("could not parse catalog node #%i", curnode);
620
621 for(recnum=0; recnum<nd.num_recs; recnum++)
622 {
623 leaftype = nd.kind;
624 if(hfslib_read_catalog_keyed_record(recs[recnum], out_rec,
625 &leaftype, curkey, in_vol)==0)
626 HFS_LIBERR("could not read catalog record #%i",recnum);
627
628 #ifdef DLO_DEBUG
629 printf("---> record %d: ", recnum);
630 dlo_print_key(curkey);
631 fflush(stdout);
632 #endif
633 keycompare = in_vol->keycmp(in_key, curkey);
634 #ifdef DLO_DEBUG
635 printf(" %c\n",
636 keycompare < 0 ? '<'
637 : keycompare == 0 ? '=' : '>');
638 #endif
639
640 if(keycompare < 0)
641 {
642 /* Check if key is less than *every* record, which should never
643 * happen if the volume is consistent and the key legit. */
644 if(recnum==0)
645 HFS_LIBERR("all records greater than key");
646
647 /* Otherwise, we've found the first record that exceeds our key,
648 * so retrieve the previous record, which is still less... */
649 memcpy(out_rec, &lastrec,
650 sizeof(hfs_catalog_keyed_record_t));
651
652 /* ...unless this is a leaf node, which means we've gone from
653 * a key which is smaller than the search key, in the previous
654 * loop, to a key which is larger, in this loop, and that
655 * implies that our search key does not exist on the volume. */
656 if(nd.kind==HFS_LEAFNODE)
657 result = -1;
658
659 break;
660 }
661 else if(keycompare == 0)
662 {
663 /* If leaf node, found an exact match. */
664 result = 0;
665 break;
666 }
667 else if(recnum==nd.num_recs-1 && keycompare > 0)
668 {
669 /* If leaf node, we've reached the last record with no match,
670 * which means this key is not present on the volume. */
671 result = -1;
672 break;
673 }
674
675 memcpy(&lastrec, out_rec, sizeof(hfs_catalog_keyed_record_t));
676 }
677
678 if(nd.kind==HFS_INDEXNODE)
679 curnode = out_rec->child;
680 else if(nd.kind==HFS_LEAFNODE)
681 break;
682
683 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
684 }
685 while(nd.kind!=HFS_LEAFNODE);
686
687 /* FALLTHROUGH */
688 error:
689 if(extents!=NULL)
690 hfslib_free(extents, cbargs);
691 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
692 if(curkey!=NULL)
693 hfslib_free(curkey, cbargs);
694 if(buffer!=NULL)
695 hfslib_free(buffer, cbargs);
696
697 return result;
698 }
699
700 /* returns 0 on success */
701 /* XXX Need to look this over and make sure it gracefully handles cases where
702 * XXX the key is not found. */
703 int
704 hfslib_find_extent_record_with_key(hfs_volume* in_vol,
705 hfs_extent_key_t* in_key,
706 hfs_extent_record_t* out_rec,
707 hfs_callback_args* cbargs)
708 {
709 hfs_node_descriptor_t nd;
710 hfs_extent_descriptor_t* extents;
711 hfs_extent_record_t lastrec;
712 hfs_extent_key_t curkey;
713 void** recs;
714 void* buffer;
715 uint64_t bytesread;
716 uint32_t curnode;
717 uint16_t* recsizes;
718 uint16_t numextents;
719 uint16_t recnum;
720 int keycompare;
721 int result;
722
723 if(in_vol==NULL || in_key==NULL || out_rec==NULL)
724 return 1;
725
726 result = 1;
727 buffer = NULL;
728 extents = NULL;
729 recs = NULL;
730 recsizes = NULL;
731
732 buffer = hfslib_malloc(in_vol->ehr.node_size, cbargs);
733 if(buffer==NULL)
734 HFS_LIBERR("could not allocate node buffer");
735
736 numextents = hfslib_get_file_extents(in_vol, HFS_CNID_EXTENTS,
737 HFS_DATAFORK, &extents, cbargs);
738 if(numextents==0)
739 HFS_LIBERR("could not locate fork extents");
740
741 nd.num_recs = 0;
742 curnode = in_vol->ehr.root_node;
743
744 do
745 {
746 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
747 recnum = 0;
748
749 if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
750 in_vol->ehr.node_size, curnode * in_vol->ehr.node_size, extents,
751 numextents, cbargs)!=0)
752 HFS_LIBERR("could not read extents overflow node #%i", curnode);
753
754 if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_EXTENTS_FILE,
755 in_vol, cbargs)==0)
756 HFS_LIBERR("could not parse extents overflow node #%i",curnode);
757
758 for(recnum=0; recnum<nd.num_recs; recnum++)
759 {
760 memcpy(&lastrec, out_rec, sizeof(hfs_extent_record_t));
761
762 if(hfslib_read_extent_record(recs[recnum], out_rec, nd.kind,
763 &curkey, in_vol)==0)
764 HFS_LIBERR("could not read extents record #%i",recnum);
765
766 keycompare = hfslib_compare_extent_keys(in_key, &curkey);
767 if(keycompare < 0)
768 {
769 /* this should never happen for any legitimate key */
770 if(recnum==0)
771 return 1;
772
773 memcpy(out_rec, &lastrec, sizeof(hfs_extent_record_t));
774
775 break;
776 }
777 else if(keycompare == 0 ||
778 (recnum==nd.num_recs-1 && keycompare > 0))
779 break;
780 }
781
782 if(nd.kind==HFS_INDEXNODE)
783 curnode = *((uint32_t *)out_rec); /* out_rec is a node ptr in this case */
784 else if(nd.kind==HFS_LEAFNODE)
785 break;
786 else
787 HFS_LIBERR("unknwon node type for extents overflow node #%i",curnode);
788 }
789 while(nd.kind!=HFS_LEAFNODE);
790
791 result = 0;
792
793 /* FALLTHROUGH */
794
795 error:
796 if(buffer!=NULL)
797 hfslib_free(buffer, cbargs);
798 if(extents!=NULL)
799 hfslib_free(extents, cbargs);
800 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
801
802 return result;
803 }
804
805 /* out_extents may be NULL. */
806 uint16_t
807 hfslib_get_file_extents(hfs_volume* in_vol,
808 hfs_cnid_t in_cnid,
809 uint8_t in_forktype,
810 hfs_extent_descriptor_t** out_extents,
811 hfs_callback_args* cbargs)
812 {
813 hfs_extent_descriptor_t* dummy;
814 hfs_extent_key_t extentkey;
815 hfs_file_record_t file;
816 hfs_catalog_key_t filekey;
817 hfs_thread_record_t fileparent;
818 hfs_fork_t fork = {.logical_size = 0};
819 hfs_extent_record_t nextextentrec;
820 uint32_t numblocks;
821 uint16_t numextents, n;
822
823 if(in_vol==NULL || in_cnid==0)
824 return 0;
825
826 if(out_extents!=NULL)
827 {
828 *out_extents = hfslib_malloc(sizeof(hfs_extent_descriptor_t), cbargs);
829 if(*out_extents==NULL)
830 return 0;
831 }
832
833 switch(in_cnid)
834 {
835 case HFS_CNID_CATALOG:
836 fork = in_vol->vh.catalog_file;
837 break;
838
839 case HFS_CNID_EXTENTS:
840 fork = in_vol->vh.extents_file;
841 break;
842
843 case HFS_CNID_ALLOCATION:
844 fork = in_vol->vh.allocation_file;
845 break;
846
847 case HFS_CNID_ATTRIBUTES:
848 fork = in_vol->vh.attributes_file;
849 break;
850
851 case HFS_CNID_STARTUP:
852 fork = in_vol->vh.startup_file;
853 break;
854
855 default:
856 if(hfslib_find_parent_thread(in_vol, in_cnid, &fileparent,
857 cbargs)==0)
858 goto error;
859
860 if(hfslib_make_catalog_key(fileparent.parent_cnid,
861 fileparent.name.length, fileparent.name.unicode, &filekey)==0)
862 goto error;
863
864 if(hfslib_find_catalog_record_with_key(in_vol, &filekey,
865 (hfs_catalog_keyed_record_t*)&file, cbargs)!=0)
866 goto error;
867
868 /* only files have extents, not folders or threads */
869 if(file.rec_type!=HFS_REC_FILE)
870 goto error;
871
872 if(in_forktype==HFS_DATAFORK)
873 fork = file.data_fork;
874 else if(in_forktype==HFS_RSRCFORK)
875 fork = file.rsrc_fork;
876 }
877
878 numextents = 0;
879 numblocks = 0;
880 memcpy(&nextextentrec, &fork.extents, sizeof(hfs_extent_record_t));
881
882 while(1)
883 {
884 for(n=0; n<8; n++)
885 {
886 if(nextextentrec[n].block_count==0)
887 break;
888
889 numblocks += nextextentrec[n].block_count;
890 }
891
892 if(out_extents!=NULL)
893 {
894 dummy = hfslib_realloc(*out_extents,
895 (numextents+n) * sizeof(hfs_extent_descriptor_t),
896 cbargs);
897 if(dummy==NULL)
898 goto error;
899 *out_extents = dummy;
900
901 memcpy(*out_extents + numextents,
902 &nextextentrec, n*sizeof(hfs_extent_descriptor_t));
903 }
904 numextents += n;
905
906 if(numblocks >= fork.total_blocks)
907 break;
908
909 if(hfslib_make_extent_key(in_cnid, in_forktype, numblocks,
910 &extentkey)==0)
911 goto error;
912
913 if(hfslib_find_extent_record_with_key(in_vol, &extentkey,
914 &nextextentrec, cbargs)!=0)
915 goto error;
916 }
917
918 goto exit;
919
920 error:
921 if(out_extents!=NULL && *out_extents!=NULL)
922 {
923 hfslib_free(*out_extents, cbargs);
924 *out_extents = NULL;
925 }
926 return 0;
927
928 exit:
929 return numextents;
930 }
931
932 /*
933 * hfslib_get_directory_contents()
934 *
935 * Finds the immediate children of a given directory CNID and places their
936 * CNIDs in an array allocated here. The first child is found by doing a
937 * catalog search that only compares parent CNIDs (ignoring file/folder names)
938 * and skips over thread records. Then the remaining children are listed in
939 * ascending order by name, according to the HFS+ spec, so just read off each
940 * successive leaf node until a different parent CNID is found.
941 *
942 * If out_childnames is not NULL, it will be allocated and set to an array of
943 * hfs_unistr255_t's which correspond to the name of the child with that same
944 * index.
945 *
946 * out_children may be NULL.
947 *
948 * Returns 0 on success.
949 */
950 int
951 hfslib_get_directory_contents(
952 hfs_volume* in_vol,
953 hfs_cnid_t in_dir,
954 hfs_catalog_keyed_record_t** out_children,
955 hfs_unistr255_t** out_childnames,
956 uint32_t* out_numchildren,
957 hfs_callback_args* cbargs)
958 {
959 hfs_node_descriptor_t nd;
960 hfs_extent_descriptor_t* extents;
961 hfs_catalog_keyed_record_t currec;
962 hfs_catalog_key_t curkey;
963 void** recs;
964 void* buffer;
965 void* ptr; /* temporary pointer for realloc() */
966 uint64_t bytesread;
967 uint32_t curnode;
968 uint32_t lastnode;
969 uint16_t* recsizes;
970 uint16_t numextents;
971 uint16_t recnum;
972 int16_t leaftype;
973 int keycompare;
974 int result;
975
976 if(in_vol==NULL || in_dir==0 || out_numchildren==NULL)
977 return 1;
978
979 result = 1;
980 buffer = NULL;
981 extents = NULL;
982 lastnode = 0;
983 recs = NULL;
984 recsizes = NULL;
985 *out_numchildren = 0;
986 if(out_children!=NULL)
987 *out_children = NULL;
988 if(out_childnames!=NULL)
989 *out_childnames = NULL;
990
991 buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
992 if(buffer==NULL)
993 HFS_LIBERR("could not allocate node buffer");
994
995 numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
996 HFS_DATAFORK, &extents, cbargs);
997 if(numextents==0)
998 HFS_LIBERR("could not locate fork extents");
999
1000 nd.num_recs = 0;
1001 curnode = in_vol->chr.root_node;
1002
1003 while(1)
1004 {
1005 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
1006 recnum = 0;
1007
1008 if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
1009 in_vol->chr.node_size, curnode * in_vol->chr.node_size, extents,
1010 numextents, cbargs)!=0)
1011 HFS_LIBERR("could not read catalog node #%i", curnode);
1012
1013 if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
1014 in_vol, cbargs)==0)
1015 HFS_LIBERR("could not parse catalog node #%i", curnode);
1016
1017 for(recnum=0; recnum<nd.num_recs; recnum++)
1018 {
1019 leaftype = nd.kind; /* needed b/c leaftype might be modified now */
1020 if(hfslib_read_catalog_keyed_record(recs[recnum], &currec,
1021 &leaftype, &curkey, in_vol)==0)
1022 HFS_LIBERR("could not read cat record %i:%i", curnode, recnum);
1023
1024 if(nd.kind==HFS_INDEXNODE)
1025 {
1026 keycompare = in_dir - curkey.parent_cnid;
1027 if(keycompare < 0)
1028 {
1029 /* Check if key is less than *every* record, which should
1030 * never happen if the volume and key are good. */
1031 if(recnum==0)
1032 HFS_LIBERR("all records greater than key");
1033
1034 /* Otherwise, we've found the first record that exceeds our
1035 * key, so retrieve the previous, lesser record. */
1036 curnode = lastnode;
1037 break;
1038 }
1039 else if(keycompare == 0)
1040 {
1041 /*
1042 * Normally, if we were doing a typical catalog lookup with
1043 * both a parent cnid AND a name, keycompare==0 would be an
1044 * exact match. However, since we are ignoring object names
1045 * in this case and only comparing parent cnids, a direct
1046 * match on only a parent cnid could mean that we've found
1047 * an object with that parent cnid BUT which is NOT the
1048 * first object (according to the HFS+ spec) with that
1049 * parent cnid. Thus, when we find a parent cnid match, we
1050 * still go back to the previously found leaf node and start
1051 * checking it for a possible prior instance of an object
1052 * with our desired parent cnid.
1053 */
1054 curnode = lastnode;
1055 break;
1056 }
1057 else if (recnum==nd.num_recs-1 && keycompare > 0)
1058 {
1059 /* Descend to child node if we found an exact match, or if
1060 * this is the last pointer record. */
1061 curnode = currec.child;
1062 break;
1063 }
1064
1065 lastnode = currec.child;
1066 }
1067 else
1068 {
1069 /*
1070 * We have now descended down the hierarchy of index nodes into
1071 * the leaf node that contains the first catalog record with a
1072 * matching parent CNID. Since all leaf nodes are chained
1073 * through their flink/blink, we can simply walk forward through
1074 * this chain, copying every matching non-thread record, until
1075 * we hit a record with a different parent CNID. At that point,
1076 * we've retrieved all of our directory's items, if any.
1077 */
1078 curnode = nd.flink;
1079
1080 if(curkey.parent_cnid<in_dir)
1081 continue;
1082 else if(curkey.parent_cnid==in_dir)
1083 {
1084 /* Hide files/folders which are supposed to be invisible
1085 * to users, according to the hfs+ spec. */
1086 if(hfslib_is_private_file(&curkey))
1087 continue;
1088
1089 /* leaftype has now been set to the catalog record type */
1090 if(leaftype==HFS_REC_FLDR || leaftype==HFS_REC_FILE)
1091 {
1092 (*out_numchildren)++;
1093
1094 if(out_children!=NULL)
1095 {
1096 ptr = hfslib_realloc(*out_children,
1097 *out_numchildren *
1098 sizeof(hfs_catalog_keyed_record_t), cbargs);
1099 if(ptr==NULL)
1100 HFS_LIBERR("could not allocate child record");
1101 *out_children = ptr;
1102
1103 memcpy(&((*out_children)[*out_numchildren-1]),
1104 &currec, sizeof(hfs_catalog_keyed_record_t));
1105 }
1106
1107 if(out_childnames!=NULL)
1108 {
1109 ptr = hfslib_realloc(*out_childnames,
1110 *out_numchildren * sizeof(hfs_unistr255_t),
1111 cbargs);
1112 if(ptr==NULL)
1113 HFS_LIBERR("could not allocate child name");
1114 *out_childnames = ptr;
1115
1116 memcpy(&((*out_childnames)[*out_numchildren-1]),
1117 &curkey.name, sizeof(hfs_unistr255_t));
1118 }
1119 }
1120 } else {
1121 result = 0;
1122 /* We have just now passed the last item in the desired
1123 * folder (or the folder was empty), so exit. */
1124 goto exit;
1125 }
1126 }
1127 }
1128 }
1129
1130 result = 0;
1131
1132 goto exit;
1133
1134 error:
1135 if(out_children!=NULL && *out_children!=NULL)
1136 hfslib_free(*out_children, cbargs);
1137 if(out_childnames!=NULL && *out_childnames!=NULL)
1138 hfslib_free(*out_childnames, cbargs);
1139
1140 /* FALLTHROUGH */
1141
1142 exit:
1143 if(extents!=NULL)
1144 hfslib_free(extents, cbargs);
1145 hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
1146 if(buffer!=NULL)
1147 hfslib_free(buffer, cbargs);
1148
1149 return result;
1150 }
1151
1152 int
1153 hfslib_is_journal_clean(hfs_volume* in_vol)
1154 {
1155 if(in_vol==NULL)
1156 return 0;
1157
1158 /* return true if no journal */
1159 if(!(in_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)))
1160 return 1;
1161
1162 return (in_vol->jh.start == in_vol->jh.end);
1163 }
1164
1165 /*
1166 * hfslib_is_private_file()
1167 *
1168 * Given a file/folder's key and parent CNID, determines if it should be hidden
1169 * from the user (e.g., the journal header file or the HFS+ Private Data folder)
1170 */
1171 int
1172 hfslib_is_private_file(hfs_catalog_key_t *filekey)
1173 {
1174 hfs_catalog_key_t* curkey = NULL;
1175 int i = 0;
1176
1177 /*
1178 * According to the HFS+ spec to date, all special objects are located in
1179 * the root directory of the volume, so don't bother going further if the
1180 * requested object is not.
1181 */
1182 if(filekey->parent_cnid != HFS_CNID_ROOT_FOLDER)
1183 return 0;
1184
1185 while((curkey = hfs_gPrivateObjectKeys[i]) != NULL)
1186 {
1187 /* XXX Always use binary compare here, or use volume's specific key
1188 * XXX comparison routine? */
1189 if(filekey->name.length == curkey->name.length
1190 && memcmp(filekey->name.unicode, curkey->name.unicode,
1191 2 * curkey->name.length)==0)
1192 return 1;
1193
1194 i++;
1195 }
1196
1197 return 0;
1198 }
1199
1200
1201 /* bool
1202 hfslib_is_journal_valid(hfs_volume* in_vol)
1203 {
1204 - check magic numbers
1205 - check Other Things
1206 }*/
1207
1208 #if 0
1209 #pragma mark -
1210 #pragma mark Major Structures
1211 #endif
1212
1213 /*
1214 * hfslib_read_volume_header()
1215 *
1216 * Reads in_bytes, formats the data appropriately, and places the result
1217 * in out_header, which is assumed to be previously allocated. Returns number
1218 * of bytes read, 0 if failed.
1219 */
1220
1221 size_t
1222 hfslib_read_volume_header(void* in_bytes, hfs_volume_header_t* out_header)
1223 {
1224 void* ptr;
1225 size_t last_bytes_read;
1226 int i;
1227
1228 if(in_bytes==NULL || out_header==NULL)
1229 return 0;
1230
1231 ptr = in_bytes;
1232
1233 out_header->signature = be16tohp(&ptr);
1234 out_header->version = be16tohp(&ptr);
1235 out_header->attributes = be32tohp(&ptr);
1236 out_header->last_mounting_version = be32tohp(&ptr);
1237 out_header->journal_info_block = be32tohp(&ptr);
1238
1239 out_header->date_created = be32tohp(&ptr);
1240 out_header->date_modified = be32tohp(&ptr);
1241 out_header->date_backedup = be32tohp(&ptr);
1242 out_header->date_checked = be32tohp(&ptr);
1243
1244 out_header->file_count = be32tohp(&ptr);
1245 out_header->folder_count = be32tohp(&ptr);
1246
1247 out_header->block_size = be32tohp(&ptr);
1248 out_header->total_blocks = be32tohp(&ptr);
1249 out_header->free_blocks = be32tohp(&ptr);
1250 out_header->next_alloc_block = be32tohp(&ptr);
1251 out_header->rsrc_clump_size = be32tohp(&ptr);
1252 out_header->data_clump_size = be32tohp(&ptr);
1253 out_header->next_cnid = be32tohp(&ptr);
1254
1255 out_header->write_count = be32tohp(&ptr);
1256 out_header->encodings = be64tohp(&ptr);
1257
1258 for(i=0;i<8;i++)
1259 out_header->finder_info[i] = be32tohp(&ptr);
1260
1261 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1262 &out_header->allocation_file))==0)
1263 return 0;
1264 ptr = (uint8_t*)ptr + last_bytes_read;
1265
1266 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1267 &out_header->extents_file))==0)
1268 return 0;
1269 ptr = (uint8_t*)ptr + last_bytes_read;
1270
1271 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1272 &out_header->catalog_file))==0)
1273 return 0;
1274 ptr = (uint8_t*)ptr + last_bytes_read;
1275
1276 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1277 &out_header->attributes_file))==0)
1278 return 0;
1279 ptr = (uint8_t*)ptr + last_bytes_read;
1280
1281 if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1282 &out_header->startup_file))==0)
1283 return 0;
1284 ptr = (uint8_t*)ptr + last_bytes_read;
1285
1286 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1287 }
1288
1289 /*
1290 * hfsplib_read_master_directory_block()
1291 *
1292 * Reads in_bytes, formats the data appropriately, and places the result
1293 * in out_header, which is assumed to be previously allocated. Returns numb
1294 er
1295 * of bytes read, 0 if failed.
1296 */
1297
1298 size_t
1299 hfslib_read_master_directory_block(void* in_bytes,
1300 hfs_hfs_master_directory_block_t* out_mdr)
1301 {
1302 void* ptr;
1303 int i;
1304
1305 if(in_bytes==NULL || out_mdr==NULL)
1306 return 0;
1307
1308 ptr = in_bytes;
1309
1310 out_mdr->signature = be16tohp(&ptr);
1311
1312 out_mdr->date_created = be32tohp(&ptr);
1313 out_mdr->date_modified = be32tohp(&ptr);
1314
1315 out_mdr->attributes = be16tohp(&ptr);
1316 out_mdr->root_file_count = be16tohp(&ptr);
1317 out_mdr->volume_bitmap = be16tohp(&ptr);
1318
1319 out_mdr->next_alloc_block = be16tohp(&ptr);
1320 out_mdr->total_blocks = be16tohp(&ptr);
1321 out_mdr->block_size = be32tohp(&ptr);
1322
1323 out_mdr->clump_size = be32tohp(&ptr);
1324 out_mdr->first_block = be16tohp(&ptr);
1325 out_mdr->next_cnid = be32tohp(&ptr);
1326 out_mdr->free_blocks = be16tohp(&ptr);
1327
1328 memcpy(out_mdr->volume_name, ptr, 28);
1329 ptr = (char *)ptr + 28;
1330
1331 out_mdr->date_backedup = be32tohp(&ptr);
1332 out_mdr->backup_seqnum = be16tohp(&ptr);
1333
1334 out_mdr->write_count = be32tohp(&ptr);
1335
1336 out_mdr->extents_clump_size = be32tohp(&ptr);
1337 out_mdr->catalog_clump_size = be32tohp(&ptr);
1338
1339 out_mdr->root_folder_count = be16tohp(&ptr);
1340 out_mdr->file_count = be32tohp(&ptr);
1341 out_mdr->folder_count = be32tohp(&ptr);
1342
1343 for(i=0;i<8;i++)
1344 out_mdr->finder_info[i] = be32tohp(&ptr);
1345
1346 out_mdr->embedded_signature = be16tohp(&ptr);
1347 out_mdr->embedded_extent.start_block = be16tohp(&ptr);
1348 out_mdr->embedded_extent.block_count = be16tohp(&ptr);
1349
1350 out_mdr->extents_size = be32tohp(&ptr);
1351 for (i = 0; i < 3; i++)
1352 {
1353 out_mdr->extents_extents[i].start_block = be16tohp(&ptr);
1354 out_mdr->extents_extents[i].block_count = be16tohp(&ptr);
1355 }
1356
1357 out_mdr->catalog_size = be32tohp(&ptr);
1358 for (i = 0; i < 3; i++)
1359 {
1360 out_mdr->catalog_extents[i].start_block = be16tohp(&ptr);
1361 out_mdr->catalog_extents[i].block_count = be16tohp(&ptr);
1362 }
1363
1364 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1365 }
1366
1367 /*
1368 * hfslib_reada_node()
1369 *
1370 * Given the pointer to and size of a buffer containing the entire, raw
1371 * contents of any b-tree node from the disk, this function will:
1372 *
1373 * 1. determine the type of node and read its contents
1374 * 2. allocate memory for each record and fill it appropriately
1375 * 3. set out_record_ptrs_array to point to an array (which it allocates)
1376 * which has out_node_descriptor->num_recs many pointers to the
1377 * records themselves
1378 * 4. allocate out_record_ptr_sizes_array and fill it with the sizes of
1379 * each record
1380 * 5. return the number of bytes read (i.e., the size of the node)
1381 * or 0 on failure
1382 *
1383 * out_node_descriptor must be allocated by the caller and may not be NULL.
1384 *
1385 * out_record_ptrs_array and out_record_ptr_sizes_array must both be specified,
1386 * or both be NULL if the caller is not interested in reading the records.
1387 *
1388 * out_record_ptr_sizes_array may be NULL if the caller is not interested in
1389 * reading the records, but must not be NULL if out_record_ptrs_array is not.
1390 *
1391 * in_parent_file is HFS_CATALOG_FILE, HFS_EXTENTS_FILE, or
1392 * HFS_ATTRIBUTES_FILE, depending on the special file in which this node
1393 * resides.
1394 *
1395 * inout_volume must have its catnodesize or extnodesize field (depending on
1396 * the parent file) set to the correct value if this is an index, leaf, or map
1397 * node. If this is a header node, the field will be set to its correct value.
1398 */
1399 size_t
1400 hfslib_reada_node(void* in_bytes,
1401 hfs_node_descriptor_t* out_node_descriptor,
1402 void** out_record_ptrs_array[],
1403 uint16_t* out_record_ptr_sizes_array[],
1404 hfs_btree_file_type in_parent_file,
1405 hfs_volume* inout_volume,
1406 hfs_callback_args* cbargs)
1407 {
1408 void* ptr;
1409 uint16_t* rec_offsets;
1410 size_t last_bytes_read;
1411 uint16_t nodesize;
1412 uint16_t numrecords;
1413 uint16_t free_space_offset; /* offset to free space in node */
1414 int keysizefieldsize;
1415 int i;
1416
1417 numrecords = 0;
1418 rec_offsets = NULL;
1419 if(out_record_ptrs_array!=NULL)
1420 *out_record_ptrs_array = NULL;
1421 if(out_record_ptr_sizes_array!=NULL)
1422 *out_record_ptr_sizes_array = NULL;
1423
1424 if(in_bytes==NULL || inout_volume==NULL || out_node_descriptor==NULL
1425 || (out_record_ptrs_array==NULL && out_record_ptr_sizes_array!=NULL)
1426 || (out_record_ptrs_array!=NULL && out_record_ptr_sizes_array==NULL) )
1427 goto error;
1428
1429 ptr = in_bytes;
1430
1431 out_node_descriptor->flink = be32tohp(&ptr);
1432 out_node_descriptor->blink = be32tohp(&ptr);
1433 out_node_descriptor->kind = *(((int8_t*)ptr));
1434 ptr = (uint8_t*)ptr + 1;
1435 out_node_descriptor->height = *(((uint8_t*)ptr));
1436 ptr = (uint8_t*)ptr + 1;
1437 out_node_descriptor->num_recs = be16tohp(&ptr);
1438 out_node_descriptor->reserved = be16tohp(&ptr);
1439
1440 numrecords = out_node_descriptor->num_recs;
1441
1442 /*
1443 * To go any further, we will need to know the size of this node, as well
1444 * as the width of keyed records' key_len parameters for this btree. If
1445 * this is an index, leaf, or map node, inout_volume already has the node
1446 * size set in its catnodesize or extnodesize field and the key length set
1447 * in the catkeysizefieldsize or extkeysizefieldsize for catalog files and
1448 * extent files, respectively. However, if this is a header node, this
1449 * information has not yet been determined, so this is the place to do it.
1450 */
1451 if(out_node_descriptor->kind == HFS_HEADERNODE)
1452 {
1453 hfs_header_record_t hr;
1454 void* header_rec_offset[1];
1455 uint16_t header_rec_size[1];
1456
1457 /* sanity check to ensure this is a good header node */
1458 if(numrecords!=3)
1459 HFS_LIBERR("header node does not have exactly 3 records");
1460
1461 header_rec_offset[0] = ptr;
1462 header_rec_size[0] = sizeof(hfs_header_record_t);
1463
1464 last_bytes_read = hfslib_read_header_node(header_rec_offset,
1465 header_rec_size, 1, &hr, NULL, NULL);
1466 if(last_bytes_read==0)
1467 HFS_LIBERR("could not read header node");
1468
1469 switch(in_parent_file)
1470 {
1471 case HFS_CATALOG_FILE:
1472 inout_volume->chr.node_size = hr.node_size;
1473 inout_volume->catkeysizefieldsize =
1474 (hr.attributes & HFS_BIG_KEYS_MASK) ?
1475 sizeof(uint16_t):sizeof(uint8_t);
1476 break;
1477
1478 case HFS_EXTENTS_FILE:
1479 inout_volume->ehr.node_size = hr.node_size;
1480 inout_volume->extkeysizefieldsize =
1481 (hr.attributes & HFS_BIG_KEYS_MASK) ?
1482 sizeof(uint16_t):sizeof(uint8_t);
1483 break;
1484
1485 case HFS_ATTRIBUTES_FILE:
1486 default:
1487 HFS_LIBERR("invalid parent file type specified");
1488 /* NOTREACHED */
1489 }
1490 }
1491
1492 switch(in_parent_file)
1493 {
1494 case HFS_CATALOG_FILE:
1495 nodesize = inout_volume->chr.node_size;
1496 keysizefieldsize = inout_volume->catkeysizefieldsize;
1497 break;
1498
1499 case HFS_EXTENTS_FILE:
1500 nodesize = inout_volume->ehr.node_size;
1501 keysizefieldsize = inout_volume->extkeysizefieldsize;
1502 break;
1503
1504 case HFS_ATTRIBUTES_FILE:
1505 default:
1506 HFS_LIBERR("invalid parent file type specified");
1507 /* NOTREACHED */
1508 }
1509
1510 /*
1511 * Don't care about records so just exit after getting the node descriptor.
1512 * Note: This happens after the header node code, and not before it, in
1513 * case the caller calls this function and ignores the record data just to
1514 * get at the node descriptor, but then tries to call it again on a non-
1515 * header node without first setting inout_volume->cat/extnodesize.
1516 */
1517 if(out_record_ptrs_array==NULL)
1518 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1519
1520 rec_offsets = hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1521 *out_record_ptr_sizes_array =
1522 hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1523 if(rec_offsets==NULL || *out_record_ptr_sizes_array==NULL)
1524 HFS_LIBERR("could not allocate node record offsets");
1525
1526 *out_record_ptrs_array = hfslib_malloc(numrecords * sizeof(void*), cbargs);
1527 if(*out_record_ptrs_array==NULL)
1528 HFS_LIBERR("could not allocate node records");
1529
1530 last_bytes_read = hfslib_reada_node_offsets((uint8_t*)in_bytes + nodesize -
1531 numrecords * sizeof(uint16_t), rec_offsets);
1532 if(last_bytes_read==0)
1533 HFS_LIBERR("could not read node record offsets");
1534
1535 /* The size of the last record (i.e. the first one listed in the offsets)
1536 * must be determined using the offset to the node's free space. */
1537 free_space_offset = be16toh(*(uint16_t*)((uint8_t*)in_bytes + nodesize -
1538 (numrecords+1) * sizeof(uint16_t)));
1539
1540 (*out_record_ptr_sizes_array)[numrecords-1] =
1541 free_space_offset - rec_offsets[0];
1542 for(i=1;i<numrecords;i++)
1543 {
1544 (*out_record_ptr_sizes_array)[numrecords-i-1] =
1545 rec_offsets[i-1] - rec_offsets[i];
1546 }
1547
1548 for(i=0;i<numrecords;i++)
1549 {
1550 (*out_record_ptrs_array)[i] =
1551 hfslib_malloc((*out_record_ptr_sizes_array)[i], cbargs);
1552
1553 if((*out_record_ptrs_array)[i]==NULL)
1554 HFS_LIBERR("could not allocate node record #%i",i);
1555
1556 /*
1557 * If this is a keyed node (i.e., a leaf or index node), there are two
1558 * boundary rules that each record must obey:
1559 *
1560 * 1. A pad byte must be placed between the key and data if the
1561 * size of the key plus the size of the key_len field is odd.
1562 *
1563 * 2. A pad byte must be placed after the data if the data size
1564 * is odd.
1565 *
1566 * So in the first case we increment the starting point of the data
1567 * and correspondingly decrement the record size. In the second case
1568 * we decrement the record size.
1569 */
1570 if(out_node_descriptor->kind == HFS_LEAFNODE ||
1571 out_node_descriptor->kind == HFS_INDEXNODE)
1572 {
1573 hfs_catalog_key_t reckey;
1574 uint16_t rectype;
1575
1576 rectype = out_node_descriptor->kind;
1577 last_bytes_read = hfslib_read_catalog_keyed_record(ptr, NULL,
1578 &rectype, &reckey, inout_volume);
1579 if(last_bytes_read==0)
1580 HFS_LIBERR("could not read node record");
1581
1582 if((reckey.key_len + keysizefieldsize) % 2 == 1)
1583 {
1584 ptr = (uint8_t*)ptr + 1;
1585 (*out_record_ptr_sizes_array)[i]--;
1586 }
1587
1588 if((*out_record_ptr_sizes_array)[i] % 2 == 1)
1589 (*out_record_ptr_sizes_array)[i]--;
1590 }
1591
1592 memcpy((*out_record_ptrs_array)[i], ptr,
1593 (*out_record_ptr_sizes_array)[i]);
1594 ptr = (uint8_t*)ptr + (*out_record_ptr_sizes_array)[i];
1595 }
1596
1597 goto exit;
1598
1599 error:
1600 hfslib_free_recs(out_record_ptrs_array, out_record_ptr_sizes_array,
1601 &numrecords, cbargs);
1602
1603 ptr = in_bytes;
1604
1605 /* warn("error occurred in hfslib_reada_node()"); */
1606
1607 /* FALLTHROUGH */
1608
1609 exit:
1610 if(rec_offsets!=NULL)
1611 hfslib_free(rec_offsets, cbargs);
1612
1613 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1614 }
1615
1616 /*
1617 * hfslib_reada_node_offsets()
1618 *
1619 * Sets out_offset_array to contain the offsets to each record in the node,
1620 * in reverse order. Does not read the free space offset.
1621 */
1622 size_t
1623 hfslib_reada_node_offsets(void* in_bytes, uint16_t* out_offset_array)
1624 {
1625 void* ptr;
1626
1627 if(in_bytes==NULL || out_offset_array==NULL)
1628 return 0;
1629
1630 ptr = in_bytes;
1631
1632 /*
1633 * The offset for record 0 (which is the very last offset in the node) is
1634 * always equal to 14, the size of the node descriptor. So, once we hit
1635 * offset=14, we know this is the last offset. In this way, we don't need
1636 * to know the number of records beforehand.
1637 */
1638 out_offset_array--;
1639 do
1640 {
1641 out_offset_array++;
1642 *out_offset_array = be16tohp(&ptr);
1643 }
1644 while(*out_offset_array != (uint16_t)14);
1645
1646 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1647 }
1648
1649 /* hfslib_read_header_node()
1650 *
1651 * out_header_record and/or out_map_record may be NULL if the caller doesn't
1652 * care about their contents.
1653 */
1654 size_t
1655 hfslib_read_header_node(void** in_recs,
1656 uint16_t* in_rec_sizes,
1657 uint16_t in_num_recs,
1658 hfs_header_record_t* out_hr,
1659 void* out_userdata,
1660 void* out_map)
1661 {
1662 void* ptr;
1663 int i;
1664
1665 if(in_recs==NULL || in_rec_sizes==NULL)
1666 return 0;
1667
1668 if(out_hr!=NULL)
1669 {
1670 ptr = in_recs[0];
1671
1672 out_hr->tree_depth = be16tohp(&ptr);
1673 out_hr->root_node = be32tohp(&ptr);
1674 out_hr->leaf_recs = be32tohp(&ptr);
1675 out_hr->first_leaf = be32tohp(&ptr);
1676 out_hr->last_leaf = be32tohp(&ptr);
1677 out_hr->node_size = be16tohp(&ptr);
1678 out_hr->max_key_len = be16tohp(&ptr);
1679 out_hr->total_nodes = be32tohp(&ptr);
1680 out_hr->free_nodes = be32tohp(&ptr);
1681 out_hr->reserved = be16tohp(&ptr);
1682 out_hr->clump_size = be32tohp(&ptr);
1683 out_hr->btree_type = *(((uint8_t*)ptr));
1684 ptr = (uint8_t*)ptr + 1;
1685 out_hr->keycomp_type = *(((uint8_t*)ptr));
1686 ptr = (uint8_t*)ptr + 1;
1687 out_hr->attributes = be32tohp(&ptr);
1688 for(i=0;i<16;i++)
1689 out_hr->reserved2[i] = be32tohp(&ptr);
1690 }
1691
1692 if(out_userdata!=NULL)
1693 {
1694 memcpy(out_userdata, in_recs[1], in_rec_sizes[1]);
1695 }
1696 ptr = (uint8_t*)ptr + in_rec_sizes[1]; /* size of user data record */
1697
1698 if(out_map!=NULL)
1699 {
1700 memcpy(out_map, in_recs[2], in_rec_sizes[2]);
1701 }
1702 ptr = (uint8_t*)ptr + in_rec_sizes[2]; /* size of map record */
1703
1704 return ((uint8_t*)ptr - (uint8_t*)in_recs[0]);
1705 }
1706
1707 /*
1708 * hfslib_read_catalog_keyed_record()
1709 *
1710 * out_recdata can be NULL. inout_rectype must be set to either HFS_LEAFNODE
1711 * or HFS_INDEXNODE upon calling this function, and will be set by the
1712 * function to one of HFS_REC_FLDR, HFS_REC_FILE, HFS_REC_FLDR_THREAD, or
1713 * HFS_REC_FLDR_THREAD upon return if the node is a leaf node. If it is an
1714 * index node, inout_rectype will not be changed.
1715 */
1716 size_t
1717 hfslib_read_catalog_keyed_record(
1718 void* in_bytes,
1719 hfs_catalog_keyed_record_t* out_recdata,
1720 int16_t* inout_rectype,
1721 hfs_catalog_key_t* out_key,
1722 hfs_volume* in_volume)
1723 {
1724 void* ptr;
1725 size_t last_bytes_read;
1726
1727 if(in_bytes==NULL || out_key==NULL || inout_rectype==NULL)
1728 return 0;
1729
1730 ptr = in_bytes;
1731
1732 /* For HFS+, the key length is always a 2-byte number. This is indicated
1733 * by the HFS_BIG_KEYS_MASK bit in the attributes field of the catalog
1734 * header record. However, we just assume this bit is set, since all HFS+
1735 * volumes should have it set anyway. */
1736 if(in_volume->catkeysizefieldsize == sizeof(uint16_t))
1737 out_key->key_len = be16tohp(&ptr);
1738 else if (in_volume->catkeysizefieldsize == sizeof(uint8_t)) {
1739 out_key->key_len = *(((uint8_t*)ptr));
1740 ptr = (uint8_t*)ptr + 1;
1741 }
1742
1743 out_key->parent_cnid = be32tohp(&ptr);
1744
1745 last_bytes_read = hfslib_read_unistr255(ptr, &out_key->name);
1746 if(last_bytes_read==0)
1747 return 0;
1748 ptr = (uint8_t*)ptr + last_bytes_read;
1749
1750 /* don't waste time if the user just wanted the key and/or record type */
1751 if(out_recdata==NULL)
1752 {
1753 if(*inout_rectype == HFS_LEAFNODE)
1754 *inout_rectype = be16tohp(&ptr);
1755 else if(*inout_rectype != HFS_INDEXNODE)
1756 return 0; /* should not happen if we were given valid arguments */
1757
1758 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1759 }
1760
1761 if(*inout_rectype == HFS_INDEXNODE)
1762 {
1763 out_recdata->child = be32tohp(&ptr);
1764 }
1765 else
1766 {
1767 /* first need to determine what kind of record this is */
1768 *inout_rectype = be16tohp(&ptr);
1769 out_recdata->type = *inout_rectype;
1770
1771 switch(out_recdata->type)
1772 {
1773 case HFS_REC_FLDR:
1774 {
1775 out_recdata->folder.flags = be16tohp(&ptr);
1776 out_recdata->folder.valence = be32tohp(&ptr);
1777 out_recdata->folder.cnid = be32tohp(&ptr);
1778 out_recdata->folder.date_created = be32tohp(&ptr);
1779 out_recdata->folder.date_content_mod = be32tohp(&ptr);
1780 out_recdata->folder.date_attrib_mod = be32tohp(&ptr);
1781 out_recdata->folder.date_accessed = be32tohp(&ptr);
1782 out_recdata->folder.date_backedup = be32tohp(&ptr);
1783
1784 last_bytes_read = hfslib_read_bsd_data(ptr,
1785 &out_recdata->folder.bsd);
1786 if(last_bytes_read==0)
1787 return 0;
1788 ptr = (uint8_t*)ptr + last_bytes_read;
1789
1790 last_bytes_read = hfslib_read_folder_userinfo(ptr,
1791 &out_recdata->folder.user_info);
1792 if(last_bytes_read==0)
1793 return 0;
1794 ptr = (uint8_t*)ptr + last_bytes_read;
1795
1796 last_bytes_read = hfslib_read_folder_finderinfo(ptr,
1797 &out_recdata->folder.finder_info);
1798 if(last_bytes_read==0)
1799 return 0;
1800 ptr = (uint8_t*)ptr + last_bytes_read;
1801
1802 out_recdata->folder.text_encoding = be32tohp(&ptr);
1803 out_recdata->folder.reserved = be32tohp(&ptr);
1804 }
1805 break;
1806
1807 case HFS_REC_FILE:
1808 {
1809 out_recdata->file.flags = be16tohp(&ptr);
1810 out_recdata->file.reserved = be32tohp(&ptr);
1811 out_recdata->file.cnid = be32tohp(&ptr);
1812 out_recdata->file.date_created = be32tohp(&ptr);
1813 out_recdata->file.date_content_mod = be32tohp(&ptr);
1814 out_recdata->file.date_attrib_mod = be32tohp(&ptr);
1815 out_recdata->file.date_accessed = be32tohp(&ptr);
1816 out_recdata->file.date_backedup = be32tohp(&ptr);
1817
1818 last_bytes_read = hfslib_read_bsd_data(ptr,
1819 &out_recdata->file.bsd);
1820 if(last_bytes_read==0)
1821 return 0;
1822 ptr = (uint8_t*)ptr + last_bytes_read;
1823
1824 last_bytes_read = hfslib_read_file_userinfo(ptr,
1825 &out_recdata->file.user_info);
1826 if(last_bytes_read==0)
1827 return 0;
1828 ptr = (uint8_t*)ptr + last_bytes_read;
1829
1830 last_bytes_read = hfslib_read_file_finderinfo(ptr,
1831 &out_recdata->file.finder_info);
1832 if(last_bytes_read==0)
1833 return 0;
1834 ptr = (uint8_t*)ptr + last_bytes_read;
1835
1836 out_recdata->file.text_encoding = be32tohp(&ptr);
1837 out_recdata->file.reserved2 = be32tohp(&ptr);
1838
1839 last_bytes_read = hfslib_read_fork_descriptor(ptr,
1840 &out_recdata->file.data_fork);
1841 if(last_bytes_read==0)
1842 return 0;
1843 ptr = (uint8_t*)ptr + last_bytes_read;
1844
1845 last_bytes_read = hfslib_read_fork_descriptor(ptr,
1846 &out_recdata->file.rsrc_fork);
1847 if(last_bytes_read==0)
1848 return 0;
1849 ptr = (uint8_t*)ptr + last_bytes_read;
1850 }
1851 break;
1852
1853 case HFS_REC_FLDR_THREAD:
1854 case HFS_REC_FILE_THREAD:
1855 {
1856 out_recdata->thread.reserved = be16tohp(&ptr);
1857 out_recdata->thread.parent_cnid = be32tohp(&ptr);
1858
1859 last_bytes_read = hfslib_read_unistr255(ptr,
1860 &out_recdata->thread.name);
1861 if(last_bytes_read==0)
1862 return 0;
1863 ptr = (uint8_t*)ptr + last_bytes_read;
1864 }
1865 break;
1866
1867 default:
1868 return 1;
1869 /* NOTREACHED */
1870 }
1871 }
1872
1873 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1874 }
1875
1876 /* out_rec may be NULL */
1877 size_t
1878 hfslib_read_extent_record(
1879 void* in_bytes,
1880 hfs_extent_record_t* out_rec,
1881 hfs_node_kind in_nodekind,
1882 hfs_extent_key_t* out_key,
1883 hfs_volume* in_volume)
1884 {
1885 void* ptr;
1886 size_t last_bytes_read;
1887
1888 if(in_bytes==NULL || out_key==NULL
1889 || (in_nodekind!=HFS_LEAFNODE && in_nodekind!=HFS_INDEXNODE))
1890 return 0;
1891
1892 ptr = in_bytes;
1893
1894 /* For HFS+, the key length is always a 2-byte number. This is indicated
1895 * by the HFS_BIG_KEYS_MASK bit in the attributes field of the extent
1896 * overflow header record. However, we just assume this bit is set, since
1897 * all HFS+ volumes should have it set anyway. */
1898 if(in_volume->extkeysizefieldsize == sizeof(uint16_t))
1899 out_key->key_length = be16tohp(&ptr);
1900 else if (in_volume->extkeysizefieldsize == sizeof(uint8_t)) {
1901 out_key->key_length = *(((uint8_t*)ptr));
1902 ptr = (uint8_t*)ptr + 1;
1903 }
1904
1905 out_key->fork_type = *(((uint8_t*)ptr));
1906 ptr = (uint8_t*)ptr + 1;
1907 out_key->padding = *(((uint8_t*)ptr));
1908 ptr = (uint8_t*)ptr + 1;
1909 out_key->file_cnid = be32tohp(&ptr);
1910 out_key->start_block = be32tohp(&ptr);
1911
1912 /* don't waste time if the user just wanted the key */
1913 if(out_rec==NULL)
1914 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1915
1916 if(in_nodekind==HFS_LEAFNODE)
1917 {
1918 last_bytes_read = hfslib_read_extent_descriptors(ptr, out_rec);
1919 if(last_bytes_read==0)
1920 return 0;
1921 ptr = (uint8_t*)ptr + last_bytes_read;
1922 }
1923 else
1924 {
1925 /* XXX: this is completely bogus */
1926 /* (uint32_t*)*out_rec = be32tohp(&ptr); */
1927 uint32_t *ptr_32 = (uint32_t *)out_rec;
1928 *ptr_32 = be32tohp(&ptr);
1929 /* (*out_rec)[0].start_block = be32tohp(&ptr); */
1930 }
1931
1932 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1933 }
1934
1935 void
1936 hfslib_free_recs(
1937 void*** inout_node_recs,
1938 uint16_t** inout_rec_sizes,
1939 uint16_t* inout_num_recs,
1940 hfs_callback_args* cbargs)
1941 {
1942 uint16_t i;
1943
1944 if(inout_num_recs==NULL || *inout_num_recs==0)
1945 return;
1946
1947 if(inout_node_recs!=NULL && *inout_node_recs!=NULL)
1948 {
1949 for(i=0;i<*inout_num_recs;i++)
1950 {
1951 if((*inout_node_recs)[i]!=NULL)
1952 {
1953 hfslib_free((*inout_node_recs)[i], cbargs);
1954 (*inout_node_recs)[i] = NULL;
1955 }
1956 }
1957
1958 hfslib_free(*inout_node_recs, cbargs);
1959 *inout_node_recs = NULL;
1960 }
1961
1962 if(inout_rec_sizes!=NULL && *inout_rec_sizes!=NULL)
1963 {
1964 hfslib_free(*inout_rec_sizes, cbargs);
1965 *inout_rec_sizes = NULL;
1966 }
1967
1968 *inout_num_recs = 0;
1969 }
1970
1971 #if 0
1972 #pragma mark -
1973 #pragma mark Individual Fields
1974 #endif
1975
1976 size_t
1977 hfslib_read_fork_descriptor(void* in_bytes, hfs_fork_t* out_forkdata)
1978 {
1979 void* ptr;
1980 size_t last_bytes_read;
1981
1982 if(in_bytes==NULL || out_forkdata==NULL)
1983 return 0;
1984
1985 ptr = in_bytes;
1986
1987 out_forkdata->logical_size = be64tohp(&ptr);
1988 out_forkdata->clump_size = be32tohp(&ptr);
1989 out_forkdata->total_blocks = be32tohp(&ptr);
1990
1991 if((last_bytes_read = hfslib_read_extent_descriptors(ptr,
1992 &out_forkdata->extents))==0)
1993 return 0;
1994 ptr = (uint8_t*)ptr + last_bytes_read;
1995
1996 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1997 }
1998
1999 size_t
2000 hfslib_read_extent_descriptors(
2001 void* in_bytes,
2002 hfs_extent_record_t* out_extentrecord)
2003 {
2004 void* ptr;
2005 int i;
2006
2007 if(in_bytes==NULL || out_extentrecord==NULL)
2008 return 0;
2009
2010 ptr = in_bytes;
2011
2012 for(i=0;i<8;i++)
2013 {
2014 (((hfs_extent_descriptor_t*)*out_extentrecord)[i]).start_block =
2015 be32tohp(&ptr);
2016 (((hfs_extent_descriptor_t*)*out_extentrecord)[i]).block_count =
2017 be32tohp(&ptr);
2018 }
2019
2020 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2021 }
2022
2023 size_t
2024 hfslib_read_unistr255(void* in_bytes, hfs_unistr255_t* out_string)
2025 {
2026 void* ptr;
2027 uint16_t i, length;
2028
2029 if(in_bytes==NULL || out_string==NULL)
2030 return 0;
2031
2032 ptr = in_bytes;
2033
2034 length = be16tohp(&ptr);
2035 if(length>255)
2036 length = 255; /* hfs+ folder/file names have a limit of 255 chars */
2037 out_string->length = length;
2038
2039 for(i=0; i<length; i++)
2040 {
2041 out_string->unicode[i] = be16tohp(&ptr);
2042 }
2043
2044 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2045 }
2046
2047 size_t
2048 hfslib_read_bsd_data(void* in_bytes, hfs_bsd_data_t* out_perms)
2049 {
2050 void* ptr;
2051
2052 if(in_bytes==NULL || out_perms==NULL)
2053 return 0;
2054
2055 ptr = in_bytes;
2056
2057 out_perms->owner_id = be32tohp(&ptr);
2058 out_perms->group_id = be32tohp(&ptr);
2059 out_perms->admin_flags = *(((uint8_t*)ptr));
2060 ptr = (uint8_t*)ptr + 1;
2061 out_perms->owner_flags = *(((uint8_t*)ptr));
2062 ptr = (uint8_t*)ptr + 1;
2063 out_perms->file_mode = be16tohp(&ptr);
2064 out_perms->special.inode_num = be32tohp(&ptr); /* this field is a union */
2065
2066 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2067 }
2068
2069 size_t
2070 hfslib_read_file_userinfo(void* in_bytes, hfs_macos_file_info_t* out_info)
2071 {
2072 void* ptr;
2073
2074 if(in_bytes==NULL || out_info==NULL)
2075 return 0;
2076
2077 ptr = in_bytes;
2078
2079 out_info->file_type = be32tohp(&ptr);
2080 out_info->file_creator = be32tohp(&ptr);
2081 out_info->finder_flags = be16tohp(&ptr);
2082 out_info->location.v = be16tohp(&ptr);
2083 out_info->location.h = be16tohp(&ptr);
2084 out_info->reserved = be16tohp(&ptr);
2085
2086 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2087 }
2088
2089 size_t
2090 hfslib_read_file_finderinfo(
2091 void* in_bytes,
2092 hfs_macos_extended_file_info_t* out_info)
2093 {
2094 void* ptr;
2095
2096 if(in_bytes==NULL || out_info==NULL)
2097 return 0;
2098
2099 ptr = in_bytes;
2100
2101 #if 0
2102 #pragma warn Fill in with real code!
2103 #endif
2104 /* FIXME: Fill in with real code! */
2105 memset(out_info, 0, sizeof(*out_info));
2106 ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_file_info_t);
2107
2108 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2109 }
2110
2111 size_t
2112 hfslib_read_folder_userinfo(void* in_bytes, hfs_macos_folder_info_t* out_info)
2113 {
2114 void* ptr;
2115
2116 if(in_bytes==NULL || out_info==NULL)
2117 return 0;
2118
2119 ptr = in_bytes;
2120
2121 #if 0
2122 #pragma warn Fill in with real code!
2123 #endif
2124 /* FIXME: Fill in with real code! */
2125 memset(out_info, 0, sizeof(*out_info));
2126 ptr = (uint8_t*)ptr + sizeof(hfs_macos_folder_info_t);
2127
2128 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2129 }
2130
2131 size_t
2132 hfslib_read_folder_finderinfo(
2133 void* in_bytes,
2134 hfs_macos_extended_folder_info_t* out_info)
2135 {
2136 void* ptr;
2137
2138 if(in_bytes==NULL || out_info==NULL)
2139 return 0;
2140
2141 ptr = in_bytes;
2142
2143 #if 0
2144 #pragma warn Fill in with real code!
2145 #endif
2146 /* FIXME: Fill in with real code! */
2147 memset(out_info, 0, sizeof(*out_info));
2148 ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_folder_info_t);
2149
2150 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2151 }
2152
2153 size_t
2154 hfslib_read_journal_info(void* in_bytes, hfs_journal_info_t* out_info)
2155 {
2156 void* ptr;
2157 int i;
2158
2159 if(in_bytes==NULL || out_info==NULL)
2160 return 0;
2161
2162 ptr = in_bytes;
2163
2164 out_info->flags = be32tohp(&ptr);
2165 for(i=0; i<8; i++)
2166 {
2167 out_info->device_signature[i] = be32tohp(&ptr);
2168 }
2169 out_info->offset = be64tohp(&ptr);
2170 out_info->size = be64tohp(&ptr);
2171 for(i=0; i<32; i++)
2172 {
2173 out_info->reserved[i] = be64tohp(&ptr);
2174 }
2175
2176 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2177 }
2178
2179 size_t
2180 hfslib_read_journal_header(void* in_bytes, hfs_journal_header_t* out_header)
2181 {
2182 void* ptr;
2183
2184 if(in_bytes==NULL || out_header==NULL)
2185 return 0;
2186
2187 ptr = in_bytes;
2188
2189 out_header->magic = be32tohp(&ptr);
2190 out_header->endian = be32tohp(&ptr);
2191 out_header->start = be64tohp(&ptr);
2192 out_header->end = be64tohp(&ptr);
2193 out_header->size = be64tohp(&ptr);
2194 out_header->blocklist_header_size = be32tohp(&ptr);
2195 out_header->checksum = be32tohp(&ptr);
2196 out_header->journal_header_size = be32tohp(&ptr);
2197
2198 return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2199 }
2200
2201 #if 0
2202 #pragma mark -
2203 #pragma mark Disk Access
2204 #endif
2205
2206 /*
2207 * hfslib_readd_with_extents()
2208 *
2209 * This function reads the contents of a file from the volume, given an array
2210 * of extent descriptors which specify where every extent of the file is
2211 * located (in addition to the usual pread() arguments). out_bytes is presumed
2212 * to exist and be large enough to hold in_length number of bytes. Returns 0
2213 * on success.
2214 */
2215 int
2216 hfslib_readd_with_extents(
2217 hfs_volume* in_vol,
2218 void* out_bytes,
2219 uint64_t* out_bytesread,
2220 uint64_t in_length,
2221 uint64_t in_offset,
2222 hfs_extent_descriptor_t in_extents[],
2223 uint16_t in_numextents,
2224 hfs_callback_args* cbargs)
2225 {
2226 uint64_t ext_length, last_offset;
2227 uint16_t i;
2228 int error;
2229
2230 if(in_vol==NULL || out_bytes==NULL || in_extents==NULL || in_numextents==0
2231 || out_bytesread==NULL)
2232 return -1;
2233
2234 *out_bytesread = 0;
2235 last_offset = 0;
2236
2237 for(i=0; i<in_numextents; i++)
2238 {
2239 if(in_extents[i].block_count==0)
2240 continue;
2241
2242 ext_length = in_extents[i].block_count * in_vol->vh.block_size;
2243
2244 if(in_offset < last_offset+ext_length
2245 && in_offset+in_length >= last_offset)
2246 {
2247 uint64_t isect_start, isect_end;
2248
2249 isect_start = max(in_offset, last_offset);
2250 isect_end = min(in_offset+in_length, last_offset+ext_length);
2251 error = hfslib_readd(in_vol, out_bytes, isect_end-isect_start,
2252 isect_start - last_offset + (uint64_t)in_extents[i].start_block
2253 * in_vol->vh.block_size, cbargs);
2254
2255 if(error!=0)
2256 return error;
2257
2258 *out_bytesread += isect_end-isect_start;
2259 out_bytes = (uint8_t*)out_bytes + isect_end-isect_start;
2260 }
2261
2262 last_offset += ext_length;
2263 }
2264
2265
2266 return 0;
2267 }
2268
2269 #if 0
2270 #pragma mark -
2271 #pragma mark Callback Wrappers
2272 #endif
2273
2274 void
2275 hfslib_error(const char* in_format, const char* in_file, int in_line, ...)
2276 {
2277 va_list ap;
2278
2279 if(in_format==NULL)
2280 return;
2281
2282 if(hfs_gcb.error!=NULL)
2283 {
2284 va_start(ap, in_line);
2285
2286 hfs_gcb.error(in_format, in_file, in_line, ap);
2287
2288 va_end(ap);
2289 }
2290 }
2291
2292 void*
2293 hfslib_malloc(size_t size, hfs_callback_args* cbargs)
2294 {
2295 if(hfs_gcb.allocmem!=NULL)
2296 return hfs_gcb.allocmem(size, cbargs);
2297
2298 return NULL;
2299 }
2300
2301 void*
2302 hfslib_realloc(void* ptr, size_t size, hfs_callback_args* cbargs)
2303 {
2304 if(hfs_gcb.reallocmem!=NULL)
2305 return hfs_gcb.reallocmem(ptr, size, cbargs);
2306
2307 return NULL;
2308 }
2309
2310 void
2311 hfslib_free(void* ptr, hfs_callback_args* cbargs)
2312 {
2313 if(hfs_gcb.freemem!=NULL && ptr!=NULL)
2314 hfs_gcb.freemem(ptr, cbargs);
2315 }
2316
2317 int
2318 hfslib_openvoldevice(
2319 hfs_volume* in_vol,
2320 const char* in_device,
2321 hfs_callback_args* cbargs)
2322 {
2323 if(hfs_gcb.openvol!=NULL && in_device!=NULL)
2324 return hfs_gcb.openvol(in_vol, in_device, cbargs);
2325
2326 return 1;
2327 }
2328
2329 void
2330 hfslib_closevoldevice(hfs_volume* in_vol, hfs_callback_args* cbargs)
2331 {
2332 if(hfs_gcb.closevol!=NULL)
2333 hfs_gcb.closevol(in_vol, cbargs);
2334 }
2335
2336 int
2337 hfslib_readd(
2338 hfs_volume* in_vol,
2339 void* out_bytes,
2340 uint64_t in_length,
2341 uint64_t in_offset,
2342 hfs_callback_args* cbargs)
2343 {
2344 if(in_vol==NULL || out_bytes==NULL)
2345 return -1;
2346
2347 if(hfs_gcb.read!=NULL)
2348 return hfs_gcb.read(in_vol, out_bytes, in_length, in_offset, cbargs);
2349
2350 return -1;
2351 }
2352
2353 #if 0
2354 #pragma mark -
2355 #pragma mark Other
2356 #endif
2357
2358 /* returns key length */
2359 uint16_t
2360 hfslib_make_catalog_key(
2361 hfs_cnid_t in_parent_cnid,
2362 uint16_t in_name_len,
2363 unichar_t* in_unicode,
2364 hfs_catalog_key_t* out_key)
2365 {
2366 if(in_parent_cnid==0 || (in_name_len>0 && in_unicode==NULL) || out_key==0)
2367 return 0;
2368
2369 if(in_name_len>255)
2370 in_name_len = 255;
2371
2372 out_key->key_len = 6 + 2 * in_name_len;
2373 out_key->parent_cnid = in_parent_cnid;
2374 out_key->name.length = in_name_len;
2375 if(in_name_len>0)
2376 memcpy(&out_key->name.unicode, in_unicode, in_name_len*2);
2377
2378 return out_key->key_len;
2379 }
2380
2381 /* returns key length */
2382 uint16_t
2383 hfslib_make_extent_key(
2384 hfs_cnid_t in_cnid,
2385 uint8_t in_forktype,
2386 uint32_t in_startblock,
2387 hfs_extent_key_t* out_key)
2388 {
2389 if(in_cnid==0 || out_key==0)
2390 return 0;
2391
2392 out_key->key_length = HFS_MAX_EXT_KEY_LEN;
2393 out_key->fork_type = in_forktype;
2394 out_key->padding = 0;
2395 out_key->file_cnid = in_cnid;
2396 out_key->start_block = in_startblock;
2397
2398 return out_key->key_length;
2399 }
2400
2401 /* case-folding */
2402 int
2403 hfslib_compare_catalog_keys_cf (
2404 const void *ap,
2405 const void *bp)
2406 {
2407 const hfs_catalog_key_t *a, *b;
2408 unichar_t ac, bc; /* current character from a, b */
2409 unichar_t lc; /* lowercase version of current character */
2410 uint8_t apos, bpos; /* current character indices */
2411
2412 a = (const hfs_catalog_key_t*)ap;
2413 b = (const hfs_catalog_key_t*)bp;
2414
2415 if(a->parent_cnid != b->parent_cnid)
2416 {
2417 return (a->parent_cnid - b->parent_cnid);
2418 }
2419 else
2420 {
2421 /*
2422 * The following code implements the pseudocode suggested by
2423 * the HFS+ technote.
2424 */
2425
2426 /*
2427 * XXX These need to be revised to be endian-independent!
2428 */
2429 #define hbyte(x) ((x) >> 8)
2430 #define lbyte(x) ((x) & 0x00FF)
2431
2432 apos = bpos = 0;
2433 while(1)
2434 {
2435 /* get next valid character from a */
2436 for (lc=0; lc == 0 && apos < a->name.length; apos++) {
2437 ac = a->name.unicode[apos];
2438 lc = hfs_gcft[hbyte(ac)];
2439 if(lc==0)
2440 lc = ac;
2441 else
2442 lc = hfs_gcft[lc + lbyte(ac)];
2443 };
2444 ac=lc;
2445
2446 /* get next valid character from b */
2447 for (lc=0; lc == 0 && bpos < b->name.length; bpos++) {
2448 bc = b->name.unicode[bpos];
2449 lc = hfs_gcft[hbyte(bc)];
2450 if(lc==0)
2451 lc = bc;
2452 else
2453 lc = hfs_gcft[lc + lbyte(bc)];
2454 };
2455 bc=lc;
2456
2457 /* on end of string ac/bc are 0, otherwise > 0 */
2458 if (ac != bc || (ac == 0 && bc == 0))
2459 return ac - bc;
2460 }
2461 #undef hbyte
2462 #undef lbyte
2463 }
2464 }
2465
2466 /* binary compare (i.e., not case folding) */
2467 int
2468 hfslib_compare_catalog_keys_bc (
2469 const void *a,
2470 const void *b)
2471 {
2472 if(((const hfs_catalog_key_t*)a)->parent_cnid
2473 == ((const hfs_catalog_key_t*)b)->parent_cnid)
2474 {
2475 if(((const hfs_catalog_key_t*)a)->name.length == 0 &&
2476 ((const hfs_catalog_key_t*)b)->name.length == 0)
2477 return 0;
2478
2479 if(((const hfs_catalog_key_t*)a)->name.length == 0)
2480 return -1;
2481 if(((const hfs_catalog_key_t*)b)->name.length == 0)
2482 return 1;
2483
2484 /* FIXME: This does a byte-per-byte comparison, whereas the HFS spec
2485 * mandates a uint16_t chunk comparison. */
2486 return memcmp(((const hfs_catalog_key_t*)a)->name.unicode,
2487 ((const hfs_catalog_key_t*)b)->name.unicode,
2488 min(((const hfs_catalog_key_t*)a)->name.length,
2489 ((const hfs_catalog_key_t*)b)->name.length));
2490 }
2491 else
2492 {
2493 return (((const hfs_catalog_key_t*)a)->parent_cnid -
2494 ((const hfs_catalog_key_t*)b)->parent_cnid);
2495 }
2496 }
2497
2498 int
2499 hfslib_compare_extent_keys (
2500 const void *a,
2501 const void *b)
2502 {
2503 /*
2504 * Comparison order, in descending importance:
2505 *
2506 * CNID -> fork type -> start block
2507 */
2508
2509 if(((const hfs_extent_key_t*)a)->file_cnid
2510 == ((const hfs_extent_key_t*)b)->file_cnid)
2511 {
2512 if(((const hfs_extent_key_t*)a)->fork_type
2513 == ((const hfs_extent_key_t*)b)->fork_type)
2514 {
2515 if(((const hfs_extent_key_t*)a)->start_block
2516 == ((const hfs_extent_key_t*)b)->start_block)
2517 {
2518 return 0;
2519 }
2520 else
2521 {
2522 return (((const hfs_extent_key_t*)a)->start_block -
2523 ((const hfs_extent_key_t*)b)->start_block);
2524 }
2525 }
2526 else
2527 {
2528 return (((const hfs_extent_key_t*)a)->fork_type -
2529 ((const hfs_extent_key_t*)b)->fork_type);
2530 }
2531 }
2532 else
2533 {
2534 return (((const hfs_extent_key_t*)a)->file_cnid -
2535 ((const hfs_extent_key_t*)b)->file_cnid);
2536 }
2537 }
2538
2539 /* 1+10 tables of 16 rows and 16 columns, each 2 bytes wide = 5632 bytes */
2540 int
2541 hfslib_create_casefolding_table(void)
2542 {
2543 hfs_callback_args cbargs;
2544 unichar_t* t; /* convenience */
2545 uint16_t s; /* current subtable * 256 */
2546 uint16_t i; /* current subtable index (0 to 255) */
2547
2548 if(hfs_gcft!=NULL)
2549 return 0; /* no sweat, table already exists */
2550
2551 hfslib_init_cbargs(&cbargs);
2552 hfs_gcft = hfslib_malloc(5632, &cbargs);
2553 if(hfs_gcft==NULL)
2554 HFS_LIBERR("could not allocate case folding table");
2555
2556 t = hfs_gcft; /* easier to type :) */
2557
2558 /*
2559 * high byte indices
2560 */
2561 s = 0 * 256;
2562 memset(t, 0x00, 512);
2563 t[s+ 0] = 0x0100;
2564 t[s+ 1] = 0x0200;
2565 t[s+ 3] = 0x0300;
2566 t[s+ 4] = 0x0400;
2567 t[s+ 5] = 0x0500;
2568 t[s+ 16] = 0x0600;
2569 t[s+ 32] = 0x0700;
2570 t[s+ 33] = 0x0800;
2571 t[s+254] = 0x0900;
2572 t[s+255] = 0x0a00;
2573
2574 /*
2575 * table 1 (high byte 0x00)
2576 */
2577 s = 1 * 256;
2578 for(i=0; i<65; i++)
2579 t[s+i] = i;
2580 t[s+ 0] = 0xffff;
2581 for(i=65; i<91; i++)
2582 t[s+i] = i + 0x20;
2583 for(i=91; i<256; i++)
2584 t[s+i] = i;
2585 t[s+198] = 0x00e6;
2586 t[s+208] = 0x00f0;
2587 t[s+216] = 0x00f8;
2588 t[s+222] = 0x00fe;
2589
2590 /*
2591 * table 2 (high byte 0x01)
2592 */
2593 s = 2 * 256;
2594 for(i=0; i<256; i++)
2595 t[s+i] = i + 0x0100;
2596 t[s+ 16] = 0x0111;
2597 t[s+ 38] = 0x0127;
2598 t[s+ 50] = 0x0133;
2599 t[s+ 63] = 0x0140;
2600 t[s+ 65] = 0x0142;
2601 t[s+ 74] = 0x014b;
2602 t[s+ 82] = 0x0153;
2603 t[s+102] = 0x0167;
2604 t[s+129] = 0x0253;
2605 t[s+130] = 0x0183;
2606 t[s+132] = 0x0185;
2607 t[s+134] = 0x0254;
2608 t[s+135] = 0x0188;
2609 t[s+137] = 0x0256;
2610 t[s+138] = 0x0257;
2611 t[s+139] = 0x018c;
2612 t[s+142] = 0x01dd;
2613 t[s+143] = 0x0259;
2614 t[s+144] = 0x025b;
2615 t[s+145] = 0x0192;
2616 t[s+147] = 0x0260;
2617 t[s+148] = 0x0263;
2618 t[s+150] = 0x0269;
2619 t[s+151] = 0x0268;
2620 t[s+152] = 0x0199;
2621 t[s+156] = 0x026f;
2622 t[s+157] = 0x0272;
2623 t[s+159] = 0x0275;
2624 t[s+162] = 0x01a3;
2625 t[s+164] = 0x01a5;
2626 t[s+167] = 0x01a8;
2627 t[s+169] = 0x0283;
2628 t[s+172] = 0x01ad;
2629 t[s+174] = 0x0288;
2630 t[s+177] = 0x028a;
2631 t[s+178] = 0x028b;
2632 t[s+179] = 0x01b4;
2633 t[s+181] = 0x01b6;
2634 t[s+183] = 0x0292;
2635 t[s+184] = 0x01b9;
2636 t[s+188] = 0x01bd;
2637 t[s+196] = 0x01c6;
2638 t[s+197] = 0x01c6;
2639 t[s+199] = 0x01c9;
2640 t[s+200] = 0x01c9;
2641 t[s+202] = 0x01cc;
2642 t[s+203] = 0x01cc;
2643 t[s+228] = 0x01e5;
2644 t[s+241] = 0x01f3;
2645 t[s+242] = 0x01f3;
2646
2647 /*
2648 * table 3 (high byte 0x03)
2649 */
2650 s = 3 * 256;
2651 for(i=0; i<145; i++)
2652 t[s+i] = i + 0x0300;
2653 for(i=145; i<170; i++)
2654 t[s+i] = i + 0x0320;
2655 t[s+162] = 0x03a2;
2656 for(i=170; i<256; i++)
2657 t[s+i] = i + 0x0300;
2658
2659 for(i=226; i<239; i+=2)
2660 t[s+i] = i + 0x0301;
2661
2662 /*
2663 * table 4 (high byte 0x04)
2664 */
2665 s = 4 * 256;
2666 for(i=0; i<16; i++)
2667 t[s+i] = i + 0x0400;
2668 t[s+ 2] = 0x0452;
2669 t[s+ 4] = 0x0454;
2670 t[s+ 5] = 0x0455;
2671 t[s+ 6] = 0x0456;
2672 t[s+ 8] = 0x0458;
2673 t[s+ 9] = 0x0459;
2674 t[s+ 10] = 0x045a;
2675 t[s+ 11] = 0x045b;
2676 t[s+ 15] = 0x045f;
2677
2678 for(i=16; i<48; i++)
2679 t[s+i] = i + 0x0420;
2680 t[s+ 25] = 0x0419;
2681 for(i=48; i<256; i++)
2682 t[s+i] = i + 0x0400;
2683 t[s+195] = 0x04c4;
2684 t[s+199] = 0x04c8;
2685 t[s+203] = 0x04cc;
2686
2687 for(i=96; i<129; i+=2)
2688 t[s+i] = i + 0x0401;
2689 t[s+118] = 0x0476;
2690 for(i=144; i<191; i+=2)
2691 t[s+i] = i + 0x0401;
2692
2693 /*
2694 * table 5 (high byte 0x05)
2695 */
2696 s = 5 * 256;
2697 for(i=0; i<49; i++)
2698 t[s+i] = i + 0x0500;
2699 for(i=49; i<87; i++)
2700 t[s+i] = i + 0x0530;
2701 for(i=87; i<256; i++)
2702 t[s+i] = i + 0x0500;
2703
2704 /*
2705 * table 6 (high byte 0x10)
2706 */
2707 s = 6 * 256;
2708 for(i=0; i<160; i++)
2709 t[s+i] = i + 0x1000;
2710 for(i=160; i<198; i++)
2711 t[s+i] = i + 0x1030;
2712 for(i=198; i<256; i++)
2713 t[s+i] = i + 0x1000;
2714
2715 /*
2716 * table 7 (high byte 0x20)
2717 */
2718 s = 7 * 256;
2719 for(i=0; i<256; i++)
2720 t[s+i] = i + 0x2000;
2721 {
2722 uint8_t zi[15] = { 12, 13, 14, 15,
2723 42, 43, 44, 45, 46,
2724 106, 107, 108, 109, 110, 111};
2725
2726 for(i=0; i<15; i++)
2727 t[s+zi[i]] = 0x0000;
2728 }
2729
2730 /*
2731 * table 8 (high byte 0x21)
2732 */
2733 s = 8 * 256;
2734 for(i=0; i<96; i++)
2735 t[s+i] = i + 0x2100;
2736 for(i=96; i<112; i++)
2737 t[s+i] = i + 0x2110;
2738 for(i=112; i<256; i++)
2739 t[s+i] = i + 0x2100;
2740
2741 /*
2742 * table 9 (high byte 0xFE)
2743 */
2744 s = 9 * 256;
2745 for(i=0; i<256; i++)
2746 t[s+i] = i + 0xFE00;
2747 t[s+255] = 0x0000;
2748
2749 /*
2750 * table 10 (high byte 0xFF)
2751 */
2752 s = 10 * 256;
2753 for(i=0; i<33; i++)
2754 t[s+i] = i + 0xFF00;
2755 for(i=33; i<59; i++)
2756 t[s+i] = i + 0xFF20;
2757 for(i=59; i<256; i++)
2758 t[s+i] = i + 0xFF00;
2759
2760 return 0;
2761
2762 error:
2763 return 1;
2764 }
2765
2766 int
2767 hfslib_get_hardlink(hfs_volume *vol, uint32_t inode_num,
2768 hfs_catalog_keyed_record_t *rec,
2769 hfs_callback_args *cbargs)
2770 {
2771 hfs_catalog_keyed_record_t metadata;
2772 hfs_catalog_key_t key;
2773 char name[16];
2774 unichar_t name_uni[16];
2775 int i, len;
2776
2777 /* XXX: cache this */
2778 if (hfslib_find_catalog_record_with_key(vol,
2779 &hfs_gMetadataDirectoryKey,
2780 &metadata, cbargs) != 0
2781 || metadata.type != HFS_REC_FLDR)
2782 return -1;
2783
2784 len = snprintf(name, sizeof(name), "iNode%d", inode_num);
2785 for (i=0; i<len; i++)
2786 name_uni[i] = name[i];
2787
2788 if (hfslib_make_catalog_key(metadata.folder.cnid, len, name_uni,
2789 &key) == 0)
2790 return -1;
2791
2792 return hfslib_find_catalog_record_with_key(vol, &key, rec, cbargs);
2793 }
2794