1 1.7 simonb /* $NetBSD: nfs_clbio.c,v 1.7 2021/03/29 02:13:37 simonb Exp $ */ 2 1.1 dholland /*- 3 1.1 dholland * Copyright (c) 1989, 1993 4 1.1 dholland * The Regents of the University of California. All rights reserved. 5 1.1 dholland * 6 1.1 dholland * This code is derived from software contributed to Berkeley by 7 1.1 dholland * Rick Macklem at The University of Guelph. 8 1.1 dholland * 9 1.1 dholland * Redistribution and use in source and binary forms, with or without 10 1.1 dholland * modification, are permitted provided that the following conditions 11 1.1 dholland * are met: 12 1.1 dholland * 1. Redistributions of source code must retain the above copyright 13 1.1 dholland * notice, this list of conditions and the following disclaimer. 14 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright 15 1.1 dholland * notice, this list of conditions and the following disclaimer in the 16 1.1 dholland * documentation and/or other materials provided with the distribution. 17 1.1 dholland * 4. Neither the name of the University nor the names of its contributors 18 1.1 dholland * may be used to endorse or promote products derived from this software 19 1.1 dholland * without specific prior written permission. 20 1.1 dholland * 21 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 1.1 dholland * SUCH DAMAGE. 32 1.1 dholland * 33 1.1 dholland * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 34 1.1 dholland */ 35 1.1 dholland 36 1.1 dholland #include <sys/cdefs.h> 37 1.3 pgoyette /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clbio.c 304026 2016-08-12 22:44:59Z rmacklem "); */ 38 1.7 simonb __RCSID("$NetBSD: nfs_clbio.c,v 1.7 2021/03/29 02:13:37 simonb Exp $"); 39 1.1 dholland 40 1.1 dholland #include <sys/param.h> 41 1.1 dholland #include <sys/systm.h> 42 1.1 dholland #include <sys/buf.h> 43 1.1 dholland #include <sys/kernel.h> 44 1.1 dholland #include <sys/mount.h> 45 1.1 dholland #include <sys/rwlock.h> 46 1.1 dholland #include <sys/vmmeter.h> 47 1.1 dholland #include <sys/vnode.h> 48 1.1 dholland 49 1.4 pgoyette #include <fs/nfs/common/nfsport.h> 50 1.4 pgoyette #include <fs/nfs/client/nfsmount.h> 51 1.4 pgoyette #include <fs/nfs/client/nfs.h> 52 1.4 pgoyette #include <fs/nfs/client/nfsnode.h> 53 1.4 pgoyette #include <fs/nfs/client/nfs_kdtrace.h> 54 1.1 dholland 55 1.1 dholland extern int newnfs_directio_allow_mmap; 56 1.3 pgoyette extern struct nfsstatsv1 nfsstatsv1; 57 1.1 dholland extern struct mtx ncl_iod_mutex; 58 1.1 dholland extern int ncl_numasync; 59 1.1 dholland extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 60 1.1 dholland extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 61 1.1 dholland extern int newnfs_directio_enable; 62 1.1 dholland extern int nfs_keep_dirty_on_error; 63 1.1 dholland 64 1.1 dholland int ncl_pbuf_freecnt = -1; /* start out unlimited */ 65 1.1 dholland 66 1.1 dholland static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 67 1.1 dholland struct thread *td); 68 1.1 dholland static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 69 1.1 dholland struct ucred *cred, int ioflag); 70 1.1 dholland 71 1.1 dholland /* 72 1.1 dholland * Vnode op for VM getpages. 73 1.1 dholland */ 74 1.1 dholland int 75 1.1 dholland ncl_getpages(struct vop_getpages_args *ap) 76 1.1 dholland { 77 1.1 dholland int i, error, nextoff, size, toff, count, npages; 78 1.1 dholland struct uio uio; 79 1.1 dholland struct iovec iov; 80 1.7 simonb vaddr_t kva; 81 1.1 dholland struct buf *bp; 82 1.1 dholland struct vnode *vp; 83 1.1 dholland struct thread *td; 84 1.1 dholland struct ucred *cred; 85 1.1 dholland struct nfsmount *nmp; 86 1.1 dholland vm_object_t object; 87 1.1 dholland vm_page_t *pages; 88 1.1 dholland struct nfsnode *np; 89 1.1 dholland 90 1.1 dholland vp = ap->a_vp; 91 1.1 dholland np = VTONFS(vp); 92 1.1 dholland td = curthread; /* XXX */ 93 1.1 dholland cred = curthread->td_ucred; /* XXX */ 94 1.1 dholland nmp = VFSTONFS(vp->v_mount); 95 1.1 dholland pages = ap->a_m; 96 1.3 pgoyette npages = ap->a_count; 97 1.1 dholland 98 1.1 dholland if ((object = vp->v_object) == NULL) { 99 1.3 pgoyette printf("ncl_getpages: called with non-merged cache vnode\n"); 100 1.1 dholland return (VM_PAGER_ERROR); 101 1.1 dholland } 102 1.1 dholland 103 1.1 dholland if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 104 1.1 dholland mtx_lock(&np->n_mtx); 105 1.1 dholland if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 106 1.1 dholland mtx_unlock(&np->n_mtx); 107 1.3 pgoyette printf("ncl_getpages: called on non-cacheable vnode\n"); 108 1.1 dholland return (VM_PAGER_ERROR); 109 1.1 dholland } else 110 1.1 dholland mtx_unlock(&np->n_mtx); 111 1.1 dholland } 112 1.1 dholland 113 1.1 dholland mtx_lock(&nmp->nm_mtx); 114 1.1 dholland if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 115 1.1 dholland (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 116 1.1 dholland mtx_unlock(&nmp->nm_mtx); 117 1.1 dholland /* We'll never get here for v4, because we always have fsinfo */ 118 1.1 dholland (void)ncl_fsinfo(nmp, vp, cred, td); 119 1.1 dholland } else 120 1.1 dholland mtx_unlock(&nmp->nm_mtx); 121 1.1 dholland 122 1.1 dholland /* 123 1.1 dholland * If the requested page is partially valid, just return it and 124 1.1 dholland * allow the pager to zero-out the blanks. Partially valid pages 125 1.1 dholland * can only occur at the file EOF. 126 1.3 pgoyette * 127 1.3 pgoyette * XXXGL: is that true for NFS, where short read can occur??? 128 1.1 dholland */ 129 1.1 dholland VM_OBJECT_WLOCK(object); 130 1.3 pgoyette if (pages[npages - 1]->valid != 0 && --npages == 0) 131 1.3 pgoyette goto out; 132 1.1 dholland VM_OBJECT_WUNLOCK(object); 133 1.1 dholland 134 1.1 dholland /* 135 1.1 dholland * We use only the kva address for the buffer, but this is extremely 136 1.3 pgoyette * convenient and fast. 137 1.1 dholland */ 138 1.1 dholland bp = getpbuf(&ncl_pbuf_freecnt); 139 1.1 dholland 140 1.7 simonb kva = (vaddr_t) bp->b_data; 141 1.1 dholland pmap_qenter(kva, pages, npages); 142 1.1 dholland PCPU_INC(cnt.v_vnodein); 143 1.1 dholland PCPU_ADD(cnt.v_vnodepgsin, npages); 144 1.1 dholland 145 1.3 pgoyette count = npages << PAGE_SHIFT; 146 1.1 dholland iov.iov_base = (caddr_t) kva; 147 1.1 dholland iov.iov_len = count; 148 1.1 dholland uio.uio_iov = &iov; 149 1.1 dholland uio.uio_iovcnt = 1; 150 1.1 dholland uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 151 1.1 dholland uio.uio_resid = count; 152 1.1 dholland uio.uio_segflg = UIO_SYSSPACE; 153 1.1 dholland uio.uio_rw = UIO_READ; 154 1.1 dholland uio.uio_td = td; 155 1.1 dholland 156 1.1 dholland error = ncl_readrpc(vp, &uio, cred); 157 1.1 dholland pmap_qremove(kva, npages); 158 1.1 dholland 159 1.1 dholland relpbuf(bp, &ncl_pbuf_freecnt); 160 1.1 dholland 161 1.1 dholland if (error && (uio.uio_resid == count)) { 162 1.3 pgoyette printf("ncl_getpages: error %d\n", error); 163 1.1 dholland return (VM_PAGER_ERROR); 164 1.1 dholland } 165 1.1 dholland 166 1.1 dholland /* 167 1.1 dholland * Calculate the number of bytes read and validate only that number 168 1.1 dholland * of bytes. Note that due to pending writes, size may be 0. This 169 1.1 dholland * does not mean that the remaining data is invalid! 170 1.1 dholland */ 171 1.1 dholland 172 1.1 dholland size = count - uio.uio_resid; 173 1.1 dholland VM_OBJECT_WLOCK(object); 174 1.1 dholland for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 175 1.1 dholland vm_page_t m; 176 1.1 dholland nextoff = toff + PAGE_SIZE; 177 1.1 dholland m = pages[i]; 178 1.1 dholland 179 1.1 dholland if (nextoff <= size) { 180 1.1 dholland /* 181 1.1 dholland * Read operation filled an entire page 182 1.1 dholland */ 183 1.1 dholland m->valid = VM_PAGE_BITS_ALL; 184 1.1 dholland KASSERT(m->dirty == 0, 185 1.1 dholland ("nfs_getpages: page %p is dirty", m)); 186 1.1 dholland } else if (size > toff) { 187 1.1 dholland /* 188 1.1 dholland * Read operation filled a partial page. 189 1.1 dholland */ 190 1.1 dholland m->valid = 0; 191 1.1 dholland vm_page_set_valid_range(m, 0, size - toff); 192 1.1 dholland KASSERT(m->dirty == 0, 193 1.1 dholland ("nfs_getpages: page %p is dirty", m)); 194 1.1 dholland } else { 195 1.1 dholland /* 196 1.1 dholland * Read operation was short. If no error 197 1.3 pgoyette * occurred we may have hit a zero-fill 198 1.1 dholland * section. We leave valid set to 0, and page 199 1.1 dholland * is freed by vm_page_readahead_finish() if 200 1.1 dholland * its index is not equal to requested, or 201 1.1 dholland * page is zeroed and set valid by 202 1.1 dholland * vm_pager_get_pages() for requested page. 203 1.1 dholland */ 204 1.1 dholland ; 205 1.1 dholland } 206 1.1 dholland } 207 1.3 pgoyette out: 208 1.1 dholland VM_OBJECT_WUNLOCK(object); 209 1.3 pgoyette if (ap->a_rbehind) 210 1.3 pgoyette *ap->a_rbehind = 0; 211 1.3 pgoyette if (ap->a_rahead) 212 1.3 pgoyette *ap->a_rahead = 0; 213 1.3 pgoyette return (VM_PAGER_OK); 214 1.1 dholland } 215 1.1 dholland 216 1.1 dholland /* 217 1.1 dholland * Vnode op for VM putpages. 218 1.1 dholland */ 219 1.1 dholland int 220 1.1 dholland ncl_putpages(struct vop_putpages_args *ap) 221 1.1 dholland { 222 1.1 dholland struct uio uio; 223 1.1 dholland struct iovec iov; 224 1.7 simonb vaddr_t kva; 225 1.1 dholland struct buf *bp; 226 1.1 dholland int iomode, must_commit, i, error, npages, count; 227 1.1 dholland off_t offset; 228 1.1 dholland int *rtvals; 229 1.1 dholland struct vnode *vp; 230 1.1 dholland struct thread *td; 231 1.1 dholland struct ucred *cred; 232 1.1 dholland struct nfsmount *nmp; 233 1.1 dholland struct nfsnode *np; 234 1.1 dholland vm_page_t *pages; 235 1.1 dholland 236 1.1 dholland vp = ap->a_vp; 237 1.1 dholland np = VTONFS(vp); 238 1.1 dholland td = curthread; /* XXX */ 239 1.1 dholland /* Set the cred to n_writecred for the write rpcs. */ 240 1.1 dholland if (np->n_writecred != NULL) 241 1.1 dholland cred = crhold(np->n_writecred); 242 1.1 dholland else 243 1.1 dholland cred = crhold(curthread->td_ucred); /* XXX */ 244 1.1 dholland nmp = VFSTONFS(vp->v_mount); 245 1.1 dholland pages = ap->a_m; 246 1.1 dholland count = ap->a_count; 247 1.1 dholland rtvals = ap->a_rtvals; 248 1.1 dholland npages = btoc(count); 249 1.1 dholland offset = IDX_TO_OFF(pages[0]->pindex); 250 1.1 dholland 251 1.1 dholland mtx_lock(&nmp->nm_mtx); 252 1.1 dholland if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 253 1.1 dholland (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 254 1.1 dholland mtx_unlock(&nmp->nm_mtx); 255 1.1 dholland (void)ncl_fsinfo(nmp, vp, cred, td); 256 1.1 dholland } else 257 1.1 dholland mtx_unlock(&nmp->nm_mtx); 258 1.1 dholland 259 1.1 dholland mtx_lock(&np->n_mtx); 260 1.1 dholland if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 261 1.1 dholland (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 262 1.1 dholland mtx_unlock(&np->n_mtx); 263 1.3 pgoyette printf("ncl_putpages: called on noncache-able vnode\n"); 264 1.1 dholland mtx_lock(&np->n_mtx); 265 1.1 dholland } 266 1.1 dholland 267 1.1 dholland for (i = 0; i < npages; i++) 268 1.1 dholland rtvals[i] = VM_PAGER_ERROR; 269 1.1 dholland 270 1.1 dholland /* 271 1.1 dholland * When putting pages, do not extend file past EOF. 272 1.1 dholland */ 273 1.1 dholland if (offset + count > np->n_size) { 274 1.1 dholland count = np->n_size - offset; 275 1.1 dholland if (count < 0) 276 1.1 dholland count = 0; 277 1.1 dholland } 278 1.1 dholland mtx_unlock(&np->n_mtx); 279 1.1 dholland 280 1.1 dholland /* 281 1.1 dholland * We use only the kva address for the buffer, but this is extremely 282 1.3 pgoyette * convenient and fast. 283 1.1 dholland */ 284 1.1 dholland bp = getpbuf(&ncl_pbuf_freecnt); 285 1.1 dholland 286 1.7 simonb kva = (vaddr_t) bp->b_data; 287 1.1 dholland pmap_qenter(kva, pages, npages); 288 1.1 dholland PCPU_INC(cnt.v_vnodeout); 289 1.1 dholland PCPU_ADD(cnt.v_vnodepgsout, count); 290 1.1 dholland 291 1.1 dholland iov.iov_base = (caddr_t) kva; 292 1.1 dholland iov.iov_len = count; 293 1.1 dholland uio.uio_iov = &iov; 294 1.1 dholland uio.uio_iovcnt = 1; 295 1.1 dholland uio.uio_offset = offset; 296 1.1 dholland uio.uio_resid = count; 297 1.1 dholland uio.uio_segflg = UIO_SYSSPACE; 298 1.1 dholland uio.uio_rw = UIO_WRITE; 299 1.1 dholland uio.uio_td = td; 300 1.1 dholland 301 1.1 dholland if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 302 1.1 dholland iomode = NFSWRITE_UNSTABLE; 303 1.1 dholland else 304 1.1 dholland iomode = NFSWRITE_FILESYNC; 305 1.1 dholland 306 1.1 dholland error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0); 307 1.1 dholland crfree(cred); 308 1.1 dholland 309 1.1 dholland pmap_qremove(kva, npages); 310 1.1 dholland relpbuf(bp, &ncl_pbuf_freecnt); 311 1.1 dholland 312 1.1 dholland if (error == 0 || !nfs_keep_dirty_on_error) { 313 1.1 dholland vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid); 314 1.1 dholland if (must_commit) 315 1.1 dholland ncl_clearcommit(vp->v_mount); 316 1.1 dholland } 317 1.1 dholland return rtvals[0]; 318 1.1 dholland } 319 1.1 dholland 320 1.1 dholland /* 321 1.1 dholland * For nfs, cache consistency can only be maintained approximately. 322 1.1 dholland * Although RFC1094 does not specify the criteria, the following is 323 1.1 dholland * believed to be compatible with the reference port. 324 1.1 dholland * For nfs: 325 1.1 dholland * If the file's modify time on the server has changed since the 326 1.1 dholland * last read rpc or you have written to the file, 327 1.1 dholland * you may have lost data cache consistency with the 328 1.1 dholland * server, so flush all of the file's data out of the cache. 329 1.1 dholland * Then force a getattr rpc to ensure that you have up to date 330 1.1 dholland * attributes. 331 1.1 dholland * NB: This implies that cache data can be read when up to 332 1.1 dholland * NFS_ATTRTIMEO seconds out of date. If you find that you need current 333 1.1 dholland * attributes this could be forced by setting n_attrstamp to 0 before 334 1.1 dholland * the VOP_GETATTR() call. 335 1.1 dholland */ 336 1.1 dholland static inline int 337 1.1 dholland nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 338 1.1 dholland { 339 1.1 dholland int error = 0; 340 1.1 dholland struct vattr vattr; 341 1.1 dholland struct nfsnode *np = VTONFS(vp); 342 1.1 dholland int old_lock; 343 1.1 dholland 344 1.1 dholland /* 345 1.1 dholland * Grab the exclusive lock before checking whether the cache is 346 1.1 dholland * consistent. 347 1.1 dholland * XXX - We can make this cheaper later (by acquiring cheaper locks). 348 1.1 dholland * But for now, this suffices. 349 1.1 dholland */ 350 1.1 dholland old_lock = ncl_upgrade_vnlock(vp); 351 1.1 dholland if (vp->v_iflag & VI_DOOMED) { 352 1.1 dholland ncl_downgrade_vnlock(vp, old_lock); 353 1.1 dholland return (EBADF); 354 1.1 dholland } 355 1.1 dholland 356 1.1 dholland mtx_lock(&np->n_mtx); 357 1.1 dholland if (np->n_flag & NMODIFIED) { 358 1.1 dholland mtx_unlock(&np->n_mtx); 359 1.1 dholland if (vp->v_type != VREG) { 360 1.1 dholland if (vp->v_type != VDIR) 361 1.1 dholland panic("nfs: bioread, not dir"); 362 1.1 dholland ncl_invaldir(vp); 363 1.1 dholland error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 364 1.1 dholland if (error) 365 1.1 dholland goto out; 366 1.1 dholland } 367 1.1 dholland np->n_attrstamp = 0; 368 1.1 dholland KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 369 1.1 dholland error = VOP_GETATTR(vp, &vattr, cred); 370 1.1 dholland if (error) 371 1.1 dholland goto out; 372 1.1 dholland mtx_lock(&np->n_mtx); 373 1.1 dholland np->n_mtime = vattr.va_mtime; 374 1.1 dholland mtx_unlock(&np->n_mtx); 375 1.1 dholland } else { 376 1.1 dholland mtx_unlock(&np->n_mtx); 377 1.1 dholland error = VOP_GETATTR(vp, &vattr, cred); 378 1.1 dholland if (error) 379 1.1 dholland return (error); 380 1.1 dholland mtx_lock(&np->n_mtx); 381 1.1 dholland if ((np->n_flag & NSIZECHANGED) 382 1.1 dholland || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 383 1.1 dholland mtx_unlock(&np->n_mtx); 384 1.1 dholland if (vp->v_type == VDIR) 385 1.1 dholland ncl_invaldir(vp); 386 1.1 dholland error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 387 1.1 dholland if (error) 388 1.1 dholland goto out; 389 1.1 dholland mtx_lock(&np->n_mtx); 390 1.1 dholland np->n_mtime = vattr.va_mtime; 391 1.1 dholland np->n_flag &= ~NSIZECHANGED; 392 1.1 dholland } 393 1.1 dholland mtx_unlock(&np->n_mtx); 394 1.1 dholland } 395 1.1 dholland out: 396 1.1 dholland ncl_downgrade_vnlock(vp, old_lock); 397 1.1 dholland return error; 398 1.1 dholland } 399 1.1 dholland 400 1.1 dholland /* 401 1.1 dholland * Vnode op for read using bio 402 1.1 dholland */ 403 1.1 dholland int 404 1.1 dholland ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 405 1.1 dholland { 406 1.1 dholland struct nfsnode *np = VTONFS(vp); 407 1.1 dholland int biosize, i; 408 1.1 dholland struct buf *bp, *rabp; 409 1.1 dholland struct thread *td; 410 1.1 dholland struct nfsmount *nmp = VFSTONFS(vp->v_mount); 411 1.1 dholland daddr_t lbn, rabn; 412 1.1 dholland int bcount; 413 1.1 dholland int seqcount; 414 1.1 dholland int nra, error = 0, n = 0, on = 0; 415 1.1 dholland off_t tmp_off; 416 1.1 dholland 417 1.1 dholland KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 418 1.1 dholland if (uio->uio_resid == 0) 419 1.1 dholland return (0); 420 1.1 dholland if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 421 1.1 dholland return (EINVAL); 422 1.1 dholland td = uio->uio_td; 423 1.1 dholland 424 1.1 dholland mtx_lock(&nmp->nm_mtx); 425 1.1 dholland if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 426 1.1 dholland (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 427 1.1 dholland mtx_unlock(&nmp->nm_mtx); 428 1.1 dholland (void)ncl_fsinfo(nmp, vp, cred, td); 429 1.1 dholland mtx_lock(&nmp->nm_mtx); 430 1.1 dholland } 431 1.1 dholland if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 432 1.1 dholland (void) newnfs_iosize(nmp); 433 1.1 dholland 434 1.1 dholland tmp_off = uio->uio_offset + uio->uio_resid; 435 1.1 dholland if (vp->v_type != VDIR && 436 1.1 dholland (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 437 1.1 dholland mtx_unlock(&nmp->nm_mtx); 438 1.1 dholland return (EFBIG); 439 1.1 dholland } 440 1.1 dholland mtx_unlock(&nmp->nm_mtx); 441 1.1 dholland 442 1.1 dholland if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 443 1.1 dholland /* No caching/ no readaheads. Just read data into the user buffer */ 444 1.1 dholland return ncl_readrpc(vp, uio, cred); 445 1.1 dholland 446 1.1 dholland biosize = vp->v_bufobj.bo_bsize; 447 1.1 dholland seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 448 1.1 dholland 449 1.1 dholland error = nfs_bioread_check_cons(vp, td, cred); 450 1.1 dholland if (error) 451 1.1 dholland return error; 452 1.1 dholland 453 1.1 dholland do { 454 1.1 dholland u_quad_t nsize; 455 1.1 dholland 456 1.1 dholland mtx_lock(&np->n_mtx); 457 1.1 dholland nsize = np->n_size; 458 1.1 dholland mtx_unlock(&np->n_mtx); 459 1.1 dholland 460 1.1 dholland switch (vp->v_type) { 461 1.1 dholland case VREG: 462 1.3 pgoyette NFSINCRGLOBAL(nfsstatsv1.biocache_reads); 463 1.1 dholland lbn = uio->uio_offset / biosize; 464 1.1 dholland on = uio->uio_offset - (lbn * biosize); 465 1.1 dholland 466 1.1 dholland /* 467 1.1 dholland * Start the read ahead(s), as required. 468 1.1 dholland */ 469 1.1 dholland if (nmp->nm_readahead > 0) { 470 1.1 dholland for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 471 1.1 dholland (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 472 1.1 dholland rabn = lbn + 1 + nra; 473 1.1 dholland if (incore(&vp->v_bufobj, rabn) == NULL) { 474 1.1 dholland rabp = nfs_getcacheblk(vp, rabn, biosize, td); 475 1.1 dholland if (!rabp) { 476 1.1 dholland error = newnfs_sigintr(nmp, td); 477 1.1 dholland return (error ? error : EINTR); 478 1.1 dholland } 479 1.1 dholland if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 480 1.1 dholland rabp->b_flags |= B_ASYNC; 481 1.1 dholland rabp->b_iocmd = BIO_READ; 482 1.1 dholland vfs_busy_pages(rabp, 0); 483 1.1 dholland if (ncl_asyncio(nmp, rabp, cred, td)) { 484 1.1 dholland rabp->b_flags |= B_INVAL; 485 1.1 dholland rabp->b_ioflags |= BIO_ERROR; 486 1.1 dholland vfs_unbusy_pages(rabp); 487 1.1 dholland brelse(rabp); 488 1.1 dholland break; 489 1.1 dholland } 490 1.1 dholland } else { 491 1.1 dholland brelse(rabp); 492 1.1 dholland } 493 1.1 dholland } 494 1.1 dholland } 495 1.1 dholland } 496 1.1 dholland 497 1.1 dholland /* Note that bcount is *not* DEV_BSIZE aligned. */ 498 1.1 dholland bcount = biosize; 499 1.1 dholland if ((off_t)lbn * biosize >= nsize) { 500 1.1 dholland bcount = 0; 501 1.1 dholland } else if ((off_t)(lbn + 1) * biosize > nsize) { 502 1.1 dholland bcount = nsize - (off_t)lbn * biosize; 503 1.1 dholland } 504 1.1 dholland bp = nfs_getcacheblk(vp, lbn, bcount, td); 505 1.1 dholland 506 1.1 dholland if (!bp) { 507 1.1 dholland error = newnfs_sigintr(nmp, td); 508 1.1 dholland return (error ? error : EINTR); 509 1.1 dholland } 510 1.1 dholland 511 1.1 dholland /* 512 1.1 dholland * If B_CACHE is not set, we must issue the read. If this 513 1.1 dholland * fails, we return an error. 514 1.1 dholland */ 515 1.1 dholland 516 1.1 dholland if ((bp->b_flags & B_CACHE) == 0) { 517 1.1 dholland bp->b_iocmd = BIO_READ; 518 1.1 dholland vfs_busy_pages(bp, 0); 519 1.1 dholland error = ncl_doio(vp, bp, cred, td, 0); 520 1.1 dholland if (error) { 521 1.1 dholland brelse(bp); 522 1.1 dholland return (error); 523 1.1 dholland } 524 1.1 dholland } 525 1.1 dholland 526 1.1 dholland /* 527 1.1 dholland * on is the offset into the current bp. Figure out how many 528 1.1 dholland * bytes we can copy out of the bp. Note that bcount is 529 1.1 dholland * NOT DEV_BSIZE aligned. 530 1.1 dholland * 531 1.1 dholland * Then figure out how many bytes we can copy into the uio. 532 1.1 dholland */ 533 1.1 dholland 534 1.1 dholland n = 0; 535 1.1 dholland if (on < bcount) 536 1.1 dholland n = MIN((unsigned)(bcount - on), uio->uio_resid); 537 1.1 dholland break; 538 1.1 dholland case VLNK: 539 1.3 pgoyette NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks); 540 1.1 dholland bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 541 1.1 dholland if (!bp) { 542 1.1 dholland error = newnfs_sigintr(nmp, td); 543 1.1 dholland return (error ? error : EINTR); 544 1.1 dholland } 545 1.1 dholland if ((bp->b_flags & B_CACHE) == 0) { 546 1.1 dholland bp->b_iocmd = BIO_READ; 547 1.1 dholland vfs_busy_pages(bp, 0); 548 1.1 dholland error = ncl_doio(vp, bp, cred, td, 0); 549 1.1 dholland if (error) { 550 1.1 dholland bp->b_ioflags |= BIO_ERROR; 551 1.1 dholland brelse(bp); 552 1.1 dholland return (error); 553 1.1 dholland } 554 1.1 dholland } 555 1.1 dholland n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 556 1.1 dholland on = 0; 557 1.1 dholland break; 558 1.1 dholland case VDIR: 559 1.3 pgoyette NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs); 560 1.1 dholland if (np->n_direofoffset 561 1.1 dholland && uio->uio_offset >= np->n_direofoffset) { 562 1.1 dholland return (0); 563 1.1 dholland } 564 1.1 dholland lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 565 1.1 dholland on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 566 1.1 dholland bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 567 1.1 dholland if (!bp) { 568 1.1 dholland error = newnfs_sigintr(nmp, td); 569 1.1 dholland return (error ? error : EINTR); 570 1.1 dholland } 571 1.1 dholland if ((bp->b_flags & B_CACHE) == 0) { 572 1.1 dholland bp->b_iocmd = BIO_READ; 573 1.1 dholland vfs_busy_pages(bp, 0); 574 1.1 dholland error = ncl_doio(vp, bp, cred, td, 0); 575 1.1 dholland if (error) { 576 1.1 dholland brelse(bp); 577 1.1 dholland } 578 1.1 dholland while (error == NFSERR_BAD_COOKIE) { 579 1.1 dholland ncl_invaldir(vp); 580 1.1 dholland error = ncl_vinvalbuf(vp, 0, td, 1); 581 1.1 dholland /* 582 1.1 dholland * Yuck! The directory has been modified on the 583 1.1 dholland * server. The only way to get the block is by 584 1.1 dholland * reading from the beginning to get all the 585 1.1 dholland * offset cookies. 586 1.1 dholland * 587 1.1 dholland * Leave the last bp intact unless there is an error. 588 1.1 dholland * Loop back up to the while if the error is another 589 1.1 dholland * NFSERR_BAD_COOKIE (double yuch!). 590 1.1 dholland */ 591 1.1 dholland for (i = 0; i <= lbn && !error; i++) { 592 1.1 dholland if (np->n_direofoffset 593 1.1 dholland && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 594 1.1 dholland return (0); 595 1.1 dholland bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 596 1.1 dholland if (!bp) { 597 1.1 dholland error = newnfs_sigintr(nmp, td); 598 1.1 dholland return (error ? error : EINTR); 599 1.1 dholland } 600 1.1 dholland if ((bp->b_flags & B_CACHE) == 0) { 601 1.1 dholland bp->b_iocmd = BIO_READ; 602 1.1 dholland vfs_busy_pages(bp, 0); 603 1.1 dholland error = ncl_doio(vp, bp, cred, td, 0); 604 1.1 dholland /* 605 1.1 dholland * no error + B_INVAL == directory EOF, 606 1.1 dholland * use the block. 607 1.1 dholland */ 608 1.1 dholland if (error == 0 && (bp->b_flags & B_INVAL)) 609 1.1 dholland break; 610 1.1 dholland } 611 1.1 dholland /* 612 1.1 dholland * An error will throw away the block and the 613 1.1 dholland * for loop will break out. If no error and this 614 1.1 dholland * is not the block we want, we throw away the 615 1.1 dholland * block and go for the next one via the for loop. 616 1.1 dholland */ 617 1.1 dholland if (error || i < lbn) 618 1.1 dholland brelse(bp); 619 1.1 dholland } 620 1.1 dholland } 621 1.1 dholland /* 622 1.1 dholland * The above while is repeated if we hit another cookie 623 1.1 dholland * error. If we hit an error and it wasn't a cookie error, 624 1.1 dholland * we give up. 625 1.1 dholland */ 626 1.1 dholland if (error) 627 1.1 dholland return (error); 628 1.1 dholland } 629 1.1 dholland 630 1.1 dholland /* 631 1.1 dholland * If not eof and read aheads are enabled, start one. 632 1.1 dholland * (You need the current block first, so that you have the 633 1.1 dholland * directory offset cookie of the next block.) 634 1.1 dholland */ 635 1.1 dholland if (nmp->nm_readahead > 0 && 636 1.1 dholland (bp->b_flags & B_INVAL) == 0 && 637 1.1 dholland (np->n_direofoffset == 0 || 638 1.1 dholland (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 639 1.1 dholland incore(&vp->v_bufobj, lbn + 1) == NULL) { 640 1.1 dholland rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 641 1.1 dholland if (rabp) { 642 1.1 dholland if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 643 1.1 dholland rabp->b_flags |= B_ASYNC; 644 1.1 dholland rabp->b_iocmd = BIO_READ; 645 1.1 dholland vfs_busy_pages(rabp, 0); 646 1.1 dholland if (ncl_asyncio(nmp, rabp, cred, td)) { 647 1.1 dholland rabp->b_flags |= B_INVAL; 648 1.1 dholland rabp->b_ioflags |= BIO_ERROR; 649 1.1 dholland vfs_unbusy_pages(rabp); 650 1.1 dholland brelse(rabp); 651 1.1 dholland } 652 1.1 dholland } else { 653 1.1 dholland brelse(rabp); 654 1.1 dholland } 655 1.1 dholland } 656 1.1 dholland } 657 1.1 dholland /* 658 1.1 dholland * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 659 1.1 dholland * chopped for the EOF condition, we cannot tell how large 660 1.1 dholland * NFS directories are going to be until we hit EOF. So 661 1.1 dholland * an NFS directory buffer is *not* chopped to its EOF. Now, 662 1.1 dholland * it just so happens that b_resid will effectively chop it 663 1.1 dholland * to EOF. *BUT* this information is lost if the buffer goes 664 1.1 dholland * away and is reconstituted into a B_CACHE state ( due to 665 1.1 dholland * being VMIO ) later. So we keep track of the directory eof 666 1.1 dholland * in np->n_direofoffset and chop it off as an extra step 667 1.1 dholland * right here. 668 1.1 dholland */ 669 1.1 dholland n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 670 1.1 dholland if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 671 1.1 dholland n = np->n_direofoffset - uio->uio_offset; 672 1.1 dholland break; 673 1.1 dholland default: 674 1.3 pgoyette printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 675 1.1 dholland bp = NULL; 676 1.1 dholland break; 677 1.3 pgoyette } 678 1.1 dholland 679 1.1 dholland if (n > 0) { 680 1.1 dholland error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 681 1.1 dholland } 682 1.1 dholland if (vp->v_type == VLNK) 683 1.1 dholland n = 0; 684 1.1 dholland if (bp != NULL) 685 1.1 dholland brelse(bp); 686 1.1 dholland } while (error == 0 && uio->uio_resid > 0 && n > 0); 687 1.1 dholland return (error); 688 1.1 dholland } 689 1.1 dholland 690 1.1 dholland /* 691 1.1 dholland * The NFS write path cannot handle iovecs with len > 1. So we need to 692 1.1 dholland * break up iovecs accordingly (restricting them to wsize). 693 1.1 dholland * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 694 1.1 dholland * For the ASYNC case, 2 copies are needed. The first a copy from the 695 1.1 dholland * user buffer to a staging buffer and then a second copy from the staging 696 1.1 dholland * buffer to mbufs. This can be optimized by copying from the user buffer 697 1.1 dholland * directly into mbufs and passing the chain down, but that requires a 698 1.1 dholland * fair amount of re-working of the relevant codepaths (and can be done 699 1.1 dholland * later). 700 1.1 dholland */ 701 1.1 dholland static int 702 1.1 dholland nfs_directio_write(vp, uiop, cred, ioflag) 703 1.1 dholland struct vnode *vp; 704 1.1 dholland struct uio *uiop; 705 1.1 dholland struct ucred *cred; 706 1.1 dholland int ioflag; 707 1.1 dholland { 708 1.1 dholland int error; 709 1.1 dholland struct nfsmount *nmp = VFSTONFS(vp->v_mount); 710 1.1 dholland struct thread *td = uiop->uio_td; 711 1.1 dholland int size; 712 1.1 dholland int wsize; 713 1.1 dholland 714 1.1 dholland mtx_lock(&nmp->nm_mtx); 715 1.1 dholland wsize = nmp->nm_wsize; 716 1.1 dholland mtx_unlock(&nmp->nm_mtx); 717 1.1 dholland if (ioflag & IO_SYNC) { 718 1.1 dholland int iomode, must_commit; 719 1.1 dholland struct uio uio; 720 1.1 dholland struct iovec iov; 721 1.1 dholland do_sync: 722 1.1 dholland while (uiop->uio_resid > 0) { 723 1.1 dholland size = MIN(uiop->uio_resid, wsize); 724 1.1 dholland size = MIN(uiop->uio_iov->iov_len, size); 725 1.1 dholland iov.iov_base = uiop->uio_iov->iov_base; 726 1.1 dholland iov.iov_len = size; 727 1.1 dholland uio.uio_iov = &iov; 728 1.1 dholland uio.uio_iovcnt = 1; 729 1.1 dholland uio.uio_offset = uiop->uio_offset; 730 1.1 dholland uio.uio_resid = size; 731 1.1 dholland uio.uio_segflg = UIO_USERSPACE; 732 1.1 dholland uio.uio_rw = UIO_WRITE; 733 1.1 dholland uio.uio_td = td; 734 1.1 dholland iomode = NFSWRITE_FILESYNC; 735 1.1 dholland error = ncl_writerpc(vp, &uio, cred, &iomode, 736 1.1 dholland &must_commit, 0); 737 1.1 dholland KASSERT((must_commit == 0), 738 1.1 dholland ("ncl_directio_write: Did not commit write")); 739 1.1 dholland if (error) 740 1.1 dholland return (error); 741 1.1 dholland uiop->uio_offset += size; 742 1.1 dholland uiop->uio_resid -= size; 743 1.1 dholland if (uiop->uio_iov->iov_len <= size) { 744 1.1 dholland uiop->uio_iovcnt--; 745 1.1 dholland uiop->uio_iov++; 746 1.1 dholland } else { 747 1.1 dholland uiop->uio_iov->iov_base = 748 1.1 dholland (char *)uiop->uio_iov->iov_base + size; 749 1.1 dholland uiop->uio_iov->iov_len -= size; 750 1.1 dholland } 751 1.1 dholland } 752 1.1 dholland } else { 753 1.1 dholland struct uio *t_uio; 754 1.1 dholland struct iovec *t_iov; 755 1.1 dholland struct buf *bp; 756 1.1 dholland 757 1.1 dholland /* 758 1.1 dholland * Break up the write into blocksize chunks and hand these 759 1.1 dholland * over to nfsiod's for write back. 760 1.1 dholland * Unfortunately, this incurs a copy of the data. Since 761 1.1 dholland * the user could modify the buffer before the write is 762 1.1 dholland * initiated. 763 1.1 dholland * 764 1.1 dholland * The obvious optimization here is that one of the 2 copies 765 1.1 dholland * in the async write path can be eliminated by copying the 766 1.1 dholland * data here directly into mbufs and passing the mbuf chain 767 1.1 dholland * down. But that will require a fair amount of re-working 768 1.1 dholland * of the code and can be done if there's enough interest 769 1.1 dholland * in NFS directio access. 770 1.1 dholland */ 771 1.1 dholland while (uiop->uio_resid > 0) { 772 1.1 dholland size = MIN(uiop->uio_resid, wsize); 773 1.1 dholland size = MIN(uiop->uio_iov->iov_len, size); 774 1.1 dholland bp = getpbuf(&ncl_pbuf_freecnt); 775 1.1 dholland t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 776 1.1 dholland t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 777 1.1 dholland t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 778 1.1 dholland t_iov->iov_len = size; 779 1.1 dholland t_uio->uio_iov = t_iov; 780 1.1 dholland t_uio->uio_iovcnt = 1; 781 1.1 dholland t_uio->uio_offset = uiop->uio_offset; 782 1.1 dholland t_uio->uio_resid = size; 783 1.1 dholland t_uio->uio_segflg = UIO_SYSSPACE; 784 1.1 dholland t_uio->uio_rw = UIO_WRITE; 785 1.1 dholland t_uio->uio_td = td; 786 1.1 dholland KASSERT(uiop->uio_segflg == UIO_USERSPACE || 787 1.1 dholland uiop->uio_segflg == UIO_SYSSPACE, 788 1.1 dholland ("nfs_directio_write: Bad uio_segflg")); 789 1.1 dholland if (uiop->uio_segflg == UIO_USERSPACE) { 790 1.1 dholland error = copyin(uiop->uio_iov->iov_base, 791 1.1 dholland t_iov->iov_base, size); 792 1.1 dholland if (error != 0) 793 1.1 dholland goto err_free; 794 1.1 dholland } else 795 1.1 dholland /* 796 1.1 dholland * UIO_SYSSPACE may never happen, but handle 797 1.1 dholland * it just in case it does. 798 1.1 dholland */ 799 1.1 dholland bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, 800 1.1 dholland size); 801 1.1 dholland bp->b_flags |= B_DIRECT; 802 1.1 dholland bp->b_iocmd = BIO_WRITE; 803 1.1 dholland if (cred != NOCRED) { 804 1.1 dholland crhold(cred); 805 1.1 dholland bp->b_wcred = cred; 806 1.1 dholland } else 807 1.1 dholland bp->b_wcred = NOCRED; 808 1.1 dholland bp->b_caller1 = (void *)t_uio; 809 1.1 dholland bp->b_vp = vp; 810 1.1 dholland error = ncl_asyncio(nmp, bp, NOCRED, td); 811 1.1 dholland err_free: 812 1.1 dholland if (error) { 813 1.1 dholland free(t_iov->iov_base, M_NFSDIRECTIO); 814 1.1 dholland free(t_iov, M_NFSDIRECTIO); 815 1.1 dholland free(t_uio, M_NFSDIRECTIO); 816 1.1 dholland bp->b_vp = NULL; 817 1.1 dholland relpbuf(bp, &ncl_pbuf_freecnt); 818 1.1 dholland if (error == EINTR) 819 1.1 dholland return (error); 820 1.1 dholland goto do_sync; 821 1.1 dholland } 822 1.1 dholland uiop->uio_offset += size; 823 1.1 dholland uiop->uio_resid -= size; 824 1.1 dholland if (uiop->uio_iov->iov_len <= size) { 825 1.1 dholland uiop->uio_iovcnt--; 826 1.1 dholland uiop->uio_iov++; 827 1.1 dholland } else { 828 1.1 dholland uiop->uio_iov->iov_base = 829 1.1 dholland (char *)uiop->uio_iov->iov_base + size; 830 1.1 dholland uiop->uio_iov->iov_len -= size; 831 1.1 dholland } 832 1.1 dholland } 833 1.1 dholland } 834 1.1 dholland return (0); 835 1.1 dholland } 836 1.1 dholland 837 1.1 dholland /* 838 1.1 dholland * Vnode op for write using bio 839 1.1 dholland */ 840 1.1 dholland int 841 1.1 dholland ncl_write(struct vop_write_args *ap) 842 1.1 dholland { 843 1.1 dholland int biosize; 844 1.1 dholland struct uio *uio = ap->a_uio; 845 1.1 dholland struct thread *td = uio->uio_td; 846 1.1 dholland struct vnode *vp = ap->a_vp; 847 1.1 dholland struct nfsnode *np = VTONFS(vp); 848 1.1 dholland struct ucred *cred = ap->a_cred; 849 1.1 dholland int ioflag = ap->a_ioflag; 850 1.1 dholland struct buf *bp; 851 1.1 dholland struct vattr vattr; 852 1.1 dholland struct nfsmount *nmp = VFSTONFS(vp->v_mount); 853 1.1 dholland daddr_t lbn; 854 1.3 pgoyette int bcount, noncontig_write, obcount; 855 1.3 pgoyette int bp_cached, n, on, error = 0, error1, wouldcommit; 856 1.1 dholland size_t orig_resid, local_resid; 857 1.1 dholland off_t orig_size, tmp_off; 858 1.1 dholland 859 1.1 dholland KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 860 1.1 dholland KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 861 1.1 dholland ("ncl_write proc")); 862 1.1 dholland if (vp->v_type != VREG) 863 1.1 dholland return (EIO); 864 1.1 dholland mtx_lock(&np->n_mtx); 865 1.1 dholland if (np->n_flag & NWRITEERR) { 866 1.1 dholland np->n_flag &= ~NWRITEERR; 867 1.1 dholland mtx_unlock(&np->n_mtx); 868 1.1 dholland return (np->n_error); 869 1.1 dholland } else 870 1.1 dholland mtx_unlock(&np->n_mtx); 871 1.1 dholland mtx_lock(&nmp->nm_mtx); 872 1.1 dholland if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 873 1.1 dholland (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 874 1.1 dholland mtx_unlock(&nmp->nm_mtx); 875 1.1 dholland (void)ncl_fsinfo(nmp, vp, cred, td); 876 1.1 dholland mtx_lock(&nmp->nm_mtx); 877 1.1 dholland } 878 1.1 dholland if (nmp->nm_wsize == 0) 879 1.1 dholland (void) newnfs_iosize(nmp); 880 1.1 dholland mtx_unlock(&nmp->nm_mtx); 881 1.1 dholland 882 1.1 dholland /* 883 1.1 dholland * Synchronously flush pending buffers if we are in synchronous 884 1.1 dholland * mode or if we are appending. 885 1.1 dholland */ 886 1.1 dholland if (ioflag & (IO_APPEND | IO_SYNC)) { 887 1.1 dholland mtx_lock(&np->n_mtx); 888 1.1 dholland if (np->n_flag & NMODIFIED) { 889 1.1 dholland mtx_unlock(&np->n_mtx); 890 1.1 dholland #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ 891 1.1 dholland /* 892 1.1 dholland * Require non-blocking, synchronous writes to 893 1.1 dholland * dirty files to inform the program it needs 894 1.1 dholland * to fsync(2) explicitly. 895 1.1 dholland */ 896 1.1 dholland if (ioflag & IO_NDELAY) 897 1.1 dholland return (EAGAIN); 898 1.1 dholland #endif 899 1.1 dholland np->n_attrstamp = 0; 900 1.1 dholland KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 901 1.1 dholland error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 902 1.1 dholland if (error) 903 1.1 dholland return (error); 904 1.1 dholland } else 905 1.1 dholland mtx_unlock(&np->n_mtx); 906 1.1 dholland } 907 1.1 dholland 908 1.1 dholland orig_resid = uio->uio_resid; 909 1.1 dholland mtx_lock(&np->n_mtx); 910 1.1 dholland orig_size = np->n_size; 911 1.1 dholland mtx_unlock(&np->n_mtx); 912 1.1 dholland 913 1.1 dholland /* 914 1.1 dholland * If IO_APPEND then load uio_offset. We restart here if we cannot 915 1.1 dholland * get the append lock. 916 1.1 dholland */ 917 1.1 dholland if (ioflag & IO_APPEND) { 918 1.1 dholland np->n_attrstamp = 0; 919 1.1 dholland KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 920 1.1 dholland error = VOP_GETATTR(vp, &vattr, cred); 921 1.1 dholland if (error) 922 1.1 dholland return (error); 923 1.1 dholland mtx_lock(&np->n_mtx); 924 1.1 dholland uio->uio_offset = np->n_size; 925 1.1 dholland mtx_unlock(&np->n_mtx); 926 1.1 dholland } 927 1.1 dholland 928 1.1 dholland if (uio->uio_offset < 0) 929 1.1 dholland return (EINVAL); 930 1.1 dholland tmp_off = uio->uio_offset + uio->uio_resid; 931 1.1 dholland if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 932 1.1 dholland return (EFBIG); 933 1.1 dholland if (uio->uio_resid == 0) 934 1.1 dholland return (0); 935 1.1 dholland 936 1.1 dholland if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) 937 1.1 dholland return nfs_directio_write(vp, uio, cred, ioflag); 938 1.1 dholland 939 1.1 dholland /* 940 1.1 dholland * Maybe this should be above the vnode op call, but so long as 941 1.1 dholland * file servers have no limits, i don't think it matters 942 1.1 dholland */ 943 1.1 dholland if (vn_rlimit_fsize(vp, uio, td)) 944 1.1 dholland return (EFBIG); 945 1.1 dholland 946 1.1 dholland biosize = vp->v_bufobj.bo_bsize; 947 1.1 dholland /* 948 1.1 dholland * Find all of this file's B_NEEDCOMMIT buffers. If our writes 949 1.1 dholland * would exceed the local maximum per-file write commit size when 950 1.1 dholland * combined with those, we must decide whether to flush, 951 1.1 dholland * go synchronous, or return error. We don't bother checking 952 1.1 dholland * IO_UNIT -- we just make all writes atomic anyway, as there's 953 1.1 dholland * no point optimizing for something that really won't ever happen. 954 1.1 dholland */ 955 1.3 pgoyette wouldcommit = 0; 956 1.1 dholland if (!(ioflag & IO_SYNC)) { 957 1.1 dholland int nflag; 958 1.1 dholland 959 1.1 dholland mtx_lock(&np->n_mtx); 960 1.1 dholland nflag = np->n_flag; 961 1.1 dholland mtx_unlock(&np->n_mtx); 962 1.3 pgoyette if (nflag & NMODIFIED) { 963 1.1 dholland BO_LOCK(&vp->v_bufobj); 964 1.1 dholland if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 965 1.1 dholland TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 966 1.1 dholland b_bobufs) { 967 1.1 dholland if (bp->b_flags & B_NEEDCOMMIT) 968 1.1 dholland wouldcommit += bp->b_bcount; 969 1.1 dholland } 970 1.1 dholland } 971 1.1 dholland BO_UNLOCK(&vp->v_bufobj); 972 1.1 dholland } 973 1.1 dholland } 974 1.1 dholland 975 1.1 dholland do { 976 1.3 pgoyette if (!(ioflag & IO_SYNC)) { 977 1.3 pgoyette wouldcommit += biosize; 978 1.3 pgoyette if (wouldcommit > nmp->nm_wcommitsize) { 979 1.3 pgoyette np->n_attrstamp = 0; 980 1.3 pgoyette KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 981 1.3 pgoyette error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 982 1.3 pgoyette if (error) 983 1.3 pgoyette return (error); 984 1.3 pgoyette wouldcommit = biosize; 985 1.3 pgoyette } 986 1.3 pgoyette } 987 1.3 pgoyette 988 1.3 pgoyette NFSINCRGLOBAL(nfsstatsv1.biocache_writes); 989 1.1 dholland lbn = uio->uio_offset / biosize; 990 1.1 dholland on = uio->uio_offset - (lbn * biosize); 991 1.1 dholland n = MIN((unsigned)(biosize - on), uio->uio_resid); 992 1.1 dholland again: 993 1.1 dholland /* 994 1.1 dholland * Handle direct append and file extension cases, calculate 995 1.1 dholland * unaligned buffer size. 996 1.1 dholland */ 997 1.1 dholland mtx_lock(&np->n_mtx); 998 1.3 pgoyette if ((np->n_flag & NHASBEENLOCKED) == 0 && 999 1.3 pgoyette (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0) 1000 1.3 pgoyette noncontig_write = 1; 1001 1.3 pgoyette else 1002 1.3 pgoyette noncontig_write = 0; 1003 1.3 pgoyette if ((uio->uio_offset == np->n_size || 1004 1.3 pgoyette (noncontig_write != 0 && 1005 1.3 pgoyette lbn == (np->n_size / biosize) && 1006 1.3 pgoyette uio->uio_offset + n > np->n_size)) && n) { 1007 1.1 dholland mtx_unlock(&np->n_mtx); 1008 1.1 dholland /* 1009 1.1 dholland * Get the buffer (in its pre-append state to maintain 1010 1.1 dholland * B_CACHE if it was previously set). Resize the 1011 1.1 dholland * nfsnode after we have locked the buffer to prevent 1012 1.1 dholland * readers from reading garbage. 1013 1.1 dholland */ 1014 1.3 pgoyette obcount = np->n_size - (lbn * biosize); 1015 1.3 pgoyette bp = nfs_getcacheblk(vp, lbn, obcount, td); 1016 1.1 dholland 1017 1.1 dholland if (bp != NULL) { 1018 1.1 dholland long save; 1019 1.1 dholland 1020 1.1 dholland mtx_lock(&np->n_mtx); 1021 1.1 dholland np->n_size = uio->uio_offset + n; 1022 1.1 dholland np->n_flag |= NMODIFIED; 1023 1.1 dholland vnode_pager_setsize(vp, np->n_size); 1024 1.1 dholland mtx_unlock(&np->n_mtx); 1025 1.1 dholland 1026 1.1 dholland save = bp->b_flags & B_CACHE; 1027 1.3 pgoyette bcount = on + n; 1028 1.1 dholland allocbuf(bp, bcount); 1029 1.1 dholland bp->b_flags |= save; 1030 1.3 pgoyette if (noncontig_write != 0 && on > obcount) 1031 1.3 pgoyette vfs_bio_bzero_buf(bp, obcount, on - 1032 1.3 pgoyette obcount); 1033 1.1 dholland } 1034 1.1 dholland } else { 1035 1.1 dholland /* 1036 1.1 dholland * Obtain the locked cache block first, and then 1037 1.1 dholland * adjust the file's size as appropriate. 1038 1.1 dholland */ 1039 1.1 dholland bcount = on + n; 1040 1.1 dholland if ((off_t)lbn * biosize + bcount < np->n_size) { 1041 1.1 dholland if ((off_t)(lbn + 1) * biosize < np->n_size) 1042 1.1 dholland bcount = biosize; 1043 1.1 dholland else 1044 1.1 dholland bcount = np->n_size - (off_t)lbn * biosize; 1045 1.1 dholland } 1046 1.1 dholland mtx_unlock(&np->n_mtx); 1047 1.1 dholland bp = nfs_getcacheblk(vp, lbn, bcount, td); 1048 1.1 dholland mtx_lock(&np->n_mtx); 1049 1.1 dholland if (uio->uio_offset + n > np->n_size) { 1050 1.1 dholland np->n_size = uio->uio_offset + n; 1051 1.1 dholland np->n_flag |= NMODIFIED; 1052 1.1 dholland vnode_pager_setsize(vp, np->n_size); 1053 1.1 dholland } 1054 1.1 dholland mtx_unlock(&np->n_mtx); 1055 1.1 dholland } 1056 1.1 dholland 1057 1.1 dholland if (!bp) { 1058 1.1 dholland error = newnfs_sigintr(nmp, td); 1059 1.1 dholland if (!error) 1060 1.1 dholland error = EINTR; 1061 1.1 dholland break; 1062 1.1 dholland } 1063 1.1 dholland 1064 1.1 dholland /* 1065 1.1 dholland * Issue a READ if B_CACHE is not set. In special-append 1066 1.1 dholland * mode, B_CACHE is based on the buffer prior to the write 1067 1.1 dholland * op and is typically set, avoiding the read. If a read 1068 1.1 dholland * is required in special append mode, the server will 1069 1.1 dholland * probably send us a short-read since we extended the file 1070 1.1 dholland * on our end, resulting in b_resid == 0 and, thusly, 1071 1.1 dholland * B_CACHE getting set. 1072 1.1 dholland * 1073 1.1 dholland * We can also avoid issuing the read if the write covers 1074 1.1 dholland * the entire buffer. We have to make sure the buffer state 1075 1.1 dholland * is reasonable in this case since we will not be initiating 1076 1.1 dholland * I/O. See the comments in kern/vfs_bio.c's getblk() for 1077 1.1 dholland * more information. 1078 1.1 dholland * 1079 1.1 dholland * B_CACHE may also be set due to the buffer being cached 1080 1.1 dholland * normally. 1081 1.1 dholland */ 1082 1.1 dholland 1083 1.1 dholland bp_cached = 1; 1084 1.1 dholland if (on == 0 && n == bcount) { 1085 1.1 dholland if ((bp->b_flags & B_CACHE) == 0) 1086 1.1 dholland bp_cached = 0; 1087 1.1 dholland bp->b_flags |= B_CACHE; 1088 1.1 dholland bp->b_flags &= ~B_INVAL; 1089 1.1 dholland bp->b_ioflags &= ~BIO_ERROR; 1090 1.1 dholland } 1091 1.1 dholland 1092 1.1 dholland if ((bp->b_flags & B_CACHE) == 0) { 1093 1.1 dholland bp->b_iocmd = BIO_READ; 1094 1.1 dholland vfs_busy_pages(bp, 0); 1095 1.1 dholland error = ncl_doio(vp, bp, cred, td, 0); 1096 1.1 dholland if (error) { 1097 1.1 dholland brelse(bp); 1098 1.1 dholland break; 1099 1.1 dholland } 1100 1.1 dholland } 1101 1.1 dholland if (bp->b_wcred == NOCRED) 1102 1.1 dholland bp->b_wcred = crhold(cred); 1103 1.1 dholland mtx_lock(&np->n_mtx); 1104 1.1 dholland np->n_flag |= NMODIFIED; 1105 1.1 dholland mtx_unlock(&np->n_mtx); 1106 1.1 dholland 1107 1.1 dholland /* 1108 1.1 dholland * If dirtyend exceeds file size, chop it down. This should 1109 1.1 dholland * not normally occur but there is an append race where it 1110 1.1 dholland * might occur XXX, so we log it. 1111 1.1 dholland * 1112 1.1 dholland * If the chopping creates a reverse-indexed or degenerate 1113 1.1 dholland * situation with dirtyoff/end, we 0 both of them. 1114 1.1 dholland */ 1115 1.1 dholland 1116 1.1 dholland if (bp->b_dirtyend > bcount) { 1117 1.3 pgoyette printf("NFS append race @%lx:%d\n", 1118 1.1 dholland (long)bp->b_blkno * DEV_BSIZE, 1119 1.1 dholland bp->b_dirtyend - bcount); 1120 1.1 dholland bp->b_dirtyend = bcount; 1121 1.1 dholland } 1122 1.1 dholland 1123 1.1 dholland if (bp->b_dirtyoff >= bp->b_dirtyend) 1124 1.1 dholland bp->b_dirtyoff = bp->b_dirtyend = 0; 1125 1.1 dholland 1126 1.1 dholland /* 1127 1.1 dholland * If the new write will leave a contiguous dirty 1128 1.1 dholland * area, just update the b_dirtyoff and b_dirtyend, 1129 1.1 dholland * otherwise force a write rpc of the old dirty area. 1130 1.1 dholland * 1131 1.3 pgoyette * If there has been a file lock applied to this file 1132 1.3 pgoyette * or vfs.nfs.old_noncontig_writing is set, do the following: 1133 1.1 dholland * While it is possible to merge discontiguous writes due to 1134 1.1 dholland * our having a B_CACHE buffer ( and thus valid read data 1135 1.1 dholland * for the hole), we don't because it could lead to 1136 1.1 dholland * significant cache coherency problems with multiple clients, 1137 1.1 dholland * especially if locking is implemented later on. 1138 1.1 dholland * 1139 1.3 pgoyette * If vfs.nfs.old_noncontig_writing is not set and there has 1140 1.3 pgoyette * not been file locking done on this file: 1141 1.3 pgoyette * Relax coherency a bit for the sake of performance and 1142 1.3 pgoyette * expand the current dirty region to contain the new 1143 1.3 pgoyette * write even if it means we mark some non-dirty data as 1144 1.3 pgoyette * dirty. 1145 1.1 dholland */ 1146 1.1 dholland 1147 1.3 pgoyette if (noncontig_write == 0 && bp->b_dirtyend > 0 && 1148 1.1 dholland (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1149 1.1 dholland if (bwrite(bp) == EINTR) { 1150 1.1 dholland error = EINTR; 1151 1.1 dholland break; 1152 1.1 dholland } 1153 1.1 dholland goto again; 1154 1.1 dholland } 1155 1.1 dholland 1156 1.1 dholland local_resid = uio->uio_resid; 1157 1.1 dholland error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1158 1.1 dholland 1159 1.1 dholland if (error != 0 && !bp_cached) { 1160 1.1 dholland /* 1161 1.2 wiz * This block has no other content than what 1162 1.1 dholland * possibly was written by the faulty uiomove. 1163 1.1 dholland * Release it, forgetting the data pages, to 1164 1.1 dholland * prevent the leak of uninitialized data to 1165 1.1 dholland * usermode. 1166 1.1 dholland */ 1167 1.1 dholland bp->b_ioflags |= BIO_ERROR; 1168 1.1 dholland brelse(bp); 1169 1.1 dholland uio->uio_offset -= local_resid - uio->uio_resid; 1170 1.1 dholland uio->uio_resid = local_resid; 1171 1.1 dholland break; 1172 1.1 dholland } 1173 1.1 dholland 1174 1.1 dholland /* 1175 1.1 dholland * Since this block is being modified, it must be written 1176 1.1 dholland * again and not just committed. Since write clustering does 1177 1.1 dholland * not work for the stage 1 data write, only the stage 2 1178 1.1 dholland * commit rpc, we have to clear B_CLUSTEROK as well. 1179 1.1 dholland */ 1180 1.1 dholland bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1181 1.1 dholland 1182 1.1 dholland /* 1183 1.1 dholland * Get the partial update on the progress made from 1184 1.3 pgoyette * uiomove, if an error occurred. 1185 1.1 dholland */ 1186 1.1 dholland if (error != 0) 1187 1.1 dholland n = local_resid - uio->uio_resid; 1188 1.1 dholland 1189 1.1 dholland /* 1190 1.1 dholland * Only update dirtyoff/dirtyend if not a degenerate 1191 1.1 dholland * condition. 1192 1.1 dholland */ 1193 1.1 dholland if (n > 0) { 1194 1.1 dholland if (bp->b_dirtyend > 0) { 1195 1.5 riastrad bp->b_dirtyoff = uimin(on, bp->b_dirtyoff); 1196 1.5 riastrad bp->b_dirtyend = uimax((on + n), bp->b_dirtyend); 1197 1.1 dholland } else { 1198 1.1 dholland bp->b_dirtyoff = on; 1199 1.1 dholland bp->b_dirtyend = on + n; 1200 1.1 dholland } 1201 1.1 dholland vfs_bio_set_valid(bp, on, n); 1202 1.1 dholland } 1203 1.1 dholland 1204 1.1 dholland /* 1205 1.1 dholland * If IO_SYNC do bwrite(). 1206 1.1 dholland * 1207 1.1 dholland * IO_INVAL appears to be unused. The idea appears to be 1208 1.1 dholland * to turn off caching in this case. Very odd. XXX 1209 1.1 dholland */ 1210 1.1 dholland if ((ioflag & IO_SYNC)) { 1211 1.1 dholland if (ioflag & IO_INVAL) 1212 1.1 dholland bp->b_flags |= B_NOCACHE; 1213 1.1 dholland error1 = bwrite(bp); 1214 1.1 dholland if (error1 != 0) { 1215 1.1 dholland if (error == 0) 1216 1.1 dholland error = error1; 1217 1.1 dholland break; 1218 1.1 dholland } 1219 1.1 dholland } else if ((n + on) == biosize) { 1220 1.1 dholland bp->b_flags |= B_ASYNC; 1221 1.1 dholland (void) ncl_writebp(bp, 0, NULL); 1222 1.1 dholland } else { 1223 1.1 dholland bdwrite(bp); 1224 1.1 dholland } 1225 1.1 dholland 1226 1.1 dholland if (error != 0) 1227 1.1 dholland break; 1228 1.1 dholland } while (uio->uio_resid > 0 && n > 0); 1229 1.1 dholland 1230 1.1 dholland if (error != 0) { 1231 1.1 dholland if (ioflag & IO_UNIT) { 1232 1.1 dholland VATTR_NULL(&vattr); 1233 1.1 dholland vattr.va_size = orig_size; 1234 1.6 msaitoh /* IO_SYNC is handled implicitly */ 1235 1.1 dholland (void)VOP_SETATTR(vp, &vattr, cred); 1236 1.1 dholland uio->uio_offset -= orig_resid - uio->uio_resid; 1237 1.1 dholland uio->uio_resid = orig_resid; 1238 1.1 dholland } 1239 1.1 dholland } 1240 1.1 dholland 1241 1.1 dholland return (error); 1242 1.1 dholland } 1243 1.1 dholland 1244 1.1 dholland /* 1245 1.1 dholland * Get an nfs cache block. 1246 1.1 dholland * 1247 1.1 dholland * Allocate a new one if the block isn't currently in the cache 1248 1.1 dholland * and return the block marked busy. If the calling process is 1249 1.1 dholland * interrupted by a signal for an interruptible mount point, return 1250 1.1 dholland * NULL. 1251 1.1 dholland * 1252 1.1 dholland * The caller must carefully deal with the possible B_INVAL state of 1253 1.1 dholland * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1254 1.1 dholland * indirectly), so synchronous reads can be issued without worrying about 1255 1.1 dholland * the B_INVAL state. We have to be a little more careful when dealing 1256 1.1 dholland * with writes (see comments in nfs_write()) when extending a file past 1257 1.1 dholland * its EOF. 1258 1.1 dholland */ 1259 1.1 dholland static struct buf * 1260 1.1 dholland nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1261 1.1 dholland { 1262 1.1 dholland struct buf *bp; 1263 1.1 dholland struct mount *mp; 1264 1.1 dholland struct nfsmount *nmp; 1265 1.1 dholland 1266 1.1 dholland mp = vp->v_mount; 1267 1.1 dholland nmp = VFSTONFS(mp); 1268 1.1 dholland 1269 1.1 dholland if (nmp->nm_flag & NFSMNT_INT) { 1270 1.1 dholland sigset_t oldset; 1271 1.1 dholland 1272 1.1 dholland newnfs_set_sigmask(td, &oldset); 1273 1.1 dholland bp = getblk(vp, bn, size, PCATCH, 0, 0); 1274 1.1 dholland newnfs_restore_sigmask(td, &oldset); 1275 1.1 dholland while (bp == NULL) { 1276 1.1 dholland if (newnfs_sigintr(nmp, td)) 1277 1.1 dholland return (NULL); 1278 1.1 dholland bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1279 1.1 dholland } 1280 1.1 dholland } else { 1281 1.1 dholland bp = getblk(vp, bn, size, 0, 0, 0); 1282 1.1 dholland } 1283 1.1 dholland 1284 1.1 dholland if (vp->v_type == VREG) 1285 1.1 dholland bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1286 1.1 dholland return (bp); 1287 1.1 dholland } 1288 1.1 dholland 1289 1.1 dholland /* 1290 1.1 dholland * Flush and invalidate all dirty buffers. If another process is already 1291 1.1 dholland * doing the flush, just wait for completion. 1292 1.1 dholland */ 1293 1.1 dholland int 1294 1.1 dholland ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1295 1.1 dholland { 1296 1.1 dholland struct nfsnode *np = VTONFS(vp); 1297 1.1 dholland struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1298 1.1 dholland int error = 0, slpflag, slptimeo; 1299 1.1 dholland int old_lock = 0; 1300 1.1 dholland 1301 1.1 dholland ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1302 1.1 dholland 1303 1.1 dholland if ((nmp->nm_flag & NFSMNT_INT) == 0) 1304 1.1 dholland intrflg = 0; 1305 1.1 dholland if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)) 1306 1.1 dholland intrflg = 1; 1307 1.1 dholland if (intrflg) { 1308 1.1 dholland slpflag = PCATCH; 1309 1.1 dholland slptimeo = 2 * hz; 1310 1.1 dholland } else { 1311 1.1 dholland slpflag = 0; 1312 1.1 dholland slptimeo = 0; 1313 1.1 dholland } 1314 1.1 dholland 1315 1.1 dholland old_lock = ncl_upgrade_vnlock(vp); 1316 1.1 dholland if (vp->v_iflag & VI_DOOMED) { 1317 1.1 dholland /* 1318 1.1 dholland * Since vgonel() uses the generic vinvalbuf() to flush 1319 1.1 dholland * dirty buffers and it does not call this function, it 1320 1.1 dholland * is safe to just return OK when VI_DOOMED is set. 1321 1.1 dholland */ 1322 1.1 dholland ncl_downgrade_vnlock(vp, old_lock); 1323 1.1 dholland return (0); 1324 1.1 dholland } 1325 1.1 dholland 1326 1.1 dholland /* 1327 1.1 dholland * Now, flush as required. 1328 1.1 dholland */ 1329 1.1 dholland if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) { 1330 1.1 dholland VM_OBJECT_WLOCK(vp->v_bufobj.bo_object); 1331 1.1 dholland vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1332 1.1 dholland VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object); 1333 1.1 dholland /* 1334 1.1 dholland * If the page clean was interrupted, fail the invalidation. 1335 1.1 dholland * Not doing so, we run the risk of losing dirty pages in the 1336 1.1 dholland * vinvalbuf() call below. 1337 1.1 dholland */ 1338 1.1 dholland if (intrflg && (error = newnfs_sigintr(nmp, td))) 1339 1.1 dholland goto out; 1340 1.1 dholland } 1341 1.1 dholland 1342 1.1 dholland error = vinvalbuf(vp, flags, slpflag, 0); 1343 1.1 dholland while (error) { 1344 1.1 dholland if (intrflg && (error = newnfs_sigintr(nmp, td))) 1345 1.1 dholland goto out; 1346 1.1 dholland error = vinvalbuf(vp, flags, 0, slptimeo); 1347 1.1 dholland } 1348 1.1 dholland if (NFSHASPNFS(nmp)) { 1349 1.1 dholland nfscl_layoutcommit(vp, td); 1350 1.1 dholland /* 1351 1.1 dholland * Invalidate the attribute cache, since writes to a DS 1352 1.1 dholland * won't update the size attribute. 1353 1.1 dholland */ 1354 1.1 dholland mtx_lock(&np->n_mtx); 1355 1.1 dholland np->n_attrstamp = 0; 1356 1.1 dholland } else 1357 1.1 dholland mtx_lock(&np->n_mtx); 1358 1.1 dholland if (np->n_directio_asyncwr == 0) 1359 1.1 dholland np->n_flag &= ~NMODIFIED; 1360 1.1 dholland mtx_unlock(&np->n_mtx); 1361 1.1 dholland out: 1362 1.1 dholland ncl_downgrade_vnlock(vp, old_lock); 1363 1.1 dholland return error; 1364 1.1 dholland } 1365 1.1 dholland 1366 1.1 dholland /* 1367 1.1 dholland * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1368 1.1 dholland * This is mainly to avoid queueing async I/O requests when the nfsiods 1369 1.1 dholland * are all hung on a dead server. 1370 1.1 dholland * 1371 1.1 dholland * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1372 1.1 dholland * is eventually dequeued by the async daemon, ncl_doio() *will*. 1373 1.1 dholland */ 1374 1.1 dholland int 1375 1.1 dholland ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1376 1.1 dholland { 1377 1.1 dholland int iod; 1378 1.1 dholland int gotiod; 1379 1.1 dholland int slpflag = 0; 1380 1.1 dholland int slptimeo = 0; 1381 1.1 dholland int error, error2; 1382 1.1 dholland 1383 1.1 dholland /* 1384 1.1 dholland * Commits are usually short and sweet so lets save some cpu and 1385 1.1 dholland * leave the async daemons for more important rpc's (such as reads 1386 1.1 dholland * and writes). 1387 1.1 dholland * 1388 1.1 dholland * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1389 1.1 dholland * in the directory in order to update attributes. This can deadlock 1390 1.1 dholland * with another thread that is waiting for async I/O to be done by 1391 1.1 dholland * an nfsiod thread while holding a lock on one of these vnodes. 1392 1.1 dholland * To avoid this deadlock, don't allow the async nfsiod threads to 1393 1.1 dholland * perform Readdirplus RPCs. 1394 1.1 dholland */ 1395 1.1 dholland mtx_lock(&ncl_iod_mutex); 1396 1.1 dholland if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1397 1.1 dholland (nmp->nm_bufqiods > ncl_numasync / 2)) || 1398 1.1 dholland (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1399 1.1 dholland mtx_unlock(&ncl_iod_mutex); 1400 1.1 dholland return(EIO); 1401 1.1 dholland } 1402 1.1 dholland again: 1403 1.1 dholland if (nmp->nm_flag & NFSMNT_INT) 1404 1.1 dholland slpflag = PCATCH; 1405 1.1 dholland gotiod = FALSE; 1406 1.1 dholland 1407 1.1 dholland /* 1408 1.1 dholland * Find a free iod to process this request. 1409 1.1 dholland */ 1410 1.1 dholland for (iod = 0; iod < ncl_numasync; iod++) 1411 1.1 dholland if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1412 1.1 dholland gotiod = TRUE; 1413 1.1 dholland break; 1414 1.1 dholland } 1415 1.1 dholland 1416 1.1 dholland /* 1417 1.1 dholland * Try to create one if none are free. 1418 1.1 dholland */ 1419 1.1 dholland if (!gotiod) 1420 1.1 dholland ncl_nfsiodnew(); 1421 1.1 dholland else { 1422 1.1 dholland /* 1423 1.1 dholland * Found one, so wake it up and tell it which 1424 1.1 dholland * mount to process. 1425 1.1 dholland */ 1426 1.1 dholland NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1427 1.1 dholland iod, nmp)); 1428 1.1 dholland ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1429 1.1 dholland ncl_iodmount[iod] = nmp; 1430 1.1 dholland nmp->nm_bufqiods++; 1431 1.1 dholland wakeup(&ncl_iodwant[iod]); 1432 1.1 dholland } 1433 1.1 dholland 1434 1.1 dholland /* 1435 1.1 dholland * If none are free, we may already have an iod working on this mount 1436 1.1 dholland * point. If so, it will process our request. 1437 1.1 dholland */ 1438 1.1 dholland if (!gotiod) { 1439 1.1 dholland if (nmp->nm_bufqiods > 0) { 1440 1.1 dholland NFS_DPF(ASYNCIO, 1441 1.1 dholland ("ncl_asyncio: %d iods are already processing mount %p\n", 1442 1.1 dholland nmp->nm_bufqiods, nmp)); 1443 1.1 dholland gotiod = TRUE; 1444 1.1 dholland } 1445 1.1 dholland } 1446 1.1 dholland 1447 1.1 dholland /* 1448 1.1 dholland * If we have an iod which can process the request, then queue 1449 1.1 dholland * the buffer. 1450 1.1 dholland */ 1451 1.1 dholland if (gotiod) { 1452 1.1 dholland /* 1453 1.1 dholland * Ensure that the queue never grows too large. We still want 1454 1.2 wiz * to asynchronize so we block rather than return EIO. 1455 1.1 dholland */ 1456 1.1 dholland while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1457 1.1 dholland NFS_DPF(ASYNCIO, 1458 1.1 dholland ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1459 1.1 dholland nmp->nm_bufqwant = TRUE; 1460 1.1 dholland error = newnfs_msleep(td, &nmp->nm_bufq, 1461 1.1 dholland &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1462 1.1 dholland slptimeo); 1463 1.1 dholland if (error) { 1464 1.1 dholland error2 = newnfs_sigintr(nmp, td); 1465 1.1 dholland if (error2) { 1466 1.1 dholland mtx_unlock(&ncl_iod_mutex); 1467 1.1 dholland return (error2); 1468 1.1 dholland } 1469 1.1 dholland if (slpflag == PCATCH) { 1470 1.1 dholland slpflag = 0; 1471 1.1 dholland slptimeo = 2 * hz; 1472 1.1 dholland } 1473 1.1 dholland } 1474 1.1 dholland /* 1475 1.1 dholland * We might have lost our iod while sleeping, 1476 1.3 pgoyette * so check and loop if necessary. 1477 1.1 dholland */ 1478 1.1 dholland goto again; 1479 1.1 dholland } 1480 1.1 dholland 1481 1.1 dholland /* We might have lost our nfsiod */ 1482 1.1 dholland if (nmp->nm_bufqiods == 0) { 1483 1.1 dholland NFS_DPF(ASYNCIO, 1484 1.1 dholland ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1485 1.1 dholland goto again; 1486 1.1 dholland } 1487 1.1 dholland 1488 1.1 dholland if (bp->b_iocmd == BIO_READ) { 1489 1.1 dholland if (bp->b_rcred == NOCRED && cred != NOCRED) 1490 1.1 dholland bp->b_rcred = crhold(cred); 1491 1.1 dholland } else { 1492 1.1 dholland if (bp->b_wcred == NOCRED && cred != NOCRED) 1493 1.1 dholland bp->b_wcred = crhold(cred); 1494 1.1 dholland } 1495 1.1 dholland 1496 1.1 dholland if (bp->b_flags & B_REMFREE) 1497 1.1 dholland bremfreef(bp); 1498 1.1 dholland BUF_KERNPROC(bp); 1499 1.1 dholland TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1500 1.1 dholland nmp->nm_bufqlen++; 1501 1.1 dholland if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1502 1.1 dholland mtx_lock(&(VTONFS(bp->b_vp))->n_mtx); 1503 1.1 dholland VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1504 1.1 dholland VTONFS(bp->b_vp)->n_directio_asyncwr++; 1505 1.1 dholland mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx); 1506 1.1 dholland } 1507 1.1 dholland mtx_unlock(&ncl_iod_mutex); 1508 1.1 dholland return (0); 1509 1.1 dholland } 1510 1.1 dholland 1511 1.1 dholland mtx_unlock(&ncl_iod_mutex); 1512 1.1 dholland 1513 1.1 dholland /* 1514 1.1 dholland * All the iods are busy on other mounts, so return EIO to 1515 1.1 dholland * force the caller to process the i/o synchronously. 1516 1.1 dholland */ 1517 1.1 dholland NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1518 1.1 dholland return (EIO); 1519 1.1 dholland } 1520 1.1 dholland 1521 1.1 dholland void 1522 1.1 dholland ncl_doio_directwrite(struct buf *bp) 1523 1.1 dholland { 1524 1.1 dholland int iomode, must_commit; 1525 1.1 dholland struct uio *uiop = (struct uio *)bp->b_caller1; 1526 1.1 dholland char *iov_base = uiop->uio_iov->iov_base; 1527 1.1 dholland 1528 1.1 dholland iomode = NFSWRITE_FILESYNC; 1529 1.1 dholland uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1530 1.1 dholland ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0); 1531 1.1 dholland KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); 1532 1.1 dholland free(iov_base, M_NFSDIRECTIO); 1533 1.1 dholland free(uiop->uio_iov, M_NFSDIRECTIO); 1534 1.1 dholland free(uiop, M_NFSDIRECTIO); 1535 1.1 dholland if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1536 1.1 dholland struct nfsnode *np = VTONFS(bp->b_vp); 1537 1.1 dholland mtx_lock(&np->n_mtx); 1538 1.1 dholland if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) { 1539 1.1 dholland /* 1540 1.1 dholland * Invalidate the attribute cache, since writes to a DS 1541 1.1 dholland * won't update the size attribute. 1542 1.1 dholland */ 1543 1.1 dholland np->n_attrstamp = 0; 1544 1.1 dholland } 1545 1.1 dholland np->n_directio_asyncwr--; 1546 1.1 dholland if (np->n_directio_asyncwr == 0) { 1547 1.1 dholland np->n_flag &= ~NMODIFIED; 1548 1.1 dholland if ((np->n_flag & NFSYNCWAIT)) { 1549 1.1 dholland np->n_flag &= ~NFSYNCWAIT; 1550 1.1 dholland wakeup((caddr_t)&np->n_directio_asyncwr); 1551 1.1 dholland } 1552 1.1 dholland } 1553 1.1 dholland mtx_unlock(&np->n_mtx); 1554 1.1 dholland } 1555 1.1 dholland bp->b_vp = NULL; 1556 1.1 dholland relpbuf(bp, &ncl_pbuf_freecnt); 1557 1.1 dholland } 1558 1.1 dholland 1559 1.1 dholland /* 1560 1.1 dholland * Do an I/O operation to/from a cache block. This may be called 1561 1.1 dholland * synchronously or from an nfsiod. 1562 1.1 dholland */ 1563 1.1 dholland int 1564 1.1 dholland ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1565 1.1 dholland int called_from_strategy) 1566 1.1 dholland { 1567 1.1 dholland struct uio *uiop; 1568 1.1 dholland struct nfsnode *np; 1569 1.1 dholland struct nfsmount *nmp; 1570 1.1 dholland int error = 0, iomode, must_commit = 0; 1571 1.1 dholland struct uio uio; 1572 1.1 dholland struct iovec io; 1573 1.1 dholland struct proc *p = td ? td->td_proc : NULL; 1574 1.1 dholland uint8_t iocmd; 1575 1.1 dholland 1576 1.1 dholland np = VTONFS(vp); 1577 1.1 dholland nmp = VFSTONFS(vp->v_mount); 1578 1.1 dholland uiop = &uio; 1579 1.1 dholland uiop->uio_iov = &io; 1580 1.1 dholland uiop->uio_iovcnt = 1; 1581 1.1 dholland uiop->uio_segflg = UIO_SYSSPACE; 1582 1.1 dholland uiop->uio_td = td; 1583 1.1 dholland 1584 1.1 dholland /* 1585 1.1 dholland * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1586 1.1 dholland * do this here so we do not have to do it in all the code that 1587 1.1 dholland * calls us. 1588 1.1 dholland */ 1589 1.1 dholland bp->b_flags &= ~B_INVAL; 1590 1.1 dholland bp->b_ioflags &= ~BIO_ERROR; 1591 1.1 dholland 1592 1.1 dholland KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1593 1.1 dholland iocmd = bp->b_iocmd; 1594 1.1 dholland if (iocmd == BIO_READ) { 1595 1.1 dholland io.iov_len = uiop->uio_resid = bp->b_bcount; 1596 1.1 dholland io.iov_base = bp->b_data; 1597 1.1 dholland uiop->uio_rw = UIO_READ; 1598 1.1 dholland 1599 1.1 dholland switch (vp->v_type) { 1600 1.1 dholland case VREG: 1601 1.1 dholland uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1602 1.3 pgoyette NFSINCRGLOBAL(nfsstatsv1.read_bios); 1603 1.1 dholland error = ncl_readrpc(vp, uiop, cr); 1604 1.1 dholland 1605 1.1 dholland if (!error) { 1606 1.1 dholland if (uiop->uio_resid) { 1607 1.1 dholland /* 1608 1.1 dholland * If we had a short read with no error, we must have 1609 1.1 dholland * hit a file hole. We should zero-fill the remainder. 1610 1.1 dholland * This can also occur if the server hits the file EOF. 1611 1.1 dholland * 1612 1.1 dholland * Holes used to be able to occur due to pending 1613 1.1 dholland * writes, but that is not possible any longer. 1614 1.1 dholland */ 1615 1.1 dholland int nread = bp->b_bcount - uiop->uio_resid; 1616 1.1 dholland ssize_t left = uiop->uio_resid; 1617 1.1 dholland 1618 1.1 dholland if (left > 0) 1619 1.1 dholland bzero((char *)bp->b_data + nread, left); 1620 1.1 dholland uiop->uio_resid = 0; 1621 1.1 dholland } 1622 1.1 dholland } 1623 1.1 dholland /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1624 1.1 dholland if (p && (vp->v_vflag & VV_TEXT)) { 1625 1.1 dholland mtx_lock(&np->n_mtx); 1626 1.1 dholland if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1627 1.1 dholland mtx_unlock(&np->n_mtx); 1628 1.1 dholland PROC_LOCK(p); 1629 1.1 dholland killproc(p, "text file modification"); 1630 1.1 dholland PROC_UNLOCK(p); 1631 1.1 dholland } else 1632 1.1 dholland mtx_unlock(&np->n_mtx); 1633 1.1 dholland } 1634 1.1 dholland break; 1635 1.1 dholland case VLNK: 1636 1.1 dholland uiop->uio_offset = (off_t)0; 1637 1.3 pgoyette NFSINCRGLOBAL(nfsstatsv1.readlink_bios); 1638 1.1 dholland error = ncl_readlinkrpc(vp, uiop, cr); 1639 1.1 dholland break; 1640 1.1 dholland case VDIR: 1641 1.3 pgoyette NFSINCRGLOBAL(nfsstatsv1.readdir_bios); 1642 1.1 dholland uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1643 1.1 dholland if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1644 1.1 dholland error = ncl_readdirplusrpc(vp, uiop, cr, td); 1645 1.1 dholland if (error == NFSERR_NOTSUPP) 1646 1.1 dholland nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1647 1.1 dholland } 1648 1.1 dholland if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1649 1.1 dholland error = ncl_readdirrpc(vp, uiop, cr, td); 1650 1.1 dholland /* 1651 1.1 dholland * end-of-directory sets B_INVAL but does not generate an 1652 1.1 dholland * error. 1653 1.1 dholland */ 1654 1.1 dholland if (error == 0 && uiop->uio_resid == bp->b_bcount) 1655 1.1 dholland bp->b_flags |= B_INVAL; 1656 1.1 dholland break; 1657 1.1 dholland default: 1658 1.3 pgoyette printf("ncl_doio: type %x unexpected\n", vp->v_type); 1659 1.1 dholland break; 1660 1.3 pgoyette } 1661 1.1 dholland if (error) { 1662 1.1 dholland bp->b_ioflags |= BIO_ERROR; 1663 1.1 dholland bp->b_error = error; 1664 1.1 dholland } 1665 1.1 dholland } else { 1666 1.1 dholland /* 1667 1.1 dholland * If we only need to commit, try to commit 1668 1.1 dholland */ 1669 1.1 dholland if (bp->b_flags & B_NEEDCOMMIT) { 1670 1.1 dholland int retv; 1671 1.1 dholland off_t off; 1672 1.1 dholland 1673 1.1 dholland off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1674 1.1 dholland retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1675 1.1 dholland bp->b_wcred, td); 1676 1.1 dholland if (retv == 0) { 1677 1.1 dholland bp->b_dirtyoff = bp->b_dirtyend = 0; 1678 1.1 dholland bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1679 1.1 dholland bp->b_resid = 0; 1680 1.1 dholland bufdone(bp); 1681 1.1 dholland return (0); 1682 1.1 dholland } 1683 1.1 dholland if (retv == NFSERR_STALEWRITEVERF) { 1684 1.1 dholland ncl_clearcommit(vp->v_mount); 1685 1.1 dholland } 1686 1.1 dholland } 1687 1.1 dholland 1688 1.1 dholland /* 1689 1.1 dholland * Setup for actual write 1690 1.1 dholland */ 1691 1.1 dholland mtx_lock(&np->n_mtx); 1692 1.1 dholland if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1693 1.1 dholland bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1694 1.1 dholland mtx_unlock(&np->n_mtx); 1695 1.1 dholland 1696 1.1 dholland if (bp->b_dirtyend > bp->b_dirtyoff) { 1697 1.1 dholland io.iov_len = uiop->uio_resid = bp->b_dirtyend 1698 1.1 dholland - bp->b_dirtyoff; 1699 1.1 dholland uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1700 1.1 dholland + bp->b_dirtyoff; 1701 1.1 dholland io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1702 1.1 dholland uiop->uio_rw = UIO_WRITE; 1703 1.3 pgoyette NFSINCRGLOBAL(nfsstatsv1.write_bios); 1704 1.1 dholland 1705 1.1 dholland if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1706 1.1 dholland iomode = NFSWRITE_UNSTABLE; 1707 1.1 dholland else 1708 1.1 dholland iomode = NFSWRITE_FILESYNC; 1709 1.1 dholland 1710 1.1 dholland error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1711 1.1 dholland called_from_strategy); 1712 1.1 dholland 1713 1.1 dholland /* 1714 1.1 dholland * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1715 1.1 dholland * to cluster the buffers needing commit. This will allow 1716 1.1 dholland * the system to submit a single commit rpc for the whole 1717 1.1 dholland * cluster. We can do this even if the buffer is not 100% 1718 1.1 dholland * dirty (relative to the NFS blocksize), so we optimize the 1719 1.1 dholland * append-to-file-case. 1720 1.1 dholland * 1721 1.1 dholland * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1722 1.1 dholland * cleared because write clustering only works for commit 1723 1.1 dholland * rpc's, not for the data portion of the write). 1724 1.1 dholland */ 1725 1.1 dholland 1726 1.1 dholland if (!error && iomode == NFSWRITE_UNSTABLE) { 1727 1.1 dholland bp->b_flags |= B_NEEDCOMMIT; 1728 1.1 dholland if (bp->b_dirtyoff == 0 1729 1.1 dholland && bp->b_dirtyend == bp->b_bcount) 1730 1.1 dholland bp->b_flags |= B_CLUSTEROK; 1731 1.1 dholland } else { 1732 1.1 dholland bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1733 1.1 dholland } 1734 1.1 dholland 1735 1.1 dholland /* 1736 1.1 dholland * For an interrupted write, the buffer is still valid 1737 1.1 dholland * and the write hasn't been pushed to the server yet, 1738 1.1 dholland * so we can't set BIO_ERROR and report the interruption 1739 1.1 dholland * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1740 1.1 dholland * is not relevant, so the rpc attempt is essentially 1741 1.1 dholland * a noop. For the case of a V3 write rpc not being 1742 1.1 dholland * committed to stable storage, the block is still 1743 1.1 dholland * dirty and requires either a commit rpc or another 1744 1.1 dholland * write rpc with iomode == NFSV3WRITE_FILESYNC before 1745 1.1 dholland * the block is reused. This is indicated by setting 1746 1.1 dholland * the B_DELWRI and B_NEEDCOMMIT flags. 1747 1.1 dholland * 1748 1.1 dholland * EIO is returned by ncl_writerpc() to indicate a recoverable 1749 1.1 dholland * write error and is handled as above, except that 1750 1.1 dholland * B_EINTR isn't set. One cause of this is a stale stateid 1751 1.1 dholland * error for the RPC that indicates recovery is required, 1752 1.1 dholland * when called with called_from_strategy != 0. 1753 1.1 dholland * 1754 1.1 dholland * If the buffer is marked B_PAGING, it does not reside on 1755 1.1 dholland * the vp's paging queues so we cannot call bdirty(). The 1756 1.1 dholland * bp in this case is not an NFS cache block so we should 1757 1.1 dholland * be safe. XXX 1758 1.1 dholland * 1759 1.1 dholland * The logic below breaks up errors into recoverable and 1760 1.1 dholland * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1761 1.1 dholland * and keep the buffer around for potential write retries. 1762 1.1 dholland * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1763 1.1 dholland * and save the error in the nfsnode. This is less than ideal 1764 1.1 dholland * but necessary. Keeping such buffers around could potentially 1765 1.1 dholland * cause buffer exhaustion eventually (they can never be written 1766 1.1 dholland * out, so will get constantly be re-dirtied). It also causes 1767 1.1 dholland * all sorts of vfs panics. For non-recoverable write errors, 1768 1.1 dholland * also invalidate the attrcache, so we'll be forced to go over 1769 1.1 dholland * the wire for this object, returning an error to user on next 1770 1.1 dholland * call (most of the time). 1771 1.1 dholland */ 1772 1.1 dholland if (error == EINTR || error == EIO || error == ETIMEDOUT 1773 1.1 dholland || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1774 1.1 dholland int s; 1775 1.1 dholland 1776 1.1 dholland s = splbio(); 1777 1.1 dholland bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1778 1.1 dholland if ((bp->b_flags & B_PAGING) == 0) { 1779 1.1 dholland bdirty(bp); 1780 1.1 dholland bp->b_flags &= ~B_DONE; 1781 1.1 dholland } 1782 1.1 dholland if ((error == EINTR || error == ETIMEDOUT) && 1783 1.1 dholland (bp->b_flags & B_ASYNC) == 0) 1784 1.1 dholland bp->b_flags |= B_EINTR; 1785 1.1 dholland splx(s); 1786 1.1 dholland } else { 1787 1.1 dholland if (error) { 1788 1.1 dholland bp->b_ioflags |= BIO_ERROR; 1789 1.1 dholland bp->b_flags |= B_INVAL; 1790 1.1 dholland bp->b_error = np->n_error = error; 1791 1.1 dholland mtx_lock(&np->n_mtx); 1792 1.1 dholland np->n_flag |= NWRITEERR; 1793 1.1 dholland np->n_attrstamp = 0; 1794 1.1 dholland KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1795 1.1 dholland mtx_unlock(&np->n_mtx); 1796 1.1 dholland } 1797 1.1 dholland bp->b_dirtyoff = bp->b_dirtyend = 0; 1798 1.1 dholland } 1799 1.1 dholland } else { 1800 1.1 dholland bp->b_resid = 0; 1801 1.1 dholland bufdone(bp); 1802 1.1 dholland return (0); 1803 1.1 dholland } 1804 1.1 dholland } 1805 1.1 dholland bp->b_resid = uiop->uio_resid; 1806 1.1 dholland if (must_commit) 1807 1.1 dholland ncl_clearcommit(vp->v_mount); 1808 1.1 dholland bufdone(bp); 1809 1.1 dholland return (error); 1810 1.1 dholland } 1811 1.1 dholland 1812 1.1 dholland /* 1813 1.1 dholland * Used to aid in handling ftruncate() operations on the NFS client side. 1814 1.1 dholland * Truncation creates a number of special problems for NFS. We have to 1815 1.1 dholland * throw away VM pages and buffer cache buffers that are beyond EOF, and 1816 1.1 dholland * we have to properly handle VM pages or (potentially dirty) buffers 1817 1.1 dholland * that straddle the truncation point. 1818 1.1 dholland */ 1819 1.1 dholland 1820 1.1 dholland int 1821 1.1 dholland ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize) 1822 1.1 dholland { 1823 1.1 dholland struct nfsnode *np = VTONFS(vp); 1824 1.1 dholland u_quad_t tsize; 1825 1.1 dholland int biosize = vp->v_bufobj.bo_bsize; 1826 1.1 dholland int error = 0; 1827 1.1 dholland 1828 1.1 dholland mtx_lock(&np->n_mtx); 1829 1.1 dholland tsize = np->n_size; 1830 1.1 dholland np->n_size = nsize; 1831 1.1 dholland mtx_unlock(&np->n_mtx); 1832 1.1 dholland 1833 1.1 dholland if (nsize < tsize) { 1834 1.1 dholland struct buf *bp; 1835 1.1 dholland daddr_t lbn; 1836 1.1 dholland int bufsize; 1837 1.1 dholland 1838 1.1 dholland /* 1839 1.1 dholland * vtruncbuf() doesn't get the buffer overlapping the 1840 1.1 dholland * truncation point. We may have a B_DELWRI and/or B_CACHE 1841 1.1 dholland * buffer that now needs to be truncated. 1842 1.1 dholland */ 1843 1.1 dholland error = vtruncbuf(vp, cred, nsize, biosize); 1844 1.1 dholland lbn = nsize / biosize; 1845 1.1 dholland bufsize = nsize - (lbn * biosize); 1846 1.1 dholland bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1847 1.1 dholland if (!bp) 1848 1.1 dholland return EINTR; 1849 1.1 dholland if (bp->b_dirtyoff > bp->b_bcount) 1850 1.1 dholland bp->b_dirtyoff = bp->b_bcount; 1851 1.1 dholland if (bp->b_dirtyend > bp->b_bcount) 1852 1.1 dholland bp->b_dirtyend = bp->b_bcount; 1853 1.1 dholland bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1854 1.1 dholland brelse(bp); 1855 1.1 dholland } else { 1856 1.1 dholland vnode_pager_setsize(vp, nsize); 1857 1.1 dholland } 1858 1.1 dholland return(error); 1859 1.1 dholland } 1860 1.1 dholland 1861